peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/ops
/op_builder
/builder.py
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
import os | |
import sys | |
import time | |
import importlib | |
from pathlib import Path | |
import subprocess | |
import shlex | |
import shutil | |
import tempfile | |
import distutils.ccompiler | |
import distutils.log | |
import distutils.sysconfig | |
from distutils.errors import CompileError, LinkError | |
from abc import ABC, abstractmethod | |
from typing import List | |
YELLOW = '\033[93m' | |
END = '\033[0m' | |
WARNING = f"{YELLOW} [WARNING] {END}" | |
DEFAULT_TORCH_EXTENSION_PATH = "/tmp/torch_extensions" | |
DEFAULT_COMPUTE_CAPABILITIES = "6.0;6.1;7.0" | |
try: | |
import torch | |
except ImportError: | |
print(f"{WARNING} unable to import torch, please install it if you want to pre-compile any deepspeed ops.") | |
else: | |
TORCH_MAJOR = int(torch.__version__.split('.')[0]) | |
TORCH_MINOR = int(torch.__version__.split('.')[1]) | |
class MissingCUDAException(Exception): | |
pass | |
class CUDAMismatchException(Exception): | |
pass | |
def installed_cuda_version(name=""): | |
import torch.utils.cpp_extension | |
cuda_home = torch.utils.cpp_extension.CUDA_HOME | |
if cuda_home is None: | |
raise MissingCUDAException("CUDA_HOME does not exist, unable to compile CUDA op(s)") | |
# Ensure there is not a cuda version mismatch between torch and nvcc compiler | |
output = subprocess.check_output([cuda_home + "/bin/nvcc", "-V"], universal_newlines=True) | |
output_split = output.split() | |
release_idx = output_split.index("release") | |
release = output_split[release_idx + 1].replace(',', '').split(".") | |
# Ignore patch versions, only look at major + minor | |
cuda_major, cuda_minor = release[:2] | |
return int(cuda_major), int(cuda_minor) | |
def get_default_compute_capabilities(): | |
compute_caps = DEFAULT_COMPUTE_CAPABILITIES | |
import torch.utils.cpp_extension | |
if torch.utils.cpp_extension.CUDA_HOME is not None and installed_cuda_version()[0] >= 11: | |
if installed_cuda_version()[0] == 11 and installed_cuda_version()[1] == 0: | |
# Special treatment of CUDA 11.0 because compute_86 is not supported. | |
compute_caps += ";8.0" | |
else: | |
compute_caps += ";8.0;8.6" | |
return compute_caps | |
# list compatible minor CUDA versions - so that for example pytorch built with cuda-11.0 can be used | |
# to build deepspeed and system-wide installed cuda 11.2 | |
cuda_minor_mismatch_ok = { | |
10: ["10.0", "10.1", "10.2"], | |
11: ["11.0", "11.1", "11.2", "11.3", "11.4", "11.5", "11.6", "11.7", "11.8"], | |
12: ["12.0", "12.1", "12.2", "12.3"], | |
} | |
def assert_no_cuda_mismatch(name=""): | |
cuda_major, cuda_minor = installed_cuda_version(name) | |
sys_cuda_version = f'{cuda_major}.{cuda_minor}' | |
torch_cuda_version = ".".join(torch.version.cuda.split('.')[:2]) | |
# This is a show-stopping error, should probably not proceed past this | |
if sys_cuda_version != torch_cuda_version: | |
if (cuda_major in cuda_minor_mismatch_ok and sys_cuda_version in cuda_minor_mismatch_ok[cuda_major] | |
and torch_cuda_version in cuda_minor_mismatch_ok[cuda_major]): | |
print(f"Installed CUDA version {sys_cuda_version} does not match the " | |
f"version torch was compiled with {torch.version.cuda} " | |
"but since the APIs are compatible, accepting this combination") | |
