applied-ai-018 commited on
Commit
12a7103
·
verified ·
1 Parent(s): 1959592

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. ckpts/universal/global_step80/zero/26.input_layernorm.weight/exp_avg_sq.pt +3 -0
  2. ckpts/universal/global_step80/zero/26.input_layernorm.weight/fp32.pt +3 -0
  3. venv/lib/python3.10/site-packages/networkx/generators/__pycache__/community.cpython-310.pyc +0 -0
  4. venv/lib/python3.10/site-packages/networkx/generators/__pycache__/geometric.cpython-310.pyc +0 -0
  5. venv/lib/python3.10/site-packages/networkx/generators/__pycache__/internet_as_graphs.cpython-310.pyc +0 -0
  6. venv/lib/python3.10/site-packages/networkx/generators/__pycache__/random_graphs.cpython-310.pyc +0 -0
  7. venv/lib/python3.10/site-packages/networkx/generators/tests/__init__.py +0 -0
  8. venv/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/__init__.cpython-310.pyc +0 -0
  9. venv/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_atlas.cpython-310.pyc +0 -0
  10. venv/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_classic.cpython-310.pyc +0 -0
  11. venv/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_cographs.cpython-310.pyc +0 -0
  12. venv/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_community.cpython-310.pyc +0 -0
  13. venv/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_degree_seq.cpython-310.pyc +0 -0
  14. venv/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_directed.cpython-310.pyc +0 -0
  15. venv/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_duplication.cpython-310.pyc +0 -0
  16. venv/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_ego.cpython-310.pyc +0 -0
  17. venv/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_expanders.cpython-310.pyc +0 -0
  18. venv/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_geometric.cpython-310.pyc +0 -0
  19. venv/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_harary_graph.cpython-310.pyc +0 -0
  20. venv/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_internet_as_graphs.cpython-310.pyc +0 -0
  21. venv/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_intersection.cpython-310.pyc +0 -0
  22. venv/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_interval_graph.cpython-310.pyc +0 -0
  23. venv/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_joint_degree_seq.cpython-310.pyc +0 -0
  24. venv/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_lattice.cpython-310.pyc +0 -0
  25. venv/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_line.cpython-310.pyc +0 -0
  26. venv/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_mycielski.cpython-310.pyc +0 -0
  27. venv/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_nonisomorphic_trees.cpython-310.pyc +0 -0
  28. venv/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_random_clustered.cpython-310.pyc +0 -0
  29. venv/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_random_graphs.cpython-310.pyc +0 -0
  30. venv/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_small.cpython-310.pyc +0 -0
  31. venv/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_spectral_graph_forge.cpython-310.pyc +0 -0
  32. venv/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_stochastic.cpython-310.pyc +0 -0
  33. venv/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_sudoku.cpython-310.pyc +0 -0
  34. venv/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_time_series.cpython-310.pyc +0 -0
  35. venv/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_trees.cpython-310.pyc +0 -0
  36. venv/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_triads.cpython-310.pyc +0 -0
  37. venv/lib/python3.10/site-packages/networkx/generators/tests/test_atlas.py +75 -0
  38. venv/lib/python3.10/site-packages/networkx/generators/tests/test_classic.py +635 -0
  39. venv/lib/python3.10/site-packages/networkx/generators/tests/test_cographs.py +20 -0
  40. venv/lib/python3.10/site-packages/networkx/generators/tests/test_community.py +362 -0
  41. venv/lib/python3.10/site-packages/networkx/generators/tests/test_degree_seq.py +230 -0
  42. venv/lib/python3.10/site-packages/networkx/generators/tests/test_directed.py +162 -0
  43. venv/lib/python3.10/site-packages/networkx/generators/tests/test_duplication.py +84 -0
  44. venv/lib/python3.10/site-packages/networkx/generators/tests/test_ego.py +39 -0
  45. venv/lib/python3.10/site-packages/networkx/generators/tests/test_expanders.py +164 -0
  46. venv/lib/python3.10/site-packages/networkx/generators/tests/test_geometric.py +488 -0
  47. venv/lib/python3.10/site-packages/networkx/generators/tests/test_harary_graph.py +134 -0
  48. venv/lib/python3.10/site-packages/networkx/generators/tests/test_internet_as_graphs.py +176 -0
  49. venv/lib/python3.10/site-packages/networkx/generators/tests/test_intersection.py +28 -0
  50. venv/lib/python3.10/site-packages/networkx/generators/tests/test_interval_graph.py +145 -0
ckpts/universal/global_step80/zero/26.input_layernorm.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:20f6bb8c264a773f831be28422f9c9fdd7877e2c10a629e1f68afd160c7c90ea
3
+ size 9387
ckpts/universal/global_step80/zero/26.input_layernorm.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7707fff121789cea016f154201dfb45731f5a444529157570435ab17353ac45a
3
+ size 9293
venv/lib/python3.10/site-packages/networkx/generators/__pycache__/community.cpython-310.pyc ADDED
Binary file (31.2 kB). View file
 
venv/lib/python3.10/site-packages/networkx/generators/__pycache__/geometric.cpython-310.pyc ADDED
Binary file (38.9 kB). View file
 
venv/lib/python3.10/site-packages/networkx/generators/__pycache__/internet_as_graphs.cpython-310.pyc ADDED
Binary file (12.5 kB). View file
 
venv/lib/python3.10/site-packages/networkx/generators/__pycache__/random_graphs.cpython-310.pyc ADDED
Binary file (35.5 kB). View file
 
venv/lib/python3.10/site-packages/networkx/generators/tests/__init__.py ADDED
File without changes
venv/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (193 Bytes). View file
 
venv/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_atlas.cpython-310.pyc ADDED
Binary file (3.58 kB). View file
 
venv/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_classic.cpython-310.pyc ADDED
Binary file (21.4 kB). View file
 
venv/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_cographs.cpython-310.pyc ADDED
Binary file (658 Bytes). View file
 
venv/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_community.cpython-310.pyc ADDED
Binary file (10.3 kB). View file
 
venv/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_degree_seq.cpython-310.pyc ADDED
Binary file (8.65 kB). View file
 
venv/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_directed.cpython-310.pyc ADDED
Binary file (7.01 kB). View file
 
venv/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_duplication.cpython-310.pyc ADDED
Binary file (3.58 kB). View file
 
venv/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_ego.cpython-310.pyc ADDED
Binary file (1.57 kB). View file
 
venv/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_expanders.cpython-310.pyc ADDED
Binary file (5.85 kB). View file
 
venv/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_geometric.cpython-310.pyc ADDED
Binary file (20.1 kB). View file
 
venv/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_harary_graph.cpython-310.pyc ADDED
Binary file (2.84 kB). View file
 
venv/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_internet_as_graphs.cpython-310.pyc ADDED
Binary file (4.83 kB). View file
 
venv/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_intersection.cpython-310.pyc ADDED
Binary file (1.56 kB). View file
 
venv/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_interval_graph.cpython-310.pyc ADDED
Binary file (4.19 kB). View file
 
venv/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_joint_degree_seq.cpython-310.pyc ADDED
Binary file (2.52 kB). View file
 
venv/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_lattice.cpython-310.pyc ADDED
Binary file (10.5 kB). View file
 
venv/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_line.cpython-310.pyc ADDED
Binary file (10.7 kB). View file
 
venv/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_mycielski.cpython-310.pyc ADDED
Binary file (1.49 kB). View file
 
venv/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_nonisomorphic_trees.cpython-310.pyc ADDED
Binary file (3.27 kB). View file
 
venv/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_random_clustered.cpython-310.pyc ADDED
Binary file (2.19 kB). View file
 
venv/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_random_graphs.cpython-310.pyc ADDED
Binary file (11.7 kB). View file
 
venv/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_small.cpython-310.pyc ADDED
Binary file (7.42 kB). View file
 
venv/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_spectral_graph_forge.cpython-310.pyc ADDED
Binary file (1.14 kB). View file
 
venv/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_stochastic.cpython-310.pyc ADDED
Binary file (2.86 kB). View file
 
venv/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_sudoku.cpython-310.pyc ADDED
Binary file (1.79 kB). View file
 
venv/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_time_series.cpython-310.pyc ADDED
Binary file (2.65 kB). View file
 
venv/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_trees.cpython-310.pyc ADDED
Binary file (6.5 kB). View file
 
venv/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_triads.cpython-310.pyc ADDED
Binary file (874 Bytes). View file
 
