applied-ai-018's picture
Add files using upload-large-folder tool
a5dc865 verified
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
from .base import *
from .features.meta_tensor import MetaTensorContainer
from .features.hybrid_engine import HybridEngineContainer
from deepspeed.model_implementations.transformers.ds_bloom import DeepSpeedBloomInference
from ..policy import TransformerPolicy
from ..policy import transformer_param_names
from ..policy import maybe_copy
from ..policy import maybe_get_lora
supported_models = {None}
class DS_BloomContainer(MetaTensorContainer, HybridEngineContainer, BaseTransformerContainer):
def __init__(self, **kwargs):
super().__init__(**kwargs)
# All model specific things should be defined here instead of the base class.
self.bigscience_bloom = True
self.triangular_masking = False
def create_module(self, config=None):
_config = config if config is not None else self.ds_model_config
self.module = DeepSpeedBloomInference(_config, mp_group=self.mp_group)
self.module.config.scale_attention = self.scale_attention
self.module.config.invert_mask = False
return self.module
def attention_qkv_mp(self, mp_replace, reversed_dim=False):
self.module.attention.attn_qkvw = mp_replace.copy(self.module.attention.attn_qkvw, self.qkvw)
self.module.attention.attn_qkvb = mp_replace.copy(self.module.attention.attn_qkvb, self.qkvb)
def get_lora_matched_pair(self):
"""
Necessary to implement for `HybridEngineContainer`
"""
fc1_lora, fc2_lora, qkv_lora, out_lora = self.get_lora_params()
ret = [(fc1_lora, self._h4h_w), (fc2_lora, self._4hh_w), (qkv_lora, self.qkvw), (out_lora, self.dense_w)]
return ret
def set_lora_params(self):
"""
Necessary to implement for `HybridEngineContainer`
"""
self.lora_params = [
maybe_get_lora(p) for p in [
self.policy.client_module.mlp.dense_h_to_4h, self.policy.client_module.mlp.dense_4h_to_h, self.policy.
client_module.self_attention.query_key_value, self.policy.client_module.self_attention.dense
]
]
def load_params(self, module, sd, weight_quantizer, mp_replace, prefix):
param_names = (
'self_attention.query_key_value.weight', \
'self_attention.query_key_value.bias', \
'self_attention.dense.weight', \
'self_attention.dense.bias', \
'mlp.dense_h_to_4h.weight', \
'mlp.dense_h_to_4h.bias', \
'mlp.dense_4h_to_h.weight', \
'mlp.dense_4h_to_h.bias', \
'post_attention_layernorm.weight', \
'post_attention_layernorm.bias', \
'input_layernorm.weight', \
'input_layernorm.bias'
)
for i in range(0, 2):
maybe_copy(module.attention,
sd,
weight_quantizer,
mp_replace,
transformer_param_names[i],
prefix + param_names[i],
qkv=True,
megatron_v2=self.policy.is_megatron_v2,
split_qkv=self.policy.split_qkv)
for i in range(2, 4):
maybe_copy(module.attention, sd, weight_quantizer, mp_replace, transformer_param_names[i],
prefix + param_names[i])
for i in range(4, 10):
maybe_copy(module.mlp, sd, weight_quantizer, mp_replace, transformer_param_names[i],
prefix + param_names[i])
for i in range(10, 12):
maybe_copy(module, sd, weight_quantizer, mp_replace, transformer_param_names[i], prefix + param_names[i])
class BLOOMLayerPolicy(TransformerPolicy):
_orig_layer_class = None
def __init__(self, client_module, inference=True, use_load_prefix=True, split_qkv=False):
super().__init__(inference, linear_layer=True, use_load_prefix=use_load_prefix, split_qkv=split_qkv)
self.client_module = client_module
try:
import transformers
BLOOMLayerPolicy._orig_layer_class = transformers.models.bloom.modeling_bloom.BloomBlock
global supported_models
supported_models.update({transformers.models.bloom.modeling_bloom.BloomModel})
except Exception as e:
print(f"WARNING! Setting BLOOMLayerPolicy._orig_layer_class to None due to Exception: {e}")
BLOOMLayerPolicy._orig_layer_class = None
def get_hidden_heads(self):
return self.client_module.self_attention.hidden_size, \
self.client_module.self_attention.num_heads, \
self.client_module.input_layernorm.eps, \
DEFAULT_INTERMEDIATE_SIZE
def attention(self, enable_training=False):
return self.client_module.self_attention.query_key_value.weight, \
self.client_module.self_attention.query_key_value.bias, \
self.client_module.self_attention.dense.weight, \
self.client_module.self_attention.dense.bias,
def mlp(self, enable_training=False):
return self.client_module.mlp.dense_h_to_4h.weight, \
self.client_module.mlp.dense_h_to_4h.bias, \
self.client_module.mlp.dense_4h_to_h.weight, \
self.client_module.mlp.dense_4h_to_h.bias
def layernorm(self):
return self.client_module.post_attention_layernorm.weight, \
self.client_module.post_attention_layernorm.bias, \
self.client_module.input_layernorm.weight, \
self.client_module.input_layernorm.bias