applied-ai-018's picture
Add files using upload-large-folder tool
8c68fe4 verified
import itertools
import numpy as np
import pytest
import torch
from lm_eval.api.metrics import (
aggregate_subtask_metrics,
mean,
pooled_sample_stderr,
stderr_for_metric,
)
from lm_eval.models.utils import Collator
from lm_eval.utils import (
get_rolling_token_windows,
make_disjoint_window,
)
# noinspection DuplicatedCode
def test_get_rolling_token_windows_v1():
gold = [
([-100, 0, 1, 2, 3, 4, 5, 6, 7, 8], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
(
[9, 10, 11, 12, 13, 14, 15, 16, 17, 18],
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19],
),
(
[19, 20, 21, 22, 23, 24, 25, 26, 27, 28],
[20, 21, 22, 23, 24, 25, 26, 27, 28, 29],
),
([23, 24, 25, 26, 27, 28, 29, 30, 31, 32], [30, 31, 32, 33]),
]
x = list(range(34))
generator = get_rolling_token_windows(
token_list=x,
prefix_token=-100,
max_seq_len=10,
context_len=1,
)
pred_length = 0
output = []
for input_tokens, pred_tokens in generator:
output.append((input_tokens, pred_tokens))
pred_length += len(pred_tokens)
assert pred_length == len(x)
assert gold == output
# noinspection DuplicatedCode
def test_get_rolling_token_windows_v2():
gold = [
([-100, 0, 1, 2, 3, 4, 5, 6, 7, 8], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
([2, 3, 4, 5, 6, 7, 8, 9, 10, 11], [10, 11, 12]),
([5, 6, 7, 8, 9, 10, 11, 12, 13, 14], [13, 14, 15]),
([8, 9, 10, 11, 12, 13, 14, 15, 16, 17], [16, 17, 18]),
([11, 12, 13, 14, 15, 16, 17, 18, 19, 20], [19, 20, 21]),
([14, 15, 16, 17, 18, 19, 20, 21, 22, 23], [22, 23, 24]),
([17, 18, 19, 20, 21, 22, 23, 24, 25, 26], [25, 26, 27]),
([20, 21, 22, 23, 24, 25, 26, 27, 28, 29], [28, 29, 30]),
([23, 24, 25, 26, 27, 28, 29, 30, 31, 32], [31, 32, 33]),
]
x = list(range(34))
generator = get_rolling_token_windows(
token_list=x,
prefix_token=-100,
max_seq_len=10,
context_len=8,
)
pred_length = 0
output = []
for input_tokens, pred_tokens in generator:
output.append((input_tokens, pred_tokens))
pred_length += len(pred_tokens)
assert pred_length == len(x)
assert gold == output
# noinspection DuplicatedCode
def test_get_rolling_token_windows_v3():
gold = [
([-100, 0, 1, 2, 3, 4, 5, 6, 7, 8], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [10]),
([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], [11]),
([2, 3, 4, 5, 6, 7, 8, 9, 10, 11], [12]),
([3, 4, 5, 6, 7, 8, 9, 10, 11, 12], [13]),
([4, 5, 6, 7, 8, 9, 10, 11, 12, 13], [14]),
([5, 6, 7, 8, 9, 10, 11, 12, 13, 14], [15]),
([6, 7, 8, 9, 10, 11, 12, 13, 14, 15], [16]),
([7, 8, 9, 10, 11, 12, 13, 14, 15, 16], [17]),
([8, 9, 10, 11, 12, 13, 14, 15, 16, 17], [18]),
([9, 10, 11, 12, 13, 14, 15, 16, 17, 18], [19]),
([10, 11, 12, 13, 14, 15, 16, 17, 18, 19], [20]),
([11, 12, 13, 14, 15, 16, 17, 18, 19, 20], [21]),
([12, 13, 14, 15, 16, 17, 18, 19, 20, 21], [22]),
([13, 14, 15, 16, 17, 18, 19, 20, 21, 22], [23]),
([14, 15, 16, 17, 18, 19, 20, 21, 22, 23], [24]),
([15, 16, 17, 18, 19, 20, 21, 22, 23, 24], [25]),
([16, 17, 18, 19, 20, 21, 22, 23, 24, 25], [26]),
([17, 18, 19, 20, 21, 22, 23, 24, 25, 26], [27]),
([18, 19, 20, 21, 22, 23, 24, 25, 26, 27], [28]),
([19, 20, 21, 22, 23, 24, 25, 26, 27, 28], [29]),
([20, 21, 22, 23, 24, 25, 26, 27, 28, 29], [30]),
([21, 22, 23, 24, 25, 26, 27, 28, 29, 30], [31]),
([22, 23, 24, 25, 26, 27, 28, 29, 30, 31], [32]),
([23, 24, 25, 26, 27, 28, 29, 30, 31, 32], [33]),
]
x = list(range(34))
generator = get_rolling_token_windows(
token_list=x,
prefix_token=-100,
max_seq_len=10,
context_len=10,
)
pred_length = 0
output = []
for input_tokens, pred_tokens in generator:
output.append((input_tokens, pred_tokens))
pred_length += len(pred_tokens)
assert pred_length == len(x)
assert gold == output
# noinspection DuplicatedCode
def test_get_rolling_token_windows_v4():
