applied-ai-018's picture
Add files using upload-large-folder tool
11ed373 verified
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
# DeepSpeed note, code taken & adapted from commit 9aa94789f13ada713af36cfd8cca2fc9a7f6b79a
# https://github.com/ptillet/torch-blocksparse/blob/master/torch_blocksparse/matmul.py
import importlib
import torch
import triton
import triton.language as tl
import triton._C.libtriton as libtriton
from deepspeed.accelerator import get_accelerator
@triton.jit
def _kernel(A, B, C, stride_za, stride_ha, stride_ma, stride_ka, stride_zb, stride_hb, stride_kb, stride_nb, stride_zc,
stride_hc, stride_mc, stride_nc, DS0, DS1, SDD_K, SDD_off_width, lut, locks, nlocks, **meta):
TM = meta['TM']
TN = meta['TN']
TK = meta['TK']
TZ = meta['TZ']
BLOCK = meta['BLOCK']
#------------#
#- Prologue -#
#------------#
pid0 = tl.program_id(0)
pid1 = tl.program_id(1)
pidz = tl.program_id(2)
if meta['SDD']:
pid1 = pid1 + SDD_off_width
blockidm = tl.arange(0, TM) // BLOCK
blockidn = tl.arange(0, TN) // BLOCK
offlutm = blockidm * (TN // BLOCK) * 4
offlutn = blockidn * 4
header = lut + pid1 * (TM // BLOCK) * (TN // BLOCK) * 4
z = tl.load(header + 0)
i = tl.load(header + 1 + offlutm)
j = tl.load(header + 2 + offlutn)
AS1 = SDD_K // TZ
lockid = tl.where(TZ > 1, 1, 0)
offka = pid0 * AS1
offkb = pid0 * AS1
offmc = 0
offnc = 0
offpa = 0
offpb = 0
maxid = TZ
offhc = 0
offha = z
offhb = z
ram = i * BLOCK + (tl.arange(0, TM) % BLOCK)
rbn = j * BLOCK + (tl.arange(0, TN) % BLOCK)
else:
header = lut + pid0 * 6
offset = tl.load(header + 0)
AS1 = tl.load(header + 1)
column = tl.load(header + 2)
depth = tl.load(header + 3)
lockid = tl.load(header + 4)
maxid = tl.load(header + 5)
pinc = lut + offset
offhc = depth
if meta['DSD']:
# output offset
offnc = pid1 * TN
offmc = column * TM
offpc = 0
# dense input offset
offnb = pid1 * TN
offkb = tl.load(pinc)
offkb = tl.multiple_of(offkb, 8) # compiler hint
offpb = 0
# sparse input offset
offma = 0
offka = 0
offpa = tl.load(pinc + 1)
offpa = tl.multiple_of(offpa, 8) # compiler hint
offpa = offpa * BLOCK * BLOCK
offha = 0
offhb = depth
else:
# output offset
offmc = pid1 * TM
offnc = column * TN
offpc = 0
# dense input offset
offma = pid1 * TM
offka = tl.load(pinc)
offka = tl.multiple_of(offka, 8) # compiler hint
offpa = 0
# sparse input offset
offnb = 0
offkb = 0
offpb = tl.load(pinc + 1)
offpb = tl.multiple_of(offpb, 8) # compiler hint
offpb = offpb * BLOCK * BLOCK
offha = depth
offhb = 0
ram = offma + tl.arange(0, TM)
rbn = offnb + tl.arange(0, TN)
# initialize a, b pointers
rka = offka + tl.arange(0, TK)
rkb = offkb + tl.arange(0, TK)
pa = A + pidz * stride_za + offha * stride_ha + offpa + ram[:, None] * stride_ma + rka[None, :] * stride_ka
pb = B + pidz * stride_zb + offhb * stride_hb + offpb + rbn[None, :] * stride_nb + rkb[:, None] * stride_kb
if meta['DDS']:
checkam = ram[:, None] < DS0
else:
checkam = AS1 > 0
if meta['DSD']:
checkbn = rbn[None, :] < DS0
else:
checkbn = AS1 > 0
a = tl.load(pa, mask=checkam, other=0.)
b = tl.load(pb, mask=checkbn, other=0.)
