peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/ops
/adam
/cpu_adam.py
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
import torch | |
from cpuinfo import get_cpu_info | |
from deepspeed.utils import logger | |
from deepspeed.utils.logging import should_log_le | |
from deepspeed.ops.op_builder import CPUAdamBuilder | |
class DeepSpeedCPUAdam(torch.optim.Optimizer): | |
optimizer_id = 0 | |
def __init__(self, | |
model_params, | |
lr=1e-3, | |
bias_correction=True, | |
betas=(0.9, 0.999), | |
eps=1e-8, | |
weight_decay=0, | |
amsgrad=False, | |
adamw_mode=True, | |
fp32_optimizer_states=True): | |
"""Fast vectorized implementation of two variations of Adam optimizer on CPU: | |
* Adam: A Method for Stochastic Optimization: (https://arxiv.org/abs/1412.6980); | |
* AdamW: Fixing Weight Decay Regularization in Adam (https://arxiv.org/abs/1711.05101) | |
DeepSpeed CPU Adam(W) provides between 5x to 7x speedup over torch.optim.adam(W). | |
In order to apply this optimizer, the model requires to have its master parameter (in FP32) | |
reside on the CPU memory. | |
To train on a heterogeneous system, such as coordinating CPU and GPU, DeepSpeed offers | |
the ZeRO-Offload technology which efficiently offloads the optimizer states into CPU memory, | |
with minimal impact on training throughput. DeepSpeedCPUAdam plays an important role to minimize | |
the overhead of the optimizer's latency on CPU. Please refer to ZeRO-Offload tutorial | |
(https://www.deepspeed.ai/tutorials/zero-offload/) for more information on how to enable this technology. | |
For calling step function, there are two options available: (1) update optimizer's states and (2) update | |
optimizer's states and copy the parameters back to GPU at the same time. We have seen that the second | |
option can bring 30% higher throughput than the doing the copy separately using option one. | |
.. note:: | |
We recommend using our `config | |
<https://www.deepspeed.ai/docs/config-json/#optimizer-parameters>`_ | |
to allow :meth:`deepspeed.initialize` to build this optimizer | |
for you. | |
Arguments: | |
model_params (iterable): iterable of parameters to optimize or dicts defining | |
parameter groups. | |
lr (float, optional): learning rate. (default: 1e-3) | |
betas (Tuple[float, float], optional): coefficients used for computing | |
running averages of gradient and its square. (default: (0.9, 0.999)) | |
eps (float, optional): term added to the denominator to improve | |
numerical stability. (default: 1e-8) | |
weight_decay (float, optional): weight decay (L2 penalty) (default: 0) | |
amsgrad (boolean, optional): whether to use the AMSGrad variant of this | |
algorithm from the paper `On the Convergence of Adam and Beyond`_ | |
(default: False) NOT SUPPORTED in DeepSpeed CPUAdam! | |
adamw_mode: select between Adam and AdamW implementations (default: AdamW) | |
fp32_optimizer_states: creates momentum and variance in full precision regardless of | |
the precision of the parameters (default: True) | |
""" | |
default_args = dict(lr=lr, | |
betas=betas, | |
eps=eps, | |
weight_decay=weight_decay, | |
bias_correction=bias_correction, | |
amsgrad=amsgrad) | |
super(DeepSpeedCPUAdam, self).__init__(model_params, default_args) | |
cpu_info = get_cpu_info() | |
self.cpu_vendor = cpu_info["vendor_id_raw"].lower() if "vendor_id_raw" in cpu_info else "unknown" | |
if "amd" in self.cpu_vendor: | |
for group_id, group in enumerate(self.param_groups): | |
for param_id, p in enumerate(group['params']): | |
if p.dtype == torch.half: | |
logger.warning("FP16 params for CPUAdam may not work on AMD CPUs") | |
break | |
else: | |
continue | |
break | |
self.opt_id = DeepSpeedCPUAdam.optimizer_id | |
DeepSpeedCPUAdam.optimizer_id = DeepSpeedCPUAdam.optimizer_id + 1 | |
self.adam_w_mode = adamw_mode | |
self.fp32_optimizer_states = fp32_optimizer_states | |
self.ds_opt_adam = CPUAdamBuilder().load() | |
self.ds_opt_adam.create_adam(self.opt_id, lr, betas[0], betas[1], eps, weight_decay, adamw_mode, | |
should_log_le("info")) | |
def __del__(self): | |
# need to destroy the C++ object explicitly to avoid a memory leak when deepspeed.initialize | |
# is used multiple times in the same process (notebook or pytest worker) | |
self.ds_opt_adam.destroy_adam(self.opt_id) | |
def __setstate__(self, state): | |
super(DeepSpeedCPUAdam, self).__setstate__(state) | |
for group in self.param_groups: | |
group.setdefault('amsgrad', False) | |
def step(self, closure=None, fp16_param_groups=None): | |
"""Update the model parameters. | |
.. note:: | |
This method will be called internally by ZeRO-Offload. DeepSpeed | |
users should still use ``engine.step()`` as shown in the | |
`Getting Started | |
<https://www.deepspeed.ai/getting-started/#training>`_ guide. | |
Args: | |
closure (callable, optional): closure to compute the loss. | |
Defaults to ``None``. | |
fp16_param_groups: FP16 GPU parameters to update. Performing the | |
copy here reduces communication time. Defaults to ``None``. | |
Returns: | |
loss: if ``closure`` is provided. Otherwise ``None``. | |
""" | |
loss = None | |
if closure is not None: | |
with torch.enable_grad(): | |
loss = closure() | |
# intended device for step | |
device = torch.device('cpu') | |
# converting the fp16 params to a group of parameter | |
if type(fp16_param_groups) is list: | |
if type(fp16_param_groups[0]) is not list: | |
fp16_param_groups = [fp16_param_groups] | |
elif fp16_param_groups is not None: | |
fp16_param_groups = [[fp16_param_groups]] | |
for group_id, group in enumerate(self.param_groups): | |
for param_id, p in enumerate(group['params']): | |
if p.grad is None: | |
continue | |
assert p.device == device, f"CPUAdam param is on {p.device} and must be 'cpu', make " \ | |
"sure you enabled 'offload_optimizer': 'cpu' in your ZeRO config." | |
state = self.state[p] | |
# State initialization | |
if len(state) == 0: | |
#print(f'group {group_id} param {param_id} = {p.numel()}') | |
state['step'] = 0 | |
#use full precision by default unless self.fp32_optimizer_states is off | |
state_dtype = torch.float if self.fp32_optimizer_states else p.dtype | |
# gradient momentums | |
state['exp_avg'] = torch.zeros_like(p.data, dtype=state_dtype, device=device) | |
#memory_format=torch.preserve_format) | |
# gradient variances | |
state['exp_avg_sq'] = torch.zeros_like(p.data, dtype=state_dtype, device=device) | |
#memory_format=torch.preserve_format) | |
state['step'] += 1 | |
beta1, beta2 = group['betas'] | |
if fp16_param_groups is not None: | |
self.ds_opt_adam.adam_update_copy(self.opt_id, state['step'], group['lr'], beta1, beta2, | |
group['eps'], group['weight_decay'], group['bias_correction'], | |
p.data, p.grad.data, state['exp_avg'], state['exp_avg_sq'], | |
fp16_param_groups[group_id][param_id].data) | |
else: | |
self.ds_opt_adam.adam_update(self.opt_id, state['step'], group['lr'], beta1, beta2, group['eps'], | |
group['weight_decay'], group['bias_correction'], p.data, p.grad.data, | |
state['exp_avg'], state['exp_avg_sq']) | |
return loss | |