peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/evaluate
/evaluator
/text_generation.py
# Copyright 2022 The HuggingFace Evaluate Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Dict, Tuple | |
from datasets import Dataset | |
from .base import Evaluator | |
from .utils import DatasetColumn | |
TASK_DOCUMENTATION_KWARGS = r""" | |
input_column (`str`, defaults to `"text"`): | |
the name of the column containing the input text in the dataset specified by `data`. | |
generation_kwargs (`Dict`, *optional*, defaults to `None`): | |
The generation kwargs are passed to the pipeline and set the text generation strategy. | |
""" | |
class TextGenerationEvaluator(Evaluator): | |
""" | |
Text generation evaluator. | |
This Text generation evaluator can currently be loaded from [`evaluator`] using the default task name | |
`text-generation`. | |
Methods in this class assume a data format compatible with the [`~transformers.TextGenerationPipeline`]. | |
""" | |
def predictions_processor(self, predictions, *args, **kwargs): | |
""" | |
Args: | |
predictions: A list of lists of dicts | |
Returns: | |
`dict`: All the generated texts are flattened and stored under the "data" key. | |
""" | |
return {"data": [pred[f"{self.predictions_prefix}_text"] for pred_list in predictions for pred in pred_list]} | |
def __init__(self, task="text-generation", default_metric_name=None, predictions_prefix: str = "generated"): | |
super().__init__(task=task, default_metric_name=default_metric_name) | |
self.predictions_prefix = predictions_prefix | |
def prepare_data(self, data: Dataset, input_column: str, *args, **kwargs) -> Tuple[Dict, DatasetColumn]: | |
""" | |
Prepare data. | |
Args: | |
data ([`Dataset`]): | |
Specifies the dataset we will run evaluation on. | |
input_column (`str`, defaults to `"text"`): | |
The name of the column containing the text feature in the dataset specified by `data`. | |
Returns: | |
`dict`: metric inputs. | |
`list`: pipeline inputs. | |
""" | |
self.check_required_columns(data, {"input_column": input_column}) | |
return {}, DatasetColumn(data, input_column) | |