## ---------------- ##
## Inner Loop ##
## ---------------- ##
acc = tl.zeros((TM, TN), dtype=tl.float32)
for k in range(AS1, 0, -TK):
acc += tl.dot(a, b)
if meta['SDD']:
inc_a = TK * stride_ka
inc_b = TK * stride_kb
else:
pinc += 2
if meta['DSD']:
inc_b = tl.load(pinc)
inc_a = tl.load(pinc + 1)
inc_b = tl.multiple_of(inc_b, 8)
inc_a = tl.multiple_of(inc_a, 8)
inc_b = inc_b * stride_kb
if meta['DDS']:
inc_a = tl.load(pinc)
inc_b = tl.load(pinc + 1)
inc_a = tl.multiple_of(inc_a, 8)
inc_b = tl.multiple_of(inc_b, 8)
inc_a = inc_a * stride_ka
pa += inc_a
pb += inc_b
# pre-fetch
checkak = k > TK
checkbk = k > TK
checka = checkam & checkak
checkb = checkbn & checkbk
a = tl.load(pa, mask=checka)
b = tl.load(pb, mask=checkb)
c = acc.to(C.dtype.element_ty)
if meta['SDD']:
checkc = True
rr_blockidm = tl.arange(0, TM) // BLOCK
rr_blockidn = tl.arange(0, TN) // BLOCK
rr_offlutm = rr_blockidm * (TN // BLOCK) * 4
rr_offlutn = rr_blockidn * 4
off_bkid = 3 + rr_offlutm[:, None] + rr_offlutn[None, :]
bkid = tl.load(header + off_bkid)
offpc = bkid * BLOCK * BLOCK
rcm = tl.arange(0, TM) % BLOCK
rcn = tl.arange(0, TN) % BLOCK
else:
rcm = offmc + tl.arange(0, TM)
rcn = offnc + tl.arange(0, TN)
if meta['DSD']:
checkc = rcn[None, :] < DS0
if meta['DDS']:
checkc = rcm[:, None] < DS0
pc = C + offpc + offhc * stride_hc + pidz * stride_zc + rcm[:, None] * stride_mc + rcn[None, :] * stride_nc
# write-back directly
if lockid == 0:
tl.store(pc, c, mask=checkc)
# accumulate partial results using spin-locks
else:
plock = locks + tl.program_id(2) * nlocks * tl.num_programs(1) + tl.program_id(1) * nlocks + lockid - 1
pcount = plock + tl.num_programs(2) * tl.num_programs(1) * nlocks
while tl.atomic_cas(plock, 0, 1) == 1:
pass
count = tl.load(pcount)
if count == 0:
tl.store(pc, c, mask=checkc)
else:
d = tl.load(pc, mask=checkc)
tl.store(pc, d + c, mask=checkc)
tl.atomic_xchg(pcount, (count + 1) % maxid)
tl.atomic_xchg(plock, 0)
##############
# MAIN API #
##############
class _sparse_matmul(torch.autograd.Function):
sdd_cache = dict()
dsd_cache = dict()
dds_cache = dict()
locks = dict()
# Given an array sizes representing reduction size for each
# column of a block-mode matrix multiplication,
# performs load-balancing to achieve more smaller reductions
# between `seg_size` elements
@staticmethod
def load_balance(sizes, block):
#global triton
#if triton is None:
# triton = importlib.import_module('triton')
# segment size
# heuristics taken from OpenAI blocksparse code
# https://github.com/openai/blocksparse/blob/master/blocksparse/matmul.py#L95
max_size = sizes.max()
min_size = sizes[sizes != 0].min()
#if max_size > min_size * 2.0:
# seg_max = max(triton.cdiv(max_size, 4), min_size*2)
#else:
# seg_max = max_size
seg_max = max_size
seg_min = max(triton.cdiv(seg_max, 4), 4)
# split reduction into segments
div = sizes // seg_max
rem = sizes % seg_max
packs = div + (sizes < seg_min).long() + (rem >= seg_min).long()
width = packs.sum()
segments = torch.empty(width, dtype=sizes.dtype)
column = torch.empty_like(segments)
lockid = torch.zeros_like(segments)
