applied-ai-018's picture
Add files using upload-large-folder tool
a5dc865 verified
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
# Create a container object to save model-specific tensors using the policy file above.
from abc import ABC
import torch
import deepspeed
from deepspeed.ops.transformer.inference.config import DeepSpeedInferenceConfig
from deepspeed.accelerator import get_accelerator
# If the intermediate size attribute is set DEFAULT_INTERMEDIATE_SIZE
# it is assumed the intermediate size is 4x the embedding dimension
DEFAULT_INTERMEDIATE_SIZE = -1
class BaseConvolutionContainer(ABC):
# not implemented
def __init__(self):
pass
class BaseTransformerContainer(ABC):
def __init__(self, policy, config, model_config, layer_id, child):
self.policy = policy
self.config = config
self.model_config = model_config
self.layer_id = layer_id
self.child = child
self.megatron_v2 = self.policy.is_megatron_v2
self.scale_attention = self.policy.scale_attention
self.ckpt_load_enabled = False
# configuration for models. todo: can this be moved to a pydantic model config?
self.hidden_size = None
self.intermediate_size = None
self.num_attention_heads = None
self.mp_size = self.config.tensor_parallel.tp_size
self.pre_layer_norm = self.model_config.do_layer_norm_before if \
hasattr(self.model_config, 'do_layer_norm_before') else self.policy.pre_attn_norm
self.dtype = self.config.dtype
self.attn_linear_layer = self.policy.linear_layer
self.mlp_linear_layer = self.policy.linear_layer
self.return_tuple = self.config.return_tuple
self.triangular_masking = True
self.local_attention = ((self.model_config.attention_layers[self.layer_id] == "local") if hasattr(
self.model_config, 'attention_layers') else False)
self.window_size = getattr(self.model_config, "window_size", 1)
self.mlp_act_func_type = self.policy.mlp_act_func_type
self.norm_type = self.policy.norm_type
self.training_mp_size = self.config.training_mp_size
self.bigscience_bloom = False
self.max_out_tokens = self.config.max_out_tokens
self.min_out_tokens = self.config.min_out_tokens
self.scale_attn_by_inverse_layer_idx = getattr(self.config, "scale_attn_by_inverse_layer_idx", False)
self.use_mup = self.policy.use_mup
self.return_single_tuple = False
self.rotary_dim = self.get_rotary_dim()
self.mlp_after_attn = (self.rotary_dim is None or self.rotary_dim < 0)
# Attention tensors
self.qkvw = None
self.qkvb = None
self.dense_w = None
self.dense_b = None
# MLP tensors
self._h4h_w = None
self._h4h_b = None
self._4hh_w = None
self._4hh_b = None
# LayerNorm tensors
self.attn_nw = None
self.attn_nb = None
self.input_nw = None
self.input_nb = None
self.mp_group = None
self.use_triton = False
# Triton
self.use_triton = config.use_triton and deepspeed.HAS_TRITON
def create_ds_model_config(self):
self.set_hidden_heads(*self.policy.get_hidden_heads())
assert self.num_attention_heads % self.mp_size == 0,\
"To run the model parallel across the GPUs, the attention_heads require to be divisible by the world_size!" +\
"This is because the attention computation is partitioned evenly among the parallel GPUs."
