peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/module_inject
/inject.py
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
import copy | |
import torch | |
from deepspeed.ops.transformer import DeepSpeedTransformerLayer, DeepSpeedTransformerConfig | |
def module_inject(layer_obj, model, config, micro_batch_size, max_seq_length, seed, preln, fp16=True): | |
for name, child in model.named_children(): | |
if isinstance(child, layer_obj): | |
print('REPLACING BertLayer') | |
cuda_config = DeepSpeedTransformerConfig(batch_size=micro_batch_size, | |
max_seq_length=max_seq_length, | |
hidden_size=config.hidden_size, | |
heads=config.num_attention_heads, | |
attn_dropout_ratio=config.attention_probs_dropout_prob, | |
hidden_dropout_ratio=config.hidden_dropout_prob, | |
num_hidden_layers=config.num_hidden_layers, | |
initializer_range=config.initializer_range, | |
seed=seed, | |
fp16=fp16, | |
pre_layer_norm=preln) | |
new_module = DeepSpeedTransformerLayer(cuda_config) | |
# copy relevant state from child -> new module | |
qw = child.attention.self.query.weight | |
qb = child.attention.self.query.bias | |
kw = child.attention.self.key.weight | |
kb = child.attention.self.key.bias | |
vw = child.attention.self.value.weight | |
vb = child.attention.self.value.bias | |
qkvw = torch.cat((qw, kw, vw), 0) | |
qkvb = torch.cat((qb, kb, vb), 0) | |
new_module.attn_qkvw.data = qkvw | |
new_module.attn_qkvb.data = qkvb | |
new_module.attn_ow.data = child.attention.output.dense.weight | |
new_module.attn_ob.data = child.attention.output.dense.bias | |
if preln: | |
attention_layerNorm = child.PostAttentionLayerNorm | |
else: | |
attention_layerNorm = child.attention.output.LayerNorm | |
new_module.attn_nw.data = attention_layerNorm.weight | |
new_module.attn_nb.data = attention_layerNorm.bias | |
if preln: | |
intermediate_FF = child.intermediate.dense_act | |
else: | |
intermediate_FF = child.intermediate.dense | |
new_module.inter_w.data = intermediate_FF.weight | |
new_module.inter_b.data = intermediate_FF.bias | |
new_module.output_w.data = child.output.dense.weight | |
new_module.output_b.data = child.output.dense.bias | |
if preln: | |
transformer_LayerNorm = child.PreAttentionLayerNorm | |
else: | |
transformer_LayerNorm = child.output.LayerNorm | |
new_module.norm_w.data = transformer_LayerNorm.weight | |
new_module.norm_b.data = transformer_LayerNorm.bias | |
setattr(model, name, copy.deepcopy(new_module)) | |
else: | |
module_inject(layer_obj, child, config, micro_batch_size, max_seq_length, seed, preln, fp16) | |
return model | |
def test_hi(): | |
from turing.nvidia_modelingpreln import BertConfig as BertConfigPreLN | |
from turing.nvidia_modelingpreln import BertForQuestionAnswering as BertForQuestionAnsweringPreLN | |
from turing.nvidia_modelingpreln import BertLayer | |
bert_model_config = { | |
"vocab_size_or_config_json_file": 119547, | |
"hidden_size": 1024, | |
"num_hidden_layers": 1, | |
"num_attention_heads": 16, | |
"intermediate_size": 4096, | |
"hidden_act": "gelu", | |
"hidden_dropout_prob": 0.1, | |
"attention_probs_dropout_prob": 0.1, | |
"hidden_dropout_prob": 0.1, | |
"attention_probs_dropout_prob": 0.1, | |
"max_position_embeddings": 512, | |
"type_vocab_size": 2, | |
"initializer_range": 0.02 | |
} | |
bert_config = BertConfigPreLN(**bert_model_config) | |
base_model = BertForQuestionAnsweringPreLN(bert_config, args=None) | |
#base_model = LinearStack() | |
test_model = copy.deepcopy(base_model) | |
test_model = module_inject(BertLayer, test_model, bert_config, 4, 384, 1234) | |
print('BASE', base_model) | |
print('TEST', test_model) | |
#base_model.eval() | |
#test_model.eval() | |
#test_input = torch.rand(1, base_model.input_dim) | |
#base_output = base_model(test_input) | |
#test_output = test_model(test_input) | |
# | |
#assert torch.allclose(base_output, test_output, atol=3e-8) | |