applied-ai-018's picture
Add files using upload-large-folder tool
2334d5a verified
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
import os
import sys
import shutil
import subprocess
import warnings
from shlex import split
from abc import ABC, abstractmethod
from deepspeed.accelerator import get_accelerator
from ..utils import logger, get_numactl_cmd
from .constants import PDSH_MAX_FAN_OUT, MVAPICH_TMP_HOSTFILE
class MultiNodeRunner(ABC):
def __init__(self, args, world_info_base64):
self.args = args
self.validate_args()
self.user_arguments = self.parse_user_args()
self.user_script = args.user_script
self.world_info_base64 = world_info_base64
self.exports = {}
@abstractmethod
def backend_exists(self):
"""Return whether the corresponding backend exists"""
@abstractmethod
def get_cmd(self, environment, active_resources):
"""Return the command to execute on node"""
def add_export(self, key, var):
self.exports[key.strip()] = var.strip()
def parse_user_args(self):
return self.args.user_args
@property
def name(self):
"""Return the name of the backend"""
return self.__class__.__name__
def validate_args(self):
"""Validate self.args"""
class PDSHRunner(MultiNodeRunner):
def __init__(self, args, world_info_base64):
super().__init__(args, world_info_base64)
def backend_exists(self):
return shutil.which('pdsh')
def parse_user_args(self):
processed_args = []
for arg in self.args.user_args:
# With pdsh, if we are passing a string as an argument, it will get
# split on whitespace. To avoid this and support strings that
# contain '"', we do this extra processing step:
if " " in arg:
arg = '"{}"'.format(arg.replace('"', '\\"'))
processed_args.append(arg)
return processed_args
@property
def name(self):
return "pdsh"
def get_cmd(self, environment, active_resources):
environment['PDSH_RCMD_TYPE'] = 'ssh'
if self.args.ssh_port is not None: # only specify ssh port if it is specified
environment["PDSH_SSH_ARGS_APPEND"] = f"{environment.get('PDSH_SSH_ARGS_APPEND', '')} \
-p {self.args.ssh_port}"
active_workers = ",".join(active_resources.keys())
logger.info("Running on the following workers: %s" % active_workers)
# PDSH flags for max node fan out and specific hosts to launch on
# See https://linux.die.net/man/1/pdsh for flag details
pdsh_cmd_args = ['pdsh', '-S', '-f', str(PDSH_MAX_FAN_OUT), '-w', active_workers] + split(
self.args.launcher_args)
exports = ""
for key, val in self.exports.items():
exports += "export {}={}; ".format(key, val)
# https://linux.die.net/man/1/pdsh
# %n will be replaced by pdsh command
deepspeed_launch = [
exports, f"cd {os.path.abspath('.')};", sys.executable, "-u", "-m", "deepspeed.launcher.launch",
f'--world_info={self.world_info_base64}', "--node_rank=%n", f"--master_addr={self.args.master_addr}",
f"--master_port={self.args.master_port}"
]
if self.args.no_python:
deepspeed_launch.append("--no_python")
if self.args.module:
deepspeed_launch.append("--module")
if self.args.no_local_rank:
deepspeed_launch.append("--no_local_rank")
if self.args.save_pid:
deepspeed_launch += ["--save_pid", f"{os.getpid()}"]
if self.args.elastic_training:
deepspeed_launch.append("--enable_elastic_training")
deepspeed_launch.append(f"--max_elastic_nodes={self.args.max_elastic_nodes}")
deepspeed_launch.append(f"--min_elastic_nodes={self.args.min_elastic_nodes}")
cmd_to_search = [i + "\\" for i in deepspeed_launch[2:6]]
kill_command = pdsh_cmd_args + ["pkill -f ", " ".join(cmd_to_search)[:-2]]
