peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/evaluate
/config.py
import importlib | |
import os | |
import platform | |
from pathlib import Path | |
from packaging import version | |
from .utils.logging import get_logger | |
logger = get_logger(__name__) | |
# Metrics | |
S3_METRICS_BUCKET_PREFIX = "https://s3.amazonaws.com/datasets.huggingface.co/datasets/metrics" | |
CLOUDFRONT_METRICS_DISTRIB_PREFIX = "https://cdn-datasets.huggingface.co/datasets/metric" | |
REPO_METRICS_URL = "https://raw.githubusercontent.com/huggingface/evaluate/{revision}/metrics/{path}/{name}" | |
REPO_MEASUREMENTS_URL = "https://raw.githubusercontent.com/huggingface/evaluate/{revision}/measurements/{path}/{name}" | |
REPO_COMPARISONS_URL = "https://raw.githubusercontent.com/huggingface/evaluate/{revision}/comparisons/{path}/{name}" | |
# Evaluation module types | |
EVALUATION_MODULE_TYPES = ["metric", "comparison", "measurement"] | |
# Hub | |
HF_ENDPOINT = os.environ.get("HF_ENDPOINT", "https://huggingface.co") | |
HF_LIST_ENDPOINT = HF_ENDPOINT + "/api/spaces?filter={type}" | |
HUB_EVALUATE_URL = HF_ENDPOINT + "/spaces/{path}/resolve/{revision}/{name}" | |
HUB_DEFAULT_VERSION = "main" | |
PY_VERSION = version.parse(platform.python_version()) | |
if PY_VERSION < version.parse("3.8"): | |
import importlib_metadata | |
else: | |
import importlib.metadata as importlib_metadata | |
# General environment variables accepted values for booleans | |
ENV_VARS_TRUE_VALUES = {"1", "ON", "YES", "TRUE"} | |
ENV_VARS_TRUE_AND_AUTO_VALUES = ENV_VARS_TRUE_VALUES.union({"AUTO"}) | |
# Imports | |
PANDAS_VERSION = version.parse(importlib_metadata.version("pandas")) | |
PYARROW_VERSION = version.parse(importlib_metadata.version("pyarrow")) | |
USE_TF = os.environ.get("USE_TF", "AUTO").upper() | |
USE_TORCH = os.environ.get("USE_TORCH", "AUTO").upper() | |
USE_JAX = os.environ.get("USE_JAX", "AUTO").upper() | |
TORCH_VERSION = "N/A" | |
TORCH_AVAILABLE = False | |
if USE_TORCH in ENV_VARS_TRUE_AND_AUTO_VALUES and USE_TF not in ENV_VARS_TRUE_VALUES: | |
TORCH_AVAILABLE = importlib.util.find_spec("torch") is not None | |
if TORCH_AVAILABLE: | |
try: | |
TORCH_VERSION = version.parse(importlib_metadata.version("torch")) | |
logger.info(f"PyTorch version {TORCH_VERSION} available.") | |
except importlib_metadata.PackageNotFoundError: | |
pass | |
else: | |
logger.info("Disabling PyTorch because USE_TF is set") | |
TF_VERSION = "N/A" | |
TF_AVAILABLE = False | |
if USE_TF in ENV_VARS_TRUE_AND_AUTO_VALUES and USE_TORCH not in ENV_VARS_TRUE_VALUES: | |
TF_AVAILABLE = importlib.util.find_spec("tensorflow") is not None | |
if TF_AVAILABLE: | |
# For the metadata, we have to look for both tensorflow and tensorflow-cpu | |
for package in [ | |
"tensorflow", | |
"tensorflow-cpu", | |
"tensorflow-gpu", | |
"tf-nightly", | |
"tf-nightly-cpu", | |
"tf-nightly-gpu", | |
"intel-tensorflow", | |
"tensorflow-rocm", | |
"tensorflow-macos", | |
]: | |
try: | |
TF_VERSION = version.parse(importlib_metadata.version(package)) | |
except importlib_metadata.PackageNotFoundError: | |
continue | |
else: | |
break | |
else: | |
TF_AVAILABLE = False | |
if TF_AVAILABLE: | |
if TF_VERSION.major < 2: | |
logger.info(f"TensorFlow found but with version {TF_VERSION}. `datasets` requires version 2 minimum.") | |
TF_AVAILABLE = False | |
else: | |
