peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/inference
/config.py
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
import torch | |
import deepspeed | |
from deepspeed.pydantic_v1 import Field, validator | |
from deepspeed.runtime.config_utils import DeepSpeedConfigModel | |
from deepspeed.runtime.zero.config import DeepSpeedZeroConfig | |
from typing import Dict, Union | |
from enum import Enum | |
class DtypeEnum(Enum): | |
# The torch dtype must always be the first value (so we return torch.dtype) | |
fp16 = torch.float16, "torch.float16", "fp16", "float16", "half" | |
fp32 = torch.float32, "torch.float32", "fp32", "float32", "float" | |
bf16 = torch.bfloat16, "torch.bfloat16", "bf16", "bfloat16", "bfloat" | |
int8 = torch.int8, "torch.int8", "int8" | |
# Copied from https://stackoverflow.com/a/43210118 | |
# Allows us to use multiple values for each Enum index and returns first | |
# listed value when Enum is called | |
def __new__(cls, *values): | |
obj = object.__new__(cls) | |
# first value is canonical value | |
obj._value_ = values[0] | |
for other_value in values[1:]: | |
cls._value2member_map_[other_value] = obj | |
obj._all_values = values | |
return obj | |
def __repr__(self): | |
return "<%s.%s: %s>" % ( | |
self.__class__.__name__, | |
self._name_, | |
", ".join([repr(v) for v in self._all_values]), | |
) | |
class MoETypeEnum(str, Enum): | |
residual = "residual" | |
standard = "standard" | |
class DeepSpeedTPConfig(DeepSpeedConfigModel): | |
""" Configure tensor parallelism settings """ | |
enabled: bool = True | |
""" Turn tensor parallelism on/off. """ | |
tp_size: int = 1 | |
""" Number of devices to split the model across using tensor parallelism. """ | |
mpu: object = None | |
""" | |
A model parallelism unit object that implements | |
``get_{model,data}_parallel_{rank,group,world_size}()``. | |
""" | |
tp_group: object = None | |
class DeepSpeedMoEConfig(DeepSpeedConfigModel): | |
""" Sets parameters for MoE """ | |
enabled: bool = True | |
ep_size: int = 1 | |
""" | |
The expert-parallelism size which is used for partitioning the experts | |
across the GPUs in the expert-parallel group. | |
""" | |
moe_experts: list = Field([1], alias="num_experts") | |
""" The global number of experts used in an MoE layer. """ | |
type: MoETypeEnum = MoETypeEnum.standard | |
""" | |
Specify the type of MoE layer. We have two types of MoE layer: 'Standard' | |
and 'Residual'. | |
""" | |
ep_mp_group: object = None | |
ep_group: object = Field(None, alias="expert_group") | |
class QuantTypeEnum(str, Enum): | |
asym = "asymmetric" | |
sym = "symmetric" | |
class BaseQuantConfig(DeepSpeedConfigModel): | |
enabled = True | |
num_bits = 8 | |
q_type: QuantTypeEnum = QuantTypeEnum.sym | |
q_groups: int = 1 | |
class WeightQuantConfig(BaseQuantConfig): | |
enabled = True | |
quantized_initialization: Dict = {} | |
post_init_quant: Dict = {} | |
class ActivationQuantConfig(BaseQuantConfig): | |
enabled = True | |
class QKVQuantConfig(DeepSpeedConfigModel): | |
enabled = True | |
class QuantizationConfig(DeepSpeedConfigModel): | |
enabled: bool = True | |
activation: ActivationQuantConfig = ActivationQuantConfig() | |
weight: WeightQuantConfig = WeightQuantConfig() | |
qkv: QKVQuantConfig = QKVQuantConfig() | |
# todo: brainstorm on how to do ckpt loading for DS inference | |
class InferenceCheckpointConfig(DeepSpeedConfigModel): | |
checkpoint_dir: str = None | |
save_mp_checkpoint_path: str = None | |
base_dir: str = None | |
class DeepSpeedInferenceConfig(DeepSpeedConfigModel): | |
""" Sets parameters for DeepSpeed Inference Engine. """ | |
replace_with_kernel_inject: bool = Field(False, alias="kernel_inject") | |
""" | |
Set to true to inject inference kernels for models such as, Bert, GPT2, | |
GPT-Neo and GPT-J. Otherwise, the injection_dict provides the names of two | |
linear layers as a tuple: | |
`(attention_output projection, transformer output projection)` | |
""" | |
dtype: DtypeEnum = torch.float16 | |
""" | |
Desired model data type, will convert model to this type. | |
Supported target types: `torch.half`, `torch.int8`, `torch.float` | |
""" | |
tensor_parallel: DeepSpeedTPConfig = Field({}, alias="tp") | |
""" | |
Configuration for tensor parallelism used to split the model across several | |
GPUs. Expects a dictionary containing values for :any:`DeepSpeedTPConfig`. | |
""" | |
enable_cuda_graph: bool = False | |
""" | |
Use this flag for capturing the CUDA-Graph of the inference ops, so that it | |
can run faster using the graph replay method. | |
""" | |
use_triton: bool = False | |
""" | |
Use this flag to use triton kernels for inference ops. | |
""" | |
triton_autotune: bool = False | |
""" | |
Use this flag to enable triton autotuning. | |
Turning it on is better for performance but increase the 1st runtime for | |
autotuning. | |
""" | |
zero: DeepSpeedZeroConfig = {} | |
""" | |
ZeRO configuration to use with the Inference Engine. Expects a dictionary | |