return pdsh_cmd_args + deepspeed_launch + [self.user_script] + self.user_arguments, kill_command, environment
class OpenMPIRunner(MultiNodeRunner):
def __init__(self, args, world_info_base64, resource_pool):
super().__init__(args, world_info_base64)
self.resource_pool = resource_pool
self.add_export('UCX_TLS', 'tcp')
def backend_exists(self):
#TODO: if IB is available we should suggestion mvapich
return shutil.which('ompi_info')
@property
def name(self):
return "openmpi"
def validate_args(self):
super().validate_args()
#TODO: Allow for include/exclude at node-level but not gpu-level
if self.args.include != "" or self.args.exclude != "":
raise ValueError(f"{self.name} backend does not support worker include/exclusion")
if self.args.num_nodes != -1 or self.args.num_gpus != -1:
raise ValueError(f"{self.name} backend does not support limiting num nodes/gpus")
def get_cmd(self, environment, active_resources):
total_process_count = sum(self.resource_pool.values())
mpirun_cmd = [
'mpirun',
'-n',
f'{total_process_count}',
'-hostfile',
f'{self.args.hostfile}',
'--mca',
'btl',
'^openib',
'--mca',
'btl_tcp_if_include',
'eth0',
] + split(self.args.launcher_args)
export_cmd = []
for k, v in self.exports.items():
export_cmd += ['-x', "{}={}".format(k, v)]
python_exec = []
if not self.args.no_python:
python_exec = [sys.executable, "-u"]
if self.args.module:
python_exec.append("-m")
return mpirun_cmd + export_cmd + python_exec + [self.user_script] + self.user_arguments
class MPICHRunner(MultiNodeRunner):
def __init__(self, args, world_info_base64, resource_pool):
super().__init__(args, world_info_base64)
self.resource_pool = resource_pool
def backend_exists(self):
#TODO: if IB is available we should suggestion mpich
return shutil.which('mpirun') #mpich_info
@property
def name(self):
return "mpich"
def validate_args(self):
super().validate_args()
#TODO: Allow for include/exclude at node-level but not gpu-level
if self.args.include != "" or self.args.exclude != "":
raise ValueError(f"{self.name} backend does not support worker include/exclusion")
if self.args.num_nodes != -1 or self.args.num_gpus != -1:
raise ValueError(f"{self.name} backend does not support limiting num nodes/gpus")
def get_cmd(self, environment, active_resources):
devices_per_node = self.resource_pool.values()
total_process_count = sum(devices_per_node)
process_per_node = list(devices_per_node)[0]
if not all([n == process_per_node for n in devices_per_node]):
raise ValueError("MPICH requires same number of devices per node")
mpirun_cmd = [
'mpirun',
'-n',
f'{total_process_count}',
'-ppn',
f'{process_per_node}',
] + split(self.args.launcher_args)
export_cmd = []
for k, v in self.exports.items():
export_cmd += ['-genv', "{}={}".format(k, v)]
export_cmd += ['-genv', 'MASTER_ADDR', str(self.args.master_addr)]
export_cmd += ['-genv', 'MASTER_PORT', str(self.args.master_port)]
export_cmd += ['-genv', 'WORLD_SIZE', str(total_process_count)]
export_cmd += ['-genv', 'LOCAL_SIZE', str(process_per_node)]
export_cmd += ['-hosts']
hosts = ""
for i, host in enumerate(self.resource_pool.keys()):
if i == 0:
hosts = f"{host}"
else:
hosts += f",{host}"
export_cmd += [hosts]
helper_args = ["--launcher"] + [self.args.launcher]
python_exec = []
if not self.args.no_python:
python_exec += [sys.executable, "-u"]
if self.args.module:
python_exec.append("-m")
helper_args.append("--module")
else:
helper_args.append("--no_python")
