applied-ai-018's picture
Add files using upload-large-folder tool
9e86264 verified
# Copyright 2022 The HuggingFace Evaluate Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING, Any, Callable, Dict, Optional, Tuple, Union
from datasets import Dataset
from typing_extensions import Literal
from ..module import EvaluationModule
from ..utils.file_utils import add_start_docstrings
from .base import EVALUATOR_COMPUTE_RETURN_DOCSTRING, EVALUTOR_COMPUTE_START_DOCSTRING, Evaluator
if TYPE_CHECKING:
from transformers import Pipeline, PreTrainedModel, PreTrainedTokenizer, TFPreTrainedModel
TASK_DOCUMENTATION_KWARGS = r"""
input_column (`str`, defaults to `"text"`):
the name of the column containing the input text in the dataset specified by `data`.
label_column (`str`, defaults to `"label"`):
the name of the column containing the labels in the dataset specified by `data`.
generation_kwargs (`Dict`, *optional*, defaults to `None`):
The generation kwargs are passed to the pipeline and set the text generation strategy.
"""
TEXT2TEXT_TASK_DOCSTRING_EXAMPLE = r"""
Examples:
```python
>>> from evaluate import evaluator
>>> from datasets import load_dataset
>>> task_evaluator = evaluator("text2text-generation")
>>> data = load_dataset("cnn_dailymail", "3.0.0", split="validation[:40]")
>>> results = task_evaluator.compute(
>>> model_or_pipeline="facebook/bart-large-cnn",
>>> data=data,
>>> input_column="article",
>>> label_column="highlights",
>>> metric="rouge",
>>> )
```
"""
SUMMARIZATION_TASK_DOCSTRING_EXAMPLE = r"""
Examples:
```python
>>> from evaluate import evaluator
>>> from datasets import load_dataset
>>> task_evaluator = evaluator("summarization")
>>> data = load_dataset("cnn_dailymail", "3.0.0", split="validation[:40]")
>>> results = task_evaluator.compute(
>>> model_or_pipeline="facebook/bart-large-cnn",
>>> data=data,
>>> input_column="article",
>>> label_column="highlights",
>>> )
```
"""
TRANSLATION_TASK_DOCSTRING_EXAMPLE = r"""
Examples:
```python
>>> from evaluate import evaluator
>>> from datasets import load_dataset
>>> task_evaluator = evaluator("translation")
>>> data = load_dataset("wmt19", "fr-de", split="validation[:40]")
>>> data = data.map(lambda x: {"text": x["translation"]["de"], "label": x["translation"]["fr"]})
>>> results = task_evaluator.compute(
>>> model_or_pipeline="Helsinki-NLP/opus-mt-de-fr",
>>> data=data,
>>> )
```
"""
class Text2TextGenerationEvaluator(Evaluator):
"""
Text2Text generation evaluator.
This Text2Text generation evaluator can currently be loaded from [`evaluator`] using the default task name
`text2text-generation`.
Methods in this class assume a data format compatible with the [`~transformers.Text2TextGenerationPipeline`].
"""
PREDICTION_PREFIX = "generated"
PIPELINE_KWARGS = {"truncation": True}
def __init__(self, task="text2text-generation", default_metric_name=None):
super().__init__(task, default_metric_name=default_metric_name)
def predictions_processor(self, predictions, label_mapping):
return {"predictions": [pred[f"{self.PREDICTION_PREFIX}_text"] for pred in predictions]}
@add_start_docstrings(
EVALUTOR_COMPUTE_START_DOCSTRING,
TASK_DOCUMENTATION_KWARGS,
EVALUATOR_COMPUTE_RETURN_DOCSTRING,
TEXT2TEXT_TASK_DOCSTRING_EXAMPLE,
)
def compute(
self,
model_or_pipeline: Union[
str, "Pipeline", Callable, "PreTrainedModel", "TFPreTrainedModel" # noqa: F821
] = None,
data: Union[str, Dataset] = None,
subset: Optional[str] = None,
split: Optional[str] = None,
metric: Union[str, EvaluationModule] = None,
tokenizer: Optional[Union[str, "PreTrainedTokenizer"]] = None, # noqa: F821
strategy: Literal["simple", "bootstrap"] = "simple",
confidence_level: float = 0.95,
n_resamples: int = 9999,
device: int = None,
random_state: Optional[int] = None,
input_column: str = "text",
label_column: str = "label",
generation_kwargs: dict = None,
) -> Tuple[Dict[str, float], Any]:
if generation_kwargs is not None:
self.PIPELINE_KWARGS.update(generation_kwargs)
result = super().compute(
model_or_pipeline=model_or_pipeline,
data=data,
subset=subset,
split=split,
metric=metric,
tokenizer=tokenizer,
strategy=strategy,
confidence_level=confidence_level,
n_resamples=n_resamples,
device=device,
random_state=random_state,
input_column=input_column,
label_column=label_column,
)
return result
class SummarizationEvaluator(Text2TextGenerationEvaluator):
"""
Text summarization evaluator.
