peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/env_report.py
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
import os | |
import torch | |
import deepspeed | |
import subprocess | |
import argparse | |
from .ops.op_builder.all_ops import ALL_OPS | |
from .git_version_info import installed_ops, torch_info, accelerator_name | |
from deepspeed.accelerator import get_accelerator | |
GREEN = '\033[92m' | |
RED = '\033[91m' | |
YELLOW = '\033[93m' | |
END = '\033[0m' | |
SUCCESS = f"{GREEN} [SUCCESS] {END}" | |
OKAY = f"{GREEN}[OKAY]{END}" | |
WARNING = f"{YELLOW}[WARNING]{END}" | |
FAIL = f'{RED}[FAIL]{END}' | |
INFO = '[INFO]' | |
color_len = len(GREEN) + len(END) | |
okay = f"{GREEN}[OKAY]{END}" | |
warning = f"{YELLOW}[WARNING]{END}" | |
def op_report(verbose=True): | |
max_dots = 23 | |
max_dots2 = 11 | |
h = ["op name", "installed", "compatible"] | |
print("-" * (max_dots + max_dots2 + len(h[0]) + len(h[1]))) | |
print("DeepSpeed C++/CUDA extension op report") | |
print("-" * (max_dots + max_dots2 + len(h[0]) + len(h[1]))) | |
print("NOTE: Ops not installed will be just-in-time (JIT) compiled at\n" | |
" runtime if needed. Op compatibility means that your system\n" | |
" meet the required dependencies to JIT install the op.") | |
print("-" * (max_dots + max_dots2 + len(h[0]) + len(h[1]))) | |
print("JIT compiled ops requires ninja") | |
ninja_status = OKAY if ninja_installed() else FAIL | |
print('ninja', "." * (max_dots - 5), ninja_status) | |
print("-" * (max_dots + max_dots2 + len(h[0]) + len(h[1]))) | |
print(h[0], "." * (max_dots - len(h[0])), h[1], "." * (max_dots2 - len(h[1])), h[2]) | |
print("-" * (max_dots + max_dots2 + len(h[0]) + len(h[1]))) | |
installed = f"{GREEN}[YES]{END}" | |
no = f"{YELLOW}[NO]{END}" | |
for op_name, builder in ALL_OPS.items(): | |
dots = "." * (max_dots - len(op_name)) | |
is_compatible = OKAY if builder.is_compatible(verbose) else no | |
is_installed = installed if installed_ops.get(op_name, | |
False) and accelerator_name == get_accelerator()._name else no | |
dots2 = '.' * ((len(h[1]) + (max_dots2 - len(h[1]))) - (len(is_installed) - color_len)) | |
print(op_name, dots, is_installed, dots2, is_compatible) | |
print("-" * (max_dots + max_dots2 + len(h[0]) + len(h[1]))) | |
def ninja_installed(): | |
try: | |
import ninja # noqa: F401 # type: ignore | |
except ImportError: | |
return False | |
return True | |
def nvcc_version(): | |
import torch.utils.cpp_extension | |
cuda_home = torch.utils.cpp_extension.CUDA_HOME | |
if cuda_home is None: | |
return f"{RED} [FAIL] cannot find CUDA_HOME via torch.utils.cpp_extension.CUDA_HOME={torch.utils.cpp_extension.CUDA_HOME} {END}" | |
try: | |
output = subprocess.check_output([cuda_home + "/bin/nvcc", "-V"], universal_newlines=True) | |
except FileNotFoundError: | |
return f"{RED} [FAIL] nvcc missing {END}" | |
output_split = output.split() | |
release_idx = output_split.index("release") | |
release = output_split[release_idx + 1].replace(',', '').split(".") | |
return ".".join(release) | |
def installed_cann_path(): | |
if "ASCEND_HOME_PATH" in os.environ or os.path.exists(os.environ["ASCEND_HOME_PATH"]): | |
return os.environ["ASCEND_HOME_PATH"] | |
return None | |
def installed_cann_version(): | |
import re | |
ascend_path = installed_cann_path() | |
if ascend_path is None: | |
return f"CANN_HOME does not exist, unable to compile NPU op(s)" | |
cann_version = "" | |
for dirpath, _, filenames in os.walk(os.path.realpath(ascend_path)): | |
if cann_version: | |
break | |
