applied-ai-018's picture
Add files using upload-large-folder tool
2334d5a verified
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
import torch
from typing import Any, Tuple
from torch import Tensor
from torch.nn import Module
import deepspeed.comm as dist
def single_all_to_all(input, scatter_idx, gather_idx, group):
seq_world_size = dist.get_world_size(group)
inp_shape = list(input.shape)
inp_shape[scatter_idx] = inp_shape[scatter_idx] // seq_world_size
if scatter_idx < 2:
input_t = input.reshape(
[seq_world_size, inp_shape[scatter_idx]] + \
inp_shape[scatter_idx + 1:]
).contiguous()
else:
# transpose groups of heads with the seq-len parallel dimension, so that we can scatter them!
input_t = input.reshape(
[-1, seq_world_size, inp_shape[scatter_idx]] + \
inp_shape[scatter_idx + 1:]
).transpose(0, 1).contiguous()
output = torch.empty_like(input_t)
dist.all_to_all_single(output, input_t, group=group)
# if scattering the seq-dim, transpose the heads back to the original dimension
if scatter_idx < 2:
output = output.transpose(0, 1).contiguous()
return output.reshape(
inp_shape[: gather_idx] + \
[inp_shape[gather_idx] * seq_world_size,] + \
inp_shape[gather_idx + 1:]).contiguous()
class _SeqAllToAll(torch.autograd.Function):
@staticmethod
def forward(ctx: Any, group: dist.ProcessGroup, input: Tensor, scatter_idx: int, gather_idx: int) -> Tensor:
ctx.group = group
ctx.scatter_idx = scatter_idx
ctx.gather_idx = gather_idx
return single_all_to_all(input, scatter_idx, gather_idx, group)
@staticmethod
def backward(ctx: Any, *grad_output: Tensor) -> Tuple[None, Tensor, None, None]:
return (None, _SeqAllToAll.apply(ctx.group, *grad_output, ctx.gather_idx, ctx.scatter_idx), None, None)
class DistributedAttention(torch.nn.Module):
"""Initialization.
Arguments:
local_attention (Module): local attention with q,k,v
sequence_process_group (ProcessGroup): sequence parallel process group
scatter_idx (int): scatter_idx for all2all comm
gather_idx (int): gather_idx for all2all comm
"""
def __init__(
self,
local_attention: Module,
sequence_process_group: dist.ProcessGroup,
scatter_idx: int = 2,
gather_idx: int = 0,
) -> None:
super(DistributedAttention, self).__init__()
self.local_attn = local_attention
self.spg = sequence_process_group
self.scatter_idx = scatter_idx
self.gather_idx = gather_idx
def forward(self, query: Tensor, key: Tensor, value: Tensor, *args: Any) -> Tensor:
""" forward
Arguments:
query (Tensor): query input to the layer
key (Tensor): key input to the layer
value (Tensor): value input to the layer
args: other args
Returns:
* output (Tensor): context output
"""
# TODO Merge three alltoall calls into one
# TODO (Reza): change the api on the megatron-deepspeed side so that we only receive all data (q,k, and v) together!
#in shape : e.g., [s/p:h:]
query_layer = _SeqAllToAll.apply(self.spg, query, self.scatter_idx, self.gather_idx)
key_layer = _SeqAllToAll.apply(self.spg, key, self.scatter_idx, self.gather_idx)
value_layer = _SeqAllToAll.apply(self.spg, value, self.scatter_idx, self.gather_idx)
#out shape : e.g., [s:h/p:]
context_layer = self.local_attn(query_layer, key_layer, value_layer, *args)
output = _SeqAllToAll.apply(self.spg, context_layer, self.gather_idx, self.scatter_idx)
#out e.g., [s/p::h]
return output