peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/inference
/v2
/modules
/heuristics.py
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
from ..config_v2 import RaggedInferenceEngineConfig | |
from ..inference_utils import NormTypeEnum | |
from .module_registry import ConfigBundle | |
from ..modules.configs import ( | |
DSEmbeddingsConfig, | |
DSLinearConfig, | |
DSMoEConfig, | |
DSNormConfig, | |
DSSelfAttentionConfig, | |
DSUnembedConfig, | |
) | |
from ..modules.interfaces import ( | |
DSEmbeddingBase, | |
DSEmbeddingRegistry, | |
DSLinearBase, | |
DSLinearRegistry, | |
DSMoEBase, | |
DSMoERegistry, | |
DSPostNormBase, | |
DSPostNormRegistry, | |
DSPreNormBase, | |
DSPreNormRegistry, | |
DSSelfAttentionBase, | |
DSSelfAttentionRegistry, | |
DSUnembedBase, | |
DSUnembedRegistry, | |
) | |
def instantiate_attention(attention_config: DSSelfAttentionConfig, | |
engine_config: RaggedInferenceEngineConfig) -> DSSelfAttentionBase: | |
""" | |
Choose an appropriate attention implementation based on the given configurations. This | |
method is currently a stub, but as more implementations may be developed we can centralize | |
the logic for choosing between them here. | |
Arguments: | |
attention_config (DSSelfAttentionConfig): Configuration for the attention module. | |
engine_config (RaggedInferenceEngineConfig): Configuration for the inference engine. | |
Returns: | |
An attention module implementing the given configuration. | |
""" | |
# Currently, we only have one implementation, so we just return it. | |
config = ConfigBundle(name="dense_blocked_attention", config=attention_config) | |
return DSSelfAttentionRegistry.instantiate_config(config) | |
def instantiate_embed(embed_config: DSEmbeddingsConfig, engine_config: RaggedInferenceEngineConfig) -> DSEmbeddingBase: | |
""" | |
Choose an appropriate embedding implementation based on the given configurations. This | |
method is currently a stub, but as more implementations may be developed we can centralize | |
the logic for choosing between them here. | |
Arguments: | |
embed_config (DSEmbeddingsConfig): Configuration for the embedding module. | |
engine_config (RaggedInferenceEngineConfig): Configuration for the inference engine. | |
Returns: | |
An embedding module implementing the given configuration. | |
""" | |
# Currently, we only have one implementation, so we just return it. | |
config = ConfigBundle(name="ragged_embedding", config=embed_config) | |
return DSEmbeddingRegistry.instantiate_config(config) | |
def instantiate_linear(linear_config: DSLinearConfig, engine_config: RaggedInferenceEngineConfig) -> DSLinearBase: | |
""" | |
Choose an appropriate linear implementation based on the given configurations. This | |
method is currently a stub, but as more implementations may be developed we can centralize | |
the logic for choosing between them here. | |
Arguments: | |
linear_config (DSLinearConfig): Configuration for the linear module. | |
engine_config (RaggedInferenceEngineConfig): Configuration for the inference engine. | |
Returns: | |
A linear module implementing the given configuration. | |
""" | |
quantization_mode = engine_config.quantization.quantization_mode | |
if quantization_mode is None: | |
config = ConfigBundle(name="blas_fp_linear", config=linear_config) | |
else: | |
# Currently, we only support ``quantized_wf6af16_linear`` on NVIDIA Ampere GPUs. | |
if quantization_mode == "wf6af16": | |
import torch | |
if not torch.cuda.is_available(): #ignore-cuda | |
raise ValueError("WF6AF16 quantization is only supported on CUDA") | |
else: | |
is_rocm_pytorch = hasattr(torch.version, 'hip') and torch.version.hip is not None | |
if is_rocm_pytorch: | |
raise ValueError("WF6AF16 quantization is only supported on NVIDIA GPUs") | |
elif torch.cuda.get_device_properties(0).major != 8: #ignore-cuda | |