maxid = torch.zeros_like(segments)
nlocks = 0
current = 0
col_idx = 0
for i in range(len(sizes)):
d, r = div[i], rem[i]
isempty = sizes[i] < seg_min
last = current + d + (r >= seg_min) + isempty
# column id
column[current:last] = col_idx
# lock id
if d > 1 or (d == 1 and r >= seg_min):
nlocks += 1
lockid[current:last] = nlocks
maxid[current:last] = last - current
# segment size
segments[current:current + d] = seg_max
if r < seg_min and not isempty:
segments[current + d - 1] += r
if r >= seg_min or isempty:
segments[current + d] = r
current = last
col_idx += 1
offsets = torch.zeros_like(segments)
offsets[1:] = torch.cumsum(segments[:-1], dim=0)
return segments, column, lockid, maxid, offsets
@staticmethod
def get_locks(size, dev):
if dev not in _sparse_matmul.locks or \
size > _sparse_matmul.locks[dev].size(0):
_sparse_matmul.locks[dev] = torch.zeros(size, dtype=torch.int32, device=dev)
return _sparse_matmul.locks[dev]
##########################
# SPARSE = DENSE x DENSE #
##########################
@staticmethod
def make_sdd_lut(layout, block, dtype, device):
#_sparse_matmul._load_utils()
#start_width = 64 // block
#segmented = _sparse_matmul.sdd_segment(layout.type(torch.int32), start_width)
start_width = (128 if block > 16 else 32) // block
layout = layout.type(torch.int32)
segmented = libtriton.superblock(layout.data_ptr(), layout.shape[0], layout.shape[1], layout.shape[2],
start_width)
luts, widths, packs = [], [], []
for size, nnz in segmented:
""" width = nnz.shape[0] // (size * size)
h = nnz[:, 0]
i = nnz[:, 1]
j = nnz[:, 2]
b = nnz[:, 3]
lut = torch.stack((h, i, j, b), dim=1).view(-1).contiguous()
luts.append(lut.type(torch.int32).to(device))
widths.append(width)
packs.append(size) """
nnz = nnz.reshape(-1, 4)
width = nnz.shape[0] // (size * size)
luts.append(torch.from_numpy(nnz).type(torch.int32).to(device))
widths.append(width)
packs.append(size)
# create locks
return luts, None, widths, packs
@staticmethod
def _sdd_matmul(a, b, trans_a, trans_b, trans_c, spdims, block, luts, num_locks, widths, packs, bench, time):
if trans_c:
a, b = b, a
trans_a, trans_b = not trans_b, not trans_a
AS0 = a.size(0)
# Shape check
a_dim = -2 if trans_a else -1
b_dim = -1 if trans_b else -2
a_inner, b_inner = a.shape[a_dim], b.shape[b_dim]
if a_inner != b_inner:
raise ValueError(f"Size of tensor A along the {a_dim} dim ({a_inner}) must match size "
f"of tensor B along the {b_dim} dim ({b_inner})")
if a_inner % 16 != 0:
raise ValueError('Reduction size for SDD must be a multiple of 16')
batch_size = a.size(0)
a_outer = a.size(3 if trans_a else 2)
dtype = a.dtype
is_16_multiple = a_inner % 16 == 0
is_32_multiple = a_inner % 32 == 0
is_64_multiple = a_inner % 64 == 0
if not is_16_multiple:
raise ValueError('Reduction size for SDD must be a multiple of 16')
device = a.device
# create kernel
total_width = sum([width * pack * pack for width, pack in zip(widths, packs)])
c = torch.empty((batch_size, total_width, block, block), dtype=dtype, device=a.device)
for lut, width, pack in zip(luts, widths, packs):
F32TK = [8, 16]
F16TK = [16]
