applied-ai-018's picture
Add files using upload-large-folder tool
a5dc865 verified
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
from .base import *
from .features import HybridSplitQKVContainer, HybridGatedMLPContainer, MetaTensorContainer
from deepspeed.utils.types import ActivationFuncType, NormType
from deepspeed.model_implementations.transformers.ds_llama2 import DeepSpeedLlama2Inference
import torch
from torch.nn.parameter import Parameter
from ..policy import (
TransformerPolicy,
transformer_param_names,
maybe_copy,
maybe_copy_qkv,
maybe_copy_geglu,
maybe_get_lora,
)
class DS_LLAMA2Container(MetaTensorContainer, HybridGatedMLPContainer, HybridSplitQKVContainer,
BaseTransformerContainer):
def __init__(self, **kwargs):
super().__init__(**kwargs)
# All model specific things should be defined here instead of the base class.
def create_module(self, config=None):
_config = config if config is not None else self.ds_model_config
_config.rotate_half = False
_config.rotate_every_two = True
_config.rotary_dim = self.hidden_size // self.num_attention_heads
_config.num_kv = self.policy.client_module.attention.n_kv_heads
self.module = DeepSpeedLlama2Inference(_config, mp_group=self.mp_group)
return self.module
def set_lora_params(self):
"""
Necessary to implement for `HybridEngineContainer`
"""
self.lora_params = [
maybe_get_lora(p) for p in [
self.policy.client_module.feed_forward.w3.weight, self.policy.client_module.feed_forward.w1.weight,
self.policy.client_module.feed_forward.w2.weight, self.policy.client_module.attention.wq.weight,
self.policy.client_module.attention.wk.weight, self.policy.client_module.attention.wv.weight,
self.policy.client_module.attention.wo.weight
]
]
def get_lora_matched_pair(self):
up_proj_lora, gate_proj_lora, down_proj_lora, q_lora, k_lora, v_lora, out_lora = self.get_lora_params()
ret = [(up_proj_lora, self.inter_up_w), (gate_proj_lora, self.inter_gate_w), (down_proj_lora, self._4hh_w),
(out_lora, self.dense_w), (q_lora, self.qw), (k_lora, self.kw), (v_lora, self.vw)]
return ret
def set_q_k_v(self):
"""
Necessary to implement for `HybridSplitQKVContainer`
"""
self.qw = self.policy.client_module.attention.wq.weight
self.qb = None
self.kw = self.policy.client_module.attention.wk.weight
self.kb = None
self.vw = self.policy.client_module.attention.wv.weight
self.vb = None
def set_mlp_gate(self):
"""
Necessary to implement for `HybridGatedMLPContainer`
"""
self.inter_up_w = self.policy.client_module.feed_forward.w2.weight
self.inter_up_b = None
self.inter_gate_w = self.policy.client_module.feed_forward.w1.weight
self.inter_gate_b = None
def load_params(self, module, sd, weight_quantizer, mp_replace, prefix):
param_names = (
'attention.wq.weight', \
'attention.wk.weight', \
'attention.wv.weight', \
'attention.wo.weight', \
'feed_forward.w3.weight', \
'feed_forward.w1.weight', \
'feed_forward.w2.weight', \
'ffn_norm.weight', \
'attention_norm.weight'
)
maybe_copy_qkv(module.attention,
sd,
weight_quantizer,
mp_replace,
'attn_qkvw', [prefix + param_names[0], prefix + param_names[1], prefix + param_names[2]],
split_qkv=self.policy.split_qkv)
for i in range(3, 4):
maybe_copy(module.attention, sd, weight_quantizer, mp_replace, transformer_param_names[i - 1],
prefix + param_names[i])
maybe_copy_geglu(module.mlp, sd, weight_quantizer, mp_replace, 'inter_w',
[prefix + param_names[4], prefix + param_names[5]])
maybe_copy(module.mlp, sd, weight_quantizer, mp_replace, 'output_w', prefix + param_names[6])
maybe_copy(module.mlp, sd, weight_quantizer, mp_replace, transformer_param_names[8], prefix + param_names[7])
maybe_copy(module, sd, weight_quantizer, mp_replace, transformer_param_names[10], prefix + param_names[8])
class LLAMA2LayerPolicy(TransformerPolicy):
def __init__(self, client_module, inference=True):
super().__init__(
inference,
mlp_act_func_type=ActivationFuncType.GATED_SILU,
norm_type=NormType.RMSNorm,
)
self.client_module = client_module
try:
import llama
LLAMA2LayerPolicy._orig_layer_class = llama.model.TransformerBlock # type: ignore
except:
LLAMA2LayerPolicy._orig_layer_class = None
def get_hidden_heads(self):
return self.client_module.attention.wq.weight.shape[1], \
self.client_module.n_heads, \
self.client_module.ffn_norm.eps, \
(self.client_module.feed_forward.w1.weight.shape[0] * \
deepspeed.comm.get_world_size() if deepspeed.comm.is_initialized() else 1) # this is a hack to inject when model is already partitioned!
def attention(self, enable_training=False):
qw = self.client_module.attention.wq.weight
kw = self.client_module.attention.wk.weight
vw = self.client_module.attention.wv.weight
qkvw = Parameter(torch.cat((qw, kw, vw), dim=0), requires_grad=enable_training)
return qkvw, \
None, \
self.client_module.attention.wo.weight, \
None
def mlp(self, enable_training=False):
mlp1_up = self.client_module.feed_forward.w3.weight
mlp1_gate = self.client_module.feed_forward.w1.weight
mlp2 = self.client_module.feed_forward.w2.weight
mlp1 = Parameter(torch.cat((mlp1_up, mlp1_gate), dim=0), requires_grad=enable_training)
return mlp1, None, mlp2, None
def layernorm(self):
return self.client_module.ffn_norm.weight, \
None, \
self.client_module.attention_norm.weight, \
None