applied-ai-018's picture
Add files using upload-large-folder tool
2334d5a verified
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
import torch
import deepspeed
from torch import Tensor
from typing import Tuple
import torch.nn as nn
from typing import Dict, Callable, Union
from deepspeed.accelerator import get_accelerator
import functools
device = get_accelerator().device_name() if get_accelerator().is_available() else 'cpu'
quantizer_cuda_module = None
def get_quantizer_cuda_module():
global quantizer_cuda_module
if quantizer_cuda_module is None:
quantizer_cuda_module = deepspeed.ops.op_builder.QuantizerBuilder().load()
return quantizer_cuda_module
def tensor_clamp(tensor: Tensor, min, max) -> Tensor:
if tensor.device.type == 'cpu' and tensor.dtype == torch.float16:
# CPU does not support FP16 clamp
return tensor.to(dtype=torch.float32).clamp_(min, max).to(dtype=torch.float16)
else:
return tensor.clamp_(min, max)
def tensor_round(tensor: Tensor) -> Tensor:
if tensor.device.type == 'cpu' and tensor.dtype == torch.float16:
# CPU does not support FP16 round
return tensor.to(dtype=torch.float32).round_().to(dtype=torch.float16)
else:
return tensor.round_()
class Quantizer:
def __init__(self, config: Dict) -> None:
self.config = config
assert self.config['num_bits'] == 4 or self.config[
'num_bits'] == 8, 'Only INT4 and INT8 quantization is supported.'
assert self.config['symmetric'] == False, 'Only asymmetric quantization is supported at this moment.'
def quantize(self, tensor: Tensor) -> Tuple[Tensor, Tensor, Tensor]:
assert tensor.shape[self.config['group_dim']] % self.config['group_size'] == 0 \
, f'Tensor shape: {tensor.shape} quantization config {self.config}'
tensor = torch.clone(tensor)
shape = tensor.shape
num_groups = shape[self.config['group_dim']] // self.config['group_size']
new_shape = (shape[:self.config['group_dim']] + (num_groups, self.config['group_size']) +
shape[self.config['group_dim'] + 1:])
tensor = tensor.view(new_shape)
quantized_tensor, scale, min_value = self._quantize_int8(tensor)
quantized_tensor = quantized_tensor.view(shape)
if self.config['num_bits'] == 4:
return self._compress_uint8_to_uint4(quantized_tensor), scale, min_value
if self.config['num_bits'] == 8:
return quantized_tensor, scale, min_value
assert False, 'Unsupported quantization bits {}'.format(self.config['num_bits'])
def _quantize_int8(self, tensor: Tensor) -> Tuple[Tensor, Tensor, Tensor]:
q_range = 2**self.config['num_bits'] - 1
min_value = tensor.amin(dim=self.config['group_dim'] + 1, keepdim=True)
max_value = tensor.amax(dim=self.config['group_dim'] + 1, keepdim=True)
scale = q_range / (max_value - min_value)
tensor = tensor.sub_(min_value).mul_(scale)
tensor = tensor_round(tensor_clamp(tensor, 0, q_range)).to(torch.uint8)
return tensor, scale, min_value
def _compress_uint8_to_uint4(self, tensor: Tensor) -> Tensor:
assert tensor.shape[-1] % 2 == 0
new_data_shape = list(tensor.shape)
new_data_shape[-1] = new_data_shape[-1] // 2
data = torch.empty(new_data_shape, dtype=torch.uint8, device=tensor.device)
data = torch.bitwise_or(tensor[..., 0::2].bitwise_left_shift(4), tensor[..., 1::2])
return data
class DeQuantizer:
def __init__(self, config: Dict, dtype: torch.dtype) -> None:
self.config = config
self.dtype = dtype
assert self.config['num_bits'] == 4 or self.config[
'num_bits'] == 8, 'Only INT4 and INT8 quantization is supported.'
assert self.config['symmetric'] == False, 'Only asymmetric quantization is supported at this moment.'
def dequantize(self, tensor: Tensor, quant_scale: Tensor, quant_min: Tensor) -> Tensor:
# Use customized CUDA quantization kernel if possible.
if self.config['group_size'] % 8 == 0 and \
(self.config['num_bits'] == 4 or self.config['num_bits'] == 8) and \
self.config['group_dim'] == len(tensor.shape) - 1 and \
self.dtype == torch.float16 and device == 'cuda':
last_dimension_size = self.config['group_size']
if self.config['num_bits'] == 4:
last_dimension_size = last_dimension_size // 2
quantized_tensor = get_quantizer_cuda_module().dequantize_int4_to_half_experimental(
tensor.reshape(-1, last_dimension_size), quant_scale, quant_min,
tensor.numel() // last_dimension_size, self.config['group_size'])
shape = list(tensor.shape)
shape[-1] = shape[-1] * 2
elif self.config['num_bits'] == 8:
# last_dimension_size = last_dimension_size // 2
quantized_tensor = get_quantizer_cuda_module().dequantize_int8_to_half_experimental(
tensor.reshape(-1, last_dimension_size), quant_scale, quant_min,
tensor.numel() // last_dimension_size, self.config['group_size'])
shape = list(tensor.shape)
return quantized_tensor.reshape(shape)
if self.config['num_bits'] == 4:
tensor = self._decompress_uint4_to_uint8(tensor)
elif self.config['num_bits'] != 8:
assert False, 'Unsupported quantization bits {}'.format(self.config['num_bits'])
shape = tensor.shape
num_groups = shape[self.config['group_dim']] // self.config['group_size']
new_shape = (shape[:self.config['group_dim']] + (num_groups, self.config['group_size']) +
shape[self.config['group_dim'] + 1:])
tensor = tensor.view(new_shape)
dequantized_tensor = self._dequantize_int8(tensor, quant_scale, quant_min).view(shape)
return dequantized_tensor
def _dequantize_int8(self, tensor: Tensor, quant_scale: Tensor, quant_min: Tensor) -> Tensor:
assert tensor.dtype == torch.uint8
data = torch.zeros_like(tensor, dtype=self.dtype, device=tensor.device)
data = data.copy_(tensor)
data = data.div_(quant_scale).add_(quant_min)
return data
def _decompress_uint4_to_uint8(self, tensor: Tensor) -> Tensor:
new_data_shape = list(tensor.shape)
new_data_shape[-1] = new_data_shape[-1] * 2
data = torch.empty(new_data_shape, dtype=torch.uint8, device=tensor.device)
data[..., 0::2] = tensor.bitwise_right_shift(4)
data[..., 1::2] = tensor.bitwise_and(0xF)
return data
def get_AsyncPartitionedParameterSwapper(model: nn.Module):
for param_name, param in model.named_parameters():
if hasattr(param, 'nvme_swapper') and param.nvme_swapper is not None:
return param.nvme_swapper
return None
def recursive_setattr(model, module_name, module):
"""
Recursively set the attribute of a module.