return True | |
elif os.getenv("DS_SKIP_CUDA_CHECK", "0") == "1": | |
print( | |
f"{WARNING} DeepSpeed Op Builder: Installed CUDA version {sys_cuda_version} does not match the " | |
f"version torch was compiled with {torch.version.cuda}." | |
"Detected `DS_SKIP_CUDA_CHECK=1`: Allowing this combination of CUDA, but it may result in unexpected behavior." | |
) | |
return True | |
raise CUDAMismatchException( | |
f">- DeepSpeed Op Builder: Installed CUDA version {sys_cuda_version} does not match the " | |
f"version torch was compiled with {torch.version.cuda}, unable to compile " | |
"cuda/cpp extensions without a matching cuda version.") | |
return True | |
class OpBuilder(ABC): | |
_rocm_version = None | |
_is_rocm_pytorch = None | |
_is_sycl_enabled = None | |
_loaded_ops = {} | |
def __init__(self, name): | |
self.name = name | |
self.jit_mode = False | |
self.build_for_cpu = False | |
self.enable_bf16 = False | |
self.error_log = None | |
def absolute_name(self): | |
''' | |
Returns absolute build path for cases where the op is pre-installed, e.g., deepspeed.ops.adam.cpu_adam | |
will be installed as something like: deepspeed/ops/adam/cpu_adam.so | |
''' | |
pass | |
def sources(self): | |
''' | |
Returns list of source files for your op, relative to root of deepspeed package (i.e., DeepSpeed/deepspeed) | |
''' | |
pass | |
def hipify_extension(self): | |
pass | |
def sycl_extension(self): | |
pass | |
def validate_torch_version(torch_info): | |
install_torch_version = torch_info['version'] | |
current_torch_version = ".".join(torch.__version__.split('.')[:2]) | |
if install_torch_version != current_torch_version: | |
raise RuntimeError("PyTorch version mismatch! DeepSpeed ops were compiled and installed " | |
"with a different version than what is being used at runtime. " | |
f"Please re-install DeepSpeed or switch torch versions. " | |
f"Install torch version={install_torch_version}, " | |
f"Runtime torch version={current_torch_version}") | |
def validate_torch_op_version(torch_info): | |
if not OpBuilder.is_rocm_pytorch(): | |
current_cuda_version = ".".join(torch.version.cuda.split('.')[:2]) | |
install_cuda_version = torch_info['cuda_version'] | |
if install_cuda_version != current_cuda_version: | |
raise RuntimeError("CUDA version mismatch! DeepSpeed ops were compiled and installed " | |
"with a different version than what is being used at runtime. " | |
f"Please re-install DeepSpeed or switch torch versions. " | |
f"Install CUDA version={install_cuda_version}, " | |
f"Runtime CUDA version={current_cuda_version}") | |
else: | |
current_hip_version = ".".join(torch.version.hip.split('.')[:2]) | |
install_hip_version = torch_info['hip_version'] | |
if install_hip_version != current_hip_version: | |
raise RuntimeError("HIP version mismatch! DeepSpeed ops were compiled and installed " | |
"with a different version than what is being used at runtime. " | |
f"Please re-install DeepSpeed or switch torch versions. " | |
f"Install HIP version={install_hip_version}, " | |
f"Runtime HIP version={current_hip_version}") | |
def is_rocm_pytorch(): | |
if OpBuilder._is_rocm_pytorch is not None: | |
return OpBuilder._is_rocm_pytorch | |
_is_rocm_pytorch = False | |
try: | |
import torch | |
except ImportError: | |
pass | |
else: | |