self.ds_model_config = DeepSpeedInferenceConfig(
hidden_size=self.hidden_size,
intermediate_size=self.intermediate_size,
heads=self.num_attention_heads,
layer_norm_eps=self.layernorm_epsilon,
dtype=self.dtype,
pre_layer_norm=self.pre_layer_norm,
norm_type=self.norm_type,
mp_size=self.mp_size,
return_tuple=self.return_tuple,
triangular_masking=self.triangular_masking,
local_attention=self.local_attention,
window_size=self.window_size,
rotary_dim=self.rotary_dim,
mlp_after_attn=self.mlp_after_attn,
mlp_act_func_type=self.mlp_act_func_type,
training_mp_size=self.training_mp_size,
bigscience_bloom=self.bigscience_bloom,
max_out_tokens=self.max_out_tokens,
min_out_tokens=self.min_out_tokens,
scale_attn_by_inverse_layer_idx=self.scale_attn_by_inverse_layer_idx,
use_mup=self.use_mup,
return_single_tuple=self.return_single_tuple,
set_empty_params=self.config.set_empty_params,
transposed_mode=self.config.transposed_mode,
use_triton=self.use_triton,
triton_autotune=self.config.triton_autotune)
if self.use_triton and deepspeed.HAS_TRITON:
from .bert import DS_BERTContainer
if not isinstance(self, DS_BERTContainer):
raise NotImplementedError("Triton kernels are only for BERT-like models yet")
if not self.config.triton_autotune:
from deepspeed.ops.transformer.inference.triton.matmul_ext import fp16_matmul
fp16_matmul.skip_autotune()
return self.ds_model_config
def check_meta_tensor_support(self):
if hasattr(self.qkvw, 'is_meta'):
if self.qkvw.is_meta:
assert self.ckpt_load_enabled, "Meta tensors are not supported for this model currently."
else:
raise NotImplementedError("Meta tensor support is not available, please upgrade to torch 1.10+")
def initialize_tensors(self, enable_training=False):
# Set the tensors from policy (user module) to container (DS module)
self.set_attention(*self.policy.attention(enable_training=enable_training))
self.set_mlp(*self.policy.mlp(enable_training=enable_training))
self.set_layernorm(*self.policy.layernorm())
#self.check_meta_tensor_support()
def convert_to_required_dtype(self):
# Note: converting tensors to fp16 requires that we do it in-place using self.__dict__ and not make a list/dict copy
if self.dtype in [torch.half, torch.bfloat16]:
for k, v in self.__dict__.items():
# The list comprehension is used for MoE tensor lists
if isinstance(v, list) and all((isinstance(tensor, torch.Tensor) \
or isinstance(tensor, torch.nn.Parameter)) for tensor in v):
self.__dict__[k] = [moe_tensor.to(self.dtype) for moe_tensor in v]
if isinstance(v, torch.Tensor) or isinstance(v, torch.nn.Parameter):
self.__dict__[k] = v.to(self.dtype)
def get_rotary_dim(self):
if hasattr(self.model_config, 'rotary_dim'):
return self.model_config.rotary_dim
if hasattr(self.child, 'attention') and hasattr(self.child.attention, 'rotary_ndims'):
return self.child.attention.rotary_ndims
return -1
def set_moe(self, moe=False):
self.moe = moe
def set_tensor_parallel_config(self, mp_size, mp_group):
self.mp_size = mp_size
self.mp_group = mp_group
def set_quantization_config(self, quantizer):
self.quantizer = quantizer
def set_hidden_heads(self, hidden_size, num_attention_heads, epsilon, intermediate_size):
"""
Args:
hidden_size: embedding dimension of the model
num_attention_heads: number of attention heads in the model
epsilon: epsilon value for layer norm (same value used for all norms)
intermediate_size: Size of MLP projection. If `DEFAULT_INTERMEDIATE_SIZE` is passed
it is assumed to be `4 * hidden_size`
"""
self.hidden_size = hidden_size
if intermediate_size == DEFAULT_INTERMEDIATE_SIZE:
self.intermediate_size = 4 * hidden_size
else:
self.intermediate_size = intermediate_size
self.num_attention_heads = num_attention_heads
self.layernorm_epsilon = epsilon
def set_attention(self, qkvw, qkvb, dense_w, dense_b):
self.qkvw = qkvw
self.qkvb = qkvb
self.dense_w = dense_w
self.dense_b = dense_b
