peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/utils
/timer.py
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
import time | |
from numpy import mean | |
from deepspeed.utils.logging import log_dist | |
from deepspeed.accelerator import get_accelerator | |
FORWARD_MICRO_TIMER = 'fwd_microstep' | |
FORWARD_GLOBAL_TIMER = 'fwd' | |
BACKWARD_MICRO_TIMER = 'bwd_microstep' | |
BACKWARD_GLOBAL_TIMER = 'bwd' | |
BACKWARD_INNER_MICRO_TIMER = 'bwd_inner_microstep' | |
BACKWARD_INNER_GLOBAL_TIMER = 'bwd_inner' | |
BACKWARD_REDUCE_MICRO_TIMER = 'bwd_allreduce_microstep' | |
BACKWARD_REDUCE_GLOBAL_TIMER = 'bwd_allreduce' | |
STEP_MICRO_TIMER = 'step_microstep' | |
STEP_GLOBAL_TIMER = 'step' | |
try: | |
import psutil | |
PSUTILS_INSTALLED = True | |
except ImportError: | |
PSUTILS_INSTALLED = False | |
pass | |
class CudaEventTimer(object): | |
def __init__(self, start_event: get_accelerator().Event, end_event: get_accelerator().Event): | |
self.start_event = start_event | |
self.end_event = end_event | |
def get_elapsed_msec(self): | |
get_accelerator().current_stream().wait_event(self.end_event) | |
self.end_event.synchronize() | |
return self.start_event.elapsed_time(self.end_event) | |
class SynchronizedWallClockTimer: | |
"""Group of timers. Borrowed from Nvidia Megatron code""" | |
class Timer: | |
"""Timer.""" | |
def __init__(self, name): | |
self.name_ = name | |
self.started_ = False | |
self.event_timers = [] | |
self.use_host_timer = get_accelerator().use_host_timers() | |
self.start_event = None | |
self.elapsed_records = None | |
self.start_time = 0.0 | |
self.end_time = 0.0 | |
def start(self): | |
"""Start the timer.""" | |
assert not self.started_, f"{self.name_} timer has already been started" | |
if self.use_host_timer: | |
self.start_time = time.time() | |
else: | |
event_class = get_accelerator().Event | |
self.start_event = event_class(enable_timing=True) | |
self.start_event.record() | |
self.started_ = True | |
def stop(self, reset=False, record=False): | |
"""Stop the timer.""" | |
assert self.started_, "timer is not started" | |
event_class = get_accelerator().Event | |
if self.use_host_timer: | |
self.end_time = time.time() | |
self.event_timers.append(self.end_time - self.start_time) | |
else: | |
event_class = get_accelerator().Event | |
end_event = event_class(enable_timing=True) | |
end_event.record() | |
self.event_timers.append(CudaEventTimer(self.start_event, end_event)) | |
self.start_event = None | |
self.started_ = False | |
def _get_elapsed_msec(self): | |
if self.use_host_timer: | |
self.elapsed_records = [et * 1000.0 for et in self.event_timers] | |
else: | |
self.elapsed_records = [et.get_elapsed_msec() for et in self.event_timers] | |
self.event_timers.clear() | |
return sum(self.elapsed_records) | |
def reset(self): | |
"""Reset timer.""" | |
self.started_ = False | |
self.start_event = None | |
self.elapsed_records = None | |
self.event_timers.clear() | |
def elapsed(self, reset=True): | |
"""Calculate the elapsed time.""" | |
started_ = self.started_ | |
# If the timing in progress, end it first. | |
if self.started_: | |
self.stop() | |
# Get the elapsed time. | |
elapsed_ = self._get_elapsed_msec() | |
# Reset the elapsed time | |
if reset: | |
self.reset() | |
# If timing was in progress, set it back. | |
if started_: | |
self.start() | |
return elapsed_ | |
def mean(self): | |
self.elapsed(reset=False) | |
return trim_mean(self.elapsed_records, 0.1) | |
def __init__(self): | |
self.timers = {} | |
def get_timers(self): | |
return self.timers | |
def __call__(self, name): | |
if name not in self.timers: | |
self.timers[name] = self.Timer(name) | |
return self.timers[name] | |
def memory_usage(): | |
alloc = "mem_allocated: {:.4f} GB".format(get_accelerator().memory_allocated() / (1024 * 1024 * 1024)) | |
max_alloc = "max_mem_allocated: {:.4f} GB".format(get_accelerator().max_memory_allocated() / | |
(1024 * 1024 * 1024)) | |
cache = "cache_allocated: {:.4f} GB".format(get_accelerator().memory_cached() / (1024 * 1024 * 1024)) | |
max_cache = "max_cache_allocated: {:.4f} GB".format(get_accelerator().max_memory_cached() / | |
(1024 * 1024 * 1024)) | |
return " | {} | {} | {} | {}".format(alloc, max_alloc, cache, max_cache) | |
def log(self, names, normalizer=1.0, reset=True, memory_breakdown=False, ranks=None): | |
"""Log a group of timers.""" | |
