applied-ai-018's picture
Add files using upload-large-folder tool
0cee4ac verified
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
import os
import torch
import deepspeed
import subprocess
import argparse
from .ops.op_builder.all_ops import ALL_OPS
from .git_version_info import installed_ops, torch_info, accelerator_name
from deepspeed.accelerator import get_accelerator
GREEN = '\033[92m'
RED = '\033[91m'
YELLOW = '\033[93m'
END = '\033[0m'
SUCCESS = f"{GREEN} [SUCCESS] {END}"
OKAY = f"{GREEN}[OKAY]{END}"
WARNING = f"{YELLOW}[WARNING]{END}"
FAIL = f'{RED}[FAIL]{END}'
INFO = '[INFO]'
color_len = len(GREEN) + len(END)
okay = f"{GREEN}[OKAY]{END}"
warning = f"{YELLOW}[WARNING]{END}"
def op_report(verbose=True):
max_dots = 23
max_dots2 = 11
h = ["op name", "installed", "compatible"]
print("-" * (max_dots + max_dots2 + len(h[0]) + len(h[1])))
print("DeepSpeed C++/CUDA extension op report")
print("-" * (max_dots + max_dots2 + len(h[0]) + len(h[1])))
print("NOTE: Ops not installed will be just-in-time (JIT) compiled at\n"
" runtime if needed. Op compatibility means that your system\n"
" meet the required dependencies to JIT install the op.")
print("-" * (max_dots + max_dots2 + len(h[0]) + len(h[1])))
print("JIT compiled ops requires ninja")
ninja_status = OKAY if ninja_installed() else FAIL
print('ninja', "." * (max_dots - 5), ninja_status)
print("-" * (max_dots + max_dots2 + len(h[0]) + len(h[1])))
print(h[0], "." * (max_dots - len(h[0])), h[1], "." * (max_dots2 - len(h[1])), h[2])
print("-" * (max_dots + max_dots2 + len(h[0]) + len(h[1])))
installed = f"{GREEN}[YES]{END}"
no = f"{YELLOW}[NO]{END}"
for op_name, builder in ALL_OPS.items():
dots = "." * (max_dots - len(op_name))
is_compatible = OKAY if builder.is_compatible(verbose) else no
is_installed = installed if installed_ops.get(op_name,
False) and accelerator_name == get_accelerator()._name else no
dots2 = '.' * ((len(h[1]) + (max_dots2 - len(h[1]))) - (len(is_installed) - color_len))
print(op_name, dots, is_installed, dots2, is_compatible)
print("-" * (max_dots + max_dots2 + len(h[0]) + len(h[1])))
def ninja_installed():
try:
import ninja # noqa: F401 # type: ignore
except ImportError:
return False
return True
def nvcc_version():
import torch.utils.cpp_extension
cuda_home = torch.utils.cpp_extension.CUDA_HOME
if cuda_home is None:
return f"{RED} [FAIL] cannot find CUDA_HOME via torch.utils.cpp_extension.CUDA_HOME={torch.utils.cpp_extension.CUDA_HOME} {END}"
try:
output = subprocess.check_output([cuda_home + "/bin/nvcc", "-V"], universal_newlines=True)
except FileNotFoundError:
return f"{RED} [FAIL] nvcc missing {END}"
output_split = output.split()
release_idx = output_split.index("release")
release = output_split[release_idx + 1].replace(',', '').split(".")
return ".".join(release)
def installed_cann_path():
if "ASCEND_HOME_PATH" in os.environ or os.path.exists(os.environ["ASCEND_HOME_PATH"]):
return os.environ["ASCEND_HOME_PATH"]
return None
def installed_cann_version():
import re
ascend_path = installed_cann_path()
if ascend_path is None:
return f"CANN_HOME does not exist, unable to compile NPU op(s)"
cann_version = ""
for dirpath, _, filenames in os.walk(os.path.realpath(ascend_path)):
if cann_version:
break
install_files = [file for file in filenames if re.match(r"ascend_.*_install\.info", file)]
if install_files:
filepath = os.path.join(dirpath, install_files[0])
with open(filepath, "r") as f:
for line in f:
if line.find("version") != -1:
cann_version = line.strip().split("=")[-1]
break
return cann_version
def get_shm_size():
try:
shm_stats = os.statvfs('/dev/shm')
except (OSError, FileNotFoundError, ValueError):
return "UNKNOWN", None
shm_size = shm_stats.f_frsize * shm_stats.f_blocks
shm_hbytes = human_readable_size(shm_size)
warn = []
if shm_size < 512 * 1024**2:
warn.append(
f" {YELLOW} [WARNING] /dev/shm size might be too small, if running in docker increase to at least --shm-size='1gb' {END}"
)
if get_accelerator().communication_backend_name() == "nccl":
warn.append(
f" {YELLOW} [WARNING] see more details about NCCL requirements: https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/troubleshooting.html#sharing-data {END}"
)
return shm_hbytes, warn
def human_readable_size(size):
units = ['B', 'KB', 'MB', 'GB', 'TB']
i = 0
while size >= 1024 and i < len(units) - 1:
size /= 1024
i += 1
return f'{size:.2f} {units[i]}'
def debug_report():
max_dots = 33
report = [("torch install path", torch.__path__), ("torch version", torch.__version__),
("deepspeed install path", deepspeed.__path__),
("deepspeed info", f"{deepspeed.__version__}, {deepspeed.__git_hash__}, {deepspeed.__git_branch__}")]
if get_accelerator().device_name() == 'cuda':
hip_version = getattr(torch.version, "hip", None)
report.extend([("torch cuda version", torch.version.cuda), ("torch hip version", hip_version),
("nvcc version", (None if hip_version else nvcc_version())),
("deepspeed wheel compiled w.", f"torch {torch_info['version']}, " +
(f"hip {torch_info['hip_version']}" if hip_version else f"cuda {torch_info['cuda_version']}"))
])
elif get_accelerator().device_name() == 'npu':
import torch_npu
report.extend([("deepspeed wheel compiled w.", f"torch {torch_info['version']}"),
("torch_npu install path", torch_npu.__path__), ("torch_npu version", torch_npu.__version__),
("ascend_cann version", installed_cann_version())])
else:
report.extend([("deepspeed wheel compiled w.", f"torch {torch_info['version']} ")])
report.append(("shared memory (/dev/shm) size", get_shm_size()))
print("DeepSpeed general environment info:")
for name, value in report:
warns = []
if isinstance(value, tuple):
value, warns = value
print(name, "." * (max_dots - len(name)), value)
if warns:
for warn in warns:
print(warn)
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--hide_operator_status',
action='store_true',
help='Suppress display of installation and compatibility statuses of DeepSpeed operators. ')
parser.add_argument('--hide_errors_and_warnings', action='store_true', help='Suppress warning and error messages.')
args = parser.parse_args()
return args
def main(hide_operator_status=False, hide_errors_and_warnings=False):
if not hide_operator_status:
op_report(verbose=not hide_errors_and_warnings)
debug_report()
def cli_main():
args = parse_arguments()
main(hide_operator_status=args.hide_operator_status, hide_errors_and_warnings=args.hide_errors_and_warnings)
if __name__ == "__main__":
main()