applied-ai-018's picture
Add files using upload-large-folder tool
359a939 verified
// Copyright (c) Microsoft Corporation.
// SPDX-License-Identifier: Apache-2.0
// DeepSpeed Team
#pragma once
#include <ATen/cuda/CUDAContext.h>
#include <cuda_runtime_api.h>
#include <cassert>
#include <iostream>
#include <vector>
#include "cublas_v2.h"
#include "cuda.h"
#include "curand.h"
#include "gemm_test.h"
#define WARP_SIZE 32
#define CUDA_CHECK(callstr) \
{ \
cudaError_t error_code = callstr; \
if (error_code != cudaSuccess) { \
std::cerr << "CUDA error " << error_code << " at " << __FILE__ << ":" << __LINE__; \
assert(0); \
} \
}
#define CUDA_1D_KERNEL_LOOP(i, n) \
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); i += blockDim.x * gridDim.x)
#define CUDA_2D_KERNEL_LOOP(i, n, j, m) \
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); i += blockDim.x * gridDim.x) \
for (size_t j = blockIdx.y * blockDim.y + threadIdx.y; j < (m); j += blockDim.y * gridDim.y)
#define DS_CUDA_NUM_THREADS 512
#define DS_MAXIMUM_NUM_BLOCKS 262144
inline int DS_GET_BLOCKS(const int N)
{
return (std::max)(
(std::min)((N + DS_CUDA_NUM_THREADS - 1) / DS_CUDA_NUM_THREADS, DS_MAXIMUM_NUM_BLOCKS),
// Use at least 1 block, since CUDA does not allow empty block
1);
}
class TrainingContext {
public:
TrainingContext() : _workspace(nullptr), _seed(42), _curr_offset(0)
{
curandCreateGenerator(&_gen, CURAND_RNG_PSEUDO_DEFAULT);
curandSetPseudoRandomGeneratorSeed(_gen, 123);
cublasStatus_t stat = cublasCreate(&_cublasHandle);
if (stat != CUBLAS_STATUS_SUCCESS) {
// It would be nice to use cublasGetStatusName and
// cublasGetStatusString, but they were only added in CUDA 11.4.2.
auto message = std::string("Failed to create cublas handle: cublasStatus_t was ") +
std::to_string(stat);
std::cerr << message << std::endl;
throw std::runtime_error(message);
}
}
virtual ~TrainingContext()
{
cublasDestroy(_cublasHandle);
cudaFree(_workspace);
}
static TrainingContext& Instance()
{
static TrainingContext _ctx;
return _ctx;
}
void SetWorkSpace(void* workspace)
{
if (!workspace) { throw std::runtime_error("Workspace is null."); }
_workspace = workspace;
}
void* GetWorkSpace() { return _workspace; }
curandGenerator_t& GetRandGenerator() { return _gen; }
cudaStream_t GetCurrentStream()
{
// get current pytorch stream.
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
return stream;
}
cudaStream_t GetNewStream() { return at::cuda::getStreamFromPool(); }
cublasHandle_t GetCublasHandle() { return _cublasHandle; }
std::pair<uint64_t, uint64_t> IncrementOffset(uint64_t offset_inc)
{
uint64_t offset = _curr_offset;
_curr_offset += offset_inc;
return std::pair<uint64_t, uint64_t>(_seed, offset);
}
void SetSeed(uint64_t new_seed) { _seed = new_seed; }
void TestGemmFP16(bool test_gemm, int batch_size, int seq_len, int head_num, int size_per_head)
{
// avoid rerun.
if (_gemm_algos.size() > 0) return;
if (test_gemm) {
cublasHandle_t handle = GetCublasHandle();
std::unique_ptr<GemmTest<__half>> test_qkv_fw(
new GemmTest<__half>(batch_size * seq_len, // M
head_num * size_per_head, // N
head_num * size_per_head, // K
CUBLAS_OP_T,
CUBLAS_OP_N,
handle));
std::unique_ptr<GemmTest<__half>> test_inter(
new GemmTest<__half>(batch_size * seq_len, // M
4 * head_num * size_per_head, // N
head_num * size_per_head, // K
CUBLAS_OP_T,
CUBLAS_OP_N,
handle));
std::unique_ptr<GemmTest<__half>> test_output(
new GemmTest<__half>(batch_size * seq_len, // M
head_num * size_per_head, // N
4 * head_num * size_per_head, // K
CUBLAS_OP_T,
CUBLAS_OP_N,
handle));
std::unique_ptr<StridedGemmTest<__half>> test_attn_scores(
new StridedGemmTest<__half>(batch_size * head_num, // batch
seq_len, // M
seq_len, // N
size_per_head, // K
CUBLAS_OP_T,
CUBLAS_OP_N,
handle));
std::unique_ptr<StridedGemmTest<__half>> test_attn_context(
new StridedGemmTest<__half>(batch_size * head_num, // batch
size_per_head, // M
seq_len, // N
seq_len, // K
CUBLAS_OP_N,
CUBLAS_OP_N,
handle));
_gemm_algos.push_back(test_qkv_fw->TestAlgo(100));
_gemm_algos.push_back(test_inter->TestAlgo(100));
_gemm_algos.push_back(test_output->TestAlgo(100));
_gemm_algos.push_back(test_attn_scores->TestAlgo(100));
_gemm_algos.push_back(test_attn_context->TestAlgo(100));
} else {
// Use default algo.
_gemm_algos.push_back(std::array<int, 3>({99, 99, 99}));
_gemm_algos.push_back(std::array<int, 3>({99, 99, 99}));
_gemm_algos.push_back(std::array<int, 3>({99, 99, 99}));
_gemm_algos.push_back(std::array<int, 3>({99, 99, 99}));
_gemm_algos.push_back(std::array<int, 3>({99, 99, 99}));
}
}
const std::vector<std::array<int, 3>>& GetGemmAlgos() const { return _gemm_algos; }
private:
curandGenerator_t _gen;
cublasHandle_t _cublasHandle;
void* _workspace;
uint64_t _seed;
uint64_t _curr_offset;
std::vector<std::array<int, 3>> _gemm_algos;
};