applied-ai-018's picture
Add files using upload-large-folder tool
19a3898 verified
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
import os
import torch
import tqdm
import deepspeed
import deepspeed.ops.transformer as transformer_inference
from deepspeed.ops.transformer.inference.diffusers_attention import DeepSpeedDiffusersAttention
from deepspeed.ops.transformer.inference.diffusers_transformer_block import DeepSpeedDiffusersTransformerBlock
from deepspeed.ops.transformer.inference.diffusers_2d_transformer import Diffusers2DTransformerConfig
from deepspeed.accelerator import get_accelerator
from .replace_policy import replace_policies, generic_policies
from .auto_tp import AutoTP, ReplaceWithTensorSlicing, Loading
from deepspeed import comm as dist
from deepspeed.module_inject.tp_shard import set_num_kv_heads, set_n_embd
from .load_checkpoint import load_model_with_checkpoint
import time
from .utils import policy_to_ds_container
import gc
def get_transformer_name(replaced_module):
from .containers import supported_models
from torch.nn import ModuleList
transformer_name = ''
for n, c in replaced_module.named_children():
if c.__class__ in supported_models:
transformer_name += n + '.'
for name, child in c.named_children():
if child.__class__ is ModuleList:
transformer_name += name
break
break
return transformer_name
class GroupQuantizer:
def __init__(self, q_int8=True, group_size=1, num_bits=8, num_groups=0):
self.group_size = group_size
self.num_bits = num_bits
self.q_int8 = q_int8
self.num_groups = num_groups
def quantize(self, inputs, qkv=True, count=1, parallel_dim=0):
if not self.q_int8 or not qkv:
inputs = torch.nn.Parameter(inputs, requires_grad=False)
inputs.scale = torch.empty(1)
return inputs
q_range = 2**self.num_bits
num_groups = self.num_groups if self.num_groups > 0 else inputs.shape[0] // self.group_size
inputs = inputs.to(get_accelerator().current_device_name())
input_flat = inputs.reshape(num_groups, -1).contiguous()
input_min = torch.min(input_flat, dim=1, keepdim=True)[0].float()
input_max = torch.max(input_flat, dim=1, keepdim=True)[0].float()
scale = torch.max(input_min.abs(), input_max.abs()) * 2.0 / (q_range)
input_flat = (input_flat / scale).round().clamp(-q_range // 2, q_range // 2 - 1)
inputs_q = input_flat.reshape(inputs.shape).to(torch.int8).contiguous()
out = torch.nn.Parameter(inputs_q, requires_grad=False)
inputs_split = inputs.split(inputs.shape[parallel_dim] // 2, dim=parallel_dim)
input_flat = [inputs_split[i].reshape(num_groups, -1).contiguous() for i in range(2)]
input_min = [torch.min(input_flat[i], dim=1, keepdim=True)[0].float() for i in range(2)]
input_max = [torch.max(input_flat[i], dim=1, keepdim=True)[0].float() for i in range(2)]
scale1 = [(torch.max(input_min[i].abs(), input_max[i].abs()) * 2.0 / (q_range)).squeeze().unsqueeze(0)
for i in range(2)]
out.scale = torch.cat([scale.squeeze().unsqueeze(0), scale1[0], scale1[1]], dim=0).reshape(num_groups,
-1).contiguous()
return out
def _module_match(module):
for policy in generic_policies:
policy = policy()
if policy.match(module):
return policy
return None
def generic_injection(module, dtype=None, enable_cuda_graph=True):
def replace_attn(child, policy):
policy_attn = policy.attention(child)
if policy_attn is None:
return child
if len(policy_attn) == 5:
qkvw, attn_ow, attn_ob, hidden_size, heads = policy_attn
else:
qw, kw, vw, attn_ow, attn_ob, hidden_size, heads = policy_attn
config = transformer_inference.DeepSpeedInferenceConfig(
hidden_size=hidden_size,
heads=heads,
dtype=dtype,
triangular_masking=False,
max_out_tokens=4096,
)
attn_module = DeepSpeedDiffusersAttention(config)
def transpose(data):
data = data.contiguous()
data.reshape(-1).copy_(data.transpose(-1, -2).contiguous().reshape(-1))
data = data.reshape(data.shape[-1], data.shape[-2])
data.to(get_accelerator().current_device_name())