venv/lib/python3.10/site-packages/networkx/generators/tests/test_atlas.py ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from itertools import groupby
2
+
3
+ import pytest
4
+
5
+ import networkx as nx
6
+ from networkx import graph_atlas, graph_atlas_g
7
+ from networkx.generators.atlas import NUM_GRAPHS
8
+ from networkx.utils import edges_equal, nodes_equal, pairwise
9
+
10
+
11
+ class TestAtlasGraph:
12
+ """Unit tests for the :func:`~networkx.graph_atlas` function."""
13
+
14
+ def test_index_too_small(self):
15
+ with pytest.raises(ValueError):
16
+ graph_atlas(-1)
17
+
18
+ def test_index_too_large(self):
19
+ with pytest.raises(ValueError):
20
+ graph_atlas(NUM_GRAPHS)
21
+
22
+ def test_graph(self):
23
+ G = graph_atlas(6)
24
+ assert nodes_equal(G.nodes(), range(3))
25
+ assert edges_equal(G.edges(), [(0, 1), (0, 2)])
26
+
27
+
28
+ class TestAtlasGraphG:
29
+ """Unit tests for the :func:`~networkx.graph_atlas_g` function."""
30
+
31
+ @classmethod
32
+ def setup_class(cls):
33
+ cls.GAG = graph_atlas_g()
34
+
35
+ def test_sizes(self):
36
+ G = self.GAG[0]
37
+ assert G.number_of_nodes() == 0
38
+ assert G.number_of_edges() == 0
39
+
40
+ G = self.GAG[7]
41
+ assert G.number_of_nodes() == 3
42
+ assert G.number_of_edges() == 3
43
+
44
+ def test_names(self):
45
+ for i, G in enumerate(self.GAG):
46
+ assert int(G.name[1:]) == i
47
+
48
+ def test_nondecreasing_nodes(self):
49
+ # check for nondecreasing number of nodes
50
+ for n1, n2 in pairwise(map(len, self.GAG)):
51
+ assert n2 <= n1 + 1
52
+
53
+ def test_nondecreasing_edges(self):
54
+ # check for nondecreasing number of edges (for fixed number of
55
+ # nodes)
56
+ for n, group in groupby(self.GAG, key=nx.number_of_nodes):
57
+ for m1, m2 in pairwise(map(nx.number_of_edges, group)):
58
+ assert m2 <= m1 + 1
59
+
60
+ def test_nondecreasing_degree_sequence(self):
61
+ # Check for lexicographically nondecreasing degree sequences
62
+ # (for fixed number of nodes and edges).
63
+ #
64
+ # There are three exceptions to this rule in the order given in
65
+ # the "Atlas of Graphs" book, so we need to manually exclude
66
+ # those.
67
+ exceptions = [("G55", "G56"), ("G1007", "G1008"), ("G1012", "G1013")]
68
+ for n, group in groupby(self.GAG, key=nx.number_of_nodes):
69
+ for m, group in groupby(group, key=nx.number_of_edges):
70
+ for G1, G2 in pairwise(group):
71
+ if (G1.name, G2.name) in exceptions:
72
+ continue
73
+ d1 = sorted(d for v, d in G1.degree())
74
+ d2 = sorted(d for v, d in G2.degree())
75
+ assert d1 <= d2
venv/lib/python3.10/site-packages/networkx/generators/tests/test_classic.py ADDED
@@ -0,0 +1,635 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ ====================
3
+ Generators - Classic
4
+ ====================
5
+
6
+ Unit tests for various classic graph generators in generators/classic.py
7
+ """
8
+ import itertools
9
+ import typing
10
+
11
+ import pytest
12
+
13
+ import networkx as nx
14
+ from networkx.algorithms.isomorphism.isomorph import graph_could_be_isomorphic
15
+ from networkx.utils import edges_equal, nodes_equal
16
+
17
+ is_isomorphic = graph_could_be_isomorphic
18
+
19
+
20
+ class TestGeneratorClassic:
21
+ def test_balanced_tree(self):
22
+ # balanced_tree(r,h) is a tree with (r**(h+1)-1)/(r-1) edges
23
+ for r, h in [(2, 2), (3, 3), (6, 2)]:
24
+ t = nx.balanced_tree(r, h)
25
+ order = t.order()
26
+ assert order == (r ** (h + 1) - 1) / (r - 1)
27
+ assert nx.is_connected(t)
28
+ assert t.size() == order - 1
29
+ dh = nx.degree_histogram(t)
30
+ assert dh[0] == 0 # no nodes of 0
31
+ assert dh[1] == r**h # nodes of degree 1 are leaves
32
+ assert dh[r] == 1 # root is degree r
33
+ assert dh[r + 1] == order - r**h - 1 # everyone else is degree r+1
34
+ assert len(dh) == r + 2
35
+
36
+ def test_balanced_tree_star(self):
37
+ # balanced_tree(r,1) is the r-star
38
+ t = nx.balanced_tree(r=2, h=1)
39
+ assert is_isomorphic(t, nx.star_graph(2))
40
+ t = nx.balanced_tree(r=5, h=1)
41
+ assert is_isomorphic(t, nx.star_graph(5))
42
+ t = nx.balanced_tree(r=10, h=1)
43
+ assert is_isomorphic(t, nx.star_graph(10))
44
+
45
+ def test_balanced_tree_path(self):
46
+ """Tests that the balanced tree with branching factor one is the
47
+ path graph.
48
+
49
+ """
50
+ # A tree of height four has five levels.
51
+ T = nx.balanced_tree(1, 4)
52
+ P = nx.path_graph(5)
53
+ assert is_isomorphic(T, P)
54
+
55
+ def test_full_rary_tree(self):
56
+ r = 2
57
+ n = 9
58
+ t = nx.full_rary_tree(r, n)
59
+ assert t.order() == n
60
+ assert nx.is_connected(t)
61
+ dh = nx.degree_histogram(t)
62
+ assert dh[0] == 0 # no nodes of 0
63
+ assert dh[1] == 5 # nodes of degree 1 are leaves
64
+ assert dh[r] == 1 # root is degree r
65
+ assert dh[r + 1] == 9 - 5 - 1 # everyone else is degree r+1
66
+ assert len(dh) == r + 2
67
+
68
+ def test_full_rary_tree_balanced(self):
69
+ t = nx.full_rary_tree(2, 15)
70
+ th = nx.balanced_tree(2, 3)
71
+ assert is_isomorphic(t, th)
72
+
73
+ def test_full_rary_tree_path(self):
74
+ t = nx.full_rary_tree(1, 10)
75
+ assert is_isomorphic(t, nx.path_graph(10))
76
+
77
+ def test_full_rary_tree_empty(self):
78
+ t = nx.full_rary_tree(0, 10)
79
+ assert is_isomorphic(t, nx.empty_graph(10))
80
+ t = nx.full_rary_tree(3, 0)
81
+ assert is_isomorphic(t, nx.empty_graph(0))
82
+
83
+ def test_full_rary_tree_3_20(self):
84
+ t = nx.full_rary_tree(3, 20)
85
+ assert t.order() == 20
86
+
87
+ def test_barbell_graph(self):
88
+ # number of nodes = 2*m1 + m2 (2 m1-complete graphs + m2-path + 2 edges)
89
+ # number of edges = 2*(nx.number_of_edges(m1-complete graph) + m2 + 1
90
+ m1 = 3
91
+ m2 = 5
92
+ b = nx.barbell_graph(m1, m2)
93
+ assert nx.number_of_nodes(b) == 2 * m1 + m2
94
+ assert nx.number_of_edges(b) == m1 * (m1 - 1) + m2 + 1
95
+
96
+ m1 = 4
97
+ m2 = 10
98
+ b = nx.barbell_graph(m1, m2)
99
+ assert nx.number_of_nodes(b) == 2 * m1 + m2
100
+ assert nx.number_of_edges(b) == m1 * (m1 - 1) + m2 + 1
101
+
102
+ m1 = 3
103
+ m2 = 20
104
+ b = nx.barbell_graph(m1, m2)
105
+ assert nx.number_of_nodes(b) == 2 * m1 + m2
106
+ assert nx.number_of_edges(b) == m1 * (m1 - 1) + m2 + 1
107
+
108
+ # Raise NetworkXError if m1<2
109
+ m1 = 1
110
+ m2 = 20
111
+ pytest.raises(nx.NetworkXError, nx.barbell_graph, m1, m2)
112
+
113
+ # Raise NetworkXError if m2<0
114
+ m1 = 5
115
+ m2 = -2
116
+ pytest.raises(nx.NetworkXError, nx.barbell_graph, m1, m2)
117
+
118
+ # nx.barbell_graph(2,m) = nx.path_graph(m+4)
119
+ m1 = 2
120
+ m2 = 5
121
+ b = nx.barbell_graph(m1, m2)
122
+ assert is_isomorphic(b, nx.path_graph(m2 + 4))
123
+
124
+ m1 = 2
125
+ m2 = 10
126
+ b = nx.barbell_graph(m1, m2)
127
+ assert is_isomorphic(b, nx.path_graph(m2 + 4))
128
+
129
+ m1 = 2
130
+ m2 = 20
131
+ b = nx.barbell_graph(m1, m2)
132
+ assert is_isomorphic(b, nx.path_graph(m2 + 4))
133
+
134
+ pytest.raises(
135
+ nx.NetworkXError, nx.barbell_graph, m1, m2, create_using=nx.DiGraph()
136
+ )
137
+
138
+ mb = nx.barbell_graph(m1, m2, create_using=nx.MultiGraph())
139
+ assert edges_equal(mb.edges(), b.edges())
140
+
141
+ def test_binomial_tree(self):
142
+ graphs = (None, nx.Graph, nx.DiGraph, nx.MultiGraph, nx.MultiDiGraph)
143
+ for create_using in graphs:
144
+ for n in range(4):
145
+ b = nx.binomial_tree(n, create_using)
146
+ assert nx.number_of_nodes(b) == 2**n
147
+ assert nx.number_of_edges(b) == (2**n - 1)
148
+
149
+ def test_complete_graph(self):
150
+ # complete_graph(m) is a connected graph with
151
+ # m nodes and m*(m+1)/2 edges
152
+ for m in [0, 1, 3, 5]:
153
+ g = nx.complete_graph(m)
154
+ assert nx.number_of_nodes(g) == m
155
+ assert nx.number_of_edges(g) == m * (m - 1) // 2
156
+
157
+ mg = nx.complete_graph(m, create_using=nx.MultiGraph)
158
+ assert edges_equal(mg.edges(), g.edges())
159
+
160
+ g = nx.complete_graph("abc")
161
+ assert nodes_equal(g.nodes(), ["a", "b", "c"])
162
+ assert g.size() == 3
163
+
164
+ # creates a self-loop... should it? <backward compatible says yes>
165
+ g = nx.complete_graph("abcb")
166
+ assert nodes_equal(g.nodes(), ["a", "b", "c"])
167
+ assert g.size() == 4
168
+
169
+ g = nx.complete_graph("abcb", create_using=nx.MultiGraph)
170
+ assert nodes_equal(g.nodes(), ["a", "b", "c"])
171
+ assert g.size() == 6
172
+
173
+ def test_complete_digraph(self):
174
+ # complete_graph(m) is a connected graph with
175
+ # m nodes and m*(m+1)/2 edges
176
+ for m in [0, 1, 3, 5]:
177
+ g = nx.complete_graph(m, create_using=nx.DiGraph)
178
+ assert nx.number_of_nodes(g) == m
179
+ assert nx.number_of_edges(g) == m * (m - 1)
180
+
181
+ g = nx.complete_graph("abc", create_using=nx.DiGraph)
182
+ assert len(g) == 3
183
+ assert g.size() == 6
184
+ assert g.is_directed()
185
+
186
+ def test_circular_ladder_graph(self):
187
+ G = nx.circular_ladder_graph(5)
188
+ pytest.raises(
189
+ nx.NetworkXError, nx.circular_ladder_graph, 5, create_using=nx.DiGraph
190
+ )
191
+ mG = nx.circular_ladder_graph(5, create_using=nx.MultiGraph)
192
+ assert edges_equal(mG.edges(), G.edges())
193
+
194
+ def test_circulant_graph(self):
195
+ # Ci_n(1) is the cycle graph for all n
196
+ Ci6_1 = nx.circulant_graph(6, [1])
197
+ C6 = nx.cycle_graph(6)
198
+ assert edges_equal(Ci6_1.edges(), C6.edges())
199
+
200
+ # Ci_n(1, 2, ..., n div 2) is the complete graph for all n
201
+ Ci7 = nx.circulant_graph(7, [1, 2, 3])
202
+ K7 = nx.complete_graph(7)
203
+ assert edges_equal(Ci7.edges(), K7.edges())
204
+
205
+ # Ci_6(1, 3) is K_3,3 i.e. the utility graph
206
+ Ci6_1_3 = nx.circulant_graph(6, [1, 3])
207
+ K3_3 = nx.complete_bipartite_graph(3, 3)
208
+ assert is_isomorphic(Ci6_1_3, K3_3)
209
+
210
+ def test_cycle_graph(self):
211
+ G = nx.cycle_graph(4)
212
+ assert edges_equal(G.edges(), [(0, 1), (0, 3), (1, 2), (2, 3)])
213
+ mG = nx.cycle_graph(4, create_using=nx.MultiGraph)
214
+ assert edges_equal(mG.edges(), [(0, 1), (0, 3), (1, 2), (2, 3)])
215
+ G = nx.cycle_graph(4, create_using=nx.DiGraph)
216
+ assert not G.has_edge(2, 1)
217
+ assert G.has_edge(1, 2)
218
+ assert G.is_directed()
219
+
220
+ G = nx.cycle_graph("abc")
221
+ assert len(G) == 3
222
+ assert G.size() == 3
223
+ G = nx.cycle_graph("abcb")
224
+ assert len(G) == 3
225
+ assert G.size() == 2
226
+ g = nx.cycle_graph("abc", nx.DiGraph)
227
+ assert len(g) == 3
228
+ assert g.size() == 3
229
+ assert g.is_directed()
230
+ g = nx.cycle_graph("abcb", nx.DiGraph)
231
+ assert len(g) == 3
232
+ assert g.size() == 4
233
+
234
+ def test_dorogovtsev_goltsev_mendes_graph(self):
235
+ G = nx.dorogovtsev_goltsev_mendes_graph(0)
236
+ assert edges_equal(G.edges(), [(0, 1)])
237
+ assert nodes_equal(list(G), [0, 1])
238
+ G = nx.dorogovtsev_goltsev_mendes_graph(1)
239
+ assert edges_equal(G.edges(), [(0, 1), (0, 2), (1, 2)])
240
+ assert nx.average_clustering(G) == 1.0
241
+ assert sorted(nx.triangles(G).values()) == [1, 1, 1]
242
+ G = nx.dorogovtsev_goltsev_mendes_graph(10)
243
+ assert nx.number_of_nodes(G) == 29526
244
+ assert nx.number_of_edges(G) == 59049
245
+ assert G.degree(0) == 1024
246
+ assert G.degree(1) == 1024
247
+ assert G.degree(2) == 1024
248
+
249
+ pytest.raises(
250
+ nx.NetworkXError,
251
+ nx.dorogovtsev_goltsev_mendes_graph,
252
+ 7,
253
+ create_using=nx.DiGraph,
254
+ )
255
+ pytest.raises(
256
+ nx.NetworkXError,
257
+ nx.dorogovtsev_goltsev_mendes_graph,
258
+ 7,
259
+ create_using=nx.MultiGraph,
260
+ )
261
+
262
+ def test_create_using(self):
263
+ G = nx.empty_graph()
264
+ assert isinstance(G, nx.Graph)
265
+ pytest.raises(TypeError, nx.empty_graph, create_using=0.0)
266
+ pytest.raises(TypeError, nx.empty_graph, create_using="Graph")
267
+
268
+ G = nx.empty_graph(create_using=nx.MultiGraph)
269
+ assert isinstance(G, nx.MultiGraph)
270
+ G = nx.empty_graph(create_using=nx.DiGraph)
271
+ assert isinstance(G, nx.DiGraph)
272
+
273
+ G = nx.empty_graph(create_using=nx.DiGraph, default=nx.MultiGraph)
274
+ assert isinstance(G, nx.DiGraph)
275
+ G = nx.empty_graph(create_using=None, default=nx.MultiGraph)
276
+ assert isinstance(G, nx.MultiGraph)
277
+ G = nx.empty_graph(default=nx.MultiGraph)
278
+ assert isinstance(G, nx.MultiGraph)
279
+
280
+ G = nx.path_graph(5)
281
+ H = nx.empty_graph(create_using=G)
282
+ assert not H.is_multigraph()
283
+ assert not H.is_directed()
284
+ assert len(H) == 0
285
+ assert G is H
286
+
287
+ H = nx.empty_graph(create_using=nx.MultiGraph())
288
+ assert H.is_multigraph()
289
+ assert not H.is_directed()
290
+ assert G is not H
291
+
292
+ # test for subclasses that also use typing.Protocol. See gh-6243
293
+ class Mixin(typing.Protocol):
294
+ pass
295
+
296
+ class MyGraph(Mixin, nx.DiGraph):
297
+ pass
298
+
299
+ G = nx.empty_graph(create_using=MyGraph)
300
+
301
+ def test_empty_graph(self):
302
+ G = nx.empty_graph()
303
+ assert nx.number_of_nodes(G) == 0
304
+ G = nx.empty_graph(42)
305
+ assert nx.number_of_nodes(G) == 42
306
+ assert nx.number_of_edges(G) == 0
307
+
308
+ G = nx.empty_graph("abc")
309
+ assert len(G) == 3
310
+ assert G.size() == 0
311
+
312
+ # create empty digraph
313
+ G = nx.empty_graph(42, create_using=nx.DiGraph(name="duh"))
314
+ assert nx.number_of_nodes(G) == 42
315
+ assert nx.number_of_edges(G) == 0
316
+ assert isinstance(G, nx.DiGraph)
317
+
318
+ # create empty multigraph
319
+ G = nx.empty_graph(42, create_using=nx.MultiGraph(name="duh"))
320
+ assert nx.number_of_nodes(G) == 42
321
+ assert nx.number_of_edges(G) == 0
322
+ assert isinstance(G, nx.MultiGraph)
323
+
324
+ # create empty graph from another
325
+ pete = nx.petersen_graph()
326
+ G = nx.empty_graph(42, create_using=pete)
327
+ assert nx.number_of_nodes(G) == 42
328
