applied-ai-018 commited on
Commit
15b2ad6
·
verified ·
1 Parent(s): 27c0e04

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. ckpts/universal/global_step20/zero/20.attention.dense.weight/exp_avg_sq.pt +3 -0
  2. ckpts/universal/global_step20/zero/20.attention.dense.weight/fp32.pt +3 -0
  3. venv/lib/python3.10/site-packages/torch/include/ATen/ArrayRef.h +2 -0
  4. venv/lib/python3.10/site-packages/torch/include/ATen/Backtrace.h +2 -0
  5. venv/lib/python3.10/site-packages/torch/include/ATen/CPUFunctions.h +29 -0
  6. venv/lib/python3.10/site-packages/torch/include/ATen/CPUFunctions_inl.h +576 -0
  7. venv/lib/python3.10/site-packages/torch/include/ATen/CPUGeneratorImpl.h +49 -0
  8. venv/lib/python3.10/site-packages/torch/include/ATen/CUDAFunctions_inl.h +614 -0
  9. venv/lib/python3.10/site-packages/torch/include/ATen/CachedTensorUtils.h +24 -0
  10. venv/lib/python3.10/site-packages/torch/include/ATen/CollapseDims.h +94 -0
  11. venv/lib/python3.10/site-packages/torch/include/ATen/CompositeExplicitAutogradFunctions.h +29 -0
  12. venv/lib/python3.10/site-packages/torch/include/ATen/CompositeExplicitAutogradNonFunctionalFunctions.h +29 -0
  13. venv/lib/python3.10/site-packages/torch/include/ATen/CompositeImplicitAutogradFunctions.h +29 -0
  14. venv/lib/python3.10/site-packages/torch/include/ATen/CompositeImplicitAutogradFunctions_inl.h +500 -0
  15. venv/lib/python3.10/site-packages/torch/include/ATen/CompositeImplicitAutogradNestedTensorFunctions.h +29 -0
  16. venv/lib/python3.10/site-packages/torch/include/ATen/CompositeImplicitAutogradNestedTensorFunctions_inl.h +25 -0
  17. venv/lib/python3.10/site-packages/torch/include/ATen/Context.h +560 -0
  18. venv/lib/python3.10/site-packages/torch/include/ATen/Device.h +2 -0
  19. venv/lib/python3.10/site-packages/torch/include/ATen/Dispatch.h +808 -0
  20. venv/lib/python3.10/site-packages/torch/include/ATen/Dispatch_v2.h +186 -0
  21. venv/lib/python3.10/site-packages/torch/include/ATen/ExpandBase.h +30 -0
  22. venv/lib/python3.10/site-packages/torch/include/ATen/FuncTorchTLS.h +46 -0
  23. venv/lib/python3.10/site-packages/torch/include/ATen/FunctionalStorageImpl.h +126 -0
  24. venv/lib/python3.10/site-packages/torch/include/ATen/Functions.h +1427 -0
  25. venv/lib/python3.10/site-packages/torch/include/ATen/Generator.h +2 -0
  26. venv/lib/python3.10/site-packages/torch/include/ATen/InferSize.h +87 -0
  27. venv/lib/python3.10/site-packages/torch/include/ATen/LegacyBatchedFallback.h +25 -0
  28. venv/lib/python3.10/site-packages/torch/include/ATen/LegacyBatchedTensorImpl.h +160 -0
  29. venv/lib/python3.10/site-packages/torch/include/ATen/LegacyVmapMode.h +26 -0
  30. venv/lib/python3.10/site-packages/torch/include/ATen/LegacyVmapTransforms.h +183 -0
  31. venv/lib/python3.10/site-packages/torch/include/ATen/LinalgBackend.h +31 -0
  32. venv/lib/python3.10/site-packages/torch/include/ATen/MetaFunctions_inl.h +324 -0
  33. venv/lib/python3.10/site-packages/torch/include/ATen/NamedTensorUtils.h +215 -0
  34. venv/lib/python3.10/site-packages/torch/include/ATen/NativeFunctions.h +1317 -0
  35. venv/lib/python3.10/site-packages/torch/include/ATen/NativeMetaFunctions.h +1303 -0
  36. venv/lib/python3.10/site-packages/torch/include/ATen/NumericUtils.h +203 -0
  37. venv/lib/python3.10/site-packages/torch/include/ATen/PTThreadPool.h +17 -0
  38. venv/lib/python3.10/site-packages/torch/include/ATen/PadNd.h +28 -0
  39. venv/lib/python3.10/site-packages/torch/include/ATen/Parallel-inl.h +93 -0
  40. venv/lib/python3.10/site-packages/torch/include/ATen/ParallelNativeTBB.h +52 -0
  41. venv/lib/python3.10/site-packages/torch/include/ATen/RedispatchFunctions.h +0 -0
  42. venv/lib/python3.10/site-packages/torch/include/ATen/SavedTensorHooks.h +52 -0
  43. venv/lib/python3.10/site-packages/torch/include/ATen/Scalar.h +3 -0
  44. venv/lib/python3.10/site-packages/torch/include/ATen/ScalarOps.h +53 -0
  45. venv/lib/python3.10/site-packages/torch/include/ATen/SmallVector.h +2 -0
  46. venv/lib/python3.10/site-packages/torch/include/ATen/SparseCsrTensorImpl.h +186 -0
  47. venv/lib/python3.10/site-packages/torch/include/ATen/SparseTensorImpl.h +400 -0
  48. venv/lib/python3.10/site-packages/torch/include/ATen/StorageUtils.h +49 -0
  49. venv/lib/python3.10/site-packages/torch/include/ATen/TensorIndexing.h +735 -0
  50. venv/lib/python3.10/site-packages/torch/include/ATen/TensorIterator.h +1002 -0
ckpts/universal/global_step20/zero/20.attention.dense.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b9b7ff1c25aac1d083a74140789d1a2ed03035b1123f2a862d638bea8a8e8c57
3
+ size 16778411
ckpts/universal/global_step20/zero/20.attention.dense.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:168a9feae7b126f0db6a8babd4adec260d368139c62403f8a129e491958bc2a3
3
+ size 16778317
venv/lib/python3.10/site-packages/torch/include/ATen/ArrayRef.h ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ #pragma once
2
+ #include <c10/util/ArrayRef.h>
venv/lib/python3.10/site-packages/torch/include/ATen/Backtrace.h ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ #pragma once
2
+ #include <ATen/core/Backtrace.h>
venv/lib/python3.10/site-packages/torch/include/ATen/CPUFunctions.h ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #include <ATen/core/TensorBody.h>
2
+
3
+ // TODO Undo all logic introduced for Note [Avoiding Include Cycles In Static Dispatch]
4
+ // Code introduced to avoid cyclic dependency in static dispatch is no longer
5
+ // needed as static dispatch logic is moved from TensorBody.h, which caused cycles in the first place,
6
+ // to Operators.cpp for supporting multiple backends with multiple kernels.
7
+ //
8
+ // Note [Avoiding Include Cycles In Static Dispatch]
9
+ // In order to avoid #include cycles in the static dispatch build, we've carefully split out
10
+ // the static function definition files into {DispatchKey}Functions.h and {DispatchKey}Functions_inl.h.
11
+ //
12
+ // Without this split, the include cycle looks like TensorBody.h -> CPUFunctions.h -> TensorBody.h.
13
+ // - TensorBody.h #includes CPUFunctions.h in the static dispatch build, because the tensor methods
14
+ // all need to call into the fastpath C++ API defined in CPUFunctions.h. The methods are also all
15
+ // directly inlined into TensorBody.h.
16
+ // - CPUFunctions.h #includes TensorBody.h because it contains function declarations for the entire C++ API,
17
+ // which include functions that have defaultable optional<Tensor> arguments.
18
+ // That requires knowing the full Tensor class definition.
19
+ //
20
+ // We break the cycle by doing the following:
21
+ // - Split out CPUFunction.h into two files: CPUFunctions.h and CPUFunctions_inl.h
22
+ // - CPUFunction.h is a dummy file that just includes the Tensor class and includes CPUFunctions_inl.,
23
+ // - CPUFunctions_inl.h includes everything else
24
+ // - (only in the static dispatch build) TensorBody.h makes sure to finish defining the Tensor class,
25
+ // and then it includes CPUFunctions_inl.h.
26
+ // - All other files that want the cpu fastpath functions can include CPUFunctions.h directly.
27
+ // - This also means that static dispatch build, CPUFunctions.h only needs to
28
+ // #include TensorBody.h, and it will automatically bring in CPUFunctions_inl.h.
29
+ #include <ATen/CPUFunctions_inl.h>
venv/lib/python3.10/site-packages/torch/include/ATen/CPUFunctions_inl.h ADDED
@@ -0,0 +1,576 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunctions_inl.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ #if defined(AT_PER_OPERATOR_HEADERS) && defined(TORCH_ASSERT_ONLY_METHOD_OPERATORS)
12
+ #error This change adds a dependency on all pytorch operators, meaning the \
13
+ file will need to be re-compiled every time an operator is changed or added. \
14
+ Consider including a specific operator from \
15
+ <ATen/ops/{my_operator}_cpu_dispatch.h>. \
16
+ See NOTE [TORCH_ASSERT_ONLY_METHOD_OPERATORS].
17
+ #endif
18
+
19
+ #include <ATen/ops/_adaptive_avg_pool2d_cpu_dispatch.h>
20
+ #include <ATen/ops/_adaptive_avg_pool2d_backward_cpu_dispatch.h>
21
+ #include <ATen/ops/_adaptive_avg_pool3d_cpu_dispatch.h>
22
+ #include <ATen/ops/_adaptive_avg_pool3d_backward_cpu_dispatch.h>
23
+ #include <ATen/ops/_add_relu_cpu_dispatch.h>
24
+ #include <ATen/ops/_addmm_activation_cpu_dispatch.h>
25
+ #include <ATen/ops/_aminmax_cpu_dispatch.h>
26
+ #include <ATen/ops/_amp_foreach_non_finite_check_and_unscale_cpu_dispatch.h>
27
+ #include <ATen/ops/_amp_update_scale_cpu_dispatch.h>
28
+ #include <ATen/ops/_assert_async_cpu_dispatch.h>
29
+ #include <ATen/ops/_cdist_backward_cpu_dispatch.h>
30
+ #include <ATen/ops/_cdist_forward_cpu_dispatch.h>
31
+ #include <ATen/ops/_cholesky_solve_helper_cpu_dispatch.h>
32
+ #include <ATen/ops/_compute_linear_combination_cpu_dispatch.h>
33
+ #include <ATen/ops/_convert_indices_from_coo_to_csr_cpu_dispatch.h>
34
+ #include <ATen/ops/_convert_indices_from_csr_to_coo_cpu_dispatch.h>
35
+ #include <ATen/ops/_convert_weight_to_int4pack_cpu_dispatch.h>
36
+ #include <ATen/ops/_ctc_loss_cpu_dispatch.h>
37
+ #include <ATen/ops/_ctc_loss_backward_cpu_dispatch.h>
38
+ #include <ATen/ops/_cummax_helper_cpu_dispatch.h>
39
+ #include <ATen/ops/_cummin_helper_cpu_dispatch.h>
40
+ #include <ATen/ops/_dirichlet_grad_cpu_dispatch.h>
41
+ #include <ATen/ops/_efficientzerotensor_cpu_dispatch.h>
42
+ #include <ATen/ops/_embedding_bag_cpu_dispatch.h>
43
+ #include <ATen/ops/_embedding_bag_dense_backward_cpu_dispatch.h>
44
+ #include <ATen/ops/_embedding_bag_forward_only_cpu_dispatch.h>
45
+ #include <ATen/ops/_embedding_bag_per_sample_weights_backward_cpu_dispatch.h>
46
+ #include <ATen/ops/_empty_affine_quantized_cpu_dispatch.h>
47
+ #include <ATen/ops/_empty_per_channel_affine_quantized_cpu_dispatch.h>
48
+ #include <ATen/ops/_fake_quantize_learnable_per_channel_affine_cpu_dispatch.h>
49
+ #include <ATen/ops/_fake_quantize_learnable_per_channel_affine_backward_cpu_dispatch.h>
50
+ #include <ATen/ops/_fake_quantize_learnable_per_tensor_affine_cpu_dispatch.h>
51
+ #include <ATen/ops/_fake_quantize_learnable_per_tensor_affine_backward_cpu_dispatch.h>
52
+ #include <ATen/ops/_fake_quantize_per_tensor_affine_cachemask_tensor_qparams_cpu_dispatch.h>
53
+ #include <ATen/ops/_fft_c2c_cpu_dispatch.h>
54
+ #include <ATen/ops/_fft_c2r_cpu_dispatch.h>
55
+ #include <ATen/ops/_fft_r2c_cpu_dispatch.h>
56
+ #include <ATen/ops/_foobar_cpu_dispatch.h>
57
+ #include <ATen/ops/_foreach_abs_cpu_dispatch.h>
58
+ #include <ATen/ops/_foreach_acos_cpu_dispatch.h>
59
+ #include <ATen/ops/_foreach_add_cpu_dispatch.h>
60
+ #include <ATen/ops/_foreach_addcdiv_cpu_dispatch.h>
61
+ #include <ATen/ops/_foreach_addcmul_cpu_dispatch.h>
62
+ #include <ATen/ops/_foreach_asin_cpu_dispatch.h>
63
+ #include <ATen/ops/_foreach_atan_cpu_dispatch.h>
64
+ #include <ATen/ops/_foreach_ceil_cpu_dispatch.h>
65
+ #include <ATen/ops/_foreach_clamp_max_cpu_dispatch.h>
66
+ #include <ATen/ops/_foreach_clamp_min_cpu_dispatch.h>
67
+ #include <ATen/ops/_foreach_copy_cpu_dispatch.h>
68
+ #include <ATen/ops/_foreach_cos_cpu_dispatch.h>
69
+ #include <ATen/ops/_foreach_cosh_cpu_dispatch.h>
70
+ #include <ATen/ops/_foreach_div_cpu_dispatch.h>
71
+ #include <ATen/ops/_foreach_erf_cpu_dispatch.h>
72
+ #include <ATen/ops/_foreach_erfc_cpu_dispatch.h>
73
+ #include <ATen/ops/_foreach_exp_cpu_dispatch.h>
74
+ #include <ATen/ops/_foreach_expm1_cpu_dispatch.h>
75
+ #include <ATen/ops/_foreach_floor_cpu_dispatch.h>
76
+ #include <ATen/ops/_foreach_frac_cpu_dispatch.h>
77
+ #include <ATen/ops/_foreach_lerp_cpu_dispatch.h>
78
+ #include <ATen/ops/_foreach_lgamma_cpu_dispatch.h>
79
+ #include <ATen/ops/_foreach_log_cpu_dispatch.h>
80
+ #include <ATen/ops/_foreach_log10_cpu_dispatch.h>
81
+ #include <ATen/ops/_foreach_log1p_cpu_dispatch.h>
82
+ #include <ATen/ops/_foreach_log2_cpu_dispatch.h>
83
+ #include <ATen/ops/_foreach_maximum_cpu_dispatch.h>
84
+ #include <ATen/ops/_foreach_minimum_cpu_dispatch.h>
85
+ #include <ATen/ops/_foreach_mul_cpu_dispatch.h>
86
+ #include <ATen/ops/_foreach_neg_cpu_dispatch.h>
87
+ #include <ATen/ops/_foreach_norm_cpu_dispatch.h>
88
+ #include <ATen/ops/_foreach_pow_cpu_dispatch.h>
89
+ #include <ATen/ops/_foreach_reciprocal_cpu_dispatch.h>
90
+ #include <ATen/ops/_foreach_round_cpu_dispatch.h>
91
+ #include <ATen/ops/_foreach_sigmoid_cpu_dispatch.h>
92
+ #include <ATen/ops/_foreach_sign_cpu_dispatch.h>
93
+ #include <ATen/ops/_foreach_sin_cpu_dispatch.h>
94
+ #include <ATen/ops/_foreach_sinh_cpu_dispatch.h>
95
+ #include <ATen/ops/_foreach_sqrt_cpu_dispatch.h>
96
+ #include <ATen/ops/_foreach_sub_cpu_dispatch.h>
97
+ #include <ATen/ops/_foreach_tan_cpu_dispatch.h>
98
+ #include <ATen/ops/_foreach_tanh_cpu_dispatch.h>
99
+ #include <ATen/ops/_foreach_trunc_cpu_dispatch.h>
100
+ #include <ATen/ops/_foreach_zero_cpu_dispatch.h>
101
+ #include <ATen/ops/_functional_assert_async_cpu_dispatch.h>
102
+ #include <ATen/ops/_fused_moving_avg_obs_fq_helper_cpu_dispatch.h>
103
+ #include <ATen/ops/_fused_sdp_choice_cpu_dispatch.h>
104
+ #include <ATen/ops/_histogramdd_bin_edges_cpu_dispatch.h>
105
+ #include <ATen/ops/_histogramdd_from_bin_cts_cpu_dispatch.h>
106
+ #include <ATen/ops/_histogramdd_from_bin_tensors_cpu_dispatch.h>
107
+ #include <ATen/ops/_index_put_impl_cpu_dispatch.h>
108
+ #include <ATen/ops/_linalg_det_cpu_dispatch.h>
109
+ #include <ATen/ops/_linalg_eigh_cpu_dispatch.h>
110
+ #include <ATen/ops/_linalg_eigvals_cpu_dispatch.h>
111
+ #include <ATen/ops/_linalg_slogdet_cpu_dispatch.h>
112
+ #include <ATen/ops/_linalg_solve_ex_cpu_dispatch.h>
113
+ #include <ATen/ops/_linalg_svd_cpu_dispatch.h>
114
+ #include <ATen/ops/_local_scalar_dense_cpu_dispatch.h>
115
+ #include <ATen/ops/_log_softmax_cpu_dispatch.h>
116
+ #include <ATen/ops/_log_softmax_backward_data_cpu_dispatch.h>
117
+ #include <ATen/ops/_logcumsumexp_cpu_dispatch.h>
118
+ #include <ATen/ops/_make_dep_token_cpu_dispatch.h>
119
+ #include <ATen/ops/_make_per_channel_quantized_tensor_cpu_dispatch.h>
120
+ #include <ATen/ops/_make_per_tensor_quantized_tensor_cpu_dispatch.h>
121
+ #include <ATen/ops/_masked_softmax_cpu_dispatch.h>
122
+ #include <ATen/ops/_masked_softmax_backward_cpu_dispatch.h>
123
+ #include <ATen/ops/_native_batch_norm_legit_cpu_dispatch.h>
124
+ #include <ATen/ops/_native_multi_head_attention_cpu_dispatch.h>
125
+ #include <ATen/ops/_nested_from_padded_cpu_dispatch.h>
126
+ #include <ATen/ops/_nested_tensor_from_mask_cpu_dispatch.h>
127
+ #include <ATen/ops/_nested_tensor_from_mask_left_aligned_cpu_dispatch.h>
128
+ #include <ATen/ops/_nested_view_from_buffer_cpu_dispatch.h>
129
+ #include <ATen/ops/_pdist_backward_cpu_dispatch.h>
130
+ #include <ATen/ops/_pdist_forward_cpu_dispatch.h>
131
+ #include <ATen/ops/_prelu_kernel_cpu_dispatch.h>
132
+ #include <ATen/ops/_prelu_kernel_backward_cpu_dispatch.h>
133
+ #include <ATen/ops/_reshape_alias_cpu_dispatch.h>
134
+ #include <ATen/ops/_sample_dirichlet_cpu_dispatch.h>
135
+ #include <ATen/ops/_scaled_dot_product_flash_attention_for_cpu_cpu_dispatch.h>
136
+ #include <ATen/ops/_scaled_dot_product_flash_attention_for_cpu_backward_cpu_dispatch.h>
137
+ #include <ATen/ops/_segment_reduce_backward_cpu_dispatch.h>
138
+ #include <ATen/ops/_slow_conv2d_backward_cpu_dispatch.h>
139
+ #include <ATen/ops/_slow_conv2d_forward_cpu_dispatch.h>
140
+ #include <ATen/ops/_softmax_cpu_dispatch.h>
141
+ #include <ATen/ops/_softmax_backward_data_cpu_dispatch.h>
142
+ #include <ATen/ops/_spdiags_cpu_dispatch.h>
143
+ #include <ATen/ops/_stack_cpu_dispatch.h>
144
+ #include <ATen/ops/_standard_gamma_cpu_dispatch.h>
145
+ #include <ATen/ops/_standard_gamma_grad_cpu_dispatch.h>
146
+ #include <ATen/ops/_test_functorch_fallback_cpu_dispatch.h>
147
+ #include <ATen/ops/_test_optional_filled_intlist_cpu_dispatch.h>
148
+ #include <ATen/ops/_test_optional_floatlist_cpu_dispatch.h>
149
+ #include <ATen/ops/_test_optional_intlist_cpu_dispatch.h>
150
+ #include <ATen/ops/_to_sparse_cpu_dispatch.h>
151
+ #include <ATen/ops/_to_sparse_bsc_cpu_dispatch.h>
152
+ #include <ATen/ops/_to_sparse_bsr_cpu_dispatch.h>
153
+ #include <ATen/ops/_to_sparse_csc_cpu_dispatch.h>
154
+ #include <ATen/ops/_to_sparse_csr_cpu_dispatch.h>
155
+ #include <ATen/ops/_transform_bias_rescale_qkv_cpu_dispatch.h>
156
+ #include <ATen/ops/_transformer_encoder_layer_fwd_cpu_dispatch.h>
157
+ #include <ATen/ops/_unique_cpu_dispatch.h>
158
+ #include <ATen/ops/_unique2_cpu_dispatch.h>
159
+ #include <ATen/ops/_upsample_bicubic2d_aa_cpu_dispatch.h>
160
+ #include <ATen/ops/_upsample_bicubic2d_aa_backward_cpu_dispatch.h>
161
+ #include <ATen/ops/_upsample_bilinear2d_aa_cpu_dispatch.h>
162
+ #include <ATen/ops/_upsample_bilinear2d_aa_backward_cpu_dispatch.h>
163
+ #include <ATen/ops/_upsample_nearest_exact1d_cpu_dispatch.h>
164
+ #include <ATen/ops/_upsample_nearest_exact1d_backward_cpu_dispatch.h>
165
+ #include <ATen/ops/_upsample_nearest_exact2d_cpu_dispatch.h>
166
+ #include <ATen/ops/_upsample_nearest_exact2d_backward_cpu_dispatch.h>
167
+ #include <ATen/ops/_upsample_nearest_exact3d_cpu_dispatch.h>
168
+ #include <ATen/ops/_upsample_nearest_exact3d_backward_cpu_dispatch.h>
169
+ #include <ATen/ops/_validate_compressed_sparse_indices_cpu_dispatch.h>
170
+ #include <ATen/ops/_weight_int4pack_mm_cpu_dispatch.h>
171
+ #include <ATen/ops/_weight_int8pack_mm_cpu_dispatch.h>
172
+ #include <ATen/ops/_weight_norm_interface_cpu_dispatch.h>
173
+ #include <ATen/ops/_weight_norm_interface_backward_cpu_dispatch.h>
174
+ #include <ATen/ops/abs_cpu_dispatch.h>
175
+ #include <ATen/ops/acos_cpu_dispatch.h>
176
+ #include <ATen/ops/acosh_cpu_dispatch.h>
177
+ #include <ATen/ops/adaptive_avg_pool2d_cpu_dispatch.h>
178
+ #include <ATen/ops/adaptive_avg_pool3d_cpu_dispatch.h>
179
+ #include <ATen/ops/adaptive_avg_pool3d_backward_cpu_dispatch.h>
180
+ #include <ATen/ops/adaptive_max_pool2d_cpu_dispatch.h>
181
+ #include <ATen/ops/adaptive_max_pool2d_backward_cpu_dispatch.h>
182
+ #include <ATen/ops/adaptive_max_pool3d_cpu_dispatch.h>
183
+ #include <ATen/ops/adaptive_max_pool3d_backward_cpu_dispatch.h>
184
+ #include <ATen/ops/add_cpu_dispatch.h>
185
+ #include <ATen/ops/addbmm_cpu_dispatch.h>
186
+ #include <ATen/ops/addcdiv_cpu_dispatch.h>
187
+ #include <ATen/ops/addcmul_cpu_dispatch.h>
188
+ #include <ATen/ops/addmm_cpu_dispatch.h>
189
+ #include <ATen/ops/addmv_cpu_dispatch.h>
190
+ #include <ATen/ops/addr_cpu_dispatch.h>
191
+ #include <ATen/ops/all_cpu_dispatch.h>
192
+ #include <ATen/ops/amax_cpu_dispatch.h>
193
+ #include <ATen/ops/amin_cpu_dispatch.h>
194
+ #include <ATen/ops/aminmax_cpu_dispatch.h>
195
+ #include <ATen/ops/angle_cpu_dispatch.h>
196
+ #include <ATen/ops/any_cpu_dispatch.h>
197
+ #include <ATen/ops/arange_cpu_dispatch.h>
198
+ #include <ATen/ops/argmax_cpu_dispatch.h>
199
+ #include <ATen/ops/argmin_cpu_dispatch.h>
200
+ #include <ATen/ops/argsort_cpu_dispatch.h>
201
+ #include <ATen/ops/as_strided_cpu_dispatch.h>
202
+ #include <ATen/ops/asin_cpu_dispatch.h>
203
+ #include <ATen/ops/asinh_cpu_dispatch.h>
204
+ #include <ATen/ops/atan_cpu_dispatch.h>
205
+ #include <ATen/ops/atan2_cpu_dispatch.h>
206
+ #include <ATen/ops/atanh_cpu_dispatch.h>
207
+ #include <ATen/ops/avg_pool2d_cpu_dispatch.h>
208
+ #include <ATen/ops/avg_pool2d_backward_cpu_dispatch.h>
209
+ #include <ATen/ops/avg_pool3d_cpu_dispatch.h>
210
+ #include <ATen/ops/avg_pool3d_backward_cpu_dispatch.h>
211
+ #include <ATen/ops/baddbmm_cpu_dispatch.h>
212
+ #include <ATen/ops/batch_norm_update_stats_cpu_dispatch.h>
213
+ #include <ATen/ops/bernoulli_cpu_dispatch.h>
214
+ #include <ATen/ops/binary_cross_entropy_cpu_dispatch.h>
215
+ #include <ATen/ops/binary_cross_entropy_backward_cpu_dispatch.h>
216
+ #include <ATen/ops/bincount_cpu_dispatch.h>
217
+ #include <ATen/ops/binomial_cpu_dispatch.h>
218
+ #include <ATen/ops/bitwise_and_cpu_dispatch.h>
219
+ #include <ATen/ops/bitwise_left_shift_cpu_dispatch.h>
220
+ #include <ATen/ops/bitwise_not_cpu_dispatch.h>
221
+ #include <ATen/ops/bitwise_or_cpu_dispatch.h>
222
+ #include <ATen/ops/bitwise_right_shift_cpu_dispatch.h>
223
+ #include <ATen/ops/bitwise_xor_cpu_dispatch.h>
224
+ #include <ATen/ops/bmm_cpu_dispatch.h>
225
+ #include <ATen/ops/bucketize_cpu_dispatch.h>
226
+ #include <ATen/ops/cat_cpu_dispatch.h>
227
+ #include <ATen/ops/cauchy_cpu_dispatch.h>
228
+ #include <ATen/ops/ceil_cpu_dispatch.h>
229
+ #include <ATen/ops/channel_shuffle_cpu_dispatch.h>
230
+ #include <ATen/ops/cholesky_cpu_dispatch.h>
231
+ #include <ATen/ops/cholesky_inverse_cpu_dispatch.h>
232
+ #include <ATen/ops/clamp_cpu_dispatch.h>
233
+ #include <ATen/ops/clamp_max_cpu_dispatch.h>
234
+ #include <ATen/ops/clamp_min_cpu_dispatch.h>
235
+ #include <ATen/ops/col2im_cpu_dispatch.h>
236
+ #include <ATen/ops/complex_cpu_dispatch.h>
237
+ #include <ATen/ops/conj_physical_cpu_dispatch.h>
238
+ #include <ATen/ops/copysign_cpu_dispatch.h>
239
+ #include <ATen/ops/cos_cpu_dispatch.h>
240
+ #include <ATen/ops/cosh_cpu_dispatch.h>
241
+ #include <ATen/ops/count_nonzero_cpu_dispatch.h>
242
+ #include <ATen/ops/cumprod_cpu_dispatch.h>
243
+ #include <ATen/ops/cumsum_cpu_dispatch.h>
244
+ #include <ATen/ops/dense_dim_cpu_dispatch.h>
245
+ #include <ATen/ops/dequantize_cpu_dispatch.h>
246
+ #include <ATen/ops/digamma_cpu_dispatch.h>
247
+ #include <ATen/ops/div_cpu_dispatch.h>
248
+ #include <ATen/ops/dot_cpu_dispatch.h>
249
+ #include <ATen/ops/elu_cpu_dispatch.h>
250
+ #include <ATen/ops/elu_backward_cpu_dispatch.h>
251
+ #include <ATen/ops/embedding_dense_backward_cpu_dispatch.h>
252
+ #include <ATen/ops/embedding_renorm_cpu_dispatch.h>
253
+ #include <ATen/ops/empty_cpu_dispatch.h>
254
+ #include <ATen/ops/empty_strided_cpu_dispatch.h>
255
+ #include <ATen/ops/eq_cpu_dispatch.h>
256
+ #include <ATen/ops/equal_cpu_dispatch.h>
257
+ #include <ATen/ops/erf_cpu_dispatch.h>
258
+ #include <ATen/ops/erfc_cpu_dispatch.h>
259
+ #include <ATen/ops/erfinv_cpu_dispatch.h>
260
+ #include <ATen/ops/exp_cpu_dispatch.h>
261
+ #include <ATen/ops/exp2_cpu_dispatch.h>
262
+ #include <ATen/ops/expm1_cpu_dispatch.h>
263
+ #include <ATen/ops/exponential_cpu_dispatch.h>
264
+ #include <ATen/ops/eye_cpu_dispatch.h>
265
+ #include <ATen/ops/fake_quantize_per_channel_affine_cachemask_cpu_dispatch.h>
266
+ #include <ATen/ops/fake_quantize_per_tensor_affine_cachemask_cpu_dispatch.h>
267
+ #include <ATen/ops/fill_cpu_dispatch.h>
268
+ #include <ATen/ops/flip_cpu_dispatch.h>
269
+ #include <ATen/ops/floor_cpu_dispatch.h>
270
+ #include <ATen/ops/floor_divide_cpu_dispatch.h>
271
+ #include <ATen/ops/fmax_cpu_dispatch.h>
272
+ #include <ATen/ops/fmin_cpu_dispatch.h>
273
+ #include <ATen/ops/fmod_cpu_dispatch.h>
274
+ #include <ATen/ops/frac_cpu_dispatch.h>
275
+ #include <ATen/ops/fractional_max_pool2d_cpu_dispatch.h>
276
+ #include <ATen/ops/fractional_max_pool2d_backward_cpu_dispatch.h>
277
+ #include <ATen/ops/fractional_max_pool3d_cpu_dispatch.h>
278
+ #include <ATen/ops/fractional_max_pool3d_backward_cpu_dispatch.h>
279
+ #include <ATen/ops/frexp_cpu_dispatch.h>
280
+ #include <ATen/ops/from_file_cpu_dispatch.h>
281
+ #include <ATen/ops/gather_cpu_dispatch.h>
282
+ #include <ATen/ops/gcd_cpu_dispatch.h>
283
+ #include <ATen/ops/ge_cpu_dispatch.h>
284
+ #include <ATen/ops/gelu_cpu_dispatch.h>
285
+ #include <ATen/ops/gelu_backward_cpu_dispatch.h>
286
+ #include <ATen/ops/geometric_cpu_dispatch.h>
287
+ #include <ATen/ops/geqrf_cpu_dispatch.h>
288
+ #include <ATen/ops/glu_cpu_dispatch.h>
289
+ #include <ATen/ops/glu_backward_cpu_dispatch.h>
290
+ #include <ATen/ops/glu_backward_jvp_cpu_dispatch.h>
291
+ #include <ATen/ops/glu_jvp_cpu_dispatch.h>
292
+ #include <ATen/ops/grid_sampler_2d_cpu_dispatch.h>
293
+ #include <ATen/ops/grid_sampler_2d_backward_cpu_dispatch.h>
294
+ #include <ATen/ops/grid_sampler_3d_cpu_dispatch.h>
295
+ #include <ATen/ops/grid_sampler_3d_backward_cpu_dispatch.h>
296
+ #include <ATen/ops/gt_cpu_dispatch.h>
297
+ #include <ATen/ops/hardshrink_cpu_dispatch.h>
298
+ #include <ATen/ops/hardshrink_backward_cpu_dispatch.h>
299
+ #include <ATen/ops/hardsigmoid_cpu_dispatch.h>
300
+ #include <ATen/ops/hardsigmoid_backward_cpu_dispatch.h>
301
+ #include <ATen/ops/hardswish_cpu_dispatch.h>
302
+ #include <ATen/ops/hardswish_backward_cpu_dispatch.h>
303
+ #include <ATen/ops/hardtanh_cpu_dispatch.h>
304
+ #include <ATen/ops/hardtanh_backward_cpu_dispatch.h>
305
+ #include <ATen/ops/heaviside_cpu_dispatch.h>
306
+ #include <ATen/ops/histc_cpu_dispatch.h>
307
+ #include <ATen/ops/histogram_cpu_dispatch.h>
308
+ #include <ATen/ops/huber_loss_cpu_dispatch.h>
309
+ #include <ATen/ops/huber_loss_backward_cpu_dispatch.h>
310
+ #include <ATen/ops/hypot_cpu_dispatch.h>
311
+ #include <ATen/ops/i0_cpu_dispatch.h>
312
+ #include <ATen/ops/igamma_cpu_dispatch.h>
313
+ #include <ATen/ops/igammac_cpu_dispatch.h>
314
+ #include <ATen/ops/im2col_cpu_dispatch.h>
315
+ #include <ATen/ops/index_cpu_dispatch.h>
316
+ #include <ATen/ops/index_add_cpu_dispatch.h>
317
+ #include <ATen/ops/index_copy_cpu_dispatch.h>
318
+ #include <ATen/ops/index_fill_cpu_dispatch.h>
319
+ #include <ATen/ops/index_reduce_cpu_dispatch.h>
320
+ #include <ATen/ops/index_select_cpu_dispatch.h>
321
+ #include <ATen/ops/is_set_to_cpu_dispatch.h>
322
+ #include <ATen/ops/isin_cpu_dispatch.h>
323
+ #include <ATen/ops/isnan_cpu_dispatch.h>
324
+ #include <ATen/ops/isneginf_cpu_dispatch.h>
325
+ #include <ATen/ops/isposinf_cpu_dispatch.h>
326
+ #include <ATen/ops/kthvalue_cpu_dispatch.h>
327
+ #include <ATen/ops/lcm_cpu_dispatch.h>
328
+ #include <ATen/ops/le_cpu_dispatch.h>
329
+ #include <ATen/ops/leaky_relu_cpu_dispatch.h>
330
+ #include <ATen/ops/leaky_relu_backward_cpu_dispatch.h>
331
+ #include <ATen/ops/lerp_cpu_dispatch.h>
332
+ #include <ATen/ops/lgamma_cpu_dispatch.h>
333
+ #include <ATen/ops/linalg_cholesky_ex_cpu_dispatch.h>
334
+ #include <ATen/ops/linalg_cross_cpu_dispatch.h>
335
+ #include <ATen/ops/linalg_eig_cpu_dispatch.h>
336
+ #include <ATen/ops/linalg_eigvals_cpu_dispatch.h>
337
+ #include <ATen/ops/linalg_householder_product_cpu_dispatch.h>
338
+ #include <ATen/ops/linalg_inv_ex_cpu_dispatch.h>
339
+ #include <ATen/ops/linalg_ldl_factor_ex_cpu_dispatch.h>
340
+ #include <ATen/ops/linalg_ldl_solve_cpu_dispatch.h>
341
+ #include <ATen/ops/linalg_lstsq_cpu_dispatch.h>
342
+ #include <ATen/ops/linalg_lu_cpu_dispatch.h>
343
+ #include <ATen/ops/linalg_lu_factor_ex_cpu_dispatch.h>
344
+ #include <ATen/ops/linalg_lu_solve_cpu_dispatch.h>
345
+ #include <ATen/ops/linalg_matrix_exp_cpu_dispatch.h>
346
+ #include <ATen/ops/linalg_qr_cpu_dispatch.h>
347
+ #include <ATen/ops/linalg_solve_triangular_cpu_dispatch.h>
348
+ #include <ATen/ops/linalg_vector_norm_cpu_dispatch.h>
349
+ #include <ATen/ops/linspace_cpu_dispatch.h>
350
+ #include <ATen/ops/log_cpu_dispatch.h>
351
+ #include <ATen/ops/log10_cpu_dispatch.h>
352
+ #include <ATen/ops/log1p_cpu_dispatch.h>
353
+ #include <ATen/ops/log2_cpu_dispatch.h>
354
+ #include <ATen/ops/log_normal_cpu_dispatch.h>
355
+ #include <ATen/ops/log_sigmoid_backward_cpu_dispatch.h>
356
+ #include <ATen/ops/log_sigmoid_forward_cpu_dispatch.h>
357
+ #include <ATen/ops/logaddexp_cpu_dispatch.h>
358
+ #include <ATen/ops/logaddexp2_cpu_dispatch.h>
359
+ #include <ATen/ops/logical_and_cpu_dispatch.h>
360
+ #include <ATen/ops/logical_not_cpu_dispatch.h>
361
+ #include <ATen/ops/logical_or_cpu_dispatch.h>
362
+ #include <ATen/ops/logical_xor_cpu_dispatch.h>
363
+ #include <ATen/ops/logit_cpu_dispatch.h>
364
+ #include <ATen/ops/logit_backward_cpu_dispatch.h>
365
+ #include <ATen/ops/logspace_cpu_dispatch.h>
366
+ #include <ATen/ops/lshift_cpu_dispatch.h>
367
+ #include <ATen/ops/lt_cpu_dispatch.h>
368
+ #include <ATen/ops/lu_unpack_cpu_dispatch.h>
369
+ #include <ATen/ops/masked_fill_cpu_dispatch.h>
370
+ #include <ATen/ops/masked_scatter_cpu_dispatch.h>
371
+ #include <ATen/ops/masked_select_cpu_dispatch.h>
372
+ #include <ATen/ops/max_cpu_dispatch.h>
373
+ #include <ATen/ops/max_pool2d_with_indices_cpu_dispatch.h>
374
+ #include <ATen/ops/max_pool2d_with_indices_backward_cpu_dispatch.h>
375
+ #include <ATen/ops/max_pool3d_with_indices_cpu_dispatch.h>
376
+ #include <ATen/ops/max_pool3d_with_indices_backward_cpu_dispatch.h>
377
+ #include <ATen/ops/max_unpool2d_cpu_dispatch.h>
378
+ #include <ATen/ops/max_unpool3d_cpu_dispatch.h>
379
+ #include <ATen/ops/maximum_cpu_dispatch.h>
380
+ #include <ATen/ops/mean_cpu_dispatch.h>
381
+ #include <ATen/ops/median_cpu_dispatch.h>
382
+ #include <ATen/ops/min_cpu_dispatch.h>
383
+ #include <ATen/ops/minimum_cpu_dispatch.h>
384
+ #include <ATen/ops/mish_cpu_dispatch.h>
385
+ #include <ATen/ops/mish_backward_cpu_dispatch.h>
386
+ #include <ATen/ops/mkldnn_rnn_layer_cpu_dispatch.h>
387
+ #include <ATen/ops/mkldnn_rnn_layer_backward_cpu_dispatch.h>
388
+ #include <ATen/ops/mm_cpu_dispatch.h>
389
+ #include <ATen/ops/mode_cpu_dispatch.h>
390
+ #include <ATen/ops/mse_loss_cpu_dispatch.h>
391
+ #include <ATen/ops/mse_loss_backward_cpu_dispatch.h>
392
+ #include <ATen/ops/mul_cpu_dispatch.h>
393
+ #include <ATen/ops/multi_margin_loss_cpu_dispatch.h>
394
+ #include <ATen/ops/multi_margin_loss_backward_cpu_dispatch.h>
395
+ #include <ATen/ops/multilabel_margin_loss_backward_cpu_dispatch.h>
396
+ #include <ATen/ops/multilabel_margin_loss_forward_cpu_dispatch.h>
397
+ #include <ATen/ops/multinomial_cpu_dispatch.h>
398
+ #include <ATen/ops/mvlgamma_cpu_dispatch.h>
399
+ #include <ATen/ops/nan_to_num_cpu_dispatch.h>
400
+ #include <ATen/ops/nanmedian_cpu_dispatch.h>
401
+ #include <ATen/ops/nansum_cpu_dispatch.h>
402
+ #include <ATen/ops/narrow_copy_cpu_dispatch.h>
403
+ #include <ATen/ops/native_batch_norm_cpu_dispatch.h>
404
+ #include <ATen/ops/native_batch_norm_backward_cpu_dispatch.h>
405
+ #include <ATen/ops/native_channel_shuffle_cpu_dispatch.h>
406
+ #include <ATen/ops/native_dropout_cpu_dispatch.h>
407
+ #include <ATen/ops/native_dropout_backward_cpu_dispatch.h>
408
+ #include <ATen/ops/native_group_norm_cpu_dispatch.h>
409
+ #include <ATen/ops/native_group_norm_backward_cpu_dispatch.h>
410
+ #include <ATen/ops/native_layer_norm_cpu_dispatch.h>
411
+ #include <ATen/ops/native_layer_norm_backward_cpu_dispatch.h>
412
+ #include <ATen/ops/ne_cpu_dispatch.h>
413
+ #include <ATen/ops/neg_cpu_dispatch.h>
414
+ #include <ATen/ops/nextafter_cpu_dispatch.h>
415
+ #include <ATen/ops/nll_loss2d_backward_cpu_dispatch.h>
416
+ #include <ATen/ops/nll_loss2d_forward_cpu_dispatch.h>
417
+ #include <ATen/ops/nll_loss_backward_cpu_dispatch.h>
418
+ #include <ATen/ops/nll_loss_forward_cpu_dispatch.h>
419
+ #include <ATen/ops/nonzero_cpu_dispatch.h>
420
+ #include <ATen/ops/nonzero_static_cpu_dispatch.h>
421
+ #include <ATen/ops/norm_cpu_dispatch.h>
422
+ #include <ATen/ops/normal_cpu_dispatch.h>
423
+ #include <ATen/ops/ormqr_cpu_dispatch.h>
424
+ #include <ATen/ops/pixel_shuffle_cpu_dispatch.h>
425
+ #include <ATen/ops/pixel_unshuffle_cpu_dispatch.h>
426
+ #include <ATen/ops/poisson_cpu_dispatch.h>
427
+ #include <ATen/ops/polar_cpu_dispatch.h>
428
+ #include <ATen/ops/polygamma_cpu_dispatch.h>
429
+ #include <ATen/ops/pow_cpu_dispatch.h>
430
+ #include <ATen/ops/prod_cpu_dispatch.h>
431
+ #include <ATen/ops/put_cpu_dispatch.h>
432
+ #include <ATen/ops/quantize_per_channel_cpu_dispatch.h>
433
+ #include <ATen/ops/quantize_per_tensor_cpu_dispatch.h>
434
+ #include <ATen/ops/quantize_per_tensor_dynamic_cpu_dispatch.h>
435
+ #include <ATen/ops/random_cpu_dispatch.h>
436
+ #include <ATen/ops/randperm_cpu_dispatch.h>
437
+ #include <ATen/ops/range_cpu_dispatch.h>
438
+ #include <ATen/ops/reciprocal_cpu_dispatch.h>
439
+ #include <ATen/ops/reflection_pad1d_cpu_dispatch.h>
440
+ #include <ATen/ops/reflection_pad1d_backward_cpu_dispatch.h>
441
+ #include <ATen/ops/reflection_pad2d_cpu_dispatch.h>
442
+ #include <ATen/ops/reflection_pad2d_backward_cpu_dispatch.h>
443
+ #include <ATen/ops/reflection_pad3d_cpu_dispatch.h>
444
+ #include <ATen/ops/reflection_pad3d_backward_cpu_dispatch.h>
445
+ #include <ATen/ops/relu_cpu_dispatch.h>
446
+ #include <ATen/ops/remainder_cpu_dispatch.h>
447
+ #include <ATen/ops/renorm_cpu_dispatch.h>
448
+ #include <ATen/ops/repeat_interleave_cpu_dispatch.h>
449
+ #include <ATen/ops/replication_pad1d_cpu_dispatch.h>
450
+ #include <ATen/ops/replication_pad1d_backward_cpu_dispatch.h>
451
+ #include <ATen/ops/replication_pad2d_cpu_dispatch.h>
452
+ #include <ATen/ops/replication_pad2d_backward_cpu_dispatch.h>
453
+ #include <ATen/ops/replication_pad3d_cpu_dispatch.h>
454
+ #include <ATen/ops/replication_pad3d_backward_cpu_dispatch.h>
455
+ #include <ATen/ops/resize_cpu_dispatch.h>
456
+ #include <ATen/ops/roll_cpu_dispatch.h>
457
+ #include <ATen/ops/round_cpu_dispatch.h>
458
+ #include <ATen/ops/rrelu_with_noise_cpu_dispatch.h>
459
+ #include <ATen/ops/rshift_cpu_dispatch.h>
460
+ #include <ATen/ops/rsqrt_cpu_dispatch.h>
461
+ #include <ATen/ops/rsub_cpu_dispatch.h>
462
+ #include <ATen/ops/scatter_cpu_dispatch.h>
463
+ #include <ATen/ops/scatter_add_cpu_dispatch.h>
464
+ #include <ATen/ops/scatter_reduce_cpu_dispatch.h>
465
+ #include <ATen/ops/searchsorted_cpu_dispatch.h>
466
+ #include <ATen/ops/segment_reduce_cpu_dispatch.h>
467
+ #include <ATen/ops/set_cpu_dispatch.h>
468
+ #include <ATen/ops/sgn_cpu_dispatch.h>
469
+ #include <ATen/ops/sigmoid_cpu_dispatch.h>
470
+ #include <ATen/ops/sigmoid_backward_cpu_dispatch.h>
471
+ #include <ATen/ops/sign_cpu_dispatch.h>
472
+ #include <ATen/ops/signbit_cpu_dispatch.h>
473
+ #include <ATen/ops/silu_cpu_dispatch.h>
474
+ #include <ATen/ops/silu_backward_cpu_dispatch.h>
475
+ #include <ATen/ops/sin_cpu_dispatch.h>
476
+ #include <ATen/ops/sinc_cpu_dispatch.h>
477
+ #include <ATen/ops/sinh_cpu_dispatch.h>
478
+ #include <ATen/ops/slow_conv3d_forward_cpu_dispatch.h>
479
+ #include <ATen/ops/slow_conv_dilated2d_cpu_dispatch.h>
480
+ #include <ATen/ops/slow_conv_dilated3d_cpu_dispatch.h>
481
+ #include <ATen/ops/slow_conv_transpose2d_cpu_dispatch.h>
482
+ #include <ATen/ops/slow_conv_transpose3d_cpu_dispatch.h>
483
+ #include <ATen/ops/smooth_l1_loss_cpu_dispatch.h>
484
+ #include <ATen/ops/smooth_l1_loss_backward_cpu_dispatch.h>
485
+ #include <ATen/ops/softplus_cpu_dispatch.h>
486
+ #include <ATen/ops/softplus_backward_cpu_dispatch.h>
487
+ #include <ATen/ops/softshrink_cpu_dispatch.h>
488
+ #include <ATen/ops/softshrink_backward_cpu_dispatch.h>
489
+ #include <ATen/ops/sort_cpu_dispatch.h>
490
+ #include <ATen/ops/sparse_dim_cpu_dispatch.h>
491
+ #include <ATen/ops/special_airy_ai_cpu_dispatch.h>
492
+ #include <ATen/ops/special_bessel_j0_cpu_dispatch.h>
493
+ #include <ATen/ops/special_bessel_j1_cpu_dispatch.h>
494
+ #include <ATen/ops/special_bessel_y0_cpu_dispatch.h>
495
+ #include <ATen/ops/special_bessel_y1_cpu_dispatch.h>
496
+ #include <ATen/ops/special_chebyshev_polynomial_t_cpu_dispatch.h>
497
+ #include <ATen/ops/special_chebyshev_polynomial_u_cpu_dispatch.h>
498
+ #include <ATen/ops/special_chebyshev_polynomial_v_cpu_dispatch.h>
499
+ #include <ATen/ops/special_chebyshev_polynomial_w_cpu_dispatch.h>
500
+ #include <ATen/ops/special_entr_cpu_dispatch.h>
501
+ #include <ATen/ops/special_erfcx_cpu_dispatch.h>
502
+ #include <ATen/ops/special_hermite_polynomial_h_cpu_dispatch.h>
503
+ #include <ATen/ops/special_hermite_polynomial_he_cpu_dispatch.h>
504
+ #include <ATen/ops/special_i0e_cpu_dispatch.h>
505
+ #include <ATen/ops/special_i1_cpu_dispatch.h>
506
+ #include <ATen/ops/special_i1e_cpu_dispatch.h>
507
+ #include <ATen/ops/special_laguerre_polynomial_l_cpu_dispatch.h>
508
+ #include <ATen/ops/special_legendre_polynomial_p_cpu_dispatch.h>
509
+ #include <ATen/ops/special_log_ndtr_cpu_dispatch.h>
510
+ #include <ATen/ops/special_modified_bessel_i0_cpu_dispatch.h>
511
+ #include <ATen/ops/special_modified_bessel_i1_cpu_dispatch.h>
512
+ #include <ATen/ops/special_modified_bessel_k0_cpu_dispatch.h>
513
+ #include <ATen/ops/special_modified_bessel_k1_cpu_dispatch.h>
514
+ #include <ATen/ops/special_ndtri_cpu_dispatch.h>
515
+ #include <ATen/ops/special_scaled_modified_bessel_k0_cpu_dispatch.h>
516
+ #include <ATen/ops/special_scaled_modified_bessel_k1_cpu_dispatch.h>
517
+ #include <ATen/ops/special_shifted_chebyshev_polynomial_t_cpu_dispatch.h>
518
+ #include <ATen/ops/special_shifted_chebyshev_polynomial_u_cpu_dispatch.h>
519
+ #include <ATen/ops/special_shifted_chebyshev_polynomial_v_cpu_dispatch.h>
520
+ #include <ATen/ops/special_shifted_chebyshev_polynomial_w_cpu_dispatch.h>
521
+ #include <ATen/ops/special_spherical_bessel_j0_cpu_dispatch.h>
522
+ #include <ATen/ops/special_xlog1py_cpu_dispatch.h>
523
+ #include <ATen/ops/special_zeta_cpu_dispatch.h>
524
+ #include <ATen/ops/sqrt_cpu_dispatch.h>
525
+ #include <ATen/ops/sspaddmm_cpu_dispatch.h>
526
+ #include <ATen/ops/std_cpu_dispatch.h>
527
+ #include <ATen/ops/std_mean_cpu_dispatch.h>
528
+ #include <ATen/ops/sub_cpu_dispatch.h>
529
+ #include <ATen/ops/sum_cpu_dispatch.h>
530
+ #include <ATen/ops/take_cpu_dispatch.h>
531
+ #include <ATen/ops/tan_cpu_dispatch.h>
532
+ #include <ATen/ops/tanh_cpu_dispatch.h>
533
+ #include <ATen/ops/tanh_backward_cpu_dispatch.h>
534
+ #include <ATen/ops/threshold_cpu_dispatch.h>
535
+ #include <ATen/ops/threshold_backward_cpu_dispatch.h>
536
+ #include <ATen/ops/to_mkldnn_cpu_dispatch.h>
537
+ #include <ATen/ops/topk_cpu_dispatch.h>
538
+ #include <ATen/ops/trace_cpu_dispatch.h>
539
+ #include <ATen/ops/triangular_solve_cpu_dispatch.h>
540
+ #include <ATen/ops/tril_cpu_dispatch.h>
541
+ #include <ATen/ops/tril_indices_cpu_dispatch.h>
542
+ #include <ATen/ops/triu_cpu_dispatch.h>
543
+ #include <ATen/ops/triu_indices_cpu_dispatch.h>
544
+ #include <ATen/ops/trunc_cpu_dispatch.h>
545
+ #include <ATen/ops/unfold_cpu_dispatch.h>
546
+ #include <ATen/ops/unfold_backward_cpu_dispatch.h>
547
+ #include <ATen/ops/uniform_cpu_dispatch.h>
548
+ #include <ATen/ops/unique_consecutive_cpu_dispatch.h>
549
+ #include <ATen/ops/unique_dim_cpu_dispatch.h>
550
+ #include <ATen/ops/unique_dim_consecutive_cpu_dispatch.h>
551
+ #include <ATen/ops/upsample_bicubic2d_cpu_dispatch.h>
552
+ #include <ATen/ops/upsample_bicubic2d_backward_cpu_dispatch.h>
553
+ #include <ATen/ops/upsample_bilinear2d_cpu_dispatch.h>
554
+ #include <ATen/ops/upsample_bilinear2d_backward_cpu_dispatch.h>
555
+ #include <ATen/ops/upsample_linear1d_cpu_dispatch.h>
556
+ #include <ATen/ops/upsample_linear1d_backward_cpu_dispatch.h>
557
+ #include <ATen/ops/upsample_nearest1d_cpu_dispatch.h>
558
+ #include <ATen/ops/upsample_nearest1d_backward_cpu_dispatch.h>
559
+ #include <ATen/ops/upsample_nearest2d_cpu_dispatch.h>
560
+ #include <ATen/ops/upsample_nearest2d_backward_cpu_dispatch.h>
561
+ #include <ATen/ops/upsample_nearest3d_cpu_dispatch.h>
562
+ #include <ATen/ops/upsample_nearest3d_backward_cpu_dispatch.h>
563
+ #include <ATen/ops/upsample_trilinear3d_cpu_dispatch.h>
564
+ #include <ATen/ops/upsample_trilinear3d_backward_cpu_dispatch.h>
565
+ #include <ATen/ops/var_cpu_dispatch.h>
566
+ #include <ATen/ops/var_mean_cpu_dispatch.h>
567
+ #include <ATen/ops/vdot_cpu_dispatch.h>
568
+ #include <ATen/ops/view_cpu_dispatch.h>
569
+ #include <ATen/ops/view_as_complex_cpu_dispatch.h>
570
+ #include <ATen/ops/view_as_real_cpu_dispatch.h>
571
+ #include <ATen/ops/where_cpu_dispatch.h>
572
+ #include <ATen/ops/xlogy_cpu_dispatch.h>
573
+ #include <ATen/ops/zero_cpu_dispatch.h>
574
+
575
+
576
+
venv/lib/python3.10/site-packages/torch/include/ATen/CPUGeneratorImpl.h ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <ATen/core/Generator.h>
4
+ #include <ATen/core/MT19937RNGEngine.h>
5
+ #include <c10/core/GeneratorImpl.h>
6
+ #include <c10/util/Optional.h>
7
+
8
+ namespace at {
9
+
10
+ struct TORCH_API CPUGeneratorImpl : public c10::GeneratorImpl {
11
+ // Constructors
12
+ CPUGeneratorImpl(uint64_t seed_in = default_rng_seed_val);
13
+ ~CPUGeneratorImpl() override = default;
14
+
15
+ // CPUGeneratorImpl methods
16
+ std::shared_ptr<CPUGeneratorImpl> clone() const;
17
+ void set_current_seed(uint64_t seed) override;
18
+ void set_offset(uint64_t offset) override;
19
+ uint64_t get_offset() const override;
20
+ uint64_t current_seed() const override;
21
+ uint64_t seed() override;
22
+ void set_state(const c10::TensorImpl& new_state) override;
23
+ c10::intrusive_ptr<c10::TensorImpl> get_state() const override;
24
+ static c10::DeviceType device_type();
25
+ uint32_t random();
26
+ uint64_t random64();
27
+ c10::optional<float> next_float_normal_sample();
28
+ c10::optional<double> next_double_normal_sample();
29
+ void set_next_float_normal_sample(c10::optional<float> randn);
30
+ void set_next_double_normal_sample(c10::optional<double> randn);
31
+ at::mt19937 engine();
32
+ void set_engine(at::mt19937 engine);
33
+
34
+ private:
35
+ CPUGeneratorImpl* clone_impl() const override;
36
+ at::mt19937 engine_;
37
+ c10::optional<float> next_float_normal_sample_;
38
+ c10::optional<double> next_double_normal_sample_;
39
+ };
40
+
41
+ namespace detail {
42
+
43
+ TORCH_API const Generator& getDefaultCPUGenerator();
44
+ TORCH_API Generator
45
+ createCPUGenerator(uint64_t seed_val = default_rng_seed_val);
46
+
47
+ } // namespace detail
48
+
49
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/CUDAFunctions_inl.h ADDED
@@ -0,0 +1,614 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunctions_inl.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ #if defined(AT_PER_OPERATOR_HEADERS) && defined(TORCH_ASSERT_ONLY_METHOD_OPERATORS)
12
+ #error This change adds a dependency on all pytorch operators, meaning the \
13
+ file will need to be re-compiled every time an operator is changed or added. \
14
+ Consider including a specific operator from \
15
+ <ATen/ops/{my_operator}_cuda_dispatch.h>. \
16
+ See NOTE [TORCH_ASSERT_ONLY_METHOD_OPERATORS].