raise ValueError("WF6AF16 quantization is only supported on Ampere architectures") | |
config = ConfigBundle(name="quantized_wf6af16_linear", config=linear_config) | |
else: | |
raise ValueError(f"Unsupported quantization mode: {quantization_mode}") | |
return DSLinearRegistry.instantiate_config(config) | |
def instantiate_moe(moe_config: DSMoEConfig, engine_config: RaggedInferenceEngineConfig) -> DSMoEBase: | |
""" | |
Choose an appropriate MoE implementation based on the given configurations. This | |
method is currently a stub, but as more implementations may be developed we can centralize | |
the logic for choosing between them here. | |
Arguments: | |
moe_config (DSMoEConfig): Configuration for the MoE module. | |
engine_config (RaggedInferenceEngineConfig): Configuration for the inference engine. | |
Returns: | |
A MoE module implementing the given configuration. | |
""" | |
moe_type = "cutlass_multi_gemm_moe" | |
if moe_type == "cutlass_multi_gemm_moe": | |
# TODO: Get this off an engine config | |
implementation_config = { | |
"weight_dtype": moe_config.input_dtype, | |
} | |
# Currently, we only have one implementation, so we just return it. | |
config = ConfigBundle(name="cutlass_multi_gemm_moe", | |
config=moe_config, | |
implementation_config=implementation_config) | |
return DSMoERegistry.instantiate_config(config) | |
def instantiate_post_norm(norm_config: DSNormConfig, engine_config: RaggedInferenceEngineConfig) -> DSPostNormBase: | |
""" | |
Choose an appropriate post-norm implementation based on the given configurations. This | |
method is currently a stub, but as more implementations may be developed we can centralize | |
the logic for choosing between them here. | |
Arguments: | |
norm_config (DSNormConfig): Configuration for the post-norm module. | |
engine_config (RaggedInferenceEngineConfig): Configuration for the inference engine. | |
Returns: | |
A post-norm module implementing the given configuration. | |
""" | |
# Currently, we only have one implementation, so we just return it. | |
config = ConfigBundle(name="cuda_post_ln", config=norm_config) | |
return DSPostNormRegistry.instantiate_config(config) | |
def instantiate_pre_norm(norm_config: DSNormConfig, engine_config: RaggedInferenceEngineConfig) -> DSPreNormBase: | |
""" | |
Choose an appropriate pre-norm implementation based on the given configurations. Currently, | |
this will select between two CUDA implementations, one for LayerNorm and one for RMSNorm. | |
Arguments: | |
norm_config (DSNormConfig): Configuration for the pre-norm module. | |
engine_config (RaggedInferenceEngineConfig): Configuration for the inference engine. | |
Returns: | |
A pre-norm module implementing the given configuration. | |
""" | |
if NormTypeEnum(norm_config.type) == NormTypeEnum.LayerNorm: | |
module_name = "cuda_pre_ln" | |
elif NormTypeEnum(norm_config.type) == NormTypeEnum.RMSNorm: | |
module_name = "cuda_pre_rms" | |
config = ConfigBundle(name=module_name, config=norm_config) | |
return DSPreNormRegistry.instantiate_config(config) | |
def instantiate_unembed(unembed_config: DSUnembedConfig, engine_config: RaggedInferenceEngineConfig) -> DSUnembedBase: | |
""" | |
Choose an appropriate unembedding implementation based on the given configurations. This | |
method is currently a stub, but as more implementations may be developed we can centralize | |
the logic for choosing between them here. | |
Arguments: | |
unembed_config (DSUnembedConfig): Configuration for the unembed module. | |
engine_config (RaggedInferenceEngineConfig): Configuration for the inference engine. | |
Returns: | |
An unembed module implementing the given configuration. | |
""" | |
# Currently, we only have one implementation, so we just return it. | |
config = ConfigBundle(name="ragged_unembed", config=unembed_config) | |
return DSUnembedRegistry.instantiate_config(config) | |