if TORCH_MAJOR > 1 or (TORCH_MAJOR == 1 and TORCH_MINOR >= 5): | |
_is_rocm_pytorch = hasattr(torch.version, 'hip') and torch.version.hip is not None | |
if _is_rocm_pytorch: | |
from torch.utils.cpp_extension import ROCM_HOME | |
_is_rocm_pytorch = ROCM_HOME is not None | |
OpBuilder._is_rocm_pytorch = _is_rocm_pytorch | |
return OpBuilder._is_rocm_pytorch | |
def is_sycl_enabled(): | |
if OpBuilder._is_sycl_enabled is not None: | |
return OpBuilder._is_sycl_enabled | |
_is_sycl_enabled = False | |
try: | |
result = subprocess.run(["c2s", "--version"], capture_output=True) | |
except: | |
pass | |
else: | |
_is_sycl_enabled = True | |
OpBuilder._is_sycl_enabled = _is_sycl_enabled | |
return OpBuilder._is_sycl_enabled | |
def installed_rocm_version(): | |
if OpBuilder._rocm_version: | |
return OpBuilder._rocm_version | |
ROCM_MAJOR = '0' | |
ROCM_MINOR = '0' | |
if OpBuilder.is_rocm_pytorch(): | |
from torch.utils.cpp_extension import ROCM_HOME | |
rocm_ver_file = Path(ROCM_HOME).joinpath(".info/version-dev") | |
if rocm_ver_file.is_file(): | |
with open(rocm_ver_file, 'r') as file: | |
ROCM_VERSION_DEV_RAW = file.read() | |
elif "rocm" in torch.__version__: | |
ROCM_VERSION_DEV_RAW = torch.__version__.split("rocm")[1] | |
else: | |
assert False, "Could not detect ROCm version" | |
assert ROCM_VERSION_DEV_RAW != "", "Could not detect ROCm version" | |
ROCM_MAJOR = ROCM_VERSION_DEV_RAW.split('.')[0] | |
ROCM_MINOR = ROCM_VERSION_DEV_RAW.split('.')[1] | |
OpBuilder._rocm_version = (int(ROCM_MAJOR), int(ROCM_MINOR)) | |
return OpBuilder._rocm_version | |
def include_paths(self): | |
''' | |
Returns list of include paths, relative to root of deepspeed package (i.e., DeepSpeed/deepspeed) | |
''' | |
return [] | |
def nvcc_args(self): | |
''' | |
Returns optional list of compiler flags to forward to nvcc when building CUDA sources | |
''' | |
return [] | |
def cxx_args(self): | |
''' | |
Returns optional list of compiler flags to forward to the build | |
''' | |
return [] | |
def is_compatible(self, verbose=True): | |
''' | |
Check if all non-python dependencies are satisfied to build this op | |
''' | |
return True | |
def extra_ldflags(self): | |
return [] | |
def has_function(self, funcname, libraries, verbose=False): | |
''' | |
Test for existence of a function within a tuple of libraries. | |
This is used as a smoke test to check whether a certain library is available. | |
As a test, this creates a simple C program that calls the specified function, | |
and then distutils is used to compile that program and link it with the specified libraries. | |
Returns True if both the compile and link are successful, False otherwise. | |
''' | |
tempdir = None # we create a temporary directory to hold various files | |
filestderr = None # handle to open file to which we redirect stderr | |
oldstderr = None # file descriptor for stderr | |
try: | |
# Echo compile and link commands that are used. | |
if verbose: | |
distutils.log.set_verbosity(1) | |
# Create a compiler object. | |
compiler = distutils.ccompiler.new_compiler(verbose=verbose) | |
# Configure compiler and linker to build according to Python install. | |
distutils.sysconfig.customize_compiler(compiler) | |
# Create a temporary directory to hold test files. | |
tempdir = tempfile.mkdtemp() | |