logger.info(f"TensorFlow version {TF_VERSION} available.") | |
else: | |
logger.info("Disabling Tensorflow because USE_TORCH is set") | |
JAX_VERSION = "N/A" | |
JAX_AVAILABLE = False | |
if USE_JAX in ENV_VARS_TRUE_AND_AUTO_VALUES: | |
JAX_AVAILABLE = importlib.util.find_spec("jax") is not None | |
if JAX_AVAILABLE: | |
try: | |
JAX_VERSION = version.parse(importlib_metadata.version("jax")) | |
logger.info(f"JAX version {JAX_VERSION} available.") | |
except importlib_metadata.PackageNotFoundError: | |
pass | |
else: | |
logger.info("Disabling JAX because USE_JAX is set to False") | |
# Cache location | |
DEFAULT_XDG_CACHE_HOME = "~/.cache" | |
XDG_CACHE_HOME = os.getenv("XDG_CACHE_HOME", DEFAULT_XDG_CACHE_HOME) | |
DEFAULT_HF_CACHE_HOME = os.path.join(XDG_CACHE_HOME, "huggingface") | |
HF_CACHE_HOME = os.path.expanduser(os.getenv("HF_HOME", DEFAULT_HF_CACHE_HOME)) | |
DEFAULT_HF_EVALUATE_CACHE = os.path.join(HF_CACHE_HOME, "evaluate") | |
HF_EVALUATE_CACHE = Path(os.getenv("HF_EVALUATE_CACHE", DEFAULT_HF_EVALUATE_CACHE)) | |
DEFAULT_HF_METRICS_CACHE = os.path.join(HF_CACHE_HOME, "metrics") | |
HF_METRICS_CACHE = Path(os.getenv("HF_METRICS_CACHE", DEFAULT_HF_METRICS_CACHE)) | |
DEFAULT_HF_MODULES_CACHE = os.path.join(HF_CACHE_HOME, "modules") | |
HF_MODULES_CACHE = Path(os.getenv("HF_MODULES_CACHE", DEFAULT_HF_MODULES_CACHE)) | |
DOWNLOADED_DATASETS_DIR = "downloads" | |
DEFAULT_DOWNLOADED_EVALUATE_PATH = os.path.join(HF_EVALUATE_CACHE, DOWNLOADED_DATASETS_DIR) | |
DOWNLOADED_EVALUATE_PATH = Path(os.getenv("HF_DATASETS_DOWNLOADED_EVALUATE_PATH", DEFAULT_DOWNLOADED_EVALUATE_PATH)) | |
EXTRACTED_EVALUATE_DIR = "extracted" | |
DEFAULT_EXTRACTED_EVALUATE_PATH = os.path.join(DEFAULT_DOWNLOADED_EVALUATE_PATH, EXTRACTED_EVALUATE_DIR) | |
EXTRACTED_EVALUATE_PATH = Path(os.getenv("HF_DATASETS_EXTRACTED_EVALUATE_PATH", DEFAULT_EXTRACTED_EVALUATE_PATH)) | |
# Download count for the website | |
HF_UPDATE_DOWNLOAD_COUNTS = ( | |
os.environ.get("HF_UPDATE_DOWNLOAD_COUNTS", "AUTO").upper() in ENV_VARS_TRUE_AND_AUTO_VALUES | |
) | |
# Offline mode | |
HF_EVALUATE_OFFLINE = os.environ.get("HF_EVALUATE_OFFLINE", "AUTO").upper() in ENV_VARS_TRUE_VALUES | |
# File names | |
LICENSE_FILENAME = "LICENSE" | |
METRIC_INFO_FILENAME = "metric_info.json" | |
DATASETDICT_JSON_FILENAME = "dataset_dict.json" | |
MODULE_NAME_FOR_DYNAMIC_MODULES = "evaluate_modules" | |
HF_HUB_ALLOWED_TASKS = [ | |
"image-classification", | |
"translation", | |
"image-segmentation", | |
"fill-mask", | |
"automatic-speech-recognition", | |
"token-classification", | |
"sentence-similarity", | |
"audio-classification", | |
"question-answering", | |
"summarization", | |
"zero-shot-classification", | |
"table-to-text", | |
"feature-extraction", | |
"other", | |
"multiple-choice", | |
"text-classification", | |
"text-to-image", | |
"text2text-generation", | |
"zero-shot-image-classification", | |
"tabular-classification", | |
"tabular-regression", | |
"image-to-image", | |
"tabular-to-text", | |
"unconditional-image-generation", | |
"text-retrieval", | |
"text-to-speech", | |
"object-detection", | |
"audio-to-audio", | |
"text-generation", | |
"conversational", | |
"table-question-answering", | |
"visual-question-answering", | |
"image-to-text", | |
"reinforcement-learning", | |
"voice-activity-detection", | |
"time-series-forecasting", | |
"document-question-answering", | |
] | |