17
+ #endif
18
+
19
+ #include <ATen/ops/_adaptive_avg_pool2d_cuda_dispatch.h>
20
+ #include <ATen/ops/_adaptive_avg_pool2d_backward_cuda_dispatch.h>
21
+ #include <ATen/ops/_adaptive_avg_pool3d_cuda_dispatch.h>
22
+ #include <ATen/ops/_adaptive_avg_pool3d_backward_cuda_dispatch.h>
23
+ #include <ATen/ops/_addmm_activation_cuda_dispatch.h>
24
+ #include <ATen/ops/_aminmax_cuda_dispatch.h>
25
+ #include <ATen/ops/_amp_foreach_non_finite_check_and_unscale_cuda_dispatch.h>
26
+ #include <ATen/ops/_amp_update_scale_cuda_dispatch.h>
27
+ #include <ATen/ops/_assert_async_cuda_dispatch.h>
28
+ #include <ATen/ops/_cdist_backward_cuda_dispatch.h>
29
+ #include <ATen/ops/_cdist_forward_cuda_dispatch.h>
30
+ #include <ATen/ops/_cholesky_solve_helper_cuda_dispatch.h>
31
+ #include <ATen/ops/_compute_linear_combination_cuda_dispatch.h>
32
+ #include <ATen/ops/_conv_depthwise2d_cuda_dispatch.h>
33
+ #include <ATen/ops/_convert_indices_from_coo_to_csr_cuda_dispatch.h>
34
+ #include <ATen/ops/_convert_indices_from_csr_to_coo_cuda_dispatch.h>
35
+ #include <ATen/ops/_convert_weight_to_int4pack_cuda_dispatch.h>
36
+ #include <ATen/ops/_cslt_compress_cuda_dispatch.h>
37
+ #include <ATen/ops/_cslt_sparse_mm_cuda_dispatch.h>
38
+ #include <ATen/ops/_cslt_sparse_mm_search_cuda_dispatch.h>
39
+ #include <ATen/ops/_ctc_loss_cuda_dispatch.h>
40
+ #include <ATen/ops/_ctc_loss_backward_cuda_dispatch.h>
41
+ #include <ATen/ops/_cudnn_ctc_loss_cuda_dispatch.h>
42
+ #include <ATen/ops/_cudnn_init_dropout_state_cuda_dispatch.h>
43
+ #include <ATen/ops/_cudnn_rnn_cuda_dispatch.h>
44
+ #include <ATen/ops/_cudnn_rnn_backward_cuda_dispatch.h>
45
+ #include <ATen/ops/_cudnn_rnn_flatten_weight_cuda_dispatch.h>
46
+ #include <ATen/ops/_cummax_helper_cuda_dispatch.h>
47
+ #include <ATen/ops/_cummin_helper_cuda_dispatch.h>
48
+ #include <ATen/ops/_dirichlet_grad_cuda_dispatch.h>
49
+ #include <ATen/ops/_efficient_attention_backward_cuda_dispatch.h>
50
+ #include <ATen/ops/_efficient_attention_forward_cuda_dispatch.h>
51
+ #include <ATen/ops/_efficientzerotensor_cuda_dispatch.h>
52
+ #include <ATen/ops/_embedding_bag_cuda_dispatch.h>
53
+ #include <ATen/ops/_embedding_bag_dense_backward_cuda_dispatch.h>
54
+ #include <ATen/ops/_embedding_bag_forward_only_cuda_dispatch.h>
55
+ #include <ATen/ops/_embedding_bag_per_sample_weights_backward_cuda_dispatch.h>
56
+ #include <ATen/ops/_fake_quantize_learnable_per_channel_affine_cuda_dispatch.h>
57
+ #include <ATen/ops/_fake_quantize_learnable_per_channel_affine_backward_cuda_dispatch.h>
58
+ #include <ATen/ops/_fake_quantize_learnable_per_tensor_affine_cuda_dispatch.h>
59
+ #include <ATen/ops/_fake_quantize_learnable_per_tensor_affine_backward_cuda_dispatch.h>
60
+ #include <ATen/ops/_fake_quantize_per_tensor_affine_cachemask_tensor_qparams_cuda_dispatch.h>
61
+ #include <ATen/ops/_fft_c2c_cuda_dispatch.h>
62
+ #include <ATen/ops/_fft_c2r_cuda_dispatch.h>
63
+ #include <ATen/ops/_fft_r2c_cuda_dispatch.h>
64
+ #include <ATen/ops/_fill_mem_eff_dropout_mask_cuda_dispatch.h>
65
+ #include <ATen/ops/_flash_attention_backward_cuda_dispatch.h>
66
+ #include <ATen/ops/_flash_attention_forward_cuda_dispatch.h>
67
+ #include <ATen/ops/_foreach_abs_cuda_dispatch.h>
68
+ #include <ATen/ops/_foreach_acos_cuda_dispatch.h>
69
+ #include <ATen/ops/_foreach_add_cuda_dispatch.h>
70
+ #include <ATen/ops/_foreach_addcdiv_cuda_dispatch.h>
71
+ #include <ATen/ops/_foreach_addcmul_cuda_dispatch.h>
72
+ #include <ATen/ops/_foreach_asin_cuda_dispatch.h>
73
+ #include <ATen/ops/_foreach_atan_cuda_dispatch.h>
74
+ #include <ATen/ops/_foreach_ceil_cuda_dispatch.h>
75
+ #include <ATen/ops/_foreach_clamp_max_cuda_dispatch.h>
76
+ #include <ATen/ops/_foreach_clamp_min_cuda_dispatch.h>
77
+ #include <ATen/ops/_foreach_copy_cuda_dispatch.h>
78
+ #include <ATen/ops/_foreach_cos_cuda_dispatch.h>
79
+ #include <ATen/ops/_foreach_cosh_cuda_dispatch.h>
80
+ #include <ATen/ops/_foreach_div_cuda_dispatch.h>
81
+ #include <ATen/ops/_foreach_erf_cuda_dispatch.h>
82
+ #include <ATen/ops/_foreach_erfc_cuda_dispatch.h>
83
+ #include <ATen/ops/_foreach_exp_cuda_dispatch.h>
84
+ #include <ATen/ops/_foreach_expm1_cuda_dispatch.h>
85
+ #include <ATen/ops/_foreach_floor_cuda_dispatch.h>
86
+ #include <ATen/ops/_foreach_frac_cuda_dispatch.h>
87
+ #include <ATen/ops/_foreach_lerp_cuda_dispatch.h>
88
+ #include <ATen/ops/_foreach_lgamma_cuda_dispatch.h>
89
+ #include <ATen/ops/_foreach_log_cuda_dispatch.h>
90
+ #include <ATen/ops/_foreach_log10_cuda_dispatch.h>
91
+ #include <ATen/ops/_foreach_log1p_cuda_dispatch.h>
92
+ #include <ATen/ops/_foreach_log2_cuda_dispatch.h>
93
+ #include <ATen/ops/_foreach_maximum_cuda_dispatch.h>
94
+ #include <ATen/ops/_foreach_minimum_cuda_dispatch.h>
95
+ #include <ATen/ops/_foreach_mul_cuda_dispatch.h>
96
+ #include <ATen/ops/_foreach_neg_cuda_dispatch.h>
97
+ #include <ATen/ops/_foreach_norm_cuda_dispatch.h>
98
+ #include <ATen/ops/_foreach_pow_cuda_dispatch.h>
99
+ #include <ATen/ops/_foreach_reciprocal_cuda_dispatch.h>
100
+ #include <ATen/ops/_foreach_round_cuda_dispatch.h>
101
+ #include <ATen/ops/_foreach_sigmoid_cuda_dispatch.h>
102
+ #include <ATen/ops/_foreach_sign_cuda_dispatch.h>
103
+ #include <ATen/ops/_foreach_sin_cuda_dispatch.h>
104
+ #include <ATen/ops/_foreach_sinh_cuda_dispatch.h>
105
+ #include <ATen/ops/_foreach_sqrt_cuda_dispatch.h>
106
+ #include <ATen/ops/_foreach_sub_cuda_dispatch.h>
107
+ #include <ATen/ops/_foreach_tan_cuda_dispatch.h>
108
+ #include <ATen/ops/_foreach_tanh_cuda_dispatch.h>
109
+ #include <ATen/ops/_foreach_trunc_cuda_dispatch.h>
110
+ #include <ATen/ops/_foreach_zero_cuda_dispatch.h>
111
+ #include <ATen/ops/_fused_adam_cuda_dispatch.h>
112
+ #include <ATen/ops/_fused_adamw_cuda_dispatch.h>
113
+ #include <ATen/ops/_fused_dropout_cuda_dispatch.h>
114
+ #include <ATen/ops/_fused_moving_avg_obs_fq_helper_cuda_dispatch.h>
115
+ #include <ATen/ops/_fused_sdp_choice_cuda_dispatch.h>
116
+ #include <ATen/ops/_fused_sgd_cuda_dispatch.h>
117
+ #include <ATen/ops/_index_put_impl_cuda_dispatch.h>
118
+ #include <ATen/ops/_int_mm_cuda_dispatch.h>
119
+ #include <ATen/ops/_linalg_det_cuda_dispatch.h>
120
+ #include <ATen/ops/_linalg_eigh_cuda_dispatch.h>
121
+ #include <ATen/ops/_linalg_eigvals_cuda_dispatch.h>
122
+ #include <ATen/ops/_linalg_slogdet_cuda_dispatch.h>
123
+ #include <ATen/ops/_linalg_solve_ex_cuda_dispatch.h>
124
+ #include <ATen/ops/_linalg_svd_cuda_dispatch.h>
125
+ #include <ATen/ops/_local_scalar_dense_cuda_dispatch.h>
126
+ #include <ATen/ops/_log_softmax_cuda_dispatch.h>
127
+ #include <ATen/ops/_log_softmax_backward_data_cuda_dispatch.h>
128
+ #include <ATen/ops/_logcumsumexp_cuda_dispatch.h>
129
+ #include <ATen/ops/_make_per_channel_quantized_tensor_cuda_dispatch.h>
130
+ #include <ATen/ops/_make_per_tensor_quantized_tensor_cuda_dispatch.h>
131
+ #include <ATen/ops/_masked_scale_cuda_dispatch.h>
132
+ #include <ATen/ops/_masked_softmax_cuda_dispatch.h>
133
+ #include <ATen/ops/_masked_softmax_backward_cuda_dispatch.h>
134
+ #include <ATen/ops/_mixed_dtypes_linear_cuda_dispatch.h>
135
+ #include <ATen/ops/_native_batch_norm_legit_cuda_dispatch.h>
136
+ #include <ATen/ops/_native_multi_head_attention_cuda_dispatch.h>
137
+ #include <ATen/ops/_nested_from_padded_cuda_dispatch.h>
138
+ #include <ATen/ops/_nested_tensor_from_mask_cuda_dispatch.h>
139
+ #include <ATen/ops/_nested_tensor_from_mask_left_aligned_cuda_dispatch.h>
140
+ #include <ATen/ops/_nested_view_from_buffer_cuda_dispatch.h>
141
+ #include <ATen/ops/_pdist_backward_cuda_dispatch.h>
142
+ #include <ATen/ops/_pdist_forward_cuda_dispatch.h>
143
+ #include <ATen/ops/_pin_memory_cuda_dispatch.h>
144
+ #include <ATen/ops/_prelu_kernel_cuda_dispatch.h>
145
+ #include <ATen/ops/_prelu_kernel_backward_cuda_dispatch.h>
146
+ #include <ATen/ops/_reshape_alias_cuda_dispatch.h>
147
+ #include <ATen/ops/_sample_dirichlet_cuda_dispatch.h>
148
+ #include <ATen/ops/_scaled_dot_product_cudnn_attention_cuda_dispatch.h>
149
+ #include <ATen/ops/_scaled_dot_product_efficient_attention_cuda_dispatch.h>
150
+ #include <ATen/ops/_scaled_dot_product_efficient_attention_backward_cuda_dispatch.h>
151
+ #include <ATen/ops/_scaled_dot_product_flash_attention_cuda_dispatch.h>
152
+ #include <ATen/ops/_scaled_dot_product_flash_attention_backward_cuda_dispatch.h>
153
+ #include <ATen/ops/_scaled_mm_cuda_dispatch.h>
154
+ #include <ATen/ops/_segment_reduce_backward_cuda_dispatch.h>
155
+ #include <ATen/ops/_slow_conv2d_backward_cuda_dispatch.h>
156
+ #include <ATen/ops/_slow_conv2d_forward_cuda_dispatch.h>
157
+ #include <ATen/ops/_softmax_cuda_dispatch.h>
158
+ #include <ATen/ops/_softmax_backward_data_cuda_dispatch.h>
159
+ #include <ATen/ops/_sparse_semi_structured_linear_cuda_dispatch.h>
160
+ #include <ATen/ops/_standard_gamma_cuda_dispatch.h>
161
+ #include <ATen/ops/_standard_gamma_grad_cuda_dispatch.h>
162
+ #include <ATen/ops/_thnn_fused_gru_cell_cuda_dispatch.h>
163
+ #include <ATen/ops/_thnn_fused_gru_cell_backward_cuda_dispatch.h>
164
+ #include <ATen/ops/_thnn_fused_lstm_cell_cuda_dispatch.h>
165
+ #include <ATen/ops/_thnn_fused_lstm_cell_backward_impl_cuda_dispatch.h>
166
+ #include <ATen/ops/_to_sparse_cuda_dispatch.h>
167
+ #include <ATen/ops/_to_sparse_bsc_cuda_dispatch.h>
168
+ #include <ATen/ops/_to_sparse_bsr_cuda_dispatch.h>
169
+ #include <ATen/ops/_to_sparse_csc_cuda_dispatch.h>
170
+ #include <ATen/ops/_to_sparse_csr_cuda_dispatch.h>
171
+ #include <ATen/ops/_to_sparse_semi_structured_cuda_dispatch.h>
172
+ #include <ATen/ops/_transform_bias_rescale_qkv_cuda_dispatch.h>
173
+ #include <ATen/ops/_transformer_encoder_layer_fwd_cuda_dispatch.h>
174
+ #include <ATen/ops/_triton_multi_head_attention_cuda_dispatch.h>
175
+ #include <ATen/ops/_triton_scaled_dot_attention_cuda_dispatch.h>
176
+ #include <ATen/ops/_unique_cuda_dispatch.h>
177
+ #include <ATen/ops/_unique2_cuda_dispatch.h>
178
+ #include <ATen/ops/_upsample_bicubic2d_aa_cuda_dispatch.h>
179
+ #include <ATen/ops/_upsample_bicubic2d_aa_backward_cuda_dispatch.h>
180
+ #include <ATen/ops/_upsample_bilinear2d_aa_cuda_dispatch.h>
181
+ #include <ATen/ops/_upsample_bilinear2d_aa_backward_cuda_dispatch.h>
182
+ #include <ATen/ops/_upsample_nearest_exact1d_cuda_dispatch.h>
183
+ #include <ATen/ops/_upsample_nearest_exact1d_backward_cuda_dispatch.h>
184
+ #include <ATen/ops/_upsample_nearest_exact2d_cuda_dispatch.h>
185
+ #include <ATen/ops/_upsample_nearest_exact2d_backward_cuda_dispatch.h>
186
+ #include <ATen/ops/_upsample_nearest_exact3d_cuda_dispatch.h>
187
+ #include <ATen/ops/_upsample_nearest_exact3d_backward_cuda_dispatch.h>
188
+ #include <ATen/ops/_use_cudnn_ctc_loss_cuda_dispatch.h>
189
+ #include <ATen/ops/_validate_compressed_sparse_indices_cuda_dispatch.h>
190
+ #include <ATen/ops/_weight_int4pack_mm_cuda_dispatch.h>
191
+ #include <ATen/ops/_weight_norm_interface_cuda_dispatch.h>
192
+ #include <ATen/ops/_weight_norm_interface_backward_cuda_dispatch.h>
193
+ #include <ATen/ops/abs_cuda_dispatch.h>
194
+ #include <ATen/ops/acos_cuda_dispatch.h>
195
+ #include <ATen/ops/acosh_cuda_dispatch.h>
196
+ #include <ATen/ops/adaptive_avg_pool2d_cuda_dispatch.h>
197
+ #include <ATen/ops/adaptive_avg_pool3d_cuda_dispatch.h>
198
+ #include <ATen/ops/adaptive_avg_pool3d_backward_cuda_dispatch.h>
199
+ #include <ATen/ops/adaptive_max_pool2d_cuda_dispatch.h>
200
+ #include <ATen/ops/adaptive_max_pool2d_backward_cuda_dispatch.h>
201
+ #include <ATen/ops/adaptive_max_pool3d_cuda_dispatch.h>
202
+ #include <ATen/ops/adaptive_max_pool3d_backward_cuda_dispatch.h>
203
+ #include <ATen/ops/add_cuda_dispatch.h>
204
+ #include <ATen/ops/addbmm_cuda_dispatch.h>
205
+ #include <ATen/ops/addcdiv_cuda_dispatch.h>
206
+ #include <ATen/ops/addcmul_cuda_dispatch.h>
207
+ #include <ATen/ops/addmm_cuda_dispatch.h>
208
+ #include <ATen/ops/addmv_cuda_dispatch.h>
209
+ #include <ATen/ops/addr_cuda_dispatch.h>
210
+ #include <ATen/ops/all_cuda_dispatch.h>
211
+ #include <ATen/ops/amax_cuda_dispatch.h>
212
+ #include <ATen/ops/amin_cuda_dispatch.h>
213
+ #include <ATen/ops/aminmax_cuda_dispatch.h>
214
+ #include <ATen/ops/angle_cuda_dispatch.h>
215
+ #include <ATen/ops/any_cuda_dispatch.h>
216
+ #include <ATen/ops/arange_cuda_dispatch.h>
217
+ #include <ATen/ops/argmax_cuda_dispatch.h>
218
+ #include <ATen/ops/argmin_cuda_dispatch.h>
219
+ #include <ATen/ops/argsort_cuda_dispatch.h>
220
+ #include <ATen/ops/as_strided_cuda_dispatch.h>
221
+ #include <ATen/ops/asin_cuda_dispatch.h>
222
+ #include <ATen/ops/asinh_cuda_dispatch.h>
223
+ #include <ATen/ops/atan_cuda_dispatch.h>
224
+ #include <ATen/ops/atan2_cuda_dispatch.h>
225
+ #include <ATen/ops/atanh_cuda_dispatch.h>
226
+ #include <ATen/ops/avg_pool2d_cuda_dispatch.h>
227
+ #include <ATen/ops/avg_pool2d_backward_cuda_dispatch.h>
228
+ #include <ATen/ops/avg_pool3d_cuda_dispatch.h>
229
+ #include <ATen/ops/avg_pool3d_backward_cuda_dispatch.h>
230
+ #include <ATen/ops/baddbmm_cuda_dispatch.h>
231
+ #include <ATen/ops/batch_norm_backward_elemt_cuda_dispatch.h>
232
+ #include <ATen/ops/batch_norm_backward_reduce_cuda_dispatch.h>
233
+ #include <ATen/ops/batch_norm_elemt_cuda_dispatch.h>
234
+ #include <ATen/ops/batch_norm_gather_stats_cuda_dispatch.h>
235
+ #include <ATen/ops/batch_norm_gather_stats_with_counts_cuda_dispatch.h>
236
+ #include <ATen/ops/batch_norm_stats_cuda_dispatch.h>
237
+ #include <ATen/ops/batch_norm_update_stats_cuda_dispatch.h>
238
+ #include <ATen/ops/bernoulli_cuda_dispatch.h>
239
+ #include <ATen/ops/binary_cross_entropy_cuda_dispatch.h>
240
+ #include <ATen/ops/binary_cross_entropy_backward_cuda_dispatch.h>
241
+ #include <ATen/ops/bincount_cuda_dispatch.h>
242
+ #include <ATen/ops/binomial_cuda_dispatch.h>
243
+ #include <ATen/ops/bitwise_and_cuda_dispatch.h>
244
+ #include <ATen/ops/bitwise_left_shift_cuda_dispatch.h>
245
+ #include <ATen/ops/bitwise_not_cuda_dispatch.h>
246
+ #include <ATen/ops/bitwise_or_cuda_dispatch.h>
247
+ #include <ATen/ops/bitwise_right_shift_cuda_dispatch.h>
248
+ #include <ATen/ops/bitwise_xor_cuda_dispatch.h>
249
+ #include <ATen/ops/bmm_cuda_dispatch.h>
250
+ #include <ATen/ops/bucketize_cuda_dispatch.h>
251
+ #include <ATen/ops/cat_cuda_dispatch.h>
252
+ #include <ATen/ops/cauchy_cuda_dispatch.h>
253
+ #include <ATen/ops/ceil_cuda_dispatch.h>
254
+ #include <ATen/ops/channel_shuffle_cuda_dispatch.h>
255
+ #include <ATen/ops/cholesky_cuda_dispatch.h>
256
+ #include <ATen/ops/cholesky_inverse_cuda_dispatch.h>
257
+ #include <ATen/ops/clamp_cuda_dispatch.h>
258
+ #include <ATen/ops/clamp_max_cuda_dispatch.h>
259
+ #include <ATen/ops/clamp_min_cuda_dispatch.h>
260
+ #include <ATen/ops/col2im_cuda_dispatch.h>
261
+ #include <ATen/ops/complex_cuda_dispatch.h>
262
+ #include <ATen/ops/conj_physical_cuda_dispatch.h>
263
+ #include <ATen/ops/conv_depthwise3d_cuda_dispatch.h>
264
+ #include <ATen/ops/convolution_backward_cuda_dispatch.h>
265
+ #include <ATen/ops/copysign_cuda_dispatch.h>
266
+ #include <ATen/ops/cos_cuda_dispatch.h>
267
+ #include <ATen/ops/cosh_cuda_dispatch.h>
268
+ #include <ATen/ops/count_nonzero_cuda_dispatch.h>
269
+ #include <ATen/ops/cudnn_affine_grid_generator_cuda_dispatch.h>
270
+ #include <ATen/ops/cudnn_affine_grid_generator_backward_cuda_dispatch.h>
271
+ #include <ATen/ops/cudnn_batch_norm_cuda_dispatch.h>
272
+ #include <ATen/ops/cudnn_batch_norm_backward_cuda_dispatch.h>
273
+ #include <ATen/ops/cudnn_convolution_cuda_dispatch.h>
274
+ #include <ATen/ops/cudnn_convolution_add_relu_cuda_dispatch.h>
275
+ #include <ATen/ops/cudnn_convolution_relu_cuda_dispatch.h>
276
+ #include <ATen/ops/cudnn_convolution_transpose_cuda_dispatch.h>
277
+ #include <ATen/ops/cudnn_grid_sampler_cuda_dispatch.h>
278
+ #include <ATen/ops/cudnn_grid_sampler_backward_cuda_dispatch.h>
279
+ #include <ATen/ops/cumprod_cuda_dispatch.h>
280
+ #include <ATen/ops/cumsum_cuda_dispatch.h>
281
+ #include <ATen/ops/dense_dim_cuda_dispatch.h>
282
+ #include <ATen/ops/dequantize_cuda_dispatch.h>
283
+ #include <ATen/ops/digamma_cuda_dispatch.h>
284
+ #include <ATen/ops/div_cuda_dispatch.h>
285
+ #include <ATen/ops/dot_cuda_dispatch.h>
286
+ #include <ATen/ops/elu_cuda_dispatch.h>
287
+ #include <ATen/ops/elu_backward_cuda_dispatch.h>
288
+ #include <ATen/ops/embedding_dense_backward_cuda_dispatch.h>
289
+ #include <ATen/ops/embedding_renorm_cuda_dispatch.h>
290
+ #include <ATen/ops/empty_cuda_dispatch.h>
291
+ #include <ATen/ops/empty_strided_cuda_dispatch.h>
292
+ #include <ATen/ops/eq_cuda_dispatch.h>
293
+ #include <ATen/ops/equal_cuda_dispatch.h>
294
+ #include <ATen/ops/erf_cuda_dispatch.h>
295
+ #include <ATen/ops/erfc_cuda_dispatch.h>
296
+ #include <ATen/ops/erfinv_cuda_dispatch.h>
297
+ #include <ATen/ops/exp_cuda_dispatch.h>
298
+ #include <ATen/ops/exp2_cuda_dispatch.h>
299
+ #include <ATen/ops/expm1_cuda_dispatch.h>
300
+ #include <ATen/ops/exponential_cuda_dispatch.h>
301
+ #include <ATen/ops/eye_cuda_dispatch.h>
302
+ #include <ATen/ops/fake_quantize_per_channel_affine_cachemask_cuda_dispatch.h>
303
+ #include <ATen/ops/fake_quantize_per_tensor_affine_cachemask_cuda_dispatch.h>
304
+ #include <ATen/ops/fill_cuda_dispatch.h>
305
+ #include <ATen/ops/flip_cuda_dispatch.h>
306
+ #include <ATen/ops/floor_cuda_dispatch.h>
307
+ #include <ATen/ops/floor_divide_cuda_dispatch.h>
308
+ #include <ATen/ops/fmax_cuda_dispatch.h>
309
+ #include <ATen/ops/fmin_cuda_dispatch.h>
310
+ #include <ATen/ops/fmod_cuda_dispatch.h>
311
+ #include <ATen/ops/frac_cuda_dispatch.h>
312
+ #include <ATen/ops/fractional_max_pool2d_cuda_dispatch.h>
313
+ #include <ATen/ops/fractional_max_pool2d_backward_cuda_dispatch.h>
314
+ #include <ATen/ops/fractional_max_pool3d_cuda_dispatch.h>
315
+ #include <ATen/ops/fractional_max_pool3d_backward_cuda_dispatch.h>
316
+ #include <ATen/ops/frexp_cuda_dispatch.h>
317
+ #include <ATen/ops/gather_cuda_dispatch.h>
318
+ #include <ATen/ops/gcd_cuda_dispatch.h>
319
+ #include <ATen/ops/ge_cuda_dispatch.h>
320
+ #include <ATen/ops/gelu_cuda_dispatch.h>
321
+ #include <ATen/ops/gelu_backward_cuda_dispatch.h>
322
+ #include <ATen/ops/geometric_cuda_dispatch.h>
323
+ #include <ATen/ops/geqrf_cuda_dispatch.h>
324
+ #include <ATen/ops/glu_cuda_dispatch.h>
325
+ #include <ATen/ops/glu_backward_cuda_dispatch.h>
326
+ #include <ATen/ops/glu_backward_jvp_cuda_dispatch.h>
327
+ #include <ATen/ops/glu_jvp_cuda_dispatch.h>
328
+ #include <ATen/ops/grid_sampler_2d_cuda_dispatch.h>
329
+ #include <ATen/ops/grid_sampler_2d_backward_cuda_dispatch.h>
330
+ #include <ATen/ops/grid_sampler_3d_cuda_dispatch.h>
331
+ #include <ATen/ops/grid_sampler_3d_backward_cuda_dispatch.h>
332
+ #include <ATen/ops/gt_cuda_dispatch.h>
333
+ #include <ATen/ops/hardshrink_cuda_dispatch.h>
334
+ #include <ATen/ops/hardshrink_backward_cuda_dispatch.h>
335
+ #include <ATen/ops/hardsigmoid_cuda_dispatch.h>
336
+ #include <ATen/ops/hardsigmoid_backward_cuda_dispatch.h>
337
+ #include <ATen/ops/hardswish_cuda_dispatch.h>
338
+ #include <ATen/ops/hardswish_backward_cuda_dispatch.h>
339
+ #include <ATen/ops/hardtanh_cuda_dispatch.h>
340
+ #include <ATen/ops/hardtanh_backward_cuda_dispatch.h>
341
+ #include <ATen/ops/heaviside_cuda_dispatch.h>
342
+ #include <ATen/ops/histc_cuda_dispatch.h>
343
+ #include <ATen/ops/huber_loss_cuda_dispatch.h>
344
+ #include <ATen/ops/huber_loss_backward_cuda_dispatch.h>
345
+ #include <ATen/ops/hypot_cuda_dispatch.h>
346
+ #include <ATen/ops/i0_cuda_dispatch.h>
347
+ #include <ATen/ops/igamma_cuda_dispatch.h>
348
+ #include <ATen/ops/igammac_cuda_dispatch.h>
349
+ #include <ATen/ops/im2col_cuda_dispatch.h>
350
+ #include <ATen/ops/index_cuda_dispatch.h>
351
+ #include <ATen/ops/index_add_cuda_dispatch.h>
352
+ #include <ATen/ops/index_copy_cuda_dispatch.h>
353
+ #include <ATen/ops/index_fill_cuda_dispatch.h>
354
+ #include <ATen/ops/index_reduce_cuda_dispatch.h>
355
+ #include <ATen/ops/index_select_cuda_dispatch.h>
356
+ #include <ATen/ops/is_pinned_cuda_dispatch.h>
357
+ #include <ATen/ops/is_set_to_cuda_dispatch.h>
358
+ #include <ATen/ops/isin_cuda_dispatch.h>
359
+ #include <ATen/ops/isnan_cuda_dispatch.h>
360
+ #include <ATen/ops/isneginf_cuda_dispatch.h>
361
+ #include <ATen/ops/isposinf_cuda_dispatch.h>
362
+ #include <ATen/ops/kthvalue_cuda_dispatch.h>
363
+ #include <ATen/ops/lcm_cuda_dispatch.h>
364
+ #include <ATen/ops/le_cuda_dispatch.h>
365
+ #include <ATen/ops/leaky_relu_cuda_dispatch.h>
366
+ #include <ATen/ops/leaky_relu_backward_cuda_dispatch.h>
367
+ #include <ATen/ops/lerp_cuda_dispatch.h>
368
+ #include <ATen/ops/lgamma_cuda_dispatch.h>
369
+ #include <ATen/ops/linalg_cholesky_ex_cuda_dispatch.h>
370
+ #include <ATen/ops/linalg_cross_cuda_dispatch.h>
371
+ #include <ATen/ops/linalg_eig_cuda_dispatch.h>
372
+ #include <ATen/ops/linalg_eigvals_cuda_dispatch.h>
373
+ #include <ATen/ops/linalg_householder_product_cuda_dispatch.h>
374
+ #include <ATen/ops/linalg_inv_ex_cuda_dispatch.h>
375
+ #include <ATen/ops/linalg_ldl_factor_ex_cuda_dispatch.h>
376
+ #include <ATen/ops/linalg_ldl_solve_cuda_dispatch.h>
377
+ #include <ATen/ops/linalg_lstsq_cuda_dispatch.h>
378
+ #include <ATen/ops/linalg_lu_cuda_dispatch.h>
379
+ #include <ATen/ops/linalg_lu_factor_ex_cuda_dispatch.h>
380
+ #include <ATen/ops/linalg_lu_solve_cuda_dispatch.h>
381
+ #include <ATen/ops/linalg_matrix_exp_cuda_dispatch.h>
382
+ #include <ATen/ops/linalg_qr_cuda_dispatch.h>
383
+ #include <ATen/ops/linalg_solve_triangular_cuda_dispatch.h>
384
+ #include <ATen/ops/linalg_vector_norm_cuda_dispatch.h>
385
+ #include <ATen/ops/linspace_cuda_dispatch.h>
386
+ #include <ATen/ops/log_cuda_dispatch.h>
387
+ #include <ATen/ops/log10_cuda_dispatch.h>
388
+ #include <ATen/ops/log1p_cuda_dispatch.h>
389
+ #include <ATen/ops/log2_cuda_dispatch.h>
390
+ #include <ATen/ops/log_normal_cuda_dispatch.h>
391
+ #include <ATen/ops/log_sigmoid_backward_cuda_dispatch.h>
392
+ #include <ATen/ops/log_sigmoid_forward_cuda_dispatch.h>
393
+ #include <ATen/ops/logaddexp_cuda_dispatch.h>
394
+ #include <ATen/ops/logaddexp2_cuda_dispatch.h>
395
+ #include <ATen/ops/logical_and_cuda_dispatch.h>
396
+ #include <ATen/ops/logical_not_cuda_dispatch.h>
397
+ #include <ATen/ops/logical_or_cuda_dispatch.h>
398
+ #include <ATen/ops/logical_xor_cuda_dispatch.h>
399
+ #include <ATen/ops/logit_cuda_dispatch.h>
400
+ #include <ATen/ops/logit_backward_cuda_dispatch.h>
401
+ #include <ATen/ops/logspace_cuda_dispatch.h>
402
+ #include <ATen/ops/lshift_cuda_dispatch.h>
403
+ #include <ATen/ops/lt_cuda_dispatch.h>
404
+ #include <ATen/ops/lu_unpack_cuda_dispatch.h>
405
+ #include <ATen/ops/masked_fill_cuda_dispatch.h>
406
+ #include <ATen/ops/masked_scatter_cuda_dispatch.h>
407
+ #include <ATen/ops/masked_select_cuda_dispatch.h>
408
+ #include <ATen/ops/max_cuda_dispatch.h>
409
+ #include <ATen/ops/max_pool2d_with_indices_cuda_dispatch.h>
410
+ #include <ATen/ops/max_pool2d_with_indices_backward_cuda_dispatch.h>
411
+ #include <ATen/ops/max_pool3d_with_indices_cuda_dispatch.h>
412
+ #include <ATen/ops/max_pool3d_with_indices_backward_cuda_dispatch.h>
413
+ #include <ATen/ops/max_unpool2d_cuda_dispatch.h>
414
+ #include <ATen/ops/max_unpool3d_cuda_dispatch.h>
415
+ #include <ATen/ops/maximum_cuda_dispatch.h>
416
+ #include <ATen/ops/mean_cuda_dispatch.h>
417
+ #include <ATen/ops/median_cuda_dispatch.h>
418
+ #include <ATen/ops/min_cuda_dispatch.h>
419
+ #include <ATen/ops/minimum_cuda_dispatch.h>
420
+ #include <ATen/ops/miopen_batch_norm_cuda_dispatch.h>
421
+ #include <ATen/ops/miopen_batch_norm_backward_cuda_dispatch.h>
422
+ #include <ATen/ops/miopen_convolution_cuda_dispatch.h>
423
+ #include <ATen/ops/miopen_convolution_add_relu_cuda_dispatch.h>
424
+ #include <ATen/ops/miopen_convolution_relu_cuda_dispatch.h>
425
+ #include <ATen/ops/miopen_convolution_transpose_cuda_dispatch.h>
426
+ #include <ATen/ops/miopen_depthwise_convolution_cuda_dispatch.h>
427
+ #include <ATen/ops/miopen_rnn_cuda_dispatch.h>
428
+ #include <ATen/ops/miopen_rnn_backward_cuda_dispatch.h>
429
+ #include <ATen/ops/mish_cuda_dispatch.h>
430
+ #include <ATen/ops/mish_backward_cuda_dispatch.h>
431
+ #include <ATen/ops/mm_cuda_dispatch.h>
432
+ #include <ATen/ops/mode_cuda_dispatch.h>
433
+ #include <ATen/ops/mse_loss_cuda_dispatch.h>
434
+ #include <ATen/ops/mse_loss_backward_cuda_dispatch.h>
435
+ #include <ATen/ops/mul_cuda_dispatch.h>
436
+ #include <ATen/ops/multi_margin_loss_cuda_dispatch.h>
437
+ #include <ATen/ops/multi_margin_loss_backward_cuda_dispatch.h>
438
+ #include <ATen/ops/multilabel_margin_loss_backward_cuda_dispatch.h>
439
+ #include <ATen/ops/multilabel_margin_loss_forward_cuda_dispatch.h>
440
+ #include <ATen/ops/multinomial_cuda_dispatch.h>
441
+ #include <ATen/ops/mvlgamma_cuda_dispatch.h>
442
+ #include <ATen/ops/nan_to_num_cuda_dispatch.h>
443
+ #include <ATen/ops/nanmedian_cuda_dispatch.h>
444
+ #include <ATen/ops/nansum_cuda_dispatch.h>
445
+ #include <ATen/ops/native_batch_norm_cuda_dispatch.h>
446
+ #include <ATen/ops/native_batch_norm_backward_cuda_dispatch.h>
447
+ #include <ATen/ops/native_dropout_cuda_dispatch.h>
448
+ #include <ATen/ops/native_dropout_backward_cuda_dispatch.h>
449
+ #include <ATen/ops/native_group_norm_cuda_dispatch.h>
450
+ #include <ATen/ops/native_group_norm_backward_cuda_dispatch.h>
451
+ #include <ATen/ops/native_layer_norm_cuda_dispatch.h>
452
+ #include <ATen/ops/native_layer_norm_backward_cuda_dispatch.h>
453
+ #include <ATen/ops/ne_cuda_dispatch.h>
454
+ #include <ATen/ops/neg_cuda_dispatch.h>
455
+ #include <ATen/ops/nextafter_cuda_dispatch.h>
456
+ #include <ATen/ops/nll_loss2d_backward_cuda_dispatch.h>
457
+ #include <ATen/ops/nll_loss2d_forward_cuda_dispatch.h>
458
+ #include <ATen/ops/nll_loss_backward_cuda_dispatch.h>
459
+ #include <ATen/ops/nll_loss_forward_cuda_dispatch.h>
460
+ #include <ATen/ops/nonzero_cuda_dispatch.h>
461
+ #include <ATen/ops/norm_cuda_dispatch.h>
462
+ #include <ATen/ops/normal_cuda_dispatch.h>
463
+ #include <ATen/ops/ormqr_cuda_dispatch.h>
464
+ #include <ATen/ops/poisson_cuda_dispatch.h>
465
+ #include <ATen/ops/polar_cuda_dispatch.h>
466
+ #include <ATen/ops/polygamma_cuda_dispatch.h>
467
+ #include <ATen/ops/pow_cuda_dispatch.h>
468
+ #include <ATen/ops/prod_cuda_dispatch.h>
469
+ #include <ATen/ops/put_cuda_dispatch.h>
470
+ #include <ATen/ops/quantize_per_channel_cuda_dispatch.h>
471
+ #include <ATen/ops/quantize_per_tensor_cuda_dispatch.h>
472
+ #include <ATen/ops/quantize_per_tensor_dynamic_cuda_dispatch.h>
473
+ #include <ATen/ops/random_cuda_dispatch.h>
474
+ #include <ATen/ops/randperm_cuda_dispatch.h>
475
+ #include <ATen/ops/range_cuda_dispatch.h>
476
+ #include <ATen/ops/reciprocal_cuda_dispatch.h>
477
+ #include <ATen/ops/record_stream_cuda_dispatch.h>
478
+ #include <ATen/ops/reflection_pad1d_cuda_dispatch.h>
479
+ #include <ATen/ops/reflection_pad1d_backward_cuda_dispatch.h>
480
+ #include <ATen/ops/reflection_pad2d_cuda_dispatch.h>
481
+ #include <ATen/ops/reflection_pad2d_backward_cuda_dispatch.h>
482
+ #include <ATen/ops/reflection_pad3d_cuda_dispatch.h>
483
+ #include <ATen/ops/reflection_pad3d_backward_cuda_dispatch.h>
484
+ #include <ATen/ops/relu_cuda_dispatch.h>
485
+ #include <ATen/ops/remainder_cuda_dispatch.h>
486
+ #include <ATen/ops/renorm_cuda_dispatch.h>
487
+ #include <ATen/ops/repeat_interleave_cuda_dispatch.h>
488
+ #include <ATen/ops/replication_pad1d_cuda_dispatch.h>
489
+ #include <ATen/ops/replication_pad1d_backward_cuda_dispatch.h>
490
+ #include <ATen/ops/replication_pad2d_cuda_dispatch.h>
491
+ #include <ATen/ops/replication_pad2d_backward_cuda_dispatch.h>
492
+ #include <ATen/ops/replication_pad3d_cuda_dispatch.h>
493
+ #include <ATen/ops/replication_pad3d_backward_cuda_dispatch.h>
494
+ #include <ATen/ops/resize_cuda_dispatch.h>
495
+ #include <ATen/ops/roll_cuda_dispatch.h>
496
+ #include <ATen/ops/round_cuda_dispatch.h>
497
+ #include <ATen/ops/rrelu_with_noise_cuda_dispatch.h>
498
+ #include <ATen/ops/rshift_cuda_dispatch.h>
499
+ #include <ATen/ops/rsqrt_cuda_dispatch.h>
500
+ #include <ATen/ops/rsub_cuda_dispatch.h>
501
+ #include <ATen/ops/scatter_cuda_dispatch.h>
502
+ #include <ATen/ops/scatter_add_cuda_dispatch.h>
503
+ #include <ATen/ops/scatter_reduce_cuda_dispatch.h>
504
+ #include <ATen/ops/searchsorted_cuda_dispatch.h>
505
+ #include <ATen/ops/segment_reduce_cuda_dispatch.h>
506
+ #include <ATen/ops/set_cuda_dispatch.h>
507
+ #include <ATen/ops/sgn_cuda_dispatch.h>
508
+ #include <ATen/ops/sigmoid_cuda_dispatch.h>
509
+ #include <ATen/ops/sigmoid_backward_cuda_dispatch.h>
510
+ #include <ATen/ops/sign_cuda_dispatch.h>
511
+ #include <ATen/ops/signbit_cuda_dispatch.h>
512
+ #include <ATen/ops/silu_cuda_dispatch.h>
513
+ #include <ATen/ops/silu_backward_cuda_dispatch.h>
514
+ #include <ATen/ops/sin_cuda_dispatch.h>
515
+ #include <ATen/ops/sinc_cuda_dispatch.h>
516
+ #include <ATen/ops/sinh_cuda_dispatch.h>
517
+ #include <ATen/ops/slow_conv_dilated2d_cuda_dispatch.h>
518
+ #include <ATen/ops/slow_conv_dilated3d_cuda_dispatch.h>
519
+ #include <ATen/ops/slow_conv_transpose2d_cuda_dispatch.h>
520
+ #include <ATen/ops/slow_conv_transpose3d_cuda_dispatch.h>
521
+ #include <ATen/ops/smooth_l1_loss_cuda_dispatch.h>
522
+ #include <ATen/ops/smooth_l1_loss_backward_cuda_dispatch.h>
523
+ #include <ATen/ops/softplus_cuda_dispatch.h>
524
+ #include <ATen/ops/softplus_backward_cuda_dispatch.h>
525
+ #include <ATen/ops/softshrink_cuda_dispatch.h>
526
+ #include <ATen/ops/softshrink_backward_cuda_dispatch.h>
527
+ #include <ATen/ops/sort_cuda_dispatch.h>
528
+ #include <ATen/ops/sparse_dim_cuda_dispatch.h>
529
+ #include <ATen/ops/special_airy_ai_cuda_dispatch.h>
530
+ #include <ATen/ops/special_bessel_j0_cuda_dispatch.h>
531
+ #include <ATen/ops/special_bessel_j1_cuda_dispatch.h>
532
+ #include <ATen/ops/special_bessel_y0_cuda_dispatch.h>
533
+ #include <ATen/ops/special_bessel_y1_cuda_dispatch.h>
534
+ #include <ATen/ops/special_chebyshev_polynomial_t_cuda_dispatch.h>
535
+ #include <ATen/ops/special_chebyshev_polynomial_u_cuda_dispatch.h>
536
+ #include <ATen/ops/special_chebyshev_polynomial_v_cuda_dispatch.h>
537
+ #include <ATen/ops/special_chebyshev_polynomial_w_cuda_dispatch.h>
538
+ #include <ATen/ops/special_entr_cuda_dispatch.h>
539
+ #include <ATen/ops/special_erfcx_cuda_dispatch.h>
540
+ #include <ATen/ops/special_hermite_polynomial_h_cuda_dispatch.h>
541
+ #include <ATen/ops/special_hermite_polynomial_he_cuda_dispatch.h>
542
+ #include <ATen/ops/special_i0e_cuda_dispatch.h>
543
+ #include <ATen/ops/special_i1_cuda_dispatch.h>
544
+ #include <ATen/ops/special_i1e_cuda_dispatch.h>
545
+ #include <ATen/ops/special_laguerre_polynomial_l_cuda_dispatch.h>
546
+ #include <ATen/ops/special_legendre_polynomial_p_cuda_dispatch.h>
547
+ #include <ATen/ops/special_log_ndtr_cuda_dispatch.h>
548
+ #include <ATen/ops/special_modified_bessel_i0_cuda_dispatch.h>
549
+ #include <ATen/ops/special_modified_bessel_i1_cuda_dispatch.h>
550
+ #include <ATen/ops/special_modified_bessel_k0_cuda_dispatch.h>
551
+ #include <ATen/ops/special_modified_bessel_k1_cuda_dispatch.h>
552
+ #include <ATen/ops/special_ndtri_cuda_dispatch.h>
553
+ #include <ATen/ops/special_scaled_modified_bessel_k0_cuda_dispatch.h>
554
+ #include <ATen/ops/special_scaled_modified_bessel_k1_cuda_dispatch.h>
555
+ #include <ATen/ops/special_shifted_chebyshev_polynomial_t_cuda_dispatch.h>
556
+ #include <ATen/ops/special_shifted_chebyshev_polynomial_u_cuda_dispatch.h>
557
+ #include <ATen/ops/special_shifted_chebyshev_polynomial_v_cuda_dispatch.h>
558
+ #include <ATen/ops/special_shifted_chebyshev_polynomial_w_cuda_dispatch.h>
559
+ #include <ATen/ops/special_spherical_bessel_j0_cuda_dispatch.h>
560
+ #include <ATen/ops/special_xlog1py_cuda_dispatch.h>
561
+ #include <ATen/ops/special_zeta_cuda_dispatch.h>
562
+ #include <ATen/ops/split_with_sizes_copy_cuda_dispatch.h>
563
+ #include <ATen/ops/sqrt_cuda_dispatch.h>
564
+ #include <ATen/ops/sspaddmm_cuda_dispatch.h>
565
+ #include <ATen/ops/std_cuda_dispatch.h>
566
+ #include <ATen/ops/std_mean_cuda_dispatch.h>
567
+ #include <ATen/ops/sub_cuda_dispatch.h>
568
+ #include <ATen/ops/sum_cuda_dispatch.h>
569
+ #include <ATen/ops/take_cuda_dispatch.h>
570
+ #include <ATen/ops/tan_cuda_dispatch.h>
571
+ #include <ATen/ops/tanh_cuda_dispatch.h>
572
+ #include <ATen/ops/tanh_backward_cuda_dispatch.h>
573
+ #include <ATen/ops/threshold_cuda_dispatch.h>
574
+ #include <ATen/ops/threshold_backward_cuda_dispatch.h>
575
+ #include <ATen/ops/topk_cuda_dispatch.h>
576
+ #include <ATen/ops/trace_cuda_dispatch.h>
577
+ #include <ATen/ops/triangular_solve_cuda_dispatch.h>
578
+ #include <ATen/ops/tril_cuda_dispatch.h>
579
+ #include <ATen/ops/tril_indices_cuda_dispatch.h>
580
+ #include <ATen/ops/triu_cuda_dispatch.h>
581
+ #include <ATen/ops/triu_indices_cuda_dispatch.h>
582
+ #include <ATen/ops/trunc_cuda_dispatch.h>
583
+ #include <ATen/ops/unfold_cuda_dispatch.h>
584
+ #include <ATen/ops/unfold_backward_cuda_dispatch.h>
585
+ #include <ATen/ops/uniform_cuda_dispatch.h>
586
+ #include <ATen/ops/unique_consecutive_cuda_dispatch.h>
587
+ #include <ATen/ops/unique_dim_cuda_dispatch.h>
588
+ #include <ATen/ops/unique_dim_consecutive_cuda_dispatch.h>
589
+ #include <ATen/ops/upsample_bicubic2d_cuda_dispatch.h>
590
+ #include <ATen/ops/upsample_bicubic2d_backward_cuda_dispatch.h>
591
+ #include <ATen/ops/upsample_bilinear2d_cuda_dispatch.h>
592
+ #include <ATen/ops/upsample_bilinear2d_backward_cuda_dispatch.h>
593
+ #include <ATen/ops/upsample_linear1d_cuda_dispatch.h>
594
+ #include <ATen/ops/upsample_linear1d_backward_cuda_dispatch.h>
595
+ #include <ATen/ops/upsample_nearest1d_cuda_dispatch.h>
596
+ #include <ATen/ops/upsample_nearest1d_backward_cuda_dispatch.h>
597
+ #include <ATen/ops/upsample_nearest2d_cuda_dispatch.h>
598
+ #include <ATen/ops/upsample_nearest2d_backward_cuda_dispatch.h>
599
+ #include <ATen/ops/upsample_nearest3d_cuda_dispatch.h>
600
+ #include <ATen/ops/upsample_nearest3d_backward_cuda_dispatch.h>
601
+ #include <ATen/ops/upsample_trilinear3d_cuda_dispatch.h>
602
+ #include <ATen/ops/upsample_trilinear3d_backward_cuda_dispatch.h>
603
+ #include <ATen/ops/var_cuda_dispatch.h>
604
+ #include <ATen/ops/var_mean_cuda_dispatch.h>
605
+ #include <ATen/ops/vdot_cuda_dispatch.h>
606
+ #include <ATen/ops/view_cuda_dispatch.h>
607
+ #include <ATen/ops/view_as_complex_cuda_dispatch.h>
608
+ #include <ATen/ops/view_as_real_cuda_dispatch.h>
609
+ #include <ATen/ops/where_cuda_dispatch.h>
610
+ #include <ATen/ops/xlogy_cuda_dispatch.h>
611
+ #include <ATen/ops/zero_cuda_dispatch.h>
612
+
613
+
614
+
venv/lib/python3.10/site-packages/torch/include/ATen/CachedTensorUtils.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <ATen/ATen.h>
4
+
5
+ namespace at::caching {
6
+
7
+ // Some systems (just cudagraphs currently) will persist a static tensor output
8
+ // whose TensorImpl does not change across iterations. For these tensors caching
9
+ // dtype conversions is invalid. Additionally, there will be an extra reference
10
+ // count to these cached tensors that would prevent buffer inplacing and other
11
+ // checks on tensor uniqueness. If we are not using these systems the enabled
12
+ // flag will be false and we will avoid the hash lookup.
13
+
14
+ TORCH_API bool is_cached_tensor(const at::Tensor& t);
15
+ TORCH_API void add_cached_tensor(const at::Tensor& t);
16
+ TORCH_API void remove_cached_tensor(const at::Tensor& t);
17
+ TORCH_API void set_cached_tensors_enabled(bool enable);
18
+
19
+ // For gradient buffer stealing we will adjust the use count of tensors
20
+ // which are persisted by cudagraphs, just as we need to adjust reference
21
+ // count of tensors with hooks.
22
+ TORCH_API size_t adjusted_use_count(const at::Tensor& t);
23
+
24
+ } // namespace at::caching
venv/lib/python3.10/site-packages/torch/include/ATen/CollapseDims.h ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #include <c10/util/Exception.h>
2
+ #include <utility>
3
+
4
+ namespace at {
5
+
6
+ /*
7
+ [collapse dims] Updates sizes, and strides to reflect a "collapse" of
8
+ the info, possibly excluding the optional excludeDim. A "collapsed" version
9
+ of the info is the fewest dims that order the tensor's elements in the same
10
+ way as the original info. If excludeDim is specified, the collapse is the
11
+ fewest dims that order the tensor's elements as the original and preserve the
12
+ excluded dimension, unless the tensor collapses to a point.
13
+
14
+ This function returns a pair of values.
15
+
16
+ 1) The (new) index of the preserved dimension if excludeDim is
17
+ specified. 0 if the tensor is collapsed to a point. -1
18
+ otherwise.
19
+
20
+ 2) The new number of dimensions.
21
+ */
22
+ template <typename T>
23
+ inline std::pair<int64_t, int64_t> collapse_dims(
24
+ T* sizes,
25
+ T* strides,
26
+ int64_t dims,
27
+ const int excludeDim = -1) {
28
+ TORCH_CHECK(
29
+ excludeDim >= -1 && excludeDim < dims,
30
+ "expected excluded dim between -1 and dims - 1");
31
+
32
+ int64_t stopDim = (excludeDim == -1) ? dims : excludeDim;
33
+ int64_t newIndex = -1;
34
+ int64_t oldIndex = 0;
35
+ int64_t remappedExcludedDim = -1;
36
+
37
+ while (oldIndex < dims) {
38
+ // Finds a dimension to collapse into
39
+ for (; oldIndex < stopDim; ++oldIndex) {
40
+ if (sizes[oldIndex] == 1) {
41
+ continue;
42
+ }
43
+
44
+ ++newIndex;
45
+ sizes[newIndex] = sizes[oldIndex];
46
+ strides[newIndex] = strides[oldIndex];
47
+ ++oldIndex;
48
+ break;
49
+ }
50
+
51
+ // Collapses dims
52
+ for (; oldIndex < stopDim; ++oldIndex) {
53
+ if (sizes[oldIndex] == 1) {
54
+ continue;
55
+ }
56
+
57
+ if (strides[newIndex] == sizes[oldIndex] * strides[oldIndex]) {
58
+ sizes[newIndex] *= sizes[oldIndex];
59
+ strides[newIndex] = strides[oldIndex];
60
+ } else {
61
+ ++newIndex;
62
+ sizes[newIndex] = sizes[oldIndex];
63
+ strides[newIndex] = strides[oldIndex];
64
+ }
65
+ }
66
+
67
+ // Handles excludeDim being set (oldIndex == excludeDim)
68
+ if (oldIndex != dims) {
69
+ // Preserves excluded dimension
70
+ ++newIndex;
71
+ sizes[newIndex] = sizes[oldIndex];
72
+ strides[newIndex] = strides[oldIndex];
73
+ remappedExcludedDim = newIndex;
74
+
75
+ // Restarts iteration after excludeDim
76
+ ++oldIndex;
77
+ stopDim = dims;
78
+ }
79
+ }
80
+
81
+ // Handles special case of all dims size 1
82
+ if (newIndex == -1 || (newIndex == 0 && sizes[0] == 1)) {
83
+ dims = 1;
84
+ sizes[0] = 1;
85
+ strides[0] = 1;
86
+
87
+ return std::pair<int64_t, int64_t>(0, 1);
88
+ }
89
+
90
+ dims = newIndex + 1;
91
+ return std::pair<int64_t, int64_t>(remappedExcludedDim, dims);
92
+ }
93
+
94
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/CompositeExplicitAutogradFunctions.h ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #include <ATen/core/TensorBody.h>
2
+
3
+ // TODO Undo all logic introduced for Note [Avoiding Include Cycles In Static Dispatch]
4
+ // Code introduced to avoid cyclic dependency in static dispatch is no longer
5
+ // needed as static dispatch logic is moved from TensorBody.h, which caused cycles in the first place,
6
+ // to Operators.cpp for supporting multiple backends with multiple kernels.
7
+ //
8
+ // Note [Avoiding Include Cycles In Static Dispatch]
9
+ // In order to avoid #include cycles in the static dispatch build, we've carefully split out
10
+ // the static function definition files into {DispatchKey}Functions.h and {DispatchKey}Functions_inl.h.
11
+ //
12
+ // Without this split, the include cycle looks like TensorBody.h -> CPUFunctions.h -> TensorBody.h.
13
+ // - TensorBody.h #includes CPUFunctions.h in the static dispatch build, because the tensor methods
14
+ // all need to call into the fastpath C++ API defined in CPUFunctions.h. The methods are also all
15
+ // directly inlined into TensorBody.h.
16
+ // - CPUFunctions.h #includes TensorBody.h because it contains function declarations for the entire C++ API,
17
+ // which include functions that have defaultable optional<Tensor> arguments.
18
+ // That requires knowing the full Tensor class definition.
19
+ //
20
+ // We break the cycle by doing the following:
21
+ // - Split out CPUFunction.h into two files: CPUFunctions.h and CPUFunctions_inl.h
22
+ // - CPUFunction.h is a dummy file that just includes the Tensor class and includes CPUFunctions_inl.,
23
+ // - CPUFunctions_inl.h includes everything else
24
+ // - (only in the static dispatch build) TensorBody.h makes sure to finish defining the Tensor class,
25
+ // and then it includes CPUFunctions_inl.h.
26
+ // - All other files that want the cpu fastpath functions can include CPUFunctions.h directly.
27
+ // - This also means that static dispatch build, CPUFunctions.h only needs to
28
+ // #include TensorBody.h, and it will automatically bring in CPUFunctions_inl.h.
29
+ #include <ATen/CompositeExplicitAutogradFunctions_inl.h>
venv/lib/python3.10/site-packages/torch/include/ATen/CompositeExplicitAutogradNonFunctionalFunctions.h ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #include <ATen/core/TensorBody.h>
2
+
3
+ // TODO Undo all logic introduced for Note [Avoiding Include Cycles In Static Dispatch]
4
+ // Code introduced to avoid cyclic dependency in static dispatch is no longer
5
+ // needed as static dispatch logic is moved from TensorBody.h, which caused cycles in the first place,
6
+ // to Operators.cpp for supporting multiple backends with multiple kernels.
7
+ //
8
+ // Note [Avoiding Include Cycles In Static Dispatch]
9
+ // In order to avoid #include cycles in the static dispatch build, we've carefully split out
10
+ // the static function definition files into {DispatchKey}Functions.h and {DispatchKey}Functions_inl.h.
11
+ //
12
+ // Without this split, the include cycle looks like TensorBody.h -> CPUFunctions.h -> TensorBody.h.
13
+ // - TensorBody.h #includes CPUFunctions.h in the static dispatch build, because the tensor methods
14
+ // all need to call into the fastpath C++ API defined in CPUFunctions.h. The methods are also all
15
+ // directly inlined into TensorBody.h.
16
+ // - CPUFunctions.h #includes TensorBody.h because it contains function declarations for the entire C++ API,
17
+ // which include functions that have defaultable optional<Tensor> arguments.
18
+ // That requires knowing the full Tensor class definition.
19
+ //
20
+ // We break the cycle by doing the following:
21
+ // - Split out CPUFunction.h into two files: CPUFunctions.h and CPUFunctions_inl.h
22
+ // - CPUFunction.h is a dummy file that just includes the Tensor class and includes CPUFunctions_inl.,
23
+ // - CPUFunctions_inl.h includes everything else
24
+ // - (only in the static dispatch build) TensorBody.h makes sure to finish defining the Tensor class,
25
+ // and then it includes CPUFunctions_inl.h.
26
+ // - All other files that want the cpu fastpath functions can include CPUFunctions.h directly.
27
+ // - This also means that static dispatch build, CPUFunctions.h only needs to
28
+ // #include TensorBody.h, and it will automatically bring in CPUFunctions_inl.h.
29
+ #include <ATen/CompositeExplicitAutogradNonFunctionalFunctions_inl.h>
venv/lib/python3.10/site-packages/torch/include/ATen/CompositeImplicitAutogradFunctions.h ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #include <ATen/core/TensorBody.h>
2
+
3
+ // TODO Undo all logic introduced for Note [Avoiding Include Cycles In Static Dispatch]
4
+ // Code introduced to avoid cyclic dependency in static dispatch is no longer
5
+ // needed as static dispatch logic is moved from TensorBody.h, which caused cycles in the first place,
6
+ // to Operators.cpp for supporting multiple backends with multiple kernels.
7
+ //
8
+ // Note [Avoiding Include Cycles In Static Dispatch]
9
+ // In order to avoid #include cycles in the static dispatch build, we've carefully split out
10
+ // the static function definition files into {DispatchKey}Functions.h and {DispatchKey}Functions_inl.h.
11
+ //
12
+ // Without this split, the include cycle looks like TensorBody.h -> CPUFunctions.h -> TensorBody.h.
13
+ // - TensorBody.h #includes CPUFunctions.h in the static dispatch build, because the tensor methods
14
+ // all need to call into the fastpath C++ API defined in CPUFunctions.h. The methods are also all
15
+ // directly inlined into TensorBody.h.
16
+ // - CPUFunctions.h #includes TensorBody.h because it contains function declarations for the entire C++ API,
17
+ // which include functions that have defaultable optional<Tensor> arguments.
18
+ // That requires knowing the full Tensor class definition.
19
+ //
20
+ // We break the cycle by doing the following:
21
+ // - Split out CPUFunction.h into two files: CPUFunctions.h and CPUFunctions_inl.h
22
+ // - CPUFunction.h is a dummy file that just includes the Tensor class and includes CPUFunctions_inl.,
23
+ // - CPUFunctions_inl.h includes everything else
24
+ // - (only in the static dispatch build) TensorBody.h makes sure to finish defining the Tensor class,
25
+ // and then it includes CPUFunctions_inl.h.