helper_cmd = str(os.path.dirname(os.path.realpath(__file__))) + '/launcher_helper.py'
helper_cmd = [helper_cmd] + helper_args + [self.user_script] + self.user_arguments
return mpirun_cmd + export_cmd + python_exec + helper_cmd
class IMPIRunner(MultiNodeRunner):
def __init__(self, args, world_info_base64, resource_pool):
super().__init__(args, world_info_base64)
self.resource_pool = resource_pool
def backend_exists(self):
#TODO: if IB is available we should suggestion mpich
return shutil.which('mpirun') #mpich_info
@property
def name(self):
return "impi"
def validate_args(self):
super().validate_args()
#TODO: Allow for include/exclude at node-level but not gpu-level
if self.args.include != "" or self.args.exclude != "":
raise ValueError(f"{self.name} backend does not support worker include/exclusion")
if self.args.num_nodes != -1 or self.args.num_gpus != -1:
raise ValueError(f"{self.name} backend does not support limiting num nodes/gpus")
def get_cmd(self, environment, active_resources):
devices_per_node = self.resource_pool.values()
total_process_count = sum(devices_per_node)
process_per_node = list(devices_per_node)[0]
if not all([n == process_per_node for n in devices_per_node]):
raise ValueError("Intel MPI requires same number of devices per node")
mpirun_cmd = [
'mpirun',
'-ppn',
f'{process_per_node}',
] + split(self.args.launcher_args)
export_cmd = []
for k, v in self.exports.items():
export_cmd += ['-genv', f'{k}', f'{v}']
if self.args.bind_cores_to_rank:
cores_per_rank, _ = get_numactl_cmd(self.args.bind_core_list, process_per_node, 0)
export_cmd += ['-genv', 'OMP_NUM_THREADS', str(cores_per_rank)]
export_cmd += ['-genv', 'MASTER_ADDR', str(self.args.master_addr)]
export_cmd += ['-genv', 'MASTER_PORT', str(self.args.master_port)]
export_cmd += ['-genv', 'WORLD_SIZE', str(total_process_count)]
export_cmd += ['-genv', 'LOCAL_SIZE', str(process_per_node)]
# turn off IMPI core binding, use deepspeed's own core binding
export_cmd += ['-genv', 'I_MPI_PIN', '0']
export_cmd += ['-hosts']
hosts = ""
for i, host in enumerate(self.resource_pool.keys()):
if i == 0:
hosts = f"{host}"
else:
hosts += f",{host}"
export_cmd += [hosts]
per_host_cmd = []
for i in range(total_process_count):
local_rank = i % process_per_node
python_exec = []
if self.args.bind_cores_to_rank:
_, numactl_cmd = get_numactl_cmd(self.args.bind_core_list, process_per_node, local_rank)
python_exec += numactl_cmd
if not self.args.no_python:
python_exec += [sys.executable, "-u"]
if self.args.module:
python_exec.append("-m")
env_mapping = ['-env', 'RANK', str(i)]
env_mapping += ['-env', 'LOCAL_RANK', str(local_rank)]
if i == 0:
per_host_cmd = ['-n', '1'] + env_mapping + python_exec + [self.user_script] + self.user_arguments
else:
per_host_cmd = per_host_cmd + [':', '-n', '1'] + env_mapping + python_exec + [self.user_script
] + self.user_arguments
print(mpirun_cmd + export_cmd + per_host_cmd)
return mpirun_cmd + export_cmd + per_host_cmd
class SlurmRunner(MultiNodeRunner):
def __init__(self, args, world_info_base64, resource_pool):
super().__init__(args, world_info_base64)
self.resource_pool = resource_pool
def backend_exists(self):
return shutil.which('sinfo')
@property
def name(self):
return 'slurm'
def get_cmd(self, environment, active_resources):
assert not getattr(self.args, 'detect_nvlink_pairs',
False), "slurm backend does not support remapping visible devices"
total_process_count = sum(self.resource_pool.values())
srun_cmd = [
'srun',
'-n',