return data
if len(policy_attn) == 5:
attn_module.attn_qkvw.data = transpose(qkvw.data)
else:
attn_module.attn_qkvw = None
attn_module.attn_qw.data = transpose(qw.data)
attn_module.attn_kw.data = transpose(kw.data)
attn_module.attn_vw.data = transpose(vw.data)
attn_module.attn_qkvb = None
attn_module.attn_ow.data = transpose(attn_ow.data)
attn_module.attn_ob.data.copy_(attn_ob.data.to(get_accelerator().current_device_name()))
return attn_module
def replace_attn_block(child, policy):
config = Diffusers2DTransformerConfig()
return DeepSpeedDiffusersTransformerBlock(child, config)
if isinstance(module, torch.nn.Module):
pass
else:
if dtype not in [torch.float16, torch.half]:
raise ValueError("Generic injection only supported with FP16")
try:
import diffusers
if hasattr(diffusers.models.attention, 'CrossAttention'):
cross_attention = diffusers.models.attention.CrossAttention
else:
cross_attention = diffusers.models.attention_processor.Attention
attention_block = diffusers.models.attention.BasicTransformerBlock
new_policies = {
cross_attention: replace_attn,
attention_block: replace_attn_block,
}
except ImportError:
new_policies = {}
#replace_transformer_layer(None,
# module.text_encoder,
# training=False,
# replace_with_kernel_inject=True,
# triangular_masking=True,
# max_out_tokens=8192)
from ..model_implementations.transformers.clip_encoder import DSClipEncoder
cg_encoder = DSClipEncoder(module.text_encoder, enable_cuda_graph=enable_cuda_graph)
setattr(module, 'text_encoder', cg_encoder)
for name in module.__dict__.keys():
sub_module = getattr(module, name)
policy = _module_match(sub_module)
if policy is not None:
def _replace_module(module, policy):
for name, child in module.named_children():
_replace_module(child, policy)
if child.__class__ in new_policies:
replaced_module = new_policies[child.__class__](child, policy)
setattr(module, name, replaced_module)
_replace_module(sub_module, policy)
new_module = policy.apply(sub_module, enable_cuda_graph=enable_cuda_graph)
print(f"**** found and replaced {name} w. {type(new_module)}")
setattr(module, name, new_module)
container_g = None
def replace_transformer_layer(orig_layer_impl, model, checkpoint_dict, config, model_config):
""" Replace bert-style transformer layers with DeepSpeed's transformer layer
Arguments:
orig_layer_impl (torch.nn.Module): the original transformer layer implementation to look for,
e.g., transformers.models.bert.modeling_bert.BertLayer or transformers.BertLayer
model (torch.nn.Module): user's nn.module representing their model
checkpoint_dict: Dictionary for checkpoint passed from the Inference Engine
config: top-level DS Inference config defined in inference/config.py
model_config: HuggingFace model config passed from the inference/engine.py
Returns:
Updated nn.module with replaced transformer layers
"""
# defining globals as internally defined functions inherit these everywhere
quantize = (config.dtype == torch.int8)
# todo: Refactor later. In future, let's minimize the style used above and use config.** instead
linear_layer_setting = None
'''
linear_layer_setting (tuple of modules) [Optional]: shows which two classes are used for linear layers and embedding layers
'''
micro_batch_size = -1
seed = -1
local_rank = -1
mp_replace = ReplaceWithTensorSlicing(mp_group=config.tensor_parallel.tp_group,
mp_size=config.tensor_parallel.tp_size) #, out_dim=0, in_dim=1)
def replace_with_policy(child, policy_cls, triangular_masking, inference=False, layer_id=0):
policy = policy_cls(child, inference=inference)
if not policy.cuda_graph_supported:
# policy says cuda graph is not supported raise an error if set
assert not config.enable_cuda_graph, "cuda graph is not supported with this model, please disable"
from deepspeed.moe.layer import MoE
moe = False
if hasattr(child, 'mlp') and isinstance(child.mlp, MoE):