26
+ // - All other files that want the cpu fastpath functions can include CPUFunctions.h directly.
27
+ // - This also means that static dispatch build, CPUFunctions.h only needs to
28
+ // #include TensorBody.h, and it will automatically bring in CPUFunctions_inl.h.
29
+ #include <ATen/CompositeImplicitAutogradFunctions_inl.h>
venv/lib/python3.10/site-packages/torch/include/ATen/CompositeImplicitAutogradFunctions_inl.h ADDED
@@ -0,0 +1,500 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunctions_inl.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ #if defined(AT_PER_OPERATOR_HEADERS) && defined(TORCH_ASSERT_ONLY_METHOD_OPERATORS)
12
+ #error This change adds a dependency on all pytorch operators, meaning the \
13
+ file will need to be re-compiled every time an operator is changed or added. \
14
+ Consider including a specific operator from \
15
+ <ATen/ops/{my_operator}_compositeimplicitautograd_dispatch.h>. \
16
+ See NOTE [TORCH_ASSERT_ONLY_METHOD_OPERATORS].
17
+ #endif
18
+
19
+ #include <ATen/ops/_add_batch_dim_compositeimplicitautograd_dispatch.h>
20
+ #include <ATen/ops/_assert_tensor_metadata_compositeimplicitautograd_dispatch.h>
21
+ #include <ATen/ops/_autocast_to_full_precision_compositeimplicitautograd_dispatch.h>
22
+ #include <ATen/ops/_autocast_to_reduced_precision_compositeimplicitautograd_dispatch.h>
23
+ #include <ATen/ops/_backward_compositeimplicitautograd_dispatch.h>
24
+ #include <ATen/ops/_batch_norm_impl_index_compositeimplicitautograd_dispatch.h>
25
+ #include <ATen/ops/_batch_norm_impl_index_backward_compositeimplicitautograd_dispatch.h>
26
+ #include <ATen/ops/_cast_Byte_compositeimplicitautograd_dispatch.h>
27
+ #include <ATen/ops/_cast_Char_compositeimplicitautograd_dispatch.h>
28
+ #include <ATen/ops/_cast_Double_compositeimplicitautograd_dispatch.h>
29
+ #include <ATen/ops/_cast_Float_compositeimplicitautograd_dispatch.h>
30
+ #include <ATen/ops/_cast_Half_compositeimplicitautograd_dispatch.h>
31
+ #include <ATen/ops/_cast_Int_compositeimplicitautograd_dispatch.h>
32
+ #include <ATen/ops/_cast_Long_compositeimplicitautograd_dispatch.h>
33
+ #include <ATen/ops/_cast_Short_compositeimplicitautograd_dispatch.h>
34
+ #include <ATen/ops/_choose_qparams_per_tensor_compositeimplicitautograd_dispatch.h>
35
+ #include <ATen/ops/_convolution_compositeimplicitautograd_dispatch.h>
36
+ #include <ATen/ops/_convolution_double_backward_compositeimplicitautograd_dispatch.h>
37
+ #include <ATen/ops/_convolution_mode_compositeimplicitautograd_dispatch.h>
38
+ #include <ATen/ops/_cufft_clear_plan_cache_compositeimplicitautograd_dispatch.h>
39
+ #include <ATen/ops/_cufft_get_plan_cache_max_size_compositeimplicitautograd_dispatch.h>
40
+ #include <ATen/ops/_cufft_get_plan_cache_size_compositeimplicitautograd_dispatch.h>
41
+ #include <ATen/ops/_cufft_set_plan_cache_max_size_compositeimplicitautograd_dispatch.h>
42
+ #include <ATen/ops/_debug_has_internal_overlap_compositeimplicitautograd_dispatch.h>
43
+ #include <ATen/ops/_dim_arange_compositeimplicitautograd_dispatch.h>
44
+ #include <ATen/ops/_embedding_bag_backward_compositeimplicitautograd_dispatch.h>
45
+ #include <ATen/ops/_embedding_bag_sparse_backward_compositeimplicitautograd_dispatch.h>
46
+ #include <ATen/ops/_gather_sparse_backward_compositeimplicitautograd_dispatch.h>
47
+ #include <ATen/ops/_grid_sampler_2d_cpu_fallback_backward_compositeimplicitautograd_dispatch.h>
48
+ #include <ATen/ops/_has_compatible_shallow_copy_type_compositeimplicitautograd_dispatch.h>
49
+ #include <ATen/ops/_is_zerotensor_compositeimplicitautograd_dispatch.h>
50
+ #include <ATen/ops/_lu_with_info_compositeimplicitautograd_dispatch.h>
51
+ #include <ATen/ops/_nnpack_available_compositeimplicitautograd_dispatch.h>
52
+ #include <ATen/ops/_pack_padded_sequence_backward_compositeimplicitautograd_dispatch.h>
53
+ #include <ATen/ops/_pad_circular_compositeimplicitautograd_dispatch.h>
54
+ #include <ATen/ops/_pad_enum_compositeimplicitautograd_dispatch.h>
55
+ #include <ATen/ops/_pad_packed_sequence_compositeimplicitautograd_dispatch.h>
56
+ #include <ATen/ops/_propagate_xla_data_compositeimplicitautograd_dispatch.h>
57
+ #include <ATen/ops/_remove_batch_dim_compositeimplicitautograd_dispatch.h>
58
+ #include <ATen/ops/_reshape_from_tensor_compositeimplicitautograd_dispatch.h>
59
+ #include <ATen/ops/_rowwise_prune_compositeimplicitautograd_dispatch.h>
60
+ #include <ATen/ops/_saturate_weight_to_fp16_compositeimplicitautograd_dispatch.h>
61
+ #include <ATen/ops/_scaled_dot_product_attention_math_compositeimplicitautograd_dispatch.h>
62
+ #include <ATen/ops/_shape_as_tensor_compositeimplicitautograd_dispatch.h>
63
+ #include <ATen/ops/_sobol_engine_draw_compositeimplicitautograd_dispatch.h>
64
+ #include <ATen/ops/_sobol_engine_ff_compositeimplicitautograd_dispatch.h>
65
+ #include <ATen/ops/_sobol_engine_initialize_state_compositeimplicitautograd_dispatch.h>
66
+ #include <ATen/ops/_sobol_engine_scramble_compositeimplicitautograd_dispatch.h>
67
+ #include <ATen/ops/_sparse_bsc_tensor_unsafe_compositeimplicitautograd_dispatch.h>
68
+ #include <ATen/ops/_sparse_bsr_tensor_unsafe_compositeimplicitautograd_dispatch.h>
69
+ #include <ATen/ops/_sparse_compressed_tensor_unsafe_compositeimplicitautograd_dispatch.h>
70
+ #include <ATen/ops/_sparse_coo_tensor_unsafe_compositeimplicitautograd_dispatch.h>
71
+ #include <ATen/ops/_sparse_csc_tensor_unsafe_compositeimplicitautograd_dispatch.h>
72
+ #include <ATen/ops/_sparse_csr_tensor_unsafe_compositeimplicitautograd_dispatch.h>
73
+ #include <ATen/ops/_sparse_log_softmax_compositeimplicitautograd_dispatch.h>
74
+ #include <ATen/ops/_sparse_mm_compositeimplicitautograd_dispatch.h>
75
+ #include <ATen/ops/_sparse_softmax_compositeimplicitautograd_dispatch.h>
76
+ #include <ATen/ops/_sparse_sum_compositeimplicitautograd_dispatch.h>
77
+ #include <ATen/ops/_test_ambiguous_defaults_compositeimplicitautograd_dispatch.h>
78
+ #include <ATen/ops/_test_autograd_multiple_dispatch_compositeimplicitautograd_dispatch.h>
79
+ #include <ATen/ops/_test_check_tensor_compositeimplicitautograd_dispatch.h>
80
+ #include <ATen/ops/_test_serialization_subcmul_compositeimplicitautograd_dispatch.h>
81
+ #include <ATen/ops/_test_string_default_compositeimplicitautograd_dispatch.h>
82
+ #include <ATen/ops/_thnn_differentiable_gru_cell_backward_compositeimplicitautograd_dispatch.h>
83
+ #include <ATen/ops/_thnn_differentiable_lstm_cell_backward_compositeimplicitautograd_dispatch.h>
84
+ #include <ATen/ops/_thnn_fused_lstm_cell_backward_compositeimplicitautograd_dispatch.h>
85
+ #include <ATen/ops/_to_cpu_compositeimplicitautograd_dispatch.h>
86
+ #include <ATen/ops/_unpack_dual_compositeimplicitautograd_dispatch.h>
87
+ #include <ATen/ops/_upsample_bicubic2d_aa_compositeimplicitautograd_dispatch.h>
88
+ #include <ATen/ops/_upsample_bilinear2d_aa_compositeimplicitautograd_dispatch.h>
89
+ #include <ATen/ops/_upsample_nearest_exact1d_compositeimplicitautograd_dispatch.h>
90
+ #include <ATen/ops/_upsample_nearest_exact2d_compositeimplicitautograd_dispatch.h>
91
+ #include <ATen/ops/_upsample_nearest_exact3d_compositeimplicitautograd_dispatch.h>
92
+ #include <ATen/ops/_use_cudnn_rnn_flatten_weight_compositeimplicitautograd_dispatch.h>
93
+ #include <ATen/ops/_validate_sparse_bsc_tensor_args_compositeimplicitautograd_dispatch.h>
94
+ #include <ATen/ops/_validate_sparse_bsr_tensor_args_compositeimplicitautograd_dispatch.h>
95
+ #include <ATen/ops/_validate_sparse_compressed_tensor_args_compositeimplicitautograd_dispatch.h>
96
+ #include <ATen/ops/_validate_sparse_coo_tensor_args_compositeimplicitautograd_dispatch.h>
97
+ #include <ATen/ops/_validate_sparse_csc_tensor_args_compositeimplicitautograd_dispatch.h>
98
+ #include <ATen/ops/_validate_sparse_csr_tensor_args_compositeimplicitautograd_dispatch.h>
99
+ #include <ATen/ops/_version_compositeimplicitautograd_dispatch.h>
100
+ #include <ATen/ops/_weight_norm_compositeimplicitautograd_dispatch.h>
101
+ #include <ATen/ops/_weight_norm_differentiable_backward_compositeimplicitautograd_dispatch.h>
102
+ #include <ATen/ops/absolute_compositeimplicitautograd_dispatch.h>
103
+ #include <ATen/ops/adaptive_avg_pool1d_compositeimplicitautograd_dispatch.h>
104
+ #include <ATen/ops/adaptive_avg_pool2d_compositeimplicitautograd_dispatch.h>
105
+ #include <ATen/ops/adaptive_avg_pool3d_compositeimplicitautograd_dispatch.h>
106
+ #include <ATen/ops/adaptive_max_pool1d_compositeimplicitautograd_dispatch.h>
107
+ #include <ATen/ops/adjoint_compositeimplicitautograd_dispatch.h>
108
+ #include <ATen/ops/affine_grid_generator_backward_compositeimplicitautograd_dispatch.h>
109
+ #include <ATen/ops/align_as_compositeimplicitautograd_dispatch.h>
110
+ #include <ATen/ops/align_tensors_compositeimplicitautograd_dispatch.h>
111
+ #include <ATen/ops/align_to_compositeimplicitautograd_dispatch.h>
112
+ #include <ATen/ops/all_compositeimplicitautograd_dispatch.h>
113
+ #include <ATen/ops/alpha_dropout_compositeimplicitautograd_dispatch.h>
114
+ #include <ATen/ops/and_compositeimplicitautograd_dispatch.h>
115
+ #include <ATen/ops/any_compositeimplicitautograd_dispatch.h>
116
+ #include <ATen/ops/arccos_compositeimplicitautograd_dispatch.h>
117
+ #include <ATen/ops/arccosh_compositeimplicitautograd_dispatch.h>
118
+ #include <ATen/ops/arcsin_compositeimplicitautograd_dispatch.h>
119
+ #include <ATen/ops/arcsinh_compositeimplicitautograd_dispatch.h>
120
+ #include <ATen/ops/arctan_compositeimplicitautograd_dispatch.h>
121
+ #include <ATen/ops/arctan2_compositeimplicitautograd_dispatch.h>
122
+ #include <ATen/ops/arctanh_compositeimplicitautograd_dispatch.h>
123
+ #include <ATen/ops/argsort_compositeimplicitautograd_dispatch.h>
124
+ #include <ATen/ops/argwhere_compositeimplicitautograd_dispatch.h>
125
+ #include <ATen/ops/atleast_1d_compositeimplicitautograd_dispatch.h>
126
+ #include <ATen/ops/atleast_2d_compositeimplicitautograd_dispatch.h>
127
+ #include <ATen/ops/atleast_3d_compositeimplicitautograd_dispatch.h>
128
+ #include <ATen/ops/avg_pool1d_compositeimplicitautograd_dispatch.h>
129
+ #include <ATen/ops/batch_norm_compositeimplicitautograd_dispatch.h>
130
+ #include <ATen/ops/bilinear_compositeimplicitautograd_dispatch.h>
131
+ #include <ATen/ops/broadcast_tensors_compositeimplicitautograd_dispatch.h>
132
+ #include <ATen/ops/broadcast_to_compositeimplicitautograd_dispatch.h>
133
+ #include <ATen/ops/can_cast_compositeimplicitautograd_dispatch.h>
134
+ #include <ATen/ops/cartesian_prod_compositeimplicitautograd_dispatch.h>
135
+ #include <ATen/ops/cat_compositeimplicitautograd_dispatch.h>
136
+ #include <ATen/ops/cdist_compositeimplicitautograd_dispatch.h>
137
+ #include <ATen/ops/chain_matmul_compositeimplicitautograd_dispatch.h>
138
+ #include <ATen/ops/chalf_compositeimplicitautograd_dispatch.h>
139
+ #include <ATen/ops/choose_qparams_optimized_compositeimplicitautograd_dispatch.h>
140
+ #include <ATen/ops/chunk_compositeimplicitautograd_dispatch.h>
141
+ #include <ATen/ops/clip_compositeimplicitautograd_dispatch.h>
142
+ #include <ATen/ops/coalesce_compositeimplicitautograd_dispatch.h>
143
+ #include <ATen/ops/column_stack_compositeimplicitautograd_dispatch.h>
144
+ #include <ATen/ops/combinations_compositeimplicitautograd_dispatch.h>
145
+ #include <ATen/ops/concat_compositeimplicitautograd_dispatch.h>
146
+ #include <ATen/ops/concatenate_compositeimplicitautograd_dispatch.h>
147
+ #include <ATen/ops/conj_compositeimplicitautograd_dispatch.h>
148
+ #include <ATen/ops/conj_physical_compositeimplicitautograd_dispatch.h>
149
+ #include <ATen/ops/contiguous_compositeimplicitautograd_dispatch.h>
150
+ #include <ATen/ops/conv1d_compositeimplicitautograd_dispatch.h>
151
+ #include <ATen/ops/conv2d_compositeimplicitautograd_dispatch.h>
152
+ #include <ATen/ops/conv3d_compositeimplicitautograd_dispatch.h>
153
+ #include <ATen/ops/conv_tbc_backward_compositeimplicitautograd_dispatch.h>
154
+ #include <ATen/ops/conv_transpose1d_compositeimplicitautograd_dispatch.h>
155
+ #include <ATen/ops/conv_transpose2d_compositeimplicitautograd_dispatch.h>
156
+ #include <ATen/ops/conv_transpose3d_compositeimplicitautograd_dispatch.h>
157
+ #include <ATen/ops/corrcoef_compositeimplicitautograd_dispatch.h>
158
+ #include <ATen/ops/cosine_embedding_loss_compositeimplicitautograd_dispatch.h>
159
+ #include <ATen/ops/cosine_similarity_compositeimplicitautograd_dispatch.h>
160
+ #include <ATen/ops/cov_compositeimplicitautograd_dispatch.h>
161
+ #include <ATen/ops/cross_compositeimplicitautograd_dispatch.h>
162
+ #include <ATen/ops/cross_entropy_loss_compositeimplicitautograd_dispatch.h>
163
+ #include <ATen/ops/ctc_loss_compositeimplicitautograd_dispatch.h>
164
+ #include <ATen/ops/cudnn_is_acceptable_compositeimplicitautograd_dispatch.h>
165
+ #include <ATen/ops/cummax_compositeimplicitautograd_dispatch.h>
166
+ #include <ATen/ops/cummaxmin_backward_compositeimplicitautograd_dispatch.h>
167
+ #include <ATen/ops/cummin_compositeimplicitautograd_dispatch.h>
168
+ #include <ATen/ops/cumprod_compositeimplicitautograd_dispatch.h>
169
+ #include <ATen/ops/cumprod_backward_compositeimplicitautograd_dispatch.h>
170
+ #include <ATen/ops/cumsum_compositeimplicitautograd_dispatch.h>
171
+ #include <ATen/ops/cumulative_trapezoid_compositeimplicitautograd_dispatch.h>
172
+ #include <ATen/ops/data_compositeimplicitautograd_dispatch.h>
173
+ #include <ATen/ops/det_compositeimplicitautograd_dispatch.h>
174
+ #include <ATen/ops/diag_compositeimplicitautograd_dispatch.h>
175
+ #include <ATen/ops/diagflat_compositeimplicitautograd_dispatch.h>
176
+ #include <ATen/ops/diagonal_compositeimplicitautograd_dispatch.h>
177
+ #include <ATen/ops/diff_compositeimplicitautograd_dispatch.h>
178
+ #include <ATen/ops/divide_compositeimplicitautograd_dispatch.h>
179
+ #include <ATen/ops/dropout_compositeimplicitautograd_dispatch.h>
180
+ #include <ATen/ops/dsplit_compositeimplicitautograd_dispatch.h>
181
+ #include <ATen/ops/dstack_compositeimplicitautograd_dispatch.h>
182
+ #include <ATen/ops/einsum_compositeimplicitautograd_dispatch.h>
183
+ #include <ATen/ops/embedding_backward_compositeimplicitautograd_dispatch.h>
184
+ #include <ATen/ops/embedding_bag_compositeimplicitautograd_dispatch.h>
185
+ #include <ATen/ops/embedding_sparse_backward_compositeimplicitautograd_dispatch.h>
186
+ #include <ATen/ops/empty_compositeimplicitautograd_dispatch.h>
187
+ #include <ATen/ops/expand_as_compositeimplicitautograd_dispatch.h>
188
+ #include <ATen/ops/fake_quantize_per_channel_affine_compositeimplicitautograd_dispatch.h>
189
+ #include <ATen/ops/fake_quantize_per_channel_affine_cachemask_backward_compositeimplicitautograd_dispatch.h>
190
+ #include <ATen/ops/fake_quantize_per_tensor_affine_compositeimplicitautograd_dispatch.h>
191
+ #include <ATen/ops/fake_quantize_per_tensor_affine_cachemask_backward_compositeimplicitautograd_dispatch.h>
192
+ #include <ATen/ops/fbgemm_linear_fp16_weight_compositeimplicitautograd_dispatch.h>
193
+ #include <ATen/ops/fbgemm_linear_fp16_weight_fp32_activation_compositeimplicitautograd_dispatch.h>
194
+ #include <ATen/ops/fbgemm_linear_int8_weight_compositeimplicitautograd_dispatch.h>
195
+ #include <ATen/ops/fbgemm_linear_int8_weight_fp32_activation_compositeimplicitautograd_dispatch.h>
196
+ #include <ATen/ops/fbgemm_linear_quantize_weight_compositeimplicitautograd_dispatch.h>
197
+ #include <ATen/ops/fbgemm_pack_gemm_matrix_fp16_compositeimplicitautograd_dispatch.h>
198
+ #include <ATen/ops/fbgemm_pack_quantized_matrix_compositeimplicitautograd_dispatch.h>
199
+ #include <ATen/ops/feature_alpha_dropout_compositeimplicitautograd_dispatch.h>
200
+ #include <ATen/ops/feature_dropout_compositeimplicitautograd_dispatch.h>
201
+ #include <ATen/ops/fft_fft_compositeimplicitautograd_dispatch.h>
202
+ #include <ATen/ops/fft_fft2_compositeimplicitautograd_dispatch.h>
203
+ #include <ATen/ops/fft_fftn_compositeimplicitautograd_dispatch.h>
204
+ #include <ATen/ops/fft_fftshift_compositeimplicitautograd_dispatch.h>
205
+ #include <ATen/ops/fft_hfft_compositeimplicitautograd_dispatch.h>
206
+ #include <ATen/ops/fft_hfft2_compositeimplicitautograd_dispatch.h>
207
+ #include <ATen/ops/fft_hfftn_compositeimplicitautograd_dispatch.h>
208
+ #include <ATen/ops/fft_ifft_compositeimplicitautograd_dispatch.h>
209
+ #include <ATen/ops/fft_ifft2_compositeimplicitautograd_dispatch.h>
210
+ #include <ATen/ops/fft_ifftn_compositeimplicitautograd_dispatch.h>
211
+ #include <ATen/ops/fft_ifftshift_compositeimplicitautograd_dispatch.h>
212
+ #include <ATen/ops/fft_ihfft_compositeimplicitautograd_dispatch.h>
213
+ #include <ATen/ops/fft_ihfft2_compositeimplicitautograd_dispatch.h>
214
+ #include <ATen/ops/fft_ihfftn_compositeimplicitautograd_dispatch.h>
215
+ #include <ATen/ops/fft_irfft_compositeimplicitautograd_dispatch.h>
216
+ #include <ATen/ops/fft_irfft2_compositeimplicitautograd_dispatch.h>
217
+ #include <ATen/ops/fft_irfftn_compositeimplicitautograd_dispatch.h>
218
+ #include <ATen/ops/fft_rfft_compositeimplicitautograd_dispatch.h>
219
+ #include <ATen/ops/fft_rfft2_compositeimplicitautograd_dispatch.h>
220
+ #include <ATen/ops/fft_rfftn_compositeimplicitautograd_dispatch.h>
221
+ #include <ATen/ops/fill_diagonal_compositeimplicitautograd_dispatch.h>
222
+ #include <ATen/ops/fix_compositeimplicitautograd_dispatch.h>
223
+ #include <ATen/ops/flatten_compositeimplicitautograd_dispatch.h>
224
+ #include <ATen/ops/flatten_dense_tensors_compositeimplicitautograd_dispatch.h>
225
+ #include <ATen/ops/fliplr_compositeimplicitautograd_dispatch.h>
226
+ #include <ATen/ops/flipud_compositeimplicitautograd_dispatch.h>
227
+ #include <ATen/ops/float_power_compositeimplicitautograd_dispatch.h>
228
+ #include <ATen/ops/frobenius_norm_compositeimplicitautograd_dispatch.h>
229
+ #include <ATen/ops/fused_moving_avg_obs_fake_quant_compositeimplicitautograd_dispatch.h>
230
+ #include <ATen/ops/gather_compositeimplicitautograd_dispatch.h>
231
+ #include <ATen/ops/gather_backward_compositeimplicitautograd_dispatch.h>
232
+ #include <ATen/ops/ger_compositeimplicitautograd_dispatch.h>
233
+ #include <ATen/ops/gradient_compositeimplicitautograd_dispatch.h>
234
+ #include <ATen/ops/greater_compositeimplicitautograd_dispatch.h>
235
+ #include <ATen/ops/greater_equal_compositeimplicitautograd_dispatch.h>
236
+ #include <ATen/ops/grid_sampler_compositeimplicitautograd_dispatch.h>
237
+ #include <ATen/ops/group_norm_compositeimplicitautograd_dispatch.h>
238
+ #include <ATen/ops/gru_compositeimplicitautograd_dispatch.h>
239
+ #include <ATen/ops/gru_cell_compositeimplicitautograd_dispatch.h>
240
+ #include <ATen/ops/hinge_embedding_loss_compositeimplicitautograd_dispatch.h>
241
+ #include <ATen/ops/histogramdd_compositeimplicitautograd_dispatch.h>
242
+ #include <ATen/ops/hsplit_compositeimplicitautograd_dispatch.h>
243
+ #include <ATen/ops/hstack_compositeimplicitautograd_dispatch.h>
244
+ #include <ATen/ops/imag_compositeimplicitautograd_dispatch.h>
245
+ #include <ATen/ops/index_add_compositeimplicitautograd_dispatch.h>
246
+ #include <ATen/ops/index_copy_compositeimplicitautograd_dispatch.h>
247
+ #include <ATen/ops/index_fill_compositeimplicitautograd_dispatch.h>
248
+ #include <ATen/ops/index_select_compositeimplicitautograd_dispatch.h>
249
+ #include <ATen/ops/index_select_backward_compositeimplicitautograd_dispatch.h>
250
+ #include <ATen/ops/infinitely_differentiable_gelu_backward_compositeimplicitautograd_dispatch.h>
251
+ #include <ATen/ops/inner_compositeimplicitautograd_dispatch.h>
252
+ #include <ATen/ops/instance_norm_compositeimplicitautograd_dispatch.h>
253
+ #include <ATen/ops/inverse_compositeimplicitautograd_dispatch.h>
254
+ #include <ATen/ops/is_complex_compositeimplicitautograd_dispatch.h>
255
+ #include <ATen/ops/is_conj_compositeimplicitautograd_dispatch.h>
256
+ #include <ATen/ops/is_distributed_compositeimplicitautograd_dispatch.h>
257
+ #include <ATen/ops/is_floating_point_compositeimplicitautograd_dispatch.h>
258
+ #include <ATen/ops/is_inference_compositeimplicitautograd_dispatch.h>
259
+ #include <ATen/ops/is_leaf_compositeimplicitautograd_dispatch.h>
260
+ #include <ATen/ops/is_neg_compositeimplicitautograd_dispatch.h>
261
+ #include <ATen/ops/is_nonzero_compositeimplicitautograd_dispatch.h>
262
+ #include <ATen/ops/is_signed_compositeimplicitautograd_dispatch.h>
263
+ #include <ATen/ops/is_vulkan_available_compositeimplicitautograd_dispatch.h>
264
+ #include <ATen/ops/isclose_compositeimplicitautograd_dispatch.h>
265
+ #include <ATen/ops/isfinite_compositeimplicitautograd_dispatch.h>
266
+ #include <ATen/ops/isreal_compositeimplicitautograd_dispatch.h>
267
+ #include <ATen/ops/istft_compositeimplicitautograd_dispatch.h>
268
+ #include <ATen/ops/item_compositeimplicitautograd_dispatch.h>
269
+ #include <ATen/ops/kl_div_compositeimplicitautograd_dispatch.h>
270
+ #include <ATen/ops/kron_compositeimplicitautograd_dispatch.h>
271
+ #include <ATen/ops/kthvalue_compositeimplicitautograd_dispatch.h>
272
+ #include <ATen/ops/l1_loss_compositeimplicitautograd_dispatch.h>
273
+ #include <ATen/ops/layer_norm_compositeimplicitautograd_dispatch.h>
274
+ #include <ATen/ops/ldexp_compositeimplicitautograd_dispatch.h>
275
+ #include <ATen/ops/less_compositeimplicitautograd_dispatch.h>
276
+ #include <ATen/ops/less_equal_compositeimplicitautograd_dispatch.h>
277
+ #include <ATen/ops/linalg_cholesky_compositeimplicitautograd_dispatch.h>
278
+ #include <ATen/ops/linalg_cond_compositeimplicitautograd_dispatch.h>
279
+ #include <ATen/ops/linalg_det_compositeimplicitautograd_dispatch.h>
280
+ #include <ATen/ops/linalg_diagonal_compositeimplicitautograd_dispatch.h>
281
+ #include <ATen/ops/linalg_eigh_compositeimplicitautograd_dispatch.h>
282
+ #include <ATen/ops/linalg_eigvals_compositeimplicitautograd_dispatch.h>
283
+ #include <ATen/ops/linalg_eigvalsh_compositeimplicitautograd_dispatch.h>
284
+ #include <ATen/ops/linalg_inv_compositeimplicitautograd_dispatch.h>
285
+ #include <ATen/ops/linalg_ldl_factor_compositeimplicitautograd_dispatch.h>
286
+ #include <ATen/ops/linalg_lu_factor_compositeimplicitautograd_dispatch.h>
287
+ #include <ATen/ops/linalg_matmul_compositeimplicitautograd_dispatch.h>
288
+ #include <ATen/ops/linalg_matrix_norm_compositeimplicitautograd_dispatch.h>
289
+ #include <ATen/ops/linalg_matrix_power_compositeimplicitautograd_dispatch.h>
290
+ #include <ATen/ops/linalg_matrix_rank_compositeimplicitautograd_dispatch.h>
291
+ #include <ATen/ops/linalg_multi_dot_compositeimplicitautograd_dispatch.h>
292
+ #include <ATen/ops/linalg_norm_compositeimplicitautograd_dispatch.h>
293
+ #include <ATen/ops/linalg_pinv_compositeimplicitautograd_dispatch.h>
294
+ #include <ATen/ops/linalg_slogdet_compositeimplicitautograd_dispatch.h>
295
+ #include <ATen/ops/linalg_solve_compositeimplicitautograd_dispatch.h>
296
+ #include <ATen/ops/linalg_solve_ex_compositeimplicitautograd_dispatch.h>
297
+ #include <ATen/ops/linalg_svd_compositeimplicitautograd_dispatch.h>
298
+ #include <ATen/ops/linalg_svdvals_compositeimplicitautograd_dispatch.h>
299
+ #include <ATen/ops/linalg_tensorinv_compositeimplicitautograd_dispatch.h>
300
+ #include <ATen/ops/linalg_tensorsolve_compositeimplicitautograd_dispatch.h>
301
+ #include <ATen/ops/linalg_vander_compositeimplicitautograd_dispatch.h>
302
+ #include <ATen/ops/linalg_vecdot_compositeimplicitautograd_dispatch.h>
303
+ #include <ATen/ops/linear_compositeimplicitautograd_dispatch.h>
304
+ #include <ATen/ops/log_sigmoid_compositeimplicitautograd_dispatch.h>
305
+ #include <ATen/ops/log_softmax_compositeimplicitautograd_dispatch.h>
306
+ #include <ATen/ops/logcumsumexp_compositeimplicitautograd_dispatch.h>
307
+ #include <ATen/ops/logdet_compositeimplicitautograd_dispatch.h>
308
+ #include <ATen/ops/logsumexp_compositeimplicitautograd_dispatch.h>
309
+ #include <ATen/ops/lstm_compositeimplicitautograd_dispatch.h>
310
+ #include <ATen/ops/lstm_cell_compositeimplicitautograd_dispatch.h>
311
+ #include <ATen/ops/lu_solve_compositeimplicitautograd_dispatch.h>
312
+ #include <ATen/ops/mH_compositeimplicitautograd_dispatch.h>
313
+ #include <ATen/ops/mT_compositeimplicitautograd_dispatch.h>
314
+ #include <ATen/ops/margin_ranking_loss_compositeimplicitautograd_dispatch.h>
315
+ #include <ATen/ops/masked_select_backward_compositeimplicitautograd_dispatch.h>
316
+ #include <ATen/ops/matmul_compositeimplicitautograd_dispatch.h>
317
+ #include <ATen/ops/matrix_H_compositeimplicitautograd_dispatch.h>
318
+ #include <ATen/ops/matrix_exp_compositeimplicitautograd_dispatch.h>
319
+ #include <ATen/ops/matrix_exp_backward_compositeimplicitautograd_dispatch.h>
320
+ #include <ATen/ops/matrix_power_compositeimplicitautograd_dispatch.h>
321
+ #include <ATen/ops/max_compositeimplicitautograd_dispatch.h>
322
+ #include <ATen/ops/max_pool1d_compositeimplicitautograd_dispatch.h>
323
+ #include <ATen/ops/max_pool1d_with_indices_compositeimplicitautograd_dispatch.h>
324
+ #include <ATen/ops/max_pool2d_compositeimplicitautograd_dispatch.h>
325
+ #include <ATen/ops/max_pool3d_compositeimplicitautograd_dispatch.h>
326
+ #include <ATen/ops/mean_compositeimplicitautograd_dispatch.h>
327
+ #include <ATen/ops/median_compositeimplicitautograd_dispatch.h>
328
+ #include <ATen/ops/meshgrid_compositeimplicitautograd_dispatch.h>
329
+ #include <ATen/ops/min_compositeimplicitautograd_dispatch.h>
330
+ #include <ATen/ops/mish_backward_compositeimplicitautograd_dispatch.h>
331
+ #include <ATen/ops/mode_compositeimplicitautograd_dispatch.h>
332
+ #include <ATen/ops/moveaxis_compositeimplicitautograd_dispatch.h>
333
+ #include <ATen/ops/movedim_compositeimplicitautograd_dispatch.h>
334
+ #include <ATen/ops/msort_compositeimplicitautograd_dispatch.h>
335
+ #include <ATen/ops/multilabel_margin_loss_compositeimplicitautograd_dispatch.h>
336
+ #include <ATen/ops/multiply_compositeimplicitautograd_dispatch.h>
337
+ #include <ATen/ops/nanmean_compositeimplicitautograd_dispatch.h>
338
+ #include <ATen/ops/nanmedian_compositeimplicitautograd_dispatch.h>
339
+ #include <ATen/ops/nanquantile_compositeimplicitautograd_dispatch.h>
340
+ #include <ATen/ops/narrow_compositeimplicitautograd_dispatch.h>
341
+ #include <ATen/ops/native_channel_shuffle_compositeimplicitautograd_dispatch.h>
342
+ #include <ATen/ops/negative_compositeimplicitautograd_dispatch.h>
343
+ #include <ATen/ops/nested_to_padded_tensor_compositeimplicitautograd_dispatch.h>
344
+ #include <ATen/ops/nll_loss_compositeimplicitautograd_dispatch.h>
345
+ #include <ATen/ops/nll_loss2d_compositeimplicitautograd_dispatch.h>
346
+ #include <ATen/ops/nll_loss_nd_compositeimplicitautograd_dispatch.h>
347
+ #include <ATen/ops/nonzero_numpy_compositeimplicitautograd_dispatch.h>
348
+ #include <ATen/ops/norm_compositeimplicitautograd_dispatch.h>
349
+ #include <ATen/ops/norm_except_dim_compositeimplicitautograd_dispatch.h>
350
+ #include <ATen/ops/not_equal_compositeimplicitautograd_dispatch.h>
351
+ #include <ATen/ops/nuclear_norm_compositeimplicitautograd_dispatch.h>
352
+ #include <ATen/ops/numpy_T_compositeimplicitautograd_dispatch.h>
353
+ #include <ATen/ops/one_hot_compositeimplicitautograd_dispatch.h>
354
+ #include <ATen/ops/or_compositeimplicitautograd_dispatch.h>
355
+ #include <ATen/ops/orgqr_compositeimplicitautograd_dispatch.h>
356
+ #include <ATen/ops/outer_compositeimplicitautograd_dispatch.h>
357
+ #include <ATen/ops/output_nr_compositeimplicitautograd_dispatch.h>
358
+ #include <ATen/ops/pad_compositeimplicitautograd_dispatch.h>
359
+ #include <ATen/ops/pad_sequence_compositeimplicitautograd_dispatch.h>
360
+ #include <ATen/ops/pairwise_distance_compositeimplicitautograd_dispatch.h>
361
+ #include <ATen/ops/pdist_compositeimplicitautograd_dispatch.h>
362
+ #include <ATen/ops/pin_memory_compositeimplicitautograd_dispatch.h>
363
+ #include <ATen/ops/pinverse_compositeimplicitautograd_dispatch.h>
364
+ #include <ATen/ops/poisson_nll_loss_compositeimplicitautograd_dispatch.h>
365
+ #include <ATen/ops/positive_compositeimplicitautograd_dispatch.h>
366
+ #include <ATen/ops/prelu_compositeimplicitautograd_dispatch.h>
367
+ #include <ATen/ops/prod_compositeimplicitautograd_dispatch.h>
368
+ #include <ATen/ops/promote_types_compositeimplicitautograd_dispatch.h>
369
+ #include <ATen/ops/qr_compositeimplicitautograd_dispatch.h>
370
+ #include <ATen/ops/quantile_compositeimplicitautograd_dispatch.h>
371
+ #include <ATen/ops/quantized_gru_cell_compositeimplicitautograd_dispatch.h>
372
+ #include <ATen/ops/quantized_lstm_cell_compositeimplicitautograd_dispatch.h>
373
+ #include <ATen/ops/quantized_rnn_relu_cell_compositeimplicitautograd_dispatch.h>
374
+ #include <ATen/ops/quantized_rnn_tanh_cell_compositeimplicitautograd_dispatch.h>
375
+ #include <ATen/ops/rand_compositeimplicitautograd_dispatch.h>
376
+ #include <ATen/ops/randn_compositeimplicitautograd_dispatch.h>
377
+ #include <ATen/ops/ravel_compositeimplicitautograd_dispatch.h>
378
+ #include <ATen/ops/real_compositeimplicitautograd_dispatch.h>
379
+ #include <ATen/ops/refine_names_compositeimplicitautograd_dispatch.h>
380
+ #include <ATen/ops/relu6_compositeimplicitautograd_dispatch.h>
381
+ #include <ATen/ops/rename_compositeimplicitautograd_dispatch.h>
382
+ #include <ATen/ops/repeat_interleave_compositeimplicitautograd_dispatch.h>
383
+ #include <ATen/ops/requires_grad_compositeimplicitautograd_dispatch.h>
384
+ #include <ATen/ops/reshape_compositeimplicitautograd_dispatch.h>
385
+ #include <ATen/ops/reshape_as_compositeimplicitautograd_dispatch.h>
386
+ #include <ATen/ops/resolve_conj_compositeimplicitautograd_dispatch.h>
387
+ #include <ATen/ops/resolve_neg_compositeimplicitautograd_dispatch.h>
388
+ #include <ATen/ops/result_type_compositeimplicitautograd_dispatch.h>
389
+ #include <ATen/ops/retain_grad_compositeimplicitautograd_dispatch.h>
390
+ #include <ATen/ops/retains_grad_compositeimplicitautograd_dispatch.h>
391
+ #include <ATen/ops/rnn_relu_compositeimplicitautograd_dispatch.h>
392
+ #include <ATen/ops/rnn_relu_cell_compositeimplicitautograd_dispatch.h>
393
+ #include <ATen/ops/rnn_tanh_compositeimplicitautograd_dispatch.h>
394
+ #include <ATen/ops/rnn_tanh_cell_compositeimplicitautograd_dispatch.h>
395
+ #include <ATen/ops/row_stack_compositeimplicitautograd_dispatch.h>
396
+ #include <ATen/ops/rrelu_compositeimplicitautograd_dispatch.h>
397
+ #include <ATen/ops/scaled_dot_product_attention_compositeimplicitautograd_dispatch.h>
398
+ #include <ATen/ops/scatter_compositeimplicitautograd_dispatch.h>
399
+ #include <ATen/ops/scatter_add_compositeimplicitautograd_dispatch.h>
400
+ #include <ATen/ops/select_compositeimplicitautograd_dispatch.h>
401
+ #include <ATen/ops/selu_compositeimplicitautograd_dispatch.h>
402
+ #include <ATen/ops/set_compositeimplicitautograd_dispatch.h>
403
+ #include <ATen/ops/set_data_compositeimplicitautograd_dispatch.h>
404
+ #include <ATen/ops/silu_backward_compositeimplicitautograd_dispatch.h>
405
+ #include <ATen/ops/size_compositeimplicitautograd_dispatch.h>
406
+ #include <ATen/ops/slogdet_compositeimplicitautograd_dispatch.h>
407
+ #include <ATen/ops/slow_conv3d_compositeimplicitautograd_dispatch.h>
408
+ #include <ATen/ops/smm_compositeimplicitautograd_dispatch.h>
409
+ #include <ATen/ops/softmax_compositeimplicitautograd_dispatch.h>
410
+ #include <ATen/ops/sort_compositeimplicitautograd_dispatch.h>
411
+ #include <ATen/ops/sparse_bsc_tensor_compositeimplicitautograd_dispatch.h>
412
+ #include <ATen/ops/sparse_bsr_tensor_compositeimplicitautograd_dispatch.h>
413
+ #include <ATen/ops/sparse_coo_tensor_compositeimplicitautograd_dispatch.h>
414
+ #include <ATen/ops/sparse_csc_tensor_compositeimplicitautograd_dispatch.h>
415
+ #include <ATen/ops/sparse_csr_tensor_compositeimplicitautograd_dispatch.h>
416
+ #include <ATen/ops/special_digamma_compositeimplicitautograd_dispatch.h>
417
+ #include <ATen/ops/special_erf_compositeimplicitautograd_dispatch.h>
418
+ #include <ATen/ops/special_erfc_compositeimplicitautograd_dispatch.h>
419
+ #include <ATen/ops/special_erfinv_compositeimplicitautograd_dispatch.h>
420
+ #include <ATen/ops/special_exp2_compositeimplicitautograd_dispatch.h>
421
+ #include <ATen/ops/special_expit_compositeimplicitautograd_dispatch.h>
422
+ #include <ATen/ops/special_expm1_compositeimplicitautograd_dispatch.h>
423
+ #include <ATen/ops/special_gammainc_compositeimplicitautograd_dispatch.h>
424
+ #include <ATen/ops/special_gammaincc_compositeimplicitautograd_dispatch.h>
425
+ #include <ATen/ops/special_gammaln_compositeimplicitautograd_dispatch.h>
426
+ #include <ATen/ops/special_i0_compositeimplicitautograd_dispatch.h>
427
+ #include <ATen/ops/special_log1p_compositeimplicitautograd_dispatch.h>
428
+ #include <ATen/ops/special_log_softmax_compositeimplicitautograd_dispatch.h>
429
+ #include <ATen/ops/special_logit_compositeimplicitautograd_dispatch.h>
430
+ #include <ATen/ops/special_logsumexp_compositeimplicitautograd_dispatch.h>
431
+ #include <ATen/ops/special_multigammaln_compositeimplicitautograd_dispatch.h>
432
+ #include <ATen/ops/special_ndtr_compositeimplicitautograd_dispatch.h>
433
+ #include <ATen/ops/special_polygamma_compositeimplicitautograd_dispatch.h>
434
+ #include <ATen/ops/special_psi_compositeimplicitautograd_dispatch.h>
435
+ #include <ATen/ops/special_round_compositeimplicitautograd_dispatch.h>
436
+ #include <ATen/ops/special_sinc_compositeimplicitautograd_dispatch.h>
437
+ #include <ATen/ops/special_softmax_compositeimplicitautograd_dispatch.h>
438
+ #include <ATen/ops/special_xlogy_compositeimplicitautograd_dispatch.h>
439
+ #include <ATen/ops/split_compositeimplicitautograd_dispatch.h>
440
+ #include <ATen/ops/square_compositeimplicitautograd_dispatch.h>
441
+ #include <ATen/ops/squeeze_compositeimplicitautograd_dispatch.h>
442
+ #include <ATen/ops/sspaddmm_compositeimplicitautograd_dispatch.h>
443
+ #include <ATen/ops/std_compositeimplicitautograd_dispatch.h>
444
+ #include <ATen/ops/std_mean_compositeimplicitautograd_dispatch.h>
445
+ #include <ATen/ops/stft_compositeimplicitautograd_dispatch.h>
446
+ #include <ATen/ops/stride_compositeimplicitautograd_dispatch.h>
447
+ #include <ATen/ops/subtract_compositeimplicitautograd_dispatch.h>
448
+ #include <ATen/ops/sum_compositeimplicitautograd_dispatch.h>
449
+ #include <ATen/ops/sum_to_size_compositeimplicitautograd_dispatch.h>
450
+ #include <ATen/ops/svd_compositeimplicitautograd_dispatch.h>
451
+ #include <ATen/ops/swapaxes_compositeimplicitautograd_dispatch.h>
452
+ #include <ATen/ops/swapdims_compositeimplicitautograd_dispatch.h>
453
+ #include <ATen/ops/sym_numel_compositeimplicitautograd_dispatch.h>
454
+ #include <ATen/ops/sym_size_compositeimplicitautograd_dispatch.h>
455
+ #include <ATen/ops/sym_storage_offset_compositeimplicitautograd_dispatch.h>
456
+ #include <ATen/ops/sym_stride_compositeimplicitautograd_dispatch.h>
457
+ #include <ATen/ops/take_along_dim_compositeimplicitautograd_dispatch.h>
458
+ #include <ATen/ops/tensor_split_compositeimplicitautograd_dispatch.h>
459
+ #include <ATen/ops/tensordot_compositeimplicitautograd_dispatch.h>
460
+ #include <ATen/ops/thnn_conv2d_compositeimplicitautograd_dispatch.h>
461
+ #include <ATen/ops/tile_compositeimplicitautograd_dispatch.h>
462
+ #include <ATen/ops/to_compositeimplicitautograd_dispatch.h>
463
+ #include <ATen/ops/to_dense_compositeimplicitautograd_dispatch.h>
464
+ #include <ATen/ops/to_dense_backward_compositeimplicitautograd_dispatch.h>
465
+ #include <ATen/ops/to_mkldnn_backward_compositeimplicitautograd_dispatch.h>
466
+ #include <ATen/ops/to_sparse_compositeimplicitautograd_dispatch.h>
467
+ #include <ATen/ops/to_sparse_bsc_compositeimplicitautograd_dispatch.h>
468
+ #include <ATen/ops/to_sparse_bsr_compositeimplicitautograd_dispatch.h>
469
+ #include <ATen/ops/to_sparse_csc_compositeimplicitautograd_dispatch.h>
470
+ #include <ATen/ops/to_sparse_csr_compositeimplicitautograd_dispatch.h>
471
+ #include <ATen/ops/trace_backward_compositeimplicitautograd_dispatch.h>
472
+ #include <ATen/ops/transpose_compositeimplicitautograd_dispatch.h>
473
+ #include <ATen/ops/trapezoid_compositeimplicitautograd_dispatch.h>
474
+ #include <ATen/ops/trapz_compositeimplicitautograd_dispatch.h>
475
+ #include <ATen/ops/triplet_margin_loss_compositeimplicitautograd_dispatch.h>
476
+ #include <ATen/ops/true_divide_compositeimplicitautograd_dispatch.h>
477
+ #include <ATen/ops/type_as_compositeimplicitautograd_dispatch.h>
478
+ #include <ATen/ops/unbind_compositeimplicitautograd_dispatch.h>
479
+ #include <ATen/ops/unflatten_compositeimplicitautograd_dispatch.h>
480
+ #include <ATen/ops/unflatten_dense_tensors_compositeimplicitautograd_dispatch.h>
481
+ #include <ATen/ops/unsafe_chunk_compositeimplicitautograd_dispatch.h>
482
+ #include <ATen/ops/upsample_bicubic2d_compositeimplicitautograd_dispatch.h>
483
+ #include <ATen/ops/upsample_bilinear2d_compositeimplicitautograd_dispatch.h>
484
+ #include <ATen/ops/upsample_linear1d_compositeimplicitautograd_dispatch.h>
485
+ #include <ATen/ops/upsample_nearest1d_compositeimplicitautograd_dispatch.h>
486
+ #include <ATen/ops/upsample_nearest2d_compositeimplicitautograd_dispatch.h>
487
+ #include <ATen/ops/upsample_nearest3d_compositeimplicitautograd_dispatch.h>
488
+ #include <ATen/ops/upsample_trilinear3d_compositeimplicitautograd_dispatch.h>
489
+ #include <ATen/ops/value_selecting_reduction_backward_compositeimplicitautograd_dispatch.h>
490
+ #include <ATen/ops/vander_compositeimplicitautograd_dispatch.h>
491
+ #include <ATen/ops/var_compositeimplicitautograd_dispatch.h>
492
+ #include <ATen/ops/var_mean_compositeimplicitautograd_dispatch.h>
493
+ #include <ATen/ops/view_as_compositeimplicitautograd_dispatch.h>
494
+ #include <ATen/ops/vsplit_compositeimplicitautograd_dispatch.h>
495
+ #include <ATen/ops/vstack_compositeimplicitautograd_dispatch.h>
496
+ #include <ATen/ops/where_compositeimplicitautograd_dispatch.h>
497
+ #include <ATen/ops/xor_compositeimplicitautograd_dispatch.h>
498
+
499
+
500
+
venv/lib/python3.10/site-packages/torch/include/ATen/CompositeImplicitAutogradNestedTensorFunctions.h ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #include <ATen/core/TensorBody.h>
2
+
3
+ // TODO Undo all logic introduced for Note [Avoiding Include Cycles In Static Dispatch]
4
+ // Code introduced to avoid cyclic dependency in static dispatch is no longer
5
+ // needed as static dispatch logic is moved from TensorBody.h, which caused cycles in the first place,
6
+ // to Operators.cpp for supporting multiple backends with multiple kernels.
7
+ //
8
+ // Note [Avoiding Include Cycles In Static Dispatch]
9
+ // In order to avoid #include cycles in the static dispatch build, we've carefully split out
10
+ // the static function definition files into {DispatchKey}Functions.h and {DispatchKey}Functions_inl.h.
11
+ //
12
+ // Without this split, the include cycle looks like TensorBody.h -> CPUFunctions.h -> TensorBody.h.
13
+ // - TensorBody.h #includes CPUFunctions.h in the static dispatch build, because the tensor methods
14
+ // all need to call into the fastpath C++ API defined in CPUFunctions.h. The methods are also all
15
+ // directly inlined into TensorBody.h.
16
+ // - CPUFunctions.h #includes TensorBody.h because it contains function declarations for the entire C++ API,
17
+ // which include functions that have defaultable optional<Tensor> arguments.
18
+ // That requires knowing the full Tensor class definition.
19
+ //
20
+ // We break the cycle by doing the following:
21
+ // - Split out CPUFunction.h into two files: CPUFunctions.h and CPUFunctions_inl.h
22
+ // - CPUFunction.h is a dummy file that just includes the Tensor class and includes CPUFunctions_inl.,
23
+ // - CPUFunctions_inl.h includes everything else
24
+ // - (only in the static dispatch build) TensorBody.h makes sure to finish defining the Tensor class,
25
+ // and then it includes CPUFunctions_inl.h.
26
+ // - All other files that want the cpu fastpath functions can include CPUFunctions.h directly.
27
+ // - This also means that static dispatch build, CPUFunctions.h only needs to
28
+ // #include TensorBody.h, and it will automatically bring in CPUFunctions_inl.h.
29
+ #include <ATen/CompositeImplicitAutogradNestedTensorFunctions_inl.h>
venv/lib/python3.10/site-packages/torch/include/ATen/CompositeImplicitAutogradNestedTensorFunctions_inl.h ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunctions_inl.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ #if defined(AT_PER_OPERATOR_HEADERS) && defined(TORCH_ASSERT_ONLY_METHOD_OPERATORS)
12
+ #error This change adds a dependency on all pytorch operators, meaning the \
13
+ file will need to be re-compiled every time an operator is changed or added. \
14
+ Consider including a specific operator from \
15
+ <ATen/ops/{my_operator}_compositeimplicitautogradnestedtensor_dispatch.h>. \
16
+ See NOTE [TORCH_ASSERT_ONLY_METHOD_OPERATORS].
17
+ #endif
18
+
19
+ #include <ATen/ops/randn_like_compositeimplicitautogradnestedtensor_dispatch.h>
20
+ #include <ATen/ops/reshape_compositeimplicitautogradnestedtensor_dispatch.h>
21
+ #include <ATen/ops/reshape_as_compositeimplicitautogradnestedtensor_dispatch.h>
22
+ #include <ATen/ops/zeros_like_compositeimplicitautogradnestedtensor_dispatch.h>
23
+
24
+
25
+
venv/lib/python3.10/site-packages/torch/include/ATen/Context.h ADDED
@@ -0,0 +1,560 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <ATen/CPUGeneratorImpl.h>
4
+ #include <ATen/DeviceAccelerator.h>
5
+ #include <ATen/LinalgBackend.h>
6
+ #include <ATen/core/ATenGeneral.h>
7
+ #include <ATen/core/DeprecatedTypeProperties.h>
8
+ #include <ATen/core/Generator.h>
9
+ #include <ATen/core/LegacyTypeDispatch.h>
10
+ #include <ATen/detail/AcceleratorHooksInterface.h>
11
+ #include <ATen/detail/CUDAHooksInterface.h>
12
+ #include <ATen/detail/HIPHooksInterface.h>
13
+ #include <ATen/detail/IPUHooksInterface.h>
14
+ #include <ATen/detail/MPSHooksInterface.h>
15
+ #include <ATen/detail/MTIAHooksInterface.h>
16
+ #include <ATen/detail/ORTHooksInterface.h>
17
+ #include <ATen/detail/PrivateUse1HooksInterface.h>
18
+ #include <ATen/detail/XPUHooksInterface.h>
19
+ #include <c10/core/QEngine.h>
20
+ #include <c10/core/impl/DeviceGuardImplInterface.h>
21
+ #include <c10/util/CallOnce.h>
22
+ #include <c10/util/Exception.h>
23
+ #include <c10/util/env.h>
24
+ #include <c10/util/irange.h>
25
+
26
+ #include <cstdint>
27
+ #include <mutex>
28
+
29
+ namespace at {
30
+
31
+ class Tensor;
32
+
33
+ enum class TORCH_API Float32MatmulPrecision { HIGHEST, HIGH, MEDIUM };
34
+
35
+ class TORCH_API Context {
36
+ public:
37
+ Context();
38
+
39
+ const Generator& defaultGenerator(Device device) {
40
+ c10::DeviceType device_type = device.type();
41
+ initCUDAIfNeeded(device_type);
42
+ initHIPIfNeeded(device_type);
43
+ if (device_type == at::kCPU) {
44
+ return at::detail::getDefaultCPUGenerator();
45
+ } else if (device_type == at::kCUDA) {
46
+ return at::detail::getCUDAHooks().getDefaultCUDAGenerator(device.index());
47
+ } else if (device_type == at::kMPS) {
48
+ return at::detail::getMPSHooks().getDefaultMPSGenerator();
49
+ } else if (device_type == at::kXPU) {
50
+ return at::detail::getXPUHooks().getDefaultXPUGenerator(device.index());
51
+ } else if (device_type == at::kIPU) {
52
+ return at::detail::getIPUHooks().getDefaultIPUGenerator(device.index());
53
+ } else if (device_type == at::kPrivateUse1) {
54
+ return at::GetPrivateUse1HooksInterface()->getDefaultGenerator(
55
+ device.index());
56
+ } else {
57
+ AT_ERROR(c10::DeviceTypeName(device_type), " device type not enabled.");
58
+ }
59
+ }
60
+ const AcceleratorHooksInterface& getAcceleratorHooksInterface(
61
+ c10::optional<c10::DeviceType> opt_device_type = c10::nullopt) {
62
+ c10::DeviceType device_type = opt_device_type.has_value()
63
+ ? opt_device_type.value()
64
+ : at::getAccelerator(true).value();
65
+ if (device_type == at::kCUDA) {
66
+ return at::detail::getCUDAHooks();
67
+ } else if (device_type == at::kMPS) {
68
+ return at::detail::getMPSHooks();
69
+ } else if (device_type == at::kPrivateUse1) {
70
+ return at::detail::getPrivateUse1Hooks();
71
+ } else {
72
+ AT_ERROR(
73
+ c10::DeviceTypeName(device_type), " device type not an accelerator.");
74
+ }
75
+ }
76
+ Device getDeviceFromPtr(void* data, c10::DeviceType device_type) {
77
+ initCUDAIfNeeded(device_type);
78
+ initHIPIfNeeded(device_type);
79
+ initXPUIfNeeded(device_type);
80
+ if (device_type == at::kCPU) {
81
+ return c10::DeviceType::CPU;
82
+ } else if (device_type == at::kCUDA) {
83
+ return at::detail::getCUDAHooks().getDeviceFromPtr(data);
84
+ } else if (device_type == at::kXPU) {
85
+ return at::detail::getXPUHooks().getDeviceFromPtr(data);
86
+ } else if (device_type == at::kPrivateUse1) {
87
+ return at::GetPrivateUse1HooksInterface()->getDeviceFromPtr(data);
88
+ } else {
89
+ AT_ERROR(c10::DeviceTypeName(device_type), " device type not enabled.");
90
+ }
91
+ }
92
+ static bool isPinnedPtr(const void* data) {
93
+ return detail::getCUDAHooks().isPinnedPtr(data);
94
+ }
95
+ static bool hasOpenMP();
96
+ static bool hasMKL();
97
+ static bool hasLAPACK();
98
+ static bool hasMKLDNN();
99
+ static bool hasMAGMA() {
100
+ return detail::getCUDAHooks().hasMAGMA();
101
+ }
102
+ static bool hasCUDA() {
103
+ return detail::getCUDAHooks().hasCUDA();
104
+ }
105
+ static bool hasMTIA() {
106
+ return detail::getMTIAHooks().hasMTIA();
107
+ }
108
+ static bool hasCUDART() {
109
+ return detail::getCUDAHooks().hasCUDART();
110
+ }
111
+ static long versionCUDART() {
112
+ return detail::getCUDAHooks().versionCUDART();
113
+ }
114
+ static bool hasCuDNN() {
115
+ return detail::getCUDAHooks().hasCuDNN();
116
+ }
117
+ static long versionCuDNN() {
118
+ return detail::getCUDAHooks().versionCuDNN();
119
+ }
120
+ static bool hasCuSOLVER() {
121
+ return detail::getCUDAHooks().hasCuSOLVER();
122
+ }
123
+ static bool hasHIP() {
124
+ return detail::getHIPHooks().hasHIP();
125
+ }
126
+ static bool hasMPS() {
127
+ return detail::getMPSHooks().hasMPS();
128
+ }
129
+ static bool hasIPU() {
130
+ return c10::impl::hasDeviceGuardImpl(c10::DeviceType::IPU);
131
+ }
132
+ static bool hasXLA() {
133
+ return c10::impl::hasDeviceGuardImpl(c10::DeviceType::XLA);
134
+ }
135
+ static bool hasXPU() {
136
+ return detail::getXPUHooks().hasXPU();
137
+ }
138
+ static bool hasLazy() {
139
+ return c10::impl::hasDeviceGuardImpl(c10::DeviceType::Lazy);
140
+ }
141
+ static bool hasORT() {
142
+ return c10::impl::hasDeviceGuardImpl(c10::DeviceType::ORT);
143
+ }
144
+ // defined in header so that getNonVariableType has ability to inline
145
+ // call_once check. getNonVariableType is called fairly frequently
146
+ void lazyInitCUDA() {
147
+ c10::call_once(thc_init, [&] { detail::getCUDAHooks().initCUDA(); });
148
+ }
149
+ void lazyInitHIP() {
150
+ c10::call_once(thh_init, [&] { detail::getHIPHooks().initHIP(); });
151
+ }
152
+ void lazyInitXPU() {
153
+ c10::call_once(thx_init, [&] { detail::getXPUHooks().initXPU(); });
154
+ }
155
+ void lazyInitPrivateUse1() {
156
+ c10::call_once(thp_init, [&] {
157
+ if (isPrivateUse1HooksRegistered()) {
158
+ at::GetPrivateUse1HooksInterface()->initPrivateUse1();
159
+ }
160
+ });
161
+ }
162
+ static const at::cuda::NVRTC& getNVRTC() {
163
+ return detail::getCUDAHooks().nvrtc();
164
+ }
165
+
166
+ static bool setFlushDenormal(bool on);
167
+
168
+ // NB: This method is *purely* whether or not a user requested
169
+ // that CuDNN was enabled, it doesn't actually say anything about
170
+ // whether or not CuDNN is actually usable. Use cudnn_is_acceptable
171
+ // to test this instead
172
+ bool userEnabledCuDNN() const;
173
+ void setUserEnabledCuDNN(bool e);
174
+ bool userEnabledMkldnn() const;
175
+ void setUserEnabledMkldnn(bool e);
176
+ bool benchmarkCuDNN() const;
177
+ void setBenchmarkCuDNN(bool);
178
+ int benchmarkLimitCuDNN() const;
179
+ void setBenchmarkLimitCuDNN(int);
180
+ bool deterministicCuDNN() const;
181
+ void setDeterministicCuDNN(bool);
182
+ bool userEnabledNNPACK() const;
183
+ void setUserEnabledNNPACK(bool e);
184
+
185
+ // Note [Disabling Fused SDP Kernels]
186
+ // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
187
+ // Flash and Memory Efficient SDP kernels are enabled by default.