f'{total_process_count}',
] + split(self.args.launcher_args)
if getattr(self.args, 'slurm_comment', ''):
srun_cmd += ['--comment', self.args.slurm_comment]
if self.args.include != "":
srun_cmd.append('--include')
srun_cmd.append(f'{self.args.include}')
if self.args.exclude != "":
srun_cmd.append('--exclude')
srun_cmd.append(f'{self.args.exclude}')
if self.args.num_nodes > 0:
srun_cmd.append('--nodes')
srun_cmd.append(f'{self.args.num_nodes}')
if self.args.num_gpus > 0:
srun_cmd.append('--gpus')
srun_cmd.append(f'{self.args.num_gpus}')
exports = '--export=ALL'
for key, val in self.exports.items():
exports += f",{key}={val}"
python_exec = [sys.executable, "-u"]
command = srun_cmd + [exports] + python_exec + [self.user_script] + self.user_arguments
return command
class MVAPICHRunner(MultiNodeRunner):
def __init__(self, args, world_info_base64, resource_pool):
super().__init__(args, world_info_base64)
self.resource_pool = resource_pool
# Disable the CMA kernel module, not available on Ubuntu systems
self.add_export('MV2_SMP_USE_CMA', '0')
# If we fail this will output more verbose logging
self.add_export('MV2_DEBUG_SHOW_BACKTRACE', '1')
# Enabled cuda-aware communication
if get_accelerator().device_name() == 'cuda':
self.add_export('MV2_USE_CUDA', '1')
# Support deep learning frameworks: http://hidl.cse.ohio-state.edu/userguide/horovod/
self.add_export('MV2_SUPPORT_DL', '1')
# Support MPI_THREAD_MULTIPLE
self.add_export('MV2_ENABLE_AFFINITY', '0')
# Performance tuning flags for allgather
self.add_export('MV2_INTER_ALLGATHER_TUNING', '5')
self.add_export('MV2_CUDA_USE_NAIVE', '0')
def backend_exists(self):
#TODO: if IB is available we should suggestion mvapich
mpiname_exists = shutil.which('mpiname')
exists = False
if not mpiname_exists:
warnings.warn("mpiname does not exist, mvapich is not installed properly")
else:
results = subprocess.check_output('mpiname', shell=True)
mpiname_results = results.decode('utf-8').strip()
if "MVAPICH2-GDR" in mpiname_results:
exists = True
else:
warnings.warn(f"Expected MVAPICH2-GDR as return for mpiname but received {mpiname_results}")
return exists
@property
def name(self):
return "mvapich"
def validate_args(self):
super().validate_args()
#TODO: Allow for include/exclude at node-level but not gpu-level
if self.args.include != "" or self.args.exclude != "":
raise ValueError(f"{self.name} backend does not support worker include/exclusion")
if self.args.num_nodes != -1 or self.args.num_gpus != -1:
raise ValueError(f"{self.name} backend does not support limiting num nodes/gpus")
def get_cmd(self, environment, active_resources):
devices_per_node = self.resource_pool.values()
total_process_count = sum(devices_per_node)
process_per_node = list(devices_per_node)[0]
if not all([n == process_per_node for n in devices_per_node]):
raise ValueError("mvapich requires same number of devices per node")
with open(MVAPICH_TMP_HOSTFILE, 'w') as fd:
for host in self.resource_pool.keys():
fd.write(f'{host}\n')
mpirun_cmd = [
'mpirun',
'-np',
f'{total_process_count}',
'-ppn',
f'{process_per_node}',
'--hostfile',
f'{MVAPICH_TMP_HOSTFILE}',
] + split(self.args.launcher_args)
export_cmd = []
for k, v in self.exports.items():
export_cmd += ['-env', "{}={}".format(k, v)]
python_exec = []
if not self.args.no_python:
python_exec = [sys.executable, "-u"]
if self.args.module:
python_exec.append("-m")
return mpirun_cmd + export_cmd + python_exec + [self.user_script] + self.user_arguments