F16TK += [32] if is_32_multiple else []
F16TK += [64] if is_64_multiple else []
TK = {torch.float32: F32TK, torch.float16: F16TK}[dtype]
num_lock = 1
meta = {
'TM': block * pack,
'TN': block * pack,
'BLOCK': block,
'TK': TK[0],
'TZ': 1,
'SDD': True,
'DSD': False,
'DDS': False
}
# create output
locks = _sparse_matmul.get_locks(2 * width * AS0 * num_lock, a.device)
# maximum grid size is 65535
# so operation might be decomposed into multiple
# kernel calls
max_width = 49152
total = 0 if bench else None
for off_width in range(0, width, max_width):
grid = lambda meta: [meta['TZ'], min(max_width, width - off_width), batch_size]
_kernel[grid](a,
b,
c,
a.stride(0),
a.stride(1),
a.stride(3 if trans_a else 2),
a.stride(2 if trans_a else 3),
b.stride(0),
b.stride(1),
b.stride(3 if trans_b else 2),
b.stride(2 if trans_b else 3),
c.stride(0),
c.stride(0),
c.stride(2),
c.stride(3),
a_outer,
a_outer,
a_inner,
off_width,
lut,
locks,
num_lock,
num_warps=4,
**meta)
# save for backward pass
return c
##########################
# DENSE = DENSE x SPARSE #
##########################
# Given a binary layout of 0s and 1s,
# Construct look-up table for efficient execution on GPUs
@staticmethod
def make_dxx_lut(layout, block, step, trans, device, transform=lambda idx: idx):
# load-balancing
_empty = torch.tensor([], dtype=torch.int64, device=layout.device)
segments = _empty.clone()
column = _empty.clone()
depth = _empty.clone()
lockid = _empty.clone()
maxid = _empty.clone()
offsets = _empty.clone()
current_offset = 0
current_maxid = 0
for z in range(layout.size(0)):
if trans:
sizes = torch.sum(layout[z, :, :], 1)
else:
sizes = torch.sum(layout[z, :, :], 0)
z_segments, z_column, z_lockid, z_maxid, z_offsets = _sparse_matmul.load_balance(sizes, block)
z_depth = z * torch.ones_like(z_segments)
z_lockid[z_lockid > 0] += current_maxid
current_maxid = z_lockid.max()
# concatenate depth
segments = torch.cat((segments, z_segments))
column = torch.cat((column, z_column))
depth = torch.cat((depth, z_depth))
maxid = torch.cat((maxid, z_maxid))
offsets = torch.cat((offsets, current_offset + z_offsets))
lockid = torch.cat((lockid, z_lockid))
current_offset += layout[z, :, :].sum()
segments *= step
# pointer increments
if trans:
nnz = layout.nonzero()
else:
nnz = layout.transpose(1, 2).nonzero()
num_blocks = nnz.size(0)
offsets = torch.min(offsets, (num_blocks - 1) * torch.ones_like(offsets))
idx = transform(nnz[:, 2] * block)
xincs = idx.clone()
xincs[1:] -= idx[:-1]
# divide block into multiple steps
div = block // step
xincs = xincs.view(-1, 1).repeat(1, div)
xincs[:, 1:] = step
xincs[:, 0] -= (div - 1) * step
# first increment for each reduction is actually the offset
xincs[offsets[segments > 0], 0] = idx[offsets[segments > 0]]
xincs = xincs.view(-1)
# block-mode input increments
if trans:
widx = torch.arange(num_blocks)
else:
widx = _empty.clone()
current_offset = 0
for z in range(layout.size(0)):
layoutw = layout[z, :, :].clone()
msum = layoutw.sum()
layoutw[layoutw > 0] = 1 + torch.arange(msum)
widx = torch.cat((widx, current_offset + layoutw.T[layoutw.T > 0] - 1))