+ assert nx.number_of_edges(G) == 0
329
+ assert isinstance(G, nx.Graph)
330
+
331
+ def test_ladder_graph(self):
332
+ for i, G in [
333
+ (0, nx.empty_graph(0)),
334
+ (1, nx.path_graph(2)),
335
+ (2, nx.hypercube_graph(2)),
336
+ (10, nx.grid_graph([2, 10])),
337
+ ]:
338
+ assert is_isomorphic(nx.ladder_graph(i), G)
339
+
340
+ pytest.raises(nx.NetworkXError, nx.ladder_graph, 2, create_using=nx.DiGraph)
341
+
342
+ g = nx.ladder_graph(2)
343
+ mg = nx.ladder_graph(2, create_using=nx.MultiGraph)
344
+ assert edges_equal(mg.edges(), g.edges())
345
+
346
+ @pytest.mark.parametrize(("m", "n"), [(3, 5), (4, 10), (3, 20)])
347
+ def test_lollipop_graph_right_sizes(self, m, n):
348
+ G = nx.lollipop_graph(m, n)
349
+ assert nx.number_of_nodes(G) == m + n
350
+ assert nx.number_of_edges(G) == m * (m - 1) / 2 + n
351
+
352
+ @pytest.mark.parametrize(("m", "n"), [("ab", ""), ("abc", "defg")])
353
+ def test_lollipop_graph_size_node_sequence(self, m, n):
354
+ G = nx.lollipop_graph(m, n)
355
+ assert nx.number_of_nodes(G) == len(m) + len(n)
356
+ assert nx.number_of_edges(G) == len(m) * (len(m) - 1) / 2 + len(n)
357
+
358
+ def test_lollipop_graph_exceptions(self):
359
+ # Raise NetworkXError if m<2
360
+ pytest.raises(nx.NetworkXError, nx.lollipop_graph, -1, 2)
361
+ pytest.raises(nx.NetworkXError, nx.lollipop_graph, 1, 20)
362
+ pytest.raises(nx.NetworkXError, nx.lollipop_graph, "", 20)
363
+ pytest.raises(nx.NetworkXError, nx.lollipop_graph, "a", 20)
364
+
365
+ # Raise NetworkXError if n<0
366
+ pytest.raises(nx.NetworkXError, nx.lollipop_graph, 5, -2)
367
+
368
+ # raise NetworkXError if create_using is directed
369
+ with pytest.raises(nx.NetworkXError):
370
+ nx.lollipop_graph(2, 20, create_using=nx.DiGraph)
371
+ with pytest.raises(nx.NetworkXError):
372
+ nx.lollipop_graph(2, 20, create_using=nx.MultiDiGraph)
373
+
374
+ @pytest.mark.parametrize(("m", "n"), [(2, 0), (2, 5), (2, 10), ("ab", 20)])
375
+ def test_lollipop_graph_same_as_path_when_m1_is_2(self, m, n):
376
+ G = nx.lollipop_graph(m, n)
377
+ assert is_isomorphic(G, nx.path_graph(n + 2))
378
+
379
+ def test_lollipop_graph_for_multigraph(self):
380
+ G = nx.lollipop_graph(5, 20)
381
+ MG = nx.lollipop_graph(5, 20, create_using=nx.MultiGraph)
382
+ assert edges_equal(MG.edges(), G.edges())
383
+
384
+ @pytest.mark.parametrize(
385
+ ("m", "n"),
386
+ [(4, "abc"), ("abcd", 3), ([1, 2, 3, 4], "abc"), ("abcd", [1, 2, 3])],
387
+ )
388
+ def test_lollipop_graph_mixing_input_types(self, m, n):
389
+ expected = nx.compose(nx.complete_graph(4), nx.path_graph(range(100, 103)))
390
+ expected.add_edge(0, 100) # Connect complete graph and path graph
391
+ assert is_isomorphic(nx.lollipop_graph(m, n), expected)
392
+
393
+ def test_lollipop_graph_non_builtin_ints(self):
394
+ np = pytest.importorskip("numpy")
395
+ G = nx.lollipop_graph(np.int32(4), np.int64(3))
396
+ expected = nx.compose(nx.complete_graph(4), nx.path_graph(range(100, 103)))
397
+ expected.add_edge(0, 100) # Connect complete graph and path graph
398
+ assert is_isomorphic(G, expected)
399
+
400
+ def test_null_graph(self):
401
+ assert nx.number_of_nodes(nx.null_graph()) == 0
402
+
403
+ def test_path_graph(self):
404
+ p = nx.path_graph(0)
405
+ assert is_isomorphic(p, nx.null_graph())
406
+
407
+ p = nx.path_graph(1)
408
+ assert is_isomorphic(p, nx.empty_graph(1))
409
+
410
+ p = nx.path_graph(10)
411
+ assert nx.is_connected(p)
412
+ assert sorted(d for n, d in p.degree()) == [1, 1, 2, 2, 2, 2, 2, 2, 2, 2]
413
+ assert p.order() - 1 == p.size()
414
+
415
+ dp = nx.path_graph(3, create_using=nx.DiGraph)
416
+ assert dp.has_edge(0, 1)
417
+ assert not dp.has_edge(1, 0)
418
+
419
+ mp = nx.path_graph(10, create_using=nx.MultiGraph)
420
+ assert edges_equal(mp.edges(), p.edges())
421
+
422
+ G = nx.path_graph("abc")
423
+ assert len(G) == 3
424
+ assert G.size() == 2
425
+ G = nx.path_graph("abcb")
426
+ assert len(G) == 3
427
+ assert G.size() == 2
428
+ g = nx.path_graph("abc", nx.DiGraph)
429
+ assert len(g) == 3
430
+ assert g.size() == 2
431
+ assert g.is_directed()
432
+ g = nx.path_graph("abcb", nx.DiGraph)
433
+ assert len(g) == 3
434
+ assert g.size() == 3
435
+
436
+ G = nx.path_graph((1, 2, 3, 2, 4))
437
+ assert G.has_edge(2, 4)
438
+
439
+ def test_star_graph(self):
440
+ assert is_isomorphic(nx.star_graph(""), nx.empty_graph(0))
441
+ assert is_isomorphic(nx.star_graph([]), nx.empty_graph(0))
442
+ assert is_isomorphic(nx.star_graph(0), nx.empty_graph(1))
443
+ assert is_isomorphic(nx.star_graph(1), nx.path_graph(2))
444
+ assert is_isomorphic(nx.star_graph(2), nx.path_graph(3))
445
+ assert is_isomorphic(nx.star_graph(5), nx.complete_bipartite_graph(1, 5))
446
+
447
+ s = nx.star_graph(10)
448
+ assert sorted(d for n, d in s.degree()) == [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 10]
449
+
450
+ pytest.raises(nx.NetworkXError, nx.star_graph, 10, create_using=nx.DiGraph)
451
+
452
+ ms = nx.star_graph(10, create_using=nx.MultiGraph)
453
+ assert edges_equal(ms.edges(), s.edges())
454
+
455
+ G = nx.star_graph("abc")
456
+ assert len(G) == 3
457
+ assert G.size() == 2
458
+
459
+ G = nx.star_graph("abcb")
460
+ assert len(G) == 3
461
+ assert G.size() == 2
462
+ G = nx.star_graph("abcb", create_using=nx.MultiGraph)
463
+ assert len(G) == 3
464
+ assert G.size() == 3
465
+
466
+ G = nx.star_graph("abcdefg")
467
+ assert len(G) == 7
468
+ assert G.size() == 6
469
+
470
+ def test_non_int_integers_for_star_graph(self):
471
+ np = pytest.importorskip("numpy")
472
+ G = nx.star_graph(np.int32(3))
473
+ assert len(G) == 4
474
+ assert G.size() == 3
475
+
476
+ @pytest.mark.parametrize(("m", "n"), [(3, 0), (3, 5), (4, 10), (3, 20)])
477
+ def test_tadpole_graph_right_sizes(self, m, n):
478
+ G = nx.tadpole_graph(m, n)
479
+ assert nx.number_of_nodes(G) == m + n
480
+ assert nx.number_of_edges(G) == m + n - (m == 2)
481
+
482
+ @pytest.mark.parametrize(("m", "n"), [("ab", ""), ("ab", "c"), ("abc", "defg")])
483
+ def test_tadpole_graph_size_node_sequences(self, m, n):
484
+ G = nx.tadpole_graph(m, n)
485
+ assert nx.number_of_nodes(G) == len(m) + len(n)
486
+ assert nx.number_of_edges(G) == len(m) + len(n) - (len(m) == 2)
487
+
488
+ def test_tadpole_graph_exceptions(self):
489
+ # Raise NetworkXError if m<2
490
+ pytest.raises(nx.NetworkXError, nx.tadpole_graph, -1, 3)
491
+ pytest.raises(nx.NetworkXError, nx.tadpole_graph, 0, 3)
492
+ pytest.raises(nx.NetworkXError, nx.tadpole_graph, 1, 3)
493
+
494
+ # Raise NetworkXError if n<0
495
+ pytest.raises(nx.NetworkXError, nx.tadpole_graph, 5, -2)
496
+
497
+ # Raise NetworkXError for digraphs
498
+ with pytest.raises(nx.NetworkXError):
499
+ nx.tadpole_graph(2, 20, create_using=nx.DiGraph)
500
+ with pytest.raises(nx.NetworkXError):
501
+ nx.tadpole_graph(2, 20, create_using=nx.MultiDiGraph)
502
+
503
+ @pytest.mark.parametrize(("m", "n"), [(2, 0), (2, 5), (2, 10), ("ab", 20)])
504
+ def test_tadpole_graph_same_as_path_when_m_is_2(self, m, n):
505
+ G = nx.tadpole_graph(m, n)
506
+ assert is_isomorphic(G, nx.path_graph(n + 2))
507
+
508
+ @pytest.mark.parametrize("m", [4, 7])
509
+ def test_tadpole_graph_same_as_cycle_when_m2_is_0(self, m):
510
+ G = nx.tadpole_graph(m, 0)
511
+ assert is_isomorphic(G, nx.cycle_graph(m))
512
+
513
+ def test_tadpole_graph_for_multigraph(self):
514
+ G = nx.tadpole_graph(5, 20)
515
+ MG = nx.tadpole_graph(5, 20, create_using=nx.MultiGraph)
516
+ assert edges_equal(MG.edges(), G.edges())
517
+
518
+ @pytest.mark.parametrize(
519
+ ("m", "n"),
520
+ [(4, "abc"), ("abcd", 3), ([1, 2, 3, 4], "abc"), ("abcd", [1, 2, 3])],
521
+ )
522
+ def test_tadpole_graph_mixing_input_types(self, m, n):
523
+ expected = nx.compose(nx.cycle_graph(4), nx.path_graph(range(100, 103)))
524
+ expected.add_edge(0, 100) # Connect cycle and path
525
+ assert is_isomorphic(nx.tadpole_graph(m, n), expected)
526
+
527
+ def test_tadpole_graph_non_builtin_integers(self):
528
+ np = pytest.importorskip("numpy")
529
+ G = nx.tadpole_graph(np.int32(4), np.int64(3))
530
+ expected = nx.compose(nx.cycle_graph(4), nx.path_graph(range(100, 103)))
531
+ expected.add_edge(0, 100) # Connect cycle and path
532
+ assert is_isomorphic(G, expected)
533
+
534
+ def test_trivial_graph(self):
535
+ assert nx.number_of_nodes(nx.trivial_graph()) == 1
536
+
537
+ def test_turan_graph(self):
538
+ assert nx.number_of_edges(nx.turan_graph(13, 4)) == 63
539
+ assert is_isomorphic(
540
+ nx.turan_graph(13, 4), nx.complete_multipartite_graph(3, 4, 3, 3)
541
+ )
542
+
543
+ def test_wheel_graph(self):
544
+ for n, G in [
545
+ ("", nx.null_graph()),
546
+ (0, nx.null_graph()),
547
+ (1, nx.empty_graph(1)),
548
+ (2, nx.path_graph(2)),
549
+ (3, nx.complete_graph(3)),
550
+ (4, nx.complete_graph(4)),
551
+ ]:
552
+ g = nx.wheel_graph(n)
553
+ assert is_isomorphic(g, G)
554
+
555
+ g = nx.wheel_graph(10)
556
+ assert sorted(d for n, d in g.degree()) == [3, 3, 3, 3, 3, 3, 3, 3, 3, 9]
557
+
558
+ pytest.raises(nx.NetworkXError, nx.wheel_graph, 10, create_using=nx.DiGraph)
559
+
560
+ mg = nx.wheel_graph(10, create_using=nx.MultiGraph())
561
+ assert edges_equal(mg.edges(), g.edges())
562
+
563
+ G = nx.wheel_graph("abc")
564
+ assert len(G) == 3
565
+ assert G.size() == 3
566
+
567
+ G = nx.wheel_graph("abcb")
568
+ assert len(G) == 3
569
+ assert G.size() == 4
570
+ G = nx.wheel_graph("abcb", nx.MultiGraph)
571
+ assert len(G) == 3
572
+ assert G.size() == 6
573
+
574
+ def test_non_int_integers_for_wheel_graph(self):
575
+ np = pytest.importorskip("numpy")
576
+ G = nx.wheel_graph(np.int32(3))
577
+ assert len(G) == 3
578
+ assert G.size() == 3
579
+
580
+ def test_complete_0_partite_graph(self):
581
+ """Tests that the complete 0-partite graph is the null graph."""
582
+ G = nx.complete_multipartite_graph()
583
+ H = nx.null_graph()
584
+ assert nodes_equal(G, H)
585
+ assert edges_equal(G.edges(), H.edges())
586
+
587
+ def test_complete_1_partite_graph(self):
588
+ """Tests that the complete 1-partite graph is the empty graph."""
589
+ G = nx.complete_multipartite_graph(3)
590
+ H = nx.empty_graph(3)
591
+ assert nodes_equal(G, H)
592
+ assert edges_equal(G.edges(), H.edges())
593
+
594
+ def test_complete_2_partite_graph(self):
595
+ """Tests that the complete 2-partite graph is the complete bipartite
596
+ graph.
597
+
598
+ """
599
+ G = nx.complete_multipartite_graph(2, 3)
600
+ H = nx.complete_bipartite_graph(2, 3)
601
+ assert nodes_equal(G, H)
602
+ assert edges_equal(G.edges(), H.edges())
603
+
604
+ def test_complete_multipartite_graph(self):
605
+ """Tests for generating the complete multipartite graph."""
606
+ G = nx.complete_multipartite_graph(2, 3, 4)
607
+ blocks = [(0, 1), (2, 3, 4), (5, 6, 7, 8)]
608
+ # Within each block, no two vertices should be adjacent.
609
+ for block in blocks:
610
+ for u, v in itertools.combinations_with_replacement(block, 2):
611
+ assert v not in G[u]
612
+ assert G.nodes[u] == G.nodes[v]
613
+ # Across blocks, all vertices should be adjacent.
614
+ for block1, block2 in itertools.combinations(blocks, 2):
615
+ for u, v in itertools.product(block1, block2):
616
+ assert v in G[u]
617
+ assert G.nodes[u] != G.nodes[v]
618
+ with pytest.raises(nx.NetworkXError, match="Negative number of nodes"):
619
+ nx.complete_multipartite_graph(2, -3, 4)
620
+
621
+ def test_kneser_graph(self):
622
+ # the petersen graph is a special case of the kneser graph when n=5 and k=2
623
+ assert is_isomorphic(nx.kneser_graph(5, 2), nx.petersen_graph())
624
+
625
+ # when k is 1, the kneser graph returns a complete graph with n vertices
626
+ for i in range(1, 7):
627
+ assert is_isomorphic(nx.kneser_graph(i, 1), nx.complete_graph(i))
628
+
629
+ # the kneser graph of n and n-1 is the empty graph with n vertices
630
+ for j in range(3, 7):
631
+ assert is_isomorphic(nx.kneser_graph(j, j - 1), nx.empty_graph(j))
632
+
633
+ # in general the number of edges of the kneser graph is equal to
634
+ # (n choose k) times (n-k choose k) divided by 2
635
+ assert nx.number_of_edges(nx.kneser_graph(8, 3)) == 280
venv/lib/python3.10/site-packages/networkx/generators/tests/test_cographs.py ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Unit tests for the :mod:`networkx.generators.cographs` module.
2
+
3
+ """
4
+
5
+ import networkx as nx
6
+
7
+
8
+ def test_random_cograph():
9
+ n = 3
10
+ G = nx.random_cograph(n)
11
+
12
+ assert len(G) == 2**n
13
+
14
+ # Every connected subgraph of G has diameter <= 2
15
+ if nx.is_connected(G):
16
+ assert nx.diameter(G) <= 2
17
+ else:
18
+ components = nx.connected_components(G)
19
+ for component in components:
20
+ assert nx.diameter(G.subgraph(component)) <= 2
venv/lib/python3.10/site-packages/networkx/generators/tests/test_community.py ADDED
@@ -0,0 +1,362 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ import networkx as nx
4
+
5
+
6
+ def test_random_partition_graph():
7
+ G = nx.random_partition_graph([3, 3, 3], 1, 0, seed=42)
8
+ C = G.graph["partition"]
9
+ assert C == [{0, 1, 2}, {3, 4, 5}, {6, 7, 8}]
10
+ assert len(G) == 9
11
+ assert len(list(G.edges())) == 9
12
+
13
+ G = nx.random_partition_graph([3, 3, 3], 0, 1)
14
+ C = G.graph["partition"]
15
+ assert C == [{0, 1, 2}, {3, 4, 5}, {6, 7, 8}]
16
+ assert len(G) == 9
17
+ assert len(list(G.edges())) == 27
18
+
19
+ G = nx.random_partition_graph([3, 3, 3], 1, 0, directed=True)
20
+ C = G.graph["partition"]
21
+ assert C == [{0, 1, 2}, {3, 4, 5}, {6, 7, 8}]
22
+ assert len(G) == 9
23
+ assert len(list(G.edges())) == 18
24
+
25
+ G = nx.random_partition_graph([3, 3, 3], 0, 1, directed=True)
26
+ C = G.graph["partition"]