188
+ // However, they can be disabled by setting
189
+ // at::globalContext().setUserEnabledFlashSDP(false) flag.
190
+ // This is useful for debugging purposes. For example, if you want to
191
+ // compare the performance of the flash SDP kernels with the unfused
192
+ // kernel, you can disable the flash SDP kernels. By disabling
193
+ // the math SDP kernel, you can force your code to use flash kernels.
194
+ // The math SDP kernel can be disabled by setting
195
+ // at::globalContext().setUserEnabledMathSDP(false) flag.
196
+ void setSDPUseFlash(bool);
197
+ bool userEnabledFlashSDP() const;
198
+
199
+ void setSDPUseMemEfficient(bool);
200
+ bool userEnabledMemEfficientSDP() const;
201
+
202
+ void setSDPUseMath(bool);
203
+ bool userEnabledMathSDP() const;
204
+
205
+ void setSDPUseCuDNN(bool);
206
+ bool userEnabledCuDNNSDP() const;
207
+
208
+ at::LinalgBackend linalgPreferredBackend() const;
209
+ void setLinalgPreferredBackend(at::LinalgBackend);
210
+
211
+ // Note [Enabling Deterministic Operations]
212
+ // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
213
+ // Operations in PyTorch that normally act nondeterministically, but have an
214
+ // alternate deterministic implementation, should satisfy the following
215
+ // requirements:
216
+ //
217
+ // * Include this comment: "See Note [Enabling Deterministic Operations]"
218
+ //
219
+ // * Check the value of `at::globalContext().deterministicAlgorithms()` to
220
+ // toggle
221
+ // between nondeterministic and deterministic implementations.
222
+ //
223
+ // * Have an entry in the list of PyTorch operations that toggle between
224
+ // nondeterministic
225
+ // and deterministic implementations, in the docstring of
226
+ // `use_deterministic_algorithms()` in torch/__init__.py
227
+ //
228
+ // `example_func()` below shows an example of toggling between
229
+ // nondeterministic and deterministic implementations:
230
+ //
231
+ // void example_func() {
232
+ // // See Note [Enabling Deterministic Operations]
233
+ // if (at::globalContext().deterministicAlgorithms()) {
234
+ // example_func_deterministic();
235
+ // } else {
236
+ // example_func_nondeterministic();
237
+ // }
238
+ // }
239
+
240
+ bool deterministicAlgorithms() const;
241
+ bool deterministicAlgorithmsWarnOnly() const;
242
+ void setDeterministicAlgorithms(bool, bool);
243
+ bool deterministicFillUninitializedMemory() const;
244
+ void setDeterministicFillUninitializedMemory(bool);
245
+
246
+ // Note [Writing Nondeterministic Operations]
247
+ // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
248
+ // Operations in PyTorch that act nondeterministically and do not have an
249
+ // alternate deterministic implementation should satisfy the following
250
+ // requirements:
251
+ //
252
+ // * Include this comment: "See Note [Writing Nondeterministic Operations]"
253
+ //
254
+ // * Include a comment explaining why the operation is nondeterministic.
255
+ //
256
+ // * Throw an error when `Context::deterministicAlgorithms()` is true. Most
257
+ // of the time, this should be accomplished by calling
258
+ // `at::globalContext().alertNotDeterminstic()`. However, if the
259
+ // nondeterministic behavior is caused by the CuBLAS workspace
260
+ // configuration in CUDA >= 10.2,
261
+ // `at::globalContext().alertCuBLASConfigNotDeterministic()` should be
262
+ // called instead (in this case, a comment explaining why the operation is
263
+ // nondeterministic is not necessary). See below for details on these
264
+ // methods.
265
+ //
266
+ // * Have an entry in the list of nondeterministic PyTorch operations in the
267
+ // docstring of `use_deterministic_algorithms()` in torch/__init__.py
268
+ //
269
+ // * Have a test function in `test/test_torch.py` whose name begins with
270
+ // `test_nondeterministic_alert_`. Alternatively, if CuBLAS workspace
271
+ // configuration is the reason for nondeterminism, the operation should be
272
+ // included in the `test_cublas_config_nondeterministic_alert` test. Any new
273
+ // tests should ideally follow a pattern similar to the existing ones.
274
+ //
275
+ // `example_func()` below shows an example of the comments and error-throwing
276
+ // code for a nondeterministic operation:
277
+ //
278
+ // void example_func() {
279
+ // // See Note [Writing Nondeterministic Operations]
280
+ // // Nondeterministic because <reason>
281
+ // at::globalContext().alertNondeterministic("example_func");
282
+ // ...
283
+ // }
284
+
285
+ // Throws an error if `Context::deterministicAlgorithms()` is true
286
+ static void alertNotDeterministic(c10::string_view const& caller);
287
+
288
+ // Throws an error if `Context::deterministicAlgorithms()` is true, CUDA
289
+ // >= 10.2, and CUBLAS_WORKSPACE_CONFIG is not set to either ":16:8" or
290
+ // ":4096:8". For more details:
291
+ // https://docs.nvidia.com/cuda/cublas/index.html#results-reproducibility
292
+ void alertCuBLASConfigNotDeterministic() const;
293
+
294
+ void setFloat32MatmulPrecision(const std::string& s);
295
+ bool allowTF32CuDNN() const;
296
+ void setAllowTF32CuDNN(bool);
297
+ bool allowTF32CuBLAS() const;
298
+ void setAllowTF32CuBLAS(bool);
299
+ Float32MatmulPrecision float32MatmulPrecision() const;
300
+ void setFloat32MatmulPrecision(Float32MatmulPrecision p);
301
+ bool allowFP16ReductionCuBLAS() const;
302
+ void setAllowFP16ReductionCuBLAS(bool);
303
+ bool allowBF16ReductionCuBLAS() const;
304
+ void setAllowBF16ReductionCuBLAS(bool);
305
+ at::QEngine qEngine() const;
306
+ void setQEngine(at::QEngine e);
307
+ static const std::vector<at::QEngine>& supportedQEngines();
308
+ static bool isXNNPACKAvailable();
309
+ void setCheckSparseTensorInvariants(bool e);
310
+ bool checkSparseTensorInvariants() const;
311
+ // This method is used to release the original weight after pre-packing.
312
+ // It should be called once before loading/running the model.
313
+ // NB: By default it is set to true for mobile builds.
314
+ void setReleaseWeightsWhenPrepacking(bool e);
315
+ bool releaseWeightsWhenPrepacking() const;
316
+
317
+ void setDisplayVmapFallbackWarnings(bool enabled);
318
+ bool areVmapFallbackWarningsEnabled() const;
319
+
320
+ void setDefaultMobileCPUAllocator();
321
+ void unsetDefaultMobileCPUAllocator();
322
+ bool allowFP16ReductionCPU() const;
323
+ void setAllowFP16ReductionCPU(bool);
324
+
325
+ private:
326
+ void initCUDAIfNeeded(c10::DeviceType p) {
327
+ if (p == c10::DeviceType::CUDA) {
328
+ lazyInitCUDA();
329
+ }
330
+ }
331
+ void initHIPIfNeeded(c10::DeviceType p) {
332
+ if (p == c10::DeviceType::HIP) {
333
+ lazyInitHIP();
334
+ }
335
+ }
336
+ void initXPUIfNeeded(c10::DeviceType p) {
337
+ if (p == c10::DeviceType::XPU) {
338
+ lazyInitXPU();
339
+ }
340
+ }
341
+ static bool checkCuBLASConfigDeterministic();
342
+ c10::once_flag thc_init;
343
+ c10::once_flag thh_init;
344
+ c10::once_flag thx_init;
345
+ c10::once_flag thp_init;
346
+ bool enabled_cudnn = true;
347
+ bool deterministic_cudnn = false;
348
+ bool _deterministic_algorithms = false;
349
+ bool _deterministic_algorithms_warn_only = false;
350
+ bool _deterministic_fill_uninitialized_memory = true;
351
+ bool enabled_flashSDP = true;
352
+ bool enabled_mem_efficientSDP = true;
353
+ bool enabled_mathSDP = true;
354
+ bool enabled_cudnnSDP = false;
355
+ #ifdef USE_ROCM
356
+ bool benchmark_cudnn = true;
357
+ #else
358
+ bool benchmark_cudnn = false;
359
+ #endif
360
+ Float32MatmulPrecision float32_matmul_precision =
361
+ c10::utils::check_env("TORCH_ALLOW_TF32_CUBLAS_OVERRIDE") == true
362
+ ? at::Float32MatmulPrecision::HIGH
363
+ : at::Float32MatmulPrecision::HIGHEST;
364
+ int benchmark_limit_cudnn = 10;
365
+ bool allow_tf32_cudnn = true;
366
+ bool allow_fp16_reduction_cublas = true;
367
+ bool allow_bf16_reduction_cublas = true;
368
+ bool enabled_mkldnn = true;
369
+ bool enabled_nnpack = true;
370
+ at::LinalgBackend linalg_preferred_backend =
371
+ c10::utils::check_env("TORCH_LINALG_PREFER_CUSOLVER") == true
372
+ ? at::LinalgBackend::Cusolver
373
+ : at::LinalgBackend::Default;
374
+ #ifdef C10_MOBILE
375
+ bool release_original_weights = true;
376
+ #else
377
+ bool release_original_weights = false;
378
+ #endif
379
+ bool display_vmap_fallback_warnings_ = false;
380
+ c10::optional<at::QEngine> quantized_engine = c10::nullopt;
381
+ bool enable_sparse_tensor_invariant_checks = false;
382
+ bool allow_fp16_reduction_cpu = false;
383
+
384
+ Allocator* prev_allocator_ptr_{nullptr};
385
+ };
386
+
387
+ TORCH_API Context& globalContext();
388
+
389
+ static inline void init() {
390
+ globalContext();
391
+ }
392
+
393
+ TORCH_API Allocator* getCPUAllocator();
394
+
395
+ static inline DeprecatedTypeProperties& getDeprecatedTypeProperties(
396
+ Backend p,
397
+ ScalarType s) {
398
+ return globalDeprecatedTypePropertiesRegistry().getDeprecatedTypeProperties(
399
+ p, s);
400
+ }
401
+
402
+ static inline DeprecatedTypeProperties& CPU(ScalarType s) {
403
+ return globalDeprecatedTypePropertiesRegistry().getDeprecatedTypeProperties(
404
+ Backend::CPU, s);
405
+ }
406
+
407
+ static inline DeprecatedTypeProperties& CUDA(ScalarType s) {
408
+ return globalDeprecatedTypePropertiesRegistry().getDeprecatedTypeProperties(
409
+ Backend::CUDA, s);
410
+ }
411
+
412
+ static inline DeprecatedTypeProperties& HIP(ScalarType s) {
413
+ return globalDeprecatedTypePropertiesRegistry().getDeprecatedTypeProperties(
414
+ Backend::HIP, s);
415
+ }
416
+
417
+ static inline DeprecatedTypeProperties& MPS(ScalarType s) {
418
+ return globalDeprecatedTypePropertiesRegistry().getDeprecatedTypeProperties(
419
+ Backend::MPS, s);
420
+ }
421
+
422
+ static inline bool hasCUDA() {
423
+ return globalContext().hasCUDA();
424
+ }
425
+
426
+ static inline bool hasMTIA() {
427
+ return globalContext().hasMTIA();
428
+ }
429
+
430
+ static inline bool hasHIP() {
431
+ return globalContext().hasHIP();
432
+ }
433
+
434
+ static inline bool hasIPU() {
435
+ return globalContext().hasIPU();
436
+ }
437
+
438
+ static inline bool hasXLA() {
439
+ return globalContext().hasXLA();
440
+ }
441
+
442
+ static inline bool hasMPS() {
443
+ return globalContext().hasMPS();
444
+ }
445
+
446
+ static inline bool hasORT() {
447
+ return globalContext().hasORT();
448
+ }
449
+
450
+ static inline bool hasXPU() {
451
+ return globalContext().hasXPU();
452
+ }
453
+
454
+ // Despite its name, this function returns the number of *CUDA* GPUs.
455
+ static inline size_t getNumGPUs() {
456
+ // WARNING: DO NOT ADD LOGIC TO HANDLE OTHER DEVICE TYPES TO THIS
457
+ // FUNCTION. If you are interested in interrogating the number of
458
+ // devices for a specific device type, add that function to the
459
+ // relevant library (e.g., similar to at::cuda::device_count())
460
+ if (hasCUDA() && hasHIP()) {
461
+ throw std::runtime_error(
462
+ "Enabling both CUDA and HIP in ATen is not supported, as HIP masquerades "
463
+ "to be CUDA (e.g., when you say CUDA, on a HIP build of ATen, this actually "
464
+ "means HIP. Rebuild PyTorch with one or the other disabled.");
465
+ } else if (hasCUDA()) {
466
+ return detail::getCUDAHooks().getNumGPUs();
467
+ } else if (hasHIP()) {
468
+ return detail::getHIPHooks().getNumGPUs();
469
+ } else {
470
+ return 0;
471
+ }
472
+ }
473
+
474
+ static inline bool hasOpenMP() {
475
+ return globalContext().hasOpenMP();
476
+ }
477
+
478
+ static inline bool hasMKL() {
479
+ return globalContext().hasMKL();
480
+ }
481
+
482
+ static inline bool hasLAPACK() {
483
+ return globalContext().hasLAPACK();
484
+ }
485
+
486
+ static inline bool hasMAGMA() {
487
+ return globalContext().hasMAGMA();
488
+ }
489
+
490
+ static inline bool hasMKLDNN() {
491
+ return globalContext().hasMKLDNN();
492
+ }
493
+
494
+ static inline void manual_seed(uint64_t seed) {
495
+ auto gen = globalContext().defaultGenerator(c10::DeviceType::CPU);
496
+ {
497
+ // See Note [Acquire lock when using random generators]
498
+ std::lock_guard<std::mutex> lock(gen.mutex());
499
+ gen.set_current_seed(seed);
500
+ }
501
+ // NB: Sometimes we build with CUDA, but we don't have any GPUs
502
+ // available. In that case, we must not seed CUDA; it will fail!
503
+ const auto cuda_num_gpus = detail::getCUDAHooks().getNumGPUs();
504
+ if (hasCUDA() && cuda_num_gpus > 0) {
505
+ for (const auto i : c10::irange(cuda_num_gpus)) {
506
+ auto cuda_gen = globalContext().defaultGenerator(
507
+ Device(at::kCUDA, static_cast<c10::DeviceIndex>(i)));
508
+ {
509
+ // See Note [Acquire lock when using random generators]
510
+ std::lock_guard<std::mutex> lock(cuda_gen.mutex());
511
+ cuda_gen.set_current_seed(seed);
512
+ }
513
+ }
514
+ }
515
+
516
+ const auto xpu_num_gpus = detail::getXPUHooks().getNumGPUs();
517
+ if (hasXPU() && xpu_num_gpus) {
518
+ for (const auto i : c10::irange(xpu_num_gpus)) {
519
+ auto xpu_gen = globalContext().defaultGenerator(
520
+ Device(at::kXPU, static_cast<c10::DeviceIndex>(i)));
521
+ {
522
+ // See Note [Acquire lock when using random generators]
523
+ std::lock_guard<std::mutex> lock(xpu_gen.mutex());
524
+ xpu_gen.set_current_seed(seed);
525
+ }
526
+ }
527
+ }
528
+
529
+ if (hasMPS()) {
530
+ auto mps_gen = globalContext().defaultGenerator(c10::DeviceType::MPS);
531
+ // See Note [Acquire lock when using random generators]
532
+ std::lock_guard<std::mutex> lock(mps_gen.mutex());
533
+ mps_gen.set_current_seed(seed);
534
+ }
535
+ }
536
+
537
+ // When the global flag `allow_tf32` is set to true, cuBLAS handles are
538
+ // automatically configured to use math mode CUBLAS_TF32_TENSOR_OP_MATH.
539
+ // For some operators, such as addmv, TF32 offers no performance improvement
540
+ // but causes precision loss. To help this case, this class implements
541
+ // a RAII guard that can be used to quickly disable TF32 within its scope.
542
+ //
543
+ // Usage:
544
+ // NoTF32Guard disable_tf32;
545
+ struct TORCH_API NoTF32Guard {
546
+ NoTF32Guard();
547
+ ~NoTF32Guard();
548
+ static bool should_disable_tf32();
549
+
550
+ private:
551
+ bool changed = false;
552
+ };
553
+
554
+ struct TORCH_API ROCmBackwardPassGuard {
555
+ ROCmBackwardPassGuard();
556
+ ~ROCmBackwardPassGuard();
557
+ static bool is_backward_pass();
558
+ };
559
+
560
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/Device.h ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ #pragma once
2
+ #include <c10/core/Device.h>
venv/lib/python3.10/site-packages/torch/include/ATen/Dispatch.h ADDED
@@ -0,0 +1,808 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <ATen/core/DeprecatedTypeProperties.h>
4
+ #include <c10/macros/Macros.h>
5
+ #include <c10/util/Exception.h>
6
+ #include <c10/util/Half.h>
7
+ #include <c10/util/Metaprogramming.h>
8
+ #include <c10/util/complex.h>
9
+ #include <c10/util/string_view.h>
10
+
11
+ #ifdef __CUDACC__
12
+ #include <cuda.h> // For CUDA_VERSION
13
+ #endif
14
+
15
+ #ifdef TEMPLATE_SELECTIVE_BUILD
16
+ #include <ATen/selected_mobile_ops.h>
17
+ #else
18
+ namespace at {
19
+ /**
20
+ * The method should_include_kernel_dtype() returns true/false
21
+ * based on whether the switching code for a specific dtype should be
22
+ * included based on build time constants generated from tracing model
23
+ * execution. This method will be implmeneted via code-generation and
24
+ * included in this file when code-gen is ready.
25
+ */
26
+ inline constexpr bool should_include_kernel_dtype(
27
+ const char* /*kernel_tag_str*/,
28
+ at::ScalarType /*scalar_type*/
29
+ ) {
30
+ return true;
31
+ }
32
+ } // namespace at
33
+ #endif
34
+
35
+ /**
36
+ * In the Facebook internal build (using BUCK), this macro is enabled by
37
+ * passing in -c pt.enable_record_kernel_dtype=1 when building the tracer
38
+ * binary.
39
+ */
40
+ #if defined ENABLE_RECORD_KERNEL_FUNCTION_DTYPE
41
+ namespace at {
42
+ namespace detail {
43
+ TORCH_API void record_kernel_function_dtype(std::string name);
44
+ }
45
+ } // namespace at
46
+
47
+ #define RECORD_KERNEL_FUNCTION_DTYPE(NAME, enum_type) \
48
+ at::detail::record_kernel_function_dtype( \
49
+ std::string(NAME) + "$" + toString(enum_type));
50
+ #else
51
+ #define RECORD_KERNEL_FUNCTION_DTYPE(NAME, enum_type)
52
+ #endif
53
+
54
+ #define AT_PRIVATE_CHECK_SELECTIVE_BUILD(enum_type) \
55
+ do { \
56
+ if constexpr (!at::should_include_kernel_dtype( \
57
+ at_dispatch_name, enum_type)) { \
58
+ AT_ERROR( \
59
+ "dtype '", \
60
+ toString(enum_type), \
61
+ "' not selected for kernel tag ", \
62
+ at_dispatch_name); \
63
+ } \
64
+ } while (0)
65
+
66
+ #define AT_PRIVATE_CASE_TYPE_USING_HINT(enum_type, HINT, ...) \
67
+ case enum_type: { \
68
+ AT_PRIVATE_CHECK_SELECTIVE_BUILD(enum_type); \
69
+ using HINT C10_UNUSED = c10::impl::ScalarTypeToCPPTypeT<enum_type>; \
70
+ return __VA_ARGS__(); \
71
+ }
72
+
73
+ #define AT_DISPATCH_CASE(enum_type, ...) \
74
+ AT_PRIVATE_CASE_TYPE_USING_HINT(enum_type, scalar_t, __VA_ARGS__)
75
+
76
+ #define AT_DISPATCH_CASE_QINT(enum_type, scalar_type, ...) \
77
+ case enum_type: { \
78
+ AT_PRIVATE_CHECK_SELECTIVE_BUILD(enum_type); \
79
+ using scalar_t = scalar_type; \
80
+ using underlying_t C10_UNUSED = typename scalar_t::underlying; \
81
+ const auto& SCALAR_TYPE C10_UNUSED = enum_type; \
82
+ const auto& UNDERLYING_TYPE C10_UNUSED = toUnderlying(enum_type); \
83
+ return __VA_ARGS__(); \
84
+ }
85
+
86
+ #define AT_QINT_SUB_BYTE_PRIVATE_CASE_TYPE( \
87
+ enum_type, scalar_type, bitwidth, qmin, qmax, ...) \
88
+ case enum_type: { \
89
+ AT_PRIVATE_CHECK_SELECTIVE_BUILD(enum_type); \
90
+ using scalar_t = scalar_type; \
91
+ using underlying_t C10_UNUSED = typename scalar_t::underlying; \
92
+ const auto& SCALAR_TYPE C10_UNUSED = enum_type; \
93
+ const auto& UNDERLYING_TYPE C10_UNUSED = toUnderlying(enum_type); \
94
+ C10_UNUSED int bit_width = bitwidth; \
95
+ C10_UNUSED int64_t quant_min = qmin; \
96
+ C10_UNUSED int64_t quant_max = qmax; \
97
+ return __VA_ARGS__(); \
98
+ }
99
+
100
+ namespace detail {
101
+
102
+ inline at::ScalarType scalar_type(at::ScalarType s) {
103
+ return s;
104
+ }
105
+
106
+ C10_DEPRECATED_MESSAGE(
107
+ "passing at::DeprecatedTypeProperties to an AT_DISPATCH macro is deprecated, "
108
+ "pass an at::ScalarType instead")
109
+ inline at::ScalarType scalar_type(const at::DeprecatedTypeProperties& t) {
110
+ return t.scalarType();
111
+ }
112
+
113
+ C10_DEPRECATED_MESSAGE(
114
+ "AT_DISPATCH_ALL_TYPES_AND_HALF is deprecated, "
115
+ "use AT_DISPATCH_ALL_TYPES_AND(at::ScalarType::Half, ...) instead")
116
+ inline void deprecated_AT_DISPATCH_ALL_TYPES_AND_HALF() {}
117
+
118
+ C10_DEPRECATED_MESSAGE(
119
+ "AT_DISPATCH_ALL_TYPES_AND_HALF_AND_COMPLEX is deprecated, "
120
+ "use AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND(at::ScalarType::Half, ...) "
121
+ "instead")
122
+ inline void deprecated_AT_DISPATCH_ALL_TYPES_AND_HALF_AND_COMPLEX() {}
123
+
124
+ } // namespace detail
125
+
126
+ // The AT_DISPATCH_* family of macros provides the ability to
127
+ // conveniently generate specializations of a kernel over all of the
128
+ // dtypes we care about in PyTorch. We call it "dispatch" because
129
+ // we are "dispatching" to the correct, dtype-specific kernel.
130
+ //
131
+ // A standard usage looks like:
132
+ //
133
+ // AT_DISPATCH_ALL_TYPES(self.scalar_type(), "op_name", [&] {
134
+ // // Your code here, with 'scalar_t' now defined to
135
+ // // be the dtype in question
136
+ // });
137
+ //
138
+ // There are many variations of this macro, so it's important to
139
+ // understand exactly /which/ dtypes you want to get instantiated, as
140
+ // well as what the "default" set is.
141
+ //
142
+ // The default set of dtypes that are instantiated (e.g., by
143
+ // AT_DISPATCH_ALL_TYPES) are floating point types (float, double),
144
+ // and integral types (int32_t, int64_t, int16_t, int8_t, uint8_t),
145
+ // but NOT booleans (bool), half-precision floats (Half) or
146
+ // complex number (c10::complex<float>, c10::complex<double>).
147
+ // This "cut" is somewhat historical (the default types are the
148
+ // ones that TH historically supported), but it also reflects the
149
+ // fact that the non-default types are "poorly" behaved (booleans
150
+ // are NOT integers mod 2, half precision operations ~essentially
151
+ // don't exist on CPU, complex numbers are an experimental application).
152
+ //
153
+ // Here are the questions you should generally ask to decide which
154
+ // dispatch you want:
155
+ //
156
+ // 1. Is this an integral or floating point specific operation?
157
+ // (If so, you'll want one of the FLOATING or INTEGRAL macros.)
158
+ //
159
+ // 2. Should half be supported? (If you're on CPU, the answer is almost
160
+ // definitely no. If you do want support, use one of the AND_HALF
161
+ // macros)
162
+ //
163
+ // Much rarer situations:
164
+ //
165
+ // 3. Should bool be supported? (You often have to write your kernel
166
+ // differently if arithmetic operations are involved.) If so,
167
+ // Use AT_DISPATCH_ALL_TYPES_AND along with ScalarType::Bool
168
+ //
169
+ // 4. Should complex be supported? The answer is almost always no,
170
+ // unless you are working on "generic" code that should work on
171
+ // all dtypes.
172
+ //
173
+ // Parameters:
174
+ // -----------
175
+ //
176
+ // 1. The NAME argument is a "tag" that is used to trace and then
177
+ // conditionally compile fragments of the case statements such
178
+ // that the kernel functions are specialized only for the dtypes
179
+ // that are needed. The NAME parameter *must* be a build time
180
+ // const char* (can't be std::string, etc...)
181
+ //
182
+ // Please ensure that the NAME is unique for every implementation
183
+ // or you run the risk of over-including code for the kernel
184
+ // functions. There is no risk of missing out on any code, so
185
+ // it's mostly a risk of a Type-2 error, and not a Type-1 error.
186
+ //
187
+ // Switch-like syntax:
188
+ // -------------------
189
+ // There is also a switch-case like syntax which is useful if a kernel
190
+ // needs to be specialized for particular scalar types
191
+ //
192
+ // AT_DISPATCH_SWITCH(self.scalar_type(), "op_name",
193
+ // AT_DISPATCH_CASE_INTEGRAL_TYPES([&] {
194
+ // op_integral<scalar_t>(iter);
195
+ // })
196
+ // AT_DISPATCH_CASE_FLOATING_TYPES([&] {
197
+ // op_floating<scalar_t>(iter);
198
+ // })
199
+ // AT_DISPATCH_CASE(kBool, [&] {
200
+ // op_bool(iter);
201
+ // })
202
+ // );
203
+ //
204
+ // For each AT_DISPATCH_FOO macro, there is a corresponding
205
+ // AT_DISPATCH_CASE_FOO macro which can be used inside of an
206
+ // AT_DISPATCH_SWITCH block.
207
+
208
+ // NB: the the_type variable is not used, but we have kept it for
209
+ // backwards compatibility. It's probably not used by anyone though;
210
+ // but we're just being safe (and it doesn't hurt.) Note we must
211
+ // use it to shut up warnings about unused store.
212
+
213
+ #define AT_DISPATCH_SWITCH(TYPE, NAME, ...) \
214
+ [&] { \
215
+ const auto& the_type = TYPE; \
216
+ constexpr const char* at_dispatch_name = NAME; \
217
+ /* don't use TYPE again in case it is an expensive or side-effect op */ \
218
+ at::ScalarType _st = ::detail::scalar_type(the_type); \
219
+ RECORD_KERNEL_FUNCTION_DTYPE(at_dispatch_name, _st); \
220
+ switch (_st) { \
221
+ __VA_ARGS__ \
222
+ default: \
223
+ AT_ERROR( \
224
+ '"', \
225
+ at_dispatch_name, \
226
+ "\" not implemented for '", \
227
+ toString(_st), \
228
+ "'"); \
229
+ } \
230
+ }()
231
+
232
+ #define AT_DISPATCH_CASE_FLOATING_TYPES(...) \
233
+ AT_DISPATCH_CASE(at::ScalarType::Double, __VA_ARGS__) \
234
+ AT_DISPATCH_CASE(at::ScalarType::Float, __VA_ARGS__)
235
+
236
+ #define AT_DISPATCH_FLOATING_TYPES(TYPE, NAME, ...) \
237
+ AT_DISPATCH_SWITCH(TYPE, NAME, AT_DISPATCH_CASE_FLOATING_TYPES(__VA_ARGS__))
238
+
239
+ #define AT_DISPATCH_CASE_FLOATING_TYPES_AND_HALF(...) \
240
+ AT_DISPATCH_CASE(at::ScalarType::Double, __VA_ARGS__) \
241
+ AT_DISPATCH_CASE(at::ScalarType::Float, __VA_ARGS__) \
242
+ AT_DISPATCH_CASE(at::ScalarType::Half, __VA_ARGS__)
243
+
244
+ #define AT_DISPATCH_FLOATING_TYPES_AND_HALF(TYPE, NAME, ...) \
245
+ AT_DISPATCH_SWITCH( \
246
+ TYPE, NAME, AT_DISPATCH_CASE_FLOATING_TYPES_AND_HALF(__VA_ARGS__))
247
+
248
+ #define AT_DISPATCH_CASE_REDUCED_FLOATING_TYPES(...) \
249
+ AT_DISPATCH_CASE(at::ScalarType::Half, __VA_ARGS__) \
250
+ AT_DISPATCH_CASE(at::ScalarType::BFloat16, __VA_ARGS__)
251
+
252
+ #define AT_DISPATCH_REDUCED_FLOATING_TYPES(TYPE, NAME, ...) \
253
+ AT_DISPATCH_SWITCH( \
254
+ TYPE, NAME, AT_DISPATCH_CASE_REDUCED_FLOATING_TYPES(__VA_ARGS__))
255
+
256
+ #define AT_DISPATCH_CASE_FLOATING_TYPES_AND(SCALARTYPE, ...) \
257
+ AT_DISPATCH_CASE_FLOATING_TYPES(__VA_ARGS__) \
258
+ AT_DISPATCH_CASE(SCALARTYPE, __VA_ARGS__)
259
+
260
+ #define AT_DISPATCH_FLOATING_TYPES_AND(SCALARTYPE, TYPE, NAME, ...) \
261
+ AT_DISPATCH_SWITCH( \
262
+ TYPE, \
263
+ NAME, \
264
+ AT_DISPATCH_CASE_FLOATING_TYPES_AND(SCALARTYPE, __VA_ARGS__))
265
+
266
+ #define AT_DISPATCH_CASE_FLOATING_TYPES_AND2(SCALARTYPE1, SCALARTYPE2, ...) \
267
+ AT_DISPATCH_CASE_FLOATING_TYPES(__VA_ARGS__) \
268
+ AT_DISPATCH_CASE(SCALARTYPE1, __VA_ARGS__) \
269
+ AT_DISPATCH_CASE(SCALARTYPE2, __VA_ARGS__)
270
+
271
+ #define AT_DISPATCH_FLOATING_TYPES_AND2( \
272
+ SCALARTYPE1, SCALARTYPE2, TYPE, NAME, ...) \
273
+ AT_DISPATCH_SWITCH( \
274
+ TYPE, \
275
+ NAME, \
276
+ AT_DISPATCH_CASE_FLOATING_TYPES_AND2( \
277
+ SCALARTYPE1, SCALARTYPE2, __VA_ARGS__))
278
+
279
+ #define AT_DISPATCH_CASE_FLOATING_TYPES_AND3( \
280
+ SCALARTYPE1, SCALARTYPE2, SCALARTYPE3, ...) \
281
+ AT_DISPATCH_CASE_FLOATING_TYPES(__VA_ARGS__) \
282
+ AT_DISPATCH_CASE(SCALARTYPE1, __VA_ARGS__) \
283
+ AT_DISPATCH_CASE(SCALARTYPE2, __VA_ARGS__) \
284
+ AT_DISPATCH_CASE(SCALARTYPE3, __VA_ARGS__)
285
+
286
+ #define AT_DISPATCH_FLOATING_TYPES_AND3( \
287
+ SCALARTYPE1, SCALARTYPE2, SCALARTYPE3, TYPE, NAME, ...) \
288
+ AT_DISPATCH_SWITCH( \
289
+ TYPE, \
290
+ NAME, \
291
+ AT_DISPATCH_CASE_FLOATING_TYPES_AND3( \
292
+ SCALARTYPE1, SCALARTYPE2, SCALARTYPE3, __VA_ARGS__))
293
+
294
+ #define AT_DISPATCH_CASE_FLOATING_TYPES_AND4( \
295
+ SCALARTYPE1, SCALARTYPE2, SCALARTYPE3, SCALARTYPE4, ...) \
296
+ AT_DISPATCH_CASE_FLOATING_TYPES(__VA_ARGS__) \
297
+ AT_DISPATCH_CASE(SCALARTYPE1, __VA_ARGS__) \
298
+ AT_DISPATCH_CASE(SCALARTYPE2, __VA_ARGS__) \
299
+ AT_DISPATCH_CASE(SCALARTYPE3, __VA_ARGS__) \
300
+ AT_DISPATCH_CASE(SCALARTYPE4, __VA_ARGS__)
301
+
302
+ #define AT_DISPATCH_FLOATING_TYPES_AND4( \
303
+ SCALARTYPE1, SCALARTYPE2, SCALARTYPE3, SCALARTYPE4, TYPE, NAME, ...) \
304
+ AT_DISPATCH_SWITCH( \
305
+ TYPE, \
306
+ NAME, \
307
+ AT_DISPATCH_CASE_FLOATING_TYPES_AND4( \
308
+ SCALARTYPE1, SCALARTYPE2, SCALARTYPE3, SCALARTYPE4, __VA_ARGS__))
309
+
310
+ #define AT_DISPATCH_CASE_COMPLEX_TYPES(...) \
311
+ AT_DISPATCH_CASE(at::ScalarType::ComplexDouble, __VA_ARGS__) \
312
+ AT_DISPATCH_CASE(at::ScalarType::ComplexFloat, __VA_ARGS__)
313
+
314
+ #define AT_DISPATCH_COMPLEX_TYPES(TYPE, NAME, ...) \
315
+ AT_DISPATCH_SWITCH(TYPE, NAME, AT_DISPATCH_CASE_COMPLEX_TYPES(__VA_ARGS__))
316
+
317
+ #define AT_DISPATCH_CASE_COMPLEX_TYPES_AND(SCALARTYPE, ...) \
318
+ AT_DISPATCH_CASE_COMPLEX_TYPES(__VA_ARGS__) \
319
+ AT_DISPATCH_CASE(SCALARTYPE, __VA_ARGS__)
320
+
321
+ #define AT_DISPATCH_COMPLEX_TYPES_AND(SCALARTYPE, TYPE, NAME, ...) \
322
+ AT_DISPATCH_SWITCH( \
323
+ TYPE, NAME, AT_DISPATCH_CASE_COMPLEX_TYPES_AND(SCALARTYPE, __VA_ARGS__))
324
+
325
+ #define AT_DISPATCH_CASE_FLOATING_AND_COMPLEX_TYPES(...) \
326
+ AT_DISPATCH_CASE_FLOATING_TYPES(__VA_ARGS__) \
327
+ AT_DISPATCH_CASE_COMPLEX_TYPES(__VA_ARGS__)
328
+
329
+ #define AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES(TYPE, NAME, ...) \
330
+ AT_DISPATCH_SWITCH( \
331
+ TYPE, NAME, AT_DISPATCH_CASE_FLOATING_AND_COMPLEX_TYPES(__VA_ARGS__))
332
+
333
+ #define AT_DISPATCH_CASE_FLOATING_AND_COMPLEX_TYPES_AND1(SCALARTYPE, ...) \
334
+ AT_DISPATCH_CASE_FLOATING_AND_COMPLEX_TYPES(__VA_ARGS__) \
335
+ AT_DISPATCH_CASE(SCALARTYPE, __VA_ARGS__)
336
+
337
+ #define AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES_AND1( \
338
+ SCALARTYPE, TYPE, NAME, ...) \
339
+ AT_DISPATCH_SWITCH( \
340
+ TYPE, \
341
+ NAME, \
342
+ AT_DISPATCH_CASE_FLOATING_AND_COMPLEX_TYPES_AND1( \
343
+ SCALARTYPE, __VA_ARGS__))
344
+
345
+ #define AT_DISPATCH_CASE_FLOATING_AND_COMPLEX_TYPES_AND2( \
346
+ SCALARTYPE1, SCALARTYPE2, ...) \
347
+ AT_DISPATCH_CASE_FLOATING_AND_COMPLEX_TYPES(__VA_ARGS__) \
348
+ AT_DISPATCH_CASE(SCALARTYPE1, __VA_ARGS__) \
349
+ AT_DISPATCH_CASE(SCALARTYPE2, __VA_ARGS__)
350
+
351
+ #define AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES_AND2( \
352
+ SCALARTYPE1, SCALARTYPE2, TYPE, NAME, ...) \
353
+ AT_DISPATCH_SWITCH( \
354
+ TYPE, \
355
+ NAME, \
356
+ AT_DISPATCH_CASE_FLOATING_AND_COMPLEX_TYPES_AND2( \
357
+ SCALARTYPE1, SCALARTYPE2, __VA_ARGS__))
358
+
359
+ #define AT_DISPATCH_CASE_FLOATING_AND_COMPLEX_TYPES_AND3( \
360
+ SCALARTYPE1, SCALARTYPE2, SCALARTYPE3, ...) \
361
+ AT_DISPATCH_CASE_FLOATING_AND_COMPLEX_TYPES(__VA_ARGS__) \
362
+ AT_DISPATCH_CASE(SCALARTYPE1, __VA_ARGS__) \
363
+ AT_DISPATCH_CASE(SCALARTYPE2, __VA_ARGS__) \
364
+ AT_DISPATCH_CASE(SCALARTYPE3, __VA_ARGS__)
365
+
366
+ #define AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES_AND3( \
367
+ SCALARTYPE1, SCALARTYPE2, SCALARTYPE3, TYPE, NAME, ...) \
368
+ AT_DISPATCH_SWITCH( \
369
+ TYPE, \
370
+ NAME, \
371
+ AT_DISPATCH_CASE_FLOATING_AND_COMPLEX_TYPES_AND3( \
372
+ SCALARTYPE1, SCALARTYPE2, SCALARTYPE3, __VA_ARGS__))
373
+
374
+ #define AT_DISPATCH_CASE_FLOATING_AND_COMPLEX_TYPES_AND4( \
375
+ SCALARTYPE1, SCALARTYPE2, SCALARTYPE3, SCALARTYPE4, ...) \
376
+ AT_DISPATCH_CASE_FLOATING_AND_COMPLEX_TYPES(__VA_ARGS__) \
377
+ AT_DISPATCH_CASE(SCALARTYPE1, __VA_ARGS__) \
378
+ AT_DISPATCH_CASE(SCALARTYPE2, __VA_ARGS__) \
379
+ AT_DISPATCH_CASE(SCALARTYPE3, __VA_ARGS__) \
380
+ AT_DISPATCH_CASE(SCALARTYPE4, __VA_ARGS__)
381
+
382
+ #define AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES_AND4( \
383
+ SCALARTYPE1, SCALARTYPE2, SCALARTYPE3, SCALARTYPE4, TYPE, NAME, ...) \
384
+ AT_DISPATCH_SWITCH( \
385
+ TYPE, \
386
+ NAME, \
387
+ AT_DISPATCH_CASE_FLOATING_AND_COMPLEX_TYPES_AND4( \
388
+ SCALARTYPE1, SCALARTYPE2, SCALARTYPE3, SCALARTYPE4, __VA_ARGS__))
389
+
390
+ #define AT_DISPATCH_CASE_FLOATING_AND_COMPLEX_TYPES_AND5( \
391
+ SCALARTYPE1, SCALARTYPE2, SCALARTYPE3, SCALARTYPE4, SCALARTYPE5, ...) \
392
+ AT_DISPATCH_CASE_FLOATING_AND_COMPLEX_TYPES(__VA_ARGS__) \
393
+ AT_DISPATCH_CASE(SCALARTYPE1, __VA_ARGS__) \
394
+ AT_DISPATCH_CASE(SCALARTYPE2, __VA_ARGS__) \
395
+ AT_DISPATCH_CASE(SCALARTYPE3, __VA_ARGS__) \
396
+ AT_DISPATCH_CASE(SCALARTYPE4, __VA_ARGS__) \
397
+ AT_DISPATCH_CASE(SCALARTYPE5, __VA_ARGS__)
398
+
399
+ #define AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES_AND5( \
400
+ SCALARTYPE1, \
401
+ SCALARTYPE2, \
402
+ SCALARTYPE3, \
403
+ SCALARTYPE4, \
404
+ SCALARTYPE5, \
405
+ TYPE, \
406
+ NAME, \
407
+ ...) \
408
+ AT_DISPATCH_SWITCH( \
409
+ TYPE, \
410
+ NAME, \
411
+ AT_DISPATCH_CASE_FLOATING_AND_COMPLEX_TYPES_AND5( \
412
+ SCALARTYPE1, \
413
+ SCALARTYPE2, \
414
+ SCALARTYPE3, \
415
+ SCALARTYPE4, \
416
+ SCALARTYPE5, \
417
+ __VA_ARGS__))
418
+
419
+ #define AT_DISPATCH_CASE_FLOATING_AND_COMPLEX_TYPES_AND6( \
420
+ SCALARTYPE1, \
421
+ SCALARTYPE2, \
422
+ SCALARTYPE3, \
423
+ SCALARTYPE4, \
424
+ SCALARTYPE5, \
425
+ SCALARTYPE6, \
426
+ ...) \
427
+ AT_DISPATCH_CASE_FLOATING_AND_COMPLEX_TYPES(__VA_ARGS__) \
428
+ AT_DISPATCH_CASE(SCALARTYPE1, __VA_ARGS__) \
429
+ AT_DISPATCH_CASE(SCALARTYPE2, __VA_ARGS__) \
430
+ AT_DISPATCH_CASE(SCALARTYPE3, __VA_ARGS__) \
431
+ AT_DISPATCH_CASE(SCALARTYPE4, __VA_ARGS__) \
432
+ AT_DISPATCH_CASE(SCALARTYPE5, __VA_ARGS__) \
433
+ AT_DISPATCH_CASE(SCALARTYPE6, __VA_ARGS__)
434
+
435
+ #define AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES_AND6( \
436
+ SCALARTYPE1, \
437
+ SCALARTYPE2, \
438
+ SCALARTYPE3, \
439
+ SCALARTYPE4, \
440
+ SCALARTYPE5, \
441
+ SCALARTYPE6, \
442
+ TYPE, \
443
+ NAME, \
444
+ ...) \
445
+ AT_DISPATCH_SWITCH( \
446
+ TYPE, \
447
+ NAME, \
448
+ AT_DISPATCH_CASE_FLOATING_AND_COMPLEX_TYPES_AND6( \
449
+ SCALARTYPE1, \
450
+ SCALARTYPE2, \
451
+ SCALARTYPE3, \
452
+ SCALARTYPE4, \
453
+ SCALARTYPE5, \
454
+ SCALARTYPE6, \
455
+ __VA_ARGS__))
456
+
457
+ #define AT_DISPATCH_CASE_INTEGRAL_TYPES(...) \
458
+ AT_DISPATCH_CASE(at::ScalarType::Byte, __VA_ARGS__) \
459
+ AT_DISPATCH_CASE(at::ScalarType::Char, __VA_ARGS__) \
460
+ AT_DISPATCH_CASE(at::ScalarType::Int, __VA_ARGS__) \
461
+ AT_DISPATCH_CASE(at::ScalarType::Long, __VA_ARGS__) \
462
+ AT_DISPATCH_CASE(at::ScalarType::Short, __VA_ARGS__)
463
+
464
+ #define AT_DISPATCH_INTEGRAL_TYPES(TYPE, NAME, ...) \
465
+ AT_DISPATCH_SWITCH(TYPE, NAME, AT_DISPATCH_CASE_INTEGRAL_TYPES(__VA_ARGS__))
466
+
467
+ #define AT_DISPATCH_CASE_INTEGRAL_TYPES_AND(SCALARTYPE, ...) \
468
+ AT_DISPATCH_CASE_INTEGRAL_TYPES(__VA_ARGS__) \
469
+ AT_DISPATCH_CASE(SCALARTYPE, __VA_ARGS__)
470
+
471
+ #define AT_DISPATCH_INTEGRAL_TYPES_AND(SCALARTYPE, TYPE, NAME, ...) \
472
+ AT_DISPATCH_SWITCH( \
473
+ TYPE, \
474
+ NAME, \
475
+ AT_DISPATCH_CASE_INTEGRAL_TYPES_AND(SCALARTYPE, __VA_ARGS__))
476
+
477
+ #define AT_DISPATCH_CASE_ALL_TYPES(...) \
478
+ AT_DISPATCH_CASE_INTEGRAL_TYPES(__VA_ARGS__) \
479
+ AT_DISPATCH_CASE_FLOATING_TYPES(__VA_ARGS__)
480
+
481
+ #define AT_DISPATCH_ALL_TYPES(TYPE, NAME, ...) \
482
+ AT_DISPATCH_SWITCH(TYPE, NAME, AT_DISPATCH_CASE_ALL_TYPES(__VA_ARGS__))
483
+
484
+ #define AT_DISPATCH_CASE_QINT_TYPES(...) \
485
+ AT_DISPATCH_CASE_QINT(at::kQInt8, at::qint8, __VA_ARGS__) \
486
+ AT_DISPATCH_CASE_QINT(at::kQUInt8, at::quint8, __VA_ARGS__) \
487
+ AT_DISPATCH_CASE_QINT(at::kQInt32, at::qint32, __VA_ARGS__)
488
+
489
+ #define AT_DISPATCH_QINT_TYPES(TYPE, NAME, ...) \
490
+ AT_DISPATCH_SWITCH(TYPE, NAME, AT_DISPATCH_CASE_QINT_TYPES(__VA_ARGS__))
491
+
492
+ #define AT_DISPATCH_CASE_QINT_TYPES_AND(SCALARTYPE, ...) \
493
+ AT_DISPATCH_CASE_QINT_TYPES(__VA_ARGS__) \
494
+ AT_DISPATCH_CASE(SCALARTYPE, __VA_ARGS__)
495
+
496
+ #define AT_DISPATCH_QINT_TYPES_AND(SCALARTYPE, TYPE, NAME, ...) \
497
+ AT_DISPATCH_SWITCH( \
498
+ TYPE, NAME, AT_DISPATCH_CASE_QINT_TYPES_AND(SCALARTYPE, __VA_ARGS__))
499
+
500
+ #define AT_DISPATCH_CASE_QINT_BYTE_TYPES(...) \
501
+ AT_DISPATCH_CASE_QINT(at::kQInt8, at::qint8, __VA_ARGS__) \
502
+ AT_DISPATCH_CASE_QINT(at::kQUInt8, at::quint8, __VA_ARGS__)
503
+
504
+ #define AT_DISPATCH_QINT_BYTE_TYPES(TYPE, NAME, ...) \
505
+ AT_DISPATCH_SWITCH(TYPE, NAME, AT_DISPATCH_CASE_QINT_BYTE_TYPES(__VA_ARGS__))
506
+
507
+ #define AT_DISPATCH_CASE_QINT_AND_SUB_BYTE_TYPES(...) \
508
+ AT_QINT_SUB_BYTE_PRIVATE_CASE_TYPE( \
509
+ at::kQInt8, at::qint8, CHAR_BIT, SCHAR_MIN, SCHAR_MAX, __VA_ARGS__) \
510
+ AT_QINT_SUB_BYTE_PRIVATE_CASE_TYPE( \
511
+ at::kQUInt8, at::quint8, CHAR_BIT, 0, UCHAR_MAX, __VA_ARGS__) \
512
+ AT_QINT_SUB_BYTE_PRIVATE_CASE_TYPE( \
513
+ at::kQInt32, \
514
+ at::qint32, \
515
+ CHAR_BIT * sizeof(int), \
516
+ INT_MIN, \
517
+ INT_MAX, \
518
+ __VA_ARGS__) \
519
+ AT_QINT_SUB_BYTE_PRIVATE_CASE_TYPE( \
520
+ at::kQUInt4x2, at::quint4x2, 4, 0, 15, __VA_ARGS__) \
521
+ AT_QINT_SUB_BYTE_PRIVATE_CASE_TYPE( \
522
+ at::kQUInt2x4, at::quint2x4, 2, 0, 3, __VA_ARGS__)
523
+
524
+ #define AT_DISPATCH_QINT_AND_SUB_BYTE_TYPES(TYPE, NAME, ...) \
525
+ AT_DISPATCH_SWITCH( \
526
+ TYPE, NAME, AT_DISPATCH_CASE_QINT_AND_SUB_BYTE_TYPES(__VA_ARGS__))
527
+
528
+ #define AT_DISPATCH_CASE_ALL_TYPES_AND_COMPLEX(...) \
529
+ AT_DISPATCH_CASE_ALL_TYPES(__VA_ARGS__) \
530
+ AT_DISPATCH_CASE_COMPLEX_TYPES(__VA_ARGS__)
531
+
532
+ #define AT_DISPATCH_ALL_TYPES_AND_COMPLEX(TYPE, NAME, ...) \
533
+ AT_DISPATCH_SWITCH( \
534
+ TYPE, NAME, AT_DISPATCH_CASE_ALL_TYPES_AND_COMPLEX(__VA_ARGS__))
535
+
536
+ #define AT_DISPATCH_CASE_ALL_TYPES_AND(SCALARTYPE, ...) \
537
+ AT_DISPATCH_CASE_ALL_TYPES(__VA_ARGS__) \
538
+ AT_DISPATCH_CASE(SCALARTYPE, __VA_ARGS__)
539
+
540
+ #define AT_DISPATCH_ALL_TYPES_AND(SCALARTYPE, TYPE, NAME, ...) \
541
+ AT_DISPATCH_SWITCH( \
542
+ TYPE, NAME, AT_DISPATCH_CASE_ALL_TYPES_AND(SCALARTYPE, __VA_ARGS__))
543
+
544
+ #define AT_DISPATCH_CASE_ALL_TYPES_AND_COMPLEX_AND(SCALARTYPE, ...) \
545
+ AT_DISPATCH_CASE_ALL_TYPES_AND_COMPLEX(__VA_ARGS__) \
546
+ AT_DISPATCH_CASE(SCALARTYPE, __VA_ARGS__)
547
+
548
+ #define AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND(SCALARTYPE, TYPE, NAME, ...) \
549
+ AT_DISPATCH_SWITCH( \
550
+ TYPE, \
551
+ NAME, \
552
+ AT_DISPATCH_CASE_ALL_TYPES_AND_COMPLEX_AND(SCALARTYPE, __VA_ARGS__))
553
+
554
+ #define AT_DISPATCH_CASE_ALL_TYPES_AND2(SCALARTYPE1, SCALARTYPE2, ...) \
555
+ AT_DISPATCH_CASE_ALL_TYPES(__VA_ARGS__) \
556
+ AT_DISPATCH_CASE(SCALARTYPE1, __VA_ARGS__) \
557
+ AT_DISPATCH_CASE(SCALARTYPE2, __VA_ARGS__)
558
+
559
+ #define AT_DISPATCH_ALL_TYPES_AND2(SCALARTYPE1, SCALARTYPE2, TYPE, NAME, ...) \
560
+ AT_DISPATCH_SWITCH( \
561
+ TYPE, \
562
+ NAME, \
563
+ AT_DISPATCH_CASE_ALL_TYPES_AND2(SCALARTYPE1, SCALARTYPE2, __VA_ARGS__))
564
+
565
+ #define AT_DISPATCH_CASE_ALL_TYPES_AND_COMPLEX_AND2( \
566
+ SCALARTYPE1, SCALARTYPE2, ...) \
567
+ AT_DISPATCH_CASE_ALL_TYPES_AND_COMPLEX(__VA_ARGS__) \
568
+ AT_DISPATCH_CASE(SCALARTYPE1, __VA_ARGS__) \
569
+ AT_DISPATCH_CASE(SCALARTYPE2, __VA_ARGS__)
570
+
571
+ #define AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND2( \
572
+ SCALARTYPE1, SCALARTYPE2, TYPE, NAME, ...) \
573
+ AT_DISPATCH_SWITCH( \
574
+ TYPE, \
575
+ NAME, \
576
+ AT_DISPATCH_CASE_ALL_TYPES_AND_COMPLEX_AND2( \
577
+ SCALARTYPE1, SCALARTYPE2, __VA_ARGS__))
578
+
579
+ #define AT_DISPATCH_CASE_ALL_TYPES_AND3( \
580
+ SCALARTYPE1, SCALARTYPE2, SCALARTYPE3, ...) \
581
+ AT_DISPATCH_CASE_ALL_TYPES(__VA_ARGS__) \
582
+ AT_DISPATCH_CASE(SCALARTYPE1, __VA_ARGS__) \
583
+ AT_DISPATCH_CASE(SCALARTYPE2, __VA_ARGS__) \
584
+ AT_DISPATCH_CASE(SCALARTYPE3, __VA_ARGS__)
585
+
586
+ #define AT_DISPATCH_ALL_TYPES_AND3( \
587
+ SCALARTYPE1, SCALARTYPE2, SCALARTYPE3, TYPE, NAME, ...) \
588
+ AT_DISPATCH_SWITCH( \
589
+ TYPE, \
590
+ NAME, \
591
+ AT_DISPATCH_CASE_ALL_TYPES_AND3( \
592
+ SCALARTYPE1, SCALARTYPE2, SCALARTYPE3, __VA_ARGS__))
593
+
594
+ #define AT_DISPATCH_CASE_ALL_TYPES_AND_COMPLEX_AND3( \
595
+ SCALARTYPE1, SCALARTYPE2, SCALARTYPE3, ...) \
596
+ AT_DISPATCH_CASE_ALL_TYPES_AND_COMPLEX(__VA_ARGS__) \
597
+ AT_DISPATCH_CASE(SCALARTYPE1, __VA_ARGS__) \
598
+ AT_DISPATCH_CASE(SCALARTYPE2, __VA_ARGS__) \
599
+ AT_DISPATCH_CASE(SCALARTYPE3, __VA_ARGS__)
600
+
601
+ #define AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND3( \
602
+ SCALARTYPE1, SCALARTYPE2, SCALARTYPE3, TYPE, NAME, ...) \
603
+ AT_DISPATCH_SWITCH( \
604
+ TYPE, \
605
+ NAME, \
606
+ AT_DISPATCH_CASE_ALL_TYPES_AND_COMPLEX_AND3( \
607
+ SCALARTYPE1, SCALARTYPE2, SCALARTYPE3, __VA_ARGS__))
608
+
609
+ #define AT_DISPATCH_CASE_ALL_TYPES_AND_COMPLEX_AND4( \
610
+ SCALARTYPE1, SCALARTYPE2, SCALARTYPE3, SCALARTYPE4, ...) \
611
+ AT_DISPATCH_CASE_ALL_TYPES_AND_COMPLEX(__VA_ARGS__) \
612
+ AT_DISPATCH_CASE(SCALARTYPE1, __VA_ARGS__) \
613
+ AT_DISPATCH_CASE(SCALARTYPE2, __VA_ARGS__) \
614
+ AT_DISPATCH_CASE(SCALARTYPE3, __VA_ARGS__) \
615
+ AT_DISPATCH_CASE(SCALARTYPE4, __VA_ARGS__)
616
+
617
+ #define AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND4( \
618
+ SCALARTYPE1, SCALARTYPE2, SCALARTYPE3, SCALARTYPE4, TYPE, NAME, ...) \
619
+ AT_DISPATCH_SWITCH( \
620
+ TYPE, \
621
+ NAME, \
622
+ AT_DISPATCH_CASE_ALL_TYPES_AND_COMPLEX_AND4( \
623
+ SCALARTYPE1, SCALARTYPE2, SCALARTYPE3, SCALARTYPE4, __VA_ARGS__))
624
+
625
+ #define AT_DISPATCH_CASE_ALL_TYPES_AND_COMPLEX_AND5( \
626
+ SCALARTYPE1, SCALARTYPE2, SCALARTYPE3, SCALARTYPE4, SCALARTYPE5, ...) \
627
+ AT_DISPATCH_CASE_ALL_TYPES_AND_COMPLEX(__VA_ARGS__) \
628
+ AT_DISPATCH_CASE(SCALARTYPE1, __VA_ARGS__) \
629
+ AT_DISPATCH_CASE(SCALARTYPE2, __VA_ARGS__) \
630
+ AT_DISPATCH_CASE(SCALARTYPE3, __VA_ARGS__) \
631
+ AT_DISPATCH_CASE(SCALARTYPE4, __VA_ARGS__) \
632
+ AT_DISPATCH_CASE(SCALARTYPE5, __VA_ARGS__)
633
+
634
+ #define AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND5( \
635
+ SCALARTYPE1, \
636
+ SCALARTYPE2, \
637
+ SCALARTYPE3, \
638
+ SCALARTYPE4, \
639
+ SCALARTYPE5, \
640
+ TYPE, \
641
+ NAME, \
642
+ ...) \
643
+ AT_DISPATCH_SWITCH( \
644
+ TYPE, \
645
+ NAME, \
646
+ AT_DISPATCH_CASE_ALL_TYPES_AND_COMPLEX_AND5( \
647
+ SCALARTYPE1, \
648
+ SCALARTYPE2, \
649
+ SCALARTYPE3, \
650
+ SCALARTYPE4, \
651
+ SCALARTYPE5, \
652
+ __VA_ARGS__))
653
+
654
+ #define AT_DISPATCH_CASE_ALL_TYPES_AND_COMPLEX_AND6( \
655
+ SCALARTYPE1, \
656
+ SCALARTYPE2, \
657
+ SCALARTYPE3, \
658
+ SCALARTYPE4, \
659
+ SCALARTYPE5, \
660
+ SCALARTYPE6, \
661
+ ...) \
662
+ AT_DISPATCH_CASE_ALL_TYPES_AND_COMPLEX(__VA_ARGS__) \
663
+ AT_DISPATCH_CASE(SCALARTYPE1, __VA_ARGS__) \
664
+ AT_DISPATCH_CASE(SCALARTYPE2, __VA_ARGS__) \
665
+ AT_DISPATCH_CASE(SCALARTYPE3, __VA_ARGS__) \
666
+ AT_DISPATCH_CASE(SCALARTYPE4, __VA_ARGS__) \
667
+ AT_DISPATCH_CASE(SCALARTYPE5, __VA_ARGS__) \
668
+ AT_DISPATCH_CASE(SCALARTYPE6, __VA_ARGS__)
669
+
670
+ #define AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND6( \
671
+ SCALARTYPE1, \
672
+ SCALARTYPE2, \
673
+ SCALARTYPE3, \
674
+ SCALARTYPE4, \
675
+ SCALARTYPE5, \
676
+ SCALARTYPE6, \
677
+ TYPE, \
678
+ NAME, \
679
+ ...) \
680
+ AT_DISPATCH_SWITCH( \
681
+ TYPE, \
682
+ NAME, \
683
+ AT_DISPATCH_CASE_ALL_TYPES_AND_COMPLEX_AND6( \
684
+ SCALARTYPE1, \
685
+ SCALARTYPE2, \
686
+ SCALARTYPE3, \
687
+ SCALARTYPE4, \
688
+ SCALARTYPE5, \
689
+ SCALARTYPE6, \
690
+ __VA_ARGS__))
691
+
692
+ #define AT_DISPATCH_CASE_ALL_TYPES_AND_COMPLEX_AND7( \
693
+ SCALARTYPE1, \
694
+ SCALARTYPE2, \
695
+ SCALARTYPE3, \
696
+ SCALARTYPE4, \
697
+ SCALARTYPE5, \
698
+ SCALARTYPE6, \
699
+ SCALARTYPE7, \
700
+ ...) \
701
+ AT_DISPATCH_CASE_ALL_TYPES_AND_COMPLEX(__VA_ARGS__) \
702
+ AT_DISPATCH_CASE(SCALARTYPE1, __VA_ARGS__) \
703
+ AT_DISPATCH_CASE(SCALARTYPE2, __VA_ARGS__) \
704
+ AT_DISPATCH_CASE(SCALARTYPE3, __VA_ARGS__) \
705
+ AT_DISPATCH_CASE(SCALARTYPE4, __VA_ARGS__) \
706
+ AT_DISPATCH_CASE(SCALARTYPE5, __VA_ARGS__) \
707
+ AT_DISPATCH_CASE(SCALARTYPE6, __VA_ARGS__) \
708
+ AT_DISPATCH_CASE(SCALARTYPE7, __VA_ARGS__)
709
+
710
+ #define AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND7( \
711
+ SCALARTYPE1, \
712
+ SCALARTYPE2, \
713
+ SCALARTYPE3, \
714
+ SCALARTYPE4, \
715
+ SCALARTYPE5, \
716
+ SCALARTYPE6, \
717
+ SCALARTYPE7, \
718
+ TYPE, \
719
+ NAME, \
720
+ ...) \
721
+ AT_DISPATCH_SWITCH( \
722
+ TYPE, \
723
+ NAME, \
724
+ AT_DISPATCH_CASE_ALL_TYPES_AND_COMPLEX_AND7( \
725
+ SCALARTYPE1, \
726
+ SCALARTYPE2, \
727
+ SCALARTYPE3, \
728
+ SCALARTYPE4, \
729
+ SCALARTYPE5, \
730
+ SCALARTYPE6, \
731
+ SCALARTYPE7, \
732
+ __VA_ARGS__))
733
+
734
+ #define AT_DISPATCH_CASE_ALL_TYPES_AND_COMPLEX_AND8( \
735
+ SCALARTYPE1, \
736
+ SCALARTYPE2, \
737
+ SCALARTYPE3, \
738
+ SCALARTYPE4, \
739
+ SCALARTYPE5, \
740
+ SCALARTYPE6, \
741
+ SCALARTYPE7, \
742
+ SCALARTYPE8, \
743
+ ...) \
744
+ AT_DISPATCH_CASE_ALL_TYPES_AND_COMPLEX(__VA_ARGS__) \
745
+ AT_DISPATCH_CASE(SCALARTYPE1, __VA_ARGS__) \
746
+ AT_DISPATCH_CASE(SCALARTYPE2, __VA_ARGS__) \
747
+ AT_DISPATCH_CASE(SCALARTYPE3, __VA_ARGS__) \
748
+ AT_DISPATCH_CASE(SCALARTYPE4, __VA_ARGS__) \
749
+ AT_DISPATCH_CASE(SCALARTYPE5, __VA_ARGS__) \
750
+ AT_DISPATCH_CASE(SCALARTYPE6, __VA_ARGS__) \
751
+ AT_DISPATCH_CASE(SCALARTYPE7, __VA_ARGS__) \
752
+ AT_DISPATCH_CASE(SCALARTYPE8, __VA_ARGS__)
753
+
754
+ #define AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND8( \
755
+ SCALARTYPE1, \
756
+ SCALARTYPE2, \
757
+ SCALARTYPE3, \
758
+ SCALARTYPE4, \
759
+ SCALARTYPE5, \
760
+ SCALARTYPE6, \
761
+ SCALARTYPE7, \
762
+ SCALARTYPE8, \
763
+ TYPE, \
764
+ NAME, \
765
+ ...) \
766
+ AT_DISPATCH_SWITCH( \
767
+ TYPE, \
768
+ NAME, \
769
+ AT_DISPATCH_CASE_ALL_TYPES_AND_COMPLEX_AND8( \
770
+ SCALARTYPE1, \
771
+ SCALARTYPE2, \
772
+ SCALARTYPE3, \
773
+ SCALARTYPE4, \
774
+ SCALARTYPE5, \
775
+ SCALARTYPE6, \
776
+ SCALARTYPE7, \
777
+ SCALARTYPE8, \
778
+ __VA_ARGS__))
779
+
780
+ #define AT_DISPATCH_CASE_BIT_TYPES(...) \
781
+ AT_DISPATCH_CASE(at::ScalarType::Bits1x8, __VA_ARGS__) \
782
+ AT_DISPATCH_CASE(at::ScalarType::Bits2x4, __VA_ARGS__) \
783
+ AT_DISPATCH_CASE(at::ScalarType::Bits4x2, __VA_ARGS__) \
784
+ AT_DISPATCH_CASE(at::ScalarType::Bits8, __VA_ARGS__) \
785
+ AT_DISPATCH_CASE(at::ScalarType::Bits16, __VA_ARGS__)
786
+
787
+ #define AT_DISPATCH_BIT_TYPES(TYPE, NAME, ...) \
788
+ AT_DISPATCH_SWITCH(TYPE, NAME, AT_DISPATCH_CASE_BIT_TYPES(__VA_ARGS__))
789
+
790
+ #define AT_DISPATCH_INDEX_TYPES(TYPE, NAME, ...) \
791
+ AT_DISPATCH_SWITCH( \
792
+ TYPE, \
793
+ NAME, \
794
+ AT_PRIVATE_CASE_TYPE_USING_HINT( \
795
+ at::ScalarType::Int, index_t, __VA_ARGS__) \
796
+ AT_PRIVATE_CASE_TYPE_USING_HINT( \
797
+ at::ScalarType::Long, index_t, __VA_ARGS__))
798
+
799
+ // ----------------------------------------------------------------------------
800
+ // DEPRECATED MACROS, DON'T USE THESE
801
+ // ----------------------------------------------------------------------------
802
+
803
+ #define AT_DISPATCH_ALL_TYPES_AND_HALF(TYPE, NAME, ...) \
804
+ detail::deprecated_AT_DISPATCH_ALL_TYPES_AND_HALF(); \
805
+ AT_DISPATCH_SWITCH( \
806
+ TYPE, \
807
+ NAME, \
808
+ AT_DISPATCH_CASE_ALL_TYPES_AND(at::ScalarType::Half, __VA_ARGS__))
venv/lib/python3.10/site-packages/torch/include/ATen/Dispatch_v2.h ADDED
@@ -0,0 +1,186 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #include <ATen/Dispatch.h>
2
+
3
+ // This is a new implementation of the AT_DISPATCH macro family from
4
+ // ATen/Dispatch.h
5
+ //
6
+ // The intended usage is:
7
+ //
8
+ // ScalarType scalar_type;
9
+ //
10
+ // AT_DISPATCH_V2(
11
+ // scalar_type,
12
+ // "debug string",
13
+ // AT_WRAP([&] {
14
+ // ... code to specialize with scalar_t ...
