peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/moe
/mappings.py
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
# The file has been adapted from the following Megatron-LM file: | |
# https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/mpu/mappings.py | |
# Git commit hash: 9dc3c42a84aa656f583703cf8b6b4f79f712b796 | |
# We retain the following copyright from the original files: | |
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import torch | |
import deepspeed | |
from deepspeed.utils.bwc import (bwc_tensor_model_parallel_world_size, bwc_tensor_model_parallel_rank, | |
bwc_tensor_model_parallel_group) | |
def _gather_tokens(input_, dim=0): | |
"""Gather tensors and concatenate them along a dimension""" | |
mpu = deepspeed.utils.groups.mpu | |
input_ = input_.contiguous() | |
# Size and dimension. | |
rank = bwc_tensor_model_parallel_rank(mpu) | |
tensor_list = [torch.empty_like(input_) for _ in range(bwc_tensor_model_parallel_world_size(mpu))] | |
tensor_list[rank] = input_ | |
deepspeed.comm.all_gather(tensor_list, input_, group=bwc_tensor_model_parallel_group(mpu)) | |
# Note: torch.cat already creates a contiguous tensor. | |
output = torch.cat(tensor_list, dim=dim).contiguous() | |
return output | |
def _drop_tokens(input_, dim=0): | |
"""Divide a tensor among the tensor parallel ranks""" | |
mpu = deepspeed.utils.groups.mpu | |
total_chunks = bwc_tensor_model_parallel_world_size(mpu) | |
this_chunk = bwc_tensor_model_parallel_rank(mpu) | |
assert input_.shape[ | |
dim] % total_chunks == 0, f"input dimension {dim} ({input_.shape[dim]}) is not divisible by tensor parallel world size ({total_chunks})" | |
chunk_size = input_.shape[dim] // total_chunks | |
return torch.narrow(input_, dim, this_chunk * chunk_size, chunk_size) | |
class _GatherTokens(torch.autograd.Function): | |
"""All gather tokens among the tensor parallel ranks""" | |
def symbolic(graph, input_, dim): | |
return _gather_tokens(input_, dim) | |
def forward(ctx, input_, dim): | |
ctx.dim = dim | |
return _gather_tokens(input_, dim) | |
def backward(ctx, grad_output): | |
return _drop_tokens(grad_output, ctx.dim), None | |
class _DropTokens(torch.autograd.Function): | |
"Divide tokens equally among the tensor parallel ranks" | |
def symbolic(graph, input_, dim): | |
return _drop_tokens(input_, dim) | |
def forward(ctx, input_, dim): | |
ctx.dim = dim | |
return _drop_tokens(input_, dim) | |
def backward(ctx, input_): | |
return _gather_tokens(input_, ctx.dim), None | |
def gather_tokens(input_, dim=0): | |
mpu = deepspeed.utils.groups.mpu | |
if mpu is None or bwc_tensor_model_parallel_world_size(mpu) == 1: | |
# no tensor parallelism for non-experts | |
return input_ | |
return _GatherTokens.apply(input_, dim) | |
def drop_tokens(input_, dim=0): | |
mpu = deepspeed.utils.groups.mpu | |
if mpu is None or bwc_tensor_model_parallel_world_size(mpu) == 1: | |
# no tensor parallelism for non-experts | |
return input_ | |
return _DropTokens.apply(input_, dim) | |