peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/evaluate
/evaluator
/audio_classification.py
# Copyright 2022 The HuggingFace Evaluate Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from numbers import Number | |
from typing import TYPE_CHECKING, Any, Callable, Dict, Optional, Tuple, Union | |
from datasets import Dataset | |
from typing_extensions import Literal | |
from ..module import EvaluationModule | |
from ..utils.file_utils import add_end_docstrings, add_start_docstrings | |
from .base import EVALUATOR_COMPUTE_RETURN_DOCSTRING, EVALUTOR_COMPUTE_START_DOCSTRING, Evaluator | |
if TYPE_CHECKING: | |
from transformers import FeatureExtractionMixin, Pipeline, PreTrainedModel, PreTrainedTokenizer, TFPreTrainedModel | |
TASK_DOCUMENTATION = r""" | |
Examples: | |
<Tip> | |
Remember that, in order to process audio files, you need ffmpeg installed (https://ffmpeg.org/download.html) | |
</Tip> | |
```python | |
>>> from evaluate import evaluator | |
>>> from datasets import load_dataset | |
>>> task_evaluator = evaluator("audio-classification") | |
>>> data = load_dataset("superb", 'ks', split="test[:40]") | |
>>> results = task_evaluator.compute( | |
>>> model_or_pipeline=""superb/wav2vec2-base-superb-ks"", | |
>>> data=data, | |
>>> label_column="label", | |
>>> input_column="file", | |
>>> metric="accuracy", | |
>>> label_mapping={0: "yes", 1: "no", 2: "up", 3: "down"} | |
>>> ) | |
``` | |
<Tip> | |
The evaluator supports raw audio data as well, in the form of a numpy array. However, be aware that calling | |
the audio column automatically decodes and resamples the audio files, which can be slow for large datasets. | |
</Tip> | |
```python | |
>>> from evaluate import evaluator | |
>>> from datasets import load_dataset | |
>>> task_evaluator = evaluator("audio-classification") | |
>>> data = load_dataset("superb", 'ks', split="test[:40]") | |
>>> data = data.map(lambda example: {"audio": example["audio"]["array"]}) | |
>>> results = task_evaluator.compute( | |
>>> model_or_pipeline=""superb/wav2vec2-base-superb-ks"", | |
>>> data=data, | |
>>> label_column="label", | |
>>> input_column="audio", | |
>>> metric="accuracy", | |
>>> label_mapping={0: "yes", 1: "no", 2: "up", 3: "down"} | |
>>> ) | |
``` | |
""" | |
class AudioClassificationEvaluator(Evaluator): | |
""" | |
Audio classification evaluator. | |
This audio classification evaluator can currently be loaded from [`evaluator`] using the default task name | |
`audio-classification`. | |
Methods in this class assume a data format compatible with the [`transformers.AudioClassificationPipeline`]. | |
""" | |
PIPELINE_KWARGS = {} | |
def __init__(self, task="audio-classification", default_metric_name=None): | |
super().__init__(task, default_metric_name=default_metric_name) | |
def predictions_processor(self, predictions, label_mapping): | |
pred_label = [max(pred, key=lambda x: x["score"])["label"] for pred in predictions] | |
pred_label = [label_mapping[pred] if label_mapping is not None else pred for pred in pred_label] | |
return {"predictions": pred_label} | |
def compute( | |
self, | |
model_or_pipeline: Union[ | |
str, "Pipeline", Callable, "PreTrainedModel", "TFPreTrainedModel" # noqa: F821 | |
] = None, | |
data: Union[str, Dataset] = None, | |
subset: Optional[str] = None, | |
split: Optional[str] = None, | |
metric: Union[str, EvaluationModule] = None, | |
tokenizer: Optional[Union[str, "PreTrainedTokenizer"]] = None, # noqa: F821 | |
feature_extractor: Optional[Union[str, "FeatureExtractionMixin"]] = None, # noqa: F821 | |
strategy: Literal["simple", "bootstrap"] = "simple", | |
confidence_level: float = 0.95, | |
n_resamples: int = 9999, | |
device: int = None, | |
random_state: Optional[int] = None, | |
input_column: str = "file", | |
label_column: str = "label", | |
label_mapping: Optional[Dict[str, Number]] = None, | |
) -> Tuple[Dict[str, float], Any]: | |
""" | |
input_column (`str`, defaults to `"file"`): | |
The name of the column containing either the audio files or a raw waveform, represented as a numpy array, in the dataset specified by `data`. | |
label_column (`str`, defaults to `"label"`): | |
The name of the column containing the labels in the dataset specified by `data`. | |
label_mapping (`Dict[str, Number]`, *optional*, defaults to `None`): | |
We want to map class labels defined by the model in the pipeline to values consistent with those | |
defined in the `label_column` of the `data` dataset. | |
""" | |
result = super().compute( | |
model_or_pipeline=model_or_pipeline, | |
data=data, | |
subset=subset, | |
split=split, | |
metric=metric, | |
tokenizer=tokenizer, | |
feature_extractor=feature_extractor, | |
strategy=strategy, | |
confidence_level=confidence_level, | |
n_resamples=n_resamples, | |
device=device, | |
random_state=random_state, | |
input_column=input_column, | |
label_column=label_column, | |
label_mapping=label_mapping, | |
) | |
return result | |