def set_mlp(self, _h4h_w, _h4h_b, _4hh_w, _4hh_b):
self._h4h_w = _h4h_w
self._h4h_b = _h4h_b
self._4hh_w = _4hh_w
self._4hh_b = _4hh_b
def set_layernorm(self, attn_nw, attn_nb, input_nw, input_nb):
self.attn_nw = attn_nw
self.attn_nb = attn_nb
self.input_nw = input_nw
self.input_nb = input_nb
def apply_weight_quantization(self):
# quantize attention weights
self.attention_quantization()
# quantize mlp weights
self.mlp_quantization()
def attention_quantization(self):
self.module.attention.attn_qkvw = self.quantizer.quantize(self.module.attention.attn_qkvw)
self.module.attention.attn_ow = self.quantizer.quantize(self.module.attention.attn_ow)
def mlp_quantization(self):
self.module.mlp.inter_w = self.quantizer.quantize(self.module.mlp.inter_w)
self.module.mlp.output_w = self.quantizer.quantize(self.module.mlp.output_w)
def apply_tensor_parallelism(self, mp_replace):
# setup the new Attention module
self.attention_qkv_mp(mp_replace)
self.attention_o_mp(mp_replace)
# setup the new MLP module
self.mlp_inter_mp(mp_replace)
self.mlp_output_mp(mp_replace)
# Apply weight quantization
# TODO(cmikeh2): Re-enable this once verified
#self.apply_weight_quantization()
def attention_qkv_mp(self, mp_replace, reversed_dim=False):
self.module.attention.attn_qkvw = mp_replace.strided_copy(self.module.attention.attn_qkvw,
self.qkvw,
num_splits=3,
int8=reversed_dim)
self.module.attention.attn_qkvb = mp_replace.strided_copy(self.module.attention.attn_qkvb,
self.qkvb,
num_splits=3,
int8=reversed_dim)
def attention_o_mp(self, mp_replace, reversed_dim=False):
self.module.attention.attn_ow = mp_replace.copy(self.module.attention.attn_ow, self.dense_w, int8=reversed_dim)
self.module.attention.attn_ob = mp_replace.copy(self.module.attention.attn_ob,
self.dense_b,
int8=reversed_dim,
allocate_tensor=reversed_dim)
def mlp_inter_mp(self, mp_replace, reversed_dim=False):
self.module.mlp.inter_w = mp_replace.copy(self.module.mlp.inter_w, self._h4h_w, int8=reversed_dim)
self.module.mlp.inter_b = mp_replace.copy(self.module.mlp.inter_b, self._h4h_b, int8=reversed_dim)
def mlp_output_mp(self, mp_replace, reversed_dim=False):
self.module.mlp.output_w = mp_replace.copy(self.module.mlp.output_w, self._4hh_w, int8=reversed_dim)
self.module.mlp.output_b = mp_replace.copy(self.module.mlp.output_b,
self._4hh_b,
int8=reversed_dim,
allocate_tensor=reversed_dim)
def copy_data_to_new_module(self):
params = {'attn_nw': self.attn_nw, 'attn_nb': self.attn_nb}
for key in params:
if params[key] is None:
setattr(self.module.mlp, key, None)
else:
setattr(self.module.mlp, key,
torch.nn.parameter.Parameter(params[key].to(get_accelerator().current_device_name())))
params = {'norm_w': self.input_nw, 'norm_b': self.input_nb}
for key in params:
if params[key] is None:
setattr(self.module, key, None)
else:
setattr(self.module, key,
torch.nn.parameter.Parameter(params[key].to(get_accelerator().current_device_name())))
def transpose(self):
self.transpose_attention()
self.transpose_mlp()
def transpose_attention(self):
if self.attn_linear_layer:
self.qkvw = self.transpose_impl(self.qkvw.data)
self.dense_w = self.transpose_impl(self.dense_w.data)
def transpose_mlp(self):
if self.mlp_linear_layer:
self._h4h_w = self.transpose_impl(self._h4h_w.data)
self._4hh_w = self.transpose_impl(self._4hh_w.data)
def transpose_impl(self, data):
data = data.contiguous()
data.reshape(-1).copy_(data.transpose(-1, -2).contiguous().reshape(-1))
data = data.reshape(data.shape[-1], data.shape[-2])
data.to(get_accelerator().current_device_name())
return data
def get_all_params(self):
params = [
self.attn_nw,
self.attn_nb,
self.input_nw,
self.input_nb,
]
params.extend(self.get_attn_params())
params.extend(self.get_mlp_params())
return params
def get_attn_params(self):
return [self.qkvw, self.qkvb, self.dense_w, self.dense_b]
def get_mlp_params(self):
return [self._h4h_w, self._h4h_b, self._4hh_w, self._4hh_b]