# Define a simple C program that calls the function in question | |
prog = "void %s(void); int main(int argc, char** argv) { %s(); return 0; }" % (funcname, funcname) | |
# Write the test program to a file. | |
filename = os.path.join(tempdir, 'test.c') | |
with open(filename, 'w') as f: | |
f.write(prog) | |
# Redirect stderr file descriptor to a file to silence compile/link warnings. | |
if not verbose: | |
filestderr = open(os.path.join(tempdir, 'stderr.txt'), 'w') | |
oldstderr = os.dup(sys.stderr.fileno()) | |
os.dup2(filestderr.fileno(), sys.stderr.fileno()) | |
# Workaround for behavior in distutils.ccompiler.CCompiler.object_filenames() | |
# Otherwise, a local directory will be used instead of tempdir | |
drive, driveless_filename = os.path.splitdrive(filename) | |
root_dir = driveless_filename[0] if os.path.isabs(driveless_filename) else '' | |
output_dir = os.path.join(drive, root_dir) | |
# Attempt to compile the C program into an object file. | |
cflags = shlex.split(os.environ.get('CFLAGS', "")) | |
objs = compiler.compile([filename], output_dir=output_dir, extra_preargs=self.strip_empty_entries(cflags)) | |
# Attempt to link the object file into an executable. | |
# Be sure to tack on any libraries that have been specified. | |
ldflags = shlex.split(os.environ.get('LDFLAGS', "")) | |
compiler.link_executable(objs, | |
os.path.join(tempdir, 'a.out'), | |
extra_preargs=self.strip_empty_entries(ldflags), | |
libraries=libraries) | |
# Compile and link succeeded | |
return True | |
except CompileError: | |
return False | |
except LinkError: | |
return False | |
except: | |
return False | |
finally: | |
# Restore stderr file descriptor and close the stderr redirect file. | |
if oldstderr is not None: | |
os.dup2(oldstderr, sys.stderr.fileno()) | |
if filestderr is not None: | |
filestderr.close() | |
# Delete the temporary directory holding the test program and stderr files. | |
if tempdir is not None: | |
shutil.rmtree(tempdir) | |
def strip_empty_entries(self, args): | |
''' | |
Drop any empty strings from the list of compile and link flags | |
''' | |
return [x for x in args if len(x) > 0] | |
def cpu_arch(self): | |
try: | |
from cpuinfo import get_cpu_info | |
except ImportError as e: | |
cpu_info = self._backup_cpuinfo() | |
if cpu_info is None: | |
return "-march=native" | |
try: | |
cpu_info = get_cpu_info() | |
except Exception as e: | |
self.warning(f"{self.name} attempted to use `py-cpuinfo` but failed (exception type: {type(e)}, {e}), " | |
"falling back to `lscpu` to get this information.") | |
cpu_info = self._backup_cpuinfo() | |
if cpu_info is None: | |
return "-march=native" | |
if cpu_info['arch'].startswith('PPC_'): | |
# gcc does not provide -march on PowerPC, use -mcpu instead | |
return '-mcpu=native' | |
return '-march=native' | |
def is_cuda_enable(self): | |
try: | |
assert_no_cuda_mismatch(self.name) | |
return '-D__ENABLE_CUDA__' | |
except MissingCUDAException: | |
print(f"{WARNING} {self.name} cuda is missing or is incompatible with installed torch, " | |
"only cpu ops can be compiled!") | |
return '-D__DISABLE_CUDA__' | |
return '-D__DISABLE_CUDA__' | |
def _backup_cpuinfo(self): | |
# Construct cpu_info dict from lscpu that is similar to what py-cpuinfo provides | |
if not self.command_exists('lscpu'): | |
self.warning(f"{self.name} attempted to query 'lscpu' after failing to use py-cpuinfo " | |
