peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/module_inject
/module_quantize.py
| # Copyright (c) Microsoft Corporation. | |
| # SPDX-License-Identifier: Apache-2.0 | |
| # DeepSpeed Team | |
| import torch | |
| def quantize_transformer_layer(orig_layer_impl, model, megatron=False, preln=False): | |
| """ Quantize bert-style transformer layers with DeepSpeed's transformer layer | |
| Arguments: | |
| orig_layer_impl (torch.nn.Module): the original transformer layer implementation to look for, | |
| e.g., transformers.models.bert.modeling_bert.BertLayer or transformers.BertLayer | |
| model (torch.nn.Module): user's nn.module representing their model | |
| megatron (bool): megatron model-parallel implementation (this is supported for inference only) | |
| preln (bool): does the original layer implementation do pre or post layer norm? | |
| Note: For Bert kind of models, we inject based on the DeepSpeed-Example models, if not setting huggingface flag. | |
| Returns: | |
| Updated nn.module with quantized transformer layers | |
| """ | |
| def quantize_weight(weight): | |
| return weight.to(torch.int8) | |
| def megatron_layer_quantize(layer): | |
| layer.attention.query_key_value.weight.data = quantize_weight(layer.attention.query_key_value.weight.data) | |
| layer.attention.dense.weight.data = quantize_weight(layer.attention.dense.weight.data) | |
| layer.mlp.dense_h_to_4h.weight.data = quantize_weight(layer.mlp.dense_h_to_4h.weight.data) | |
| layer.mlp.dense_4h_to_h.weight.data = quantize_weight(layer.mlp.dense_4h_to_h.weight.data) | |
| def bert_layer_quantize(layer): | |
| layer.attention.self.query.weight.data = quantize_weight(layer.attention.self.query.weight.data) | |
| layer.attention.self.key.weight.data = quantize_weight(layer.attention.self.key.weight.data) | |
| layer.attention.self.value.weight.data = quantize_weight(layer.attention.self.value.weight.data) | |
| layer.attention.output.dense.weight.data = quantize_weight(layer.attention.output.dense.weight.data) | |
| if preln: | |
| layer.intermediate.dense_act.weight.data = quantize_weight(layer.intermediate.dense_act.weight.data) | |
| else: | |
| layer.intermediate.dense.weight.data = quantize_weight(layer.intermediate.dense.weight.data) | |
| layer.output.dense.weight.data = quantize_weight(layer.output.dense.weight.data) | |
| def quantize_fn(child): | |
| if megatron: | |
| # Quantize megatron GPT2 / GPT3 trained model | |
| megatron_layer_quantize(child) | |
| else: | |
| # Quantize either DeepSpeed or HuggingFace trained model | |
| bert_layer_quantize(child) | |
| return child | |
| return quantize_module(model=model, orig_class=orig_layer_impl, quantize_fn=quantize_fn) | |
| def quantize_module(model, orig_class, quantize_fn): | |
| policy = {orig_class: quantize_fn} | |
| return _quantize_module(model, policy) | |
| def _quantize_module(model, policies): | |
| for name, child in model.named_children(): | |
| if child.__class__ in policies: | |
| orig = repr(child) | |
| setattr(model, name, policies[child.__class__](child)) | |
| new = getattr(model, name) | |
| else: | |
| _quantize_module(child, policies) | |
| return model | |