peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/inference
/v2
/allocator.py
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
from functools import reduce | |
from typing import Iterable | |
from collections import defaultdict | |
import torch | |
from deepspeed.accelerator import get_accelerator | |
class Allocator: | |
cache = defaultdict(dict) | |
def empty_from(tensor: torch.Tensor, shape: Iterable[int]) -> torch.Tensor: | |
try: | |
return Allocator.cache[tensor][shape] | |
except KeyError: | |
shape_size = reduce(lambda x, y: x * y, shape) | |
if shape_size == 0: | |
raise ValueError("Cannot create empty tensor with size 0") | |
Allocator.cache[tensor][shape] = tensor.flatten()[:shape_size].view(shape) | |
return Allocator.cache[tensor][shape] | |
empty_from = Allocator.empty_from | |
def on_device(method) -> torch.Tensor: | |
""" | |
Wraps a method to ensure the returned tensor is on the current device. | |
""" | |
def wrapped(self, *args, **kwargs): | |
tensor = method(self, *args, **kwargs) | |
if isinstance(tensor, torch.Tensor): | |
return tensor.to(get_accelerator().current_device()) | |
return tensor | |
return wrapped | |