peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/linear
/optimized_linear.py
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
import torch | |
import math | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from dataclasses import is_dataclass | |
from deepspeed.accelerator import get_accelerator | |
import deepspeed.comm as dist | |
from .config import LoRAConfig, QuantizationConfig | |
from .quantization import QuantizedParameter, QuantizedLinear | |
class OptimizedLinear(nn.Module): | |
""" | |
Optimized version of nn.Linear that adds features such as: | |
* LoRA w. base weight sharding | |
* FP [6,8,12] quantization | |
Arguments: | |
input_dim: Required: size of each input sample | |
output_dim: Required: size of each output sample | |
bias: Optional: If set to False, the layer will not learn an additive bias. Default: False | |
lora_config: Optional: LoRAConfig defining lora features and base-weight-sharding degree | |
quantization_config: Optional: QuantizationConfig defining quantization features | |
dtype: Optional: parameter dtype, only supports bfloat16 currently | |
Returns: | |
Returns a new nn.Module depending on the input config. Either native | |
torch.nn.Linear, QuantizedLinear, or the full-featured DSOptimizedLinear. | |
""" | |
def __new__(self, | |
input_dim: int, | |
output_dim: int, | |
bias: bool = False, | |
lora_config: LoRAConfig = None, | |
quantization_config: QuantizationConfig = None, | |
dtype=torch.bfloat16): | |
if quantization_config is not None and not is_dataclass(quantization_config): | |
raise ValueError(f"Expecting QuantizationConfig but received {type(quantization_config)}") | |
if lora_config is not None and not is_dataclass(lora_config): | |
raise ValueError(f"Expecting LoRAConfig but received {type(lora_config)}") | |
if lora_config is None and quantization_config is None: | |
# Everything disabled, fall back to normal nn.Linear | |
self = nn.Linear(input_dim, output_dim, bias=bias, dtype=dtype) | |
elif lora_config: | |
# lora enabled, quantization may or may not be | |
self = LoRAOptimizedLinear(input_dim=input_dim, | |
output_dim=output_dim, | |
bias=bias, | |
lora_config=lora_config, | |
quantization_config=quantization_config, | |
dtype=dtype) | |
elif quantization_config: | |
# only quantization enabled, no lora | |
self = QuantizedLinear(input_dim=input_dim, | |
output_dim=output_dim, | |
bias=bias, | |
quantization_config=quantization_config, | |
dtype=dtype) | |
return self | |
class LoRAOptimizedLinear(nn.Module): | |
def __init__(self, | |
input_dim: int, | |
output_dim: int, | |
bias: bool = False, | |
lora_config: LoRAConfig = None, | |
quantization_config: QuantizationConfig = None, | |
device=None, | |
dtype=torch.bfloat16): | |
super().__init__() | |
self.input_dim = input_dim | |
self.output_dim = output_dim | |
self.bias = bias | |
self.lora_config = lora_config | |
self.quantization_config = quantization_config | |
device = get_accelerator().current_device() if device is None else device | |
assert self.lora_config is not None, "DSOptimizedLinear requires a LoRA config" | |
self.zero_shards = self.lora_config.base_weight_sharding | |
self.sharded_weight_size = int(float(self.input_dim) // self.zero_shards) | |
w = torch.nn.Parameter(torch.empty((self.output_dim, self.sharded_weight_size), dtype=dtype)) | |
torch.nn.init.xavier_uniform_(w) | |
if self.quantization_config is not None: | |
assert dtype == torch.bfloat16, "only bfloat16 is supported when using quantization" | |
self.base_weight = QuantizedParameter(w, quantization_config=quantization_config) | |
else: | |
self.base_weight = w | |
self.base_weight.requires_grad = False | |
# Use RS lora for now. | |
self.lora_scaling_factor = self.lora_config.lora_alpha / math.sqrt(self.lora_config.lora_r) | |
# Keeping lora weights in bf16 precision for ease of training. | |
self.lora_weight_1 = nn.Linear(self.input_dim, | |
self.lora_config.lora_r, | |
bias=self.bias, | |
device=device, | |
dtype=dtype) | |
self.lora_weight_2 = nn.Linear(self.lora_config.lora_r, | |
self.output_dim, | |
bias=self.bias, | |
device=device, | |
dtype=dtype) | |
self.lora_weight_1.weight.requires_grad = True | |
self.lora_weight_2.weight.requires_grad = True | |
def full_weight(self): | |
# This assumes weights are evenly sharded across gpus. which might not be correct. | |
# in that case, we should flatten before all_gather. | |
local_weight = self.base_weight.dequantized() if isinstance(self.base_weight, | |
QuantizedParameter) else self.base_weight | |
tensor_list = [ | |
torch.zeros_like(local_weight, device=local_weight.device, dtype=local_weight.dtype) | |
for _ in range(self.zero_shards) | |
] | |
dist.all_gather(tensor_list, local_weight) | |
weight = nn.Parameter(torch.cat([tensor for tensor in tensor_list], dim=1)) | |
return weight | |
def linear_without_F_linear(self, input, weight): | |
output = torch.mm(input.reshape(-1, input.shape[-1]), weight) | |
output = output.view(*input.shape[:-1], weight.shape[1]) | |
return output | |
def forward(self, input_tensor): | |
# Gather the sharded base weight | |
if self.zero_shards > 1: | |
with torch.no_grad(): | |
base_weight = self.full_weight() | |
elif self.quantization_config: | |
base_weight = self.base_weight.dequantized() | |
else: | |
base_weight = self.base_weight | |
base_weight_output = F.linear(input_tensor, base_weight) | |
lora_output = self.lora_weight_2(self.lora_weight_1(input_tensor)) | |
return base_weight_output + self.lora_scaling_factor * lora_output | |