install_files = [file for file in filenames if re.match(r"ascend_.*_install\.info", file)] | |
if install_files: | |
filepath = os.path.join(dirpath, install_files[0]) | |
with open(filepath, "r") as f: | |
for line in f: | |
if line.find("version") != -1: | |
cann_version = line.strip().split("=")[-1] | |
break | |
return cann_version | |
def get_shm_size(): | |
try: | |
shm_stats = os.statvfs('/dev/shm') | |
except (OSError, FileNotFoundError, ValueError): | |
return "UNKNOWN", None | |
shm_size = shm_stats.f_frsize * shm_stats.f_blocks | |
shm_hbytes = human_readable_size(shm_size) | |
warn = [] | |
if shm_size < 512 * 1024**2: | |
warn.append( | |
f" {YELLOW} [WARNING] /dev/shm size might be too small, if running in docker increase to at least --shm-size='1gb' {END}" | |
) | |
if get_accelerator().communication_backend_name() == "nccl": | |
warn.append( | |
f" {YELLOW} [WARNING] see more details about NCCL requirements: https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/troubleshooting.html#sharing-data {END}" | |
) | |
return shm_hbytes, warn | |
def human_readable_size(size): | |
units = ['B', 'KB', 'MB', 'GB', 'TB'] | |
i = 0 | |
while size >= 1024 and i < len(units) - 1: | |
size /= 1024 | |
i += 1 | |
return f'{size:.2f} {units[i]}' | |
def debug_report(): | |
max_dots = 33 | |
report = [("torch install path", torch.__path__), ("torch version", torch.__version__), | |
("deepspeed install path", deepspeed.__path__), | |
("deepspeed info", f"{deepspeed.__version__}, {deepspeed.__git_hash__}, {deepspeed.__git_branch__}")] | |
if get_accelerator().device_name() == 'cuda': | |
hip_version = getattr(torch.version, "hip", None) | |
report.extend([("torch cuda version", torch.version.cuda), ("torch hip version", hip_version), | |
("nvcc version", (None if hip_version else nvcc_version())), | |
("deepspeed wheel compiled w.", f"torch {torch_info['version']}, " + | |
(f"hip {torch_info['hip_version']}" if hip_version else f"cuda {torch_info['cuda_version']}")) | |
]) | |
elif get_accelerator().device_name() == 'npu': | |
import torch_npu | |
report.extend([("deepspeed wheel compiled w.", f"torch {torch_info['version']}"), | |
("torch_npu install path", torch_npu.__path__), ("torch_npu version", torch_npu.__version__), | |
("ascend_cann version", installed_cann_version())]) | |
else: | |
report.extend([("deepspeed wheel compiled w.", f"torch {torch_info['version']} ")]) | |
report.append(("shared memory (/dev/shm) size", get_shm_size())) | |
print("DeepSpeed general environment info:") | |
for name, value in report: | |
warns = [] | |
if isinstance(value, tuple): | |
value, warns = value | |
print(name, "." * (max_dots - len(name)), value) | |
if warns: | |
for warn in warns: | |
print(warn) | |
def parse_arguments(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--hide_operator_status', | |
action='store_true', | |
help='Suppress display of installation and compatibility statuses of DeepSpeed operators. ') | |
parser.add_argument('--hide_errors_and_warnings', action='store_true', help='Suppress warning and error messages.') | |
args = parser.parse_args() | |
return args | |
def main(hide_operator_status=False, hide_errors_and_warnings=False): | |
if not hide_operator_status: | |
op_report(verbose=not hide_errors_and_warnings) | |
debug_report() | |
def cli_main(): | |
args = parse_arguments() | |
main(hide_operator_status=args.hide_operator_status, hide_errors_and_warnings=args.hide_errors_and_warnings) | |
if __name__ == "__main__": | |
main() | |