num_experts = child.mlp.num_experts
moe = True
# 1. Create a model-specific container object using the policy object.
_container = policy_to_ds_container(policy=policy,
config=config,
model_config=model_config,
layer_id=layer_id,
child=child)
_container.set_moe(moe)
# 2. Set the tensor parallelism config
_container.set_tensor_parallel_config(config.tensor_parallel.tp_size, config.tensor_parallel.tp_group)
# 3. Initialize tensors
_container.initialize_tensors()
# 4. deal with data types -- needs refactor to use dtype instead of fp16
if config.dtype in [torch.float16, torch.bfloat16, torch.int8]:
_container.convert_to_required_dtype()
# 5. Set the quantization config
quantizer = GroupQuantizer(q_int8=quantize)
_container.set_quantization_config(quantizer)
# 6. create a DS Inference config object
_container.create_ds_model_config()
# 7. use the config and create the module
_container.create_module()
# 8. transpose the weights and bias if needed
_container.transpose()
# 9. deal with tensor parallelism.
_container.apply_tensor_parallelism(mp_replace)
# 10. copy the tensors from the model-specific container to the new module
_container.copy_data_to_new_module()
# 11. set global for generic checkpoint loading
global container_g
if container_g is None:
container_g = _container
return _container.module
def replace_wo_policy(module, all_reduce_linears, prefix="", state_dict=None):
#mp_replace = ReplaceWithTensorSlicing(mp_group=config.tensor_parallel.tp_group)
# 1. Create AutoTP object
_autotp = AutoTP(module, all_reduce_linears, prefix, state_dict, linear_layer_setting, orig_layer_impl)
# 2. Set the tensor parallelism config
_autotp.set_tensor_parallel_config(config.tensor_parallel.tp_size, config.tensor_parallel.tp_group)
# 3. Try to get num_key_heads from model_config.num_key_value_heads
num_kv_heads = _autotp.get_model_num_kv_heads(model_config)
# 4. When we have num_kv_heads defined, uneven division is possible, otherwise enforce even division
set_num_kv_heads(num_kv_heads)
# 4.1 Get n_embd
n_embd = None
multi_query_n_embd_names = ['n_embd']
for name in multi_query_n_embd_names:
if hasattr(model_config, name):
n_embd = getattr(model_config, name)
if n_embd != None:
break
# 4.2 set n_embd
set_n_embd(n_embd)
# 5. Set linear policies
_autotp.update_linear_policies()
# 6. Replace modules
if "lm_head" in all_reduce_linears or "embed_out" in all_reduce_linears:
return _autotp._replace_last_linear_module(module)
return _autotp._replace_module(module)
def replace_fn(child, _policy, layer_id=0, prefix="", state_dict=None):
training = False # todo: refactor this part to go in the config
if training:
# copy relevant state from child -> new module
new_module = replace_with_policy(child, _policy, config.triangular_masking)
else:
# copy relevant state from child -> new module
if config.replace_with_kernel_inject:
new_module = replace_with_policy(child,
_policy,
config.triangular_masking,
inference=True,
layer_id=layer_id)
else:
new_module = replace_wo_policy(child, _policy, prefix=prefix, state_dict=state_dict)
return new_module
def set_lm_head(module):
embedding_weight = None
for n, p in module.named_parameters():
if "word_embeddings." in n or "embed_tokens." in n or "wte." in n:
embedding_weight = p
if embedding_weight is not None and hasattr(module, "lm_head") and hasattr(
module.lm_head, "weight") and module.lm_head.weight.is_meta:
module.lm_head.weight = embedding_weight
# enable tensor parallel for the last linear
if hasattr(module, "lm_head") and hasattr(module.lm_head,
"weight") and not module.lm_head.weight.is_meta and isinstance(
module.lm_head, torch.nn.Linear):
module = replace_wo_policy(module, ("lm_head", ), 0, "lm_head")
elif hasattr(module, "embed_out") and hasattr(module.embed_out,
"weight") and not module.embed_out.weight.is_meta and isinstance(
module.embed_out, torch.nn.Linear):
module = replace_wo_policy(module, ("embed_out", ), 0, "embed_out")
return module
if checkpoint_dict is not None and not config.replace_with_kernel_inject:
# AutoTP shard loading
checkpoint = checkpoint_dict["checkpoints"]
pbar = tqdm.tqdm(total=len(checkpoint), desc=f"Loading {len(checkpoint)} checkpoint shards")
for i in range(len(checkpoint)):
checkpoint_file = os.path.join(config.base_dir, checkpoint[i])
replaced_module = replace_module(model=model,
orig_class=orig_layer_impl,
replace_fn=replace_fn,
_replace_policy=config.injection_policy_tuple,
checkpoint=checkpoint_file)
pbar.update(1)
gc.collect()
replaced_module = set_lm_head(replaced_module)
else:
replaced_module = replace_module(model=model,
orig_class=orig_layer_impl,
replace_fn=replace_fn,
_replace_policy=config.injection_policy_tuple)
quantizer = GroupQuantizer(q_int8=quantize)
world_size = dist.get_world_size() if dist.is_initialized() else 1
rank = dist.get_rank() if dist.is_initialized() else 0
if checkpoint_dict is not None and config.replace_with_kernel_inject:
assert container_g.ckpt_load_enabled, \
f"Meta Tensor checkpoint loading not supported in {container_g.__class__.__name__} container"
start_time = time.time()
checkpoint = checkpoint_dict['checkpoints']
ckpt_list = checkpoint["tp"] if type(checkpoint) is dict else checkpoint
ckpt_type = checkpoint_dict.get('parallelization', 'pp')
ckpt_mp_size = checkpoint_dict.get('tp_size', len(ckpt_list))
ckpt_mp_size = checkpoint_dict.get('mp_size', ckpt_mp_size)
base_dir1 = checkpoint_dict.get('base_dir', config.base_dir)
if ckpt_type == 'pp' and type(checkpoint) is list:
pbar = tqdm.tqdm(total=len(checkpoint), desc=f"Loading {len(checkpoint)} checkpoint shards")
for i in range(len(checkpoint)):
sd = [torch.load(os.path.join(base_dir1, checkpoint[i]), map_location='cpu')]
load_model_with_checkpoint(replaced_module,
sd,
mp_replace,
ckpt_type,
ckpt_mp_size,
quantizer,
container=container_g)
pbar.update(1)
else:
num_checkpoints = len(ckpt_list) // ckpt_mp_size
tp_split_size = (world_size / ckpt_mp_size)
sd_offset = int(rank / tp_split_size)
sd_count = int((rank + max(1, tp_split_size)) / tp_split_size) - sd_offset
pbar = tqdm.tqdm(total=num_checkpoints, desc=f"Loading {num_checkpoints} checkpoint shards")
for i in range(num_checkpoints):
pbar.update(1)
ckpt_index = i * ckpt_mp_size + sd_offset
ckpt_files = [
os.path.join(base_dir1, ckpt_list[ckpt_index + j]) if base_dir1 else ckpt_list[ckpt_index + j]
for j in range(sd_count)
]
sds = [torch.load(ckpt_file, map_location='cpu') for ckpt_file in ckpt_files]
load_model_with_checkpoint(replaced_module,
sds,
mp_replace,
ckpt_type,
ckpt_mp_size,
quantizer,
int(rank % tp_split_size),
container=container_g)
sds = [None for _ in sds]
gc.collect()
if "non_tp" in checkpoint:
pbar = tqdm.tqdm(total=len(checkpoint["non_tp"]),
desc=f"Loading {len(checkpoint['non_tp'])} checkpoint shards")
for i in range(len(checkpoint["non_tp"])):
pbar.update(1)
ckpt_file = os.path.join(base_dir1,
checkpoint["non_tp"][i]) if base_dir1 else checkpoint["non_tp"][i]
sds = [torch.load(ckpt_file, map_location='cpu')]
load_model_with_checkpoint(replaced_module,
sds,
mp_replace,
ckpt_type,
ckpt_mp_size,
quantizer,
int(rank % tp_split_size),
container=container_g)
sds = [None for _ in sds]
gc.collect()
set_lm_head(replaced_module)
print(f"checkpoint loading time at rank {rank}: {time.time()-start_time} sec")
if config.save_mp_checkpoint_path is not None:
from collections import OrderedDict
import json
num_partitions = 8
if checkpoint_dict is None:
ckpt_name = "ds_model"
try:
from transformers.models.bloom.modeling_bloom import BloomForCausalLM
if isinstance(model, BloomForCausalLM):
ckpt_name = "bloom"
except ImportError:
ckpt_name = "ds_model"
else:
ckpt_name = checkpoint_dict['type']
if dist.is_initialized():
dist.barrier()
transformer_name = get_transformer_name(replaced_module)
non_tp_ckpt_name = f'non-tp.pt'
ckpt_files = [non_tp_ckpt_name]
os.makedirs(config.save_mp_checkpoint_path, exist_ok=True)
if not dist.is_initialized() or dist.get_rank() == 0:
print("Saving tp-sharded checkpoints")
