peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/ops
/fp_quantizer
/quantize.py
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
import torch | |
import abc | |
from abc import ABC | |
from deepspeed.ops.op_builder import FPQuantizerBuilder | |
fp_quant_module = None | |
class Quantizer(ABC): | |
""" | |
Abstract Quantizer class that implmenents quantize/dequantize methods. | |
Arguments: | |
group_size (int, optional): number of values or elements that are grouped | |
together for the quantization process. | |
""" | |
def __init__(self, group_size=512) -> None: | |
self.group_size = group_size | |
def quantize(self, | |
input, | |
q_bits=8, | |
q_mantisa_bits=3, | |
stochastic_mode=False, | |
return_meta_tensor=False) -> torch.Tensor: | |
... | |
def dequantize(self, input_q, fp_out=None, q_bits=8, q_mantisa_bits=3, scale=None) -> torch.Tensor: | |
... | |
class FP_Quantize(Quantizer): | |
def __init__(self, group_size=512) -> None: | |
global fp_quant_module | |
super().__init__(group_size=group_size) | |
if fp_quant_module is None: | |
fp_quant_module = FPQuantizerBuilder().load() | |
self.orig_dtype = None | |
def quantize(self, | |
input, | |
q_bits=8, | |
q_mantisa_bits=3, | |
stochastic_mode=False, | |
return_meta_tensor=False) -> torch.Tensor: | |
assert input.dtype == torch.bfloat16, "only support bf16 for now" | |
if return_meta_tensor: | |
assert q_bits == 8, "meta tensor is only supported with q_bit=8" | |
self.orig_dtype = input.dtype | |
self.orig_shape = input.shape | |
if q_bits == 8: | |
pass | |
elif q_bits == 12: | |
q_mantisa_bits = 4 | |
elif q_bits == 6: | |
q_mantisa_bits = 2 | |
elif q_bits == 4: | |
q_mantisa_bits = 1 | |
else: | |
assert (0), \ | |
f"Missing {q_bits}-quantization, please add the template arguments for the kernel to support this precision!" | |
out = fp_quant_module.quantize(input, self.group_size, stochastic_mode, q_bits, q_mantisa_bits) | |
if return_meta_tensor: | |
data, scale = out.split(self.group_size, dim=-1) | |
return data.contiguous().reshape(input.shape), scale.contiguous() | |
return out | |
def dequantize(self, input_q, fp_out=None, q_bits=8, q_mantisa_bits=3, scale=None) -> torch.Tensor: | |
assert (self.orig_dtype is not None), \ | |
"[De-quantization Error]: you need to call quantize before dequantizing!" | |
fp_out = torch.empty(self.orig_shape, dtype=self.orig_dtype, | |
device=input_q.device) if fp_out is None else fp_out | |
if q_bits == 8: | |
pass | |
elif q_bits == 12: | |
q_mantisa_bits = 4 | |
elif q_bits == 6: | |
q_mantisa_bits = 2 | |
elif q_bits == 4: | |
q_mantisa_bits = 1 | |
else: | |
assert (0), \ | |
f"Missing {q_bits}-dequantization, please add the template arguments for the kernel to support this precision!" | |
if scale is not None: | |
assert input_q.numel() == fp_out.numel(), \ | |
f'[De-quantization Error]: quantized data should have the same size as original tensor when scale is not None!' | |
input_q = torch.cat([input_q.reshape(-1, self.group_size), scale], dim=-1).contiguous() | |
fp_quant_module.dequantize(fp_out, input_q, self.group_size, q_mantisa_bits, q_bits - q_mantisa_bits - 1) | |
return fp_out | |
def selective_dequantize(self, | |
input_q, | |
indexes, | |
fp_out=None, | |
q_bits=8, | |
q_mantisa_bits=3, | |
scale=None) -> torch.Tensor: | |
assert (not hasattr(self, 'orig_shape') or len(self.orig_shape) == 3), \ | |
"Selective-Dequantization works on 3d tensor only! Please reshape the tensor before calling dequantize function." | |
assert (self.orig_dtype is not None), \ | |
"[De-quantization Error]: you need to call quantize before dequantizing!" | |
fp_out = torch.empty( | |
(indexes.shape[0], | |
*self.orig_shape[1:]), dtype=self.orig_dtype, device=input_q.device) if fp_out is None else fp_out | |
if q_bits == 8: | |
pass | |
elif q_bits == 12: | |
q_mantisa_bits = 4 | |
elif q_bits == 6: | |
q_mantisa_bits = 2 | |
elif q_bits == 4: | |
q_mantisa_bits = 1 | |
else: | |
assert (0), \ | |
f"Missing {q_bits}-dequantization, please add the template arguments for the kernel to support this precision!" | |
if scale is not None: | |
assert input_q.numel() == fp_out.numel(), \ | |
f'[De-quantization Error]: quantized data should have the same size as original tensor when scale is not None!' | |
input_q = torch.cat([input_q.reshape(-1, self.group_size), scale], dim=-1).contiguous() | |
fp_quant_module.selective_dequantize(fp_out, input_q, indexes, self.group_size, q_mantisa_bits, | |
q_bits - q_mantisa_bits - 1) | |
return fp_out | |