27
+ assert C == [{0, 1, 2}, {3, 4, 5}, {6, 7, 8}]
28
+ assert len(G) == 9
29
+ assert len(list(G.edges())) == 54
30
+
31
+ G = nx.random_partition_graph([1, 2, 3, 4, 5], 0.5, 0.1)
32
+ C = G.graph["partition"]
33
+ assert C == [{0}, {1, 2}, {3, 4, 5}, {6, 7, 8, 9}, {10, 11, 12, 13, 14}]
34
+ assert len(G) == 15
35
+
36
+ rpg = nx.random_partition_graph
37
+ pytest.raises(nx.NetworkXError, rpg, [1, 2, 3], 1.1, 0.1)
38
+ pytest.raises(nx.NetworkXError, rpg, [1, 2, 3], -0.1, 0.1)
39
+ pytest.raises(nx.NetworkXError, rpg, [1, 2, 3], 0.1, 1.1)
40
+ pytest.raises(nx.NetworkXError, rpg, [1, 2, 3], 0.1, -0.1)
41
+
42
+
43
+ def test_planted_partition_graph():
44
+ G = nx.planted_partition_graph(4, 3, 1, 0, seed=42)
45
+ C = G.graph["partition"]
46
+ assert len(C) == 4
47
+ assert len(G) == 12
48
+ assert len(list(G.edges())) == 12
49
+
50
+ G = nx.planted_partition_graph(4, 3, 0, 1)
51
+ C = G.graph["partition"]
52
+ assert len(C) == 4
53
+ assert len(G) == 12
54
+ assert len(list(G.edges())) == 54
55
+
56
+ G = nx.planted_partition_graph(10, 4, 0.5, 0.1, seed=42)
57
+ C = G.graph["partition"]
58
+ assert len(C) == 10
59
+ assert len(G) == 40
60
+
61
+ G = nx.planted_partition_graph(4, 3, 1, 0, directed=True)
62
+ C = G.graph["partition"]
63
+ assert len(C) == 4
64
+ assert len(G) == 12
65
+ assert len(list(G.edges())) == 24
66
+
67
+ G = nx.planted_partition_graph(4, 3, 0, 1, directed=True)
68
+ C = G.graph["partition"]
69
+ assert len(C) == 4
70
+ assert len(G) == 12
71
+ assert len(list(G.edges())) == 108
72
+
73
+ G = nx.planted_partition_graph(10, 4, 0.5, 0.1, seed=42, directed=True)
74
+ C = G.graph["partition"]
75
+ assert len(C) == 10
76
+ assert len(G) == 40
77
+
78
+ ppg = nx.planted_partition_graph
79
+ pytest.raises(nx.NetworkXError, ppg, 3, 3, 1.1, 0.1)
80
+ pytest.raises(nx.NetworkXError, ppg, 3, 3, -0.1, 0.1)
81
+ pytest.raises(nx.NetworkXError, ppg, 3, 3, 0.1, 1.1)
82
+ pytest.raises(nx.NetworkXError, ppg, 3, 3, 0.1, -0.1)
83
+
84
+
85
+ def test_relaxed_caveman_graph():
86
+ G = nx.relaxed_caveman_graph(4, 3, 0)
87
+ assert len(G) == 12
88
+ G = nx.relaxed_caveman_graph(4, 3, 1)
89
+ assert len(G) == 12
90
+ G = nx.relaxed_caveman_graph(4, 3, 0.5)
91
+ assert len(G) == 12
92
+ G = nx.relaxed_caveman_graph(4, 3, 0.5, seed=42)
93
+ assert len(G) == 12
94
+
95
+
96
+ def test_connected_caveman_graph():
97
+ G = nx.connected_caveman_graph(4, 3)
98
+ assert len(G) == 12
99
+
100
+ G = nx.connected_caveman_graph(1, 5)
101
+ K5 = nx.complete_graph(5)
102
+ K5.remove_edge(3, 4)
103
+ assert nx.is_isomorphic(G, K5)
104
+
105
+ # need at least 2 nodes in each clique
106
+ pytest.raises(nx.NetworkXError, nx.connected_caveman_graph, 4, 1)
107
+
108
+
109
+ def test_caveman_graph():
110
+ G = nx.caveman_graph(4, 3)
111
+ assert len(G) == 12
112
+
113
+ G = nx.caveman_graph(5, 1)
114
+ E5 = nx.empty_graph(5)
115
+ assert nx.is_isomorphic(G, E5)
116
+
117
+ G = nx.caveman_graph(1, 5)
118
+ K5 = nx.complete_graph(5)
119
+ assert nx.is_isomorphic(G, K5)
120
+
121
+
122
+ def test_gaussian_random_partition_graph():
123
+ G = nx.gaussian_random_partition_graph(100, 10, 10, 0.3, 0.01)
124
+ assert len(G) == 100
125
+ G = nx.gaussian_random_partition_graph(100, 10, 10, 0.3, 0.01, directed=True)
126
+ assert len(G) == 100
127
+ G = nx.gaussian_random_partition_graph(
128
+ 100, 10, 10, 0.3, 0.01, directed=False, seed=42
129
+ )
130
+ assert len(G) == 100
131
+ assert not isinstance(G, nx.DiGraph)
132
+ G = nx.gaussian_random_partition_graph(
133
+ 100, 10, 10, 0.3, 0.01, directed=True, seed=42
134
+ )
135
+ assert len(G) == 100
136
+ assert isinstance(G, nx.DiGraph)
137
+ pytest.raises(
138
+ nx.NetworkXError, nx.gaussian_random_partition_graph, 100, 101, 10, 1, 0
139
+ )
140
+ # Test when clusters are likely less than 1
141
+ G = nx.gaussian_random_partition_graph(10, 0.5, 0.5, 0.5, 0.5, seed=1)
142
+ assert len(G) == 10
143
+
144
+
145
+ def test_ring_of_cliques():
146
+ for i in range(2, 20, 3):
147
+ for j in range(2, 20, 3):
148
+ G = nx.ring_of_cliques(i, j)
149
+ assert G.number_of_nodes() == i * j
150
+ if i != 2 or j != 1:
151
+ expected_num_edges = i * (((j * (j - 1)) // 2) + 1)
152
+ else:
153
+ # the edge that already exists cannot be duplicated
154
+ expected_num_edges = i * (((j * (j - 1)) // 2) + 1) - 1
155
+ assert G.number_of_edges() == expected_num_edges
156
+ with pytest.raises(
157
+ nx.NetworkXError, match="A ring of cliques must have at least two cliques"
158
+ ):
159
+ nx.ring_of_cliques(1, 5)
160
+ with pytest.raises(
161
+ nx.NetworkXError, match="The cliques must have at least two nodes"
162
+ ):
163
+ nx.ring_of_cliques(3, 0)
164
+
165
+
166
+ def test_windmill_graph():
167
+ for n in range(2, 20, 3):
168
+ for k in range(2, 20, 3):
169
+ G = nx.windmill_graph(n, k)
170
+ assert G.number_of_nodes() == (k - 1) * n + 1
171
+ assert G.number_of_edges() == n * k * (k - 1) / 2
172
+ assert G.degree(0) == G.number_of_nodes() - 1
173
+ for i in range(1, G.number_of_nodes()):
174
+ assert G.degree(i) == k - 1
175
+ with pytest.raises(
176
+ nx.NetworkXError, match="A windmill graph must have at least two cliques"
177
+ ):
178
+ nx.windmill_graph(1, 3)
179
+ with pytest.raises(
180
+ nx.NetworkXError, match="The cliques must have at least two nodes"
181
+ ):
182
+ nx.windmill_graph(3, 0)
183
+
184
+
185
+ def test_stochastic_block_model():
186
+ sizes = [75, 75, 300]
187
+ probs = [[0.25, 0.05, 0.02], [0.05, 0.35, 0.07], [0.02, 0.07, 0.40]]
188
+ G = nx.stochastic_block_model(sizes, probs, seed=0)
189
+ C = G.graph["partition"]
190
+ assert len(C) == 3
191
+ assert len(G) == 450
192
+ assert G.size() == 22160
193
+
194
+ GG = nx.stochastic_block_model(sizes, probs, range(450), seed=0)
195
+ assert G.nodes == GG.nodes
196
+
197
+ # Test Exceptions
198
+ sbm = nx.stochastic_block_model
199
+ badnodelist = list(range(400)) # not enough nodes to match sizes
200
+ badprobs1 = [[0.25, 0.05, 1.02], [0.05, 0.35, 0.07], [0.02, 0.07, 0.40]]
201
+ badprobs2 = [[0.25, 0.05, 0.02], [0.05, -0.35, 0.07], [0.02, 0.07, 0.40]]
202
+ probs_rect1 = [[0.25, 0.05, 0.02], [0.05, -0.35, 0.07]]
203
+ probs_rect2 = [[0.25, 0.05], [0.05, -0.35], [0.02, 0.07]]
204
+ asymprobs = [[0.25, 0.05, 0.01], [0.05, -0.35, 0.07], [0.02, 0.07, 0.40]]
205
+ pytest.raises(nx.NetworkXException, sbm, sizes, badprobs1)
206
+ pytest.raises(nx.NetworkXException, sbm, sizes, badprobs2)
207
+ pytest.raises(nx.NetworkXException, sbm, sizes, probs_rect1, directed=True)
208
+ pytest.raises(nx.NetworkXException, sbm, sizes, probs_rect2, directed=True)
209
+ pytest.raises(nx.NetworkXException, sbm, sizes, asymprobs, directed=False)
210
+ pytest.raises(nx.NetworkXException, sbm, sizes, probs, badnodelist)
211
+ nodelist = [0] + list(range(449)) # repeated node name in nodelist
212
+ pytest.raises(nx.NetworkXException, sbm, sizes, probs, nodelist)
213
+
214
+ # Extra keyword arguments test
215
+ GG = nx.stochastic_block_model(sizes, probs, seed=0, selfloops=True)
216
+ assert G.nodes == GG.nodes
217
+ GG = nx.stochastic_block_model(sizes, probs, selfloops=True, directed=True)
218
+ assert G.nodes == GG.nodes
219
+ GG = nx.stochastic_block_model(sizes, probs, seed=0, sparse=False)
220
+ assert G.nodes == GG.nodes
221
+
222
+
223
+ def test_generator():
224
+ n = 250
225
+ tau1 = 3
226
+ tau2 = 1.5
227
+ mu = 0.1
228
+ G = nx.LFR_benchmark_graph(
229
+ n, tau1, tau2, mu, average_degree=5, min_community=20, seed=10
230
+ )
231
+ assert len(G) == 250
232
+ C = {frozenset(G.nodes[v]["community"]) for v in G}
233
+ assert nx.community.is_partition(G.nodes(), C)
234
+
235
+
236
+ def test_invalid_tau1():
237
+ with pytest.raises(nx.NetworkXError, match="tau2 must be greater than one"):
238
+ n = 100
239
+ tau1 = 2
240
+ tau2 = 1
241
+ mu = 0.1
242
+ nx.LFR_benchmark_graph(n, tau1, tau2, mu, min_degree=2)
243
+
244
+
245
+ def test_invalid_tau2():
246
+ with pytest.raises(nx.NetworkXError, match="tau1 must be greater than one"):
247
+ n = 100
248
+ tau1 = 1
249
+ tau2 = 2
250
+ mu = 0.1
251
+ nx.LFR_benchmark_graph(n, tau1, tau2, mu, min_degree=2)
252
+
253
+
254
+ def test_mu_too_large():
255
+ with pytest.raises(nx.NetworkXError, match="mu must be in the interval \\[0, 1\\]"):
256
+ n = 100
257
+ tau1 = 2
258
+ tau2 = 2
259
+ mu = 1.1
260
+ nx.LFR_benchmark_graph(n, tau1, tau2, mu, min_degree=2)
261
+
262
+
263
+ def test_mu_too_small():
264
+ with pytest.raises(nx.NetworkXError, match="mu must be in the interval \\[0, 1\\]"):
265
+ n = 100
266
+ tau1 = 2
267
+ tau2 = 2
268
+ mu = -1
269
+ nx.LFR_benchmark_graph(n, tau1, tau2, mu, min_degree=2)
270
+
271
+
272
+ def test_both_degrees_none():
273
+ with pytest.raises(
274
+ nx.NetworkXError,
275
+ match="Must assign exactly one of min_degree and average_degree",
276
+ ):
277
+ n = 100
278
+ tau1 = 2
279
+ tau2 = 2
280
+ mu = 1
281
+ nx.LFR_benchmark_graph(n, tau1, tau2, mu)
282
+
283
+
284
+ def test_neither_degrees_none():
285
+ with pytest.raises(
286
+ nx.NetworkXError,
287
+ match="Must assign exactly one of min_degree and average_degree",
288
+ ):
289
+ n = 100
290
+ tau1 = 2
291
+ tau2 = 2
292
+ mu = 1
293
+ nx.LFR_benchmark_graph(n, tau1, tau2, mu, min_degree=2, average_degree=5)
294
+
295
+
296
+ def test_max_iters_exceeded():
297
+ with pytest.raises(
298
+ nx.ExceededMaxIterations,
299
+ match="Could not assign communities; try increasing min_community",
300
+ ):
301
+ n = 10
302
+ tau1 = 2
303
+ tau2 = 2
304
+ mu = 0.1
305
+ nx.LFR_benchmark_graph(n, tau1, tau2, mu, min_degree=2, max_iters=10, seed=1)
306
+
307
+
308
+ def test_max_deg_out_of_range():
309
+ with pytest.raises(
310
+ nx.NetworkXError, match="max_degree must be in the interval \\(0, n\\]"
311
+ ):
312
+ n = 10
313
+ tau1 = 2
314
+ tau2 = 2
315
+ mu = 0.1
316
+ nx.LFR_benchmark_graph(
317
+ n, tau1, tau2, mu, max_degree=n + 1, max_iters=10, seed=1
318
+ )
319
+
320
+
321
+ def test_max_community():
322
+ n = 250
323
+ tau1 = 3
324
+ tau2 = 1.5
325
+ mu = 0.1
326
+ G = nx.LFR_benchmark_graph(
327
+ n,
328
+ tau1,
329
+ tau2,
330
+ mu,
331
+ average_degree=5,
332
+ max_degree=100,
333
+ min_community=50,
334
+ max_community=200,
335
+ seed=10,
336
+ )
337
+ assert len(G) == 250
338
+ C = {frozenset(G.nodes[v]["community"]) for v in G}
339
+ assert nx.community.is_partition(G.nodes(), C)
340
+
341
+
342
+ def test_powerlaw_iterations_exceeded():
343
+ with pytest.raises(
344
+ nx.ExceededMaxIterations, match="Could not create power law sequence"
345
+ ):
346
+ n = 100
347
+ tau1 = 2
348
+ tau2 = 2
349
+ mu = 1
350
+ nx.LFR_benchmark_graph(n, tau1, tau2, mu, min_degree=2, max_iters=0)
351
+
352
+
353
+ def test_no_scipy_zeta():
354
+ zeta2 = 1.6449340668482264
355
+ assert abs(zeta2 - nx.generators.community._hurwitz_zeta(2, 1, 0.0001)) < 0.01
356
+
357
+
358
+ def test_generate_min_degree_itr():
359
+ with pytest.raises(
360
+ nx.ExceededMaxIterations, match="Could not match average_degree"
361
+ ):
362
+ nx.generators.community._generate_min_degree(2, 2, 1, 0.01, 0)
venv/lib/python3.10/site-packages/networkx/generators/tests/test_degree_seq.py ADDED
@@ -0,0 +1,230 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ import networkx as nx
4
+
5
+
6
+ class TestConfigurationModel:
7
+ """Unit tests for the :func:`~networkx.configuration_model`
8
+ function.
9
+
10
+ """
11
+
12
+ def test_empty_degree_sequence(self):
13
+ """Tests that an empty degree sequence yields the null graph."""
14
+ G = nx.configuration_model([])
15
+ assert len(G) == 0
16
+
17
+ def test_degree_zero(self):
18
+ """Tests that a degree sequence of all zeros yields the empty
19
+ graph.
20
+
21
+ """
22
+ G = nx.configuration_model([0, 0, 0])
23
+ assert len(G) == 3
24
+ assert G.number_of_edges() == 0
25
+
26
+ def test_degree_sequence(self):
27
+ """Tests that the degree sequence of the generated graph matches
28
+ the input degree sequence.
29
+
30
+ """
31
+ deg_seq = [5, 3, 3, 3, 3, 2, 2, 2, 1, 1, 1]
32
+ G = nx.configuration_model(deg_seq, seed=12345678)
33
+ assert sorted((d for n, d in G.degree()), reverse=True) == [
34
+ 5,
35
+ 3,
36
+ 3,
37
+ 3,
38
+ 3,
39
+ 2,
40
+ 2,
41
+ 2,
42
+ 1,
43
+ 1,
44
+ 1,
45
+ ]
46
+ assert sorted((d for n, d in G.degree(range(len(deg_seq)))), reverse=True) == [
47
+ 5,
48
+ 3,
49
+ 3,
50
+ 3,
51
+ 3,
52
+ 2,
53
+ 2,
54
+ 2,
55
+ 1,
56
+ 1,
57
+ 1,
58
+ ]
59
+
60
+ def test_random_seed(self):
61
+ """Tests that each call with the same random seed generates the
62
+ same graph.
63
+
64
+ """
65
+ deg_seq = [3] * 12
66
+ G1 = nx.configuration_model(deg_seq, seed=1000)
67
+ G2 = nx.configuration_model(deg_seq, seed=1000)
68
+ assert nx.is_isomorphic(G1, G2)
69
+ G1 = nx.configuration_model(deg_seq, seed=10)
70
+ G2 = nx.configuration_model(deg_seq, seed=10)
71
+ assert nx.is_isomorphic(G1, G2)
72
+
73
+ def test_directed_disallowed(self):
74
+ """Tests that attempting to create a configuration model graph
75
+ using a directed graph yields an exception.
76
+
77
+ """
78
+ with pytest.raises(nx.NetworkXNotImplemented):
79
+ nx.configuration_model([], create_using=nx.DiGraph())
80
+
81
+ def test_odd_degree_sum(self):
82
+ """Tests that a degree sequence whose sum is odd yields an
83
+ exception.
84
+
85
+ """
86
+ with pytest.raises(nx.NetworkXError):
87
+ nx.configuration_model([1, 2])
88
+
89
+
90
+ def test_directed_configuration_raise_unequal():
91
+ with pytest.raises(nx.NetworkXError):
92
+ zin = [5, 3, 3, 3, 3, 2, 2, 2, 1, 1]
93
+ zout = [5, 3, 3, 3, 3, 2, 2, 2, 1, 2]
94
+ nx.directed_configuration_model(zin, zout)
95
+
96
+
97
+ def test_directed_configuration_model():
98