torch.save(
OrderedDict({k: v
for k, v in dict(replaced_module.state_dict()).items()
if transformer_name not in k}), f'{config.save_mp_checkpoint_path}/{non_tp_ckpt_name}')
dtype_reprs = {
torch.float32: 'float32',
torch.float16: 'float16',
torch.int8: 'int8',
torch.bfloat16: 'bfloat16'
}
ckpt_config = json.dumps({
'type': ckpt_name,
'base_dir': f'{config.save_mp_checkpoint_path}',
'checkpoints': {
"non_tp": ckpt_files,
"tp": [f'tp_{r:0>2d}_{m:0>2d}.pt' for m in range(num_partitions) for r in range(world_size)]
},
'version': 1.0,
'parallelization': 'tp',
'tp_size': world_size,
'dtype': dtype_reprs[config.dtype]
})
with open(f"{config.save_mp_checkpoint_path}/ds_inference_config.json", "w") as cfg:
cfg.write(ckpt_config)
rep_sd = replaced_module.state_dict()
for n, p in replaced_module.named_parameters():
if hasattr(p, 'scale'):
rep_sd[n] = [p, p.scale]
keys = list(rep_sd.keys())
partition_size = (len(keys) // num_partitions + 1)
for m in range(num_partitions):
torch.save(
OrderedDict({
k: [rep_sd[k], rep_sd[k].scale] if hasattr(rep_sd[k], 'scale') else rep_sd[k]
for k in keys[m * partition_size:(m + 1) * partition_size] if transformer_name in k
}), f'{config.save_mp_checkpoint_path}/tp_{rank:0>2d}_{m:0>2d}.pt')
return replaced_module
def revert_transformer_layer(orig_layer_impl, model, config, preln=False):
""" Revert DeepSpeed's transformer layer back to original bert-style transformer layer
Arguments:
orig_layer_impl (torch.nn.Module): the original transformer layer implementation that was replaced,
e.g., transformers.models.bert.modeling_bert.BertLayer or transformers.BertLayer
model (torch.nn.Module): user's nn.module representing their model
config (dict): model config containing hidden size, attention heads, etc.
Returns:
Updated nn.module with original bert-style transformer layers
"""
def replace_fn(child, _replace_policy, layer_id):
#from turing.nvidia_modelingpreln import BertLayer
orig_module = orig_layer_impl(config)
# copy relevant state from child -> original module
qkvw = child.attn_qkvw.data
qkvb = child.attn_qkvb.data
qw, kw, vw = torch.chunk(qkvw, 3, axis=0)
qb, kb, vb = torch.chunk(qkvb, 3, axis=0)
orig_module.attention.self.query.weight.data = qw
orig_module.attention.self.query.bias.data = qb
orig_module.attention.self.key.weight.data = kw
orig_module.attention.self.key.bias.data = kb
orig_module.attention.self.value.weight.data = vw
orig_module.attention.self.value.bias.data = vb
orig_module.attention.output.dense.weight.data = child.attn_ow.data
orig_module.attention.output.dense.bias.data = child.attn_ob.data
attn_ln_w = child.attn_nw.data
attn_ln_b = child.attn_nb.data
if preln:
orig_module.PostAttentionLayerNorm.weight.data = attn_ln_w
orig_module.PostAttentionLayerNorm.bias.data = attn_ln_b
else:
orig_module.attention.output.LayerNorm.weight.data = attn_ln_w
orig_module.attention.output.LayerNorm.bias.data = attn_ln_b
inter_ff_w = child.inter_w.data
inter_ff_b = child.inter_b.data
if preln:
orig_module.intermediate.dense_act.weight.data = inter_ff_w
orig_module.intermediate.dense_act.bias.data = inter_ff_b
else:
orig_module.intermediate.dense.weight.data = inter_ff_w
orig_module.intermediate.dense.bias.data = inter_ff_b
orig_module.output.dense.weight.data = child.output_w.data
orig_module.output.dense.bias.data = child.output_b.data
transformer_ln_w = child.norm_w.data
transformer_ln_b = child.norm_b.data
if preln:
orig_module.PreAttentionLayerNorm.weight.data = transformer_ln_w
orig_module.PreAttentionLayerNorm.bias.data = transformer_ln_b
else:
orig_module.output.LayerNorm.weight.data = transformer_ln_w
orig_module.output.LayerNorm.bias.data = transformer_ln_b
return orig_module
return replace_module(model=model,
orig_class=deepspeed.DeepSpeedTransformerLayer,
replace_fn=replace_fn,
_replace_policy=None)
def replace_module(model, orig_class, replace_fn, _replace_policy, checkpoint=None):
""" Scan the model for instances of ``orig_clas:`` to replace using ``replace_fn``.