15
+ // }),
16
+ // kHalf,
17
+ // AT_EXPAND(AT_ALL_TYPES),
18
+ // ... as many types arguments as needed ...
19
+ // )
20
+ //
21
+ // For example, given an old style:
22
+ //
23
+ // AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND2(
24
+ // kComplexHalf,
25
+ // kHalf,
26
+ // self.scalar_type(),
27
+ // "_local_scalar_dense_cpu",
28
+ // [&] {
29
+ // scalar_t value = *self.data_ptr<scalar_t>();
30
+ // r = Scalar(value);
31
+ // }
32
+ // )
33
+ //
34
+ // You now write:
35
+ //
36
+ // AT_DISPATCH_V2(
37
+ // self.scalar_type(),
38
+ // "_local_scalar_dense_cpu",
39
+ // AT_WRAP([&] {
40
+ // scalar_t value = *self.data_ptr<scalar_t>();
41
+ // r = Scalar(value);
42
+ // }),
43
+ // AT_EXPAND(AT_ALL_TYPES),
44
+ // AT_EXPAND(AT_COMPLEX_TYPES),
45
+ // kComplexHalf,
46
+ // kHalf,
47
+ // )
48
+ //
49
+ // Notably, it sports the following improvements:
50
+ //
51
+ // - It is not necessary to specify the arity (e.g.,
52
+ // AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES_AND{2,3,4,...})
53
+ // when using the macro
54
+ //
55
+ // - It is not necessary to specify each dtype individually; if
56
+ // there is a set of related dtypes and you want to dispatch
57
+ // over all of them, you can simply say, e.g., AT_EXPAND(AT_INTEGRAL_TYPES)
58
+ // in your argument list.
59
+ //
60
+ // However, you must remember to wrap the payload body in AT_WRAP, or commas
61
+ // inside your lambda will be improperly handled. Furthermore, if you more
62
+ // entries to ScalarType than can be supported by this macro, it will fail
63
+ // with an obscure error (due to attempting to concatenate AT_AP with
64
+ // something that is not a number).
65
+ //
66
+ // The implementation strategy is to use the count arguments trick
67
+ // (e.g., as described in https://stackoverflow.com/a/2124385/23845)
68
+ // to discover how many dtypes have been passed, and then dispatch to a
69
+ // hand-written macro for each arity that applies as many DISPATCH_CASE as
70
+ // necessary. The hand-written macros can be regenerated for other arities
71
+ // with the script below.
72
+ //
73
+ // There is some delicacy in the implementation in controlling when
74
+ // macro expansion occurs, mediated with AT_EXPAND and AT_GUARD. I mostly
75
+ // relied on GPT4 to help me get it right.
76
+
77
+ // Public API macros
78
+
79
+ // See documentation above
80
+ #define AT_DISPATCH_V2(TYPE, NAME, BODY, ...) \
81
+ AT_DISPATCH_SWITCH(TYPE, NAME, AT_AP_VAR(AT_WRAP(BODY), TYPE, __VA_ARGS__))
82
+
83
+ // This macro lets you pass an arbitrary expression that may contain internal
84
+ // commas to another macro without having the commas causing the expression
85
+ // to be interpreted as being multiple arguments
86
+ #define AT_WRAP(...) __VA_ARGS__
87
+
88
+ #define AT_FLOAT8_TYPES \
89
+ c10::kFloat8_e5m2, c10::kFloat8_e5m2fnuz, c10::kFloat8_e4m3fn, \
90
+ c10::kFloat8_e4m3fnuz
91
+
92
+ #define AT_INTEGRAL_TYPES \
93
+ c10::kByte, c10::kChar, c10::kInt, c10::kLong, c10::kShort
94
+ #define AT_FLOATING_TYPES c10::kDouble, c10::kFloat
95
+ #define AT_BAREBONES_UNSIGNED_TYPES c10::kUInt16, c10::kUInt32, c10::kUInt64
96
+ #define AT_INTEGRAL_TYPES_V2 \
97
+ AT_EXPAND(AT_INTEGRAL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES)
98
+ #define AT_COMPLEX_TYPES c10::kComplexDouble, c10::kComplexFloat
99
+ #define AT_QINT_TYPES c10::kQInt8, c10::kQUInt8, c10::kQInt32
100
+ // NB: not *actually* all types
101
+ #define AT_ALL_TYPES AT_EXPAND(AT_INTEGRAL_TYPES), AT_EXPAND(AT_FLOATING_TYPES)
102
+ #define AT_ALL_TYPES_AND_COMPLEX \
103
+ AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_COMPLEX_TYPES)
104
+
105
+ // Helper macros
106
+
107
+ #define AT_AP_VAR(N, T, ...) \
108
+ AT_EXPAND(AT_CONCAT(AT_AP, AT_NUM_ARGS(__VA_ARGS__))(AT_WRAP(N), __VA_ARGS__))
109
+ #define AT_CONCAT(a, b) AT_CONCAT_AUX(a, b)
110
+ #define AT_CONCAT_AUX(a, b) a##b
111
+ #define AT_EXPAND(X) X
112
+
113
+ // Ensure we never have too many scalar types for the expansion here to
114
+ // support. To bump this, you must regenerate the macros below.
115
+ static_assert(static_cast<int>(c10::ScalarType::NumOptions) < 45);
116
+
117
+ // Python code to regenerate generate code below:
118
+ #if 0
119
+
120
+ num_args = 45
121
+
122
+ nums = ', '.join(str(i) for i in reversed(range(num_args+1)))
123
+ args = ', '.join(f'_{i}' for i in range(1, num_args+1))
124
+
125
+ print(f'#define AT_NUM_ARGS(...) AT_EXPAND(AT_NUM_ARGS_AUX(__VA_ARGS__, {nums}))')
126
+ print(f'#define AT_NUM_ARGS_AUX({args}, N, ...) N')
127
+
128
+ for i in range(1, num_args+1):
129
+ args = ', '.join(f'_{i}' for i in range(1, i+1))
130
+ cases = ' '.join([f'AT_DISPATCH_CASE(_{j}, N)' for j in range(1, i+1)])
131
+ print(f'#define AT_AP{i}(N, {args}) {cases}')
132
+
133
+ #endif
134
+
135
+ // Begin generated code
136
+ // clang-format off
137
+
138
+ #define AT_NUM_ARGS(...) AT_EXPAND(AT_NUM_ARGS_AUX(__VA_ARGS__, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0))
139
+ #define AT_NUM_ARGS_AUX(_1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, _15, _16, _17, _18, _19, _20, _21, _22, _23, _24, _25, _26, _27, _28, _29, _30, _31, _32, _33, _34, _35, _36, _37, _38, _39, _40, _41, _42, _43, _44, _45, N, ...) N
140
+ #define AT_AP1(N, _1) AT_DISPATCH_CASE(_1, N)
141
+ #define AT_AP2(N, _1, _2) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N)
142
+ #define AT_AP3(N, _1, _2, _3) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N) AT_DISPATCH_CASE(_3, N)
143
+ #define AT_AP4(N, _1, _2, _3, _4) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N) AT_DISPATCH_CASE(_3, N) AT_DISPATCH_CASE(_4, N)
144
+ #define AT_AP5(N, _1, _2, _3, _4, _5) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N) AT_DISPATCH_CASE(_3, N) AT_DISPATCH_CASE(_4, N) AT_DISPATCH_CASE(_5, N)
145
+ #define AT_AP6(N, _1, _2, _3, _4, _5, _6) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N) AT_DISPATCH_CASE(_3, N) AT_DISPATCH_CASE(_4, N) AT_DISPATCH_CASE(_5, N) AT_DISPATCH_CASE(_6, N)
146
+ #define AT_AP7(N, _1, _2, _3, _4, _5, _6, _7) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N) AT_DISPATCH_CASE(_3, N) AT_DISPATCH_CASE(_4, N) AT_DISPATCH_CASE(_5, N) AT_DISPATCH_CASE(_6, N) AT_DISPATCH_CASE(_7, N)
147
+ #define AT_AP8(N, _1, _2, _3, _4, _5, _6, _7, _8) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N) AT_DISPATCH_CASE(_3, N) AT_DISPATCH_CASE(_4, N) AT_DISPATCH_CASE(_5, N) AT_DISPATCH_CASE(_6, N) AT_DISPATCH_CASE(_7, N) AT_DISPATCH_CASE(_8, N)
148
+ #define AT_AP9(N, _1, _2, _3, _4, _5, _6, _7, _8, _9) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N) AT_DISPATCH_CASE(_3, N) AT_DISPATCH_CASE(_4, N) AT_DISPATCH_CASE(_5, N) AT_DISPATCH_CASE(_6, N) AT_DISPATCH_CASE(_7, N) AT_DISPATCH_CASE(_8, N) AT_DISPATCH_CASE(_9, N)
149
+ #define AT_AP10(N, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N) AT_DISPATCH_CASE(_3, N) AT_DISPATCH_CASE(_4, N) AT_DISPATCH_CASE(_5, N) AT_DISPATCH_CASE(_6, N) AT_DISPATCH_CASE(_7, N) AT_DISPATCH_CASE(_8, N) AT_DISPATCH_CASE(_9, N) AT_DISPATCH_CASE(_10, N)
150
+ #define AT_AP11(N, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N) AT_DISPATCH_CASE(_3, N) AT_DISPATCH_CASE(_4, N) AT_DISPATCH_CASE(_5, N) AT_DISPATCH_CASE(_6, N) AT_DISPATCH_CASE(_7, N) AT_DISPATCH_CASE(_8, N) AT_DISPATCH_CASE(_9, N) AT_DISPATCH_CASE(_10, N) AT_DISPATCH_CASE(_11, N)
151
+ #define AT_AP12(N, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N) AT_DISPATCH_CASE(_3, N) AT_DISPATCH_CASE(_4, N) AT_DISPATCH_CASE(_5, N) AT_DISPATCH_CASE(_6, N) AT_DISPATCH_CASE(_7, N) AT_DISPATCH_CASE(_8, N) AT_DISPATCH_CASE(_9, N) AT_DISPATCH_CASE(_10, N) AT_DISPATCH_CASE(_11, N) AT_DISPATCH_CASE(_12, N)
152
+ #define AT_AP13(N, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N) AT_DISPATCH_CASE(_3, N) AT_DISPATCH_CASE(_4, N) AT_DISPATCH_CASE(_5, N) AT_DISPATCH_CASE(_6, N) AT_DISPATCH_CASE(_7, N) AT_DISPATCH_CASE(_8, N) AT_DISPATCH_CASE(_9, N) AT_DISPATCH_CASE(_10, N) AT_DISPATCH_CASE(_11, N) AT_DISPATCH_CASE(_12, N) AT_DISPATCH_CASE(_13, N)
153
+ #define AT_AP14(N, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N) AT_DISPATCH_CASE(_3, N) AT_DISPATCH_CASE(_4, N) AT_DISPATCH_CASE(_5, N) AT_DISPATCH_CASE(_6, N) AT_DISPATCH_CASE(_7, N) AT_DISPATCH_CASE(_8, N) AT_DISPATCH_CASE(_9, N) AT_DISPATCH_CASE(_10, N) AT_DISPATCH_CASE(_11, N) AT_DISPATCH_CASE(_12, N) AT_DISPATCH_CASE(_13, N) AT_DISPATCH_CASE(_14, N)
154
+ #define AT_AP15(N, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, _15) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N) AT_DISPATCH_CASE(_3, N) AT_DISPATCH_CASE(_4, N) AT_DISPATCH_CASE(_5, N) AT_DISPATCH_CASE(_6, N) AT_DISPATCH_CASE(_7, N) AT_DISPATCH_CASE(_8, N) AT_DISPATCH_CASE(_9, N) AT_DISPATCH_CASE(_10, N) AT_DISPATCH_CASE(_11, N) AT_DISPATCH_CASE(_12, N) AT_DISPATCH_CASE(_13, N) AT_DISPATCH_CASE(_14, N) AT_DISPATCH_CASE(_15, N)
155
+ #define AT_AP16(N, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, _15, _16) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N) AT_DISPATCH_CASE(_3, N) AT_DISPATCH_CASE(_4, N) AT_DISPATCH_CASE(_5, N) AT_DISPATCH_CASE(_6, N) AT_DISPATCH_CASE(_7, N) AT_DISPATCH_CASE(_8, N) AT_DISPATCH_CASE(_9, N) AT_DISPATCH_CASE(_10, N) AT_DISPATCH_CASE(_11, N) AT_DISPATCH_CASE(_12, N) AT_DISPATCH_CASE(_13, N) AT_DISPATCH_CASE(_14, N) AT_DISPATCH_CASE(_15, N) AT_DISPATCH_CASE(_16, N)
156
+ #define AT_AP17(N, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, _15, _16, _17) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N) AT_DISPATCH_CASE(_3, N) AT_DISPATCH_CASE(_4, N) AT_DISPATCH_CASE(_5, N) AT_DISPATCH_CASE(_6, N) AT_DISPATCH_CASE(_7, N) AT_DISPATCH_CASE(_8, N) AT_DISPATCH_CASE(_9, N) AT_DISPATCH_CASE(_10, N) AT_DISPATCH_CASE(_11, N) AT_DISPATCH_CASE(_12, N) AT_DISPATCH_CASE(_13, N) AT_DISPATCH_CASE(_14, N) AT_DISPATCH_CASE(_15, N) AT_DISPATCH_CASE(_16, N) AT_DISPATCH_CASE(_17, N)
157
+ #define AT_AP18(N, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, _15, _16, _17, _18) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N) AT_DISPATCH_CASE(_3, N) AT_DISPATCH_CASE(_4, N) AT_DISPATCH_CASE(_5, N) AT_DISPATCH_CASE(_6, N) AT_DISPATCH_CASE(_7, N) AT_DISPATCH_CASE(_8, N) AT_DISPATCH_CASE(_9, N) AT_DISPATCH_CASE(_10, N) AT_DISPATCH_CASE(_11, N) AT_DISPATCH_CASE(_12, N) AT_DISPATCH_CASE(_13, N) AT_DISPATCH_CASE(_14, N) AT_DISPATCH_CASE(_15, N) AT_DISPATCH_CASE(_16, N) AT_DISPATCH_CASE(_17, N) AT_DISPATCH_CASE(_18, N)
158
+ #define AT_AP19(N, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, _15, _16, _17, _18, _19) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N) AT_DISPATCH_CASE(_3, N) AT_DISPATCH_CASE(_4, N) AT_DISPATCH_CASE(_5, N) AT_DISPATCH_CASE(_6, N) AT_DISPATCH_CASE(_7, N) AT_DISPATCH_CASE(_8, N) AT_DISPATCH_CASE(_9, N) AT_DISPATCH_CASE(_10, N) AT_DISPATCH_CASE(_11, N) AT_DISPATCH_CASE(_12, N) AT_DISPATCH_CASE(_13, N) AT_DISPATCH_CASE(_14, N) AT_DISPATCH_CASE(_15, N) AT_DISPATCH_CASE(_16, N) AT_DISPATCH_CASE(_17, N) AT_DISPATCH_CASE(_18, N) AT_DISPATCH_CASE(_19, N)
159
+ #define AT_AP20(N, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, _15, _16, _17, _18, _19, _20) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N) AT_DISPATCH_CASE(_3, N) AT_DISPATCH_CASE(_4, N) AT_DISPATCH_CASE(_5, N) AT_DISPATCH_CASE(_6, N) AT_DISPATCH_CASE(_7, N) AT_DISPATCH_CASE(_8, N) AT_DISPATCH_CASE(_9, N) AT_DISPATCH_CASE(_10, N) AT_DISPATCH_CASE(_11, N) AT_DISPATCH_CASE(_12, N) AT_DISPATCH_CASE(_13, N) AT_DISPATCH_CASE(_14, N) AT_DISPATCH_CASE(_15, N) AT_DISPATCH_CASE(_16, N) AT_DISPATCH_CASE(_17, N) AT_DISPATCH_CASE(_18, N) AT_DISPATCH_CASE(_19, N) AT_DISPATCH_CASE(_20, N)
160
+ #define AT_AP21(N, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, _15, _16, _17, _18, _19, _20, _21) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N) AT_DISPATCH_CASE(_3, N) AT_DISPATCH_CASE(_4, N) AT_DISPATCH_CASE(_5, N) AT_DISPATCH_CASE(_6, N) AT_DISPATCH_CASE(_7, N) AT_DISPATCH_CASE(_8, N) AT_DISPATCH_CASE(_9, N) AT_DISPATCH_CASE(_10, N) AT_DISPATCH_CASE(_11, N) AT_DISPATCH_CASE(_12, N) AT_DISPATCH_CASE(_13, N) AT_DISPATCH_CASE(_14, N) AT_DISPATCH_CASE(_15, N) AT_DISPATCH_CASE(_16, N) AT_DISPATCH_CASE(_17, N) AT_DISPATCH_CASE(_18, N) AT_DISPATCH_CASE(_19, N) AT_DISPATCH_CASE(_20, N) AT_DISPATCH_CASE(_21, N)
161
+ #define AT_AP22(N, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, _15, _16, _17, _18, _19, _20, _21, _22) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N) AT_DISPATCH_CASE(_3, N) AT_DISPATCH_CASE(_4, N) AT_DISPATCH_CASE(_5, N) AT_DISPATCH_CASE(_6, N) AT_DISPATCH_CASE(_7, N) AT_DISPATCH_CASE(_8, N) AT_DISPATCH_CASE(_9, N) AT_DISPATCH_CASE(_10, N) AT_DISPATCH_CASE(_11, N) AT_DISPATCH_CASE(_12, N) AT_DISPATCH_CASE(_13, N) AT_DISPATCH_CASE(_14, N) AT_DISPATCH_CASE(_15, N) AT_DISPATCH_CASE(_16, N) AT_DISPATCH_CASE(_17, N) AT_DISPATCH_CASE(_18, N) AT_DISPATCH_CASE(_19, N) AT_DISPATCH_CASE(_20, N) AT_DISPATCH_CASE(_21, N) AT_DISPATCH_CASE(_22, N)
162
+ #define AT_AP23(N, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, _15, _16, _17, _18, _19, _20, _21, _22, _23) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N) AT_DISPATCH_CASE(_3, N) AT_DISPATCH_CASE(_4, N) AT_DISPATCH_CASE(_5, N) AT_DISPATCH_CASE(_6, N) AT_DISPATCH_CASE(_7, N) AT_DISPATCH_CASE(_8, N) AT_DISPATCH_CASE(_9, N) AT_DISPATCH_CASE(_10, N) AT_DISPATCH_CASE(_11, N) AT_DISPATCH_CASE(_12, N) AT_DISPATCH_CASE(_13, N) AT_DISPATCH_CASE(_14, N) AT_DISPATCH_CASE(_15, N) AT_DISPATCH_CASE(_16, N) AT_DISPATCH_CASE(_17, N) AT_DISPATCH_CASE(_18, N) AT_DISPATCH_CASE(_19, N) AT_DISPATCH_CASE(_20, N) AT_DISPATCH_CASE(_21, N) AT_DISPATCH_CASE(_22, N) AT_DISPATCH_CASE(_23, N)
163
+ #define AT_AP24(N, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, _15, _16, _17, _18, _19, _20, _21, _22, _23, _24) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N) AT_DISPATCH_CASE(_3, N) AT_DISPATCH_CASE(_4, N) AT_DISPATCH_CASE(_5, N) AT_DISPATCH_CASE(_6, N) AT_DISPATCH_CASE(_7, N) AT_DISPATCH_CASE(_8, N) AT_DISPATCH_CASE(_9, N) AT_DISPATCH_CASE(_10, N) AT_DISPATCH_CASE(_11, N) AT_DISPATCH_CASE(_12, N) AT_DISPATCH_CASE(_13, N) AT_DISPATCH_CASE(_14, N) AT_DISPATCH_CASE(_15, N) AT_DISPATCH_CASE(_16, N) AT_DISPATCH_CASE(_17, N) AT_DISPATCH_CASE(_18, N) AT_DISPATCH_CASE(_19, N) AT_DISPATCH_CASE(_20, N) AT_DISPATCH_CASE(_21, N) AT_DISPATCH_CASE(_22, N) AT_DISPATCH_CASE(_23, N) AT_DISPATCH_CASE(_24, N)
164
+ #define AT_AP25(N, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, _15, _16, _17, _18, _19, _20, _21, _22, _23, _24, _25) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N) AT_DISPATCH_CASE(_3, N) AT_DISPATCH_CASE(_4, N) AT_DISPATCH_CASE(_5, N) AT_DISPATCH_CASE(_6, N) AT_DISPATCH_CASE(_7, N) AT_DISPATCH_CASE(_8, N) AT_DISPATCH_CASE(_9, N) AT_DISPATCH_CASE(_10, N) AT_DISPATCH_CASE(_11, N) AT_DISPATCH_CASE(_12, N) AT_DISPATCH_CASE(_13, N) AT_DISPATCH_CASE(_14, N) AT_DISPATCH_CASE(_15, N) AT_DISPATCH_CASE(_16, N) AT_DISPATCH_CASE(_17, N) AT_DISPATCH_CASE(_18, N) AT_DISPATCH_CASE(_19, N) AT_DISPATCH_CASE(_20, N) AT_DISPATCH_CASE(_21, N) AT_DISPATCH_CASE(_22, N) AT_DISPATCH_CASE(_23, N) AT_DISPATCH_CASE(_24, N) AT_DISPATCH_CASE(_25, N)
165
+ #define AT_AP26(N, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, _15, _16, _17, _18, _19, _20, _21, _22, _23, _24, _25, _26) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N) AT_DISPATCH_CASE(_3, N) AT_DISPATCH_CASE(_4, N) AT_DISPATCH_CASE(_5, N) AT_DISPATCH_CASE(_6, N) AT_DISPATCH_CASE(_7, N) AT_DISPATCH_CASE(_8, N) AT_DISPATCH_CASE(_9, N) AT_DISPATCH_CASE(_10, N) AT_DISPATCH_CASE(_11, N) AT_DISPATCH_CASE(_12, N) AT_DISPATCH_CASE(_13, N) AT_DISPATCH_CASE(_14, N) AT_DISPATCH_CASE(_15, N) AT_DISPATCH_CASE(_16, N) AT_DISPATCH_CASE(_17, N) AT_DISPATCH_CASE(_18, N) AT_DISPATCH_CASE(_19, N) AT_DISPATCH_CASE(_20, N) AT_DISPATCH_CASE(_21, N) AT_DISPATCH_CASE(_22, N) AT_DISPATCH_CASE(_23, N) AT_DISPATCH_CASE(_24, N) AT_DISPATCH_CASE(_25, N) AT_DISPATCH_CASE(_26, N)
166
+ #define AT_AP27(N, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, _15, _16, _17, _18, _19, _20, _21, _22, _23, _24, _25, _26, _27) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N) AT_DISPATCH_CASE(_3, N) AT_DISPATCH_CASE(_4, N) AT_DISPATCH_CASE(_5, N) AT_DISPATCH_CASE(_6, N) AT_DISPATCH_CASE(_7, N) AT_DISPATCH_CASE(_8, N) AT_DISPATCH_CASE(_9, N) AT_DISPATCH_CASE(_10, N) AT_DISPATCH_CASE(_11, N) AT_DISPATCH_CASE(_12, N) AT_DISPATCH_CASE(_13, N) AT_DISPATCH_CASE(_14, N) AT_DISPATCH_CASE(_15, N) AT_DISPATCH_CASE(_16, N) AT_DISPATCH_CASE(_17, N) AT_DISPATCH_CASE(_18, N) AT_DISPATCH_CASE(_19, N) AT_DISPATCH_CASE(_20, N) AT_DISPATCH_CASE(_21, N) AT_DISPATCH_CASE(_22, N) AT_DISPATCH_CASE(_23, N) AT_DISPATCH_CASE(_24, N) AT_DISPATCH_CASE(_25, N) AT_DISPATCH_CASE(_26, N) AT_DISPATCH_CASE(_27, N)
167
+ #define AT_AP28(N, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, _15, _16, _17, _18, _19, _20, _21, _22, _23, _24, _25, _26, _27, _28) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N) AT_DISPATCH_CASE(_3, N) AT_DISPATCH_CASE(_4, N) AT_DISPATCH_CASE(_5, N) AT_DISPATCH_CASE(_6, N) AT_DISPATCH_CASE(_7, N) AT_DISPATCH_CASE(_8, N) AT_DISPATCH_CASE(_9, N) AT_DISPATCH_CASE(_10, N) AT_DISPATCH_CASE(_11, N) AT_DISPATCH_CASE(_12, N) AT_DISPATCH_CASE(_13, N) AT_DISPATCH_CASE(_14, N) AT_DISPATCH_CASE(_15, N) AT_DISPATCH_CASE(_16, N) AT_DISPATCH_CASE(_17, N) AT_DISPATCH_CASE(_18, N) AT_DISPATCH_CASE(_19, N) AT_DISPATCH_CASE(_20, N) AT_DISPATCH_CASE(_21, N) AT_DISPATCH_CASE(_22, N) AT_DISPATCH_CASE(_23, N) AT_DISPATCH_CASE(_24, N) AT_DISPATCH_CASE(_25, N) AT_DISPATCH_CASE(_26, N) AT_DISPATCH_CASE(_27, N) AT_DISPATCH_CASE(_28, N)
168
+ #define AT_AP29(N, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, _15, _16, _17, _18, _19, _20, _21, _22, _23, _24, _25, _26, _27, _28, _29) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N) AT_DISPATCH_CASE(_3, N) AT_DISPATCH_CASE(_4, N) AT_DISPATCH_CASE(_5, N) AT_DISPATCH_CASE(_6, N) AT_DISPATCH_CASE(_7, N) AT_DISPATCH_CASE(_8, N) AT_DISPATCH_CASE(_9, N) AT_DISPATCH_CASE(_10, N) AT_DISPATCH_CASE(_11, N) AT_DISPATCH_CASE(_12, N) AT_DISPATCH_CASE(_13, N) AT_DISPATCH_CASE(_14, N) AT_DISPATCH_CASE(_15, N) AT_DISPATCH_CASE(_16, N) AT_DISPATCH_CASE(_17, N) AT_DISPATCH_CASE(_18, N) AT_DISPATCH_CASE(_19, N) AT_DISPATCH_CASE(_20, N) AT_DISPATCH_CASE(_21, N) AT_DISPATCH_CASE(_22, N) AT_DISPATCH_CASE(_23, N) AT_DISPATCH_CASE(_24, N) AT_DISPATCH_CASE(_25, N) AT_DISPATCH_CASE(_26, N) AT_DISPATCH_CASE(_27, N) AT_DISPATCH_CASE(_28, N) AT_DISPATCH_CASE(_29, N)
169
+ #define AT_AP30(N, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, _15, _16, _17, _18, _19, _20, _21, _22, _23, _24, _25, _26, _27, _28, _29, _30) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N) AT_DISPATCH_CASE(_3, N) AT_DISPATCH_CASE(_4, N) AT_DISPATCH_CASE(_5, N) AT_DISPATCH_CASE(_6, N) AT_DISPATCH_CASE(_7, N) AT_DISPATCH_CASE(_8, N) AT_DISPATCH_CASE(_9, N) AT_DISPATCH_CASE(_10, N) AT_DISPATCH_CASE(_11, N) AT_DISPATCH_CASE(_12, N) AT_DISPATCH_CASE(_13, N) AT_DISPATCH_CASE(_14, N) AT_DISPATCH_CASE(_15, N) AT_DISPATCH_CASE(_16, N) AT_DISPATCH_CASE(_17, N) AT_DISPATCH_CASE(_18, N) AT_DISPATCH_CASE(_19, N) AT_DISPATCH_CASE(_20, N) AT_DISPATCH_CASE(_21, N) AT_DISPATCH_CASE(_22, N) AT_DISPATCH_CASE(_23, N) AT_DISPATCH_CASE(_24, N) AT_DISPATCH_CASE(_25, N) AT_DISPATCH_CASE(_26, N) AT_DISPATCH_CASE(_27, N) AT_DISPATCH_CASE(_28, N) AT_DISPATCH_CASE(_29, N) AT_DISPATCH_CASE(_30, N)
170
+ #define AT_AP31(N, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, _15, _16, _17, _18, _19, _20, _21, _22, _23, _24, _25, _26, _27, _28, _29, _30, _31) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N) AT_DISPATCH_CASE(_3, N) AT_DISPATCH_CASE(_4, N) AT_DISPATCH_CASE(_5, N) AT_DISPATCH_CASE(_6, N) AT_DISPATCH_CASE(_7, N) AT_DISPATCH_CASE(_8, N) AT_DISPATCH_CASE(_9, N) AT_DISPATCH_CASE(_10, N) AT_DISPATCH_CASE(_11, N) AT_DISPATCH_CASE(_12, N) AT_DISPATCH_CASE(_13, N) AT_DISPATCH_CASE(_14, N) AT_DISPATCH_CASE(_15, N) AT_DISPATCH_CASE(_16, N) AT_DISPATCH_CASE(_17, N) AT_DISPATCH_CASE(_18, N) AT_DISPATCH_CASE(_19, N) AT_DISPATCH_CASE(_20, N) AT_DISPATCH_CASE(_21, N) AT_DISPATCH_CASE(_22, N) AT_DISPATCH_CASE(_23, N) AT_DISPATCH_CASE(_24, N) AT_DISPATCH_CASE(_25, N) AT_DISPATCH_CASE(_26, N) AT_DISPATCH_CASE(_27, N) AT_DISPATCH_CASE(_28, N) AT_DISPATCH_CASE(_29, N) AT_DISPATCH_CASE(_30, N) AT_DISPATCH_CASE(_31, N)
171
+ #define AT_AP32(N, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, _15, _16, _17, _18, _19, _20, _21, _22, _23, _24, _25, _26, _27, _28, _29, _30, _31, _32) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N) AT_DISPATCH_CASE(_3, N) AT_DISPATCH_CASE(_4, N) AT_DISPATCH_CASE(_5, N) AT_DISPATCH_CASE(_6, N) AT_DISPATCH_CASE(_7, N) AT_DISPATCH_CASE(_8, N) AT_DISPATCH_CASE(_9, N) AT_DISPATCH_CASE(_10, N) AT_DISPATCH_CASE(_11, N) AT_DISPATCH_CASE(_12, N) AT_DISPATCH_CASE(_13, N) AT_DISPATCH_CASE(_14, N) AT_DISPATCH_CASE(_15, N) AT_DISPATCH_CASE(_16, N) AT_DISPATCH_CASE(_17, N) AT_DISPATCH_CASE(_18, N) AT_DISPATCH_CASE(_19, N) AT_DISPATCH_CASE(_20, N) AT_DISPATCH_CASE(_21, N) AT_DISPATCH_CASE(_22, N) AT_DISPATCH_CASE(_23, N) AT_DISPATCH_CASE(_24, N) AT_DISPATCH_CASE(_25, N) AT_DISPATCH_CASE(_26, N) AT_DISPATCH_CASE(_27, N) AT_DISPATCH_CASE(_28, N) AT_DISPATCH_CASE(_29, N) AT_DISPATCH_CASE(_30, N) AT_DISPATCH_CASE(_31, N) AT_DISPATCH_CASE(_32, N)
172
+ #define AT_AP33(N, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, _15, _16, _17, _18, _19, _20, _21, _22, _23, _24, _25, _26, _27, _28, _29, _30, _31, _32, _33) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N) AT_DISPATCH_CASE(_3, N) AT_DISPATCH_CASE(_4, N) AT_DISPATCH_CASE(_5, N) AT_DISPATCH_CASE(_6, N) AT_DISPATCH_CASE(_7, N) AT_DISPATCH_CASE(_8, N) AT_DISPATCH_CASE(_9, N) AT_DISPATCH_CASE(_10, N) AT_DISPATCH_CASE(_11, N) AT_DISPATCH_CASE(_12, N) AT_DISPATCH_CASE(_13, N) AT_DISPATCH_CASE(_14, N) AT_DISPATCH_CASE(_15, N) AT_DISPATCH_CASE(_16, N) AT_DISPATCH_CASE(_17, N) AT_DISPATCH_CASE(_18, N) AT_DISPATCH_CASE(_19, N) AT_DISPATCH_CASE(_20, N) AT_DISPATCH_CASE(_21, N) AT_DISPATCH_CASE(_22, N) AT_DISPATCH_CASE(_23, N) AT_DISPATCH_CASE(_24, N) AT_DISPATCH_CASE(_25, N) AT_DISPATCH_CASE(_26, N) AT_DISPATCH_CASE(_27, N) AT_DISPATCH_CASE(_28, N) AT_DISPATCH_CASE(_29, N) AT_DISPATCH_CASE(_30, N) AT_DISPATCH_CASE(_31, N) AT_DISPATCH_CASE(_32, N) AT_DISPATCH_CASE(_33, N)
173
+ #define AT_AP34(N, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, _15, _16, _17, _18, _19, _20, _21, _22, _23, _24, _25, _26, _27, _28, _29, _30, _31, _32, _33, _34) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N) AT_DISPATCH_CASE(_3, N) AT_DISPATCH_CASE(_4, N) AT_DISPATCH_CASE(_5, N) AT_DISPATCH_CASE(_6, N) AT_DISPATCH_CASE(_7, N) AT_DISPATCH_CASE(_8, N) AT_DISPATCH_CASE(_9, N) AT_DISPATCH_CASE(_10, N) AT_DISPATCH_CASE(_11, N) AT_DISPATCH_CASE(_12, N) AT_DISPATCH_CASE(_13, N) AT_DISPATCH_CASE(_14, N) AT_DISPATCH_CASE(_15, N) AT_DISPATCH_CASE(_16, N) AT_DISPATCH_CASE(_17, N) AT_DISPATCH_CASE(_18, N) AT_DISPATCH_CASE(_19, N) AT_DISPATCH_CASE(_20, N) AT_DISPATCH_CASE(_21, N) AT_DISPATCH_CASE(_22, N) AT_DISPATCH_CASE(_23, N) AT_DISPATCH_CASE(_24, N) AT_DISPATCH_CASE(_25, N) AT_DISPATCH_CASE(_26, N) AT_DISPATCH_CASE(_27, N) AT_DISPATCH_CASE(_28, N) AT_DISPATCH_CASE(_29, N) AT_DISPATCH_CASE(_30, N) AT_DISPATCH_CASE(_31, N) AT_DISPATCH_CASE(_32, N) AT_DISPATCH_CASE(_33, N) AT_DISPATCH_CASE(_34, N)
174
+ #define AT_AP35(N, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, _15, _16, _17, _18, _19, _20, _21, _22, _23, _24, _25, _26, _27, _28, _29, _30, _31, _32, _33, _34, _35) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N) AT_DISPATCH_CASE(_3, N) AT_DISPATCH_CASE(_4, N) AT_DISPATCH_CASE(_5, N) AT_DISPATCH_CASE(_6, N) AT_DISPATCH_CASE(_7, N) AT_DISPATCH_CASE(_8, N) AT_DISPATCH_CASE(_9, N) AT_DISPATCH_CASE(_10, N) AT_DISPATCH_CASE(_11, N) AT_DISPATCH_CASE(_12, N) AT_DISPATCH_CASE(_13, N) AT_DISPATCH_CASE(_14, N) AT_DISPATCH_CASE(_15, N) AT_DISPATCH_CASE(_16, N) AT_DISPATCH_CASE(_17, N) AT_DISPATCH_CASE(_18, N) AT_DISPATCH_CASE(_19, N) AT_DISPATCH_CASE(_20, N) AT_DISPATCH_CASE(_21, N) AT_DISPATCH_CASE(_22, N) AT_DISPATCH_CASE(_23, N) AT_DISPATCH_CASE(_24, N) AT_DISPATCH_CASE(_25, N) AT_DISPATCH_CASE(_26, N) AT_DISPATCH_CASE(_27, N) AT_DISPATCH_CASE(_28, N) AT_DISPATCH_CASE(_29, N) AT_DISPATCH_CASE(_30, N) AT_DISPATCH_CASE(_31, N) AT_DISPATCH_CASE(_32, N) AT_DISPATCH_CASE(_33, N) AT_DISPATCH_CASE(_34, N) AT_DISPATCH_CASE(_35, N)
175
+ #define AT_AP36(N, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, _15, _16, _17, _18, _19, _20, _21, _22, _23, _24, _25, _26, _27, _28, _29, _30, _31, _32, _33, _34, _35, _36) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N) AT_DISPATCH_CASE(_3, N) AT_DISPATCH_CASE(_4, N) AT_DISPATCH_CASE(_5, N) AT_DISPATCH_CASE(_6, N) AT_DISPATCH_CASE(_7, N) AT_DISPATCH_CASE(_8, N) AT_DISPATCH_CASE(_9, N) AT_DISPATCH_CASE(_10, N) AT_DISPATCH_CASE(_11, N) AT_DISPATCH_CASE(_12, N) AT_DISPATCH_CASE(_13, N) AT_DISPATCH_CASE(_14, N) AT_DISPATCH_CASE(_15, N) AT_DISPATCH_CASE(_16, N) AT_DISPATCH_CASE(_17, N) AT_DISPATCH_CASE(_18, N) AT_DISPATCH_CASE(_19, N) AT_DISPATCH_CASE(_20, N) AT_DISPATCH_CASE(_21, N) AT_DISPATCH_CASE(_22, N) AT_DISPATCH_CASE(_23, N) AT_DISPATCH_CASE(_24, N) AT_DISPATCH_CASE(_25, N) AT_DISPATCH_CASE(_26, N) AT_DISPATCH_CASE(_27, N) AT_DISPATCH_CASE(_28, N) AT_DISPATCH_CASE(_29, N) AT_DISPATCH_CASE(_30, N) AT_DISPATCH_CASE(_31, N) AT_DISPATCH_CASE(_32, N) AT_DISPATCH_CASE(_33, N) AT_DISPATCH_CASE(_34, N) AT_DISPATCH_CASE(_35, N) AT_DISPATCH_CASE(_36, N)
176
+ #define AT_AP37(N, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, _15, _16, _17, _18, _19, _20, _21, _22, _23, _24, _25, _26, _27, _28, _29, _30, _31, _32, _33, _34, _35, _36, _37) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N) AT_DISPATCH_CASE(_3, N) AT_DISPATCH_CASE(_4, N) AT_DISPATCH_CASE(_5, N) AT_DISPATCH_CASE(_6, N) AT_DISPATCH_CASE(_7, N) AT_DISPATCH_CASE(_8, N) AT_DISPATCH_CASE(_9, N) AT_DISPATCH_CASE(_10, N) AT_DISPATCH_CASE(_11, N) AT_DISPATCH_CASE(_12, N) AT_DISPATCH_CASE(_13, N) AT_DISPATCH_CASE(_14, N) AT_DISPATCH_CASE(_15, N) AT_DISPATCH_CASE(_16, N) AT_DISPATCH_CASE(_17, N) AT_DISPATCH_CASE(_18, N) AT_DISPATCH_CASE(_19, N) AT_DISPATCH_CASE(_20, N) AT_DISPATCH_CASE(_21, N) AT_DISPATCH_CASE(_22, N) AT_DISPATCH_CASE(_23, N) AT_DISPATCH_CASE(_24, N) AT_DISPATCH_CASE(_25, N) AT_DISPATCH_CASE(_26, N) AT_DISPATCH_CASE(_27, N) AT_DISPATCH_CASE(_28, N) AT_DISPATCH_CASE(_29, N) AT_DISPATCH_CASE(_30, N) AT_DISPATCH_CASE(_31, N) AT_DISPATCH_CASE(_32, N) AT_DISPATCH_CASE(_33, N) AT_DISPATCH_CASE(_34, N) AT_DISPATCH_CASE(_35, N) AT_DISPATCH_CASE(_36, N) AT_DISPATCH_CASE(_37, N)
177
+ #define AT_AP38(N, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, _15, _16, _17, _18, _19, _20, _21, _22, _23, _24, _25, _26, _27, _28, _29, _30, _31, _32, _33, _34, _35, _36, _37, _38) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N) AT_DISPATCH_CASE(_3, N) AT_DISPATCH_CASE(_4, N) AT_DISPATCH_CASE(_5, N) AT_DISPATCH_CASE(_6, N) AT_DISPATCH_CASE(_7, N) AT_DISPATCH_CASE(_8, N) AT_DISPATCH_CASE(_9, N) AT_DISPATCH_CASE(_10, N) AT_DISPATCH_CASE(_11, N) AT_DISPATCH_CASE(_12, N) AT_DISPATCH_CASE(_13, N) AT_DISPATCH_CASE(_14, N) AT_DISPATCH_CASE(_15, N) AT_DISPATCH_CASE(_16, N) AT_DISPATCH_CASE(_17, N) AT_DISPATCH_CASE(_18, N) AT_DISPATCH_CASE(_19, N) AT_DISPATCH_CASE(_20, N) AT_DISPATCH_CASE(_21, N) AT_DISPATCH_CASE(_22, N) AT_DISPATCH_CASE(_23, N) AT_DISPATCH_CASE(_24, N) AT_DISPATCH_CASE(_25, N) AT_DISPATCH_CASE(_26, N) AT_DISPATCH_CASE(_27, N) AT_DISPATCH_CASE(_28, N) AT_DISPATCH_CASE(_29, N) AT_DISPATCH_CASE(_30, N) AT_DISPATCH_CASE(_31, N) AT_DISPATCH_CASE(_32, N) AT_DISPATCH_CASE(_33, N) AT_DISPATCH_CASE(_34, N) AT_DISPATCH_CASE(_35, N) AT_DISPATCH_CASE(_36, N) AT_DISPATCH_CASE(_37, N) AT_DISPATCH_CASE(_38, N)
178
+ #define AT_AP39(N, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, _15, _16, _17, _18, _19, _20, _21, _22, _23, _24, _25, _26, _27, _28, _29, _30, _31, _32, _33, _34, _35, _36, _37, _38, _39) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N) AT_DISPATCH_CASE(_3, N) AT_DISPATCH_CASE(_4, N) AT_DISPATCH_CASE(_5, N) AT_DISPATCH_CASE(_6, N) AT_DISPATCH_CASE(_7, N) AT_DISPATCH_CASE(_8, N) AT_DISPATCH_CASE(_9, N) AT_DISPATCH_CASE(_10, N) AT_DISPATCH_CASE(_11, N) AT_DISPATCH_CASE(_12, N) AT_DISPATCH_CASE(_13, N) AT_DISPATCH_CASE(_14, N) AT_DISPATCH_CASE(_15, N) AT_DISPATCH_CASE(_16, N) AT_DISPATCH_CASE(_17, N) AT_DISPATCH_CASE(_18, N) AT_DISPATCH_CASE(_19, N) AT_DISPATCH_CASE(_20, N) AT_DISPATCH_CASE(_21, N) AT_DISPATCH_CASE(_22, N) AT_DISPATCH_CASE(_23, N) AT_DISPATCH_CASE(_24, N) AT_DISPATCH_CASE(_25, N) AT_DISPATCH_CASE(_26, N) AT_DISPATCH_CASE(_27, N) AT_DISPATCH_CASE(_28, N) AT_DISPATCH_CASE(_29, N) AT_DISPATCH_CASE(_30, N) AT_DISPATCH_CASE(_31, N) AT_DISPATCH_CASE(_32, N) AT_DISPATCH_CASE(_33, N) AT_DISPATCH_CASE(_34, N) AT_DISPATCH_CASE(_35, N) AT_DISPATCH_CASE(_36, N) AT_DISPATCH_CASE(_37, N) AT_DISPATCH_CASE(_38, N) AT_DISPATCH_CASE(_39, N)
179
+ #define AT_AP40(N, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, _15, _16, _17, _18, _19, _20, _21, _22, _23, _24, _25, _26, _27, _28, _29, _30, _31, _32, _33, _34, _35, _36, _37, _38, _39, _40) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N) AT_DISPATCH_CASE(_3, N) AT_DISPATCH_CASE(_4, N) AT_DISPATCH_CASE(_5, N) AT_DISPATCH_CASE(_6, N) AT_DISPATCH_CASE(_7, N) AT_DISPATCH_CASE(_8, N) AT_DISPATCH_CASE(_9, N) AT_DISPATCH_CASE(_10, N) AT_DISPATCH_CASE(_11, N) AT_DISPATCH_CASE(_12, N) AT_DISPATCH_CASE(_13, N) AT_DISPATCH_CASE(_14, N) AT_DISPATCH_CASE(_15, N) AT_DISPATCH_CASE(_16, N) AT_DISPATCH_CASE(_17, N) AT_DISPATCH_CASE(_18, N) AT_DISPATCH_CASE(_19, N) AT_DISPATCH_CASE(_20, N) AT_DISPATCH_CASE(_21, N) AT_DISPATCH_CASE(_22, N) AT_DISPATCH_CASE(_23, N) AT_DISPATCH_CASE(_24, N) AT_DISPATCH_CASE(_25, N) AT_DISPATCH_CASE(_26, N) AT_DISPATCH_CASE(_27, N) AT_DISPATCH_CASE(_28, N) AT_DISPATCH_CASE(_29, N) AT_DISPATCH_CASE(_30, N) AT_DISPATCH_CASE(_31, N) AT_DISPATCH_CASE(_32, N) AT_DISPATCH_CASE(_33, N) AT_DISPATCH_CASE(_34, N) AT_DISPATCH_CASE(_35, N) AT_DISPATCH_CASE(_36, N) AT_DISPATCH_CASE(_37, N) AT_DISPATCH_CASE(_38, N) AT_DISPATCH_CASE(_39, N) AT_DISPATCH_CASE(_40, N)
180
+ #define AT_AP41(N, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, _15, _16, _17, _18, _19, _20, _21, _22, _23, _24, _25, _26, _27, _28, _29, _30, _31, _32, _33, _34, _35, _36, _37, _38, _39, _40, _41) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N) AT_DISPATCH_CASE(_3, N) AT_DISPATCH_CASE(_4, N) AT_DISPATCH_CASE(_5, N) AT_DISPATCH_CASE(_6, N) AT_DISPATCH_CASE(_7, N) AT_DISPATCH_CASE(_8, N) AT_DISPATCH_CASE(_9, N) AT_DISPATCH_CASE(_10, N) AT_DISPATCH_CASE(_11, N) AT_DISPATCH_CASE(_12, N) AT_DISPATCH_CASE(_13, N) AT_DISPATCH_CASE(_14, N) AT_DISPATCH_CASE(_15, N) AT_DISPATCH_CASE(_16, N) AT_DISPATCH_CASE(_17, N) AT_DISPATCH_CASE(_18, N) AT_DISPATCH_CASE(_19, N) AT_DISPATCH_CASE(_20, N) AT_DISPATCH_CASE(_21, N) AT_DISPATCH_CASE(_22, N) AT_DISPATCH_CASE(_23, N) AT_DISPATCH_CASE(_24, N) AT_DISPATCH_CASE(_25, N) AT_DISPATCH_CASE(_26, N) AT_DISPATCH_CASE(_27, N) AT_DISPATCH_CASE(_28, N) AT_DISPATCH_CASE(_29, N) AT_DISPATCH_CASE(_30, N) AT_DISPATCH_CASE(_31, N) AT_DISPATCH_CASE(_32, N) AT_DISPATCH_CASE(_33, N) AT_DISPATCH_CASE(_34, N) AT_DISPATCH_CASE(_35, N) AT_DISPATCH_CASE(_36, N) AT_DISPATCH_CASE(_37, N) AT_DISPATCH_CASE(_38, N) AT_DISPATCH_CASE(_39, N) AT_DISPATCH_CASE(_40, N) AT_DISPATCH_CASE(_41, N)
181
+ #define AT_AP42(N, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, _15, _16, _17, _18, _19, _20, _21, _22, _23, _24, _25, _26, _27, _28, _29, _30, _31, _32, _33, _34, _35, _36, _37, _38, _39, _40, _41, _42) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N) AT_DISPATCH_CASE(_3, N) AT_DISPATCH_CASE(_4, N) AT_DISPATCH_CASE(_5, N) AT_DISPATCH_CASE(_6, N) AT_DISPATCH_CASE(_7, N) AT_DISPATCH_CASE(_8, N) AT_DISPATCH_CASE(_9, N) AT_DISPATCH_CASE(_10, N) AT_DISPATCH_CASE(_11, N) AT_DISPATCH_CASE(_12, N) AT_DISPATCH_CASE(_13, N) AT_DISPATCH_CASE(_14, N) AT_DISPATCH_CASE(_15, N) AT_DISPATCH_CASE(_16, N) AT_DISPATCH_CASE(_17, N) AT_DISPATCH_CASE(_18, N) AT_DISPATCH_CASE(_19, N) AT_DISPATCH_CASE(_20, N) AT_DISPATCH_CASE(_21, N) AT_DISPATCH_CASE(_22, N) AT_DISPATCH_CASE(_23, N) AT_DISPATCH_CASE(_24, N) AT_DISPATCH_CASE(_25, N) AT_DISPATCH_CASE(_26, N) AT_DISPATCH_CASE(_27, N) AT_DISPATCH_CASE(_28, N) AT_DISPATCH_CASE(_29, N) AT_DISPATCH_CASE(_30, N) AT_DISPATCH_CASE(_31, N) AT_DISPATCH_CASE(_32, N) AT_DISPATCH_CASE(_33, N) AT_DISPATCH_CASE(_34, N) AT_DISPATCH_CASE(_35, N) AT_DISPATCH_CASE(_36, N) AT_DISPATCH_CASE(_37, N) AT_DISPATCH_CASE(_38, N) AT_DISPATCH_CASE(_39, N) AT_DISPATCH_CASE(_40, N) AT_DISPATCH_CASE(_41, N) AT_DISPATCH_CASE(_42, N)
182
+ #define AT_AP43(N, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, _15, _16, _17, _18, _19, _20, _21, _22, _23, _24, _25, _26, _27, _28, _29, _30, _31, _32, _33, _34, _35, _36, _37, _38, _39, _40, _41, _42, _43) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N) AT_DISPATCH_CASE(_3, N) AT_DISPATCH_CASE(_4, N) AT_DISPATCH_CASE(_5, N) AT_DISPATCH_CASE(_6, N) AT_DISPATCH_CASE(_7, N) AT_DISPATCH_CASE(_8, N) AT_DISPATCH_CASE(_9, N) AT_DISPATCH_CASE(_10, N) AT_DISPATCH_CASE(_11, N) AT_DISPATCH_CASE(_12, N) AT_DISPATCH_CASE(_13, N) AT_DISPATCH_CASE(_14, N) AT_DISPATCH_CASE(_15, N) AT_DISPATCH_CASE(_16, N) AT_DISPATCH_CASE(_17, N) AT_DISPATCH_CASE(_18, N) AT_DISPATCH_CASE(_19, N) AT_DISPATCH_CASE(_20, N) AT_DISPATCH_CASE(_21, N) AT_DISPATCH_CASE(_22, N) AT_DISPATCH_CASE(_23, N) AT_DISPATCH_CASE(_24, N) AT_DISPATCH_CASE(_25, N) AT_DISPATCH_CASE(_26, N) AT_DISPATCH_CASE(_27, N) AT_DISPATCH_CASE(_28, N) AT_DISPATCH_CASE(_29, N) AT_DISPATCH_CASE(_30, N) AT_DISPATCH_CASE(_31, N) AT_DISPATCH_CASE(_32, N) AT_DISPATCH_CASE(_33, N) AT_DISPATCH_CASE(_34, N) AT_DISPATCH_CASE(_35, N) AT_DISPATCH_CASE(_36, N) AT_DISPATCH_CASE(_37, N) AT_DISPATCH_CASE(_38, N) AT_DISPATCH_CASE(_39, N) AT_DISPATCH_CASE(_40, N) AT_DISPATCH_CASE(_41, N) AT_DISPATCH_CASE(_42, N) AT_DISPATCH_CASE(_43, N)
183
+ #define AT_AP44(N, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, _15, _16, _17, _18, _19, _20, _21, _22, _23, _24, _25, _26, _27, _28, _29, _30, _31, _32, _33, _34, _35, _36, _37, _38, _39, _40, _41, _42, _43, _44) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N) AT_DISPATCH_CASE(_3, N) AT_DISPATCH_CASE(_4, N) AT_DISPATCH_CASE(_5, N) AT_DISPATCH_CASE(_6, N) AT_DISPATCH_CASE(_7, N) AT_DISPATCH_CASE(_8, N) AT_DISPATCH_CASE(_9, N) AT_DISPATCH_CASE(_10, N) AT_DISPATCH_CASE(_11, N) AT_DISPATCH_CASE(_12, N) AT_DISPATCH_CASE(_13, N) AT_DISPATCH_CASE(_14, N) AT_DISPATCH_CASE(_15, N) AT_DISPATCH_CASE(_16, N) AT_DISPATCH_CASE(_17, N) AT_DISPATCH_CASE(_18, N) AT_DISPATCH_CASE(_19, N) AT_DISPATCH_CASE(_20, N) AT_DISPATCH_CASE(_21, N) AT_DISPATCH_CASE(_22, N) AT_DISPATCH_CASE(_23, N) AT_DISPATCH_CASE(_24, N) AT_DISPATCH_CASE(_25, N) AT_DISPATCH_CASE(_26, N) AT_DISPATCH_CASE(_27, N) AT_DISPATCH_CASE(_28, N) AT_DISPATCH_CASE(_29, N) AT_DISPATCH_CASE(_30, N) AT_DISPATCH_CASE(_31, N) AT_DISPATCH_CASE(_32, N) AT_DISPATCH_CASE(_33, N) AT_DISPATCH_CASE(_34, N) AT_DISPATCH_CASE(_35, N) AT_DISPATCH_CASE(_36, N) AT_DISPATCH_CASE(_37, N) AT_DISPATCH_CASE(_38, N) AT_DISPATCH_CASE(_39, N) AT_DISPATCH_CASE(_40, N) AT_DISPATCH_CASE(_41, N) AT_DISPATCH_CASE(_42, N) AT_DISPATCH_CASE(_43, N) AT_DISPATCH_CASE(_44, N)
184
+ #define AT_AP45(N, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, _15, _16, _17, _18, _19, _20, _21, _22, _23, _24, _25, _26, _27, _28, _29, _30, _31, _32, _33, _34, _35, _36, _37, _38, _39, _40, _41, _42, _43, _44, _45) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N) AT_DISPATCH_CASE(_3, N) AT_DISPATCH_CASE(_4, N) AT_DISPATCH_CASE(_5, N) AT_DISPATCH_CASE(_6, N) AT_DISPATCH_CASE(_7, N) AT_DISPATCH_CASE(_8, N) AT_DISPATCH_CASE(_9, N) AT_DISPATCH_CASE(_10, N) AT_DISPATCH_CASE(_11, N) AT_DISPATCH_CASE(_12, N) AT_DISPATCH_CASE(_13, N) AT_DISPATCH_CASE(_14, N) AT_DISPATCH_CASE(_15, N) AT_DISPATCH_CASE(_16, N) AT_DISPATCH_CASE(_17, N) AT_DISPATCH_CASE(_18, N) AT_DISPATCH_CASE(_19, N) AT_DISPATCH_CASE(_20, N) AT_DISPATCH_CASE(_21, N) AT_DISPATCH_CASE(_22, N) AT_DISPATCH_CASE(_23, N) AT_DISPATCH_CASE(_24, N) AT_DISPATCH_CASE(_25, N) AT_DISPATCH_CASE(_26, N) AT_DISPATCH_CASE(_27, N) AT_DISPATCH_CASE(_28, N) AT_DISPATCH_CASE(_29, N) AT_DISPATCH_CASE(_30, N) AT_DISPATCH_CASE(_31, N) AT_DISPATCH_CASE(_32, N) AT_DISPATCH_CASE(_33, N) AT_DISPATCH_CASE(_34, N) AT_DISPATCH_CASE(_35, N) AT_DISPATCH_CASE(_36, N) AT_DISPATCH_CASE(_37, N) AT_DISPATCH_CASE(_38, N) AT_DISPATCH_CASE(_39, N) AT_DISPATCH_CASE(_40, N) AT_DISPATCH_CASE(_41, N) AT_DISPATCH_CASE(_42, N) AT_DISPATCH_CASE(_43, N) AT_DISPATCH_CASE(_44, N) AT_DISPATCH_CASE(_45, N)
185
+ // End generated code
186
+ // clang-format on
venv/lib/python3.10/site-packages/torch/include/ATen/ExpandBase.h ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #include <ATen/core/TensorBase.h>
2
+
3
+ // Broadcasting utilities for working with TensorBase
4
+ namespace at {
5
+ namespace internal {
6
+ TORCH_API TensorBase expand_slow_path(const TensorBase& self, IntArrayRef size);
7
+ } // namespace internal
8
+
9
+ inline c10::MaybeOwned<TensorBase> expand_size(
10
+ const TensorBase& self,
11
+ IntArrayRef size) {
12
+ if (size.equals(self.sizes())) {
13
+ return c10::MaybeOwned<TensorBase>::borrowed(self);
14
+ }
15
+ return c10::MaybeOwned<TensorBase>::owned(
16
+ at::internal::expand_slow_path(self, size));
17
+ }
18
+ c10::MaybeOwned<TensorBase> expand_size(TensorBase&& self, IntArrayRef size) =
19
+ delete;
20
+
21
+ inline c10::MaybeOwned<TensorBase> expand_inplace(
22
+ const TensorBase& tensor,
23
+ const TensorBase& to_expand) {
24
+ return expand_size(to_expand, tensor.sizes());
25
+ }
26
+ c10::MaybeOwned<TensorBase> expand_inplace(
27
+ const TensorBase& tensor,
28
+ TensorBase&& to_expand) = delete;
29
+
30
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/FuncTorchTLS.h ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <c10/macros/Macros.h>
4
+ #include <memory>
5
+
6
+ namespace at::functorch {
7
+
8
+ // NOTE [functorch TLS in pytorch/pytorch]
9
+ //
10
+ // functorch lives out-of-tree. However, it has some TLS that needs to be
11
+ // propagated. The solution for that is we store a pointer to the TLS
12
+ // inside pytorch/pytorch and extend FuncTorchTLSBase inside functorch to
13
+ // include whatever functorch needs.
