peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/utils
/groups.py
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
# The file has been adapted from https://github.com/NVIDIA/Megatron-LM and retains the following license from the original file | |
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Support different forms of parallelism in DeepSpeed using multiple process groups. | |
Given that there are multiple scenarios and use-cases, this file is going to be updated | |
frequently. For now, the group creation needed for the training scenario is being implemented. | |
For inference and other new scenarios, the code will be either reused or added to this file. | |
""" | |
from deepspeed import comm as dist | |
from deepspeed.utils import log_dist | |
from deepspeed.utils.bwc import bwc_tensor_model_parallel_world_size, bwc_pipeline_parallel_world_size | |
from deepspeed.utils.exceptions import DeprecatedException | |
from deepspeed.accelerator import get_accelerator | |
# Expert parallel group that the current rank belongs to. | |
_EXPERT_PARALLEL_GROUP = {} | |
# Expert data parallel group that the current rank belongs to. | |
_EXPERT_DATA_PARALLEL_GROUP = {} | |
# dist world group needs to be cloned for some cases | |
_WORLD_GROUP = None | |
# ZeRO parameter partitioning group that the current rank belongs to. | |
_ZERO_PARAM_INTRA_PARALLEL_GROUP = None | |
# global object to maintain mpu object if passed by a Megatron client | |
mpu = None | |
# global object that stores tensor parallel world size for experts | |
expert_tensor_parallel_world_size = 1 | |
# All to All quantized graident communication groups | |
_ALL_TO_ALL_GROUP = {} | |
_DATA_PARALLEL_GROUP = None | |
# Deprecated groups initialize function. | |
def initialize(ep_size=1, mpu=None): | |
""" Deprecated function. Retained to inform the users.""" | |
raise DeprecatedException( | |
"Please do not use the groups.initialize() API as it is deprecated. Instead, pass the desired ep_size to deepspeed.moe.layer.MoE(..,ep_size,..)" | |
) | |
def _ensure_divisibility(numerator, denominator): | |
"""Ensure that numerator is divisible by the denominator.""" | |
assert numerator % denominator == 0, '{} is not divisible by {}'.format(numerator, denominator) | |
# Not currently used. Helper function to create a model (tensor) parallel group. | |
def _create_model_parallel(model_parallel_size_): | |
""" | |
Initialize model data parallel groups. | |
Arguments: | |
model_parallel_size: number of GPUs used to parallelize model. | |
Returns: | |
Tuple of data parallel group and model parallel group | |
Let's say we have a total of 8 GPUs denoted by g0 ... g7 and we | |
use 2 GPUs to parallelize the model. The present function will | |
create 4 model parallel groups and 2 data parallel groups as: | |
4 model parallel groups: | |
[g0, g1], [g2, g3], [g4, g5], [g6, g7] | |
2 data parallel groups: | |
[g0, g2, g4, g6], [g1, g3, g5, g7] | |
Note that for efficiency, the caller should make sure adjacent ranks | |
are on the same DGX box. For example if we are using 2 DGX-1 boxes | |
with a total of 16 GPUs, rank 0 to 7 belong to the first box and | |
ranks 8 to 15 belong to the second box. | |
""" | |
log_dist(f'Creating model parallel group with size {model_parallel_size_}', ranks=[0]) | |
# Get world size and rank. Ensure some consistencies. | |
assert dist.is_initialized() | |
world_size = dist.get_world_size() | |
model_parallel_size = min(model_parallel_size_, world_size) | |
_ensure_divisibility(world_size, model_parallel_size) | |
rank = dist.get_rank() | |
_DATA_PARALLEL_GROUP = None | |
_MODEL_PARALLEL_GROUP = None | |
# Build the data parallel groups. | |
for i in range(model_parallel_size): | |