"to detect the CPU architecture. 'lscpu' does not appear to exist on " | |
"your system, will fall back to use -march=native and non-vectorized execution.") | |
return None | |
result = subprocess.check_output('lscpu', shell=True) | |
result = result.decode('utf-8').strip().lower() | |
cpu_info = {} | |
cpu_info['arch'] = None | |
cpu_info['flags'] = "" | |
if 'genuineintel' in result or 'authenticamd' in result: | |
cpu_info['arch'] = 'X86_64' | |
if 'avx512' in result: | |
cpu_info['flags'] += 'avx512,' | |
elif 'avx512f' in result: | |
cpu_info['flags'] += 'avx512f,' | |
if 'avx2' in result: | |
cpu_info['flags'] += 'avx2' | |
elif 'ppc64le' in result: | |
cpu_info['arch'] = "PPC_" | |
return cpu_info | |
def simd_width(self): | |
try: | |
from cpuinfo import get_cpu_info | |
except ImportError as e: | |
cpu_info = self._backup_cpuinfo() | |
if cpu_info is None: | |
return '-D__SCALAR__' | |
try: | |
cpu_info = get_cpu_info() | |
except Exception as e: | |
self.warning(f"{self.name} attempted to use `py-cpuinfo` but failed (exception type: {type(e)}, {e}), " | |
"falling back to `lscpu` to get this information.") | |
cpu_info = self._backup_cpuinfo() | |
if cpu_info is None: | |
return '-D__SCALAR__' | |
if cpu_info['arch'] == 'X86_64': | |
if 'avx512' in cpu_info['flags'] or 'avx512f' in cpu_info['flags']: | |
return '-D__AVX512__' | |
elif 'avx2' in cpu_info['flags']: | |
return '-D__AVX256__' | |
return '-D__SCALAR__' | |
def command_exists(self, cmd): | |
if '|' in cmd: | |
cmds = cmd.split("|") | |
else: | |
cmds = [cmd] | |
valid = False | |
for cmd in cmds: | |
result = subprocess.Popen(f'type {cmd}', stdout=subprocess.PIPE, shell=True) | |
valid = valid or result.wait() == 0 | |
if not valid and len(cmds) > 1: | |
print(f"{WARNING} {self.name} requires one of the following commands '{cmds}', but it does not exist!") | |
elif not valid and len(cmds) == 1: | |
print(f"{WARNING} {self.name} requires the '{cmd}' command, but it does not exist!") | |
return valid | |
def warning(self, msg): | |
self.error_log = f"{msg}" | |
print(f"{WARNING} {msg}") | |
def deepspeed_src_path(self, code_path): | |
if os.path.isabs(code_path): | |
return code_path | |
else: | |
return os.path.join(Path(__file__).parent.parent.absolute(), code_path) | |
def builder(self): | |
from torch.utils.cpp_extension import CppExtension | |
include_dirs = [os.path.abspath(x) for x in self.strip_empty_entries(self.include_paths())] | |
return CppExtension(name=self.absolute_name(), | |
sources=self.strip_empty_entries(self.sources()), | |
include_dirs=include_dirs, | |
extra_compile_args={'cxx': self.strip_empty_entries(self.cxx_args())}, | |
extra_link_args=self.strip_empty_entries(self.extra_ldflags())) | |
def load(self, verbose=True): | |
if self.name in __class__._loaded_ops: | |
return __class__._loaded_ops[self.name] | |
from deepspeed.git_version_info import installed_ops, torch_info, accelerator_name | |
from deepspeed.accelerator import get_accelerator | |
if installed_ops.get(self.name, False) and accelerator_name == get_accelerator()._name: | |
# Ensure the op we're about to load was compiled with the same | |
# torch/cuda versions we are currently using at runtime. | |
self.validate_torch_version(torch_info) | |
if torch.cuda.is_available() and isinstance(self, CUDAOpBuilder): | |
