applied-ai-018's picture
Add files using upload-large-folder tool
179036e verified
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
import torch
from cpuinfo import get_cpu_info
from deepspeed.utils import logger
from deepspeed.utils.logging import should_log_le
from deepspeed.ops.op_builder import CPULionBuilder
class DeepSpeedCPULion(torch.optim.Optimizer):
optimizer_id = 0
def __init__(self, model_params, lr=1e-3, betas=(0.9, 0.999), weight_decay=0, fp32_optimizer_states=True):
"""Fast vectorized implementation of Lion optimizer on CPU:
See Symbolic Discovery of Optimization Algorithms (https://doi.org/10.48550/arXiv.2302.06675).
.. note::
We recommend using our `config
<https://www.deepspeed.ai/docs/config-json/#optimizer-parameters>`_
to allow :meth:`deepspeed.initialize` to build this optimizer
for you.
Arguments:
model_params (iterable): iterable of parameters to optimize or dicts defining
parameter groups.
lr (float, optional): learning rate. (default: 1e-3)
betas (Tuple[float, float], optional): coefficients used for computing
running averages of gradient and its square. (default: (0.9, 0.999))
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
full_precision_optimizer_states: creates momentum and variance in full precision regardless of
the precision of the parameters (default: True)
"""
default_args = dict(lr=lr, betas=betas, weight_decay=weight_decay)
super(DeepSpeedCPULion, self).__init__(model_params, default_args)
cpu_info = get_cpu_info()
self.cpu_vendor = cpu_info["vendor_id_raw"].lower() if "vendor_id_raw" in cpu_info else "unknown"
if "amd" in self.cpu_vendor:
for group_id, group in enumerate(self.param_groups):
for param_id, p in enumerate(group['params']):
if p.dtype == torch.half:
logger.warning("FP16 params for CPULion may not work on AMD CPUs")
break
else:
continue
break
self.opt_id = DeepSpeedCPULion.optimizer_id
DeepSpeedCPULion.optimizer_id = DeepSpeedCPULion.optimizer_id + 1
self.fp32_optimizer_states = fp32_optimizer_states
self.ds_opt_lion = CPULionBuilder().load()
self.ds_opt_lion.create_lion(self.opt_id, lr, betas[0], betas[1], weight_decay, should_log_le("info"))
def __del__(self):
# need to destroy the C++ object explicitly to avoid a memory leak when deepspeed.initialize
# is used multiple times in the same process (notebook or pytest worker)
self.ds_opt_lion.destroy_lion(self.opt_id)
def __setstate__(self, state):
super(DeepSpeedCPULion, self).__setstate__(state)
for group in self.param_groups:
group.setdefault('amsgrad', False)
@torch.no_grad()
def step(self, closure=None, fp16_param_groups=None):
"""Update the model parameters.
.. note::
This method will be called internally by ZeRO-Offload. DeepSpeed
users should still use ``engine.step()`` as shown in the
`Getting Started
<https://www.deepspeed.ai/getting-started/#training>`_ guide.
Args:
closure (callable, optional): closure to compute the loss.
Defaults to ``None``.
fp16_param_groups: FP16 GPU parameters to update. Performing the
copy here reduces communication time. Defaults to ``None``.
Returns:
loss: if ``closure`` is provided. Otherwise ``None``.
"""
loss = None
if closure is not None:
with torch.enable_grad():
loss = closure()
# intended device for step
device = torch.device('cpu')
# converting the fp16 params to a group of parameter
if type(fp16_param_groups) is list:
if type(fp16_param_groups[0]) is not list:
fp16_param_groups = [fp16_param_groups]
elif fp16_param_groups is not None:
fp16_param_groups = [[fp16_param_groups]]
for group_id, group in enumerate(self.param_groups):
for param_id, p in enumerate(group['params']):
if p.grad is None:
continue
assert p.device == device, f"CPULion param is on {p.device} and must be 'cpu', make " \
"sure you enabled 'offload_optimizer': 'cpu' in your ZeRO config."
state = self.state[p]
# State initialization
if len(state) == 0:
#print(f'group {group_id} param {param_id} = {p.numel()}')
state['step'] = 0
#use full precision by default unless self.fp32_optimizer_states is off
state_dtype = torch.float if self.fp32_optimizer_states else p.dtype
# gradient momentums
state['exp_avg'] = torch.zeros_like(p.data, dtype=state_dtype, device=device)
#memory_format=torch.preserve_format)
# gradient variances
state['exp_avg_sq'] = torch.zeros_like(p.data, dtype=state_dtype, device=device)
#memory_format=torch.preserve_format)
state['step'] += 1
beta1, beta2 = group['betas']
if fp16_param_groups is not None:
self.ds_opt_lion.lion_update_copy(self.opt_id, state['step'], group['lr'], beta1, beta2,
group['weight_decay'], p.data, p.grad.data, state['exp_avg'],
fp16_param_groups[group_id][param_id].data)
else:
self.ds_opt_lion.lion_update(self.opt_id, state['step'], group['lr'], beta1, beta2,
group['weight_decay'], p.data, p.grad.data, state['exp_avg'])
return loss