assert normalizer > 0.0 | |
string = f"time (ms)" | |
for name in names: | |
if name in self.timers: | |
elapsed_time = (self.timers[name].elapsed(reset=reset) / normalizer) | |
string += " | {}: {:.2f}".format(name, elapsed_time) | |
log_dist(string, ranks=ranks or [0]) | |
def get_mean(self, names, normalizer=1.0, reset=True): | |
"""Get the mean of a group of timers.""" | |
assert normalizer > 0.0 | |
means = {} | |
for name in names: | |
if name in self.timers: | |
elapsed_time = (self.timers[name].mean() * 1000.0 / normalizer) | |
means[name] = elapsed_time | |
return means | |
class NoopTimer: | |
class Timer: | |
def start(self): | |
... | |
def reset(self): | |
... | |
def stop(self, **kwargs): | |
... | |
def elapsed(self, **kwargs): | |
return 0 | |
def mean(self): | |
return 0 | |
def __init__(self): | |
self.timer = self.Timer() | |
def __call__(self, name): | |
return self.timer | |
def get_timers(self): | |
return {} | |
def log(self, names, normalizer=1.0, reset=True, memory_breakdown=False, ranks=None): | |
... | |
def get_mean(self, names, normalizer=1.0, reset=True): | |
... | |
class ThroughputTimer: | |
def __init__( | |
self, | |
batch_size, | |
start_step=2, | |
steps_per_output=50, | |
monitor_memory=False, | |
logging_fn=None, | |
): | |
from deepspeed.utils import logger | |
self.start_time = 0 | |
self.end_time = 0 | |
self.started = False | |
self.batch_size = 1 if batch_size is None else batch_size | |
self.start_step = start_step | |
self.epoch_count = 0 | |
self.micro_step_count = 0 | |
self.global_step_count = 0 | |
self.total_elapsed_time = 0 | |
self.step_elapsed_time = 0 | |
self.steps_per_output = steps_per_output | |
self.monitor_memory = monitor_memory | |
self.logging = logging_fn | |
if self.logging is None: | |
self.logging = logger.info | |
self.initialized = False | |
if self.monitor_memory and not PSUTILS_INSTALLED: | |
raise ImportError("Unable to import 'psutils', please install package") | |
def update_epoch_count(self): | |
self.epoch_count += 1 | |
self.micro_step_count = 0 | |
def _init_timer(self): | |
self.initialized = True | |
def start(self): | |
self._init_timer() | |
self.started = True | |
if self.global_step_count >= self.start_step: | |
get_accelerator().synchronize() | |
self.start_time = time.time() | |
def stop(self, global_step=False, report_speed=True): | |
if not self.started: | |
return | |
self.started = False | |
self.micro_step_count += 1 | |
if global_step: | |
self.global_step_count += 1 | |
if self.start_time > 0: | |
get_accelerator().synchronize() | |
self.end_time = time.time() | |
duration = self.end_time - self.start_time | |
self.total_elapsed_time += duration | |
self.step_elapsed_time += duration | |
if global_step: | |
if report_speed and self.global_step_count % self.steps_per_output == 0: | |
self.logging( | |
"epoch={}/micro_step={}/global_step={}, RunningAvgSamplesPerSec={}, CurrSamplesPerSec={}, " | |
"MemAllocated={}GB, MaxMemAllocated={}GB".format( | |
self.epoch_count, | |
self.micro_step_count, | |
self.global_step_count, | |
self.avg_samples_per_sec(), | |
self.batch_size / self.step_elapsed_time, | |
round(get_accelerator().memory_allocated() / 1024**3, 2), | |
round(get_accelerator().max_memory_allocated() / 1024**3, 2), | |
)) | |
if self.monitor_memory: | |
virt_mem = psutil.virtual_memory() | |
swap = psutil.swap_memory() | |
self.logging("epoch={}/micro_step={}/global_step={}, vm %: {}, swap %: {}".format( | |
self.epoch_count, | |
self.micro_step_count, | |
self.global_step_count, | |
virt_mem.percent, | |
swap.percent, | |
)) | |
self.step_elapsed_time = 0 | |
def avg_samples_per_sec(self): | |
if self.global_step_count > 0: | |
total_step_offset = self.global_step_count - self.start_step | |
avg_time_per_step = self.total_elapsed_time / total_step_offset | |
# training samples per second | |
return self.batch_size / avg_time_per_step | |
return float("-inf") | |
def trim_mean(data, trim_percent): | |
"""Compute the trimmed mean of a list of numbers. | |
Args: | |
data (list): List of numbers. | |
trim_percent (float): Percentage of data to trim. | |
Returns: | |
float: Trimmed mean. | |
""" | |
assert 0.0 <= trim_percent <= 1.0 | |
n = len(data) | |
# Account for edge case of empty list | |
if len(data) == 0: | |
return 0 | |
data.sort() | |
k = int(round(n * (trim_percent))) | |
return mean(data[k:n - k]) | |