containing values for :any:`DeepSpeedZeroConfig`. | |
""" | |
triangular_masking: bool = Field(True, alias="tm") | |
""" | |
Controls the type of masking for attention scores in transformer layer. | |
Note that the masking is application specific. | |
""" | |
moe: Union[bool, DeepSpeedMoEConfig] = {} | |
""" | |
Specify if the type of Transformer is MoE. Expects a dictionary containing | |
values for :any:`DeepSpeedMoEConfig`. | |
""" | |
quant: QuantizationConfig = {} | |
""" | |
NOTE: only works for int8 dtype. | |
Quantization settings used for quantizing your model using the MoQ. The | |
setting can be one element or a tuple. If one value is passed in, we | |
consider it as the number of groups used in quantization. A tuple is passed | |
in if we want to mention that there is extra-grouping for the MLP part of a | |
Transformer layer (e.g. (True, 8) shows we quantize the model using 8 | |
groups for all the network except the MLP part that we use 8 extra | |
grouping). Expects a dictionary containing values for | |
:any:`QuantizationConfig`. | |
""" | |
#todo: refactor the following 3 into the new checkpoint_config | |
checkpoint: Union[str, Dict] = None | |
""" | |
Path to deepspeed compatible checkpoint or path to JSON with load policy. | |
""" | |
base_dir: str = "" | |
""" | |
This shows the root directory under which all the checkpoint files exists. | |
This can be passed through the json config too. | |
""" | |
set_empty_params: bool = False | |
""" | |
specifying whether the inference-module is created with empty or real Tensor | |
""" | |
save_mp_checkpoint_path: str = None | |
""" | |
The path for which we want to save the loaded model with a checkpoint. This | |
feature is used for adjusting the parallelism degree to help alleviate the | |
model loading overhead. It does not save any new checkpoint if no path is | |
passed. | |
""" | |
checkpoint_config: InferenceCheckpointConfig = Field({}, alias="ckpt_config") | |
""" | |
TODO: Add docs. Expects a dictionary containing values for | |
:any:`InferenceCheckpointConfig`. | |
""" | |
return_tuple: bool = True | |
""" | |
Specify whether or not the transformer layers need to return a tuple or a | |
Tensor. | |
""" | |
training_mp_size: int = 1 | |
""" | |
If loading a checkpoint this is the mp size that it was trained with, it | |
may be different than what the mp size that you want to use during | |
inference. | |
""" | |
replace_method: str = Field( | |
"auto", | |
deprecated=True, | |
deprecated_msg="This parameter is no longer needed, please remove from your call to DeepSpeed-inference") | |
injection_policy: Dict = Field(None, alias="injection_dict") | |
""" | |
Dictionary mapping a client nn.Module to its corresponding injection | |
policy. e.g., `{BertLayer : deepspeed.inference.HFBertLayerPolicy}` | |
""" | |
injection_policy_tuple: tuple = None | |
""" TODO: Add docs """ | |
config: Dict = Field(None, alias="args") # todo: really no need for this field if we can refactor | |
max_out_tokens: int = Field(1024, alias="max_tokens") | |
""" | |
This argument shows the maximum number of tokens inference-engine can work | |
with, including the input and output tokens. Please consider increasing it | |
to the required token-length required for your use-case. | |
""" | |
min_out_tokens: int = Field(1, alias="min_tokens") | |
""" | |
This argument communicates to the runtime the minimum number of tokens you | |
expect you will need to generate. This will cause the runtime to error | |
if it unable to provide this and provide context on the memory pressure | |
rather than seg-faulting or providing corrupted output. | |
""" | |
transposed_mode: bool = Field(False, alias="transposed_mode") | |
mp_size: int = Field(1, deprecated=True, new_param="tensor_parallel.tp_size") | |
""" | |
Desired model parallel size, default is 1 meaning no model parallelism. | |
Deprecated, please use the ``tensor_parallel` config to control model | |
parallelism. | |
""" | |
mpu: object = Field(None, deprecated=True, new_param="tensor_parallel.mpu") | |
ep_size: int = Field(1, deprecated=True, new_param="moe.ep_size") | |
ep_group: object = Field(None, alias="expert_group", deprecated=True, new_param="moe.ep_group") | |
ep_mp_group: object = Field(None, alias="expert_mp_group", deprecated=True, new_param="moe.ep_mp_group") | |
moe_experts: list = Field([1], deprecated=True, new_param="moe.moe_experts") | |
moe_type: MoETypeEnum = Field(MoETypeEnum.standard, deprecated=True, new_param="moe.type") | |
def moe_backward_compat(cls, field_value, values): | |
if isinstance(field_value, bool): | |
return DeepSpeedMoEConfig(moe=field_value) | |
return field_value | |
def has_triton(cls, field_value, values): | |
if field_value and not deepspeed.HAS_TRITON: | |
raise ValueError('Triton needs to be installed to use deepspeed with triton kernels') | |
return field_value | |
class Config: | |
# Get the str representation of the datatype for serialization | |
json_encoders = {torch.dtype: lambda x: str(x)} | |