This text summarization evaluator can currently be loaded from [`evaluator`] using the default task name
`summarization`.
Methods in this class assume a data format compatible with the [`SummarizationEvaluator`].
"""
PREDICTION_PREFIX = "summary"
PIPELINE_KWARGS = {"truncation": True}
def __init__(self, task="summarization", default_metric_name=None):
super().__init__(task, default_metric_name=default_metric_name)
@add_start_docstrings(
EVALUTOR_COMPUTE_START_DOCSTRING,
TASK_DOCUMENTATION_KWARGS,
EVALUATOR_COMPUTE_RETURN_DOCSTRING,
SUMMARIZATION_TASK_DOCSTRING_EXAMPLE,
)
def compute(
self,
model_or_pipeline: Union[
str, "Pipeline", Callable, "PreTrainedModel", "TFPreTrainedModel" # noqa: F821
] = None,
data: Union[str, Dataset] = None,
subset: Optional[str] = None,
split: Optional[str] = None,
metric: Union[str, EvaluationModule] = None,
tokenizer: Optional[Union[str, "PreTrainedTokenizer"]] = None, # noqa: F821
strategy: Literal["simple", "bootstrap"] = "simple",
confidence_level: float = 0.95,
n_resamples: int = 9999,
device: int = None,
random_state: Optional[int] = None,
input_column: str = "text",
label_column: str = "label",
generation_kwargs: dict = None,
) -> Tuple[Dict[str, float], Any]:
result = super().compute(
model_or_pipeline=model_or_pipeline,
data=data,
subset=subset,
split=split,
metric=metric,
tokenizer=tokenizer,
strategy=strategy,
confidence_level=confidence_level,
n_resamples=n_resamples,
device=device,
random_state=random_state,
input_column=input_column,
label_column=label_column,
generation_kwargs=generation_kwargs,
)
return result
class TranslationEvaluator(Text2TextGenerationEvaluator):
"""
Translation evaluator.
This translation generation evaluator can currently be loaded from [`evaluator`] using the default task name
`translation`.
Methods in this class assume a data format compatible with the [`~transformers.TranslationPipeline`].
"""
PREDICTION_PREFIX = "translation"
PIPELINE_KWARGS = {"truncation": True}
def __init__(self, task="translation", default_metric_name=None):
super().__init__(task, default_metric_name=default_metric_name)
@add_start_docstrings(
EVALUTOR_COMPUTE_START_DOCSTRING,
TASK_DOCUMENTATION_KWARGS,
EVALUATOR_COMPUTE_RETURN_DOCSTRING,
TRANSLATION_TASK_DOCSTRING_EXAMPLE,
)
def compute(
self,
model_or_pipeline: Union[
str, "Pipeline", Callable, "PreTrainedModel", "TFPreTrainedModel" # noqa: F821
] = None,
data: Union[str, Dataset] = None,
subset: Optional[str] = None,
split: Optional[str] = None,
metric: Union[str, EvaluationModule] = None,
tokenizer: Optional[Union[str, "PreTrainedTokenizer"]] = None, # noqa: F821
strategy: Literal["simple", "bootstrap"] = "simple",
confidence_level: float = 0.95,
n_resamples: int = 9999,
device: int = None,
random_state: Optional[int] = None,
input_column: str = "text",
label_column: str = "label",
generation_kwargs: dict = None,
) -> Tuple[Dict[str, float], Any]:
result = super().compute(
model_or_pipeline=model_or_pipeline,
data=data,
subset=subset,
split=split,
metric=metric,
tokenizer=tokenizer,
strategy=strategy,
confidence_level=confidence_level,
n_resamples=n_resamples,
device=device,
random_state=random_state,
input_column=input_column,
label_column=label_column,
generation_kwargs=generation_kwargs,
)
return result