current_offset += msum
widx = widx
wincs = widx * block * block
wincs[1:] -= widx[:-1] * block * block
wincs = wincs.view(-1, 1).repeat(1, div)
if trans:
wincs[:, 1:] = step
wincs[:, 0] -= (div - 1) * step
else:
wincs[:, 1:] = step * block
wincs[:, 0] -= (div - 1) * step * block
wincs[offsets[segments > 0], 0] = widx[offsets[segments > 0]]
wincs = wincs.view(-1)
# adjust offset and segment size
offsets *= 2 * div
segments *= div
# create header
width = column.size(0)
offsets += 6 * width
header = torch.stack((offsets, segments, column, depth, lockid, maxid), dim=1).view(-1).contiguous()
incs = torch.stack((xincs, wincs), dim=1).view(-1).contiguous()
incs = torch.cat((incs, torch.zeros(2, device=incs.device, dtype=incs.dtype)))
# create lut
lut = torch.cat((header, incs))
lut = lut.type(torch.int32).to(device)
# create locks
num_locks = max(1, lockid.max())
return lut, num_locks, width, None
@staticmethod
def _dds_matmul(a, b, trans_a, trans_b, trans_c, spdims, block, lut, num_locks, width, packs, bench, time):
global triton
if triton is None:
triton = importlib.import_module('triton')
# shapes / dtypes
AS0 = a.size(0)
AS1 = a.size(1)
AS2 = a.size(3 if trans_a else 2)
AS3 = a.size(2 if trans_a else 3)
BS0 = spdims[0]
BS1 = block * spdims[2 if trans_b else 1]
BS2 = block * spdims[1 if trans_b else 2]
dtype = a.dtype
# kernel
meta = {'TN': block, 'TM': 128, 'TK': 16, 'BLOCK': block, 'TZ': 1, 'SDD': False, 'DSD': False, 'DDS': True}
# output
CS0 = AS0
CS1 = AS1
CS2 = BS2 if trans_c else AS2
CS3 = AS2 if trans_c else BS2
locks = _sparse_matmul.get_locks(2 * AS0 * AS2 // 32 * num_locks, a.device)
c = torch.empty((CS0, CS1, CS2, CS3), dtype=dtype, device=a.device)
grid = lambda meta: [width, triton.cdiv(AS2, meta['TM']), AS0]
_kernel[grid](a,
b,
c,
a.stride(0),
a.stride(1),
a.stride(3 if trans_a else 2),
a.stride(2 if trans_a else 3),
b.stride(0),
b.stride(1),
b.stride(3 if trans_b else 2),
b.stride(2 if trans_b else 3),
c.stride(0),
c.stride(1),
c.stride(3 if trans_c else 2),
c.stride(2 if trans_c else 3),
AS2,
BS2,
0,
0,
lut,
locks,
num_locks,
num_warps=4,
**meta)
return c
@staticmethod
def _dsd_matmul(a, b, trans_a, trans_b, trans_c, spdims, block, lut, num_locks, width, packs, bench, time):
global triton
if triton is None:
triton = importlib.import_module('triton')
# shapes / dtypes
AS0 = spdims[0]
AS1 = block * spdims[2 if trans_a else 1]
AS2 = block * spdims[1 if trans_a else 2]
BS0 = b.size(0)
BS1 = b.size(1)
BS2 = b.size(3 if trans_b else 2)
BS3 = b.size(2 if trans_b else 3)
dtype = a.dtype
# kernel
meta = {'TM': block, 'TN': 128, 'TK': 16, 'BLOCK': block, 'TZ': 1, 'SDD': False, 'DSD': True, 'DDS': False}
# output
CS0 = BS0
CS1 = BS1
CS2 = BS3 if trans_c else AS1
CS3 = AS1 if trans_c else BS3
locks = _sparse_matmul.get_locks(2 * BS0 * BS3 // 32 * num_locks, a.device)
c = torch.empty((CS0, CS1, CS2, CS3), dtype=dtype, device=a.device)
grid = lambda meta: [width, triton.cdiv(BS3, meta['TN']), BS0]
_kernel[grid](a,
b,
c,
a.stride(0),
a.stride(1),
a.stride(3 if trans_a else 2),
a.stride(2 if trans_a else 3),
b.stride(0),