14
+ //
15
+ // We need to store a pointer due to the indirection:
16
+ // inside functorch, we will create a subclass of FunctorchTLSBase called
17
+ // FuncTorchTLSImpl that actually contains metadata, like the DynamicLayerStack.
18
+ // FuncTorchTLSBase doesn't have any metadata because it hasn't been defined
19
+ // yet.
20
+ //
21
+ // Here in pytorch/pytorch, we will pass around FuncTorchTLSBase*, but inside
22
+ // functorch, we will assign a FuncTorchTLSImpl* to the FunctorchTLSBase*.
23
+ // We can't directly pass around FunctorchTLSBase (without a pointer) because
24
+ // FuncTorchTLSImpl does not fit inside a FuncTorchTLSBase by virtue of having
25
+ // more elements.
26
+ struct TORCH_API FuncTorchTLSBase {
27
+ virtual ~FuncTorchTLSBase() = default;
28
+ virtual std::unique_ptr<FuncTorchTLSBase> deepcopy() const = 0;
29
+
30
+ virtual int64_t checkSupportsSingleLevelAutogradFunction() const = 0;
31
+ virtual void checkSupportsCppAutogradFunction() const = 0;
32
+ virtual void checkSupportsInplaceRequiresGrad() const = 0;
33
+ virtual void checkSupportsRetainGrad() const = 0;
34
+ };
35
+
36
+ // returns deepcopy of the functorch tls
37
+ TORCH_API std::unique_ptr<FuncTorchTLSBase> getCopyOfFuncTorchTLS();
38
+
39
+ // sets the functorch tls. always does a deep copy.
40
+ TORCH_API void setFuncTorchTLS(
41
+ const std::shared_ptr<const FuncTorchTLSBase>& state);
42
+
43
+ // get a mutable reference to the functorch tls
44
+ TORCH_API std::unique_ptr<FuncTorchTLSBase>& functorchTLSAccessor();
45
+
46
+ } // namespace at::functorch
venv/lib/python3.10/site-packages/torch/include/ATen/FunctionalStorageImpl.h ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <ATen/Tensor.h>
4
+
5
+ namespace at::functionalization {
6
+
7
+ // See Note [Functionalization Pass In Core]
8
+
9
+ // ViewMeta is a class used by the functionalization pass to navigate between
10
+ // a base tensor and a view tensor.
11
+ // For example, if I call `b = a.view1(...)`
12
+ // the functionalization pass will generate and store a ViewMeta on b that looks
13
+ // like:
14
+ //
15
+ // ViewMeta(
16
+ // [<captures>](const Tensor& base, int64_t mutated_view_idx) {
17
+ // return base.view1(...);
18
+ // },
19
+ // [<captures>](const at::Tensor& base, const at::Tensor& mutated_view,
20
+ // int64_t mutated_view_idx) -> at::Tensor {
21
+ // return at::functionalization::impl::view1_inverse(base, mutated_view,
22
+ // ...);
23
+ // }
24
+ //
25
+ // The forward_fn lambda describes how to replay view1 on a tensor.
26
+ //
27
+ // The reverse_fn lambda describes how, given a tensor that is already a view,
28
+ // how to get the corresponding base tensor. See Note [Functionalization Pass:
29
+ // View Inverses] for details.
30
+ struct ViewMeta {
31
+ ViewMeta(
32
+ std::function<Tensor(const Tensor&, int64_t)> forward,
33
+ std::function<Tensor(const Tensor&, const Tensor&, int64_t)> reverse,
34
+ bool is_multi_output = false,
35
+ int64_t out_idx = 0)
36
+ : forward_fn(std::move(forward)),
37
+ reverse_fn(std::move(reverse)),
38
+ out_index(out_idx),
39
+ is_multi_output(is_multi_output) {}
40
+
41
+ std::function<Tensor(const Tensor&, int64_t)> forward_fn;
42
+ std::function<Tensor(const Tensor&, const Tensor&, int64_t)> reverse_fn;
43
+ // See Note [out_idx in ViewMeta]
44
+ int64_t out_index;
45
+
46
+ // Tells us if this is a multi-output view
47
+ bool is_multi_output;
48
+
49
+ // Returns a copy of the current ViewMeta, if out_idx matches the current
50
+ // out_index. Otherwise, returns a new ViewMeta with the same forward/reverse
51
+ // functions, but a new out index.
52
+ ViewMeta to_out_idx(int64_t out_idx);
53
+ };
54
+
55
+ // FunctionalStorageImpl is a subclass of StorageImpl used by the
56
+ // functionalization pass. It has no underlying data (similar to meta storage).
57
+ // It also knows how to reflect mutations to tensors in the absence of a valid
58
+ // data pointer.
59
+ //
60
+ // A storage represents the state shared by (potentially multiple) views of the
61
+ // same tensor. For example, in the following code:
62
+ //
63
+ // b = a.view1(...)
64
+ // c = b.view2(...)
65
+ // b.add_(1)
66
+ // --> storage.add_update(b, {view1_meta})
67
+ //
68
+ // The call to add_(1) will result in a call to alias.add_update(b,
69
+ // {view1_meta}), queueing up the mutation from b onto the alias. Later, suppose
70
+ // c is used in an expression (e.g. you try to print c, or pass it to an
71
+ // operator). Doing so will involve "syncing" c. First we apply any pending
72
+ // updates to the alias, and then we regenerate c by replaying its views off of
73
+ // the updated alias. E.g:
74
+ //
75
+ // print(str(c))
76
+ // --> c.sync_()
77
+ // --> alias.apply_updates() // after this, the alias will be updated to
78
+ // reflect the mutation to b
79
+ struct TORCH_API FunctionalStorageImpl : public c10::StorageImpl {
80
+ public:
81
+ struct Update {
82
+ // NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members)
83
+ const at::Tensor new_val;
84
+ // NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members)
85
+ const std::vector<ViewMeta> view_metas;
86
+ };
87
+
88
+ explicit FunctionalStorageImpl(const Tensor& value);
89
+
90
+ void add_update(
91
+ const Tensor& updated_val,
92
+ const std::vector<ViewMeta>& view_metas);
93
+ bool apply_updates();
94
+ const Tensor& base() {
95
+ return base_;
96
+ }
97
+ size_t generation() const {
98
+ return generation_;
99
+ }
100
+ void freeze() {
101
+ frozen_ = true;
102
+ }
103
+
104
+ ~FunctionalStorageImpl() override = default;
105
+
106
+ private:
107
+ // NB: base_ should always point to a tensor BELOW the current
108
+ // functionalization layer. This is mainly to avoid reference cycles. e.g.
109
+ // given `b = a.view(...)` Both a.storage_ and b.storage_ are a
110
+ // FunctionStorageImpl containing an Walualias, with contains a Tensor
111
+ // `base_`. In this case (where a and b are FunctionalTensorWrapper's), base_
112
+ // should point not to a, but to a's unwrapped value, a.value_` See Note
113
+ // [Functionalization: Walualias Removal] for a diagram that shows this
114
+ // visually.
115
+ at::Tensor base_;
116
+ std::vector<Update> updates_;
117
+ // generation_ gets incremented every time a mutation is queued onto the
118
+ // alias. It is used to determine if a given tensor is "up to date", or if it
119
+ // needs to be regenerated from the alias.
120
+ size_t generation_ = 0;
121
+ // If frozen, no more mutations are allowed on this storage. Once frozen, a
122
+ // storage cannot be unfrozen.
123
+ bool frozen_ = false;
124
+ };
125
+
126
+ } // namespace at::functionalization
venv/lib/python3.10/site-packages/torch/include/ATen/Functions.h ADDED
@@ -0,0 +1,1427 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Functions.h
4
+
5
+ #ifdef TORCH_ASSERT_NO_OPERATORS
6
+ #error This change adds a dependency on native_functions.yaml, \
7
+ meaning the file will need to be re-compiled every time an operator \
8
+ is changed or added. Consider if your change would be better placed in \
9
+ another file, or if a more specific header might achieve the same goal. \
10
+ See NOTE: [Tensor vs. TensorBase]
11
+ #endif
12
+
13
+ #if defined(AT_PER_OPERATOR_HEADERS) && defined(TORCH_ASSERT_ONLY_METHOD_OPERATORS)
14
+ #error This change adds a dependency on all pytorch operators, meaning the \
15
+ file will need to be re-compiled every time an operator is changed or added. \
16
+ Consider including a specific operator from <ATen/ops/{my_operator}.h> and \
17
+ see NOTE [TORCH_ASSERT_ONLY_METHOD_OPERATORS].
18
+ #endif
19
+
20
+ // NOTE: [TORCH_ASSERT_ONLY_METHOD_OPERATORS]
21
+ //
22
+ // In ATen, certain generated headers files include the definitions of
23
+ // every single operator in PyTorch. Unfortunately this means every
24
+ // time an operator signature is updated or changed in
25
+ // native_functions.yaml, you (and every other PyTorch developer) need
26
+ // to recompile every source file that includes any of these headers.
27
+ //
28
+ // To break up these header dependencies, and improve incremental
29
+ // build times for all PyTorch developers. These headers are split
30
+ // into per-operator headers in the `ATen/ops` folder. This limits
31
+ // incremental builds to only changes to methods of `Tensor`, or files
32
+ // that use the specific operator being changed. With `at::sum` as an
33
+ // example, you should include
34
+ //
35
+ // <ATen/ops/sum.h> // instead of ATen/Functions.h
36
+ // <ATen/ops/sum_native.h> // instead of ATen/NativeFunctions.h
37
+ // <ATen/ops/sum_ops.h> // instead of ATen/Operators.h
38
+ // <ATen/ops/sum_cpu_dispatch.h> // instead of ATen/CPUFunctions.h
39
+ //
40
+ // However, even if you're careful to use this in your own code.
41
+ // `Functions.h` might be included indirectly through another header
42
+ // without you realising. To avoid this, you can add
43
+ //
44
+ // #define TORCH_ASSERT_ONLY_METHOD_OPERATORS
45
+ //
46
+ // to the top of your source file. This way any time the non-specific
47
+ // headers are included, the compiler will error out.
48
+ //
49
+ // Also, be aware that `ops` are not available in all build
50
+ // configurations (namely fb-internal) so you must guard these
51
+ // includes with `#ifdef AT_PER_OPERATOR_HEADERS`. e.g.
52
+ //
53
+ // #ifndef AT_PER_OPERATOR_HEADERS
54
+ // #include <ATen/Functions.h>
55
+ // #else
56
+ // #include <ATen/ops/sum.h>
57
+ // #endif
58
+
59
+ #include <ATen/Context.h>
60
+ #include <ATen/DeviceGuard.h>
61
+ #include <ATen/TensorUtils.h>
62
+ #include <ATen/TracerMode.h>
63
+ #include <ATen/core/Generator.h>
64
+ #include <ATen/core/Reduction.h>
65
+ #include <c10/core/SymInt.h>
66
+ #include <ATen/core/Tensor.h>
67
+ #include <c10/core/Scalar.h>
68
+ #include <c10/core/Storage.h>
69
+ #include <c10/core/TensorOptions.h>
70
+ #include <c10/util/Deprecated.h>
71
+ #include <c10/util/Optional.h>
72
+ #include <c10/util/OptionalArrayRef.h>
73
+
74
+ #include <ATen/ops/from_blob.h>
75
+ #include <ATen/ops/tensor.h>
76
+
77
+ #include <ATen/ops/_adaptive_avg_pool2d.h>
78
+ #include <ATen/ops/_adaptive_avg_pool2d_backward.h>
79
+ #include <ATen/ops/_adaptive_avg_pool3d.h>
80
+ #include <ATen/ops/_adaptive_avg_pool3d_backward.h>
81
+ #include <ATen/ops/_add_batch_dim.h>
82
+ #include <ATen/ops/_add_relu.h>
83
+ #include <ATen/ops/_addmm_activation.h>
84
+ #include <ATen/ops/_aminmax.h>
85
+ #include <ATen/ops/_amp_foreach_non_finite_check_and_unscale.h>
86
+ #include <ATen/ops/_amp_update_scale.h>
87
+ #include <ATen/ops/_assert_async.h>
88
+ #include <ATen/ops/_assert_scalar.h>
89
+ #include <ATen/ops/_assert_tensor_metadata.h>
90
+ #include <ATen/ops/_autocast_to_full_precision.h>
91
+ #include <ATen/ops/_autocast_to_reduced_precision.h>
92
+ #include <ATen/ops/_backward.h>
93
+ #include <ATen/ops/_batch_norm_impl_index.h>
94
+ #include <ATen/ops/_batch_norm_impl_index_backward.h>
95
+ #include <ATen/ops/_cast_Byte.h>
96
+ #include <ATen/ops/_cast_Char.h>
97
+ #include <ATen/ops/_cast_Double.h>
98
+ #include <ATen/ops/_cast_Float.h>
99
+ #include <ATen/ops/_cast_Half.h>
100
+ #include <ATen/ops/_cast_Int.h>
101
+ #include <ATen/ops/_cast_Long.h>
102
+ #include <ATen/ops/_cast_Short.h>
103
+ #include <ATen/ops/_cdist_backward.h>
104
+ #include <ATen/ops/_cdist_forward.h>
105
+ #include <ATen/ops/_cholesky_solve_helper.h>
106
+ #include <ATen/ops/_choose_qparams_per_tensor.h>
107
+ #include <ATen/ops/_chunk_cat.h>
108
+ #include <ATen/ops/_coalesce.h>
109
+ #include <ATen/ops/_coalesced.h>
110
+ #include <ATen/ops/_compute_linear_combination.h>
111
+ #include <ATen/ops/_conj.h>
112
+ #include <ATen/ops/_conj_copy.h>
113
+ #include <ATen/ops/_conj_physical.h>
114
+ #include <ATen/ops/_conv_depthwise2d.h>
115
+ #include <ATen/ops/_convert_indices_from_coo_to_csr.h>
116
+ #include <ATen/ops/_convert_indices_from_csr_to_coo.h>
117
+ #include <ATen/ops/_convert_weight_to_int4pack.h>
118
+ #include <ATen/ops/_convolution.h>
119
+ #include <ATen/ops/_convolution_double_backward.h>
120
+ #include <ATen/ops/_convolution_mode.h>
121
+ #include <ATen/ops/_copy_from.h>
122
+ #include <ATen/ops/_copy_from_and_resize.h>
123
+ #include <ATen/ops/_cslt_compress.h>
124
+ #include <ATen/ops/_cslt_sparse_mm.h>
125
+ #include <ATen/ops/_cslt_sparse_mm_search.h>
126
+ #include <ATen/ops/_ctc_loss.h>
127
+ #include <ATen/ops/_ctc_loss_backward.h>
128
+ #include <ATen/ops/_cudnn_ctc_loss.h>
129
+ #include <ATen/ops/_cudnn_init_dropout_state.h>
130
+ #include <ATen/ops/_cudnn_rnn.h>
131
+ #include <ATen/ops/_cudnn_rnn_backward.h>
132
+ #include <ATen/ops/_cudnn_rnn_flatten_weight.h>
133
+ #include <ATen/ops/_cufft_clear_plan_cache.h>
134
+ #include <ATen/ops/_cufft_get_plan_cache_max_size.h>
135
+ #include <ATen/ops/_cufft_get_plan_cache_size.h>
136
+ #include <ATen/ops/_cufft_set_plan_cache_max_size.h>
137
+ #include <ATen/ops/_cummax_helper.h>
138
+ #include <ATen/ops/_cummin_helper.h>
139
+ #include <ATen/ops/_debug_has_internal_overlap.h>
140
+ #include <ATen/ops/_dimI.h>
141
+ #include <ATen/ops/_dimV.h>
142
+ #include <ATen/ops/_dim_arange.h>
143
+ #include <ATen/ops/_dirichlet_grad.h>
144
+ #include <ATen/ops/_efficient_attention_backward.h>
145
+ #include <ATen/ops/_efficient_attention_forward.h>
146
+ #include <ATen/ops/_efficientzerotensor.h>
147
+ #include <ATen/ops/_embedding_bag.h>
148
+ #include <ATen/ops/_embedding_bag_backward.h>
149
+ #include <ATen/ops/_embedding_bag_dense_backward.h>
150
+ #include <ATen/ops/_embedding_bag_forward_only.h>
151
+ #include <ATen/ops/_embedding_bag_per_sample_weights_backward.h>
152
+ #include <ATen/ops/_embedding_bag_sparse_backward.h>
153
+ #include <ATen/ops/_empty_affine_quantized.h>
154
+ #include <ATen/ops/_empty_per_channel_affine_quantized.h>
155
+ #include <ATen/ops/_euclidean_dist.h>
156
+ #include <ATen/ops/_fake_quantize_learnable_per_channel_affine.h>
157
+ #include <ATen/ops/_fake_quantize_learnable_per_channel_affine_backward.h>
158
+ #include <ATen/ops/_fake_quantize_learnable_per_tensor_affine.h>
159
+ #include <ATen/ops/_fake_quantize_learnable_per_tensor_affine_backward.h>
160
+ #include <ATen/ops/_fake_quantize_per_tensor_affine_cachemask_tensor_qparams.h>
161
+ #include <ATen/ops/_fft_c2c.h>
162
+ #include <ATen/ops/_fft_c2r.h>
163
+ #include <ATen/ops/_fft_r2c.h>
164
+ #include <ATen/ops/_fill_mem_eff_dropout_mask.h>
165
+ #include <ATen/ops/_flash_attention_backward.h>
166
+ #include <ATen/ops/_flash_attention_forward.h>
167
+ #include <ATen/ops/_foobar.h>
168
+ #include <ATen/ops/_foreach_abs.h>
169
+ #include <ATen/ops/_foreach_acos.h>
170
+ #include <ATen/ops/_foreach_add.h>
171
+ #include <ATen/ops/_foreach_addcdiv.h>
172
+ #include <ATen/ops/_foreach_addcmul.h>
173
+ #include <ATen/ops/_foreach_asin.h>
174
+ #include <ATen/ops/_foreach_atan.h>
175
+ #include <ATen/ops/_foreach_ceil.h>
176
+ #include <ATen/ops/_foreach_clamp_max.h>
177
+ #include <ATen/ops/_foreach_clamp_min.h>
178
+ #include <ATen/ops/_foreach_copy.h>
179
+ #include <ATen/ops/_foreach_cos.h>
180
+ #include <ATen/ops/_foreach_cosh.h>
181
+ #include <ATen/ops/_foreach_div.h>
182
+ #include <ATen/ops/_foreach_erf.h>
183
+ #include <ATen/ops/_foreach_erfc.h>
184
+ #include <ATen/ops/_foreach_exp.h>
185
+ #include <ATen/ops/_foreach_expm1.h>
186
+ #include <ATen/ops/_foreach_floor.h>
187
+ #include <ATen/ops/_foreach_frac.h>
188
+ #include <ATen/ops/_foreach_lerp.h>
189
+ #include <ATen/ops/_foreach_lgamma.h>
190
+ #include <ATen/ops/_foreach_log.h>
191
+ #include <ATen/ops/_foreach_log10.h>
192
+ #include <ATen/ops/_foreach_log1p.h>
193
+ #include <ATen/ops/_foreach_log2.h>
194
+ #include <ATen/ops/_foreach_maximum.h>
195
+ #include <ATen/ops/_foreach_minimum.h>
196
+ #include <ATen/ops/_foreach_mul.h>
197
+ #include <ATen/ops/_foreach_neg.h>
198
+ #include <ATen/ops/_foreach_norm.h>
199
+ #include <ATen/ops/_foreach_pow.h>
200
+ #include <ATen/ops/_foreach_reciprocal.h>
201
+ #include <ATen/ops/_foreach_round.h>
202
+ #include <ATen/ops/_foreach_sigmoid.h>
203
+ #include <ATen/ops/_foreach_sign.h>
204
+ #include <ATen/ops/_foreach_sin.h>
205
+ #include <ATen/ops/_foreach_sinh.h>
206
+ #include <ATen/ops/_foreach_sqrt.h>
207
+ #include <ATen/ops/_foreach_sub.h>
208
+ #include <ATen/ops/_foreach_tan.h>
209
+ #include <ATen/ops/_foreach_tanh.h>
210
+ #include <ATen/ops/_foreach_trunc.h>
211
+ #include <ATen/ops/_foreach_zero.h>
212
+ #include <ATen/ops/_functional_assert_async.h>
213
+ #include <ATen/ops/_functional_assert_scalar.h>
214
+ #include <ATen/ops/_functional_sym_constrain_range.h>
215
+ #include <ATen/ops/_functional_sym_constrain_range_for_size.h>
216
+ #include <ATen/ops/_fused_adam.h>
217
+ #include <ATen/ops/_fused_adamw.h>
218
+ #include <ATen/ops/_fused_dropout.h>
219
+ #include <ATen/ops/_fused_moving_avg_obs_fq_helper.h>
220
+ #include <ATen/ops/_fused_sdp_choice.h>
221
+ #include <ATen/ops/_fused_sgd.h>
222
+ #include <ATen/ops/_fw_primal.h>
223
+ #include <ATen/ops/_fw_primal_copy.h>
224
+ #include <ATen/ops/_gather_sparse_backward.h>
225
+ #include <ATen/ops/_grid_sampler_2d_cpu_fallback.h>
226
+ #include <ATen/ops/_grid_sampler_2d_cpu_fallback_backward.h>
227
+ #include <ATen/ops/_has_compatible_shallow_copy_type.h>
228
+ #include <ATen/ops/_has_same_storage_numel.h>
229
+ #include <ATen/ops/_histogramdd_bin_edges.h>
230
+ #include <ATen/ops/_histogramdd_from_bin_cts.h>
231
+ #include <ATen/ops/_histogramdd_from_bin_tensors.h>
232
+ #include <ATen/ops/_index_put_impl.h>
233
+ #include <ATen/ops/_indices.h>
234
+ #include <ATen/ops/_indices_copy.h>
235
+ #include <ATen/ops/_int_mm.h>
236
+ #include <ATen/ops/_is_all_true.h>
237
+ #include <ATen/ops/_is_any_true.h>
238
+ #include <ATen/ops/_is_zerotensor.h>
239
+ #include <ATen/ops/_lazy_clone.h>
240
+ #include <ATen/ops/_linalg_check_errors.h>
241
+ #include <ATen/ops/_linalg_det.h>
242
+ #include <ATen/ops/_linalg_eigh.h>
243
+ #include <ATen/ops/_linalg_eigvals.h>
244
+ #include <ATen/ops/_linalg_slogdet.h>
245
+ #include <ATen/ops/_linalg_solve_ex.h>
246
+ #include <ATen/ops/_linalg_svd.h>
247
+ #include <ATen/ops/_local_scalar_dense.h>
248
+ #include <ATen/ops/_log_softmax.h>
249
+ #include <ATen/ops/_log_softmax_backward_data.h>
250
+ #include <ATen/ops/_logcumsumexp.h>
251
+ #include <ATen/ops/_lstm_mps.h>
252
+ #include <ATen/ops/_lu_with_info.h>
253
+ #include <ATen/ops/_make_dep_token.h>
254
+ #include <ATen/ops/_make_dual.h>
255
+ #include <ATen/ops/_make_dual_copy.h>
256
+ #include <ATen/ops/_make_per_channel_quantized_tensor.h>
257
+ #include <ATen/ops/_make_per_tensor_quantized_tensor.h>
258
+ #include <ATen/ops/_masked_scale.h>
259
+ #include <ATen/ops/_masked_softmax.h>
260
+ #include <ATen/ops/_masked_softmax_backward.h>
261
+ #include <ATen/ops/_mixed_dtypes_linear.h>
262
+ #include <ATen/ops/_mkldnn_reshape.h>
263
+ #include <ATen/ops/_mkldnn_transpose.h>
264
+ #include <ATen/ops/_mps_convolution.h>
265
+ #include <ATen/ops/_mps_convolution_transpose.h>
266
+ #include <ATen/ops/_native_batch_norm_legit.h>
267
+ #include <ATen/ops/_native_batch_norm_legit_no_training.h>
268
+ #include <ATen/ops/_native_multi_head_attention.h>
269
+ #include <ATen/ops/_neg_view.h>
270
+ #include <ATen/ops/_neg_view_copy.h>
271
+ #include <ATen/ops/_nested_from_padded.h>
272
+ #include <ATen/ops/_nested_from_padded_and_nested_example.h>
273
+ #include <ATen/ops/_nested_get_jagged_dummy.h>
274
+ #include <ATen/ops/_nested_get_lengths.h>
275
+ #include <ATen/ops/_nested_get_offsets.h>
276
+ #include <ATen/ops/_nested_get_ragged_idx.h>
277
+ #include <ATen/ops/_nested_get_values.h>
278
+ #include <ATen/ops/_nested_get_values_copy.h>
279
+ #include <ATen/ops/_nested_select_backward.h>
280
+ #include <ATen/ops/_nested_sum_backward.h>
281
+ #include <ATen/ops/_nested_tensor_from_mask.h>
282
+ #include <ATen/ops/_nested_tensor_from_mask_left_aligned.h>
283
+ #include <ATen/ops/_nested_tensor_from_tensor_list.h>
284
+ #include <ATen/ops/_nested_tensor_size.h>
285
+ #include <ATen/ops/_nested_tensor_softmax_with_shape.h>
286
+ #include <ATen/ops/_nested_tensor_storage_offsets.h>
287
+ #include <ATen/ops/_nested_tensor_strides.h>
288
+ #include <ATen/ops/_nested_view_from_buffer.h>
289
+ #include <ATen/ops/_nested_view_from_buffer_copy.h>
290
+ #include <ATen/ops/_nested_view_from_jagged.h>
291
+ #include <ATen/ops/_nested_view_from_jagged_copy.h>
292
+ #include <ATen/ops/_new_zeros_with_same_feature_meta.h>
293
+ #include <ATen/ops/_nnpack_available.h>
294
+ #include <ATen/ops/_nnpack_spatial_convolution.h>
295
+ #include <ATen/ops/_nnz.h>
296
+ #include <ATen/ops/_pack_padded_sequence.h>
297
+ #include <ATen/ops/_pack_padded_sequence_backward.h>
298
+ #include <ATen/ops/_pad_circular.h>
299
+ #include <ATen/ops/_pad_enum.h>
300
+ #include <ATen/ops/_pad_packed_sequence.h>
301
+ #include <ATen/ops/_pdist_backward.h>
302
+ #include <ATen/ops/_pdist_forward.h>
303
+ #include <ATen/ops/_pin_memory.h>
304
+ #include <ATen/ops/_prelu_kernel.h>
305
+ #include <ATen/ops/_prelu_kernel_backward.h>
306
+ #include <ATen/ops/_print.h>
307
+ #include <ATen/ops/_propagate_xla_data.h>
308
+ #include <ATen/ops/_remove_batch_dim.h>
309
+ #include <ATen/ops/_reshape_alias.h>
310
+ #include <ATen/ops/_reshape_alias_copy.h>
311
+ #include <ATen/ops/_reshape_copy.h>
312
+ #include <ATen/ops/_reshape_from_tensor.h>
313
+ #include <ATen/ops/_resize_output.h>
314
+ #include <ATen/ops/_rowwise_prune.h>
315
+ #include <ATen/ops/_sample_dirichlet.h>
316
+ #include <ATen/ops/_saturate_weight_to_fp16.h>
317
+ #include <ATen/ops/_scaled_dot_product_attention_math.h>
318
+ #include <ATen/ops/_scaled_dot_product_cudnn_attention.h>
319
+ #include <ATen/ops/_scaled_dot_product_efficient_attention.h>
320
+ #include <ATen/ops/_scaled_dot_product_efficient_attention_backward.h>
321
+ #include <ATen/ops/_scaled_dot_product_flash_attention.h>
322
+ #include <ATen/ops/_scaled_dot_product_flash_attention_backward.h>
323
+ #include <ATen/ops/_scaled_dot_product_flash_attention_for_cpu.h>
324
+ #include <ATen/ops/_scaled_dot_product_flash_attention_for_cpu_backward.h>
325
+ #include <ATen/ops/_scaled_mm.h>
326
+ #include <ATen/ops/_segment_reduce_backward.h>
327
+ #include <ATen/ops/_shape_as_tensor.h>
328
+ #include <ATen/ops/_slow_conv2d_backward.h>
329
+ #include <ATen/ops/_slow_conv2d_forward.h>
330
+ #include <ATen/ops/_sobol_engine_draw.h>
331
+ #include <ATen/ops/_sobol_engine_ff.h>
332
+ #include <ATen/ops/_sobol_engine_initialize_state.h>
333
+ #include <ATen/ops/_sobol_engine_scramble.h>
334
+ #include <ATen/ops/_softmax.h>
335
+ #include <ATen/ops/_softmax_backward_data.h>
336
+ #include <ATen/ops/_sparse_addmm.h>
337
+ #include <ATen/ops/_sparse_broadcast_to.h>
338
+ #include <ATen/ops/_sparse_broadcast_to_copy.h>
339
+ #include <ATen/ops/_sparse_bsc_tensor_unsafe.h>
340
+ #include <ATen/ops/_sparse_bsr_tensor_unsafe.h>
341
+ #include <ATen/ops/_sparse_compressed_tensor_unsafe.h>
342
+ #include <ATen/ops/_sparse_coo_tensor_unsafe.h>
343
+ #include <ATen/ops/_sparse_coo_tensor_with_dims.h>
344
+ #include <ATen/ops/_sparse_coo_tensor_with_dims_and_tensors.h>
345
+ #include <ATen/ops/_sparse_csc_tensor_unsafe.h>
346
+ #include <ATen/ops/_sparse_csr_prod.h>
347
+ #include <ATen/ops/_sparse_csr_sum.h>
348
+ #include <ATen/ops/_sparse_csr_tensor_unsafe.h>
349
+ #include <ATen/ops/_sparse_log_softmax.h>
350
+ #include <ATen/ops/_sparse_log_softmax_backward_data.h>
351
+ #include <ATen/ops/_sparse_mask_projection.h>
352
+ #include <ATen/ops/_sparse_mm.h>
353
+ #include <ATen/ops/_sparse_mm_reduce_impl.h>
354
+ #include <ATen/ops/_sparse_mm_reduce_impl_backward.h>
355
+ #include <ATen/ops/_sparse_semi_structured_linear.h>
356
+ #include <ATen/ops/_sparse_softmax.h>
357
+ #include <ATen/ops/_sparse_softmax_backward_data.h>
358
+ #include <ATen/ops/_sparse_sparse_matmul.h>
359
+ #include <ATen/ops/_sparse_sum.h>
360
+ #include <ATen/ops/_sparse_sum_backward.h>
361
+ #include <ATen/ops/_spdiags.h>
362
+ #include <ATen/ops/_stack.h>
363
+ #include <ATen/ops/_standard_gamma.h>
364
+ #include <ATen/ops/_standard_gamma_grad.h>
365
+ #include <ATen/ops/_test_ambiguous_defaults.h>
366
+ #include <ATen/ops/_test_autograd_multiple_dispatch.h>
367
+ #include <ATen/ops/_test_autograd_multiple_dispatch_view.h>
368
+ #include <ATen/ops/_test_autograd_multiple_dispatch_view_copy.h>
369
+ #include <ATen/ops/_test_check_tensor.h>
370
+ #include <ATen/ops/_test_functorch_fallback.h>
371
+ #include <ATen/ops/_test_optional_filled_intlist.h>
372
+ #include <ATen/ops/_test_optional_floatlist.h>
373
+ #include <ATen/ops/_test_optional_intlist.h>
374
+ #include <ATen/ops/_test_parallel_materialize.h>
375
+ #include <ATen/ops/_test_serialization_subcmul.h>
376
+ #include <ATen/ops/_test_string_default.h>
377
+ #include <ATen/ops/_test_warn_in_autograd.h>
378
+ #include <ATen/ops/_thnn_differentiable_gru_cell_backward.h>
379
+ #include <ATen/ops/_thnn_differentiable_lstm_cell_backward.h>
380
+ #include <ATen/ops/_thnn_fused_gru_cell.h>
381
+ #include <ATen/ops/_thnn_fused_gru_cell_backward.h>
382
+ #include <ATen/ops/_thnn_fused_lstm_cell.h>
383
+ #include <ATen/ops/_thnn_fused_lstm_cell_backward.h>
384
+ #include <ATen/ops/_thnn_fused_lstm_cell_backward_impl.h>
385
+ #include <ATen/ops/_to_copy.h>
386
+ #include <ATen/ops/_to_cpu.h>
387
+ #include <ATen/ops/_to_dense.h>
388
+ #include <ATen/ops/_to_sparse.h>
389
+ #include <ATen/ops/_to_sparse_bsc.h>
390
+ #include <ATen/ops/_to_sparse_bsr.h>
391
+ #include <ATen/ops/_to_sparse_csc.h>
392
+ #include <ATen/ops/_to_sparse_csr.h>
393
+ #include <ATen/ops/_to_sparse_semi_structured.h>
394
+ #include <ATen/ops/_transform_bias_rescale_qkv.h>
395
+ #include <ATen/ops/_transformer_encoder_layer_fwd.h>
396
+ #include <ATen/ops/_trilinear.h>
397
+ #include <ATen/ops/_triton_multi_head_attention.h>
398
+ #include <ATen/ops/_triton_scaled_dot_attention.h>
399
+ #include <ATen/ops/_unique.h>
400
+ #include <ATen/ops/_unique2.h>
401
+ #include <ATen/ops/_unpack_dual.h>
402
+ #include <ATen/ops/_unsafe_index.h>
403
+ #include <ATen/ops/_unsafe_index_put.h>
404
+ #include <ATen/ops/_unsafe_view.h>
405
+ #include <ATen/ops/_upsample_bicubic2d_aa.h>
406
+ #include <ATen/ops/_upsample_bicubic2d_aa_backward.h>
407
+ #include <ATen/ops/_upsample_bilinear2d_aa.h>
408
+ #include <ATen/ops/_upsample_bilinear2d_aa_backward.h>
409
+ #include <ATen/ops/_upsample_nearest_exact1d.h>
410
+ #include <ATen/ops/_upsample_nearest_exact1d_backward.h>
411
+ #include <ATen/ops/_upsample_nearest_exact2d.h>
412
+ #include <ATen/ops/_upsample_nearest_exact2d_backward.h>
413
+ #include <ATen/ops/_upsample_nearest_exact3d.h>
414
+ #include <ATen/ops/_upsample_nearest_exact3d_backward.h>
415
+ #include <ATen/ops/_use_cudnn_ctc_loss.h>
416
+ #include <ATen/ops/_use_cudnn_rnn_flatten_weight.h>
417
+ #include <ATen/ops/_validate_compressed_sparse_indices.h>
418
+ #include <ATen/ops/_validate_sparse_bsc_tensor_args.h>
419
+ #include <ATen/ops/_validate_sparse_bsr_tensor_args.h>
420
+ #include <ATen/ops/_validate_sparse_compressed_tensor_args.h>
421
+ #include <ATen/ops/_validate_sparse_coo_tensor_args.h>
422
+ #include <ATen/ops/_validate_sparse_csc_tensor_args.h>
423
+ #include <ATen/ops/_validate_sparse_csr_tensor_args.h>
424
+ #include <ATen/ops/_values.h>
425
+ #include <ATen/ops/_values_copy.h>
426
+ #include <ATen/ops/_version.h>
427
+ #include <ATen/ops/_weight_int4pack_mm.h>
428
+ #include <ATen/ops/_weight_int8pack_mm.h>
429
+ #include <ATen/ops/_weight_norm.h>
430
+ #include <ATen/ops/_weight_norm_differentiable_backward.h>
431
+ #include <ATen/ops/_weight_norm_interface.h>
432
+ #include <ATen/ops/_weight_norm_interface_backward.h>
433
+ #include <ATen/ops/abs.h>
434
+ #include <ATen/ops/absolute.h>
435
+ #include <ATen/ops/acos.h>
436
+ #include <ATen/ops/acosh.h>
437
+ #include <ATen/ops/adaptive_avg_pool1d.h>
438
+ #include <ATen/ops/adaptive_avg_pool2d.h>
439
+ #include <ATen/ops/adaptive_avg_pool3d.h>
440
+ #include <ATen/ops/adaptive_avg_pool3d_backward.h>
441
+ #include <ATen/ops/adaptive_max_pool1d.h>
442
+ #include <ATen/ops/adaptive_max_pool2d.h>
443
+ #include <ATen/ops/adaptive_max_pool2d_backward.h>
444
+ #include <ATen/ops/adaptive_max_pool3d.h>
445
+ #include <ATen/ops/adaptive_max_pool3d_backward.h>
446
+ #include <ATen/ops/add.h>
447
+ #include <ATen/ops/addbmm.h>
448
+ #include <ATen/ops/addcdiv.h>
449
+ #include <ATen/ops/addcmul.h>
450
+ #include <ATen/ops/addmm.h>
451
+ #include <ATen/ops/addmv.h>
452
+ #include <ATen/ops/addr.h>
453
+ #include <ATen/ops/adjoint.h>
454
+ #include <ATen/ops/affine_grid_generator.h>
455
+ #include <ATen/ops/affine_grid_generator_backward.h>
456
+ #include <ATen/ops/alias.h>
457
+ #include <ATen/ops/alias_copy.h>
458
+ #include <ATen/ops/align_as.h>
459
+ #include <ATen/ops/align_tensors.h>
460
+ #include <ATen/ops/align_to.h>
461
+ #include <ATen/ops/all.h>
462
+ #include <ATen/ops/allclose.h>
463
+ #include <ATen/ops/alpha_dropout.h>
464
+ #include <ATen/ops/amax.h>
465
+ #include <ATen/ops/amin.h>
466
+ #include <ATen/ops/aminmax.h>
467
+ #include <ATen/ops/and.h>
468
+ #include <ATen/ops/angle.h>
469
+ #include <ATen/ops/any.h>
470
+ #include <ATen/ops/arange.h>
471
+ #include <ATen/ops/arccos.h>
472
+ #include <ATen/ops/arccosh.h>
473
+ #include <ATen/ops/arcsin.h>
474
+ #include <ATen/ops/arcsinh.h>
475
+ #include <ATen/ops/arctan.h>
476
+ #include <ATen/ops/arctan2.h>
477
+ #include <ATen/ops/arctanh.h>
478
+ #include <ATen/ops/argmax.h>
479
+ #include <ATen/ops/argmin.h>
480
+ #include <ATen/ops/argsort.h>
481
+ #include <ATen/ops/argwhere.h>
482
+ #include <ATen/ops/as_strided.h>
483
+ #include <ATen/ops/as_strided_copy.h>
484
+ #include <ATen/ops/as_strided_scatter.h>
485
+ #include <ATen/ops/asin.h>
486
+ #include <ATen/ops/asinh.h>
487
+ #include <ATen/ops/atan.h>
488
+ #include <ATen/ops/atan2.h>
489
+ #include <ATen/ops/atanh.h>
490
+ #include <ATen/ops/atleast_1d.h>
491
+ #include <ATen/ops/atleast_2d.h>
492
+ #include <ATen/ops/atleast_3d.h>
493
+ #include <ATen/ops/avg_pool1d.h>
494
+ #include <ATen/ops/avg_pool2d.h>
495
+ #include <ATen/ops/avg_pool2d_backward.h>
496
+ #include <ATen/ops/avg_pool3d.h>
497
+ #include <ATen/ops/avg_pool3d_backward.h>
498
+ #include <ATen/ops/baddbmm.h>
499
+ #include <ATen/ops/bartlett_window.h>
500
+ #include <ATen/ops/batch_norm.h>
501
+ #include <ATen/ops/batch_norm_backward_elemt.h>
502
+ #include <ATen/ops/batch_norm_backward_reduce.h>
503
+ #include <ATen/ops/batch_norm_elemt.h>
504
+ #include <ATen/ops/batch_norm_gather_stats.h>
505
+ #include <ATen/ops/batch_norm_gather_stats_with_counts.h>
506
+ #include <ATen/ops/batch_norm_stats.h>
507
+ #include <ATen/ops/batch_norm_update_stats.h>
508
+ #include <ATen/ops/bernoulli.h>
509
+ #include <ATen/ops/bilinear.h>
510
+ #include <ATen/ops/binary_cross_entropy.h>
511
+ #include <ATen/ops/binary_cross_entropy_backward.h>
512
+ #include <ATen/ops/binary_cross_entropy_with_logits.h>
513
+ #include <ATen/ops/bincount.h>
514
+ #include <ATen/ops/binomial.h>
515
+ #include <ATen/ops/bitwise_and.h>
516
+ #include <ATen/ops/bitwise_left_shift.h>
517
+ #include <ATen/ops/bitwise_not.h>
518
+ #include <ATen/ops/bitwise_or.h>
519
+ #include <ATen/ops/bitwise_right_shift.h>
520
+ #include <ATen/ops/bitwise_xor.h>
521
+ #include <ATen/ops/blackman_window.h>
522
+ #include <ATen/ops/block_diag.h>
523
+ #include <ATen/ops/bmm.h>
524
+ #include <ATen/ops/broadcast_tensors.h>
525
+ #include <ATen/ops/broadcast_to.h>
526
+ #include <ATen/ops/bucketize.h>
527
+ #include <ATen/ops/can_cast.h>
528
+ #include <ATen/ops/cartesian_prod.h>
529
+ #include <ATen/ops/cat.h>
530
+ #include <ATen/ops/cauchy.h>
531
+ #include <ATen/ops/ccol_indices.h>
532
+ #include <ATen/ops/ccol_indices_copy.h>
533
+ #include <ATen/ops/cdist.h>
534
+ #include <ATen/ops/ceil.h>
535
+ #include <ATen/ops/celu.h>
536
+ #include <ATen/ops/chain_matmul.h>
537
+ #include <ATen/ops/chalf.h>
538
+ #include <ATen/ops/channel_shuffle.h>
539
+ #include <ATen/ops/cholesky.h>
540
+ #include <ATen/ops/cholesky_inverse.h>
541
+ #include <ATen/ops/cholesky_solve.h>
542
+ #include <ATen/ops/choose_qparams_optimized.h>
543
+ #include <ATen/ops/chunk.h>
544
+ #include <ATen/ops/clamp.h>
545
+ #include <ATen/ops/clamp_max.h>
546
+ #include <ATen/ops/clamp_min.h>
547
+ #include <ATen/ops/clip.h>
548
+ #include <ATen/ops/clone.h>
549
+ #include <ATen/ops/coalesce.h>
550
+ #include <ATen/ops/col2im.h>
551
+ #include <ATen/ops/col_indices.h>
552
+ #include <ATen/ops/col_indices_copy.h>
553
+ #include <ATen/ops/column_stack.h>
554
+ #include <ATen/ops/combinations.h>
555
+ #include <ATen/ops/complex.h>
556
+ #include <ATen/ops/concat.h>
557
+ #include <ATen/ops/concatenate.h>
558
+ #include <ATen/ops/conj.h>
559
+ #include <ATen/ops/conj_physical.h>
560
+ #include <ATen/ops/constant_pad_nd.h>
561
+ #include <ATen/ops/contiguous.h>
562
+ #include <ATen/ops/conv1d.h>
563
+ #include <ATen/ops/conv2d.h>
564
+ #include <ATen/ops/conv3d.h>
565
+ #include <ATen/ops/conv_depthwise3d.h>
566
+ #include <ATen/ops/conv_tbc.h>
567
+ #include <ATen/ops/conv_tbc_backward.h>
568
+ #include <ATen/ops/conv_transpose1d.h>
569
+ #include <ATen/ops/conv_transpose2d.h>
570
+ #include <ATen/ops/conv_transpose3d.h>
571
+ #include <ATen/ops/convolution.h>
572
+ #include <ATen/ops/convolution_backward.h>
573
+ #include <ATen/ops/convolution_backward_overrideable.h>
574
+ #include <ATen/ops/convolution_overrideable.h>
575
+ #include <ATen/ops/copy.h>
576
+ #include <ATen/ops/copy_sparse_to_sparse.h>
577
+ #include <ATen/ops/copysign.h>
578
+ #include <ATen/ops/corrcoef.h>
579
+ #include <ATen/ops/cos.h>
580
+ #include <ATen/ops/cosh.h>
581
+ #include <ATen/ops/cosine_embedding_loss.h>
582
+ #include <ATen/ops/cosine_similarity.h>
583
+ #include <ATen/ops/count_nonzero.h>
584
+ #include <ATen/ops/cov.h>
585
+ #include <ATen/ops/cross.h>
586
+ #include <ATen/ops/cross_entropy_loss.h>
587
+ #include <ATen/ops/crow_indices.h>
588
+ #include <ATen/ops/crow_indices_copy.h>
589
+ #include <ATen/ops/ctc_loss.h>
590
+ #include <ATen/ops/cudnn_affine_grid_generator.h>
591
+ #include <ATen/ops/cudnn_affine_grid_generator_backward.h>
592
+ #include <ATen/ops/cudnn_batch_norm.h>
593
+ #include <ATen/ops/cudnn_batch_norm_backward.h>
594
+ #include <ATen/ops/cudnn_convolution.h>
595
+ #include <ATen/ops/cudnn_convolution_add_relu.h>
596
+ #include <ATen/ops/cudnn_convolution_relu.h>
597
+ #include <ATen/ops/cudnn_convolution_transpose.h>
598
+ #include <ATen/ops/cudnn_grid_sampler.h>
599
+ #include <ATen/ops/cudnn_grid_sampler_backward.h>
600
+ #include <ATen/ops/cudnn_is_acceptable.h>
601
+ #include <ATen/ops/cummax.h>
602
+ #include <ATen/ops/cummaxmin_backward.h>
603
+ #include <ATen/ops/cummin.h>
604
+ #include <ATen/ops/cumprod.h>
605
+ #include <ATen/ops/cumprod_backward.h>
606
+ #include <ATen/ops/cumsum.h>
607
+ #include <ATen/ops/cumulative_trapezoid.h>
608
+ #include <ATen/ops/data.h>
609
+ #include <ATen/ops/deg2rad.h>
610
+ #include <ATen/ops/dense_dim.h>
611
+ #include <ATen/ops/dequantize.h>
612
+ #include <ATen/ops/det.h>
613
+ #include <ATen/ops/detach.h>
614
+ #include <ATen/ops/detach_copy.h>
615
+ #include <ATen/ops/diag.h>
616
+ #include <ATen/ops/diag_embed.h>
617
+ #include <ATen/ops/diagflat.h>
618
+ #include <ATen/ops/diagonal.h>
619
+ #include <ATen/ops/diagonal_backward.h>
620
+ #include <ATen/ops/diagonal_copy.h>
621
+ #include <ATen/ops/diagonal_scatter.h>
622
+ #include <ATen/ops/diff.h>
623
+ #include <ATen/ops/digamma.h>
624
+ #include <ATen/ops/dist.h>
625
+ #include <ATen/ops/div.h>
626
+ #include <ATen/ops/divide.h>
627
+ #include <ATen/ops/dot.h>
628
+ #include <ATen/ops/dropout.h>
629
+ #include <ATen/ops/dsplit.h>
630
+ #include <ATen/ops/dstack.h>
631
+ #include <ATen/ops/einsum.h>
632
+ #include <ATen/ops/elu.h>
633
+ #include <ATen/ops/elu_backward.h>
634
+ #include <ATen/ops/embedding.h>
635
+ #include <ATen/ops/embedding_backward.h>
636
+ #include <ATen/ops/embedding_bag.h>
637
+ #include <ATen/ops/embedding_dense_backward.h>
638
+ #include <ATen/ops/embedding_renorm.h>
639
+ #include <ATen/ops/embedding_sparse_backward.h>
640
+ #include <ATen/ops/empty.h>
641
+ #include <ATen/ops/empty_like.h>
642
+ #include <ATen/ops/empty_permuted.h>
643
+ #include <ATen/ops/empty_quantized.h>
644
+ #include <ATen/ops/empty_strided.h>
645
+ #include <ATen/ops/eq.h>
646
+ #include <ATen/ops/equal.h>
647
+ #include <ATen/ops/erf.h>
648
+ #include <ATen/ops/erfc.h>
649
+ #include <ATen/ops/erfinv.h>
650
+ #include <ATen/ops/exp.h>
651
+ #include <ATen/ops/exp2.h>
652
+ #include <ATen/ops/expand.h>
653
+ #include <ATen/ops/expand_as.h>
654
+ #include <ATen/ops/expand_copy.h>
655
+ #include <ATen/ops/expm1.h>
656
+ #include <ATen/ops/exponential.h>
657
+ #include <ATen/ops/eye.h>
658
+ #include <ATen/ops/fake_quantize_per_channel_affine.h>
659
+ #include <ATen/ops/fake_quantize_per_channel_affine_cachemask.h>
660
+ #include <ATen/ops/fake_quantize_per_channel_affine_cachemask_backward.h>
661
+ #include <ATen/ops/fake_quantize_per_tensor_affine.h>
662
+ #include <ATen/ops/fake_quantize_per_tensor_affine_cachemask.h>
663
+ #include <ATen/ops/fake_quantize_per_tensor_affine_cachemask_backward.h>
664
+ #include <ATen/ops/fbgemm_linear_fp16_weight.h>
665
+ #include <ATen/ops/fbgemm_linear_fp16_weight_fp32_activation.h>
666
+ #include <ATen/ops/fbgemm_linear_int8_weight.h>
667
+ #include <ATen/ops/fbgemm_linear_int8_weight_fp32_activation.h>
668
+ #include <ATen/ops/fbgemm_linear_quantize_weight.h>
669
+ #include <ATen/ops/fbgemm_pack_gemm_matrix_fp16.h>
670
+ #include <ATen/ops/fbgemm_pack_quantized_matrix.h>
671
+ #include <ATen/ops/feature_alpha_dropout.h>
672
+ #include <ATen/ops/feature_dropout.h>
673
+ #include <ATen/ops/fft_fft.h>
674
+ #include <ATen/ops/fft_fft2.h>
675
+ #include <ATen/ops/fft_fftfreq.h>
676
+ #include <ATen/ops/fft_fftn.h>
677
+ #include <ATen/ops/fft_fftshift.h>
678
+ #include <ATen/ops/fft_hfft.h>
679
+ #include <ATen/ops/fft_hfft2.h>
680
+ #include <ATen/ops/fft_hfftn.h>
681
+ #include <ATen/ops/fft_ifft.h>
682
+ #include <ATen/ops/fft_ifft2.h>
683
+ #include <ATen/ops/fft_ifftn.h>
684
+ #include <ATen/ops/fft_ifftshift.h>
685
+ #include <ATen/ops/fft_ihfft.h>
686
+ #include <ATen/ops/fft_ihfft2.h>
687
+ #include <ATen/ops/fft_ihfftn.h>
688
+ #include <ATen/ops/fft_irfft.h>
689
+ #include <ATen/ops/fft_irfft2.h>
690
+ #include <ATen/ops/fft_irfftn.h>
691
+ #include <ATen/ops/fft_rfft.h>
692
+ #include <ATen/ops/fft_rfft2.h>
693
+ #include <ATen/ops/fft_rfftfreq.h>
694
+ #include <ATen/ops/fft_rfftn.h>
695
+ #include <ATen/ops/fill.h>
696
+ #include <ATen/ops/fill_diagonal.h>
697
+ #include <ATen/ops/fix.h>
698
+ #include <ATen/ops/flatten.h>
699
+ #include <ATen/ops/flatten_dense_tensors.h>
700
+ #include <ATen/ops/flip.h>
701
+ #include <ATen/ops/fliplr.h>
702
+ #include <ATen/ops/flipud.h>
703
+ #include <ATen/ops/float_power.h>
704
+ #include <ATen/ops/floor.h>
705
+ #include <ATen/ops/floor_divide.h>
706
+ #include <ATen/ops/fmax.h>
707
+ #include <ATen/ops/fmin.h>
708
+ #include <ATen/ops/fmod.h>
709
+ #include <ATen/ops/frac.h>
710
+ #include <ATen/ops/fractional_max_pool2d.h>
711
+ #include <ATen/ops/fractional_max_pool2d_backward.h>
712
+ #include <ATen/ops/fractional_max_pool3d.h>
713
+ #include <ATen/ops/fractional_max_pool3d_backward.h>
714
+ #include <ATen/ops/frexp.h>
715
+ #include <ATen/ops/frobenius_norm.h>
716
+ #include <ATen/ops/from_file.h>
717
+ #include <ATen/ops/full.h>
718
+ #include <ATen/ops/full_like.h>
719
+ #include <ATen/ops/fused_moving_avg_obs_fake_quant.h>
720
+ #include <ATen/ops/gather.h>
721
+ #include <ATen/ops/gather_backward.h>
722
+ #include <ATen/ops/gcd.h>
723
+ #include <ATen/ops/ge.h>
724
+ #include <ATen/ops/gelu.h>
725
+ #include <ATen/ops/gelu_backward.h>
726
+ #include <ATen/ops/geometric.h>
727
+ #include <ATen/ops/geqrf.h>
728
+ #include <ATen/ops/ger.h>
729
+ #include <ATen/ops/glu.h>
730
+ #include <ATen/ops/glu_backward.h>
731
+ #include <ATen/ops/glu_backward_jvp.h>
732
+ #include <ATen/ops/glu_jvp.h>
733
+ #include <ATen/ops/gradient.h>
734
+ #include <ATen/ops/greater.h>
735
+ #include <ATen/ops/greater_equal.h>
736
+ #include <ATen/ops/grid_sampler.h>
737
+ #include <ATen/ops/grid_sampler_2d.h>
738
+ #include <ATen/ops/grid_sampler_2d_backward.h>
739
+ #include <ATen/ops/grid_sampler_3d.h>
740
+ #include <ATen/ops/grid_sampler_3d_backward.h>
741
+ #include <ATen/ops/group_norm.h>
742
+ #include <ATen/ops/gru.h>
743
+ #include <ATen/ops/gru_cell.h>
744
+ #include <ATen/ops/gt.h>
745
+ #include <ATen/ops/hamming_window.h>
746
+ #include <ATen/ops/hann_window.h>
747
+ #include <ATen/ops/hardshrink.h>
748
+ #include <ATen/ops/hardshrink_backward.h>
749
+ #include <ATen/ops/hardsigmoid.h>
750
+ #include <ATen/ops/hardsigmoid_backward.h>
751
+ #include <ATen/ops/hardswish.h>
752
+ #include <ATen/ops/hardswish_backward.h>
753
+ #include <ATen/ops/hardtanh.h>
754
+ #include <ATen/ops/hardtanh_backward.h>
755
+ #include <ATen/ops/heaviside.h>
756
+ #include <ATen/ops/hinge_embedding_loss.h>
757
+ #include <ATen/ops/histc.h>
758
+ #include <ATen/ops/histogram.h>
759
+ #include <ATen/ops/histogramdd.h>
760
+ #include <ATen/ops/hsplit.h>
761
+ #include <ATen/ops/hspmm.h>
762
+ #include <ATen/ops/hstack.h>
763
+ #include <ATen/ops/huber_loss.h>
764
+ #include <ATen/ops/huber_loss_backward.h>
765
+ #include <ATen/ops/hypot.h>
766
+ #include <ATen/ops/i0.h>
767
+ #include <ATen/ops/igamma.h>
768
+ #include <ATen/ops/igammac.h>
769
+ #include <ATen/ops/im2col.h>
770
+ #include <ATen/ops/imag.h>
771
+ #include <ATen/ops/index.h>
772
+ #include <ATen/ops/index_add.h>
773
+ #include <ATen/ops/index_copy.h>
774
+ #include <ATen/ops/index_fill.h>
775
+ #include <ATen/ops/index_put.h>
776
+ #include <ATen/ops/index_reduce.h>
777
+ #include <ATen/ops/index_select.h>
778
+ #include <ATen/ops/index_select_backward.h>
779
+ #include <ATen/ops/indices.h>
780
+ #include <ATen/ops/indices_copy.h>
781
+ #include <ATen/ops/infinitely_differentiable_gelu_backward.h>
782
+ #include <ATen/ops/inner.h>