gold = [
([-100, 0, 1, 2, 3, 4, 5, 6, 7, 8], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [10]),
([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], [11]),
([2, 3, 4, 5, 6, 7, 8, 9, 10, 11], [12]),
([3, 4, 5, 6, 7, 8, 9, 10, 11, 12], [13]),
([4, 5, 6, 7, 8, 9, 10, 11, 12, 13], [14]),
([5, 6, 7, 8, 9, 10, 11, 12, 13, 14], [15]),
([6, 7, 8, 9, 10, 11, 12, 13, 14, 15], [16]),
([7, 8, 9, 10, 11, 12, 13, 14, 15, 16], [17]),
([8, 9, 10, 11, 12, 13, 14, 15, 16, 17], [18]),
([9, 10, 11, 12, 13, 14, 15, 16, 17, 18], [19]),
([10, 11, 12, 13, 14, 15, 16, 17, 18, 19], [20]),
([11, 12, 13, 14, 15, 16, 17, 18, 19, 20], [21]),
([12, 13, 14, 15, 16, 17, 18, 19, 20, 21], [22]),
([13, 14, 15, 16, 17, 18, 19, 20, 21, 22], [23]),
([14, 15, 16, 17, 18, 19, 20, 21, 22, 23], [24]),
([15, 16, 17, 18, 19, 20, 21, 22, 23, 24], [25]),
([16, 17, 18, 19, 20, 21, 22, 23, 24, 25], [26]),
([17, 18, 19, 20, 21, 22, 23, 24, 25, 26], [27]),
([18, 19, 20, 21, 22, 23, 24, 25, 26, 27], [28]),
([19, 20, 21, 22, 23, 24, 25, 26, 27, 28], [29]),
]
x = list(range(30))
generator = get_rolling_token_windows(
token_list=x,
prefix_token=-100,
max_seq_len=10,
context_len=10,
)
pred_length = 0
output = []
for input_tokens, pred_tokens in generator:
output.append((input_tokens, pred_tokens))
pred_length += len(pred_tokens)
assert pred_length == len(x)
assert gold == output
# noinspection DuplicatedCode
def test_get_rolling_token_windows_v5():
gold = [
([-100, 0, 1, 2, 3, 4, 5, 6, 7, 8], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
(
[9, 10, 11, 12, 13, 14, 15, 16, 17, 18],
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19],
),
(
[19, 20, 21, 22, 23, 24, 25, 26, 27, 28],
[20, 21, 22, 23, 24, 25, 26, 27, 28, 29],
),
]
x = list(range(30))
generator = get_rolling_token_windows(
token_list=x,
prefix_token=-100,
max_seq_len=10,
context_len=1,
)
pred_length = 0
output = []
for input_tokens, pred_tokens in generator:
output.append((input_tokens, pred_tokens))
pred_length += len(pred_tokens)
assert pred_length == len(x)
assert gold == output
# noinspection DuplicatedCode
def test_get_rolling_token_windows_v6():
gold = [
([-100, 0], [0, 1]),
([1, 2], [2, 3]),
([3, 4], [4, 5]),
([5, 6], [6, 7]),
([6, 7], [8]),
]
x = list(range(9))
generator = get_rolling_token_windows(
token_list=x,
prefix_token=-100,
max_seq_len=2,
context_len=1,
)
pred_length = 0
output = []
for input_tokens, pred_tokens in generator:
output.append((input_tokens, pred_tokens))
pred_length += len(pred_tokens)
assert pred_length == len(x)
assert gold == output
def test_get_rolling_token_windows_empty():
generator = get_rolling_token_windows(
token_list=[],
prefix_token=-100,
max_seq_len=2,
context_len=1,
)
n = 0
for _ in generator:
n += 1
assert n == 0
def test_make_disjoint_window():
assert make_disjoint_window(([1, 2, 3, 4, 5], [2, 3, 4, 5, 6])) == (
[1],
[2, 3, 4, 5, 6],
)
assert make_disjoint_window(([1, 2, 3, 4, 5], [4, 5, 6])) == ([1, 2, 3], [4, 5, 6])
assert make_disjoint_window(([1, 2, 3, 4, 5], [6])) == ([1, 2, 3, 4, 5], [6])
class TestCollator:
def make_generate_sample(self, end=10):
strings = ["x" * i for i in range(1, end + 1)]
gen_kwargs1, gen_kwargs2 = (
{"temperature": 0},
{"temperature": 0, "until": ["nn", "\n\n"]},
)
args = [
(string, gen_kwargs1 if i < len(strings) // 2 else gen_kwargs2)
for i, string in enumerate(strings)
]
return args
def make_loglikelihood_sample(self, end=11):
samples = [
(("x", "x"), list(range(1, total_length + 1)))
for total_length in range(1, end + 1)
]
return samples
def make_loglikelihood_sample_group(self, end=11):
a = [(("x", "x"), [1, 2, 3, 4, 5, 6, 7, 8], [x]) for x in range(9)]
b = [
(("x", "x"), [1, 2, 3, 4, 5, 6, 7, 8], [x, y, z])
for x, y, z in zip(range(9), range(9, 18), range(18, 27))
]
return a + b