+ G = nx.directed_configuration_model([], [], seed=0)
99
+ assert len(G) == 0
100
+
101
+
102
+ def test_simple_directed_configuration_model():
103
+ G = nx.directed_configuration_model([1, 1], [1, 1], seed=0)
104
+ assert len(G) == 2
105
+
106
+
107
+ def test_expected_degree_graph_empty():
108
+ # empty graph has empty degree sequence
109
+ deg_seq = []
110
+ G = nx.expected_degree_graph(deg_seq)
111
+ assert dict(G.degree()) == {}
112
+
113
+
114
+ def test_expected_degree_graph():
115
+ # test that fixed seed delivers the same graph
116
+ deg_seq = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3]
117
+ G1 = nx.expected_degree_graph(deg_seq, seed=1000)
118
+ assert len(G1) == 12
119
+
120
+ G2 = nx.expected_degree_graph(deg_seq, seed=1000)
121
+ assert nx.is_isomorphic(G1, G2)
122
+
123
+ G1 = nx.expected_degree_graph(deg_seq, seed=10)
124
+ G2 = nx.expected_degree_graph(deg_seq, seed=10)
125
+ assert nx.is_isomorphic(G1, G2)
126
+
127
+
128
+ def test_expected_degree_graph_selfloops():
129
+ deg_seq = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3]
130
+ G1 = nx.expected_degree_graph(deg_seq, seed=1000, selfloops=False)
131
+ G2 = nx.expected_degree_graph(deg_seq, seed=1000, selfloops=False)
132
+ assert nx.is_isomorphic(G1, G2)
133
+ assert len(G1) == 12
134
+
135
+
136
+ def test_expected_degree_graph_skew():
137
+ deg_seq = [10, 2, 2, 2, 2]
138
+ G1 = nx.expected_degree_graph(deg_seq, seed=1000)
139
+ G2 = nx.expected_degree_graph(deg_seq, seed=1000)
140
+ assert nx.is_isomorphic(G1, G2)
141
+ assert len(G1) == 5
142
+
143
+
144
+ def test_havel_hakimi_construction():
145
+ G = nx.havel_hakimi_graph([])
146
+ assert len(G) == 0
147
+
148
+ z = [1000, 3, 3, 3, 3, 2, 2, 2, 1, 1, 1]
149
+ pytest.raises(nx.NetworkXError, nx.havel_hakimi_graph, z)
150
+ z = ["A", 3, 3, 3, 3, 2, 2, 2, 1, 1, 1]
151
+ pytest.raises(nx.NetworkXError, nx.havel_hakimi_graph, z)
152
+
153
+ z = [5, 4, 3, 3, 3, 2, 2, 2]
154
+ G = nx.havel_hakimi_graph(z)
155
+ G = nx.configuration_model(z)
156
+ z = [6, 5, 4, 4, 2, 1, 1, 1]
157
+ pytest.raises(nx.NetworkXError, nx.havel_hakimi_graph, z)
158
+
159
+ z = [10, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2]
160
+
161
+ G = nx.havel_hakimi_graph(z)
162
+
163
+ pytest.raises(nx.NetworkXError, nx.havel_hakimi_graph, z, create_using=nx.DiGraph())
164
+
165
+
166
+ def test_directed_havel_hakimi():
167
+ # Test range of valid directed degree sequences
168
+ n, r = 100, 10
169
+ p = 1.0 / r
170
+ for i in range(r):
171
+ G1 = nx.erdos_renyi_graph(n, p * (i + 1), None, True)
172
+ din1 = [d for n, d in G1.in_degree()]
173
+ dout1 = [d for n, d in G1.out_degree()]
174
+ G2 = nx.directed_havel_hakimi_graph(din1, dout1)
175
+ din2 = [d for n, d in G2.in_degree()]
176
+ dout2 = [d for n, d in G2.out_degree()]
177
+ assert sorted(din1) == sorted(din2)
178
+ assert sorted(dout1) == sorted(dout2)
179
+
180
+ # Test non-graphical sequence
181
+ dout = [1000, 3, 3, 3, 3, 2, 2, 2, 1, 1, 1]
182
+ din = [103, 102, 102, 102, 102, 102, 102, 102, 102, 102]
183
+ pytest.raises(nx.exception.NetworkXError, nx.directed_havel_hakimi_graph, din, dout)
184
+ # Test valid sequences
185
+ dout = [1, 1, 1, 1, 1, 2, 2, 2, 3, 4]
186
+ din = [2, 2, 2, 2, 2, 2, 2, 2, 0, 2]
187
+ G2 = nx.directed_havel_hakimi_graph(din, dout)
188
+ dout2 = (d for n, d in G2.out_degree())
189
+ din2 = (d for n, d in G2.in_degree())
190
+ assert sorted(dout) == sorted(dout2)
191
+ assert sorted(din) == sorted(din2)
192
+ # Test unequal sums
193
+ din = [2, 2, 2, 2, 2, 2, 2, 2, 2, 2]
194
+ pytest.raises(nx.exception.NetworkXError, nx.directed_havel_hakimi_graph, din, dout)
195
+ # Test for negative values
196
+ din = [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -2]
197
+ pytest.raises(nx.exception.NetworkXError, nx.directed_havel_hakimi_graph, din, dout)
198
+
199
+
200
+ def test_degree_sequence_tree():
201
+ z = [1, 1, 1, 1, 1, 2, 2, 2, 3, 4]
202
+ G = nx.degree_sequence_tree(z)
203
+ assert len(G) == len(z)
204
+ assert len(list(G.edges())) == sum(z) / 2
205
+
206
+ pytest.raises(
207
+ nx.NetworkXError, nx.degree_sequence_tree, z, create_using=nx.DiGraph()
208
+ )
209
+
210
+ z = [1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4]
211
+ pytest.raises(nx.NetworkXError, nx.degree_sequence_tree, z)
212
+
213
+
214
+ def test_random_degree_sequence_graph():
215
+ d = [1, 2, 2, 3]
216
+ G = nx.random_degree_sequence_graph(d, seed=42)
217
+ assert d == sorted(d for n, d in G.degree())
218
+
219
+
220
+ def test_random_degree_sequence_graph_raise():
221
+ z = [1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4]
222
+ pytest.raises(nx.NetworkXUnfeasible, nx.random_degree_sequence_graph, z)
223
+
224
+
225
+ def test_random_degree_sequence_large():
226
+ G1 = nx.fast_gnp_random_graph(100, 0.1, seed=42)
227
+ d1 = (d for n, d in G1.degree())
228
+ G2 = nx.random_degree_sequence_graph(d1, seed=42)
229
+ d2 = (d for n, d in G2.degree())
230
+ assert sorted(d1) == sorted(d2)
venv/lib/python3.10/site-packages/networkx/generators/tests/test_directed.py ADDED
@@ -0,0 +1,162 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Generators - Directed Graphs
2
+ ----------------------------
3
+ """
4
+ import pytest
5
+
6
+ import networkx as nx
7
+ from networkx.classes import Graph, MultiDiGraph
8
+ from networkx.generators.directed import (
9
+ gn_graph,
10
+ gnc_graph,
11
+ gnr_graph,
12
+ random_k_out_graph,
13
+ random_uniform_k_out_graph,
14
+ scale_free_graph,
15
+ )
16
+
17
+
18
+ class TestGeneratorsDirected:
19
+ def test_smoke_test_random_graphs(self):
20
+ gn_graph(100)
21
+ gnr_graph(100, 0.5)
22
+ gnc_graph(100)
23
+ scale_free_graph(100)
24
+
25
+ gn_graph(100, seed=42)
26
+ gnr_graph(100, 0.5, seed=42)
27
+ gnc_graph(100, seed=42)
28
+ scale_free_graph(100, seed=42)
29
+
30
+ def test_create_using_keyword_arguments(self):
31
+ pytest.raises(nx.NetworkXError, gn_graph, 100, create_using=Graph())
32
+ pytest.raises(nx.NetworkXError, gnr_graph, 100, 0.5, create_using=Graph())
33
+ pytest.raises(nx.NetworkXError, gnc_graph, 100, create_using=Graph())
34
+ G = gn_graph(100, seed=1)
35
+ MG = gn_graph(100, create_using=MultiDiGraph(), seed=1)
36
+ assert sorted(G.edges()) == sorted(MG.edges())
37
+ G = gnr_graph(100, 0.5, seed=1)
38
+ MG = gnr_graph(100, 0.5, create_using=MultiDiGraph(), seed=1)
39
+ assert sorted(G.edges()) == sorted(MG.edges())
40
+ G = gnc_graph(100, seed=1)
41
+ MG = gnc_graph(100, create_using=MultiDiGraph(), seed=1)
42
+ assert sorted(G.edges()) == sorted(MG.edges())
43
+
44
+ G = scale_free_graph(
45
+ 100,
46
+ alpha=0.3,
47
+ beta=0.4,
48
+ gamma=0.3,
49
+ delta_in=0.3,
50
+ delta_out=0.1,
51
+ initial_graph=nx.cycle_graph(4, create_using=MultiDiGraph),
52
+ seed=1,
53
+ )
54
+ pytest.raises(ValueError, scale_free_graph, 100, 0.5, 0.4, 0.3)
55
+ pytest.raises(ValueError, scale_free_graph, 100, alpha=-0.3)
56
+ pytest.raises(ValueError, scale_free_graph, 100, beta=-0.3)
57
+ pytest.raises(ValueError, scale_free_graph, 100, gamma=-0.3)
58
+
59
+ def test_parameters(self):
60
+ G = nx.DiGraph()
61
+ G.add_node(0)
62
+
63
+ def kernel(x):
64
+ return x
65
+
66
+ assert nx.is_isomorphic(gn_graph(1), G)
67
+ assert nx.is_isomorphic(gn_graph(1, kernel=kernel), G)
68
+ assert nx.is_isomorphic(gnc_graph(1), G)
69
+ assert nx.is_isomorphic(gnr_graph(1, 0.5), G)
70
+
71
+
72
+ def test_scale_free_graph_negative_delta():
73
+ with pytest.raises(ValueError, match="delta_in must be >= 0."):
74
+ scale_free_graph(10, delta_in=-1)
75
+ with pytest.raises(ValueError, match="delta_out must be >= 0."):
76
+ scale_free_graph(10, delta_out=-1)
77
+
78
+
79
+ def test_non_numeric_ordering():
80
+ G = MultiDiGraph([("a", "b"), ("b", "c"), ("c", "a")])
81
+ s = scale_free_graph(3, initial_graph=G)
82
+ assert len(s) == 3
83
+ assert len(s.edges) == 3
84
+
85
+
86
+ @pytest.mark.parametrize("ig", (nx.Graph(), nx.DiGraph([(0, 1)])))
87
+ def test_scale_free_graph_initial_graph_kwarg(ig):
88
+ with pytest.raises(nx.NetworkXError):
89
+ scale_free_graph(100, initial_graph=ig)
90
+
91
+
92
+ class TestRandomKOutGraph:
93
+ """Unit tests for the
94
+ :func:`~networkx.generators.directed.random_k_out_graph` function.
95
+
96
+ """
97
+
98
+ def test_regularity(self):
99
+ """Tests that the generated graph is `k`-out-regular."""
100
+ n = 10
101
+ k = 3
102
+ alpha = 1
103
+ G = random_k_out_graph(n, k, alpha)
104
+ assert all(d == k for v, d in G.out_degree())
105
+ G = random_k_out_graph(n, k, alpha, seed=42)
106
+ assert all(d == k for v, d in G.out_degree())
107
+
108
+ def test_no_self_loops(self):
109
+ """Tests for forbidding self-loops."""
110
+ n = 10
111
+ k = 3
112
+ alpha = 1
113
+ G = random_k_out_graph(n, k, alpha, self_loops=False)
114
+ assert nx.number_of_selfloops(G) == 0
115
+
116
+ def test_negative_alpha(self):
117
+ with pytest.raises(ValueError, match="alpha must be positive"):
118
+ random_k_out_graph(10, 3, -1)
119
+
120
+
121
+ class TestUniformRandomKOutGraph:
122
+ """Unit tests for the
123
+ :func:`~networkx.generators.directed.random_uniform_k_out_graph`
124
+ function.
125
+
126
+ """
127
+
128
+ def test_regularity(self):
129
+ """Tests that the generated graph is `k`-out-regular."""
130
+ n = 10
131
+ k = 3
132
+ G = random_uniform_k_out_graph(n, k)
133
+ assert all(d == k for v, d in G.out_degree())
134
+ G = random_uniform_k_out_graph(n, k, seed=42)
135
+ assert all(d == k for v, d in G.out_degree())
136
+
137
+ def test_no_self_loops(self):
138
+ """Tests for forbidding self-loops."""
139
+ n = 10
140
+ k = 3
141
+ G = random_uniform_k_out_graph(n, k, self_loops=False)
142
+ assert nx.number_of_selfloops(G) == 0
143
+ assert all(d == k for v, d in G.out_degree())
144
+
145
+ def test_with_replacement(self):
146
+ n = 10
147
+ k = 3
148
+ G = random_uniform_k_out_graph(n, k, with_replacement=True)
149
+ assert G.is_multigraph()
150
+ assert all(d == k for v, d in G.out_degree())
151
+ n = 10
152
+ k = 9
153
+ G = random_uniform_k_out_graph(n, k, with_replacement=False, self_loops=False)
154
+ assert nx.number_of_selfloops(G) == 0
155
+ assert all(d == k for v, d in G.out_degree())
156
+
157
+ def test_without_replacement(self):
158
+ n = 10
159
+ k = 3
160
+ G = random_uniform_k_out_graph(n, k, with_replacement=False)
161
+ assert not G.is_multigraph()
162
+ assert all(d == k for v, d in G.out_degree())
venv/lib/python3.10/site-packages/networkx/generators/tests/test_duplication.py ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Unit tests for the :mod:`networkx.generators.duplication` module.
2
+
3
+ """
4
+ import pytest
5
+
6
+ from networkx.exception import NetworkXError
7
+ from networkx.generators.duplication import (
8
+ duplication_divergence_graph,
9
+ partial_duplication_graph,
10
+ )
11
+
12
+
13
+ class TestDuplicationDivergenceGraph:
14
+ """Unit tests for the
15
+ :func:`networkx.generators.duplication.duplication_divergence_graph`
16
+ function.
17
+
18
+ """
19
+
20
+ def test_final_size(self):
21
+ G = duplication_divergence_graph(3, p=1)
22
+ assert len(G) == 3
23
+ G = duplication_divergence_graph(3, p=1, seed=42)
24
+ assert len(G) == 3
25
+
26
+ def test_probability_too_large(self):
27
+ with pytest.raises(NetworkXError):
28
+ duplication_divergence_graph(3, p=2)
29
+
30
+ def test_probability_too_small(self):
31
+ with pytest.raises(NetworkXError):
32
+ duplication_divergence_graph(3, p=-1)
33
+
34
+ def test_non_extreme_probability_value(self):
35
+ G = duplication_divergence_graph(6, p=0.3, seed=42)
36
+ assert len(G) == 6
37
+ assert list(G.degree()) == [(0, 2), (1, 3), (2, 2), (3, 3), (4, 1), (5, 1)]
38
+
39
+ def test_minimum_desired_nodes(self):
40
+ with pytest.raises(
41
+ NetworkXError, match=".*n must be greater than or equal to 2"
42
+ ):
43
+ duplication_divergence_graph(1, p=1)
44
+
45
+
46
+ class TestPartialDuplicationGraph:
47
+ """Unit tests for the
48
+ :func:`networkx.generators.duplication.partial_duplication_graph`
49
+ function.
50
+
51
+ """
52
+
53
+ def test_final_size(self):
54
+ N = 10
55
+ n = 5
56
+ p = 0.5
57
+ q = 0.5
58
+ G = partial_duplication_graph(N, n, p, q)
59
+ assert len(G) == N
60
+ G = partial_duplication_graph(N, n, p, q, seed=42)
61
+ assert len(G) == N
62
+
63
+ def test_initial_clique_size(self):
64
+ N = 10
65
+ n = 10
66
+ p = 0.5
67
+ q = 0.5
68
+ G = partial_duplication_graph(N, n, p, q)
69
+ assert len(G) == n
70
+
71
+ def test_invalid_initial_size(self):
72
+ with pytest.raises(NetworkXError):
73
+ N = 5
74
+ n = 10
75
+ p = 0.5
76
+ q = 0.5
77
+ G = partial_duplication_graph(N, n, p, q)
78
+
79
+ def test_invalid_probabilities(self):
80
+ N = 1
81
+ n = 1
82
+ for p, q in [(0.5, 2), (0.5, -1), (2, 0.5), (-1, 0.5)]:
83
+ args = (N, n, p, q)
84
+ pytest.raises(NetworkXError, partial_duplication_graph, *args)
venv/lib/python3.10/site-packages/networkx/generators/tests/test_ego.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ ego graph
3
+ ---------
4
+ """
5
+
6
+ import networkx as nx
7
+ from networkx.utils import edges_equal, nodes_equal
8
+
9
+
10
+ class TestGeneratorEgo:
11
+ def test_ego(self):
12
+ G = nx.star_graph(3)
13
+ H = nx.ego_graph(G, 0)
14
+ assert nx.is_isomorphic(G, H)
15
+ G.add_edge(1, 11)
16
+ G.add_edge(2, 22)
17
+ G.add_edge(3, 33)
18
+ H = nx.ego_graph(G, 0)
19
+ assert nx.is_isomorphic(nx.star_graph(3), H)
20
+ G = nx.path_graph(3)
21
+ H = nx.ego_graph(G, 0)
22
+ assert edges_equal(H.edges(), [(0, 1)])
23
+ H = nx.ego_graph(G, 0, undirected=True)
24
+ assert edges_equal(H.edges(), [(0, 1)])
25
+ H = nx.ego_graph(G, 0, center=False)
26
+ assert edges_equal(H.edges(), [])