ranks = range(i, world_size, model_parallel_size) | |
group = dist.new_group(ranks) | |
if i == (rank % model_parallel_size): | |
_DATA_PARALLEL_GROUP = group | |
# Build the model parallel groups. | |
for i in range(world_size // model_parallel_size): | |
ranks = range(i * model_parallel_size, (i + 1) * model_parallel_size) | |
group = dist.new_group(ranks) | |
if i == (rank // model_parallel_size): | |
_MODEL_PARALLEL_GROUP = group | |
return _DATA_PARALLEL_GROUP, _MODEL_PARALLEL_GROUP | |
def _create_expert_and_data_parallel(expert_parallel_size_, use_data_before_expert_parallel_=False): | |
""" | |
Create expert and data parallel groups. | |
Note: Caller of this function is responsible to check if the groups already exist. | |
Example - E + D parallel | |
world_size = 16 | |
expert_parallel_size = 2 # number of experts in same group | |
expert_data_parallel_group = [0,2,4,6,8,10,12,14], [1,3,5,7,9,11,13,15] - all reduce is only on MoE params | |
expert_parallel_group = [0, 1], [2,3], [4,5], [6,7], [8,9] - no all reduce, but all to all | |
data_parallel_group = [0,1,...,15] - all reduce is only on non-MoE | |
use_data_before_expert_parallel_ (bool): Use the D + E instead of E + D topology | |
""" | |
assert dist.is_initialized() | |
log_dist(f'Creating expert and data parallel groups with size {expert_parallel_size_}', ranks=[0]) | |
world_size = dist.get_world_size() | |
pp_world_size = 1 if mpu is None else bwc_pipeline_parallel_world_size(mpu) | |
rank = dist.get_rank() | |
pp_stride = world_size // pp_world_size | |
_ensure_divisibility(pp_stride, expert_parallel_size_) | |
group_name = f"ep_size_{expert_parallel_size_}" | |
# Build the expert data parallel groups. | |
global _EXPERT_DATA_PARALLEL_GROUP | |
ep_stride = pp_stride // expert_parallel_size_ | |
# Only create group if it does not already exist | |
if group_name not in _EXPERT_DATA_PARALLEL_GROUP: | |
for pp_stage_start in range(0, world_size, pp_stride): | |
for i in range(expert_parallel_size_): | |
if use_data_before_expert_parallel_: | |
ranks = range(pp_stage_start + i * ep_stride, pp_stage_start + (i + 1) * ep_stride) | |
else: | |
ranks = range(pp_stage_start + i, pp_stage_start + pp_stride, expert_parallel_size_) | |
group = dist.new_group(ranks) | |
log_dist( | |
f'Creating expert data parallel process group named {group_name} ' | |
f'with ranks: {list(ranks)}', [0]) | |
if rank in ranks: | |
_EXPERT_DATA_PARALLEL_GROUP[group_name] = group | |
# Build the expert parallel groups. | |
global _EXPERT_PARALLEL_GROUP | |
# Only create group if it does not already exist | |
if group_name not in _EXPERT_PARALLEL_GROUP: | |
if use_data_before_expert_parallel_: | |
for pp_stage_start in range(0, world_size, pp_stride): | |
for i in range(ep_stride): | |
ranks = range(pp_stage_start + i, pp_stage_start + pp_stride, ep_stride) | |
group = dist.new_group(ranks) | |
log_dist( | |
f'creating expert parallel process group named {group_name} ' | |
f'with ranks: {list(ranks)}', [0]) | |
if rank in ranks: | |
_EXPERT_PARALLEL_GROUP[group_name] = group | |
else: | |
for i in range(world_size // expert_parallel_size_): | |
ranks = range(i * expert_parallel_size_, (i + 1) * expert_parallel_size_) | |
group = dist.new_group(ranks) | |
log_dist(f'creating expert parallel process group named {group_name} ' | |
f'with ranks: {list(ranks)}', [0]) | |
if rank in ranks: | |
_EXPERT_PARALLEL_GROUP[group_name] = group | |
def _get_expert_parallel_ranks(world_size, | |
tensor_parallel_size_, | |
expert_parallel_size_, | |
pipeline_parallel_size_=1, | |
use_data_before_expert_parallel_=False): | |
"""Generate expert parallel and expert data parallel group ranks list. | |
Example - E + M + D parallel | |
world_size = 16 | |
model_degree = 2 | |