@pytest.mark.parametrize("batch_size, end", [(17, 30), (8, 61), (12, 48), (0, 9)])
def test_generations(self, batch_size, end):
_collate_gen = lambda x: (-len(x[0]), x[0]) # noqa: E731
generation_samples = self.make_generate_sample(int(end))
gens = Collator(generation_samples, _collate_gen, group_by="gen_kwargs")
chunks = gens.get_batched(n=int(batch_size), batch_fn=None)
output = []
for chunks in chunks:
# check batching
group_one = end // 2
group_two = end - end // 2
assert (
len(chunks) <= batch_size
if batch_size != 0
else len(chunks) in [group_one, group_two]
)
# check if reorder-er is working correctly
assert all(
len(chunks[i][0]) <= len(chunks[i - 1][0])
for i in range(1, len(chunks))
)
# check if grouping correctly
assert all(x[1] == chunks[0][1] for x in chunks)
for x in chunks:
output.append(x)
reordered_output = gens.get_original(output)
# check get original
assert reordered_output == generation_samples
@pytest.mark.parametrize("batch_size, end", [(17, 30), (8, 61), (12, 48), (0, 3)])
def test_loglikelihood(self, batch_size, end):
_collate_log = lambda x: (-len(x[1]), tuple(x[1])) # noqa: E731
loglikelihood_samples = self.make_loglikelihood_sample(int(end))
loglikelihoods = Collator(
loglikelihood_samples,
_collate_log,
)
chunks = loglikelihoods.get_batched(n=int(batch_size), batch_fn=None)
output = []
for chunks in chunks:
# check batching
assert len(chunks) <= batch_size if batch_size != 0 else len(chunks) == end
# check reorder
assert all(
len(chunks[i][1]) <= len(chunks[i - 1][1])
for i in range(1, len(chunks))
)
for x in chunks:
output.append(x[1])
# check indices
reordered_output = loglikelihoods.get_original(output)
assert reordered_output == [x[1] for x in loglikelihood_samples]
@pytest.mark.parametrize("batch_size", [17, 8, 12, 0])
def test_context_grouping(self, batch_size):
def _collate(x):
toks = x[1] + x[2]
return -len(toks), tuple(toks)
_collate_log = _collate # noqa: E731
loglikelihood_samples = self.make_loglikelihood_sample_group()
loglikelihoods = Collator(
loglikelihood_samples,
_collate_log,
group_fn=lambda a: a[-2] + a[-1][:-1],
group_by="contexts",
)
chunks = loglikelihoods.get_batched(n=int(batch_size), batch_fn=None)
output = []
outputs_ = []
for chunks in chunks:
# check batching
if batch_size != 0:
assert len(chunks) <= batch_size
# check reorder
assert all(
len(chunks[i][1]) <= len(chunks[i - 1][1])
for i in range(1, len(chunks))
)
for x in chunks:
for request_str, cont_toks, logits in loglikelihoods.get_cache(
req_str="".join(x[0]),
cxt_toks=x[1],
cont_toks=x[2],
logits=torch.tensor([1, 2, 3, 4, 5, 6, 7, 8])
.unsqueeze(0)
.unsqueeze(0),
):
output.append(x[1])
outputs_.append(cont_toks)
assert len(output) == len(outputs_)
# check indices
reordered_output = loglikelihoods.get_original(output)
assert reordered_output == [x[1] for x in loglikelihood_samples]
def test_aggregate_mean():
# test weight_by_size is respected
assert (
aggregate_subtask_metrics([0.3, 0.2, 0.4], [20, 40, 100], weight_by_size=False)
== 0.3
)
assert (
aggregate_subtask_metrics([0.3, 0.2, 0.4], [20, 40, 100], weight_by_size=True)
== 0.3375
)
@pytest.mark.parametrize(
"samples",
[
[40 * [1.0] + 60 * [0.0], 30 * [1.0] + 30 * [0.0], 20 * [1.0] + 60 * [0.0]],
[35 * [1.0] + 65 * [0.0], 20 * [1.0] + 20 * [0.0]],
],
)
def test_aggregate_stderrs(samples):
# check that aggregating subtasks' bootstrap stderrs with our formula
# (using weight_by_size) is ~equiv.
# to just getting bootstrap stderr of the whole set of samples
mean_stderr = stderr_for_metric(metric=mean, bootstrap_iters=100000)
stderrs = [mean_stderr(subtask) for subtask in samples]
sizes = [len(subtask) for subtask in samples]
assert np.allclose(
pooled_sample_stderr(stderrs, sizes),
mean_stderr(list(itertools.chain.from_iterable(samples))),
atol=1.0e-3,
)