Args:
model (`torch.nn.Module`)
The model to set the attribute in.
module_name (`str`)
The name of the module to set the attribute in.
module (`torch.nn.Module`)
The module to set the attribute to.
"""
split_list = module_name.split('.')
output = model
for name in split_list[:-1]:
output = getattr(output, name)
output.__setattr__(split_list[-1], module)
def concat_to_compat_param(quantized_weight: Tensor,
quant_scale: Tensor,
quant_min: Tensor,
return_param: bool = True) -> Union[nn.Parameter, Tensor]:
shape_wieght = quantized_weight.shape
shape_scale = quant_scale.shape
shape_min = quant_min.shape
quantized_weight = torch.flatten(quantized_weight)
quant_scale = torch.flatten(quant_scale)
quant_min = torch.flatten(quant_min)
def deconcat_individual_tensors(shape_wieght: torch.Size, shape_scale: torch.Size,
shape_min: torch.Size) -> Callable:
def fn(compat_tensor: nn.Parameter) -> Tuple[Tensor, Tensor, Tensor]:
weight = torch.narrow(compat_tensor, 0, 0, shape_wieght.numel()).view(shape_wieght)
scale = torch.narrow(compat_tensor, 0, shape_wieght.numel(), shape_scale.numel()).view(shape_scale)
min_val = torch.narrow(compat_tensor, 0,
shape_wieght.numel() + shape_scale.numel(), shape_min.numel()).view(shape_min)
return weight, scale, min_val
return fn
compat_tensor = torch.concat([quantized_weight, quant_scale, quant_min])
if return_param:
compat_tensor = nn.Parameter(compat_tensor, requires_grad=False)
compat_tensor.deconcat = deconcat_individual_tensors(shape_wieght, shape_scale, shape_min)
return compat_tensor
def _quantize_param(param: nn.Parameter, quant_config: Dict):
assert not hasattr(param, 'weight_quantized'), 'Parameter has already been quantized.'
quantizer = Quantizer(quant_config)
dequantizer = DeQuantizer(quant_config, param.dtype)
quantized_weight, quant_scale, quant_min = quantizer.quantize(param.data)
quantized_weight = quantized_weight.view(param.dtype)
quant_scale = quant_scale.view(param.dtype)
quant_min = quant_min.view(param.dtype)
quantized_compat_tensor = concat_to_compat_param(quantized_weight, quant_scale, quant_min)
param.data = quantized_compat_tensor
param.deconcat = quantized_compat_tensor.deconcat
param.quantizer = quantizer
param.dequantizer = dequantizer
setattr(param, 'weight_quantized', True)
def wrap_quantized_functional(f):
@functools.wraps(f)
def wrapper(input: Tensor, weight: nn.Parameter, *args, **kwargs) -> Tensor:
if hasattr(weight, 'weight_quantized') and getattr(weight, 'weight_quantized'):
quantized_weight, quant_scale, quant_min = weight.deconcat(weight)
temp_dequantized_weight = weight.dequantizer.dequantize(quantized_weight.view(torch.uint8), quant_scale,
quant_min)
return f(input, temp_dequantized_weight, *args, **kwargs)
else:
return f(input, weight, *args, **kwargs)
return wrapper
def wrap_load_from_state_dict(f):
@functools.wraps(f)
def wrapper(model, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):
replaced_old_value = None
key = None
# We may have nested wrappers if we launch multiple initialization context.
# Use state_dict_quantized flag to quantize state_dict only once
if hasattr(model.weight, 'weight_quantized') and getattr(
model.weight, 'weight_quantized') and not hasattr(model.weight, 'state_dict_quantized'):
setattr(model.weight, 'state_dict_quantized', True)
key = prefix + 'weight'
if key in state_dict:
quantized_weight, quant_scale, quant_min = model.weight.quantizer.quantize(state_dict[key])
quantized_weight = quantized_weight.view(model.weight.dtype)
quant_scale = quant_scale.view(model.weight.dtype)
quant_min = quant_min.view(model.weight.dtype)
replaced_old_value = state_dict[key]
state_dict[key] = concat_to_compat_param(quantized_weight, quant_scale, quant_min)
f(model, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
if replaced_old_value is not None:
state_dict[key] = replaced_old_value
delattr(model.weight, 'state_dict_quantized')
return wrapper
WEIGHT_QUANTIZATION_LAYERS = (
nn.Linear,
nn.Embedding,
)