expert_degree = 4 # number of experts in same group | |
mp_group = [0, 1], [2,3], [4,5] ... | |
data_parallel_group =[0,2,4,6,8,10, 12,14], [1,3,5,7,9,11,13,15] | |
expert_parallel_group = [0,2,4,6], [8,10,12,14] [1,3,5,7], [9,11,13,15] | |
expert_data_parallel_group = [0,8],[2,10],[4,12],[6,14], [1,9],[3,11],[5,13],[7,15] | |
Args: | |
world_size (int): Distributed world size. | |
tensor_parallel_size_ (int): Tensor parallel group size. | |
expert_parallel_size_ (int): Expert parallel group size. | |
pipeline_parallel_size_ (int): Pipeline parallel group size | |
use_data_before_expert_parallel_ (bool): Use the D + E instead of E + D topology | |
Returns: | |
Expert parallel group ranks and Expert data parallel group ranks list. | |
""" | |
_ensure_divisibility(world_size, tensor_parallel_size_ * pipeline_parallel_size_) | |
dp_world_size = world_size // (tensor_parallel_size_ * pipeline_parallel_size_) | |
_ensure_divisibility(dp_world_size, expert_parallel_size_) | |
# Generate data parallel groups | |
data_parallel_groups = [] | |
dp_group_size = tensor_parallel_size_ | |
pp_stride = world_size // pipeline_parallel_size_ | |
if use_data_before_expert_parallel_: | |
dp_stride = world_size // expert_parallel_size_ // tensor_parallel_size_ // pipeline_parallel_size_ | |
for pp_stage_start in range(0, world_size, pp_stride): | |
pp_stage_next = pp_stage_start + pp_stride | |
for i in range(dp_group_size): | |
data_parallel_groups.append(list()) | |
for ds in range(dp_stride): | |
# [0, 4, 8, 12, 16, 20, 24, 28, 2, 6, 10, 14, 18, 22, 26, 30] | |
# [1, 5, 9, 13, 17, 21, 25, 29, 3, 7, 11, 15, 19, 23, 27, 31] | |
data_parallel_groups[-1].extend( | |
list( | |
range(pp_stage_start + i + ds * tensor_parallel_size_, pp_stage_next, | |
dp_stride * tensor_parallel_size_))) | |
else: | |
for pp_stage_start in range(0, world_size, pp_stride): | |
pp_stage_next = pp_stage_start + pp_stride | |
for i in range(dp_group_size): | |
data_parallel_groups.append(list(range(pp_stage_start + i, pp_stage_next, dp_group_size))) | |
expert_parallel_groups = [] | |
expert_data_parallel_groups = [] | |
for dp_ranks in data_parallel_groups: | |
# partition of expert parallel groups, e.g. [0,2,4,6], [8,10,12,14] | |
part_ep_groups = [] | |
for i in range(0, dp_world_size, expert_parallel_size_): | |
part_ep_groups.append(dp_ranks[i:i + expert_parallel_size_]) | |
expert_parallel_groups.extend(part_ep_groups) | |
# zip part_ep_groups get expert data parallel ranks, e.g [0,8],[2,10],[4,12],[6,14] | |
for expert_dp_ranks in zip(*part_ep_groups): | |
expert_data_parallel_groups.append(list(expert_dp_ranks)) | |
return expert_parallel_groups, expert_data_parallel_groups | |
def _create_expert_data_and_model_parallel(expert_parallel_size_, mpu, use_data_before_expert_parallel_=False): | |
""" | |
Create expert and data parallel groups based on MPU (model parallel) group. | |
Note: Caller of this function is responsible to check if the groups already exist. | |
Example - E + M + D parallel | |
world_size = 16 | |
model_degree = 2 | |
expert_degree = 4 # number of experts in same group | |
mp_group = [0, 1], [2,3], [4,5] ... | |
data_parallel_group =[0,2,4,6,8,10, 12,14], [1,3,5,7,9,11,13,15] | |
expert_parallel_group = [0,2,4,6], [8,10,12,14] [1,3,5,7], [9,11,13,15] | |
expert_data_parallel_group = [0,8],[2,10],[4,12],[6,14], [1,9],[3,11],[5,13],[7,15] | |
""" | |
assert dist.is_initialized(), "dist is not initialized" | |
tensor_parallel_size_ = bwc_tensor_model_parallel_world_size(mpu) | |
global expert_tensor_parallel_world_size | |
expert_tensor_parallel_world_size = tensor_parallel_size_ | |
world_size = dist.get_world_size() | |
rank = dist.get_rank() | |
dp_world_size = mpu.get_data_parallel_world_size() | |
