peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/inference
/quantization
/quantization.py
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
import torch | |
from torch import nn | |
from typing import Dict | |
import gc | |
from deepspeed.inference.quantization import layers | |
from .layers import QUANTIZATION_LAYER_MAPPINGS | |
from .utils import get_AsyncPartitionedParameterSwapper, recursive_setattr | |
from deepspeed.utils.logging import logger | |
from collections import deque | |
from transformers.utils.generic import ContextManagers | |
from .quantization_context import QuantizationContext | |
import contextlib | |
def _init_group_wise_weight_quantization(model: nn.Module, ds_config: Dict) -> nn.Module: | |
"""[Experimental] Apply group-wise weight quantization to model. Replace layers module according to config_list | |
Args: | |
model (nn.Module): A nn.Module | |
ds_config (Dict, optional): The ds_config dictionary. use None for non-deepspeed managed model. | |
Returns: | |
nn.Module: Quantized nn.Module | |
""" | |
# global quantized_weight_registry | |
matched_module_list_by_key = {} | |
matched_module_count = 0 | |
assert 'weight_quantization' in ds_config, 'Please provide quantization config in ds_config' | |
quantization_config = ds_config['weight_quantization']['post_init_quant'] | |
# Return nvme swapper if exists, else return None. | |
# For nvme offloading we must use the same swapper here as model initialized. | |
nvme_swapper = get_AsyncPartitionedParameterSwapper(model) | |
is_zero3_enabled = 'zero_optimization' in ds_config and \ | |
'stage' in ds_config['zero_optimization'] and \ | |
ds_config['zero_optimization']['stage'] == 3 | |
is_offloading_enabled = 'zero_optimization' in ds_config and \ | |
'offload_param' in ds_config['zero_optimization'] | |
layers.is_zero3_enabled = is_zero3_enabled | |
context_mgr = ContextManagers([QuantizationContext(config_dict_or_path=ds_config, param_swapper=nvme_swapper)]) \ | |
if is_zero3_enabled else contextlib.suppress() | |
with context_mgr: | |
module_list = list( | |
filter(lambda named_module: type(named_module[1]) in QUANTIZATION_LAYER_MAPPINGS, model.named_modules())) | |
# Quantize small weight first then large. | |
if not is_offloading_enabled: | |
module_list.sort(key=lambda named_module: named_module[1].weight.ds_tensor.numel() | |
if is_zero3_enabled else named_module[1].weight.numel()) | |
module_list = deque(module_list) | |
while len(module_list) > 0: | |
# Use popleft to timely release module's memory of replaced module after each loop iteration | |
module_name, module = module_list.popleft() | |
matched_key = None | |
matched_quantization_config = None | |
for key, config in quantization_config.items(): | |
if key in module_name: | |
assert matched_key is None, f'{module_name} matched multiple quantization key word {matched_key} and {key}' | |
matched_key = key | |
matched_quantization_config = config | |
if matched_key is None: | |
continue | |
if is_zero3_enabled: | |
module.weight.all_gather() | |
assert module.weight.dtype == torch.float16, 'Model weight is expected in half.' | |
new_module = QUANTIZATION_LAYER_MAPPINGS[type(module)](matched_quantization_config, module) | |
if is_zero3_enabled: | |
module.weight.partition() | |
recursive_setattr(model, module_name, new_module) | |
if matched_key not in matched_module_list_by_key: | |
matched_module_list_by_key[matched_key] = [] | |
matched_module_list_by_key[matched_key].append(module_name) | |
matched_module_count += 1 | |
# Timely recycle memory to prevent OOM on large models | |
gc.collect() | |
# Clear registry after model construction. | |
layers.quantized_weight_registry.clear() | |
logger.info( | |
f'Group-wise weight quantization summary: convert {matched_module_count} node(s) to quantized implementation') | |
summary_str = '\n' | |
for key, module_list in matched_module_list_by_key.items(): | |
summary_str += f'Key: {key}, matched modules:\n' | |
for module_name in module_list: | |
summary_str += f'\t{module_name}\n' | |
logger.info(summary_str) | |
return model | |