27
+
28
+ def test_ego_distance(self):
29
+ G = nx.Graph()
30
+ G.add_edge(0, 1, weight=2, distance=1)
31
+ G.add_edge(1, 2, weight=2, distance=2)
32
+ G.add_edge(2, 3, weight=2, distance=1)
33
+ assert nodes_equal(nx.ego_graph(G, 0, radius=3).nodes(), [0, 1, 2, 3])
34
+ eg = nx.ego_graph(G, 0, radius=3, distance="weight")
35
+ assert nodes_equal(eg.nodes(), [0, 1])
36
+ eg = nx.ego_graph(G, 0, radius=3, distance="weight", undirected=True)
37
+ assert nodes_equal(eg.nodes(), [0, 1])
38
+ eg = nx.ego_graph(G, 0, radius=3, distance="distance")
39
+ assert nodes_equal(eg.nodes(), [0, 1, 2])
venv/lib/python3.10/site-packages/networkx/generators/tests/test_expanders.py ADDED
@@ -0,0 +1,164 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Unit tests for the :mod:`networkx.generators.expanders` module.
2
+
3
+ """
4
+
5
+ import pytest
6
+
7
+ import networkx as nx
8
+
9
+
10
+ @pytest.mark.parametrize("n", (2, 3, 5, 6, 10))
11
+ def test_margulis_gabber_galil_graph_properties(n):
12
+ g = nx.margulis_gabber_galil_graph(n)
13
+ assert g.number_of_nodes() == n * n
14
+ for node in g:
15
+ assert g.degree(node) == 8
16
+ assert len(node) == 2
17
+ for i in node:
18
+ assert int(i) == i
19
+ assert 0 <= i < n
20
+
21
+
22
+ @pytest.mark.parametrize("n", (2, 3, 5, 6, 10))
23
+ def test_margulis_gabber_galil_graph_eigvals(n):
24
+ np = pytest.importorskip("numpy")
25
+ sp = pytest.importorskip("scipy")
26
+
27
+ g = nx.margulis_gabber_galil_graph(n)
28
+ # Eigenvalues are already sorted using the scipy eigvalsh,
29
+ # but the implementation in numpy does not guarantee order.
30
+ w = sorted(sp.linalg.eigvalsh(nx.adjacency_matrix(g).toarray()))
31
+ assert w[-2] < 5 * np.sqrt(2)
32
+
33
+
34
+ @pytest.mark.parametrize("p", (3, 5, 7, 11)) # Primes
35
+ def test_chordal_cycle_graph(p):
36
+ """Test for the :func:`networkx.chordal_cycle_graph` function."""
37
+ G = nx.chordal_cycle_graph(p)
38
+ assert len(G) == p
39
+ # TODO The second largest eigenvalue should be smaller than a constant,
40
+ # independent of the number of nodes in the graph:
41
+ #
42
+ # eigs = sorted(sp.linalg.eigvalsh(nx.adjacency_matrix(G).toarray()))
43
+ # assert_less(eigs[-2], ...)
44
+ #
45
+
46
+
47
+ @pytest.mark.parametrize("p", (3, 5, 7, 11, 13)) # Primes
48
+ def test_paley_graph(p):
49
+ """Test for the :func:`networkx.paley_graph` function."""
50
+ G = nx.paley_graph(p)
51
+ # G has p nodes
52
+ assert len(G) == p
53
+ # G is (p-1)/2-regular
54
+ in_degrees = {G.in_degree(node) for node in G.nodes}
55
+ out_degrees = {G.out_degree(node) for node in G.nodes}
56
+ assert len(in_degrees) == 1 and in_degrees.pop() == (p - 1) // 2
57
+ assert len(out_degrees) == 1 and out_degrees.pop() == (p - 1) // 2
58
+
59
+ # If p = 1 mod 4, -1 is a square mod 4 and therefore the
60
+ # edge in the Paley graph are symmetric.
61
+ if p % 4 == 1:
62
+ for u, v in G.edges:
63
+ assert (v, u) in G.edges
64
+
65
+
66
+ @pytest.mark.parametrize("d, n", [(2, 7), (4, 10), (4, 16)])
67
+ def test_maybe_regular_expander(d, n):
68
+ pytest.importorskip("numpy")
69
+ G = nx.maybe_regular_expander(n, d)
70
+
71
+ assert len(G) == n, "Should have n nodes"
72
+ assert len(G.edges) == n * d / 2, "Should have n*d/2 edges"
73
+ assert nx.is_k_regular(G, d), "Should be d-regular"
74
+
75
+
76
+ @pytest.mark.parametrize("n", (3, 5, 6, 10))
77
+ def test_is_regular_expander(n):
78
+ pytest.importorskip("numpy")
79
+ pytest.importorskip("scipy")
80
+ G = nx.complete_graph(n)
81
+
82
+ assert nx.is_regular_expander(G) == True, "Should be a regular expander"
83
+
84
+
85
+ @pytest.mark.parametrize("d, n", [(2, 7), (4, 10), (4, 16)])
86
+ def test_random_regular_expander(d, n):
87
+ pytest.importorskip("numpy")
88
+ pytest.importorskip("scipy")
89
+ G = nx.random_regular_expander_graph(n, d)
90
+
91
+ assert len(G) == n, "Should have n nodes"
92
+ assert len(G.edges) == n * d / 2, "Should have n*d/2 edges"
93
+ assert nx.is_k_regular(G, d), "Should be d-regular"
94
+ assert nx.is_regular_expander(G) == True, "Should be a regular expander"
95
+
96
+
97
+ def test_random_regular_expander_explicit_construction():
98
+ pytest.importorskip("numpy")
99
+ pytest.importorskip("scipy")
100
+ G = nx.random_regular_expander_graph(d=4, n=5)
101
+
102
+ assert len(G) == 5 and len(G.edges) == 10, "Should be a complete graph"
103
+
104
+
105
+ @pytest.mark.parametrize("graph_type", (nx.Graph, nx.DiGraph, nx.MultiDiGraph))
106
+ def test_margulis_gabber_galil_graph_badinput(graph_type):
107
+ with pytest.raises(
108
+ nx.NetworkXError, match="`create_using` must be an undirected multigraph"
109
+ ):
110
+ nx.margulis_gabber_galil_graph(3, create_using=graph_type)
111
+
112
+
113
+ @pytest.mark.parametrize("graph_type", (nx.Graph, nx.DiGraph, nx.MultiDiGraph))
114
+ def test_chordal_cycle_graph_badinput(graph_type):
115
+ with pytest.raises(
116
+ nx.NetworkXError, match="`create_using` must be an undirected multigraph"
117
+ ):
118
+ nx.chordal_cycle_graph(3, create_using=graph_type)
119
+
120
+
121
+ def test_paley_graph_badinput():
122
+ with pytest.raises(
123
+ nx.NetworkXError, match="`create_using` cannot be a multigraph."
124
+ ):
125
+ nx.paley_graph(3, create_using=nx.MultiGraph)
126
+
127
+
128
+ def test_maybe_regular_expander_badinput():
129
+ pytest.importorskip("numpy")
130
+ pytest.importorskip("scipy")
131
+
132
+ with pytest.raises(nx.NetworkXError, match="n must be a positive integer"):
133
+ nx.maybe_regular_expander(n=-1, d=2)
134
+
135
+ with pytest.raises(nx.NetworkXError, match="d must be greater than or equal to 2"):
136
+ nx.maybe_regular_expander(n=10, d=0)
137
+
138
+ with pytest.raises(nx.NetworkXError, match="Need n-1>= d to have room"):
139
+ nx.maybe_regular_expander(n=5, d=6)
140
+
141
+
142
+ def test_is_regular_expander_badinput():
143
+ pytest.importorskip("numpy")
144
+ pytest.importorskip("scipy")
145
+
146
+ with pytest.raises(nx.NetworkXError, match="epsilon must be non negative"):
147
+ nx.is_regular_expander(nx.Graph(), epsilon=-1)
148
+
149
+
150
+ def test_random_regular_expander_badinput():
151
+ pytest.importorskip("numpy")
152
+ pytest.importorskip("scipy")
153
+
154
+ with pytest.raises(nx.NetworkXError, match="n must be a positive integer"):
155
+ nx.random_regular_expander_graph(n=-1, d=2)
156
+
157
+ with pytest.raises(nx.NetworkXError, match="d must be greater than or equal to 2"):
158
+ nx.random_regular_expander_graph(n=10, d=0)
159
+
160
+ with pytest.raises(nx.NetworkXError, match="Need n-1>= d to have room"):
161
+ nx.random_regular_expander_graph(n=5, d=6)
162
+
163
+ with pytest.raises(nx.NetworkXError, match="epsilon must be non negative"):
164
+ nx.random_regular_expander_graph(n=4, d=2, epsilon=-1)
venv/lib/python3.10/site-packages/networkx/generators/tests/test_geometric.py ADDED
@@ -0,0 +1,488 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import random
3
+ from itertools import combinations
4
+
5
+ import pytest
6
+
7
+ import networkx as nx
8
+
9
+
10
+ def l1dist(x, y):
11
+ return sum(abs(a - b) for a, b in zip(x, y))
12
+
13
+
14
+ class TestRandomGeometricGraph:
15
+ """Unit tests for :func:`~networkx.random_geometric_graph`"""
16
+
17
+ def test_number_of_nodes(self):
18
+ G = nx.random_geometric_graph(50, 0.25, seed=42)
19
+ assert len(G) == 50
20
+ G = nx.random_geometric_graph(range(50), 0.25, seed=42)
21
+ assert len(G) == 50
22
+
23
+ def test_distances(self):
24
+ """Tests that pairs of vertices adjacent if and only if they are
25
+ within the prescribed radius.
26
+ """
27
+ # Use the Euclidean metric, the default according to the
28
+ # documentation.
29
+ G = nx.random_geometric_graph(50, 0.25)
30
+ for u, v in combinations(G, 2):
31
+ # Adjacent vertices must be within the given distance.
32
+ if v in G[u]:
33
+ assert math.dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
34
+ # Nonadjacent vertices must be at greater distance.
35
+ else:
36
+ assert not math.dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
37
+
38
+ def test_p(self):
39
+ """Tests for providing an alternate distance metric to the generator."""
40
+ # Use the L1 metric.
41
+ G = nx.random_geometric_graph(50, 0.25, p=1)
42
+ for u, v in combinations(G, 2):
43
+ # Adjacent vertices must be within the given distance.
44
+ if v in G[u]:
45
+ assert l1dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
46
+ # Nonadjacent vertices must be at greater distance.
47
+ else:
48
+ assert not l1dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
49
+
50
+ def test_node_names(self):
51
+ """Tests using values other than sequential numbers as node IDs."""
52
+ import string
53
+
54
+ nodes = list(string.ascii_lowercase)
55
+ G = nx.random_geometric_graph(nodes, 0.25)
56
+ assert len(G) == len(nodes)
57
+
58
+ for u, v in combinations(G, 2):
59
+ # Adjacent vertices must be within the given distance.
60
+ if v in G[u]:
61
+ assert math.dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
62
+ # Nonadjacent vertices must be at greater distance.
63
+ else:
64
+ assert not math.dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
65
+
66
+ def test_pos_name(self):
67
+ G = nx.random_geometric_graph(50, 0.25, seed=42, pos_name="coords")
68
+ assert all(len(d["coords"]) == 2 for n, d in G.nodes.items())
69
+
70
+
71
+ class TestSoftRandomGeometricGraph:
72
+ """Unit tests for :func:`~networkx.soft_random_geometric_graph`"""
73
+
74
+ def test_number_of_nodes(self):
75
+ G = nx.soft_random_geometric_graph(50, 0.25, seed=42)
76
+ assert len(G) == 50
77
+ G = nx.soft_random_geometric_graph(range(50), 0.25, seed=42)
78
+ assert len(G) == 50
79
+
80
+ def test_distances(self):
81
+ """Tests that pairs of vertices adjacent if and only if they are
82
+ within the prescribed radius.
83
+ """
84
+ # Use the Euclidean metric, the default according to the
85
+ # documentation.
86
+ G = nx.soft_random_geometric_graph(50, 0.25)
87
+ for u, v in combinations(G, 2):
88
+ # Adjacent vertices must be within the given distance.
89
+ if v in G[u]:
90
+ assert math.dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
91
+
92
+ def test_p(self):
93
+ """Tests for providing an alternate distance metric to the generator."""
94
+
95
+ # Use the L1 metric.
96
+ def dist(x, y):
97
+ return sum(abs(a - b) for a, b in zip(x, y))
98
+
99
+ G = nx.soft_random_geometric_graph(50, 0.25, p=1)
100
+ for u, v in combinations(G, 2):
101
+ # Adjacent vertices must be within the given distance.
102
+ if v in G[u]:
103
+ assert dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
104
+
105
+ def test_node_names(self):
106
+ """Tests using values other than sequential numbers as node IDs."""
107
+ import string
108
+
109
+ nodes = list(string.ascii_lowercase)
110
+ G = nx.soft_random_geometric_graph(nodes, 0.25)
111
+ assert len(G) == len(nodes)
112
+
113
+ for u, v in combinations(G, 2):
114
+ # Adjacent vertices must be within the given distance.
115
+ if v in G[u]:
116
+ assert math.dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
117
+
118
+ def test_p_dist_default(self):
119
+ """Tests default p_dict = 0.5 returns graph with edge count <= RGG with
120
+ same n, radius, dim and positions
121
+ """
122
+ nodes = 50
123
+ dim = 2
124
+ pos = {v: [random.random() for i in range(dim)] for v in range(nodes)}
125
+ RGG = nx.random_geometric_graph(50, 0.25, pos=pos)
126
+ SRGG = nx.soft_random_geometric_graph(50, 0.25, pos=pos)
127
+ assert len(SRGG.edges()) <= len(RGG.edges())
128
+
129
+ def test_p_dist_zero(self):
130
+ """Tests if p_dict = 0 returns disconnected graph with 0 edges"""
131
+
132
+ def p_dist(dist):
133
+ return 0
134
+
135
+ G = nx.soft_random_geometric_graph(50, 0.25, p_dist=p_dist)
136
+ assert len(G.edges) == 0
137
+
138
+ def test_pos_name(self):
139
+ G = nx.soft_random_geometric_graph(50, 0.25, seed=42, pos_name="coords")
140
+ assert all(len(d["coords"]) == 2 for n, d in G.nodes.items())
141
+
142
+
143
+ def join(G, u, v, theta, alpha, metric):
144
+ """Returns ``True`` if and only if the nodes whose attributes are
145
+ ``du`` and ``dv`` should be joined, according to the threshold
146
+ condition for geographical threshold graphs.
147
+
148
+ ``G`` is an undirected NetworkX graph, and ``u`` and ``v`` are nodes
149
+ in that graph. The nodes must have node attributes ``'pos'`` and
150
+ ``'weight'``.
151
+
152
+ ``metric`` is a distance metric.
153
+ """
154
+ du, dv = G.nodes[u], G.nodes[v]
155
+ u_pos, v_pos = du["pos"], dv["pos"]
156
+ u_weight, v_weight = du["weight"], dv["weight"]
157
+ return (u_weight + v_weight) * metric(u_pos, v_pos) ** alpha >= theta
158
+
159
+
160
+ class TestGeographicalThresholdGraph:
161
+ """Unit tests for :func:`~networkx.geographical_threshold_graph`"""
162
+
163
+ def test_number_of_nodes(self):
164
+ G = nx.geographical_threshold_graph(50, 100, seed=42)
165
+ assert len(G) == 50
166
+ G = nx.geographical_threshold_graph(range(50), 100, seed=42)
167
+ assert len(G) == 50
168
+
169
+ def test_distances(self):
170
+ """Tests that pairs of vertices adjacent if and only if their
171
+ distances meet the given threshold.
172
+ """
173
+ # Use the Euclidean metric and alpha = -2
174
+ # the default according to the documentation.
175
+ G = nx.geographical_threshold_graph(50, 10)
176
+ for u, v in combinations(G, 2):
177
+ # Adjacent vertices must exceed the threshold.
178
+ if v in G[u]:
179
+ assert join(G, u, v, 10, -2, math.dist)
180
+ # Nonadjacent vertices must not exceed the threshold.
181
+ else:
182
+ assert not join(G, u, v, 10, -2, math.dist)
183
+
184
+ def test_metric(self):
185
