peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/checkpoint
/universal_checkpoint.py
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
import os | |
import re | |
import torch | |
import types | |
from typing import List, Tuple, Union | |
from dataclasses import dataclass | |
from .constants import (FP32_WEIGHT_KEY, PARAM, VOCAB_TENSOR, CAT_DIM, PARAM_N_SUB_PARAMS, SUB_PARAM_SHAPE) | |
class SubparamShape: | |
patterns: List[str] | |
shape: Tuple[Union[Tuple[int], int]] | |
partition_dim: int | |
def load_hp_checkpoint_state(self, folder, tp_rank, tp_world_size): | |
hp_mapping = self._hp_mapping | |
hp_mapping.optim_fragment = {} | |
hp_keys = [] | |
for file in os.listdir(folder): | |
# We expect files named something like "exp_avg.pt", "exp_avg_sq.pt", "fp32.pt" | |
pattern = r'(.+).pt' | |
match = re.search(pattern, file) | |
if match: | |
hp_keys.append(match.group(1)) | |
step = None | |
for key in hp_keys: | |
ckpt_file = os.path.join(folder, f"{key}.pt") | |
ckpt_dict = torch.load(ckpt_file) | |
if key == "step": | |
step = ckpt_dict | |
continue | |
full_hp_param = ckpt_dict[PARAM] | |
# need to deal with slices that were averaged. | |
# the opposite of averaging here becomes an exact copy of the first slice | |
# I thought of 2 ways: | |
# implementation a. find a way for a client to pass a dict with patterns | |
# if any(re.search(pattern, folder) for pattern in WEIGHTS_TO_AVERAGE_PATTERNS): | |
# tp_rank = 0 | |
# tp_world_size = 1 | |
# the other approach is to assume that the saved data is correct and if full_hp_param.shape == | |
# self.shape that means we automatically copy? | |
# implementation b. | |
# this version requires no additional data passed from the client | |
# if the shapes already match it must be slices that were averaged - so we just hack around those | |
if full_hp_param.shape == self.shape: | |
tp_rank = 0 | |
tp_world_size = 1 | |
# special case for word_embeddings weights which get padded differently depending on TP degree. | |
# the converter to universal currently strips the original padding completely so the saved | |
# weight is padding-free and we just need to add new padding depending on the target TP | |
# degree | |
is_vocab_tensor = ckpt_dict.get(VOCAB_TENSOR, False) | |
if is_vocab_tensor: | |
# In the absence of data passed from the user wrt new padded vocab specific to tp degree | |
# we can again derive that data by reverse engineering the target shapes like so: | |
padded_target_vocab_size = self.shape[0] * tp_world_size | |
assert padded_target_vocab_size >= full_hp_param.shape[0], \ | |
f'Vocab tensor padded size {padded_target_vocab_size} < loaded universal size {full_hp_param.shape[0]}' | |
if padded_target_vocab_size > full_hp_param.shape[0]: | |
padding_size = padded_target_vocab_size - full_hp_param.shape[0] | |
full_hp_param = torch.nn.functional.pad(full_hp_param, (0, 0, 0, padding_size), "constant", 0) | |
full_param_numel = full_hp_param.numel() | |
tp_slice_numel = self.numel() | |
# if key == FP32_WEIGHT_KEY and 'word_embeddings.weight' in folder: | |
# print_rank_0(f'{full_hp_param[:10]=}', force=True) | |
assert full_param_numel == tp_world_size * tp_slice_numel, \ | |
f'Loading {ckpt_file} full param numel {full_param_numel} != tensor slice numel {tp_slice_numel} * tp_world_size {tp_world_size}' | |
# print(f"{full_hp_param.shape=} {full_param_numel=} {folder=}") | |
# print(f"{dst_tensor.shape=} {dst_tensor.numel()=}{folder=}") | |
sub_param_shape = ckpt_dict.get(SUB_PARAM_SHAPE, None) | |
# since when we do many to 1 on tp we cat sometimes on dim=0 and other times on dim=1 we have to do exactly the same in reverse | |
# special case is when a single parameter is effectively a container for multiple sub parameters | |
# (more details at PARAM_N_SUB_PARAMS definition) | |
chunk_dim = ckpt_dict.get(CAT_DIM, 0) | |
n_sub_params = ckpt_dict.get(PARAM_N_SUB_PARAMS, 1) | |
if sub_param_shape: | |
partition_dim = sub_param_shape.partition_dim | |
sub_dim_sizes = sub_param_shape.shape[partition_dim] | |
if not isinstance(sub_dim_sizes, tuple): | |
sub_dim_sizes = (sub_dim_sizes, ) | |
partition_shape = [sum(d) if isinstance(d, tuple) else d for d in sub_param_shape.shape] | |
full_hp_param = full_hp_param.view(partition_shape) | |
offset = 0 | |
merged_chunks = [] | |
for sub_dim_size in sub_dim_sizes: | |
sub_params_tp_slice = full_hp_param.narrow(partition_dim, | |
offset, sub_dim_size).chunk(tp_world_size, | |
dim=partition_dim)[tp_rank] | |
merged_chunks.append(sub_params_tp_slice) | |
offset += sub_dim_size | |
tp_hp_slice = torch.cat(merged_chunks, dim=partition_dim) | |
elif n_sub_params > 1: | |
sub_params = full_hp_param.chunk(n_sub_params, dim=chunk_dim) | |
sub_params_tp_slice = [p.chunk(tp_world_size, dim=chunk_dim)[tp_rank] for p in sub_params] | |
tp_hp_slice = torch.cat(sub_params_tp_slice, dim=chunk_dim) | |
else: | |
# this performs the opposite of cat when merging TP slices | |
tp_hp_slice = full_hp_param.chunk(tp_world_size, chunk_dim)[tp_rank] | |
tp_hp_slice = tp_hp_slice.flatten() | |
lp_frag_address = hp_mapping.lp_fragment_address | |
tp_hp_fragment = tp_hp_slice.narrow(0, lp_frag_address.start, lp_frag_address.numel) | |
# print(f"{key} SHAPE: {tp_hp_slice.shape=}") | |
# print(f"{key} SHAPE: {dst_tensor.shape=}") | |
# print(f"{key} SHAPE: {tp_hp_fragment.shape=}") | |
if key == FP32_WEIGHT_KEY: | |
dst_tensor = hp_mapping.get_hp_fragment() | |
assert dst_tensor.numel() == lp_frag_address.numel, \ | |
f'Load checkpoint {key} dst numel {dst_tensor.numel()} != src numel {lp_frag_address.numel}' | |
dst_tensor.data.copy_(tp_hp_fragment.data) | |
else: | |
assert tp_hp_fragment.numel() == lp_frag_address.numel, \ | |
f'Load checkpoint {key} dst numel {tp_hp_fragment.numel()} != src numel {lp_frag_address.numel}' | |
hp_mapping.optim_fragment[key] = tp_hp_fragment.clone().detach() | |
return step | |
def enable_universal_checkpoint(param_list): | |
for param in param_list: | |
param.load_hp_checkpoint_state = types.MethodType(load_hp_checkpoint_state, param) | |