pp_world_size = 1 if mpu is None else bwc_pipeline_parallel_world_size(mpu) | |
_ensure_divisibility(world_size, tensor_parallel_size_) | |
_ensure_divisibility(dp_world_size, expert_parallel_size_) | |
log_dist( | |
f"Creating deepspeed groups with model parallel size {tensor_parallel_size_}, " | |
f"pipeline parallel size {pp_world_size}, expert parallel size {expert_parallel_size_}, " | |
f"world size {world_size}, dp world size {dp_world_size}", [0]) | |
global _EXPERT_PARALLEL_GROUP, _EXPERT_DATA_PARALLEL_GROUP | |
group_name = f"ep_size_{expert_parallel_size_}" | |
# Only create groups if they don't already exist | |
# Need to check conditions outside the group creation loop because of the way torch.dist group creation works | |
if group_name not in _EXPERT_DATA_PARALLEL_GROUP and group_name not in _EXPERT_PARALLEL_GROUP: | |
expert_parallel_groups, expert_data_parallel_groups = _get_expert_parallel_ranks( | |
world_size, tensor_parallel_size_, expert_parallel_size_, pp_world_size, use_data_before_expert_parallel_) | |
for ranks in expert_parallel_groups: | |
group = dist.new_group(ranks) | |
if rank in list(ranks): | |
_EXPERT_PARALLEL_GROUP[group_name] = group | |
for ranks in expert_data_parallel_groups: | |
group = dist.new_group(ranks) | |
if rank in list(ranks): | |
_EXPERT_DATA_PARALLEL_GROUP[group_name] = group | |
def _get_max_expert_size(): | |
"""Get the maximum ep_size from all the created groups.""" | |
assert _EXPERT_PARALLEL_GROUP is not None, "Warning! Process group not initialized" | |
keylist = [] | |
for key in _EXPERT_PARALLEL_GROUP.keys(): | |
# index 2 is ep_size in the group name: ep_size_<ep_size> | |
index = 2 | |
keylist.append(int(key.split('_')[index])) | |
return max(keylist) if len(keylist) > 0 else None | |
def _get_max_expert_size_name(): | |
"""Get the name of the group with max. ep_size""" | |
return f'ep_size_{_get_max_expert_size()}' | |
def _get_max_expert_parallel_group(): | |
"""Get the max expert parallel size.""" | |
return _get_expert_parallel_group(_get_max_expert_size_name()) | |
def _get_expert_parallel_group(group_name): | |
"""Get the expert parallel group the caller rank belongs to.""" | |
assert group_name in _EXPERT_PARALLEL_GROUP, \ | |
'expert parallel group is not initialized' | |
return _EXPERT_PARALLEL_GROUP[group_name] | |
def _get_expert_parallel_group_dict(): | |
"""Get the expert parallel group dict.""" | |
return _EXPERT_PARALLEL_GROUP | |
def _get_expert_data_parallel_group(group_name): | |
"""Get the expert data parallel group the caller rank belongs to.""" | |
assert group_name in _EXPERT_DATA_PARALLEL_GROUP, \ | |
'expert data parallel group is not initialized' | |
return _EXPERT_DATA_PARALLEL_GROUP[group_name] | |
def _get_expert_data_parallel_group_dict(): | |
"""Get the expert data parallel group dict.""" | |
return _EXPERT_DATA_PARALLEL_GROUP | |
def _clone_world_group(): | |
"""Create a clone of the world group | |
Note: We need to clone the dist world group because we | |
use dist.get_global_rank() utility function in DeepSpeed at many places. | |
As that function does not work on dist.group.WORLD, we | |
need to keep a clone of it. | |
""" | |
assert dist.is_initialized(), "dist is not initialized" | |
global _WORLD_GROUP | |
if _WORLD_GROUP is None: | |
# If not cloned already, clone the world group | |
_WORLD_GROUP = dist.new_group(ranks=range(dist.get_world_size())) | |
return _WORLD_GROUP | |
def _get_local_all_to_all_group(): | |
assert dist.is_initialized(), 'dist is not initialized' | |
global _ALL_TO_ALL_GROUP | |
device_per_node = get_accelerator().device_count() | |
num_local = dist.get_world_size() // device_per_node | |
if num_local == 0 and dist.get_world_size() > 0: | |