+ """Tests for providing an alternate distance metric to the generator."""
186
+ # Use the L1 metric.
187
+ G = nx.geographical_threshold_graph(50, 10, metric=l1dist)
188
+ for u, v in combinations(G, 2):
189
+ # Adjacent vertices must exceed the threshold.
190
+ if v in G[u]:
191
+ assert join(G, u, v, 10, -2, l1dist)
192
+ # Nonadjacent vertices must not exceed the threshold.
193
+ else:
194
+ assert not join(G, u, v, 10, -2, l1dist)
195
+
196
+ def test_p_dist_zero(self):
197
+ """Tests if p_dict = 0 returns disconnected graph with 0 edges"""
198
+
199
+ def p_dist(dist):
200
+ return 0
201
+
202
+ G = nx.geographical_threshold_graph(50, 1, p_dist=p_dist)
203
+ assert len(G.edges) == 0
204
+
205
+ def test_pos_weight_name(self):
206
+ gtg = nx.geographical_threshold_graph
207
+ G = gtg(50, 100, seed=42, pos_name="coords", weight_name="wt")
208
+ assert all(len(d["coords"]) == 2 for n, d in G.nodes.items())
209
+ assert all(d["wt"] > 0 for n, d in G.nodes.items())
210
+
211
+
212
+ class TestWaxmanGraph:
213
+ """Unit tests for the :func:`~networkx.waxman_graph` function."""
214
+
215
+ def test_number_of_nodes_1(self):
216
+ G = nx.waxman_graph(50, 0.5, 0.1, seed=42)
217
+ assert len(G) == 50
218
+ G = nx.waxman_graph(range(50), 0.5, 0.1, seed=42)
219
+ assert len(G) == 50
220
+
221
+ def test_number_of_nodes_2(self):
222
+ G = nx.waxman_graph(50, 0.5, 0.1, L=1)
223
+ assert len(G) == 50
224
+ G = nx.waxman_graph(range(50), 0.5, 0.1, L=1)
225
+ assert len(G) == 50
226
+
227
+ def test_metric(self):
228
+ """Tests for providing an alternate distance metric to the generator."""
229
+ # Use the L1 metric.
230
+ G = nx.waxman_graph(50, 0.5, 0.1, metric=l1dist)
231
+ assert len(G) == 50
232
+
233
+ def test_pos_name(self):
234
+ G = nx.waxman_graph(50, 0.5, 0.1, seed=42, pos_name="coords")
235
+ assert all(len(d["coords"]) == 2 for n, d in G.nodes.items())
236
+
237
+
238
+ class TestNavigableSmallWorldGraph:
239
+ def test_navigable_small_world(self):
240
+ G = nx.navigable_small_world_graph(5, p=1, q=0, seed=42)
241
+ gg = nx.grid_2d_graph(5, 5).to_directed()
242
+ assert nx.is_isomorphic(G, gg)
243
+
244
+ G = nx.navigable_small_world_graph(5, p=1, q=0, dim=3)
245
+ gg = nx.grid_graph([5, 5, 5]).to_directed()
246
+ assert nx.is_isomorphic(G, gg)
247
+
248
+ G = nx.navigable_small_world_graph(5, p=1, q=0, dim=1)
249
+ gg = nx.grid_graph([5]).to_directed()
250
+ assert nx.is_isomorphic(G, gg)
251
+
252
+ def test_invalid_diameter_value(self):
253
+ with pytest.raises(nx.NetworkXException, match=".*p must be >= 1"):
254
+ nx.navigable_small_world_graph(5, p=0, q=0, dim=1)
255
+
256
+ def test_invalid_long_range_connections_value(self):
257
+ with pytest.raises(nx.NetworkXException, match=".*q must be >= 0"):
258
+ nx.navigable_small_world_graph(5, p=1, q=-1, dim=1)
259
+
260
+ def test_invalid_exponent_for_decaying_probability_value(self):
261
+ with pytest.raises(nx.NetworkXException, match=".*r must be >= 0"):
262
+ nx.navigable_small_world_graph(5, p=1, q=0, r=-1, dim=1)
263
+
264
+ def test_r_between_0_and_1(self):
265
+ """Smoke test for radius in range [0, 1]"""
266
+ # q=0 means no long-range connections
267
+ G = nx.navigable_small_world_graph(3, p=1, q=0, r=0.5, dim=2, seed=42)
268
+ expected = nx.grid_2d_graph(3, 3, create_using=nx.DiGraph)
269
+ assert nx.utils.graphs_equal(G, expected)
270
+
271
+ @pytest.mark.parametrize("seed", range(2478, 2578, 10))
272
+ def test_r_general_scaling(self, seed):
273
+ """The probability of adding a long-range edge scales with `1 / dist**r`,
274
+ so a navigable_small_world graph created with r < 1 should generally
275
+ result in more edges than a navigable_small_world graph with r >= 1
276
+ (for 0 < q << n).
277
+
278
+ N.B. this is probabilistic, so this test may not hold for all seeds."""
279
+ G1 = nx.navigable_small_world_graph(7, q=3, r=0.5, seed=seed)
280
+ G2 = nx.navigable_small_world_graph(7, q=3, r=1, seed=seed)
281
+ G3 = nx.navigable_small_world_graph(7, q=3, r=2, seed=seed)
282
+ assert G1.number_of_edges() > G2.number_of_edges()
283
+ assert G2.number_of_edges() > G3.number_of_edges()
284
+
285
+
286
+ class TestThresholdedRandomGeometricGraph:
287
+ """Unit tests for :func:`~networkx.thresholded_random_geometric_graph`"""
288
+
289
+ def test_number_of_nodes(self):
290
+ G = nx.thresholded_random_geometric_graph(50, 0.2, 0.1, seed=42)
291
+ assert len(G) == 50
292
+ G = nx.thresholded_random_geometric_graph(range(50), 0.2, 0.1, seed=42)
293
+ assert len(G) == 50
294
+
295
+ def test_distances(self):
296
+ """Tests that pairs of vertices adjacent if and only if they are
297
+ within the prescribed radius.
298
+ """
299
+ # Use the Euclidean metric, the default according to the
300
+ # documentation.
301
+ G = nx.thresholded_random_geometric_graph(50, 0.25, 0.1, seed=42)
302
+ for u, v in combinations(G, 2):
303
+ # Adjacent vertices must be within the given distance.
304
+ if v in G[u]:
305
+ assert math.dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
306
+
307
+ def test_p(self):
308
+ """Tests for providing an alternate distance metric to the generator."""
309
+
310
+ # Use the L1 metric.
311
+ def dist(x, y):
312
+ return sum(abs(a - b) for a, b in zip(x, y))
313
+
314
+ G = nx.thresholded_random_geometric_graph(50, 0.25, 0.1, p=1, seed=42)
315
+ for u, v in combinations(G, 2):
316
+ # Adjacent vertices must be within the given distance.
317
+ if v in G[u]:
318
+ assert dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
319
+
320
+ def test_node_names(self):
321
+ """Tests using values other than sequential numbers as node IDs."""
322
+ import string
323
+
324
+ nodes = list(string.ascii_lowercase)
325
+ G = nx.thresholded_random_geometric_graph(nodes, 0.25, 0.1, seed=42)
326
+ assert len(G) == len(nodes)
327
+
328
+ for u, v in combinations(G, 2):
329
+ # Adjacent vertices must be within the given distance.
330
+ if v in G[u]:
331
+ assert math.dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
332
+
333
+ def test_theta(self):
334
+ """Tests that pairs of vertices adjacent if and only if their sum
335
+ weights exceeds the threshold parameter theta.
336
+ """
337
+ G = nx.thresholded_random_geometric_graph(50, 0.25, 0.1, seed=42)
338
+
339
+ for u, v in combinations(G, 2):
340
+ # Adjacent vertices must be within the given distance.
341
+ if v in G[u]:
342
+ assert (G.nodes[u]["weight"] + G.nodes[v]["weight"]) >= 0.1
343
+
344
+ def test_pos_name(self):
345
+ trgg = nx.thresholded_random_geometric_graph
346
+ G = trgg(50, 0.25, 0.1, seed=42, pos_name="p", weight_name="wt")
347
+ assert all(len(d["p"]) == 2 for n, d in G.nodes.items())
348
+ assert all(d["wt"] > 0 for n, d in G.nodes.items())
349
+
350
+
351
+ def test_geometric_edges_pos_attribute():
352
+ G = nx.Graph()
353
+ G.add_nodes_from(
354
+ [
355
+ (0, {"position": (0, 0)}),
356
+ (1, {"position": (0, 1)}),
357
+ (2, {"position": (1, 0)}),
358
+ ]
359
+ )
360
+ expected_edges = [(0, 1), (0, 2)]
361
+ assert expected_edges == nx.geometric_edges(G, radius=1, pos_name="position")
362
+
363
+
364
+ def test_geometric_edges_raises_no_pos():
365
+ G = nx.path_graph(3)
366
+ msg = "all nodes. must have a '"
367
+ with pytest.raises(nx.NetworkXError, match=msg):
368
+ nx.geometric_edges(G, radius=1)
369
+
370
+
371
+ def test_number_of_nodes_S1():
372
+ G = nx.geometric_soft_configuration_graph(
373
+ beta=1.5, n=100, gamma=2.7, mean_degree=10, seed=42
374
+ )
375
+ assert len(G) == 100
376
+
377
+
378
+ def test_set_attributes_S1():
379
+ G = nx.geometric_soft_configuration_graph(
380
+ beta=1.5, n=100, gamma=2.7, mean_degree=10, seed=42
381
+ )
382
+ kappas = nx.get_node_attributes(G, "kappa")
383
+ assert len(kappas) == 100
384
+ thetas = nx.get_node_attributes(G, "theta")
385
+ assert len(thetas) == 100
386
+ radii = nx.get_node_attributes(G, "radius")
387
+ assert len(radii) == 100
388
+
389
+
390
+ def test_mean_kappas_mean_degree_S1():
391
+ G = nx.geometric_soft_configuration_graph(
392
+ beta=2.5, n=50, gamma=2.7, mean_degree=10, seed=8023
393
+ )
394
+
395
+ kappas = nx.get_node_attributes(G, "kappa")
396
+ mean_kappas = sum(kappas.values()) / len(kappas)
397
+ assert math.fabs(mean_kappas - 10) < 0.5
398
+
399
+ degrees = dict(G.degree())
400
+ mean_degree = sum(degrees.values()) / len(degrees)
401
+ assert math.fabs(mean_degree - 10) < 1
402
+
403
+
404
+ def test_dict_kappas_S1():
405
+ kappas = {i: 10 for i in range(1000)}
406
+ G = nx.geometric_soft_configuration_graph(beta=1, kappas=kappas)
407
+ assert len(G) == 1000
408
+ kappas = nx.get_node_attributes(G, "kappa")
409
+ assert all(kappa == 10 for kappa in kappas.values())
410
+
411
+
412
+ def test_beta_clustering_S1():
413
+ G1 = nx.geometric_soft_configuration_graph(
414
+ beta=1.5, n=100, gamma=3.5, mean_degree=10, seed=42
415
+ )
416
+ G2 = nx.geometric_soft_configuration_graph(
417
+ beta=3.0, n=100, gamma=3.5, mean_degree=10, seed=42
418
+ )
419
+ assert nx.average_clustering(G1) < nx.average_clustering(G2)
420
+
421
+
422
+ def test_wrong_parameters_S1():
423
+ with pytest.raises(
424
+ nx.NetworkXError,
425
+ match="Please provide either kappas, or all 3 of: n, gamma and mean_degree.",
426
+ ):
427
+ G = nx.geometric_soft_configuration_graph(
428
+ beta=1.5, gamma=3.5, mean_degree=10, seed=42
429
+ )
430
+
431
+ with pytest.raises(
432
+ nx.NetworkXError,
433
+ match="When kappas is input, n, gamma and mean_degree must not be.",
434
+ ):
435
+ kappas = {i: 10 for i in range(1000)}
436
+ G = nx.geometric_soft_configuration_graph(
437
+ beta=1.5, kappas=kappas, gamma=2.3, seed=42
438
+ )
439
+
440
+ with pytest.raises(
441
+ nx.NetworkXError,
442
+ match="Please provide either kappas, or all 3 of: n, gamma and mean_degree.",
443
+ ):
444
+ G = nx.geometric_soft_configuration_graph(beta=1.5, seed=42)
445
+
446
+
447
+ def test_negative_beta_S1():
448
+ with pytest.raises(
449
+ nx.NetworkXError, match="The parameter beta cannot be smaller or equal to 0."
450
+ ):
451
+ G = nx.geometric_soft_configuration_graph(
452
+ beta=-1, n=100, gamma=2.3, mean_degree=10, seed=42
453
+ )
454
+
455
+
456
+ def test_non_zero_clustering_beta_lower_one_S1():
457
+ G = nx.geometric_soft_configuration_graph(
458
+ beta=0.5, n=100, gamma=3.5, mean_degree=10, seed=42
459
+ )
460
+ assert nx.average_clustering(G) > 0
461
+
462
+
463
+ def test_mean_degree_influence_on_connectivity_S1():
464
+ low_mean_degree = 2
465
+ high_mean_degree = 20
466
+ G_low = nx.geometric_soft_configuration_graph(
467
+ beta=1.2, n=100, gamma=2.7, mean_degree=low_mean_degree, seed=42
468
+ )
469
+ G_high = nx.geometric_soft_configuration_graph(
470
+ beta=1.2, n=100, gamma=2.7, mean_degree=high_mean_degree, seed=42
471
+ )
472
+ assert nx.number_connected_components(G_low) > nx.number_connected_components(
473
+ G_high
474
+ )
475
+
476
+
477
+ def test_compare_mean_kappas_different_gammas_S1():
478
+ G1 = nx.geometric_soft_configuration_graph(
479
+ beta=1.5, n=20, gamma=2.7, mean_degree=5, seed=42
480
+ )
481
+ G2 = nx.geometric_soft_configuration_graph(
482
+ beta=1.5, n=20, gamma=3.5, mean_degree=5, seed=42
483
+ )
484
+ kappas1 = nx.get_node_attributes(G1, "kappa")
485
+ mean_kappas1 = sum(kappas1.values()) / len(kappas1)
486
+ kappas2 = nx.get_node_attributes(G2, "kappa")
487
+ mean_kappas2 = sum(kappas2.values()) / len(kappas2)
488
+ assert math.fabs(mean_kappas1 - mean_kappas2) < 1
venv/lib/python3.10/site-packages/networkx/generators/tests/test_harary_graph.py ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Unit tests for the :mod:`networkx.generators.harary_graph` module.
2
+ """
3
+
4
+ import pytest
5
+
6
+ import networkx as nx
7
+ from networkx.algorithms.isomorphism.isomorph import is_isomorphic
8
+ from networkx.generators.harary_graph import hkn_harary_graph, hnm_harary_graph
9
+
10
+
11
+ class TestHararyGraph:
12
+ """
13
+ Suppose n nodes, m >= n-1 edges, d = 2m // n, r = 2m % n
14
+ """
15
+
16
+ def test_hnm_harary_graph(self):
17
+ # When d is even and r = 0, the hnm_harary_graph(n,m) is
18
+ # the circulant_graph(n, list(range(1,d/2+1)))
19
+ for n, m in [(5, 5), (6, 12), (7, 14)]:
20
+ G1 = hnm_harary_graph(n, m)
21
+ d = 2 * m // n
22
+ G2 = nx.circulant_graph(n, list(range(1, d // 2 + 1)))
23
+ assert is_isomorphic(G1, G2)
24
+
25
+ # When d is even and r > 0, the hnm_harary_graph(n,m) is
26
+ # the circulant_graph(n, list(range(1,d/2+1)))
27
+ # with r edges added arbitrarily
28
+ for n, m in [(5, 7), (6, 13), (7, 16)]:
29
+ G1 = hnm_harary_graph(n, m)
30
+ d = 2 * m // n
31
+ G2 = nx.circulant_graph(n, list(range(1, d // 2 + 1)))
32
+ assert set(G2.edges) < set(G1.edges)
33
+ assert G1.number_of_edges() == m
34
+
35
+ # When d is odd and n is even and r = 0, the hnm_harary_graph(n,m)
36
+ # is the circulant_graph(n, list(range(1,(d+1)/2) plus [n//2])
37
+ for n, m in [(6, 9), (8, 12), (10, 15)]:
38
+ G1 = hnm_harary_graph(n, m)
39
+ d = 2 * m // n
40
+ L = list(range(1, (d + 1) // 2))
41
+ L.append(n // 2)
42
+ G2 = nx.circulant_graph(n, L)
43
+ assert is_isomorphic(G1, G2)
44
+
45
+ # When d is odd and n is even and r > 0, the hnm_harary_graph(n,m)
46
+ # is the circulant_graph(n, list(range(1,(d+1)/2) plus [n//2])
47
+ # with r edges added arbitrarily
48
+ for n, m in [(6, 10), (8, 13), (10, 17)]:
49
+ G1 = hnm_harary_graph(n, m)
50
+ d = 2 * m // n
51
+ L = list(range(1, (d + 1) // 2))
52
+ L.append(n // 2)
53
+ G2 = nx.circulant_graph(n, L)
54
+ assert set(G2.edges) < set(G1.edges)
55
+ assert G1.number_of_edges() == m
56
+
57
+ # When d is odd and n is odd, the hnm_harary_graph(n,m) is
58
