peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/evaluate
/visualization.py
import textwrap | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import pandas as pd | |
class ComplexRadar: | |
"""Create a complex radar chart with different scales for each variable | |
Args: | |
fig (`matplotlib.figure`) : A matplotlib figure object to add the axes on. | |
variables (`list`) : a list of variables to. plot | |
ranges (`list` of `tuples`): A list of ranges (min, max) for each variable | |
n_ring_levels (`int): Number of ordinate or ring levels to draw. | |
Default: 5. | |
show_scales (`bool`): Indicates if we the ranges for each variable are plotted. | |
Default: True. | |
format_cfg (`dict`): A dictionary with formatting configurations. | |
Default: None. | |
Returns: | |
`matplotlib.figure.Figure`: a radar plot. | |
""" | |
def __init__(self, fig, variables, ranges, n_ring_levels=5, show_scales=True, format_cfg=None): | |
self.format_cfg = format_cfg | |
# Calculate angles and create for each variable an axes | |
# Consider here the trick with having the first axes element twice (len+1) | |
angles = np.arange(0, 360, 360.0 / len(variables)) | |
axes = [ | |
fig.add_axes([0.1, 0.1, 0.9, 0.9], polar=True, label="axes{}".format(i), **self.format_cfg["axes_args"]) | |
for i in range(len(variables) + 1) | |
] | |
# Ensure clockwise rotation (first variable at the top N) | |
for ax in axes: | |
ax.set_theta_zero_location("N") | |
ax.set_theta_direction(-1) | |
ax.set_axisbelow(True) | |
# Writing the ranges on each axes | |
for i, ax in enumerate(axes): | |
# Here we do the trick by repeating the first iteration | |
j = 0 if (i == 0 or i == 1) else i - 1 | |
ax.set_ylim(*ranges[j]) | |
# Set endpoint to True if you like to have values right before the last circle | |
grid = np.linspace(*ranges[j], num=n_ring_levels, endpoint=self.format_cfg["incl_endpoint"]) | |
gridlabel = ["{}".format(round(x, 2)) for x in grid] | |
gridlabel[0] = "" # remove values from the center | |
lines, labels = ax.set_rgrids( | |
grid, labels=gridlabel, angle=angles[j], **self.format_cfg["rgrid_tick_lbls_args"] | |
) | |
ax.set_ylim(*ranges[j]) | |
ax.spines["polar"].set_visible(False) | |
ax.grid(visible=False) | |
if show_scales is False: | |
ax.set_yticklabels([]) | |
# Set all axes except the first one unvisible | |
for ax in axes[1:]: | |
ax.patch.set_visible(False) | |
ax.xaxis.set_visible(False) | |
# Setting the attributes | |
self.angle = np.deg2rad(np.r_[angles, angles[0]]) | |
self.ranges = ranges | |
self.ax = axes[0] | |
self.ax1 = axes[1] | |
self.plot_counter = 0 | |
# Draw (inner) circles and lines | |
self.ax.yaxis.grid(**self.format_cfg["rad_ln_args"]) | |
# Draw outer circle | |
self.ax.spines["polar"].set(**self.format_cfg["outer_ring"]) | |
# Draw angle lines | |
self.ax.xaxis.grid(**self.format_cfg["angle_ln_args"]) | |
# ax1 is the duplicate of axes[0] (self.ax) | |
# Remove everything from ax1 except the plot itself | |
self.ax1.axis("off") | |
self.ax1.set_zorder(9) | |
# Create the outer labels for each variable | |
l, text = self.ax.set_thetagrids(angles, labels=variables) | |
# Beautify them | |
labels = [t.get_text() for t in self.ax.get_xticklabels()] | |
labels = [ | |
"\n".join( | |
textwrap.wrap( | |
label, | |
self.format_cfg["theta_tick_lbls_txt_wrap"], | |
break_long_words=self.format_cfg["theta_tick_lbls_brk_lng_wrds"], | |
) | |
) | |
for label in labels | |
] | |
self.ax.set_xticklabels(labels, **self.format_cfg["theta_tick_lbls"]) | |
for t, a in zip(self.ax.get_xticklabels(), angles): | |
if a == 0: | |
t.set_ha("center") | |
elif a > 0 and a < 180: | |
t.set_ha("left") | |
elif a == 180: | |
t.set_ha("center") | |
else: | |
t.set_ha("right") | |
self.ax.tick_params(axis="both", pad=self.format_cfg["theta_tick_lbls_pad"]) | |
def _scale_data(self, data, ranges): | |
"""Scales data[1:] to ranges[0]""" | |
for d, (y1, y2) in zip(data[1:], ranges[1:]): | |
assert (y1 <= d <= y2) or (y2 <= d <= y1) | |
x1, x2 = ranges[0] | |
d = data[0] | |
sdata = [d] | |
for d, (y1, y2) in zip(data[1:], ranges[1:]): | |
sdata.append((d - y1) / (y2 - y1) * (x2 - x1) + x1) | |
return sdata | |
def plot(self, data, *args, **kwargs): | |
"""Plots a line""" | |
