peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/elasticity
/config.py
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
import json | |
from .constants import * | |
class ElasticityError(Exception): | |
""" | |
Base exception for all elasticity related errors | |
""" | |
class ElasticityConfigError(ElasticityError): | |
""" | |
Elasticity configuration error | |
""" | |
class ElasticityIncompatibleWorldSize(ElasticityError): | |
""" | |
Attempting to run a world size that is incompatible with a given elastic config | |
""" | |
class ElasticityConfig: | |
""" | |
Elastic config object, constructed from a param dictionary that only contains elastic | |
config parameters, example below: | |
If elasticity is enabled, user must specify (at least) max_train_batch_size | |
and micro_batch_sizes. | |
{ | |
"enabled": true, | |
"max_train_batch_size": 2000, | |
"micro_batch_sizes": [2,4,6], | |
"min_gpus": 1, | |
"max_gpus" : 10000 | |
"min_time": 20 | |
"ignore_non_elastic_batch_info": false | |
"version": 0.1 | |
} | |
""" | |
def __init__(self, param_dict): | |
self.enabled = param_dict.get(ENABLED, ENABLED_DEFAULT) | |
if self.enabled: | |
if MAX_ACCEPTABLE_BATCH_SIZE in param_dict: | |
self.max_acceptable_batch_size = param_dict[MAX_ACCEPTABLE_BATCH_SIZE] | |
else: | |
raise ElasticityConfigError(f"Elasticity config missing {MAX_ACCEPTABLE_BATCH_SIZE}") | |
if MICRO_BATCHES in param_dict: | |
self.micro_batches = param_dict[MICRO_BATCHES] | |
else: | |
raise ElasticityConfigError(f"Elasticity config missing {MICRO_BATCHES}") | |
else: | |
self.max_acceptable_batch_size = param_dict.get(MAX_ACCEPTABLE_BATCH_SIZE, | |
MAX_ACCEPTABLE_BATCH_SIZE_DEFAULT) | |
self.micro_batches = param_dict.get(MICRO_BATCHES, MICRO_BATCHES_DEFAULT) | |
if not isinstance(self.micro_batches, list): | |
raise ElasticityConfigError( | |
f"Elasticity expected value of {MICRO_BATCHES} to be a " | |
f"list of micro batches, instead is: {type(self.micro_batches)}, containing: {self.micro_batches}") | |
if not all(map(lambda m: isinstance(m, int), self.micro_batches)): | |
raise ElasticityConfigError(f"Elasticity expected {MICRO_BATCHES} to only contain a list of integers, " | |
f"instead contains: f{self.micro_batches}") | |
if not all(map(lambda m: m > 0, self.micro_batches)): | |
raise ElasticityConfigError(f"Elasticity expected {MICRO_BATCHES} to only contain positive integers, " | |
f"instead contains: f{self.micro_batches}") | |
self.min_gpus = param_dict.get(MIN_GPUS, MIN_GPUS_DEFAULT) | |
self.max_gpus = param_dict.get(MAX_GPUS, MAX_GPUS_DEFAULT) | |
if self.min_gpus < 1 or self.max_gpus < 1: | |
raise ElasticityConfigError("Elasticity min/max gpus must be > 0, " | |
f"given min_gpus: {self.min_gpus}, max_gpus: {self.max_gpus}") | |
if self.max_gpus < self.min_gpus: | |
raise ElasticityConfigError("Elasticity min_gpus cannot be greater than max_gpus, " | |
f"given min_gpus: {self.min_gpus}, max_gpus: {self.max_gpus}") | |
self.model_parallel_size = param_dict.get(MODEL_PARALLEL_SIZE, MODEL_PARALLEL_SIZE_DEFAULT) | |
if self.model_parallel_size < 1: | |
raise ElasticityConfigError("Model-Parallel size cannot be less than 1, " | |
f"given model-parallel size: {self.model_parallel_size}") | |
self.num_gpus_per_node = param_dict.get(NUM_GPUS_PER_NODE, NUM_GPUS_PER_NODE_DEFAULT) | |
if self.num_gpus_per_node < 1: | |
raise ElasticityConfigError("Number of GPUs per node cannot be less than 1, " | |
f"given number of GPUs per node: {self.num_gpus_per_node}") | |
self.min_time = param_dict.get(MIN_TIME, MIN_TIME_DEFAULT) | |
if self.min_time < 0: | |
raise ElasticityConfigError(f"Elasticity min time needs to be >= 0: given {self.min_time}") | |
self.version = param_dict.get(VERSION, VERSION_DEFAULT) | |
self.prefer_larger_batch_size = param_dict.get(PREFER_LARGER_BATCH, PREFER_LARGER_BATCH_DEFAULT) | |
self.ignore_non_elastic_batch_info = param_dict.get(IGNORE_NON_ELASTIC_BATCH_INFO, | |
IGNORE_NON_ELASTIC_BATCH_INFO_DEFAULT) | |
def repr(self): | |
return self.__dict__ | |
def __repr__(self): | |
return json.dumps(self.__dict__, sort_keys=True, indent=4) | |