b.stride(1),
b.stride(3 if trans_b else 2),
b.stride(2 if trans_b else 3),
c.stride(0),
c.stride(1),
c.stride(2),
c.stride(3),
BS3,
AS1,
0,
0,
lut,
locks,
num_locks,
num_warps=4,
**meta)
return c
fn = {'sdd': _sdd_matmul.__get__(object), 'dsd': _dsd_matmul.__get__(object), 'dds': _dds_matmul.__get__(object)}
@staticmethod
def forward(ctx, a, b, trans_a, trans_b, trans_c, mode, spdims, block, c_lut, c_num_locks, c_width, c_packs,
c_bench, c_time, da_lut, da_num_locks, da_width, da_packs, da_bench, da_time, db_lut, db_num_locks,
db_width, db_packs, db_bench, db_time):
c = _sparse_matmul.fn[mode](a, b, trans_a, trans_b, trans_c, spdims, block, c_lut, c_num_locks, c_width,
c_packs, c_bench, c_time)
# save for backward
ctx.save_for_backward(a, b)
ctx.da_num_locks = da_num_locks
ctx.da_lut = da_lut
ctx.da_width = da_width
ctx.da_packs = da_packs
ctx.da_bench = da_bench
ctx.da_time = da_time
ctx.db_lut = db_lut
ctx.db_num_locks = db_num_locks
ctx.db_width = db_width
ctx.db_bench = db_bench
ctx.db_packs = db_packs
ctx.db_time = db_time
ctx.mode = mode
ctx.spdims = spdims
ctx.block = block
ctx.trans_a = trans_a
ctx.trans_b = trans_b
return c
@staticmethod
def backward(ctx, dc):
# saved for backward
a, b = ctx.saved_tensors
mode = ctx.mode
# gradients w.r.t. a
if ctx.needs_input_grad[0]:
mode_da = mode[1] + mode[0] + mode[2]
da = _sparse_matmul.fn[mode_da](dc, b, False, not ctx.trans_b, ctx.trans_a, ctx.spdims, ctx.block,
ctx.da_lut, ctx.da_num_locks, ctx.da_width, ctx.da_packs, ctx.da_bench,
ctx.da_time)
# gradients w.r.t. b
if ctx.needs_input_grad[1]:
mode_db = mode[2] + mode[1] + mode[0]
db = _sparse_matmul.fn[mode_db](a, dc, not ctx.trans_a, False, ctx.trans_b, ctx.spdims, ctx.block,
ctx.db_lut, ctx.db_num_locks, ctx.db_width, ctx.db_packs, ctx.db_bench,
ctx.db_time)
return da, db, None, None, None,\
None, None, None, None,\
None, None, None, None, None, None,\
None, None, None, None, None, None,\
None, None, None, None, None, None
class MatMul:
"""Block-Sparse MatMul class; this class handles three types of matrix-multiplication:
- sparse = dense X dense
- dense = sparse X dense
- dense = dense X sparse
For more details about sparsity config, please see `Generative Modeling with Sparse Transformers`: https://arxiv.org/abs/1904.10509
"""
def make_lut(self, dtype, device):
"""Generates the sparsity layout/s used in block-sparse matmul
"""
key = (dtype, device)
if key in self.lut_cache:
return self.lut_cache[key]
# C look-up table
layout, block = self.layout, self.block
step = 16
if self.mode == 'sdd':
c_lut, c_num_locks, c_width, c_packs = _sparse_matmul.make_sdd_lut(layout, block, dtype, device)
elif self.mode == 'dsd':
c_lut, c_num_locks, c_width, c_packs = _sparse_matmul.make_dxx_lut(layout, block, step, not self.trans_a,
device)
elif self.mode == 'dds':
c_lut, c_num_locks, c_width, c_packs = _sparse_matmul.make_dxx_lut(layout, block, step, self.trans_b,
device)
# DA look-up table
if self.mode == 'sdd':
da_lut, da_num_locks, da_width, da_packs = _sparse_matmul.make_dxx_lut(layout, block, step, True, device)