self.validate_torch_op_version(torch_info) | |
op_module = importlib.import_module(self.absolute_name()) | |
__class__._loaded_ops[self.name] = op_module | |
return op_module | |
else: | |
return self.jit_load(verbose) | |
def jit_load(self, verbose=True): | |
if not self.is_compatible(verbose): | |
raise RuntimeError( | |
f"Unable to JIT load the {self.name} op due to it not being compatible due to hardware/software issue. {self.error_log}" | |
) | |
try: | |
import ninja # noqa: F401 # type: ignore | |
except ImportError: | |
raise RuntimeError(f"Unable to JIT load the {self.name} op due to ninja not being installed.") | |
if isinstance(self, CUDAOpBuilder) and not self.is_rocm_pytorch(): | |
self.build_for_cpu = not torch.cuda.is_available() | |
self.jit_mode = True | |
from torch.utils.cpp_extension import load | |
start_build = time.time() | |
sources = [os.path.abspath(self.deepspeed_src_path(path)) for path in self.sources()] | |
extra_include_paths = [os.path.abspath(self.deepspeed_src_path(path)) for path in self.include_paths()] | |
# Torch will try and apply whatever CCs are in the arch list at compile time, | |
# we have already set the intended targets ourselves we know that will be | |
# needed at runtime. This prevents CC collisions such as multiple __half | |
# implementations. Stash arch list to reset after build. | |
torch_arch_list = None | |
if "TORCH_CUDA_ARCH_LIST" in os.environ: | |
torch_arch_list = os.environ.get("TORCH_CUDA_ARCH_LIST") | |
os.environ["TORCH_CUDA_ARCH_LIST"] = "" | |
nvcc_args = self.strip_empty_entries(self.nvcc_args()) | |
cxx_args = self.strip_empty_entries(self.cxx_args()) | |
if isinstance(self, CUDAOpBuilder): | |
if not self.build_for_cpu and self.enable_bf16: | |
cxx_args.append("-DBF16_AVAILABLE") | |
nvcc_args.append("-DBF16_AVAILABLE") | |
nvcc_args.append("-U__CUDA_NO_BFLOAT16_OPERATORS__") | |
nvcc_args.append("-U__CUDA_NO_BFLOAT162_OPERATORS__") | |
if self.is_rocm_pytorch(): | |
cxx_args.append("-D__HIP_PLATFORM_AMD__=1") | |
op_module = load(name=self.name, | |
sources=self.strip_empty_entries(sources), | |
extra_include_paths=self.strip_empty_entries(extra_include_paths), | |
extra_cflags=cxx_args, | |
extra_cuda_cflags=nvcc_args, | |
extra_ldflags=self.strip_empty_entries(self.extra_ldflags()), | |
verbose=verbose) | |
build_duration = time.time() - start_build | |
if verbose: | |
print(f"Time to load {self.name} op: {build_duration} seconds") | |
# Reset arch list so we are not silently removing it for other possible use cases | |
if torch_arch_list: | |
os.environ["TORCH_CUDA_ARCH_LIST"] = torch_arch_list | |
__class__._loaded_ops[self.name] = op_module | |
return op_module | |
class CUDAOpBuilder(OpBuilder): | |
def compute_capability_args(self, cross_compile_archs=None): | |
""" | |
Returns nvcc compute capability compile flags. | |
1. `TORCH_CUDA_ARCH_LIST` takes priority over `cross_compile_archs`. | |
2. If neither is set default compute capabilities will be used | |
3. Under `jit_mode` compute capabilities of all visible cards will be used plus PTX | |
Format: | |
- `TORCH_CUDA_ARCH_LIST` may use ; or whitespace separators. Examples: | |
TORCH_CUDA_ARCH_LIST="6.1;7.5;8.6" pip install ... | |
TORCH_CUDA_ARCH_LIST="6.0 6.1 7.0 7.5 8.0 8.6+PTX" pip install ... | |
- `cross_compile_archs` uses ; separator. | |
""" | |
ccs = [] | |
