applied-ai-018's picture
Add files using upload-large-folder tool
7a67bfc verified
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
from collections import defaultdict
from typing import Any, Dict, List, Set, Tuple, Union, cast
import torch
from torch import nn
from .layer import MoE
def has_moe_layers(m: nn.Module) -> Tuple[bool, int]:
has_moe = False
num_experts = 0
for module in m.modules():
if isinstance(module, MoE):
has_moe = True
num_experts = module.num_experts
break
return has_moe, num_experts
def is_moe_param(param: torch.Tensor) -> bool:
if hasattr(param, "allreduce") and not param.allreduce:
return True
return False
def split_params_into_shared_and_expert_params(
params: List[torch.nn.Parameter]) -> Tuple[List[torch.nn.Parameter], List[torch.nn.Parameter]]:
shared_params: List[nn.Parameter] = []
expert_params: List[nn.Parameter] = []
for p in params:
if is_moe_param(p):
expert_params.append(p)
else:
shared_params.append(p)
return shared_params, expert_params
def split_params_grads_into_shared_and_expert_params(
group: List[torch.nn.Parameter]) -> Tuple[List[torch.Tensor], List[torch.Tensor]]:
"""Split grad of parameters into grads of non-expert params
and grads of expert params. This is useful while computing
grad-norms for clipping and overflow detection
group (List[torch.nn.Parameter]):
Args:
The group of parameters to split
Returns:
Tuple[List[torch.Tensor], List[torch.Tensor]]:
list of gradients for non MoE params, list of gradients of MoE params
"""
expert_grads: List[torch.Tensor] = []
shared_grads: List[torch.Tensor] = []
for p in group:
if p.grad is not None:
if is_moe_param(p):
expert_grads.append(p.grad.to(p.dtype))
else:
shared_grads.append(p.grad.to(p.dtype))
return shared_grads, expert_grads
def split_params_into_different_moe_groups_for_optimizer(
param_groups: Union[Dict[str, Any], Tuple[Dict[str, Any], ...], List[Dict[str, Any]]],
max_group_size: Union[int, float] = 178956971) -> List[Dict[str, Any]]:
"""Split parameters into different MoE groups for optimizer
Args:
param_groups (Union[Dict[str, Any], Tuple[Dict[str, Any], ...], List[Dict[str, Any]]])
The list of parameter groups to split
Returns:
List[Dict[str, Any]]:
list of MoE/non-MoE groups for optimizer
"""
if isinstance(param_groups, tuple):
param_groups = list(param_groups) # Tuple cannot be modified
elif isinstance(param_groups, dict):
param_groups = [param_groups]
elif not isinstance(param_groups, list):
raise ValueError(f"Unknown param group type of {type(param_groups)}")
# gather all data parallel group names
data_parallel_group_names: Set[str] = set()
for param_group in param_groups:
for param in cast(List[nn.Parameter], param_group["params"]):
if is_moe_param(param):
data_parallel_group_names.add(param.group_name)
# Create the param MoE groups, leave param assign to next step
group_moe: Dict[str, Dict[str, Dict[str, Any]]] = defaultdict(lambda: defaultdict(dict))
for param_group in param_groups:
for key in data_parallel_group_names:
group_moe[param_group['name']][key] = {
**param_group,
'name': key,
'moe': True,
'params': [],
}
# Assign param
for param_group in param_groups:
new_params: List[nn.Parameter] = []
for param in cast(List[nn.Parameter], param_group['params']):
if is_moe_param(param):
group_moe[param_group['name']][param.group_name]['params'].append(param)
else:
new_params.append(param)
param_group['params'] = new_params
# Flatten the moe groups
if max_group_size is not None:
for moe_group in group_moe.values():
for param_group in moe_group.values():
cur_group: List[nn.Parameter] = []
all_groups: List[List[nn.Parameter]] = []
size_of_cur_group = 0
for param in cast(List[nn.Parameter], param_group['params']):
if size_of_cur_group + param.numel() <= max_group_size:
cur_group.append(param)
size_of_cur_group += param.numel()
else:
all_groups.append(cur_group)
cur_group = [param]
size_of_cur_group = param.numel()
if cur_group:
all_groups.append(cur_group)
for group in all_groups:
param_groups.append({**param_group, 'params': group})
else:
for moe_group in group_moe.values():
for param_group in moe_group.values():
param_groups.append(param_group)
return param_groups
def is_moe_param_group(param_group):
return param_group.get('moe', False)
def configure_moe_param_groups(model_parameters: List):
assert isinstance(model_parameters, list), "model_parameters must be a list"
for p in model_parameters:
# match torch.optim.Optimizer expectations,
# see: https://github.com/pytorch/pytorch/blob/2ffab6e663b9c6951048b8c8ba82d2cc5ca5c2fc/torch/optim/optimizer.py#L270-L272
if not isinstance(p, (torch.Tensor, dict)):
raise TypeError("param argument that would be given to the optimizer should be "
f"an iterable of Tensors or dicts, but got {type(p)}")
# peak at the first element to determine how to proceed
first = model_parameters[0]
# Case 1: model_parameters is a list of torch.nn.Parameter
# -> need to create moe compatible param groups
if isinstance(first, torch.nn.Parameter):
param_group = {'params': model_parameters, 'name': 'dense-params'}
return split_params_into_different_moe_groups_for_optimizer(param_group)
# Case 2: model_parameters is a list of param groups List[dict]
# -> moe compatible param groups might already exist, if not create them
elif isinstance(first, dict):
#there are no moe groups created
if not any(['moe' in param_group for param_group in model_parameters]):
return split_params_into_different_moe_groups_for_optimizer(model_parameters)
else:
# moe groups exist, nothing to do
return model_parameters