elif self.mode == 'dsd':
da_lut, da_num_locks, da_width, da_packs = _sparse_matmul.make_sdd_lut(layout, block, dtype, device)
elif self.mode == 'dds':
da_lut, da_num_locks, da_width, da_packs = _sparse_matmul.make_dxx_lut(layout, block, step,
not self.trans_b, device)
# DB look-up table
if self.mode == 'sdd':
db_lut, db_num_locks, db_width, db_packs = _sparse_matmul.make_dxx_lut(layout, block, step, False, device)
elif self.mode == 'dsd':
db_lut, db_num_locks, db_width, db_packs = _sparse_matmul.make_dxx_lut(layout, block, step, self.trans_a,
device)
elif self.mode == 'dds':
db_lut, db_num_locks, db_width, db_packs = _sparse_matmul.make_sdd_lut(layout, block, dtype, device)
self.lut_cache[key] = (c_lut, c_num_locks, c_width, c_packs,\
da_lut, da_num_locks, da_width, da_packs,\
db_lut, db_num_locks, db_width, db_packs)
return self.lut_cache[key]
def __init__(self, layout, block, mode, trans_a=False, trans_b=False, bench=False):
"""Initialize the Block-Sparse MatMul class.
Arguments:
layout: required: sparsity layout tensor
block: required: an integer determining the block size.
mode: required: a string determining type of matmul; ('sdd') sparse = dense X dense, ('dsd') dense = sparse X dense, ('dds') dense = dense X sparse
trans_a: optional: a boolean determining if multiplication needs to be applied on transpose of input a; default is false
trans_b: optional: a boolean determining if multiplication needs to be applied on transpose of input b; default is false
bench: optional: set if you want to do benchmarking
"""
if mode not in ['sdd', 'dsd', 'dds']:
raise NotImplementedError('Supported modes are: sdd, dsd, dds')
# look-up table cache
self.lut_cache = dict()
# attributes
self.trans_a = trans_a
self.trans_b = trans_b
self.mode = mode
self.block = block
self.layout = layout
layout_dim = layout.ndim
assert layout_dim in (2, 3), "Layout should be a 2 or 3 dimensional tensor of 0s and 1s"
if not mode == 'sdd':
# Dims to be reduced on the 'inside' of the matmul, either -1 or -2
trans_dense, trans_sparse, sparse_inner = (trans_b, trans_a, -1) if mode == 'dsd' else (trans_a, trans_b,
-2)
self.dense_inner_dim = -((sparse_inner % 2) + 1) if not trans_dense else sparse_inner
sparse_inner = sparse_inner if not trans_sparse else -((sparse_inner % 2) + 1)
# Inner dim of the dense input should be equal to the inner dim of the sparse input
self.dense_inner_size = layout.shape[sparse_inner] * block
# Expected shape for sparse inputs
self.sparse_shape = (layout.sum().item(), block, block)
# Support using the same layout across attention heads etc.
if layout_dim == 2:
layout = layout.unsqueeze(0)
layout = layout.long() # Above code assumes the layout tensor is an integral type
self.spdims = layout.shape
# timings
self.bench = bench
self.time_c = None
self.time_da = None
self.time_db = None
# pad shapes of a tensor to make it
# compatible with kernel calls
@staticmethod
def _pad_shape(x, is_sparse):
max_dim = 3 if is_sparse else 4
for i in range(max_dim - x.dim()):
x = x.unsqueeze(0)
return x
def __call__(self, a, b):
"""Applies Block-Sparse MatMul.