if self.jit_mode: | |
# Compile for underlying architectures since we know those at runtime | |
for i in range(torch.cuda.device_count()): | |
CC_MAJOR, CC_MINOR = torch.cuda.get_device_capability(i) | |
cc = f"{CC_MAJOR}.{CC_MINOR}" | |
if cc not in ccs: | |
ccs.append(cc) | |
ccs = sorted(ccs) | |
ccs[-1] += '+PTX' | |
else: | |
# Cross-compile mode, compile for various architectures | |
# env override takes priority | |
cross_compile_archs_env = os.environ.get('TORCH_CUDA_ARCH_LIST', None) | |
if cross_compile_archs_env is not None: | |
if cross_compile_archs is not None: | |
print( | |
f"{WARNING} env var `TORCH_CUDA_ARCH_LIST={cross_compile_archs_env}` overrides `cross_compile_archs={cross_compile_archs}`" | |
) | |
cross_compile_archs = cross_compile_archs_env.replace(' ', ';') | |
else: | |
if cross_compile_archs is None: | |
cross_compile_archs = get_default_compute_capabilities() | |
ccs = cross_compile_archs.split(';') | |
ccs = self.filter_ccs(ccs) | |
if len(ccs) == 0: | |
raise RuntimeError( | |
f"Unable to load {self.name} op due to no compute capabilities remaining after filtering") | |
args = [] | |
self.enable_bf16 = True | |
for cc in ccs: | |
num = cc[0] + cc[2] | |
args.append(f'-gencode=arch=compute_{num},code=sm_{num}') | |
if cc.endswith('+PTX'): | |
args.append(f'-gencode=arch=compute_{num},code=compute_{num}') | |
if int(cc[0]) <= 7: | |
self.enable_bf16 = False | |
return args | |
def filter_ccs(self, ccs: List[str]): | |
""" | |
Prune any compute capabilities that are not compatible with the builder. Should log | |
which CCs have been pruned. | |
""" | |
return ccs | |
def version_dependent_macros(self): | |
# Fix from apex that might be relevant for us as well, related to https://github.com/NVIDIA/apex/issues/456 | |
version_ge_1_1 = [] | |
if (TORCH_MAJOR > 1) or (TORCH_MAJOR == 1 and TORCH_MINOR > 0): | |
version_ge_1_1 = ['-DVERSION_GE_1_1'] | |
version_ge_1_3 = [] | |
if (TORCH_MAJOR > 1) or (TORCH_MAJOR == 1 and TORCH_MINOR > 2): | |
version_ge_1_3 = ['-DVERSION_GE_1_3'] | |
version_ge_1_5 = [] | |
if (TORCH_MAJOR > 1) or (TORCH_MAJOR == 1 and TORCH_MINOR > 4): | |
version_ge_1_5 = ['-DVERSION_GE_1_5'] | |
return version_ge_1_1 + version_ge_1_3 + version_ge_1_5 | |
def is_compatible(self, verbose=True): | |
return super().is_compatible(verbose) | |
def builder(self): | |
try: | |
if not self.is_rocm_pytorch(): | |
assert_no_cuda_mismatch(self.name) | |
self.build_for_cpu = False | |
except MissingCUDAException: | |
self.build_for_cpu = True | |
if self.build_for_cpu: | |
from torch.utils.cpp_extension import CppExtension as ExtensionBuilder | |
else: | |
from torch.utils.cpp_extension import CUDAExtension as ExtensionBuilder | |
include_dirs = [os.path.abspath(x) for x in self.strip_empty_entries(self.include_paths())] | |
compile_args = {'cxx': self.strip_empty_entries(self.cxx_args())} if self.build_for_cpu else \ | |
{'cxx': self.strip_empty_entries(self.cxx_args()), \ | |
'nvcc': self.strip_empty_entries(self.nvcc_args())} | |
if not self.build_for_cpu and self.enable_bf16: | |
compile_args['cxx'].append("-DBF16_AVAILABLE") | |
if self.is_rocm_pytorch(): | |
compile_args['cxx'].append("-D__HIP_PLATFORM_AMD__=1") | |
cuda_ext = ExtensionBuilder(name=self.absolute_name(), | |
sources=self.strip_empty_entries(self.sources()), | |
include_dirs=include_dirs, | |