assert dist.get_world_size() >= 1, 'num_gpus must >=1, cannot initialize All-To-All' | |
cur_rank = [] | |
for i in range(dist.get_world_size()): | |
cur_rank.append(i) | |
_ALL_TO_ALL_GROUP['local_0'] = dist.new_group(ranks=cur_rank) | |
elif num_local == 1: | |
assert dist.get_world_size( | |
) == device_per_node, 'num_gpus not equal to device per node, cannot initialize All-To-All' | |
_ALL_TO_ALL_GROUP['local_0'] = dist.new_group(ranks=[i for i in range(device_per_node)]) | |
else: | |
assert dist.get_world_size() > device_per_node, 'num_nodes<2 cannot initialize All-To-All' | |
for i in range(num_local): | |
local_rank = [j + device_per_node * i for j in range(device_per_node)] | |
_ALL_TO_ALL_GROUP[f"local_{i}"] = dist.new_group(ranks=local_rank) | |
for i in range(device_per_node): | |
cur_rank = [] | |
for j in range(num_local): | |
cur_rank.append(i + j * device_per_node) | |
_ALL_TO_ALL_GROUP[f"global_{i}"] = dist.new_group(ranks=cur_rank) | |
return _ALL_TO_ALL_GROUP | |
def _get_data_parallel_group(): | |
"""Get the data parallel group the caller rank belongs to.""" | |
assert dist.is_initialized(), 'dist is not initialized' | |
global mpu | |
if mpu is not None: | |
return mpu.get_data_parallel_group() | |
# Return the clone of dist world group | |
return _clone_world_group() | |
def _get_broadcast_src_rank(): | |
return dist.get_global_rank(_get_sequence_data_parallel_group(), 0) | |
def _get_expert_broadcast_src_rank(group_name): | |
return dist.get_global_rank(_get_expert_data_parallel_group(group_name), 0) | |
def _get_expert_parallel_world_size(group_name): | |
"""Return world size for the expert parallel group.""" | |
return dist.get_world_size(group=_get_expert_parallel_group(group_name)) | |
def _get_expert_data_parallel_world_size(group_name): | |
"""Return world size for the expert data parallel group.""" | |
return dist.get_world_size(group=_get_expert_data_parallel_group(group_name)) | |
def _get_expert_parallel_rank(group_name): | |
"""Return my rank for the expert parallel group.""" | |
return dist.get_rank(group=_get_expert_parallel_group(group_name)) | |
def _get_expert_parallel_src_rank(group_name): | |
"""Calculate the global rank corresponding to a local rank zero | |
in the expert parallel group.""" | |
global_rank = dist.get_rank() | |
local_world_size = _get_expert_parallel_world_size(group_name) | |
return (global_rank // local_world_size) * local_world_size | |
def _get_expert_data_parallel_rank(group_name): | |
"""Return my rank for the expert data parallel group.""" | |
return dist.get_rank(group=_get_expert_data_parallel_group(group_name)) | |
def _get_data_parallel_world_size(): | |
"""Return world size for the data parallel group.""" | |
global mpu | |
if mpu is not None: | |
return mpu.get_data_parallel_world_size() | |
return dist.get_world_size(group=_get_data_parallel_group()) | |
def _get_model_parallel_world_size(): | |
"""Return world size for the model parallel group.""" | |
global mpu | |
if mpu is not None: | |
return mpu.get_model_parallel_world_size() | |
return 1 | |
def _get_data_parallel_rank(): | |
"""Return my rank for the data parallel group.""" | |
return dist.get_rank(group=_get_data_parallel_group()) | |
def _get_sequence_parallel_world_size(): | |
"""Return world size for the model parallel group.""" | |
global mpu | |
if mpu is not None and hasattr(mpu, 'get_sequence_parallel_world_size'): | |
return mpu.get_sequence_parallel_world_size() | |
return 1 | |
def _get_sequence_parallel_rank(): | |
"""Return my rank for the data parallel group.""" | |
global mpu | |
if mpu is not None and hasattr(mpu, 'get_sequence_parallel_rank'): | |
return mpu.get_sequence_parallel_rank() | |
return 0 | |
def _get_sequence_parallel_group(): | |
