|
|
|
|
|
|
|
|
|
|
|
from .base import * |
|
from .features.meta_tensor import MetaTensorContainer |
|
from .features.hybrid_engine import HybridEngineContainer |
|
from deepspeed.model_implementations.transformers.ds_bloom import DeepSpeedBloomInference |
|
from ..policy import TransformerPolicy |
|
from ..policy import transformer_param_names |
|
from ..policy import maybe_copy |
|
|
|
from ..policy import maybe_get_lora |
|
|
|
supported_models = {None} |
|
|
|
|
|
class DS_BloomContainer(MetaTensorContainer, HybridEngineContainer, BaseTransformerContainer): |
|
|
|
def __init__(self, **kwargs): |
|
super().__init__(**kwargs) |
|
|
|
|
|
self.bigscience_bloom = True |
|
self.triangular_masking = False |
|
|
|
def create_module(self, config=None): |
|
_config = config if config is not None else self.ds_model_config |
|
|
|
self.module = DeepSpeedBloomInference(_config, mp_group=self.mp_group) |
|
self.module.config.scale_attention = self.scale_attention |
|
self.module.config.invert_mask = False |
|
return self.module |
|
|
|
def attention_qkv_mp(self, mp_replace, reversed_dim=False): |
|
self.module.attention.attn_qkvw = mp_replace.copy(self.module.attention.attn_qkvw, self.qkvw) |
|
self.module.attention.attn_qkvb = mp_replace.copy(self.module.attention.attn_qkvb, self.qkvb) |
|
|
|
def get_lora_matched_pair(self): |
|
""" |
|
Necessary to implement for `HybridEngineContainer` |
|
""" |
|
fc1_lora, fc2_lora, qkv_lora, out_lora = self.get_lora_params() |
|
ret = [(fc1_lora, self._h4h_w), (fc2_lora, self._4hh_w), (qkv_lora, self.qkvw), (out_lora, self.dense_w)] |
|
return ret |
|
|
|
def set_lora_params(self): |
|
""" |
|
Necessary to implement for `HybridEngineContainer` |
|
""" |
|
self.lora_params = [ |
|
maybe_get_lora(p) for p in [ |
|
self.policy.client_module.mlp.dense_h_to_4h, self.policy.client_module.mlp.dense_4h_to_h, self.policy. |
|
client_module.self_attention.query_key_value, self.policy.client_module.self_attention.dense |
|
] |
|
] |
|
|
|
def load_params(self, module, sd, weight_quantizer, mp_replace, prefix): |
|
param_names = ( |
|
'self_attention.query_key_value.weight', \ |
|
'self_attention.query_key_value.bias', \ |
|
'self_attention.dense.weight', \ |
|
'self_attention.dense.bias', \ |
|
'mlp.dense_h_to_4h.weight', \ |
|
'mlp.dense_h_to_4h.bias', \ |
|
'mlp.dense_4h_to_h.weight', \ |
|
'mlp.dense_4h_to_h.bias', \ |
|
'post_attention_layernorm.weight', \ |
|
'post_attention_layernorm.bias', \ |
|
'input_layernorm.weight', \ |
|
'input_layernorm.bias' |
|
) |
|
for i in range(0, 2): |
|
maybe_copy(module.attention, |
|
sd, |
|
weight_quantizer, |
|
mp_replace, |
|
transformer_param_names[i], |
|
prefix + param_names[i], |
|
qkv=True, |
|
megatron_v2=self.policy.is_megatron_v2, |
|
split_qkv=self.policy.split_qkv) |
|
for i in range(2, 4): |
|
maybe_copy(module.attention, sd, weight_quantizer, mp_replace, transformer_param_names[i], |
|
prefix + param_names[i]) |
|
for i in range(4, 10): |
|
maybe_copy(module.mlp, sd, weight_quantizer, mp_replace, transformer_param_names[i], |
|
prefix + param_names[i]) |
|
for i in range(10, 12): |
|
maybe_copy(module, sd, weight_quantizer, mp_replace, transformer_param_names[i], prefix + param_names[i]) |
|
|
|
|
|
class BLOOMLayerPolicy(TransformerPolicy): |
|
_orig_layer_class = None |
|
|
|
def __init__(self, client_module, inference=True, use_load_prefix=True, split_qkv=False): |
|
super().__init__(inference, linear_layer=True, use_load_prefix=use_load_prefix, split_qkv=split_qkv) |
|
self.client_module = client_module |
|
try: |
|
import transformers |
|
BLOOMLayerPolicy._orig_layer_class = transformers.models.bloom.modeling_bloom.BloomBlock |
|
global supported_models |
|
supported_models.update({transformers.models.bloom.modeling_bloom.BloomModel}) |
|
except Exception as e: |
|
print(f"WARNING! Setting BLOOMLayerPolicy._orig_layer_class to None due to Exception: {e}") |
|
BLOOMLayerPolicy._orig_layer_class = None |
|
|
|
def get_hidden_heads(self): |
|
return self.client_module.self_attention.hidden_size, \ |
|
self.client_module.self_attention.num_heads, \ |
|
self.client_module.input_layernorm.eps, \ |
|
DEFAULT_INTERMEDIATE_SIZE |
|
|
|
def attention(self, enable_training=False): |
|
return self.client_module.self_attention.query_key_value.weight, \ |
|
self.client_module.self_attention.query_key_value.bias, \ |
|
self.client_module.self_attention.dense.weight, \ |
|
self.client_module.self_attention.dense.bias, |
|
|
|
def mlp(self, enable_training=False): |
|
return self.client_module.mlp.dense_h_to_4h.weight, \ |
|
self.client_module.mlp.dense_h_to_4h.bias, \ |
|
self.client_module.mlp.dense_4h_to_h.weight, \ |
|
self.client_module.mlp.dense_4h_to_h.bias |
|
|
|
def layernorm(self): |
|
return self.client_module.post_attention_layernorm.weight, \ |
|
self.client_module.post_attention_layernorm.bias, \ |
|
self.client_module.input_layernorm.weight, \ |
|
self.client_module.input_layernorm.bias |
|
|