Arguments:
model (torch.nn.Module): the model to augment
orig_class (torch.nn.Module): the module to search for
replace_fn (method): a method to convert instances of ``orig_class`` to the
desired type and return a new instance.
Returns:
A modified ``model``.
"""
sd = None
if checkpoint is not None:
if checkpoint.endswith(".safetensors"):
from safetensors.torch import load_file
sd = load_file(checkpoint)
else:
sd = torch.load(checkpoint, map_location='cpu')
policy = {}
if orig_class is not None:
policy.update({orig_class: (replace_fn, _replace_policy)})
else:
for plcy in replace_policies:
# instantiate a throw-away policy in order to populate the _orig_layer_class
_ = plcy(None)
if isinstance(plcy._orig_layer_class, list):
for orig_layer_class in plcy._orig_layer_class:
policy.update({orig_layer_class: (replace_fn, plcy)})
elif plcy._orig_layer_class is not None:
policy.update({plcy._orig_layer_class: (replace_fn, plcy)})
assert len(policy.items()) > 0,\
"No default policy found! Please specify your policy injection_policy (like {BertLayer:HFBEertLayerPolicy})." +\
"You can find some samples here: https://github.com/microsoft/DeepSpeed/blob/master/deepspeed/module_inject/replace_policy.py"
replaced_module, _ = _replace_module(model, policy, state_dict=sd)
return replaced_module
from ..pipe import PipelineModule
import re
def skip_level_0_prefix(model, state_dict):
model = str(model)
key = re.search(r": (.*?)Model", model)
if key is None:
key = re.search(r": (.*?)Stack", model)
if key is None:
key = re.match(r"(.*?)Model", model)
# if keys start with 'model.', don't skip level 0 prefix
if state_dict is not None:
for item in state_dict.keys():
if re.match("^model[.]", item):
return False
if key is not None and key.group(1).lower() in ["bloom", "opt"]:
return True
return False
def _replace_module(model, policies, prefix='', layer_id=0, level_id=0, state_dict=None):
""" Traverse model's children recursively and apply any transformations in ``policies``.
Arguments:
model (torch.nn.Module): model to augment
policies (dict): Mapping of source class to replacement function.
Returns:
Modified ``model``.
"""
for name, child in model.named_children():
if child.__class__ in policies:
replaced_module = policies[child.__class__][0](child,
policies[child.__class__][-1],
layer_id,
prefix=prefix + name,
state_dict=state_dict)
setattr(model, name, replaced_module)
if isinstance(model, PipelineModule):
assert hasattr(model, 'forward_funcs'),\
"we require pipe-module to have the list of fwd_functions"
model.forward_funcs[model.fwd_map[name]] = replaced_module
layer_id += 1
else:
checking_key = prefix + name + '.'
if Loading.is_load_module(child) and state_dict is not None:
if any(checking_key in item for item in state_dict):
Loading.load(
child,
state_dict,
checking_key,
)
else:
continue
if len(child._buffers) != 0 and state_dict is not None:
Loading.load_buffer(child, state_dict, checking_key)
_, layer_id = _replace_module(child,
policies,
prefix if level_id == 0 and skip_level_0_prefix(model, state_dict) else \
prefix + name + '.',
layer_id=layer_id,
level_id=level_id + 1,
state_dict=state_dict)
# Add the reset_cache func to the model, so that it can be called in the beginning of text-generation.
model.reset_cache = transformer_inference.DeepSpeedTransformerInference.reset_cache
return model, layer_id