global mpu | |
if mpu is not None and hasattr(mpu, 'get_sequence_parallel_group'): | |
return mpu.get_sequence_parallel_group() | |
return None | |
def _get_sequence_data_parallel_world_size(): | |
"""Return world size for the model parallel group.""" | |
global mpu | |
if mpu is not None and hasattr(mpu, 'get_sequence_data_parallel_world_size'): | |
return mpu.get_sequence_data_parallel_world_size() | |
return _get_data_parallel_world_size() | |
def _get_sequence_data_parallel_rank(): | |
"""Return my rank for the data parallel group.""" | |
global mpu | |
if mpu is not None and hasattr(mpu, 'get_sequence_data_parallel_rank'): | |
return mpu.get_sequence_data_parallel_rank() | |
return _get_data_parallel_rank() | |
def _get_sequence_data_parallel_group(): | |
global mpu | |
# When sequence parallelism is enabled, the process group for zero sharding and | |
# gradient allreduce must be across both dimensions of data and sequence parallelism. | |
if mpu is not None and hasattr(mpu, 'get_sequence_data_parallel_group'): | |
return mpu.get_sequence_data_parallel_group() | |
return _get_data_parallel_group() | |
def _get_expert_model_parallel_world_size(): | |
global expert_tensor_parallel_world_size | |
return expert_tensor_parallel_world_size | |
def _create_zero_param_parallel_group(group_size): | |
""" | |
Create parameter partitioning group within ZeRO data parallel groups. | |
Example - ZP + D parallel | |
world_size = 16 | |
zero_hpz_partition_size = 2 # number of ranks with replicated params (dual partitioning) | |
zero_param_intra_parallel_group = [0, 1], [2,3], [4,5], [6,7], [8,9] - segmented (subgroup) with rep partition | |
data_parallel_group = [0,1,...,15] - all reduce is on ZeRO model | |
""" | |
assert dist.is_initialized() | |
global _ZERO_PARAM_INTRA_PARALLEL_GROUP | |
# Only create group if it does not already exist | |
assert _ZERO_PARAM_INTRA_PARALLEL_GROUP is None, \ | |
'ZeRO parameter intra parallel group is already initialized' | |
world_size = dist.get_world_size() | |
rank = dist.get_rank() | |
zero_param_parallel_size_ = min(group_size, world_size) | |
_ensure_divisibility(world_size, zero_param_parallel_size_) | |
# Build the ZeRO param intra parallel groups. | |
for i in range(world_size // zero_param_parallel_size_): | |
ranks = range(i * zero_param_parallel_size_, (i + 1) * zero_param_parallel_size_) | |
group = dist.new_group(ranks) | |
if i == (rank // zero_param_parallel_size_): | |
_ZERO_PARAM_INTRA_PARALLEL_GROUP = group | |
def _get_zero_param_intra_parallel_group(): | |
"""Get the ZeRO parameter partitioning intra parallel group the caller rank belongs to.""" | |
#assert _ZERO_PARAM_INTRA_PARALLEL_GROUP is not None, \ | |
# 'ZeRO parameter partitioning group is not initialized' | |
#TODO: Add warning | |
return _ZERO_PARAM_INTRA_PARALLEL_GROUP | |
def _zero_param_parallel_is_initialized(): | |
"""Check if ZeRO data parallel with parameter partititioning groups are initialized.""" | |
###TODO: assert that MPU is not set | |
if _ZERO_PARAM_INTRA_PARALLEL_GROUP is None and _DATA_PARALLEL_GROUP is None: | |
return False | |
def _get_zero_param_intra_parallel_rank_in_mygroup(): | |
"""Return my rank for the ZeRO parameter inter parallel group.""" | |
return dist.get_rank(group=_get_zero_param_intra_parallel_group()) | |
def _get_zero_param_intra_parallel_group_world_size(): | |
"""Return world size for the ZeRO parameter parallel group.""" | |
return dist.get_world_size(group=_get_zero_param_intra_parallel_group()) | |
def _get_zero_param_intra_parallel_group_ranks(): | |
"""Return all ranks for the ZeRO parameter intra parallel group.""" | |
return dist.get_all_ranks_from_group(group=_get_zero_param_intra_parallel_group()) | |