+ # the circulant_graph(n, list(range(1,(d+1)/2))
59
+ # with m - n*(d-1)/2 edges added arbitrarily
60
+ for n, m in [(5, 4), (7, 12), (9, 14)]:
61
+ G1 = hnm_harary_graph(n, m)
62
+ d = 2 * m // n
63
+ L = list(range(1, (d + 1) // 2))
64
+ G2 = nx.circulant_graph(n, L)
65
+ assert set(G2.edges) < set(G1.edges)
66
+ assert G1.number_of_edges() == m
67
+
68
+ # Raise NetworkXError if n<1
69
+ n = 0
70
+ m = 0
71
+ pytest.raises(nx.NetworkXError, hnm_harary_graph, n, m)
72
+
73
+ # Raise NetworkXError if m < n-1
74
+ n = 6
75
+ m = 4
76
+ pytest.raises(nx.NetworkXError, hnm_harary_graph, n, m)
77
+
78
+ # Raise NetworkXError if m > n(n-1)/2
79
+ n = 6
80
+ m = 16
81
+ pytest.raises(nx.NetworkXError, hnm_harary_graph, n, m)
82
+
83
+ """
84
+ Suppose connectivity k, number of nodes n
85
+ """
86
+
87
+ def test_hkn_harary_graph(self):
88
+ # When k == 1, the hkn_harary_graph(k,n) is
89
+ # the path_graph(n)
90
+ for k, n in [(1, 6), (1, 7)]:
91
+ G1 = hkn_harary_graph(k, n)
92
+ G2 = nx.path_graph(n)
93
+ assert is_isomorphic(G1, G2)
94
+
95
+ # When k is even, the hkn_harary_graph(k,n) is
96
+ # the circulant_graph(n, list(range(1,k/2+1)))
97
+ for k, n in [(2, 6), (2, 7), (4, 6), (4, 7)]:
98
+ G1 = hkn_harary_graph(k, n)
99
+ G2 = nx.circulant_graph(n, list(range(1, k // 2 + 1)))
100
+ assert is_isomorphic(G1, G2)
101
+
102
+ # When k is odd and n is even, the hkn_harary_graph(k,n) is
103
+ # the circulant_graph(n, list(range(1,(k+1)/2)) plus [n/2])
104
+ for k, n in [(3, 6), (5, 8), (7, 10)]:
105
+ G1 = hkn_harary_graph(k, n)
106
+ L = list(range(1, (k + 1) // 2))
107
+ L.append(n // 2)
108
+ G2 = nx.circulant_graph(n, L)
109
+ assert is_isomorphic(G1, G2)
110
+
111
+ # When k is odd and n is odd, the hkn_harary_graph(k,n) is
112
+ # the circulant_graph(n, list(range(1,(k+1)/2))) with
113
+ # n//2+1 edges added between node i and node i+n//2+1
114
+ for k, n in [(3, 5), (5, 9), (7, 11)]:
115
+ G1 = hkn_harary_graph(k, n)
116
+ G2 = nx.circulant_graph(n, list(range(1, (k + 1) // 2)))
117
+ eSet1 = set(G1.edges)
118
+ eSet2 = set(G2.edges)
119
+ eSet3 = set()
120
+ half = n // 2
121
+ for i in range(half + 1):
122
+ # add half+1 edges between i and i+half
123
+ eSet3.add((i, (i + half) % n))
124
+ assert eSet1 == eSet2 | eSet3
125
+
126
+ # Raise NetworkXError if k<1
127
+ k = 0
128
+ n = 0
129
+ pytest.raises(nx.NetworkXError, hkn_harary_graph, k, n)
130
+
131
+ # Raise NetworkXError if n<k+1
132
+ k = 6
133
+ n = 6
134
+ pytest.raises(nx.NetworkXError, hkn_harary_graph, k, n)
venv/lib/python3.10/site-packages/networkx/generators/tests/test_internet_as_graphs.py ADDED
@@ -0,0 +1,176 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pytest import approx
2
+
3
+ from networkx import is_connected, neighbors
4
+ from networkx.generators.internet_as_graphs import random_internet_as_graph
5
+
6
+
7
+ class TestInternetASTopology:
8
+ @classmethod
9
+ def setup_class(cls):
10
+ cls.n = 1000
11
+ cls.seed = 42
12
+ cls.G = random_internet_as_graph(cls.n, cls.seed)
13
+ cls.T = []
14
+ cls.M = []
15
+ cls.C = []
16
+ cls.CP = []
17
+ cls.customers = {}
18
+ cls.providers = {}
19
+
20
+ for i in cls.G.nodes():
21
+ if cls.G.nodes[i]["type"] == "T":
22
+ cls.T.append(i)
23
+ elif cls.G.nodes[i]["type"] == "M":
24
+ cls.M.append(i)
25
+ elif cls.G.nodes[i]["type"] == "C":
26
+ cls.C.append(i)
27
+ elif cls.G.nodes[i]["type"] == "CP":
28
+ cls.CP.append(i)
29
+ else:
30
+ raise ValueError("Inconsistent data in the graph node attributes")
31
+ cls.set_customers(i)
32
+ cls.set_providers(i)
33
+
34
+ @classmethod
35
+ def set_customers(cls, i):
36
+ if i not in cls.customers:
37
+ cls.customers[i] = set()
38
+ for j in neighbors(cls.G, i):
39
+ e = cls.G.edges[(i, j)]
40
+ if e["type"] == "transit":
41
+ customer = int(e["customer"])
42
+ if j == customer:
43
+ cls.set_customers(j)
44
+ cls.customers[i] = cls.customers[i].union(cls.customers[j])
45
+ cls.customers[i].add(j)
46
+ elif i != customer:
47
+ raise ValueError(
48
+ "Inconsistent data in the graph edge attributes"
49
+ )
50
+
51
+ @classmethod
52
+ def set_providers(cls, i):
53
+ if i not in cls.providers:
54
+ cls.providers[i] = set()
55
+ for j in neighbors(cls.G, i):
56
+ e = cls.G.edges[(i, j)]
57
+ if e["type"] == "transit":
58
+ customer = int(e["customer"])
59
+ if i == customer:
60
+ cls.set_providers(j)
61
+ cls.providers[i] = cls.providers[i].union(cls.providers[j])
62
+ cls.providers[i].add(j)
63
+ elif j != customer:
64
+ raise ValueError(
65
+ "Inconsistent data in the graph edge attributes"
66
+ )
67
+
68
+ def test_wrong_input(self):
69
+ G = random_internet_as_graph(0)
70
+ assert len(G.nodes()) == 0
71
+
72
+ G = random_internet_as_graph(-1)
73
+ assert len(G.nodes()) == 0
74
+
75
+ G = random_internet_as_graph(1)
76
+ assert len(G.nodes()) == 1
77
+
78
+ def test_node_numbers(self):
79
+ assert len(self.G.nodes()) == self.n
80
+ assert len(self.T) < 7
81
+ assert len(self.M) == round(self.n * 0.15)
82
+ assert len(self.CP) == round(self.n * 0.05)
83
+ numb = self.n - len(self.T) - len(self.M) - len(self.CP)
84
+ assert len(self.C) == numb
85
+
86
+ def test_connectivity(self):
87
+ assert is_connected(self.G)
88
+
89
+ def test_relationships(self):
90
+ # T nodes are not customers of anyone
91
+ for i in self.T:
92
+ assert len(self.providers[i]) == 0
93
+
94
+ # C nodes are not providers of anyone
95
+ for i in self.C:
96
+ assert len(self.customers[i]) == 0
97
+
98
+ # CP nodes are not providers of anyone
99
+ for i in self.CP:
100
+ assert len(self.customers[i]) == 0
101
+
102
+ # test whether there is a customer-provider loop
103
+ for i in self.G.nodes():
104
+ assert len(self.customers[i].intersection(self.providers[i])) == 0
105
+
106
+ # test whether there is a peering with a customer or provider
107
+ for i, j in self.G.edges():
108
+ if self.G.edges[(i, j)]["type"] == "peer":
109
+ assert j not in self.customers[i]
110
+ assert i not in self.customers[j]
111
+ assert j not in self.providers[i]
112
+ assert i not in self.providers[j]
113
+
114
+ def test_degree_values(self):
115
+ d_m = 0 # multihoming degree for M nodes
116
+ d_cp = 0 # multihoming degree for CP nodes
117
+ d_c = 0 # multihoming degree for C nodes
118
+ p_m_m = 0 # avg number of peering edges between M and M
119
+ p_cp_m = 0 # avg number of peering edges between CP and M
120
+ p_cp_cp = 0 # avg number of peering edges between CP and CP
121
+ t_m = 0 # probability M's provider is T
122
+ t_cp = 0 # probability CP's provider is T
123
+ t_c = 0 # probability C's provider is T
124
+
125
+ for i, j in self.G.edges():
126
+ e = self.G.edges[(i, j)]
127
+ if e["type"] == "transit":
128
+ cust = int(e["customer"])
129
+ if i == cust:
130
+ prov = j
131
+ elif j == cust:
132
+ prov = i
133
+ else:
134
+ raise ValueError("Inconsistent data in the graph edge attributes")
135
+ if cust in self.M:
136
+ d_m += 1
137
+ if self.G.nodes[prov]["type"] == "T":
138
+ t_m += 1
139
+ elif cust in self.C:
140
+ d_c += 1
141
+ if self.G.nodes[prov]["type"] == "T":
142
+ t_c += 1
143
+ elif cust in self.CP:
144
+ d_cp += 1
145
+ if self.G.nodes[prov]["type"] == "T":
146
+ t_cp += 1
147
+ else:
148
+ raise ValueError("Inconsistent data in the graph edge attributes")
149
+ elif e["type"] == "peer":
150
+ if self.G.nodes[i]["type"] == "M" and self.G.nodes[j]["type"] == "M":
151
+ p_m_m += 1
152
+ if self.G.nodes[i]["type"] == "CP" and self.G.nodes[j]["type"] == "CP":
153
+ p_cp_cp += 1
154
+ if (
155
+ self.G.nodes[i]["type"] == "M"
156
+ and self.G.nodes[j]["type"] == "CP"
157
+ or self.G.nodes[i]["type"] == "CP"
158
+ and self.G.nodes[j]["type"] == "M"
159
+ ):
160
+ p_cp_m += 1
161
+ else:
162
+ raise ValueError("Unexpected data in the graph edge attributes")
163
+
164
+ assert d_m / len(self.M) == approx((2 + (2.5 * self.n) / 10000), abs=1e-0)
165
+ assert d_cp / len(self.CP) == approx((2 + (1.5 * self.n) / 10000), abs=1e-0)
166
+ assert d_c / len(self.C) == approx((1 + (5 * self.n) / 100000), abs=1e-0)
167
+
168
+ assert p_m_m / len(self.M) == approx((1 + (2 * self.n) / 10000), abs=1e-0)
169
+ assert p_cp_m / len(self.CP) == approx((0.2 + (2 * self.n) / 10000), abs=1e-0)
170
+ assert p_cp_cp / len(self.CP) == approx(
171
+ (0.05 + (2 * self.n) / 100000), abs=1e-0
172
+ )
173
+
174
+ assert t_m / d_m == approx(0.375, abs=1e-1)
175
+ assert t_cp / d_cp == approx(0.375, abs=1e-1)
176
+ assert t_c / d_c == approx(0.125, abs=1e-1)
venv/lib/python3.10/site-packages/networkx/generators/tests/test_intersection.py ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ import networkx as nx
4
+
5
+
6
+ class TestIntersectionGraph:
7
+ def test_random_intersection_graph(self):
8
+ G = nx.uniform_random_intersection_graph(10, 5, 0.5)
9
+ assert len(G) == 10
10
+
11
+ def test_k_random_intersection_graph(self):
12
+ G = nx.k_random_intersection_graph(10, 5, 2)
13
+ assert len(G) == 10
14
+
15
+ def test_k_random_intersection_graph_seeded(self):
16
+ G = nx.k_random_intersection_graph(10, 5, 2, seed=1234)
17
+ assert len(G) == 10
18
+
19
+ def test_general_random_intersection_graph(self):
20
+ G = nx.general_random_intersection_graph(10, 5, [0.1, 0.2, 0.2, 0.1, 0.1])
21
+ assert len(G) == 10
22
+ pytest.raises(
23
+ ValueError,
24
+ nx.general_random_intersection_graph,
25
+ 10,
26
+ 5,
27
+ [0.1, 0.2, 0.2, 0.1],
28
+ )
venv/lib/python3.10/site-packages/networkx/generators/tests/test_interval_graph.py ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Unit tests for the :mod:`networkx.generators.interval_graph` module.
2
+
3
+ """
4
+ import math
5
+
6
+ import pytest
7
+
8
+ import networkx as nx
9
+ from networkx.generators.interval_graph import interval_graph
10
+ from networkx.utils import edges_equal
11
+
12
+
13
+ class TestIntervalGraph:
14
+ """Unit tests for :func:`networkx.generators.interval_graph.interval_graph`"""
15
+
16
+ def test_empty(self):
17
+ """Tests for trivial case of empty input"""
18
+ assert len(interval_graph([])) == 0
19
+
20
+ def test_interval_graph_check_invalid(self):
21
+ """Tests for conditions that raise Exceptions"""
22
+
23
+ invalids_having_none = [None, (1, 2)]
24
+ with pytest.raises(TypeError):
25
+ interval_graph(invalids_having_none)
26
+
27
+ invalids_having_set = [{1, 2}]
28
+ with pytest.raises(TypeError):
29
+ interval_graph(invalids_having_set)
30
+
31
+ invalids_having_seq_but_not_length2 = [(1, 2, 3)]
32
+ with pytest.raises(TypeError):
33
+ interval_graph(invalids_having_seq_but_not_length2)
34
+
35
+ invalids_interval = [[3, 2]]
36
+ with pytest.raises(ValueError):
37
+ interval_graph(invalids_interval)
38
+
39
+ def test_interval_graph_0(self):
40
+ intervals = [(1, 2), (1, 3)]
41
+
42
+ expected_graph = nx.Graph()
43
+ expected_graph.add_edge(*intervals)
44
+
45
+ actual_g = interval_graph(intervals)
46
+
47
+ assert set(actual_g.nodes) == set(expected_graph.nodes)
48
+ assert edges_equal(expected_graph, actual_g)
49
+
50
+ def test_interval_graph_1(self):
51
+ intervals = [(1, 2), (2, 3), (3, 4), (1, 4)]
52
+
53
+ expected_graph = nx.Graph()
54
+ expected_graph.add_nodes_from(intervals)
55
+ e1 = ((1, 4), (1, 2))
56
+ e2 = ((1, 4), (2, 3))
57
+ e3 = ((1, 4), (3, 4))
58
+ e4 = ((3, 4), (2, 3))
59
+ e5 = ((1, 2), (2, 3))
60
+
61
+ expected_graph.add_edges_from([e1, e2, e3, e4, e5])
62
+
63
+ actual_g = interval_graph(intervals)
64
+
65
+ assert set(actual_g.nodes) == set(expected_graph.nodes)
66
+ assert edges_equal(expected_graph, actual_g)
67
+
68
+ def test_interval_graph_2(self):
69
+ intervals = [(1, 2), [3, 5], [6, 8], (9, 10)]
70
+
71
+ expected_graph = nx.Graph()
72
+ expected_graph.add_nodes_from([(1, 2), (3, 5), (6, 8), (9, 10)])
73
+
74
+ actual_g = interval_graph(intervals)
75
+
76
+ assert set(actual_g.nodes) == set(expected_graph.nodes)
77
+ assert edges_equal(expected_graph, actual_g)
78
+
79
+ def test_interval_graph_3(self):
80
+ intervals = [(1, 4), [3, 5], [2.5, 4]]
81
+
82
+ expected_graph = nx.Graph()
83
+ expected_graph.add_nodes_from([(1, 4), (3, 5), (2.5, 4)])
84
+ e1 = ((1, 4), (3, 5))
85
+ e2 = ((1, 4), (2.5, 4))
86
+ e3 = ((3, 5), (2.5, 4))
87
+
88
+ expected_graph.add_edges_from([e1, e2, e3])
89
+
90
+ actual_g = interval_graph(intervals)
91
+
92
+ assert set(actual_g.nodes) == set(expected_graph.nodes)
93
+ assert edges_equal(expected_graph, actual_g)
94
+
95
+ def test_interval_graph_4(self):
96
+ """test all possible overlaps"""
97
+ intervals = [
98
+ (0, 2),
99
+ (-2, -1),
100
+ (-2, 0),
101
+ (-2, 1),
102
+ (-2, 2),
103
+ (-2, 3),
104
+ (0, 1),
105
+ (0, 2),
106
+ (0, 3),
107
+ (1, 2),
108
+ (1, 3),
109
+ (2, 3),
110
+ (3, 4),
111
+ ]
112
+
113
+ expected_graph = nx.Graph()
114
+ expected_graph.add_nodes_from(intervals)
115
+ expected_nbrs = {
116
+ (-2, 0),
117
+ (-2, 1),
118
+ (-2, 2),
119
+ (-2, 3),
120
+ (0, 1),
121
+ (0, 2),
122
+ (0, 3),
123
+ (1, 2),
124
+ (1, 3),
125
+ (2, 3),
126
+ }
127
+ actual_g = nx.interval_graph(intervals)
128
+ actual_nbrs = nx.neighbors(actual_g, (0, 2))
129
+
130
+ assert set(actual_nbrs) == expected_nbrs
131
+
132
+ def test_interval_graph_5(self):
133
+ """this test is to see that an interval supports infinite number"""
134
+ intervals = {(-math.inf, 0), (-1, -1), (0.5, 0.5), (1, 1), (1, math.inf)}
135
+
136
+ expected_graph = nx.Graph()
137
+ expected_graph.add_nodes_from(intervals)
138
+ e1 = ((-math.inf, 0), (-1, -1))
139
+ e2 = ((1, 1), (1, math.inf))
140
+
141
+ expected_graph.add_edges_from([e1, e2])
142
+ actual_g = interval_graph(intervals)
143
+
144
+ assert set(actual_g.nodes) == set(expected_graph.nodes)
145
+ assert edges_equal(expected_graph, actual_g)