783
+ #include <ATen/ops/instance_norm.h>
784
+ #include <ATen/ops/int_repr.h>
785
+ #include <ATen/ops/inverse.h>
786
+ #include <ATen/ops/is_coalesced.h>
787
+ #include <ATen/ops/is_complex.h>
788
+ #include <ATen/ops/is_conj.h>
789
+ #include <ATen/ops/is_distributed.h>
790
+ #include <ATen/ops/is_floating_point.h>
791
+ #include <ATen/ops/is_inference.h>
792
+ #include <ATen/ops/is_leaf.h>
793
+ #include <ATen/ops/is_neg.h>
794
+ #include <ATen/ops/is_nonzero.h>
795
+ #include <ATen/ops/is_pinned.h>
796
+ #include <ATen/ops/is_same_size.h>
797
+ #include <ATen/ops/is_set_to.h>
798
+ #include <ATen/ops/is_signed.h>
799
+ #include <ATen/ops/is_vulkan_available.h>
800
+ #include <ATen/ops/isclose.h>
801
+ #include <ATen/ops/isfinite.h>
802
+ #include <ATen/ops/isin.h>
803
+ #include <ATen/ops/isinf.h>
804
+ #include <ATen/ops/isnan.h>
805
+ #include <ATen/ops/isneginf.h>
806
+ #include <ATen/ops/isposinf.h>
807
+ #include <ATen/ops/isreal.h>
808
+ #include <ATen/ops/istft.h>
809
+ #include <ATen/ops/item.h>
810
+ #include <ATen/ops/kaiser_window.h>
811
+ #include <ATen/ops/kl_div.h>
812
+ #include <ATen/ops/kron.h>
813
+ #include <ATen/ops/kthvalue.h>
814
+ #include <ATen/ops/l1_loss.h>
815
+ #include <ATen/ops/layer_norm.h>
816
+ #include <ATen/ops/lcm.h>
817
+ #include <ATen/ops/ldexp.h>
818
+ #include <ATen/ops/le.h>
819
+ #include <ATen/ops/leaky_relu.h>
820
+ #include <ATen/ops/leaky_relu_backward.h>
821
+ #include <ATen/ops/lerp.h>
822
+ #include <ATen/ops/less.h>
823
+ #include <ATen/ops/less_equal.h>
824
+ #include <ATen/ops/lgamma.h>
825
+ #include <ATen/ops/lift.h>
826
+ #include <ATen/ops/lift_fresh.h>
827
+ #include <ATen/ops/lift_fresh_copy.h>
828
+ #include <ATen/ops/linalg_cholesky.h>
829
+ #include <ATen/ops/linalg_cholesky_ex.h>
830
+ #include <ATen/ops/linalg_cond.h>
831
+ #include <ATen/ops/linalg_cross.h>
832
+ #include <ATen/ops/linalg_det.h>
833
+ #include <ATen/ops/linalg_diagonal.h>
834
+ #include <ATen/ops/linalg_eig.h>
835
+ #include <ATen/ops/linalg_eigh.h>
836
+ #include <ATen/ops/linalg_eigvals.h>
837
+ #include <ATen/ops/linalg_eigvalsh.h>
838
+ #include <ATen/ops/linalg_householder_product.h>
839
+ #include <ATen/ops/linalg_inv.h>
840
+ #include <ATen/ops/linalg_inv_ex.h>
841
+ #include <ATen/ops/linalg_ldl_factor.h>
842
+ #include <ATen/ops/linalg_ldl_factor_ex.h>
843
+ #include <ATen/ops/linalg_ldl_solve.h>
844
+ #include <ATen/ops/linalg_lstsq.h>
845
+ #include <ATen/ops/linalg_lu.h>
846
+ #include <ATen/ops/linalg_lu_factor.h>
847
+ #include <ATen/ops/linalg_lu_factor_ex.h>
848
+ #include <ATen/ops/linalg_lu_solve.h>
849
+ #include <ATen/ops/linalg_matmul.h>
850
+ #include <ATen/ops/linalg_matrix_exp.h>
851
+ #include <ATen/ops/linalg_matrix_norm.h>
852
+ #include <ATen/ops/linalg_matrix_power.h>
853
+ #include <ATen/ops/linalg_matrix_rank.h>
854
+ #include <ATen/ops/linalg_multi_dot.h>
855
+ #include <ATen/ops/linalg_norm.h>
856
+ #include <ATen/ops/linalg_pinv.h>
857
+ #include <ATen/ops/linalg_qr.h>
858
+ #include <ATen/ops/linalg_slogdet.h>
859
+ #include <ATen/ops/linalg_solve.h>
860
+ #include <ATen/ops/linalg_solve_ex.h>
861
+ #include <ATen/ops/linalg_solve_triangular.h>
862
+ #include <ATen/ops/linalg_svd.h>
863
+ #include <ATen/ops/linalg_svdvals.h>
864
+ #include <ATen/ops/linalg_tensorinv.h>
865
+ #include <ATen/ops/linalg_tensorsolve.h>
866
+ #include <ATen/ops/linalg_vander.h>
867
+ #include <ATen/ops/linalg_vecdot.h>
868
+ #include <ATen/ops/linalg_vector_norm.h>
869
+ #include <ATen/ops/linear.h>
870
+ #include <ATen/ops/linear_backward.h>
871
+ #include <ATen/ops/linspace.h>
872
+ #include <ATen/ops/log.h>
873
+ #include <ATen/ops/log10.h>
874
+ #include <ATen/ops/log1p.h>
875
+ #include <ATen/ops/log2.h>
876
+ #include <ATen/ops/log_normal.h>
877
+ #include <ATen/ops/log_sigmoid.h>
878
+ #include <ATen/ops/log_sigmoid_backward.h>
879
+ #include <ATen/ops/log_sigmoid_forward.h>
880
+ #include <ATen/ops/log_softmax.h>
881
+ #include <ATen/ops/logaddexp.h>
882
+ #include <ATen/ops/logaddexp2.h>
883
+ #include <ATen/ops/logcumsumexp.h>
884
+ #include <ATen/ops/logdet.h>
885
+ #include <ATen/ops/logical_and.h>
886
+ #include <ATen/ops/logical_not.h>
887
+ #include <ATen/ops/logical_or.h>
888
+ #include <ATen/ops/logical_xor.h>
889
+ #include <ATen/ops/logit.h>
890
+ #include <ATen/ops/logit_backward.h>
891
+ #include <ATen/ops/logspace.h>
892
+ #include <ATen/ops/logsumexp.h>
893
+ #include <ATen/ops/lshift.h>
894
+ #include <ATen/ops/lstm.h>
895
+ #include <ATen/ops/lstm_cell.h>
896
+ #include <ATen/ops/lstm_mps_backward.h>
897
+ #include <ATen/ops/lt.h>
898
+ #include <ATen/ops/lu_solve.h>
899
+ #include <ATen/ops/lu_unpack.h>
900
+ #include <ATen/ops/mH.h>
901
+ #include <ATen/ops/mT.h>
902
+ #include <ATen/ops/margin_ranking_loss.h>
903
+ #include <ATen/ops/masked_fill.h>
904
+ #include <ATen/ops/masked_scatter.h>
905
+ #include <ATen/ops/masked_scatter_backward.h>
906
+ #include <ATen/ops/masked_select.h>
907
+ #include <ATen/ops/masked_select_backward.h>
908
+ #include <ATen/ops/matmul.h>
909
+ #include <ATen/ops/matmul_backward.h>
910
+ #include <ATen/ops/matrix_H.h>
911
+ #include <ATen/ops/matrix_exp.h>
912
+ #include <ATen/ops/matrix_exp_backward.h>
913
+ #include <ATen/ops/matrix_power.h>
914
+ #include <ATen/ops/max.h>
915
+ #include <ATen/ops/max_pool1d.h>
916
+ #include <ATen/ops/max_pool1d_with_indices.h>
917
+ #include <ATen/ops/max_pool2d.h>
918
+ #include <ATen/ops/max_pool2d_backward.h>
919
+ #include <ATen/ops/max_pool2d_with_indices.h>
920
+ #include <ATen/ops/max_pool2d_with_indices_backward.h>
921
+ #include <ATen/ops/max_pool3d.h>
922
+ #include <ATen/ops/max_pool3d_with_indices.h>
923
+ #include <ATen/ops/max_pool3d_with_indices_backward.h>
924
+ #include <ATen/ops/max_unpool2d.h>
925
+ #include <ATen/ops/max_unpool3d.h>
926
+ #include <ATen/ops/maximum.h>
927
+ #include <ATen/ops/mean.h>
928
+ #include <ATen/ops/median.h>
929
+ #include <ATen/ops/meshgrid.h>
930
+ #include <ATen/ops/min.h>
931
+ #include <ATen/ops/minimum.h>
932
+ #include <ATen/ops/miopen_batch_norm.h>
933
+ #include <ATen/ops/miopen_batch_norm_backward.h>
934
+ #include <ATen/ops/miopen_convolution.h>
935
+ #include <ATen/ops/miopen_convolution_add_relu.h>
936
+ #include <ATen/ops/miopen_convolution_relu.h>
937
+ #include <ATen/ops/miopen_convolution_transpose.h>
938
+ #include <ATen/ops/miopen_depthwise_convolution.h>
939
+ #include <ATen/ops/miopen_rnn.h>
940
+ #include <ATen/ops/miopen_rnn_backward.h>
941
+ #include <ATen/ops/mish.h>
942
+ #include <ATen/ops/mish_backward.h>
943
+ #include <ATen/ops/mkldnn_adaptive_avg_pool2d.h>
944
+ #include <ATen/ops/mkldnn_adaptive_avg_pool2d_backward.h>
945
+ #include <ATen/ops/mkldnn_convolution.h>
946
+ #include <ATen/ops/mkldnn_linear.h>
947
+ #include <ATen/ops/mkldnn_linear_backward.h>
948
+ #include <ATen/ops/mkldnn_linear_backward_input.h>
949
+ #include <ATen/ops/mkldnn_linear_backward_weights.h>
950
+ #include <ATen/ops/mkldnn_max_pool2d.h>
951
+ #include <ATen/ops/mkldnn_max_pool2d_backward.h>
952
+ #include <ATen/ops/mkldnn_max_pool3d.h>
953
+ #include <ATen/ops/mkldnn_max_pool3d_backward.h>
954
+ #include <ATen/ops/mkldnn_reorder_conv2d_weight.h>
955
+ #include <ATen/ops/mkldnn_reorder_conv3d_weight.h>
956
+ #include <ATen/ops/mkldnn_rnn_layer.h>
957
+ #include <ATen/ops/mkldnn_rnn_layer_backward.h>
958
+ #include <ATen/ops/mm.h>
959
+ #include <ATen/ops/mode.h>
960
+ #include <ATen/ops/moveaxis.h>
961
+ #include <ATen/ops/movedim.h>
962
+ #include <ATen/ops/mps_convolution_backward.h>
963
+ #include <ATen/ops/mps_convolution_transpose_backward.h>
964
+ #include <ATen/ops/mse_loss.h>
965
+ #include <ATen/ops/mse_loss_backward.h>
966
+ #include <ATen/ops/msort.h>
967
+ #include <ATen/ops/mul.h>
968
+ #include <ATen/ops/multi_margin_loss.h>
969
+ #include <ATen/ops/multi_margin_loss_backward.h>
970
+ #include <ATen/ops/multilabel_margin_loss.h>
971
+ #include <ATen/ops/multilabel_margin_loss_backward.h>
972
+ #include <ATen/ops/multilabel_margin_loss_forward.h>
973
+ #include <ATen/ops/multinomial.h>
974
+ #include <ATen/ops/multiply.h>
975
+ #include <ATen/ops/mv.h>
976
+ #include <ATen/ops/mvlgamma.h>
977
+ #include <ATen/ops/nan_to_num.h>
978
+ #include <ATen/ops/nanmean.h>
979
+ #include <ATen/ops/nanmedian.h>
980
+ #include <ATen/ops/nanquantile.h>
981
+ #include <ATen/ops/nansum.h>
982
+ #include <ATen/ops/narrow.h>
983
+ #include <ATen/ops/narrow_copy.h>
984
+ #include <ATen/ops/native_batch_norm.h>
985
+ #include <ATen/ops/native_batch_norm_backward.h>
986
+ #include <ATen/ops/native_channel_shuffle.h>
987
+ #include <ATen/ops/native_dropout.h>
988
+ #include <ATen/ops/native_dropout_backward.h>
989
+ #include <ATen/ops/native_group_norm.h>
990
+ #include <ATen/ops/native_group_norm_backward.h>
991
+ #include <ATen/ops/native_layer_norm.h>
992
+ #include <ATen/ops/native_layer_norm_backward.h>
993
+ #include <ATen/ops/native_norm.h>
994
+ #include <ATen/ops/ne.h>
995
+ #include <ATen/ops/neg.h>
996
+ #include <ATen/ops/negative.h>
997
+ #include <ATen/ops/nested_to_padded_tensor.h>
998
+ #include <ATen/ops/new_empty.h>
999
+ #include <ATen/ops/new_empty_strided.h>
1000
+ #include <ATen/ops/new_full.h>
1001
+ #include <ATen/ops/new_ones.h>
1002
+ #include <ATen/ops/new_zeros.h>
1003
+ #include <ATen/ops/nextafter.h>
1004
+ #include <ATen/ops/nll_loss.h>
1005
+ #include <ATen/ops/nll_loss2d.h>
1006
+ #include <ATen/ops/nll_loss2d_backward.h>
1007
+ #include <ATen/ops/nll_loss2d_forward.h>
1008
+ #include <ATen/ops/nll_loss_backward.h>
1009
+ #include <ATen/ops/nll_loss_forward.h>
1010
+ #include <ATen/ops/nll_loss_nd.h>
1011
+ #include <ATen/ops/nonzero.h>
1012
+ #include <ATen/ops/nonzero_numpy.h>
1013
+ #include <ATen/ops/nonzero_static.h>
1014
+ #include <ATen/ops/norm.h>
1015
+ #include <ATen/ops/norm_except_dim.h>
1016
+ #include <ATen/ops/normal.h>
1017
+ #include <ATen/ops/not_equal.h>
1018
+ #include <ATen/ops/nuclear_norm.h>
1019
+ #include <ATen/ops/numpy_T.h>
1020
+ #include <ATen/ops/one_hot.h>
1021
+ #include <ATen/ops/ones.h>
1022
+ #include <ATen/ops/ones_like.h>
1023
+ #include <ATen/ops/or.h>
1024
+ #include <ATen/ops/orgqr.h>
1025
+ #include <ATen/ops/ormqr.h>
1026
+ #include <ATen/ops/outer.h>
1027
+ #include <ATen/ops/output_nr.h>
1028
+ #include <ATen/ops/pad.h>
1029
+ #include <ATen/ops/pad_sequence.h>
1030
+ #include <ATen/ops/pairwise_distance.h>
1031
+ #include <ATen/ops/pdist.h>
1032
+ #include <ATen/ops/permute.h>
1033
+ #include <ATen/ops/permute_copy.h>
1034
+ #include <ATen/ops/pin_memory.h>
1035
+ #include <ATen/ops/pinverse.h>
1036
+ #include <ATen/ops/pixel_shuffle.h>
1037
+ #include <ATen/ops/pixel_unshuffle.h>
1038
+ #include <ATen/ops/poisson.h>
1039
+ #include <ATen/ops/poisson_nll_loss.h>
1040
+ #include <ATen/ops/polar.h>
1041
+ #include <ATen/ops/polygamma.h>
1042
+ #include <ATen/ops/positive.h>
1043
+ #include <ATen/ops/pow.h>
1044
+ #include <ATen/ops/prelu.h>
1045
+ #include <ATen/ops/prod.h>
1046
+ #include <ATen/ops/promote_types.h>
1047
+ #include <ATen/ops/put.h>
1048
+ #include <ATen/ops/q_per_channel_axis.h>
1049
+ #include <ATen/ops/q_per_channel_scales.h>
1050
+ #include <ATen/ops/q_per_channel_zero_points.h>
1051
+ #include <ATen/ops/q_scale.h>
1052
+ #include <ATen/ops/q_zero_point.h>
1053
+ #include <ATen/ops/qr.h>
1054
+ #include <ATen/ops/qscheme.h>
1055
+ #include <ATen/ops/quantile.h>
1056
+ #include <ATen/ops/quantize_per_channel.h>
1057
+ #include <ATen/ops/quantize_per_tensor.h>
1058
+ #include <ATen/ops/quantize_per_tensor_dynamic.h>
1059
+ #include <ATen/ops/quantized_batch_norm.h>
1060
+ #include <ATen/ops/quantized_gru_cell.h>
1061
+ #include <ATen/ops/quantized_lstm_cell.h>
1062
+ #include <ATen/ops/quantized_max_pool1d.h>
1063
+ #include <ATen/ops/quantized_max_pool2d.h>
1064
+ #include <ATen/ops/quantized_max_pool3d.h>
1065
+ #include <ATen/ops/quantized_rnn_relu_cell.h>
1066
+ #include <ATen/ops/quantized_rnn_tanh_cell.h>
1067
+ #include <ATen/ops/rad2deg.h>
1068
+ #include <ATen/ops/rand.h>
1069
+ #include <ATen/ops/rand_like.h>
1070
+ #include <ATen/ops/randint.h>
1071
+ #include <ATen/ops/randint_like.h>
1072
+ #include <ATen/ops/randn.h>
1073
+ #include <ATen/ops/randn_like.h>
1074
+ #include <ATen/ops/random.h>
1075
+ #include <ATen/ops/randperm.h>
1076
+ #include <ATen/ops/range.h>
1077
+ #include <ATen/ops/ravel.h>
1078
+ #include <ATen/ops/real.h>
1079
+ #include <ATen/ops/reciprocal.h>
1080
+ #include <ATen/ops/record_stream.h>
1081
+ #include <ATen/ops/refine_names.h>
1082
+ #include <ATen/ops/reflection_pad1d.h>
1083
+ #include <ATen/ops/reflection_pad1d_backward.h>
1084
+ #include <ATen/ops/reflection_pad2d.h>
1085
+ #include <ATen/ops/reflection_pad2d_backward.h>
1086
+ #include <ATen/ops/reflection_pad3d.h>
1087
+ #include <ATen/ops/reflection_pad3d_backward.h>
1088
+ #include <ATen/ops/relu.h>
1089
+ #include <ATen/ops/relu6.h>
1090
+ #include <ATen/ops/remainder.h>
1091
+ #include <ATen/ops/rename.h>
1092
+ #include <ATen/ops/renorm.h>
1093
+ #include <ATen/ops/repeat.h>
1094
+ #include <ATen/ops/repeat_interleave.h>
1095
+ #include <ATen/ops/replication_pad1d.h>
1096
+ #include <ATen/ops/replication_pad1d_backward.h>
1097
+ #include <ATen/ops/replication_pad2d.h>
1098
+ #include <ATen/ops/replication_pad2d_backward.h>
1099
+ #include <ATen/ops/replication_pad3d.h>
1100
+ #include <ATen/ops/replication_pad3d_backward.h>
1101
+ #include <ATen/ops/requires_grad.h>
1102
+ #include <ATen/ops/reshape.h>
1103
+ #include <ATen/ops/reshape_as.h>
1104
+ #include <ATen/ops/resize.h>
1105
+ #include <ATen/ops/resize_as.h>
1106
+ #include <ATen/ops/resize_as_sparse.h>
1107
+ #include <ATen/ops/resolve_conj.h>
1108
+ #include <ATen/ops/resolve_neg.h>
1109
+ #include <ATen/ops/result_type.h>
1110
+ #include <ATen/ops/retain_grad.h>
1111
+ #include <ATen/ops/retains_grad.h>
1112
+ #include <ATen/ops/rnn_relu.h>
1113
+ #include <ATen/ops/rnn_relu_cell.h>
1114
+ #include <ATen/ops/rnn_tanh.h>
1115
+ #include <ATen/ops/rnn_tanh_cell.h>
1116
+ #include <ATen/ops/roll.h>
1117
+ #include <ATen/ops/rot90.h>
1118
+ #include <ATen/ops/round.h>
1119
+ #include <ATen/ops/row_indices.h>
1120
+ #include <ATen/ops/row_indices_copy.h>
1121
+ #include <ATen/ops/row_stack.h>
1122
+ #include <ATen/ops/rrelu.h>
1123
+ #include <ATen/ops/rrelu_with_noise.h>
1124
+ #include <ATen/ops/rrelu_with_noise_backward.h>
1125
+ #include <ATen/ops/rshift.h>
1126
+ #include <ATen/ops/rsqrt.h>
1127
+ #include <ATen/ops/rsub.h>
1128
+ #include <ATen/ops/scalar_tensor.h>
1129
+ #include <ATen/ops/scaled_dot_product_attention.h>
1130
+ #include <ATen/ops/scatter.h>
1131
+ #include <ATen/ops/scatter_add.h>
1132
+ #include <ATen/ops/scatter_reduce.h>
1133
+ #include <ATen/ops/searchsorted.h>
1134
+ #include <ATen/ops/segment_reduce.h>
1135
+ #include <ATen/ops/select.h>
1136
+ #include <ATen/ops/select_backward.h>
1137
+ #include <ATen/ops/select_copy.h>
1138
+ #include <ATen/ops/select_scatter.h>
1139
+ #include <ATen/ops/selu.h>
1140
+ #include <ATen/ops/set.h>
1141
+ #include <ATen/ops/set_data.h>
1142
+ #include <ATen/ops/sgn.h>
1143
+ #include <ATen/ops/sigmoid.h>
1144
+ #include <ATen/ops/sigmoid_backward.h>
1145
+ #include <ATen/ops/sign.h>
1146
+ #include <ATen/ops/signbit.h>
1147
+ #include <ATen/ops/silu.h>
1148
+ #include <ATen/ops/silu_backward.h>
1149
+ #include <ATen/ops/sin.h>
1150
+ #include <ATen/ops/sinc.h>
1151
+ #include <ATen/ops/sinh.h>
1152
+ #include <ATen/ops/size.h>
1153
+ #include <ATen/ops/slice.h>
1154
+ #include <ATen/ops/slice_backward.h>
1155
+ #include <ATen/ops/slice_copy.h>
1156
+ #include <ATen/ops/slice_inverse.h>
1157
+ #include <ATen/ops/slice_scatter.h>
1158
+ #include <ATen/ops/slogdet.h>
1159
+ #include <ATen/ops/slow_conv3d.h>
1160
+ #include <ATen/ops/slow_conv3d_forward.h>
1161
+ #include <ATen/ops/slow_conv_dilated2d.h>
1162
+ #include <ATen/ops/slow_conv_dilated3d.h>
1163
+ #include <ATen/ops/slow_conv_transpose2d.h>
1164
+ #include <ATen/ops/slow_conv_transpose3d.h>
1165
+ #include <ATen/ops/smm.h>
1166
+ #include <ATen/ops/smooth_l1_loss.h>
1167
+ #include <ATen/ops/smooth_l1_loss_backward.h>
1168
+ #include <ATen/ops/soft_margin_loss.h>
1169
+ #include <ATen/ops/soft_margin_loss_backward.h>
1170
+ #include <ATen/ops/softmax.h>
1171
+ #include <ATen/ops/softplus.h>
1172
+ #include <ATen/ops/softplus_backward.h>
1173
+ #include <ATen/ops/softshrink.h>
1174
+ #include <ATen/ops/softshrink_backward.h>
1175
+ #include <ATen/ops/sort.h>
1176
+ #include <ATen/ops/sparse_bsc_tensor.h>
1177
+ #include <ATen/ops/sparse_bsr_tensor.h>
1178
+ #include <ATen/ops/sparse_compressed_tensor.h>
1179
+ #include <ATen/ops/sparse_coo_tensor.h>
1180
+ #include <ATen/ops/sparse_csc_tensor.h>
1181
+ #include <ATen/ops/sparse_csr_tensor.h>
1182
+ #include <ATen/ops/sparse_dim.h>
1183
+ #include <ATen/ops/sparse_mask.h>
1184
+ #include <ATen/ops/sparse_resize.h>
1185
+ #include <ATen/ops/sparse_resize_and_clear.h>
1186
+ #include <ATen/ops/sparse_sampled_addmm.h>
1187
+ #include <ATen/ops/special_airy_ai.h>
1188
+ #include <ATen/ops/special_bessel_j0.h>
1189
+ #include <ATen/ops/special_bessel_j1.h>
1190
+ #include <ATen/ops/special_bessel_y0.h>
1191
+ #include <ATen/ops/special_bessel_y1.h>
1192
+ #include <ATen/ops/special_chebyshev_polynomial_t.h>
1193
+ #include <ATen/ops/special_chebyshev_polynomial_u.h>
1194
+ #include <ATen/ops/special_chebyshev_polynomial_v.h>
1195
+ #include <ATen/ops/special_chebyshev_polynomial_w.h>
1196
+ #include <ATen/ops/special_digamma.h>
1197
+ #include <ATen/ops/special_entr.h>
1198
+ #include <ATen/ops/special_erf.h>
1199
+ #include <ATen/ops/special_erfc.h>
1200
+ #include <ATen/ops/special_erfcx.h>
1201
+ #include <ATen/ops/special_erfinv.h>
1202
+ #include <ATen/ops/special_exp2.h>
1203
+ #include <ATen/ops/special_expit.h>
1204
+ #include <ATen/ops/special_expm1.h>
1205
+ #include <ATen/ops/special_gammainc.h>
1206
+ #include <ATen/ops/special_gammaincc.h>
1207
+ #include <ATen/ops/special_gammaln.h>
1208
+ #include <ATen/ops/special_hermite_polynomial_h.h>
1209
+ #include <ATen/ops/special_hermite_polynomial_he.h>
1210
+ #include <ATen/ops/special_i0.h>
1211
+ #include <ATen/ops/special_i0e.h>
1212
+ #include <ATen/ops/special_i1.h>
1213
+ #include <ATen/ops/special_i1e.h>
1214
+ #include <ATen/ops/special_laguerre_polynomial_l.h>
1215
+ #include <ATen/ops/special_legendre_polynomial_p.h>
1216
+ #include <ATen/ops/special_log1p.h>
1217
+ #include <ATen/ops/special_log_ndtr.h>
1218
+ #include <ATen/ops/special_log_softmax.h>
1219
+ #include <ATen/ops/special_logit.h>
1220
+ #include <ATen/ops/special_logsumexp.h>
1221
+ #include <ATen/ops/special_modified_bessel_i0.h>
1222
+ #include <ATen/ops/special_modified_bessel_i1.h>
1223
+ #include <ATen/ops/special_modified_bessel_k0.h>
1224
+ #include <ATen/ops/special_modified_bessel_k1.h>
1225
+ #include <ATen/ops/special_multigammaln.h>
1226
+ #include <ATen/ops/special_ndtr.h>
1227
+ #include <ATen/ops/special_ndtri.h>
1228
+ #include <ATen/ops/special_polygamma.h>
1229
+ #include <ATen/ops/special_psi.h>
1230
+ #include <ATen/ops/special_round.h>
1231
+ #include <ATen/ops/special_scaled_modified_bessel_k0.h>
1232
+ #include <ATen/ops/special_scaled_modified_bessel_k1.h>
1233
+ #include <ATen/ops/special_shifted_chebyshev_polynomial_t.h>
1234
+ #include <ATen/ops/special_shifted_chebyshev_polynomial_u.h>
1235
+ #include <ATen/ops/special_shifted_chebyshev_polynomial_v.h>
1236
+ #include <ATen/ops/special_shifted_chebyshev_polynomial_w.h>
1237
+ #include <ATen/ops/special_sinc.h>
1238
+ #include <ATen/ops/special_softmax.h>
1239
+ #include <ATen/ops/special_spherical_bessel_j0.h>
1240
+ #include <ATen/ops/special_xlog1py.h>
1241
+ #include <ATen/ops/special_xlogy.h>
1242
+ #include <ATen/ops/special_zeta.h>
1243
+ #include <ATen/ops/split.h>
1244
+ #include <ATen/ops/split_copy.h>
1245
+ #include <ATen/ops/split_with_sizes.h>
1246
+ #include <ATen/ops/split_with_sizes_copy.h>
1247
+ #include <ATen/ops/sqrt.h>
1248
+ #include <ATen/ops/square.h>
1249
+ #include <ATen/ops/squeeze.h>
1250
+ #include <ATen/ops/squeeze_copy.h>
1251
+ #include <ATen/ops/sspaddmm.h>
1252
+ #include <ATen/ops/stack.h>
1253
+ #include <ATen/ops/std.h>
1254
+ #include <ATen/ops/std_mean.h>
1255
+ #include <ATen/ops/stft.h>
1256
+ #include <ATen/ops/stride.h>
1257
+ #include <ATen/ops/sub.h>
1258
+ #include <ATen/ops/subtract.h>
1259
+ #include <ATen/ops/sum.h>
1260
+ #include <ATen/ops/sum_to_size.h>
1261
+ #include <ATen/ops/svd.h>
1262
+ #include <ATen/ops/swapaxes.h>
1263
+ #include <ATen/ops/swapdims.h>
1264
+ #include <ATen/ops/sym_constrain_range.h>
1265
+ #include <ATen/ops/sym_constrain_range_for_size.h>
1266
+ #include <ATen/ops/sym_numel.h>
1267
+ #include <ATen/ops/sym_size.h>
1268
+ #include <ATen/ops/sym_storage_offset.h>
1269
+ #include <ATen/ops/sym_stride.h>
1270
+ #include <ATen/ops/t.h>
1271
+ #include <ATen/ops/t_copy.h>
1272
+ #include <ATen/ops/take.h>
1273
+ #include <ATen/ops/take_along_dim.h>
1274
+ #include <ATen/ops/tan.h>
1275
+ #include <ATen/ops/tanh.h>
1276
+ #include <ATen/ops/tanh_backward.h>
1277
+ #include <ATen/ops/tensor_split.h>
1278
+ #include <ATen/ops/tensordot.h>
1279
+ #include <ATen/ops/thnn_conv2d.h>
1280
+ #include <ATen/ops/threshold.h>
1281
+ #include <ATen/ops/threshold_backward.h>
1282
+ #include <ATen/ops/tile.h>
1283
+ #include <ATen/ops/to.h>
1284
+ #include <ATen/ops/to_dense.h>
1285
+ #include <ATen/ops/to_dense_backward.h>
1286
+ #include <ATen/ops/to_mkldnn.h>
1287
+ #include <ATen/ops/to_mkldnn_backward.h>
1288
+ #include <ATen/ops/to_padded_tensor.h>
1289
+ #include <ATen/ops/to_sparse.h>
1290
+ #include <ATen/ops/to_sparse_bsc.h>
1291
+ #include <ATen/ops/to_sparse_bsr.h>
1292
+ #include <ATen/ops/to_sparse_csc.h>
1293
+ #include <ATen/ops/to_sparse_csr.h>
1294
+ #include <ATen/ops/topk.h>
1295
+ #include <ATen/ops/trace.h>
1296
+ #include <ATen/ops/trace_backward.h>
1297
+ #include <ATen/ops/transpose.h>
1298
+ #include <ATen/ops/transpose_copy.h>
1299
+ #include <ATen/ops/trapezoid.h>
1300
+ #include <ATen/ops/trapz.h>
1301
+ #include <ATen/ops/triangular_solve.h>
1302
+ #include <ATen/ops/tril.h>
1303
+ #include <ATen/ops/tril_indices.h>
1304
+ #include <ATen/ops/triplet_margin_loss.h>
1305
+ #include <ATen/ops/triu.h>
1306
+ #include <ATen/ops/triu_indices.h>
1307
+ #include <ATen/ops/true_divide.h>
1308
+ #include <ATen/ops/trunc.h>
1309
+ #include <ATen/ops/type_as.h>
1310
+ #include <ATen/ops/unbind.h>
1311
+ #include <ATen/ops/unbind_copy.h>
1312
+ #include <ATen/ops/unflatten.h>
1313
+ #include <ATen/ops/unflatten_dense_tensors.h>
1314
+ #include <ATen/ops/unfold.h>
1315
+ #include <ATen/ops/unfold_backward.h>
1316
+ #include <ATen/ops/unfold_copy.h>
1317
+ #include <ATen/ops/uniform.h>
1318
+ #include <ATen/ops/unique_consecutive.h>
1319
+ #include <ATen/ops/unique_dim.h>
1320
+ #include <ATen/ops/unique_dim_consecutive.h>
1321
+ #include <ATen/ops/unsafe_chunk.h>
1322
+ #include <ATen/ops/unsafe_split.h>
1323
+ #include <ATen/ops/unsafe_split_with_sizes.h>
1324
+ #include <ATen/ops/unsqueeze.h>
1325
+ #include <ATen/ops/unsqueeze_copy.h>
1326
+ #include <ATen/ops/upsample_bicubic2d.h>
1327
+ #include <ATen/ops/upsample_bicubic2d_backward.h>
1328
+ #include <ATen/ops/upsample_bilinear2d.h>
1329
+ #include <ATen/ops/upsample_bilinear2d_backward.h>
1330
+ #include <ATen/ops/upsample_linear1d.h>
1331
+ #include <ATen/ops/upsample_linear1d_backward.h>
1332
+ #include <ATen/ops/upsample_nearest1d.h>
1333
+ #include <ATen/ops/upsample_nearest1d_backward.h>
1334
+ #include <ATen/ops/upsample_nearest2d.h>
1335
+ #include <ATen/ops/upsample_nearest2d_backward.h>
1336
+ #include <ATen/ops/upsample_nearest3d.h>
1337
+ #include <ATen/ops/upsample_nearest3d_backward.h>
1338
+ #include <ATen/ops/upsample_trilinear3d.h>
1339
+ #include <ATen/ops/upsample_trilinear3d_backward.h>
1340
+ #include <ATen/ops/value_selecting_reduction_backward.h>
1341
+ #include <ATen/ops/values.h>
1342
+ #include <ATen/ops/values_copy.h>
1343
+ #include <ATen/ops/vander.h>
1344
+ #include <ATen/ops/var.h>
1345
+ #include <ATen/ops/var_mean.h>
1346
+ #include <ATen/ops/vdot.h>
1347
+ #include <ATen/ops/view.h>
1348
+ #include <ATen/ops/view_as.h>
1349
+ #include <ATen/ops/view_as_complex.h>
1350
+ #include <ATen/ops/view_as_complex_copy.h>
1351
+ #include <ATen/ops/view_as_real.h>
1352
+ #include <ATen/ops/view_as_real_copy.h>
1353
+ #include <ATen/ops/view_copy.h>
1354
+ #include <ATen/ops/vsplit.h>
1355
+ #include <ATen/ops/vstack.h>
1356
+ #include <ATen/ops/where.h>
1357
+ #include <ATen/ops/xlogy.h>
1358
+ #include <ATen/ops/xor.h>
1359
+ #include <ATen/ops/zero.h>
1360
+ #include <ATen/ops/zeros.h>
1361
+ #include <ATen/ops/zeros_like.h>
1362
+
1363
+ namespace at {
1364
+
1365
+
1366
+
1367
+ // Special C++ only overloads for std()-like functions (See gh-40287)
1368
+ // These are needed because int -> bool conversion takes precedence over int -> IntArrayRef
1369
+ // So, for example std(0) would select the std(unbiased=False) overload
1370
+ TORCH_API inline Tensor var(const Tensor& self, int dim) {
1371
+ return at::var(self, IntArrayRef{dim});
1372
+ }
1373
+ TORCH_API inline std::tuple<Tensor, Tensor> var_mean(const Tensor& self, int dim) {
1374
+ return at::var_mean(self, IntArrayRef{dim});
1375
+ }
1376
+ TORCH_API inline Tensor std(const Tensor& self, int dim) {
1377
+ return at::std(self, IntArrayRef{dim});
1378
+ }
1379
+ TORCH_API inline std::tuple<Tensor, Tensor> std_mean(const Tensor& self, int dim) {
1380
+ return at::std_mean(self, IntArrayRef{dim});
1381
+ }
1382
+
1383
+ inline int64_t numel(const Tensor& tensor) {
1384
+ return tensor.numel();
1385
+ }
1386
+
1387
+ inline int64_t size(const Tensor& tensor, int64_t dim) {
1388
+ return tensor.size(dim);
1389
+ }
1390
+
1391
+ inline int64_t stride(const Tensor& tensor, int64_t dim) {
1392
+ return tensor.stride(dim);
1393
+ }
1394
+
1395
+ inline bool is_complex(const Tensor& tensor) {
1396
+ return tensor.is_complex();
1397
+ }
1398
+
1399
+ inline bool is_floating_point(const Tensor& tensor) {
1400
+ return tensor.is_floating_point();
1401
+ }
1402
+
1403
+ inline bool is_signed(const Tensor& tensor) {
1404
+ return tensor.is_signed();
1405
+ }
1406
+
1407
+ inline bool is_inference(const Tensor& tensor) {
1408
+ return tensor.is_inference();
1409
+ }
1410
+
1411
+ inline bool _is_zerotensor(const Tensor& tensor) {
1412
+ return tensor._is_zerotensor();
1413
+ }
1414
+
1415
+ inline bool is_conj(const Tensor& tensor) {
1416
+ return tensor.is_conj();
1417
+ }
1418
+
1419
+ inline Tensor conj(const Tensor& tensor) {
1420
+ return tensor.conj();
1421
+ }
1422
+
1423
+ inline bool is_neg(const Tensor& tensor) {
1424
+ return tensor.is_neg();
1425
+ }
1426
+
1427
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/Generator.h ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ #pragma once
2
+ #include <ATen/core/Generator.h>
venv/lib/python3.10/site-packages/torch/include/ATen/InferSize.h ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <ATen/DimVector.h>
4
+ #include <c10/core/ScalarType.h>
5
+ #include <c10/core/SymIntArrayRef.h>
6
+ #include <c10/util/DimVector.h>
7
+ #include <c10/util/Optional.h>
8
+ #include <sstream>
9
+ #include <vector>
10
+
11
+ namespace at {
12
+
13
+ // Infers the size of a dim with size -1, if it exists. Also checks that new
14
+ // shape is compatible with the number of elements.
15
+ //
16
+ // templated to handle std::vector<int64_t> and DimVector use cases, see
17
+ // below
18
+ //
19
+ template <typename InputArrayRef, typename NumelType, typename ResultVec>
20
+ inline void infer_size_impl(
21
+ InputArrayRef shape,
22
+ NumelType numel,
23
+ ResultVec& res) {
24
+ NumelType newsize = 1;
25
+ // N.B. this is an index, not a sym dim!
26
+ auto infer_dim = c10::optional<int64_t>();
27
+ for (int64_t dim = 0, ndim = shape.size(); dim != ndim; dim++) {
28
+ if (shape[dim] == -1) {
29
+ if (infer_dim) {
30
+ throw std::runtime_error("only one dimension can be inferred");
31
+ }
32
+ infer_dim = dim;
33
+ } else if (shape[dim] >= 0) {
34
+ newsize *= shape[dim];
35
+ } else {
36
+ AT_ERROR("invalid shape dimension ", shape[dim]);
37
+ }
38
+ }
39
+
40
+ if (numel == newsize || (infer_dim && newsize > 0 && numel % newsize == 0)) {
41
+ if (infer_dim) {
42
+ // We have a degree of freedom here to select the dimension size; follow
43
+ // NumPy semantics and just bail. However, a nice error message is needed
44
+ // because users often use `view` as a way to flatten & unflatten
45
+ // dimensions and will otherwise be confused why
46
+ // empty_tensor.view( 0, 0)
47
+ // works yet
48
+ // empty_tensor.view(-1, 0)
49
+ // doesn't.
50
+ TORCH_CHECK(
51
+ newsize != 0,
52
+ "cannot reshape tensor of 0 elements into shape ",
53
+ shape,
54
+ " because the unspecified dimension size -1 can be any "
55
+ "value and is ambiguous");
56
+ res[*infer_dim] = numel / newsize;
57
+ }
58
+ return;
59
+ }
60
+
61
+ std::ostringstream ss;
62
+ ss << "shape '" << shape << "' is invalid for input of size " << numel;
63
+ throw std::runtime_error(ss.str());
64
+ }
65
+
66
+ inline std::vector<int64_t> infer_size(IntArrayRef shape, int64_t numel) {
67
+ auto res = shape.vec();
68
+ infer_size_impl(shape, numel, res);
69
+ return res;
70
+ }
71
+
72
+ inline at::DimVector infer_size_dv(IntArrayRef shape, int64_t numel) {
73
+ auto res = at::DimVector(shape);
74
+ infer_size_impl(shape, numel, res);
75
+ return res;
76
+ }
77
+
78
+ inline at::SymDimVector infer_size_dv(
79
+ c10::SymIntArrayRef shape,
80
+ c10::SymInt numel) {
81
+ auto res = at::SymDimVector(shape);
82
+ infer_size_impl<c10::SymIntArrayRef, c10::SymInt, at::SymDimVector>(
83
+ shape, std::move(numel), res);
84
+ return res;
85
+ }
86
+
87
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/LegacyBatchedFallback.h ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ #include <ATen/ATen.h>
3
+ #include <ATen/core/op_registration/op_registration.h>
4
+ #include <torch/library.h>
5
+
6
+ namespace at {
7
+
8
+ // If an operator doesn't have a batching rule implemented then we fallback
9
+ // to this implementation. The fallback only works on out-of-place operators
10
+ // that return only tensors with new memory. (e.g., no in-place operators, no
11
+ // view operations).
12
+ //
13
+ // The fallback effectively takes all of the BatchedTensors in `stack`, slices
14
+ // them, and runs `op` on all of the corresponding slices to produce slices
15
+ // of the outputs. The output slices then get `torch.stack`ed to create the
16
+ // final returns.
17
+ //
18
+ // The performance of the fallback is not very good because it introduces an
19
+ // extra copy from stacking the sliced outputs. Because of this, we prefer to
20
+ // write batching rules for operators whenever possible.
21
+ void batchedTensorForLoopFallback(
22
+ const c10::OperatorHandle& op,
23
+ torch::jit::Stack* stack);
24
+
25
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/LegacyBatchedTensorImpl.h ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <bitset>
4
+
5
+ #include <ATen/ArrayRef.h>
6
+ #include <ATen/SmallVector.h>
7
+ #include <ATen/Tensor.h>
8
+
9
+ namespace at {
10
+
11
+ // We assume this in a few other places in the codebase,
12
+ // but there isn't a centralized definition.
13
+ constexpr int64_t kVmapMaxTensorDims = 64;
14
+
15
+ // The valid vmap levels range from [0, 64). This effectively means that we
16
+ // support a maximum of 64 nested vmaps.
17
+ constexpr int64_t kVmapNumLevels = 64;
18
+
19
+ // Store this number of elements of BatchDims on the stack. Most people will
20
+ // probably use <= 5 nested vmaps, but adjust this number as necessary.
21
+ constexpr int64_t kBatchDimsStackSize = 5;
22
+
23
+ // a BatchDim represents a "private" dimension on a Tensor created inside of
24
+ // vmap. It is a (level, dim) tuple, with the `dim` indicating which dimension
25
+ // is being vmap'ed over and the `level` being an identifier for which vmap
26
+ // said dimension was created inside. The `dim` corresponds to a "physical
27
+ // dim" - it is a dimension index on the underlying physical tensor that is
28
+ // being vmapped over.
29
+ struct BatchDim {
30
+ BatchDim(int64_t level, int64_t dim) : dim_(dim), level_(level) {}
31
+ int64_t dim() const {
32
+ return dim_;
33
+ }
34
+ int64_t level() const {
35
+ return level_;
36
+ }
37
+
38
+ private:
39
+ int64_t dim_;
40
+ int64_t level_;
41
+ };
42
+
43
+ using BatchDims = SmallVector<BatchDim, kBatchDimsStackSize>;
44
+ using BatchDimsRef = ArrayRef<BatchDim>;
45
+
46
+ // A BatchedTensorImpl holds an underlying Tensor and a list of BatchDim
47
+ // NB: We use the term "BatchedTensor" to mean a Tensor that is backed with a
48
+ // BatchedTensorImpl.
49
+ //
50
+ // The batch dimensions are treated as being "private"; they are not
51
+ // user-visible. For example, in the following Tensor,
52
+ // bt = BatchedTensorImpl(ones(2, 3, 5, 7), [(lvl=1, dim=0), (lvl=2, dim=1)])
53
+ // dimensions 0 and 1 are batch dimensions.
54
+ //
55
+ // bt.sizes() returns (5, 7); bt.sum(0) performs a reduction over the (public)
56
+ // dim 0, which is equivalent to dim 3 in the underlying ones(2, 3, 5, 7)
57
+ // tensor.
58
+ struct TORCH_API BatchedTensorImpl : public c10::TensorImpl {
59
+ explicit BatchedTensorImpl(Tensor value, BatchDims bdims);
60
+
61
+ // Returns a reference to BatchDims that represent which dimensions of this
62
+ // tensor are private.
63
+ BatchDimsRef bdims() const {
64
+ return bdims_;
65
+ }
66
+
67
+ // BatchedTensorImpl wraps a Tensor
68
+ const Tensor& value() const {
69
+ return value_;
70
+ };
71
+
72
+ // Given a public dimension index, return the dimension index in the
73
+ // underlying value() tensor. For example, if we have
74
+ // bt = BatchedTensorImpl(ones(2, 3, 5, 7), [(lvl=1, dim=0), (lvl=2,
75
+ // dim=2)])
76
+ // bt.actualDim(0) -> 1
77
+ // bt.actualDim(1) -> 3
78
+ // bt.actualDim(2) -> Error
79
+ int64_t actualDim(int64_t dim, bool wrap_dim = true) const;
80
+
81
+ // We have to override this because we opted into CustomStrides
82
+ IntArrayRef strides_custom() const override;
83
+ // Override a bunch of methods inherited from TensorImpl to return error
84
+ // messages.
85
+ bool is_contiguous_custom(at::MemoryFormat memory_format) const override;
86
+ void set_size(int64_t dim, int64_t new_size) override;
87
+ void set_stride(int64_t dim, int64_t new_stride) override;
88
+ void set_storage_offset(int64_t storage_offset) override;
89
+ #ifdef DEBUG
90
+ bool has_storage() const override;
91
+ #endif
92
+
93
+ private:
94
+ // see NOTE: [BatchedTensorImpl levels invariant]
95
+ void checkInvariants() const;
96
+ const char* tensorimpl_type_name() const override;
97
+
98
+ Tensor value_;
99
+
100
+ // Note: [BatchedTensorImpl levels invariant]
101
+ // There is an invariant that the BatchDims must be stored in increasing
102
+ // `level` order. That is, for i < j, bdims_[i].level must be less than
103
+ // bdims_[j].level.
104
+ BatchDims bdims_;
105
+ };
106
+
107
+ // NB: We use the term "BatchedTensor" to mean a Tensor that is backed with a
108
+ // BatchedTensorImpl.
109
+ inline bool isBatchedTensor(const Tensor& tensor) {
110
+ return tensor.unsafeGetTensorImpl()->key_set().has(DispatchKey::Batched);
111
+ }
112
+
113
+ // It is unsafe to call this on a Tensor that is not backed by a
114
+ // BatchedTensorImpl. Please use `maybeGetBatchedImpl` whenever possible.
115
+ inline BatchedTensorImpl* unsafeGetBatchedImpl(const Tensor& tensor) {
116
+ return static_cast<BatchedTensorImpl*>(tensor.unsafeGetTensorImpl());
117
+ }
118
+
119
+ inline BatchedTensorImpl* maybeGetBatchedImpl(const Tensor& tensor) {
120
+ if (!isBatchedTensor(tensor)) {
121
+ return nullptr;
122
+ }
123
+ return unsafeGetBatchedImpl(tensor);
124
+ }
125
+
126
+ // Returns a bitset. If bit i is set, then that means dim i is a batchdim.
127
+ inline std::bitset<kVmapMaxTensorDims> createBatchDimBitset(
128
+ BatchDimsRef bdims) {
129
+ std::bitset<kVmapMaxTensorDims> is_bdim;
130
+ for (const auto& bdim : bdims) {
131
+ is_bdim.set(bdim.dim());
132
+ }
133
+ return is_bdim;
134
+ }
135
+
136
+ // Creates a bitset for all of the levels present in `bdims`
137
+ inline std::bitset<kVmapNumLevels> createVmapLevelsBitset(BatchDimsRef bdims) {
138
+ std::bitset<kVmapNumLevels> result;
139
+ for (const auto& bdim : bdims) {
140
+ result.set(bdim.level());
141
+ }
142
+ return result;
143
+ }
144
+
145
+ inline std::ostream& operator<<(std::ostream& out, const BatchDim& bdim) {
146
+ out << "(lvl=" << bdim.level() << ", dim=" << bdim.dim() << ")";
147
+ return out;
148
+ }
149
+
150
+ // Use this to construct a BatchedTensor from a regular Tensor
151
+ TORCH_API Tensor makeBatched(const Tensor& tensor, BatchDims bdims);
152
+
153
+ // Adds a batch dim to `tensor`, returning a BatchedTensor
154
+ TORCH_API Tensor addBatchDim(const Tensor& tensor, int64_t level, int64_t dim);
155
+
156
+ // Checks if an inplace operation on self and other is "vmap compatible".
157
+ // See NOTE: [vmap-incompatible in-place operations] for the definition of this.
158
+ TORCH_API bool inplaceIsVmapCompatible(const Tensor& self, const Tensor& other);
159
+
160
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/LegacyVmapMode.h ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <c10/core/impl/LocalDispatchKeySet.h>
4
+
5
+ namespace at::impl {
6
+
7
+ // VmapMode contains a thread local count of how many nested vmaps
8
+ // we are currently inside. That number is known as the `vmap level`.
9
+ // VmapMode is used in the implementation of the Python `torch.vmap` API.
10
+ //
11
+ // NOTE: this is NOT the c++ api for torch.vmap. That doesn't exist yet.
12
+
13
+ struct TORCH_API VmapMode {
14
+ // Returns the vmap level, aka the count of how many nested vmaps we're in.
15
+ static int64_t current_vmap_level();
16
+
17
+ // Increment the count of nested vmaps. If this causes the vmap level to be
18
+ // greater than 0, then it enables DispatchKey::VmapMode on all tensors.
19
+ static int64_t increment_nesting();
20
+
21
+ // Decrements the count of nested vmaps. If this causes the vmap level to be
22
+ // equal to 0, then it disables DispatchKey::VmapMode on all tensors.
23
+ static int64_t decrement_nesting();
24
+ };
25
+
26
+ } // namespace at::impl
venv/lib/python3.10/site-packages/torch/include/ATen/LegacyVmapTransforms.h ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <ATen/LegacyBatchedTensorImpl.h>
4
+ #include <ATen/core/IListRef.h>
5
+
6
+ namespace at {
7
+
8
+ // This file contains abstractions used for transforming *logical* vmap
9
+ // arguments into *physical* arguments. (Keep reading for definitions of these
10
+ // terms).
11
+
12
+ // NOTE: [Logical vs physical args]
13
+ // Consider the following vmap.
14
+ // vmap(vmap(func, in_dims=(2,)), in_dims=(0,))(torch.ones(2, 3, 4))
15
+ // This would produce a BatchedTensor wrapping a Tensor of size [2, 3, 4],
16
+ // with batch dims 0 and 2:
17
+ // BatchedTensor(ones(2, 3, 4), bdims=[(lvl=1,dim=0),(lvl=2,dim=2)])
18
+ //
19
+ // We say the *logical* view of the tensor has size [3] -- tensors inside
20
+ // `func` appear to have size [3].
21
+ // However, the *physical* underlying tensor (the one passed to vmap) has size
22
+ // [2, 3, 4].
23
+ //
24
+ // This notion of logical vs physical also extends to non-tensor arguments.
25
+ // Consider the previous tensor; let's assume the user called
26
+ // `torch.sum(tensor, dim=0)` inside of `func`. Then the logical
27
+ // dimension they are reducing over is dim 0 but the physical dim is dim 1
28
+ // (the first non-batch dimension)
29
+
30
+ // Forward declared; see NOTE: [What is a VmapPhysicalView?]
31
+ struct VmapPhysicalView;
32
+
33
+ // Most PyTorch operators take 4 or fewer inputs.
34
+ constexpr int64_t kVmapTransformStaticInputSize = 4;
35
+ using VmapPhysicalViewVec =
36
+ SmallVector<VmapPhysicalView, kVmapTransformStaticInputSize>;
37
+
38
+ // Pytorch generally advertises good performance for <= 5 dims.
39
+ // (see ATen/core/DimVector.h). We add a few extra dims (~3) for vmap
40
+ // dimensions to get 8. Adjust this number as necessary
41
+ constexpr int64_t kVmapStaticDimVecSize = 8;
42
+ using VmapDimVector = SmallVector<int64_t, kVmapStaticDimVecSize>;
43
+ using VmapSymDimVector = SmallVector<c10::SymInt, kVmapStaticDimVecSize>;
44
+
45
+ // NOTE: [What is an VmapTransform?]
46
+ // An *VmapTransform* converts logical views of tensors to physical views.
47
+ //
48
+ // Batching rules use VmapTransforms to convert logical arguments to
49
+ // physical arguments, then call one or more at:: operator that handles the
50
+ // physical arguments, and then converts the physical result back to a logical
51
+ // argument.
52
+
53
+ // VmapTransform for operators that take tensors with multiple batch dims.
54
+ // Given one or more logical views on Tensors, `logicalToPhysical`
55
+ // permutes all of the batch dims to the front of the tensor, aligns
56
+ // and expands the batch dims to match each other (according to their `level`),
57
+ // and returns a VmapPhysicalView on the tensor(s).
58
+ struct TORCH_API MultiBatchVmapTransform {
59
+ static VmapPhysicalView logicalToPhysical(const Tensor& logical_tensor);
60
+ static VmapPhysicalViewVec logicalToPhysical(ITensorListRef logical_tensors);
61
+ };
62
+
63
+ // VmapTransform for operators that broadcast all inputs.
64
+ // Given some logical views on Tensors, `logicalToPhysical`:
65
+ // - permutes all of the batch dims to the front of the tensors
66
+ // - aligns all the batch dims to the collective levels of all of the tensors.
67
+ // If a tensor does not have a batch dim for a vmap level, then it receives
68
+ // a size-one dimension for said level.
69
+ // - aligns the non-batch dims to have the same dimensionality, adding extra
70
+ // size-1 dimensions in between the batch dimensions and the non-batch
71
+ // dimensions so that the batch dimensions are lined up from the right.