sdata = self._scale_data(data, self.ranges) | |
self.ax1.plot(self.angle, np.r_[sdata, sdata[0]], *args, **kwargs) | |
self.plot_counter = self.plot_counter + 1 | |
def use_legend(self, *args, **kwargs): | |
"""Shows a legend""" | |
self.ax1.legend(*args, **kwargs) | |
def radar_plot(data, model_names, invert_range=[], config=None, fig=None): | |
"""Create a complex radar chart with different scales for each variable | |
Source: https://towardsdatascience.com/how-to-create-and-visualize-complex-radar-charts-f7764d0f3652 | |
Args: | |
data (`List[dict]`): the results (list of metric + value pairs). | |
E.g. data = [{"accuracy": 0.9, "precision":0.8},{"accuracy": 0.7, "precision":0.6}] | |
names (`List[dict]`): model names. | |
E.g. names = ["model1", "model 2", ...] | |
invert_range (`List[dict]`, optional): the metrics to invert (in cases when smaller is better, e.g. speed) | |
E.g. invert_range=["latency_in_seconds"] | |
config (`dict`, optional) : a specification of the formatting configurations, namely: | |
- rad_ln_args (`dict`, default `{"visible": True}`): The visibility of the radial (circle) lines. | |
- outer_ring (`dict`, default `{"visible": True}`): The visibility of the outer ring. | |
- angle_ln_args (`dict`, default `{"visible": True}`): The visibility of the angle lines. | |
- rgrid_tick_lbls_args (`dict`, default `{"fontsize": 12}`): The font size of the tick labels on the scales. | |
- theta_tick_lbls (`dict`, default `{"fontsize": 12}`): The font size of the variable labels on the plot. | |
- theta_tick_lbls_pad (`int`, default `3`): The padding of the variable labels on the plot. | |
- theta_tick_lbls_brk_lng_wrds (`bool`, default `True` ): Whether long words in the label are broken up or not. | |
- theta_tick_lbls_txt_wrap (`int`, default `15`): Text wrap for tick labels | |
- incl_endpoint (`bool`, default `False`): Include value endpoints on calse | |
- marker (`str`, default `"o"`): the shape of the marker used in the radar plot. | |
- markersize (`int`, default `3`): the shape of the marker used in the radar plot. | |
- legend_loc (`str`, default `"upper right"`): the location of the legend in the radar plot. Must be one of: 'upper left', 'upper right', 'lower left', 'lower right'. | |
- bbox_to_anchor (`tuple`, default `(2, 1)`: anchor for the legend. | |
fig (`matplotlib.figure.Figure`, optional): figure used to plot the radar plot. | |
Returns: | |
`matplotlib.figure.Figure` | |
""" | |
data = pd.DataFrame(data) | |
data.index = model_names | |
variables = data.keys() | |
if all(x in variables for x in invert_range) is False: | |
raise ValueError("All of the metrics in `invert_range` should be in the data provided.") | |
min_max_per_variable = data.describe().T[["min", "max"]] | |
min_max_per_variable["min"] = min_max_per_variable["min"] - 0.1 * ( | |
min_max_per_variable["max"] - min_max_per_variable["min"] | |
) | |
min_max_per_variable["max"] = min_max_per_variable["max"] + 0.1 * ( | |
min_max_per_variable["max"] - min_max_per_variable["min"] | |
) | |
ranges = list(min_max_per_variable.itertuples(index=False, name=None)) | |
ranges = [ | |
(max_value, min_value) if var in invert_range else (min_value, max_value) | |
for var, (min_value, max_value) in zip(variables, ranges) | |
] | |
format_cfg = { | |
"axes_args": {}, | |
"rad_ln_args": {"visible": True}, | |
"outer_ring": {"visible": True}, | |
"angle_ln_args": {"visible": True}, | |
"rgrid_tick_lbls_args": {"fontsize": 12}, | |
"theta_tick_lbls": {"fontsize": 12}, | |
"theta_tick_lbls_pad": 3, | |
"theta_tick_lbls_brk_lng_wrds": True, | |
"theta_tick_lbls_txt_wrap": 15, | |
"incl_endpoint": False, | |
"marker": "o", | |
"markersize": 3, | |
"legend_loc": "upper right", | |
"bbox_to_anchor": (2, 1), | |
} | |
if config is not None: | |
format_cfg.update(config) | |
if fig is None: | |
fig = plt.figure() | |
radar = ComplexRadar( | |
fig, | |
variables, | |
ranges, | |
n_ring_levels=3, | |
show_scales=True, | |
format_cfg=format_cfg, | |
) | |
for g in zip(data.index): | |
radar.plot(data.loc[g].values, label=g, marker=format_cfg["marker"], markersize=format_cfg["markersize"]) | |
radar.use_legend(**{"loc": format_cfg["legend_loc"], "bbox_to_anchor": format_cfg["bbox_to_anchor"]}) | |
return fig | |