libraries=self.strip_empty_entries(self.libraries_args()), | |
extra_compile_args=compile_args, | |
extra_link_args=self.strip_empty_entries(self.extra_ldflags())) | |
if self.is_rocm_pytorch(): | |
# hip converts paths to absolute, this converts back to relative | |
sources = cuda_ext.sources | |
curr_file = Path(__file__).parent.parent # ds root | |
for i in range(len(sources)): | |
src = Path(sources[i]) | |
if src.is_absolute(): | |
sources[i] = str(src.relative_to(curr_file)) | |
else: | |
sources[i] = str(src) | |
cuda_ext.sources = sources | |
return cuda_ext | |
def hipify_extension(self): | |
if self.is_rocm_pytorch(): | |
from torch.utils.hipify import hipify_python | |
hipify_python.hipify( | |
project_directory=os.getcwd(), | |
output_directory=os.getcwd(), | |
header_include_dirs=self.include_paths(), | |
includes=[os.path.join(os.getcwd(), '*')], | |
extra_files=[os.path.abspath(s) for s in self.sources()], | |
show_detailed=True, | |
is_pytorch_extension=True, | |
hipify_extra_files_only=True, | |
) | |
def cxx_args(self): | |
if sys.platform == "win32": | |
return ['-O2'] | |
else: | |
return ['-O3', '-std=c++17', '-g', '-Wno-reorder'] | |
def nvcc_args(self): | |
if self.build_for_cpu: | |
return [] | |
args = ['-O3'] | |
if self.is_rocm_pytorch(): | |
ROCM_MAJOR, ROCM_MINOR = self.installed_rocm_version() | |
args += [ | |
'-std=c++17', '-U__HIP_NO_HALF_OPERATORS__', '-U__HIP_NO_HALF_CONVERSIONS__', | |
'-U__HIP_NO_HALF2_OPERATORS__', | |
'-DROCM_VERSION_MAJOR=%s' % ROCM_MAJOR, | |
'-DROCM_VERSION_MINOR=%s' % ROCM_MINOR | |
] | |
else: | |
try: | |
nvcc_threads = int(os.getenv("DS_NVCC_THREADS", "")) | |
if nvcc_threads <= 0: | |
raise ValueError("") | |
except ValueError: | |
nvcc_threads = min(os.cpu_count(), 8) | |
cuda_major, _ = installed_cuda_version() | |
args += [ | |
'-allow-unsupported-compiler' if sys.platform == "win32" else '', '--use_fast_math', | |
'-std=c++17' if cuda_major > 10 else '-std=c++14', '-U__CUDA_NO_HALF_OPERATORS__', | |
'-U__CUDA_NO_HALF_CONVERSIONS__', '-U__CUDA_NO_HALF2_OPERATORS__', f'--threads={nvcc_threads}' | |
] | |
if os.environ.get('DS_DEBUG_CUDA_BUILD', '0') == '1': | |
args.append('--ptxas-options=-v') | |
args += self.compute_capability_args() | |
return args | |
def libraries_args(self): | |
if self.build_for_cpu: | |
return [] | |
if sys.platform == "win32": | |
return ['cublas', 'curand'] | |
else: | |
return [] | |
class TorchCPUOpBuilder(CUDAOpBuilder): | |
def extra_ldflags(self): | |
if self.build_for_cpu: | |
return ['-fopenmp'] | |
if not self.is_rocm_pytorch(): | |
return ['-lcurand'] | |
return [] | |
def cxx_args(self): | |
import torch | |
args = [] | |
if not self.build_for_cpu: | |
if not self.is_rocm_pytorch(): | |
CUDA_LIB64 = os.path.join(torch.utils.cpp_extension.CUDA_HOME, "lib64") | |
if not os.path.exists(CUDA_LIB64): | |
CUDA_LIB64 = os.path.join(torch.utils.cpp_extension.CUDA_HOME, "lib") | |
else: | |
CUDA_LIB64 = os.path.join(torch.utils.cpp_extension.ROCM_HOME, "lib") | |
args += super().cxx_args() | |
args += [ | |
f'-L{CUDA_LIB64}', | |
'-lcudart', | |
'-lcublas', | |
'-g', | |
] | |
CPU_ARCH = self.cpu_arch() | |
SIMD_WIDTH = self.simd_width() | |
CUDA_ENABLE = self.is_cuda_enable() | |
args += [ | |
CPU_ARCH, | |
'-fopenmp', | |
SIMD_WIDTH, | |
CUDA_ENABLE, | |
] | |
return args | |