For more details about sparsity config, please see `Generative Modeling with Sparse Transformers`: https://arxiv.org/abs/1904.10509
Arguments:
a: required: a dense/block-sparse tensor; first input of mat-mul
b: required: a dense/block-sparse tensor; second input of mat-mul
Return:
c: a dense/block-sparse tensor result of a X b
"""
c_lut, c_num_locks, c_width, c_packs,\
da_lut, da_num_locks, da_width, da_packs,\
db_lut, db_num_locks, db_width, db_packs = self.make_lut(a.dtype, a.device)
# timings
time_c = [None]
time_da = [None]
time_db = [None]
original_dims = max(a.ndim, b.ndim)
a, b = self._validate_inputs(a, b)
# pad shapes with ones
a = MatMul._pad_shape(a, self.mode == 'dsd')
b = MatMul._pad_shape(b, self.mode == 'dds')
# execute
c = _sparse_matmul.apply(a, b, self.trans_a, self.trans_b, False, self.mode, self.spdims, self.block, c_lut,
c_num_locks, c_width, c_packs, self.bench, time_c, da_lut, da_num_locks, da_width,
da_packs, self.bench, time_da, db_lut, db_num_locks, db_width, db_packs, self.bench,
time_db)
# This removes any leading singleton dimensions we may have added to the tensor that weren't in the input
dims_to_trim = c.ndim - original_dims
for _ in range(dims_to_trim):
c = c.squeeze(0)
self.time_c = time_c[0]
self.time_da = time_da[0]
self.time_db = time_db[0]
return c
def _validate_inputs(self, a, b):
if a.device != b.device:
raise ValueError(f"Inputs must be on the same device; got {a.device} for tensor A "
f"and {b.device} for tensor B")
if not get_accelerator().on_accelerator(a):
raise ValueError("Only GPU devices are supported for now")
# When autocast is enabled, torch.matmul autocasts to float16, so we do the same here
if torch.is_autocast_enabled():
a, b = a.half(), b.half()
elif a.dtype != b.dtype:
raise ValueError(f"Inputs must be the same dtype; got {a.dtype} for A and {b.dtype} for B")
mode, trans_a, trans_b = self.mode, self.trans_a, self.trans_b
if mode != 'sdd':
# One input is sparse
dense, dense_name, sparse, sparse_name = (a, 'A', b, 'B') if mode == 'dds' else (b, 'B', a, 'A')
dense_inner = dense.shape[self.dense_inner_dim]
if dense_inner != self.dense_inner_size:
raise ValueError(f"Expected tensor {dense_name} to have size {self.dense_inner_size} at dim "
f"{self.dense_inner_dim % dense.ndim}, got {dense_inner}.")
if sparse.shape[-len(self.sparse_shape):] != self.sparse_shape:
raise ValueError(f"Expected tensor with trailing dimensions of shape {self.sparse_shape} for argument "
f"{sparse_name}, got {sparse.shape}")
def add_extra_dims(x):
# Add extra leading singleton dimensions if needed
dims_needed = 4 - x.ndim
if dims_needed > 0:
singletons = [1] * dims_needed
x = x.view(*singletons, *x.shape)
elif dims_needed < 0:
raise ValueError("Tensors with more than 4 dimensions are not currently supported")
return x
# Pad shapes with leading singleton dimensions
a = add_extra_dims(a)
b = add_extra_dims(b)
return a, b