applied-ai-018's picture
Add files using upload-large-folder tool
359a939 verified
// Copyright (c) Microsoft Corporation.
// SPDX-License-Identifier: Apache-2.0
// DeepSpeed Team
#include "ds_kernel_utils.h"
#include "memory_access_utils.h"
#include "quantization.h"
#include "quantization_utils.h"
#include "reduction_utils.h"
namespace cg = cooperative_groups;
/*
Pure quantization kernel with no fusion.
*/
template <int q_bits,
quantize::Type quant_type,
int UNROLL,
int internal_unroll,
int threads_per_group,
int max_threads>
__global__ void cached_quantization(int8_t* __restrict__ output_data,
float* __restrict__ params,
const __half* __restrict__ input_data,
int groups,
int elems_per_group)
{
cg::thread_block tb = cg::this_thread_block();
cg::thread_block_tile<hw_warp_size> warp = cg::tiled_partition<hw_warp_size>(tb);
// Indexing offsets
const int block_offset =
(tb.group_index().x * (max_threads / threads_per_group) * elems_per_group) +
(tb.thread_index().y * elems_per_group);
const int elem_offset = tb.thread_index().x * quantize::h_per_load;
const int base_offset = block_offset + elem_offset;
const int stride = tb.size() * quantize::h_per_load;
const __half* input_base = input_data + base_offset; //..
__half2 local_buffer[UNROLL * internal_unroll * quantize::h2_per_load];
#pragma unroll
for (int i = 0; i < UNROLL; i++) {
// Convenience helper, should resolve to register indices and not realize.
__half2* iteration_buffer = local_buffer + i * internal_unroll * quantize::h2_per_load;
#pragma unroll
for (int j = 0; j < internal_unroll; j++) {
const int iteration = i * internal_unroll + j;
mem_access::load_global<quantize::granularity>(
iteration_buffer + j * quantize::h2_per_load,
input_base + iteration * stride,
elem_offset + iteration * stride < elems_per_group);
}
}
quantize::
local_array<quant_type, q_bits, UNROLL * internal_unroll, threads_per_group, max_threads>(
local_buffer, params, output_data, elems_per_group, groups);
}
/********* Launcher methods ***********/
#define LAUNCH_CACHED_QUANT_CALL(q_bits, quant_type) \
cached_quantization<q_bits, \
quant_type, \
unroll_factor, \
internal_unroll_l, \
threads_per_group, \
max_threads> \
<<<grid, block, 0, stream>>>(output_data, params, input_data, groups, elems_per_group);
#define LAUNCH_CACHED_QUANT( \
q_bits, quant_type, unroll_factor_in, internal_unroll_in, threads_per_group_in) \
const int unroll_factor = unroll_factor_in; \
const int internal_unroll_l = internal_unroll_in; \
const int threads_per_group = threads_per_group_in; \
if (q_bits == 4) { \
if (quant_type == quantize::Type::Asymmetric) { \
LAUNCH_CACHED_QUANT_CALL(4, quantize::Type::Asymmetric) \
} else { \
LAUNCH_CACHED_QUANT_CALL(4, quantize::Type::Symmetric) \
} \
} else { \
if (quant_type == quantize::Type::Asymmetric) { \
LAUNCH_CACHED_QUANT_CALL(8, quantize::Type::Asymmetric) \
} else { \
LAUNCH_CACHED_QUANT_CALL(8, quantize::Type::Symmetric) \
} \
}
void launch_quant(int8_t* output_data,
float* params,
const __half* input_data,
const int groups,
const int elems_per_group,
const int num_bits,
const quantize::Type quant_type,
cudaStream_t stream)
{
constexpr int max_threads = 256;
constexpr int internal_unroll = 2;
const bool is_subblock_schedule = (elems_per_group <= 128) ? true : false;
const int h_per_step = is_subblock_schedule ? quantize::h_per_load
: quantize::h_per_load * internal_unroll;
// Scheduling concern: may be slightly faster for some inputs to assign multiple stages of
// warp-sized blocks rather than stepping up to 64/96 threads
const int one_step_threads = next_pow2((elems_per_group + h_per_step - 1) / h_per_step);
const int threads_per_group = (one_step_threads < max_threads) ? one_step_threads : max_threads;
const int groups_per_block =
is_subblock_schedule ? (max_threads + threads_per_group - 1) / threads_per_group : 1;
const int groups_launch = (groups_per_block + groups - 1) / groups_per_block;
dim3 block(threads_per_group, groups_per_block);
dim3 grid(groups_launch);
const int elems_per_step = threads_per_group * h_per_step;
const int external_unroll = (elems_per_group + elems_per_step - 1) / elems_per_step;
if (is_subblock_schedule) {
// <=128
if (threads_per_group == 1) {
LAUNCH_CACHED_QUANT(num_bits, quant_type, 1, 1, 1);
} else if (threads_per_group == 2) {
LAUNCH_CACHED_QUANT(num_bits, quant_type, 1, 1, 2);
} else if (threads_per_group == 4) {
LAUNCH_CACHED_QUANT(num_bits, quant_type, 1, 1, 4);
} else if (threads_per_group == 8) {
LAUNCH_CACHED_QUANT(num_bits, quant_type, 1, 1, 8);
} else if (threads_per_group == 16) {
LAUNCH_CACHED_QUANT(num_bits, quant_type, 1, 1, 16);
}
} else if (external_unroll == 1) {
// 129 - 4096 elems
// (this can launch with 1-7 warps as well)
LAUNCH_CACHED_QUANT(num_bits, quant_type, 1, internal_unroll, max_threads);
} else if (external_unroll == 2) {
// 4097 - 8192 elems
LAUNCH_CACHED_QUANT(num_bits, quant_type, 2, internal_unroll, max_threads);
} else if (external_unroll == 3) {
// 8193 - 12288 elems
LAUNCH_CACHED_QUANT(num_bits, quant_type, 3, internal_unroll, max_threads);
} else if (external_unroll == 4) {
// 12289 - 16384 elems
LAUNCH_CACHED_QUANT(num_bits, quant_type, 4, internal_unroll, max_threads);
}
}