72
+ //
73
+ // For example: given inputs of size (B, 2) and (B, 3, 2) where B is the batch
74
+ // dimension, BroadcastingVmapTransform returns VmapPhysicalViews that wrap
75
+ // tensors of size (B, 1, 2) and (B, 3, 2).
76
+ //
77
+ // Given inputs of size (B, 2) and (2,), BroadcastingVmapTransform returns
78
+ // VmapPhysicalViews wrapping tensors of size (B, 2) and (1, 2). We don't
79
+ // actually *need* to return a tensor of size (1, 2) for the second tensor
80
+ // because the broadcasting operation takes care of that for us, but we do
81
+ // it anyways to keep things simple.
82
+ struct TORCH_API BroadcastingVmapTransform {
83
+ static VmapPhysicalViewVec logicalToPhysical(TensorList logical_tensors);
84
+ };
85
+
86
+ // Forward declared, if you're reading this file head to toe, don't worry about
87
+ // it yet.
88
+ struct VmapPhysicalToLogicalMap;
89
+
90
+ // NOTE: [What is a VmapPhysicalView?]
91
+ // VmapPhysicalView represents a physical view on a Tensor.
92
+ //
93
+ // One can use it to further convert logical dimension indices, logical shapes,
94
+ // and more to their physical variants, or convert a new (physical) tensor into
95
+ // a logical BatchedTensor. (TODO(rzou): some of these are not yet implemented).
96
+ //
97
+ // VmapPhysicalView stores a physical tensor with all of its batch dimensions at
98
+ // the front and some levels that correspond to said batch dimensions.
99
+ //
100
+ // The levels bitset specifies which vmap levels correspond to the batch
101
+ // dimensions at the front of the tensor. In particular, the number of set bits
102
+ // corresponds to the number of batch dimensions on `tensor` and the rightmost
103
+ // bit of `levels` specifies the maximum number of nested vmaps we are in at
104
+ // this point in time.
105
+ // For example, given:
106
+ // physical_view = VmapPhysicalView(tensor=ones(2, 3, 4, 5, 6), levels={1, 3})
107
+ //
108
+ // Rightmost bit of `levels` is 3 indicating the number of nested vmaps less
109
+ // than or equal to 3.
110
+ // bitset: 010100
111
+ // ^
112
+ // |
113
+ // levels: 012345
114
+ struct TORCH_API VmapPhysicalView {
115
+ VmapPhysicalView(Tensor&& tensor, std::bitset<kVmapNumLevels> levels)
116
+ : levels_(levels), tensor_(std::move(tensor)) {
117
+ TORCH_INTERNAL_ASSERT(!isBatchedTensor(tensor_));
118
+ }
119
+
120
+ Tensor& tensor() {
121
+ return tensor_;
122
+ }
123
+ const Tensor& tensor() const {
124
+ return tensor_;
125
+ }
126
+
127
+ // Maps logical dim indices to physical dim indices. Also does dim wrapping.
128
+ //
129
+ // For example, given:
130
+ // physical_view = VmapPhysicalView(tensor=ones(2, 3, 4, 5), levels={1, 3})
131
+ //
132
+ // Then physical_view.getPhysicalDims({0, 1}) returns {2, 3}.
133
+ // This is because the size of levels tell us that the first two dimensions
134
+ // of `tensor_` are batch dimensions, so a logical dim of `n` is actually
135
+ // a physical dim of `n + 2`.
136
+ VmapDimVector getPhysicalDims(OptionalIntArrayRef logical_dims) const;
137
+ int64_t getPhysicalDim(int64_t logical_dim) const;
138
+
139
+ // Returns a VmapPhysicalToLogicalMap object. This can be used for
140
+ // mapping a physical tensor to a new logical tensor (BatchedTensor)
141
+ VmapPhysicalToLogicalMap getPhysicalToLogicalMap() const;
142
+
143
+ // Maps a logical shape to a physical shape by pre-pending the batch
144
+ // sizes to the logical shape.
145
+ VmapDimVector getPhysicalShape(IntArrayRef logical_shape) const;
146
+
147
+ int64_t numBatchDims() const;
148
+
149
+ private:
150
+ int64_t numLogicalDims() const;
151
+
152
+ std::bitset<kVmapNumLevels> levels_;
153
+ Tensor tensor_;
154
+ };
155
+
156
+ // Convenience struct used for mapping a physical tensor (a non-BatchedTensor)
157
+ // to a logical one (BatchedTensor). It holds some levels that are used to do
158
+ // the mapping and assumes that the batch dimensions in the physical tensor all
159
+ // occur at the front of the tensor.
160
+ struct TORCH_API VmapPhysicalToLogicalMap {
161
+ VmapPhysicalToLogicalMap(std::bitset<kVmapNumLevels> levels)
162
+ : levels_(levels) {}
163
+
164
+ // Maps a physical tensor to a new logical tensor (BatchedTensor).
165
+ // Assumes that all of the "batch dimensions" are at the front
166
+ // of the physical tensor. For example, given:
167
+ // - x = rank-4 Tensor with size 2, 3, 5, 7
168
+ // - levels = (2, 4)
169
+ // Returns:
170
+ // - BatchedTensor(x, bdims=[(dim=0,lvl=2), (dim=1, lvl=4)])
171
+ Tensor apply(const Tensor& physical_tensor) const;
172
+
173
+ // Given a vector of physical tensors,
174
+ // 1. maps each tensor to a new logical tensor. Assumes that all of the
175
+ // "batch dimensions" are at the front of the physical tensors.
176
+ // 2. stores the new logical tensors back into the passed-in vector. This is
177
+ // to avoid additional dynamic allocations.
178
+ void applyInplace(std::vector<Tensor>& physical_tensors) const;
179
+
180
+ std::bitset<kVmapNumLevels> levels_;
181
+ };
182
+
183
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/LinalgBackend.h ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <c10/util/Exception.h>
4
+
5
+ #include <ostream>
6
+ #include <string>
7
+
8
+ namespace at {
9
+
10
+ enum class LinalgBackend : int8_t { Default, Cusolver, Magma };
11
+
12
+ inline std::string LinalgBackendToString(at::LinalgBackend backend) {
13
+ switch (backend) {
14
+ case LinalgBackend::Default:
15
+ return "at::LinalgBackend::Default";
16
+ case LinalgBackend::Cusolver:
17
+ return "at::LinalgBackend::Cusolver";
18
+ case LinalgBackend::Magma:
19
+ return "at::LinalgBackend::Magma";
20
+ default:
21
+ TORCH_CHECK(false, "Unknown linalg backend");
22
+ }
23
+ }
24
+
25
+ inline std::ostream& operator<<(
26
+ std::ostream& stream,
27
+ at::LinalgBackend backend) {
28
+ return stream << LinalgBackendToString(backend);
29
+ }
30
+
31
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/MetaFunctions_inl.h ADDED
@@ -0,0 +1,324 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunctions_inl.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ #if defined(AT_PER_OPERATOR_HEADERS) && defined(TORCH_ASSERT_ONLY_METHOD_OPERATORS)
12
+ #error This change adds a dependency on all pytorch operators, meaning the \
13
+ file will need to be re-compiled every time an operator is changed or added. \
14
+ Consider including a specific operator from \
15
+ <ATen/ops/{my_operator}_meta_dispatch.h>. \
16
+ See NOTE [TORCH_ASSERT_ONLY_METHOD_OPERATORS].
17
+ #endif
18
+
19
+ #include <ATen/ops/_add_relu_meta_dispatch.h>
20
+ #include <ATen/ops/_addmm_activation_meta_dispatch.h>
21
+ #include <ATen/ops/_amp_update_scale_meta_dispatch.h>
22
+ #include <ATen/ops/_coalesced_meta_dispatch.h>
23
+ #include <ATen/ops/_convert_indices_from_coo_to_csr_meta_dispatch.h>
24
+ #include <ATen/ops/_convert_indices_from_csr_to_coo_meta_dispatch.h>
25
+ #include <ATen/ops/_ctc_loss_meta_dispatch.h>
26
+ #include <ATen/ops/_efficientzerotensor_meta_dispatch.h>
27
+ #include <ATen/ops/_fill_mem_eff_dropout_mask_meta_dispatch.h>
28
+ #include <ATen/ops/_fused_sdp_choice_meta_dispatch.h>
29
+ #include <ATen/ops/_index_put_impl_meta_dispatch.h>
30
+ #include <ATen/ops/_linalg_det_meta_dispatch.h>
31
+ #include <ATen/ops/_linalg_eigh_meta_dispatch.h>
32
+ #include <ATen/ops/_linalg_slogdet_meta_dispatch.h>
33
+ #include <ATen/ops/_linalg_solve_ex_meta_dispatch.h>
34
+ #include <ATen/ops/_linalg_svd_meta_dispatch.h>
35
+ #include <ATen/ops/_log_softmax_meta_dispatch.h>
36
+ #include <ATen/ops/_log_softmax_backward_data_meta_dispatch.h>
37
+ #include <ATen/ops/_mkldnn_transpose_meta_dispatch.h>
38
+ #include <ATen/ops/_reshape_alias_meta_dispatch.h>
39
+ #include <ATen/ops/_resize_output_meta_dispatch.h>
40
+ #include <ATen/ops/_softmax_meta_dispatch.h>
41
+ #include <ATen/ops/_softmax_backward_data_meta_dispatch.h>
42
+ #include <ATen/ops/_sparse_coo_tensor_with_dims_meta_dispatch.h>
43
+ #include <ATen/ops/_sparse_coo_tensor_with_dims_and_tensors_meta_dispatch.h>
44
+ #include <ATen/ops/_upsample_bicubic2d_aa_meta_dispatch.h>
45
+ #include <ATen/ops/_upsample_bicubic2d_aa_backward_meta_dispatch.h>
46
+ #include <ATen/ops/_upsample_bilinear2d_aa_meta_dispatch.h>
47
+ #include <ATen/ops/_upsample_bilinear2d_aa_backward_meta_dispatch.h>
48
+ #include <ATen/ops/_upsample_nearest_exact1d_meta_dispatch.h>
49
+ #include <ATen/ops/_upsample_nearest_exact1d_backward_meta_dispatch.h>
50
+ #include <ATen/ops/_upsample_nearest_exact2d_meta_dispatch.h>
51
+ #include <ATen/ops/_upsample_nearest_exact2d_backward_meta_dispatch.h>
52
+ #include <ATen/ops/_upsample_nearest_exact3d_meta_dispatch.h>
53
+ #include <ATen/ops/_upsample_nearest_exact3d_backward_meta_dispatch.h>
54
+ #include <ATen/ops/acos_meta_dispatch.h>
55
+ #include <ATen/ops/acosh_meta_dispatch.h>
56
+ #include <ATen/ops/adaptive_max_pool2d_meta_dispatch.h>
57
+ #include <ATen/ops/adaptive_max_pool2d_backward_meta_dispatch.h>
58
+ #include <ATen/ops/adaptive_max_pool3d_meta_dispatch.h>
59
+ #include <ATen/ops/adaptive_max_pool3d_backward_meta_dispatch.h>
60
+ #include <ATen/ops/add_meta_dispatch.h>
61
+ #include <ATen/ops/addbmm_meta_dispatch.h>
62
+ #include <ATen/ops/addcdiv_meta_dispatch.h>
63
+ #include <ATen/ops/addcmul_meta_dispatch.h>
64
+ #include <ATen/ops/addmm_meta_dispatch.h>
65
+ #include <ATen/ops/addmv_meta_dispatch.h>
66
+ #include <ATen/ops/all_meta_dispatch.h>
67
+ #include <ATen/ops/amax_meta_dispatch.h>
68
+ #include <ATen/ops/amin_meta_dispatch.h>
69
+ #include <ATen/ops/aminmax_meta_dispatch.h>
70
+ #include <ATen/ops/any_meta_dispatch.h>
71
+ #include <ATen/ops/arange_meta_dispatch.h>
72
+ #include <ATen/ops/argmax_meta_dispatch.h>
73
+ #include <ATen/ops/argmin_meta_dispatch.h>
74
+ #include <ATen/ops/as_strided_meta_dispatch.h>
75
+ #include <ATen/ops/asin_meta_dispatch.h>
76
+ #include <ATen/ops/asinh_meta_dispatch.h>
77
+ #include <ATen/ops/atan_meta_dispatch.h>
78
+ #include <ATen/ops/atan2_meta_dispatch.h>
79
+ #include <ATen/ops/atanh_meta_dispatch.h>
80
+ #include <ATen/ops/avg_pool2d_meta_dispatch.h>
81
+ #include <ATen/ops/avg_pool2d_backward_meta_dispatch.h>
82
+ #include <ATen/ops/avg_pool3d_meta_dispatch.h>
83
+ #include <ATen/ops/avg_pool3d_backward_meta_dispatch.h>
84
+ #include <ATen/ops/baddbmm_meta_dispatch.h>
85
+ #include <ATen/ops/bernoulli_meta_dispatch.h>
86
+ #include <ATen/ops/bitwise_and_meta_dispatch.h>
87
+ #include <ATen/ops/bitwise_left_shift_meta_dispatch.h>
88
+ #include <ATen/ops/bitwise_not_meta_dispatch.h>
89
+ #include <ATen/ops/bitwise_or_meta_dispatch.h>
90
+ #include <ATen/ops/bitwise_right_shift_meta_dispatch.h>
91
+ #include <ATen/ops/bitwise_xor_meta_dispatch.h>
92
+ #include <ATen/ops/bmm_meta_dispatch.h>
93
+ #include <ATen/ops/cat_meta_dispatch.h>
94
+ #include <ATen/ops/cauchy_meta_dispatch.h>
95
+ #include <ATen/ops/ceil_meta_dispatch.h>
96
+ #include <ATen/ops/clamp_meta_dispatch.h>
97
+ #include <ATen/ops/clamp_max_meta_dispatch.h>
98
+ #include <ATen/ops/clamp_min_meta_dispatch.h>
99
+ #include <ATen/ops/copy_sparse_to_sparse_meta_dispatch.h>
100
+ #include <ATen/ops/copysign_meta_dispatch.h>
101
+ #include <ATen/ops/cos_meta_dispatch.h>
102
+ #include <ATen/ops/cosh_meta_dispatch.h>
103
+ #include <ATen/ops/cumprod_meta_dispatch.h>
104
+ #include <ATen/ops/cumsum_meta_dispatch.h>
105
+ #include <ATen/ops/digamma_meta_dispatch.h>
106
+ #include <ATen/ops/div_meta_dispatch.h>
107
+ #include <ATen/ops/elu_meta_dispatch.h>
108
+ #include <ATen/ops/elu_backward_meta_dispatch.h>
109
+ #include <ATen/ops/embedding_renorm_meta_dispatch.h>
110
+ #include <ATen/ops/empty_meta_dispatch.h>
111
+ #include <ATen/ops/empty_strided_meta_dispatch.h>
112
+ #include <ATen/ops/eq_meta_dispatch.h>
113
+ #include <ATen/ops/erf_meta_dispatch.h>
114
+ #include <ATen/ops/erfc_meta_dispatch.h>
115
+ #include <ATen/ops/erfinv_meta_dispatch.h>
116
+ #include <ATen/ops/exp_meta_dispatch.h>
117
+ #include <ATen/ops/exp2_meta_dispatch.h>
118
+ #include <ATen/ops/expm1_meta_dispatch.h>
119
+ #include <ATen/ops/exponential_meta_dispatch.h>
120
+ #include <ATen/ops/eye_meta_dispatch.h>
121
+ #include <ATen/ops/fill_meta_dispatch.h>
122
+ #include <ATen/ops/floor_meta_dispatch.h>
123
+ #include <ATen/ops/floor_divide_meta_dispatch.h>
124
+ #include <ATen/ops/fmax_meta_dispatch.h>
125
+ #include <ATen/ops/fmin_meta_dispatch.h>
126
+ #include <ATen/ops/fmod_meta_dispatch.h>
127
+ #include <ATen/ops/frac_meta_dispatch.h>
128
+ #include <ATen/ops/fractional_max_pool2d_meta_dispatch.h>
129
+ #include <ATen/ops/fractional_max_pool2d_backward_meta_dispatch.h>
130
+ #include <ATen/ops/fractional_max_pool3d_meta_dispatch.h>
131
+ #include <ATen/ops/gather_meta_dispatch.h>
132
+ #include <ATen/ops/gcd_meta_dispatch.h>
133
+ #include <ATen/ops/ge_meta_dispatch.h>
134
+ #include <ATen/ops/gelu_meta_dispatch.h>
135
+ #include <ATen/ops/gelu_backward_meta_dispatch.h>
136
+ #include <ATen/ops/geometric_meta_dispatch.h>
137
+ #include <ATen/ops/glu_meta_dispatch.h>
138
+ #include <ATen/ops/gt_meta_dispatch.h>
139
+ #include <ATen/ops/hardshrink_meta_dispatch.h>
140
+ #include <ATen/ops/hardshrink_backward_meta_dispatch.h>
141
+ #include <ATen/ops/hardsigmoid_meta_dispatch.h>
142
+ #include <ATen/ops/hardsigmoid_backward_meta_dispatch.h>
143
+ #include <ATen/ops/hardswish_meta_dispatch.h>
144
+ #include <ATen/ops/hardtanh_meta_dispatch.h>
145
+ #include <ATen/ops/heaviside_meta_dispatch.h>
146
+ #include <ATen/ops/hypot_meta_dispatch.h>
147
+ #include <ATen/ops/i0_meta_dispatch.h>
148
+ #include <ATen/ops/igamma_meta_dispatch.h>
149
+ #include <ATen/ops/igammac_meta_dispatch.h>
150
+ #include <ATen/ops/index_meta_dispatch.h>
151
+ #include <ATen/ops/index_add_meta_dispatch.h>
152
+ #include <ATen/ops/index_copy_meta_dispatch.h>
153
+ #include <ATen/ops/index_fill_meta_dispatch.h>
154
+ #include <ATen/ops/index_reduce_meta_dispatch.h>
155
+ #include <ATen/ops/isin_meta_dispatch.h>
156
+ #include <ATen/ops/isneginf_meta_dispatch.h>
157
+ #include <ATen/ops/isposinf_meta_dispatch.h>
158
+ #include <ATen/ops/lcm_meta_dispatch.h>
159
+ #include <ATen/ops/le_meta_dispatch.h>
160
+ #include <ATen/ops/leaky_relu_meta_dispatch.h>
161
+ #include <ATen/ops/leaky_relu_backward_meta_dispatch.h>
162
+ #include <ATen/ops/lerp_meta_dispatch.h>
163
+ #include <ATen/ops/lgamma_meta_dispatch.h>
164
+ #include <ATen/ops/linalg_cholesky_ex_meta_dispatch.h>
165
+ #include <ATen/ops/linalg_cross_meta_dispatch.h>
166
+ #include <ATen/ops/linalg_inv_ex_meta_dispatch.h>
167
+ #include <ATen/ops/linalg_ldl_factor_ex_meta_dispatch.h>
168
+ #include <ATen/ops/linalg_ldl_solve_meta_dispatch.h>
169
+ #include <ATen/ops/linalg_lu_meta_dispatch.h>
170
+ #include <ATen/ops/linalg_lu_factor_ex_meta_dispatch.h>
171
+ #include <ATen/ops/linalg_lu_solve_meta_dispatch.h>
172
+ #include <ATen/ops/linalg_qr_meta_dispatch.h>
173
+ #include <ATen/ops/linalg_vector_norm_meta_dispatch.h>
174
+ #include <ATen/ops/linspace_meta_dispatch.h>
175
+ #include <ATen/ops/log_meta_dispatch.h>
176
+ #include <ATen/ops/log10_meta_dispatch.h>
177
+ #include <ATen/ops/log1p_meta_dispatch.h>
178
+ #include <ATen/ops/log2_meta_dispatch.h>
179
+ #include <ATen/ops/log_normal_meta_dispatch.h>
180
+ #include <ATen/ops/logaddexp_meta_dispatch.h>
181
+ #include <ATen/ops/logaddexp2_meta_dispatch.h>
182
+ #include <ATen/ops/logit_meta_dispatch.h>
183
+ #include <ATen/ops/logit_backward_meta_dispatch.h>
184
+ #include <ATen/ops/logspace_meta_dispatch.h>
185
+ #include <ATen/ops/lshift_meta_dispatch.h>
186
+ #include <ATen/ops/lt_meta_dispatch.h>
187
+ #include <ATen/ops/lu_unpack_meta_dispatch.h>
188
+ #include <ATen/ops/masked_fill_meta_dispatch.h>
189
+ #include <ATen/ops/masked_scatter_meta_dispatch.h>
190
+ #include <ATen/ops/max_meta_dispatch.h>
191
+ #include <ATen/ops/max_pool2d_with_indices_meta_dispatch.h>
192
+ #include <ATen/ops/max_pool2d_with_indices_backward_meta_dispatch.h>
193
+ #include <ATen/ops/maximum_meta_dispatch.h>
194
+ #include <ATen/ops/mean_meta_dispatch.h>
195
+ #include <ATen/ops/min_meta_dispatch.h>
196
+ #include <ATen/ops/minimum_meta_dispatch.h>
197
+ #include <ATen/ops/mish_meta_dispatch.h>
198
+ #include <ATen/ops/mm_meta_dispatch.h>
199
+ #include <ATen/ops/mse_loss_meta_dispatch.h>
200
+ #include <ATen/ops/mul_meta_dispatch.h>
201
+ #include <ATen/ops/ne_meta_dispatch.h>
202
+ #include <ATen/ops/neg_meta_dispatch.h>
203
+ #include <ATen/ops/nextafter_meta_dispatch.h>
204
+ #include <ATen/ops/nll_loss_backward_meta_dispatch.h>
205
+ #include <ATen/ops/nll_loss_forward_meta_dispatch.h>
206
+ #include <ATen/ops/norm_meta_dispatch.h>
207
+ #include <ATen/ops/normal_meta_dispatch.h>
208
+ #include <ATen/ops/polygamma_meta_dispatch.h>
209
+ #include <ATen/ops/pow_meta_dispatch.h>
210
+ #include <ATen/ops/prod_meta_dispatch.h>
211
+ #include <ATen/ops/put_meta_dispatch.h>
212
+ #include <ATen/ops/random_meta_dispatch.h>
213
+ #include <ATen/ops/range_meta_dispatch.h>
214
+ #include <ATen/ops/reciprocal_meta_dispatch.h>
215
+ #include <ATen/ops/reflection_pad1d_meta_dispatch.h>
216
+ #include <ATen/ops/reflection_pad1d_backward_meta_dispatch.h>
217
+ #include <ATen/ops/reflection_pad3d_meta_dispatch.h>
218
+ #include <ATen/ops/reflection_pad3d_backward_meta_dispatch.h>
219
+ #include <ATen/ops/relu_meta_dispatch.h>
220
+ #include <ATen/ops/remainder_meta_dispatch.h>
221
+ #include <ATen/ops/renorm_meta_dispatch.h>
222
+ #include <ATen/ops/replication_pad1d_meta_dispatch.h>
223
+ #include <ATen/ops/replication_pad1d_backward_meta_dispatch.h>
224
+ #include <ATen/ops/replication_pad2d_meta_dispatch.h>
225
+ #include <ATen/ops/replication_pad3d_meta_dispatch.h>
226
+ #include <ATen/ops/resize_meta_dispatch.h>
227
+ #include <ATen/ops/resize_as_sparse_meta_dispatch.h>
228
+ #include <ATen/ops/round_meta_dispatch.h>
229
+ #include <ATen/ops/rrelu_with_noise_meta_dispatch.h>
230
+ #include <ATen/ops/rshift_meta_dispatch.h>
231
+ #include <ATen/ops/rsqrt_meta_dispatch.h>
232
+ #include <ATen/ops/scatter_meta_dispatch.h>
233
+ #include <ATen/ops/scatter_add_meta_dispatch.h>
234
+ #include <ATen/ops/scatter_reduce_meta_dispatch.h>
235
+ #include <ATen/ops/set_meta_dispatch.h>
236
+ #include <ATen/ops/sgn_meta_dispatch.h>
237
+ #include <ATen/ops/sigmoid_meta_dispatch.h>
238
+ #include <ATen/ops/sigmoid_backward_meta_dispatch.h>
239
+ #include <ATen/ops/sign_meta_dispatch.h>
240
+ #include <ATen/ops/signbit_meta_dispatch.h>
241
+ #include <ATen/ops/silu_meta_dispatch.h>
242
+ #include <ATen/ops/silu_backward_meta_dispatch.h>
243
+ #include <ATen/ops/sin_meta_dispatch.h>
244
+ #include <ATen/ops/sinc_meta_dispatch.h>
245
+ #include <ATen/ops/sinh_meta_dispatch.h>
246
+ #include <ATen/ops/slow_conv_transpose2d_meta_dispatch.h>
247
+ #include <ATen/ops/smooth_l1_loss_meta_dispatch.h>
248
+ #include <ATen/ops/softplus_meta_dispatch.h>
249
+ #include <ATen/ops/softplus_backward_meta_dispatch.h>
250
+ #include <ATen/ops/softshrink_meta_dispatch.h>
251
+ #include <ATen/ops/softshrink_backward_meta_dispatch.h>
252
+ #include <ATen/ops/sort_meta_dispatch.h>
253
+ #include <ATen/ops/sparse_resize_meta_dispatch.h>
254
+ #include <ATen/ops/sparse_resize_and_clear_meta_dispatch.h>
255
+ #include <ATen/ops/special_airy_ai_meta_dispatch.h>
256
+ #include <ATen/ops/special_bessel_j0_meta_dispatch.h>
257
+ #include <ATen/ops/special_bessel_j1_meta_dispatch.h>
258
+ #include <ATen/ops/special_bessel_y0_meta_dispatch.h>
259
+ #include <ATen/ops/special_bessel_y1_meta_dispatch.h>
260
+ #include <ATen/ops/special_chebyshev_polynomial_t_meta_dispatch.h>
261
+ #include <ATen/ops/special_chebyshev_polynomial_u_meta_dispatch.h>
262
+ #include <ATen/ops/special_chebyshev_polynomial_v_meta_dispatch.h>
263
+ #include <ATen/ops/special_chebyshev_polynomial_w_meta_dispatch.h>
264
+ #include <ATen/ops/special_entr_meta_dispatch.h>
265
+ #include <ATen/ops/special_erfcx_meta_dispatch.h>
266
+ #include <ATen/ops/special_hermite_polynomial_h_meta_dispatch.h>
267
+ #include <ATen/ops/special_hermite_polynomial_he_meta_dispatch.h>
268
+ #include <ATen/ops/special_i0e_meta_dispatch.h>
269
+ #include <ATen/ops/special_i1_meta_dispatch.h>
270
+ #include <ATen/ops/special_i1e_meta_dispatch.h>
271
+ #include <ATen/ops/special_laguerre_polynomial_l_meta_dispatch.h>
272
+ #include <ATen/ops/special_legendre_polynomial_p_meta_dispatch.h>
273
+ #include <ATen/ops/special_log_ndtr_meta_dispatch.h>
274
+ #include <ATen/ops/special_modified_bessel_i0_meta_dispatch.h>
275
+ #include <ATen/ops/special_modified_bessel_i1_meta_dispatch.h>
276
+ #include <ATen/ops/special_modified_bessel_k0_meta_dispatch.h>
277
+ #include <ATen/ops/special_modified_bessel_k1_meta_dispatch.h>
278
+ #include <ATen/ops/special_ndtri_meta_dispatch.h>
279
+ #include <ATen/ops/special_scaled_modified_bessel_k0_meta_dispatch.h>
280
+ #include <ATen/ops/special_scaled_modified_bessel_k1_meta_dispatch.h>
281
+ #include <ATen/ops/special_shifted_chebyshev_polynomial_t_meta_dispatch.h>
282
+ #include <ATen/ops/special_shifted_chebyshev_polynomial_u_meta_dispatch.h>
283
+ #include <ATen/ops/special_shifted_chebyshev_polynomial_v_meta_dispatch.h>
284
+ #include <ATen/ops/special_shifted_chebyshev_polynomial_w_meta_dispatch.h>
285
+ #include <ATen/ops/special_spherical_bessel_j0_meta_dispatch.h>
286
+ #include <ATen/ops/special_xlog1py_meta_dispatch.h>
287
+ #include <ATen/ops/special_zeta_meta_dispatch.h>
288
+ #include <ATen/ops/sqrt_meta_dispatch.h>
289
+ #include <ATen/ops/sub_meta_dispatch.h>
290
+ #include <ATen/ops/sum_meta_dispatch.h>
291
+ #include <ATen/ops/tan_meta_dispatch.h>
292
+ #include <ATen/ops/tanh_meta_dispatch.h>
293
+ #include <ATen/ops/tanh_backward_meta_dispatch.h>
294
+ #include <ATen/ops/threshold_meta_dispatch.h>
295
+ #include <ATen/ops/threshold_backward_meta_dispatch.h>
296
+ #include <ATen/ops/topk_meta_dispatch.h>
297
+ #include <ATen/ops/triangular_solve_meta_dispatch.h>
298
+ #include <ATen/ops/tril_meta_dispatch.h>
299
+ #include <ATen/ops/triu_meta_dispatch.h>
300
+ #include <ATen/ops/trunc_meta_dispatch.h>
301
+ #include <ATen/ops/unfold_meta_dispatch.h>
302
+ #include <ATen/ops/uniform_meta_dispatch.h>
303
+ #include <ATen/ops/upsample_bicubic2d_meta_dispatch.h>
304
+ #include <ATen/ops/upsample_bicubic2d_backward_meta_dispatch.h>
305
+ #include <ATen/ops/upsample_bilinear2d_meta_dispatch.h>
306
+ #include <ATen/ops/upsample_bilinear2d_backward_meta_dispatch.h>
307
+ #include <ATen/ops/upsample_linear1d_meta_dispatch.h>
308
+ #include <ATen/ops/upsample_linear1d_backward_meta_dispatch.h>
309
+ #include <ATen/ops/upsample_nearest1d_meta_dispatch.h>
310
+ #include <ATen/ops/upsample_nearest1d_backward_meta_dispatch.h>
311
+ #include <ATen/ops/upsample_nearest2d_meta_dispatch.h>
312
+ #include <ATen/ops/upsample_nearest2d_backward_meta_dispatch.h>
313
+ #include <ATen/ops/upsample_nearest3d_meta_dispatch.h>
314
+ #include <ATen/ops/upsample_nearest3d_backward_meta_dispatch.h>
315
+ #include <ATen/ops/upsample_trilinear3d_meta_dispatch.h>
316
+ #include <ATen/ops/upsample_trilinear3d_backward_meta_dispatch.h>
317
+ #include <ATen/ops/view_meta_dispatch.h>
318
+ #include <ATen/ops/view_as_complex_meta_dispatch.h>
319
+ #include <ATen/ops/view_as_real_meta_dispatch.h>
320
+ #include <ATen/ops/xlogy_meta_dispatch.h>
321
+ #include <ATen/ops/zero_meta_dispatch.h>
322
+
323
+
324
+
venv/lib/python3.10/site-packages/torch/include/ATen/NamedTensorUtils.h ADDED
@@ -0,0 +1,215 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ #include <ATen/NamedTensor.h>
3
+ #include <ATen/TensorNames.h>
4
+ #include <ATen/WrapDimUtilsMulti.h>
5
+
6
+ #include <ATen/core/DimVector.h>
7
+ #include <ATen/core/Tensor.h>
8
+ #include <functional>
9
+
10
+ namespace at {
11
+
12
+ using NameVector = SmallVector<Dimname, kDimVectorStaticSize>;
13
+
14
+ inline bool has_names(const ITensorListRef& tensors) {
15
+ return std::any_of(tensors.begin(), tensors.end(), [](const Tensor& t) {
16
+ return t.has_names();
17
+ });
18
+ }
19
+
20
+ // Converts dim to an positional index. Errors if `dim` cannot be used to
21
+ // refer to any dimension of tensor.
22
+ TORCH_API int64_t dimname_to_position(const Tensor& tensor, Dimname dim);
23
+ TORCH_API std::vector<int64_t> dimnames_to_positions(
24
+ const Tensor& tensor,
25
+ DimnameList dims);
26
+
27
+ // Unifies two DimnameList to produce a third. This is useful for implementing
28
+ // the named inference rule for binary broadcasting operations like add.
29
+ //
30
+ // There are three main constraints:
31
+ // 1) Check matching: Names must match positionally from the right.
32
+ // 2) Check misaligned: If a name `n` is in `names`, then it must appear at
33
+ // the same index from the right in other.
34
+ // 3) The output names are obtained by unifying the names individually from the
35
+ // right.
36
+ TORCH_API std::vector<Dimname> unify_from_right(
37
+ DimnameList names,
38
+ DimnameList other,
39
+ const char* action = "broadcast");
40
+
41
+ [[noreturn]] inline void reportNYIDimnameOverload(const char* op_name) {
42
+ TORCH_CHECK(
43
+ false,
44
+ op_name,
45
+ ": You passed a dimname (string) to this op in place of a dimension "
46
+ "index but it does not yet support this behavior. Please pass a dimension "
47
+ "index to work around this.");
48
+ }
49
+
50
+ // [NOTE] Writing name inference rules
51
+ //
52
+ // Operators that support named tensors are either composed of operations that
53
+ // support named tensors or implement some name inference rule. An op that
54
+ // implements its own name inference rule generally looks like the following:
55
+ //
56
+ // Tensor op(...) {
57
+ // perform_shape_checks(...);
58
+ // # (1)
59
+ // auto maybe_outnames = compute_outnames(...);
60
+ // auto result = [&]() {
61
+ // NoNamesGuard guard;
62
+ // return op_impl(...);
63
+ // }();
64
+ // # (2)
65
+ // propagate_names_if_nonempty(result, maybe_outnames);
66
+ //
67
+ // Each op has (1) a compute outnames step and (2) a propagate names step.
68
+ //
69
+ // compute_outnames is responsible for checking that input names match and
70
+ // determining what the output names should be. It returns either:
71
+ // - {} (if the inputs tensors are all unnamed)
72
+ // - non-empty outnames.
73
+ //
74
+ // propagate_names_if_nonempty propagates the outnames if they exist to the
75
+ // result tensors.
76
+ //
77
+ // The {} case is an optimization; if the user does not use named tensors they
78
+ // pay no perf cost for it.
79
+
80
+ namespace namedinference {
81
+
82
+ const Tensor& propagate_names_if_present_and_nonempty(
83
+ const Tensor& result,
84
+ c10::optional<DimnameList> maybe_names,
85
+ bool validate_names = false);
86
+ // Propagates `names` to `result` if `names` is not empty.
87
+ // `names` can be empty; see [NOTE] Writing name inference rules
88
+ // If `names` is not empty, `names.size()` should equal `result.dim()`.
89
+ // When in doubt, use this overload instead of the others.
90
+ TORCH_API const Tensor& propagate_names_if_nonempty(
91
+ const Tensor& result,
92
+ DimnameList maybe_names,
93
+ bool validate_names = false);
94
+
95
+ // Propagates `names` to `result`. Only use this if we are certain that there
96
+ // are names to propagate (that names is not empty).
97
+ TORCH_API const Tensor& propagate_names(
98
+ const Tensor& result,
99
+ DimnameList names,
100
+ bool validate_names = false);
101
+
102
+ // Propagates all names from src to result.
103
+ TORCH_API void propagate_names(const Tensor& result, const Tensor& src);
104
+
105
+ // Propagates all names except for those at the excluded_idxs.
106
+ TORCH_API void propagate_names_except(
107
+ const Tensor& result,
108
+ const Tensor& src,
109
+ IntArrayRef excluded_idxs);
110
+
111
+ // Used for reduction ops that have a `keepdim` arg.
112
+ TORCH_API void propagate_names_for_reduction(
113
+ const Tensor& result,
114
+ const Tensor& src,
115
+ IntArrayRef excluded_idxs,
116
+ bool keepdim);
117
+
118
+ TORCH_API void propagate_names_for_expand(
119
+ const Tensor& result,
120
+ const Tensor& self);
121
+
122
+ TORCH_API std::vector<Dimname> compute_cat_outnames(
123
+ const MaterializedITensorListRef& tensors);
124
+
125
+ TORCH_API std::vector<Dimname> compute_broadcast_outnames(
126
+ const Tensor& self,
127
+ const Tensor& other);
128
+
129
+ TORCH_API std::vector<Dimname> broadcast_to_outnames(
130
+ const Tensor& tensor,
131
+ const Tensor& reference_tensor,
132
+ const char* op_name);
133
+
134
+ TORCH_API std::vector<Dimname> compute_matmul_outnames(
135
+ const Tensor& self,
136
+ const Tensor& other);
137
+
138
+ TORCH_API std::vector<Dimname> compute_cdist_outnames(
139
+ const Tensor& self,
140
+ const Tensor& other);
141
+
142
+ TORCH_API std::vector<Dimname> compute_bmm_outnames(
143
+ const Tensor& result,
144
+ const Tensor& self,
145
+ const Tensor& other);
146
+
147
+ TORCH_API std::vector<Dimname> compute_squeeze_outnames(const Tensor& tensor);
148
+ TORCH_API std::vector<Dimname> compute_squeeze_outnames(
149
+ const Tensor& tensor,
150
+ std::bitset<dim_bitset_size> dims);
151
+
152
+ std::vector<Dimname> compute_diagonal_outnames(
153
+ const Tensor& tensor,
154
+ int64_t dim1,
155
+ int64_t dim2);
156
+
157
+ // TensorImpl* overloads for Legacy TH/THC code. Use these sparingly.
158
+
159
+ TORCH_API TensorImpl* propagate_names_if_nonempty(
160
+ TensorImpl* result,
161
+ DimnameList maybe_names,
162
+ bool validate_names = false);
163
+
164
+ TORCH_API TensorImpl* propagate_names(
165
+ TensorImpl* result,
166
+ DimnameList names,
167
+ bool validate_names = false);
168
+
169
+ TORCH_API void propagate_names(TensorImpl* result, /*const */ TensorImpl* src);
170
+
171
+ TORCH_API inline void propagate_names(
172
+ const TensorBase& result,
173
+ DimnameList names,
174
+ bool validate_names = false) {
175
+ propagate_names(result.unsafeGetTensorImpl(), names, validate_names);
176
+ }
177
+
178
+ TORCH_API inline void propagate_names_if_nonempty(
179
+ const TensorBase& result,
180
+ DimnameList names,
181
+ bool validate_names = false) {
182
+ propagate_names_if_nonempty(
183
+ result.unsafeGetTensorImpl(), names, validate_names);
184
+ }
185
+
186
+ TORCH_API inline void propagate_names(
187
+ const TensorBase& result,
188
+ const TensorBase& src) {
189
+ propagate_names(result.unsafeGetTensorImpl(), src.unsafeGetTensorImpl());
190
+ }
191
+
192
+ // result = m1 @ m2 + bias
193
+ TORCH_API std::vector<Dimname> propagate_names_for_addmm(
194
+ const Tensor& m1,
195
+ const Tensor& m2,
196
+ const Tensor& bias);
197
+
198
+ TORCH_API std::vector<Dimname> propagate_names_for_addmv(
199
+ const Tensor& mat,
200
+ const Tensor& vec,
201
+ const Tensor& bias);
202
+
203
+ TORCH_API void check_names_for_dot(TensorImpl* vec1, TensorImpl* vec2);
204
+
205
+ TORCH_API std::vector<Dimname> compute_baddbmm_outnames(
206
+ const Tensor& result,
207
+ const Tensor& self,
208
+ const Tensor& other,
209
+ const Tensor& bias);
210
+
211
+ TORCH_API bool are_names_equal(TensorImpl* self, TensorImpl* other);
212
+
213
+ } // namespace namedinference
214
+
215
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/NativeFunctions.h ADDED
@@ -0,0 +1,1317 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunctions.h
4
+
5
+ #ifdef TORCH_ASSERT_NO_OPERATORS
6
+ #error This change adds a dependency on native_functions.yaml, \
7
+ meaning the file will need to be re-compiled every time an operator \
8
+ is changed or added. Consider if your change would be better placed in \
9
+ another file, or if a more specific header might achieve the same goal. \
10
+ See NOTE: [Tensor vs. TensorBase]
11
+ #endif
12
+
13
+ #if defined(AT_PER_OPERATOR_HEADERS) && defined(TORCH_ASSERT_ONLY_METHOD_OPERATORS)
14
+ #error This change adds a dependency on all pytorch operators, meaning the \
15
+ file will need to be re-compiled every time an operator is changed or added. \
16
+ Consider including a specific operator from <ATen/ops/{my_operator}_native.h> \
17
+ and see NOTE [TORCH_ASSERT_ONLY_METHOD_OPERATORS].
18
+ #endif
19
+
20
+ #include <c10/core/Scalar.h>
21
+ #include <c10/core/Storage.h>
22
+ #include <c10/core/TensorOptions.h>
23
+ #include <c10/util/Deprecated.h>
24
+ #include <c10/util/Optional.h>
25
+ #include <c10/core/QScheme.h>
26
+ #include <ATen/core/Reduction.h>
27
+ #include <ATen/core/Tensor.h>
28
+ #include <tuple>
29
+ #include <vector>
30
+
31
+ #include <ATen/ops/_adaptive_avg_pool2d_native.h>
32
+ #include <ATen/ops/_adaptive_avg_pool2d_backward_native.h>
33
+ #include <ATen/ops/_adaptive_avg_pool3d_native.h>
34
+ #include <ATen/ops/_adaptive_avg_pool3d_backward_native.h>
35
+ #include <ATen/ops/_add_batch_dim_native.h>
36
+ #include <ATen/ops/_add_relu_native.h>
37
+ #include <ATen/ops/_addmm_activation_native.h>
38
+ #include <ATen/ops/_aminmax_native.h>
39
+ #include <ATen/ops/_amp_foreach_non_finite_check_and_unscale_native.h>
40
+ #include <ATen/ops/_amp_update_scale_native.h>
41
+ #include <ATen/ops/_assert_async_native.h>
42
+ #include <ATen/ops/_assert_scalar_native.h>
43
+ #include <ATen/ops/_assert_tensor_metadata_native.h>
44
+ #include <ATen/ops/_autocast_to_full_precision_native.h>
45
+ #include <ATen/ops/_autocast_to_reduced_precision_native.h>
46
+ #include <ATen/ops/_backward_native.h>
47
+ #include <ATen/ops/_batch_norm_impl_index_native.h>
48
+ #include <ATen/ops/_batch_norm_impl_index_backward_native.h>
49
+ #include <ATen/ops/_cast_Byte_native.h>
50
+ #include <ATen/ops/_cast_Char_native.h>
51
+ #include <ATen/ops/_cast_Double_native.h>
52
+ #include <ATen/ops/_cast_Float_native.h>
53
+ #include <ATen/ops/_cast_Half_native.h>
54
+ #include <ATen/ops/_cast_Int_native.h>
55
+ #include <ATen/ops/_cast_Long_native.h>
56
+ #include <ATen/ops/_cast_Short_native.h>
57
+ #include <ATen/ops/_cdist_backward_native.h>
58
+ #include <ATen/ops/_cdist_forward_native.h>
59
+ #include <ATen/ops/_cholesky_solve_helper_native.h>
60
+ #include <ATen/ops/_choose_qparams_per_tensor_native.h>
61
+ #include <ATen/ops/_chunk_cat_native.h>
62
+ #include <ATen/ops/_coalesce_native.h>
63
+ #include <ATen/ops/_coalesced_native.h>
64
+ #include <ATen/ops/_compute_linear_combination_native.h>
65
+ #include <ATen/ops/_conj_native.h>
66
+ #include <ATen/ops/_conj_copy_native.h>
67
+ #include <ATen/ops/_conj_physical_native.h>
68
+ #include <ATen/ops/_conv_depthwise2d_native.h>
69
+ #include <ATen/ops/_convert_indices_from_coo_to_csr_native.h>
70
+ #include <ATen/ops/_convert_indices_from_csr_to_coo_native.h>
71
+ #include <ATen/ops/_convert_weight_to_int4pack_native.h>
72
+ #include <ATen/ops/_convolution_native.h>
73
+ #include <ATen/ops/_convolution_double_backward_native.h>
74
+ #include <ATen/ops/_convolution_mode_native.h>
75
+ #include <ATen/ops/_copy_from_native.h>
76
+ #include <ATen/ops/_copy_from_and_resize_native.h>
77
+ #include <ATen/ops/_cslt_compress_native.h>
78
+ #include <ATen/ops/_cslt_sparse_mm_native.h>
79
+ #include <ATen/ops/_cslt_sparse_mm_search_native.h>
80
+ #include <ATen/ops/_ctc_loss_native.h>
81
+ #include <ATen/ops/_ctc_loss_backward_native.h>
82
+ #include <ATen/ops/_cudnn_ctc_loss_native.h>
83
+ #include <ATen/ops/_cudnn_init_dropout_state_native.h>
84
+ #include <ATen/ops/_cudnn_rnn_native.h>
85
+ #include <ATen/ops/_cudnn_rnn_backward_native.h>
86
+ #include <ATen/ops/_cudnn_rnn_flatten_weight_native.h>
87
+ #include <ATen/ops/_cufft_clear_plan_cache_native.h>
88
+ #include <ATen/ops/_cufft_get_plan_cache_max_size_native.h>
89
+ #include <ATen/ops/_cufft_get_plan_cache_size_native.h>
90
+ #include <ATen/ops/_cufft_set_plan_cache_max_size_native.h>
91
+ #include <ATen/ops/_cummax_helper_native.h>
92
+ #include <ATen/ops/_cummin_helper_native.h>
93
+ #include <ATen/ops/_debug_has_internal_overlap_native.h>
94
+ #include <ATen/ops/_dimI_native.h>
95
+ #include <ATen/ops/_dimV_native.h>
96
+ #include <ATen/ops/_dim_arange_native.h>
97
+ #include <ATen/ops/_dirichlet_grad_native.h>
98
+ #include <ATen/ops/_efficient_attention_backward_native.h>
99
+ #include <ATen/ops/_efficient_attention_forward_native.h>
100
+ #include <ATen/ops/_efficientzerotensor_native.h>
101
+ #include <ATen/ops/_embedding_bag_native.h>
102
+ #include <ATen/ops/_embedding_bag_backward_native.h>
103
+ #include <ATen/ops/_embedding_bag_dense_backward_native.h>
104
+ #include <ATen/ops/_embedding_bag_forward_only_native.h>
105
+ #include <ATen/ops/_embedding_bag_per_sample_weights_backward_native.h>
106
+ #include <ATen/ops/_embedding_bag_sparse_backward_native.h>
107
+ #include <ATen/ops/_empty_affine_quantized_native.h>
108
+ #include <ATen/ops/_empty_per_channel_affine_quantized_native.h>
109
+ #include <ATen/ops/_euclidean_dist_native.h>
110
+ #include <ATen/ops/_fake_quantize_learnable_per_channel_affine_native.h>
111
+ #include <ATen/ops/_fake_quantize_learnable_per_channel_affine_backward_native.h>
112
+ #include <ATen/ops/_fake_quantize_learnable_per_tensor_affine_native.h>
113
+ #include <ATen/ops/_fake_quantize_learnable_per_tensor_affine_backward_native.h>
114
+ #include <ATen/ops/_fake_quantize_per_tensor_affine_cachemask_tensor_qparams_native.h>
115
+ #include <ATen/ops/_fft_c2c_native.h>
116
+ #include <ATen/ops/_fft_c2r_native.h>
117
+ #include <ATen/ops/_fft_r2c_native.h>
118
+ #include <ATen/ops/_fill_mem_eff_dropout_mask_native.h>
119
+ #include <ATen/ops/_flash_attention_backward_native.h>
120
+ #include <ATen/ops/_flash_attention_forward_native.h>
121
+ #include <ATen/ops/_foobar_native.h>
122
+ #include <ATen/ops/_foreach_abs_native.h>
123
+ #include <ATen/ops/_foreach_acos_native.h>
124
+ #include <ATen/ops/_foreach_add_native.h>
125
+ #include <ATen/ops/_foreach_addcdiv_native.h>
126
+ #include <ATen/ops/_foreach_addcmul_native.h>
127
+ #include <ATen/ops/_foreach_asin_native.h>
128
+ #include <ATen/ops/_foreach_atan_native.h>
129
+ #include <ATen/ops/_foreach_ceil_native.h>
130
+ #include <ATen/ops/_foreach_clamp_max_native.h>
131
+ #include <ATen/ops/_foreach_clamp_min_native.h>
132
+ #include <ATen/ops/_foreach_copy_native.h>
133
+ #include <ATen/ops/_foreach_cos_native.h>
134
+ #include <ATen/ops/_foreach_cosh_native.h>
135
+ #include <ATen/ops/_foreach_div_native.h>
136
+ #include <ATen/ops/_foreach_erf_native.h>
137
+ #include <ATen/ops/_foreach_erfc_native.h>
138
+ #include <ATen/ops/_foreach_exp_native.h>
139
+ #include <ATen/ops/_foreach_expm1_native.h>
140
+ #include <ATen/ops/_foreach_floor_native.h>
141
+ #include <ATen/ops/_foreach_frac_native.h>
142
+ #include <ATen/ops/_foreach_lerp_native.h>
143
+ #include <ATen/ops/_foreach_lgamma_native.h>
144
+ #include <ATen/ops/_foreach_log_native.h>
145
+ #include <ATen/ops/_foreach_log10_native.h>
146
+ #include <ATen/ops/_foreach_log1p_native.h>
147
+ #include <ATen/ops/_foreach_log2_native.h>
148
+ #include <ATen/ops/_foreach_maximum_native.h>
149
+ #include <ATen/ops/_foreach_minimum_native.h>
150
+ #include <ATen/ops/_foreach_mul_native.h>
151
+ #include <ATen/ops/_foreach_neg_native.h>
152
+ #include <ATen/ops/_foreach_norm_native.h>
153
+ #include <ATen/ops/_foreach_pow_native.h>
154
+ #include <ATen/ops/_foreach_reciprocal_native.h>
155
+ #include <ATen/ops/_foreach_round_native.h>
156
+ #include <ATen/ops/_foreach_sigmoid_native.h>
157
+ #include <ATen/ops/_foreach_sign_native.h>
158
+ #include <ATen/ops/_foreach_sin_native.h>
159
+ #include <ATen/ops/_foreach_sinh_native.h>
160
+ #include <ATen/ops/_foreach_sqrt_native.h>
161
+ #include <ATen/ops/_foreach_sub_native.h>
162
+ #include <ATen/ops/_foreach_tan_native.h>
163
+ #include <ATen/ops/_foreach_tanh_native.h>
164
+ #include <ATen/ops/_foreach_trunc_native.h>
165
+ #include <ATen/ops/_foreach_zero_native.h>
166
+ #include <ATen/ops/_functional_assert_async_native.h>
167
+ #include <ATen/ops/_functional_assert_scalar_native.h>
168
+ #include <ATen/ops/_functional_sym_constrain_range_native.h>
169
+ #include <ATen/ops/_functional_sym_constrain_range_for_size_native.h>
170
+ #include <ATen/ops/_fused_adam_native.h>
171
+ #include <ATen/ops/_fused_adamw_native.h>
172
+ #include <ATen/ops/_fused_dropout_native.h>
173
+ #include <ATen/ops/_fused_moving_avg_obs_fq_helper_native.h>
174
+ #include <ATen/ops/_fused_sdp_choice_native.h>
175
+ #include <ATen/ops/_fused_sgd_native.h>
176
+ #include <ATen/ops/_fw_primal_native.h>
177
+ #include <ATen/ops/_fw_primal_copy_native.h>
178
+ #include <ATen/ops/_gather_sparse_backward_native.h>
179
+ #include <ATen/ops/_grid_sampler_2d_cpu_fallback_native.h>
180
+ #include <ATen/ops/_grid_sampler_2d_cpu_fallback_backward_native.h>
181
+ #include <ATen/ops/_has_compatible_shallow_copy_type_native.h>
182
+ #include <ATen/ops/_has_same_storage_numel_native.h>
183
+ #include <ATen/ops/_histogramdd_bin_edges_native.h>
184
+ #include <ATen/ops/_histogramdd_from_bin_cts_native.h>
185
+ #include <ATen/ops/_histogramdd_from_bin_tensors_native.h>
186
+ #include <ATen/ops/_index_put_impl_native.h>
187
+ #include <ATen/ops/_indices_native.h>
188
+ #include <ATen/ops/_indices_copy_native.h>
189
+ #include <ATen/ops/_int_mm_native.h>
190
+ #include <ATen/ops/_is_all_true_native.h>
191
+ #include <ATen/ops/_is_any_true_native.h>
192
+ #include <ATen/ops/_is_zerotensor_native.h>
193
+ #include <ATen/ops/_lazy_clone_native.h>
194
+ #include <ATen/ops/_linalg_check_errors_native.h>
195
+ #include <ATen/ops/_linalg_det_native.h>
196
+ #include <ATen/ops/_linalg_eigh_native.h>
197
+ #include <ATen/ops/_linalg_eigvals_native.h>
198
+ #include <ATen/ops/_linalg_slogdet_native.h>
199
+ #include <ATen/ops/_linalg_solve_ex_native.h>
200
+ #include <ATen/ops/_linalg_svd_native.h>
201
+ #include <ATen/ops/_local_scalar_dense_native.h>
202
+ #include <ATen/ops/_log_softmax_native.h>
203
+ #include <ATen/ops/_log_softmax_backward_data_native.h>
204
+ #include <ATen/ops/_logcumsumexp_native.h>
205
+ #include <ATen/ops/_lstm_mps_native.h>
206
+ #include <ATen/ops/_lu_with_info_native.h>
207
+ #include <ATen/ops/_make_dep_token_native.h>
208
+ #include <ATen/ops/_make_dual_native.h>
209
+ #include <ATen/ops/_make_dual_copy_native.h>
210
+ #include <ATen/ops/_make_per_channel_quantized_tensor_native.h>
211
+ #include <ATen/ops/_make_per_tensor_quantized_tensor_native.h>
212
+ #include <ATen/ops/_masked_scale_native.h>
213
+ #include <ATen/ops/_masked_softmax_native.h>
214
+ #include <ATen/ops/_masked_softmax_backward_native.h>
215
+ #include <ATen/ops/_mixed_dtypes_linear_native.h>
216
+ #include <ATen/ops/_mkldnn_reshape_native.h>
217
+ #include <ATen/ops/_mkldnn_transpose_native.h>
218
+ #include <ATen/ops/_mps_convolution_native.h>
219
+ #include <ATen/ops/_mps_convolution_transpose_native.h>
220
+ #include <ATen/ops/_native_batch_norm_legit_native.h>
221
+ #include <ATen/ops/_native_batch_norm_legit_no_training_native.h>
222
+ #include <ATen/ops/_native_multi_head_attention_native.h>
223
+ #include <ATen/ops/_neg_view_native.h>
224
+ #include <ATen/ops/_neg_view_copy_native.h>
225
+ #include <ATen/ops/_nested_from_padded_native.h>
226
+ #include <ATen/ops/_nested_from_padded_and_nested_example_native.h>
227
+ #include <ATen/ops/_nested_get_jagged_dummy_native.h>
228
+ #include <ATen/ops/_nested_get_lengths_native.h>
229
+ #include <ATen/ops/_nested_get_offsets_native.h>
230
+ #include <ATen/ops/_nested_get_ragged_idx_native.h>
231
+ #include <ATen/ops/_nested_get_values_native.h>
232
+ #include <ATen/ops/_nested_get_values_copy_native.h>
233
+ #include <ATen/ops/_nested_select_backward_native.h>
234
+ #include <ATen/ops/_nested_sum_backward_native.h>
235
+ #include <ATen/ops/_nested_tensor_from_mask_native.h>
236
+ #include <ATen/ops/_nested_tensor_from_mask_left_aligned_native.h>
237
+ #include <ATen/ops/_nested_tensor_from_tensor_list_native.h>
238
+ #include <ATen/ops/_nested_tensor_size_native.h>
239
+ #include <ATen/ops/_nested_tensor_softmax_with_shape_native.h>
240
+ #include <ATen/ops/_nested_tensor_storage_offsets_native.h>
241
+ #include <ATen/ops/_nested_tensor_strides_native.h>
242
+ #include <ATen/ops/_nested_view_from_buffer_native.h>
243
+ #include <ATen/ops/_nested_view_from_buffer_copy_native.h>
244
+ #include <ATen/ops/_nested_view_from_jagged_native.h>
245
+ #include <ATen/ops/_nested_view_from_jagged_copy_native.h>
246
+ #include <ATen/ops/_new_zeros_with_same_feature_meta_native.h>
247
+ #include <ATen/ops/_nnpack_available_native.h>
248
+ #include <ATen/ops/_nnpack_spatial_convolution_native.h>
249
+ #include <ATen/ops/_nnz_native.h>
250
+ #include <ATen/ops/_pack_padded_sequence_native.h>
251
+ #include <ATen/ops/_pack_padded_sequence_backward_native.h>
252
+ #include <ATen/ops/_pad_circular_native.h>
253
+ #include <ATen/ops/_pad_enum_native.h>
254
+ #include <ATen/ops/_pad_packed_sequence_native.h>
255
+ #include <ATen/ops/_pdist_backward_native.h>
256
+ #include <ATen/ops/_pdist_forward_native.h>
257
+ #include <ATen/ops/_pin_memory_native.h>
258
+ #include <ATen/ops/_prelu_kernel_native.h>
259
+ #include <ATen/ops/_prelu_kernel_backward_native.h>
260
+ #include <ATen/ops/_print_native.h>
261
+ #include <ATen/ops/_propagate_xla_data_native.h>
262
+ #include <ATen/ops/_remove_batch_dim_native.h>
263
+ #include <ATen/ops/_reshape_alias_native.h>
264
+ #include <ATen/ops/_reshape_alias_copy_native.h>
265
+ #include <ATen/ops/_reshape_copy_native.h>
266
+ #include <ATen/ops/_reshape_from_tensor_native.h>
267
+ #include <ATen/ops/_resize_output_native.h>
268
+ #include <ATen/ops/_rowwise_prune_native.h>
269
+ #include <ATen/ops/_sample_dirichlet_native.h>
270
+ #include <ATen/ops/_saturate_weight_to_fp16_native.h>
271
+ #include <ATen/ops/_scaled_dot_product_attention_math_native.h>
272
+ #include <ATen/ops/_scaled_dot_product_cudnn_attention_native.h>
273
+ #include <ATen/ops/_scaled_dot_product_efficient_attention_native.h>
274
+ #include <ATen/ops/_scaled_dot_product_efficient_attention_backward_native.h>
275
+ #include <ATen/ops/_scaled_dot_product_flash_attention_native.h>
276
+ #include <ATen/ops/_scaled_dot_product_flash_attention_backward_native.h>
277
+ #include <ATen/ops/_scaled_dot_product_flash_attention_for_cpu_native.h>
278
+ #include <ATen/ops/_scaled_dot_product_flash_attention_for_cpu_backward_native.h>
279
+ #include <ATen/ops/_scaled_mm_native.h>
280
+ #include <ATen/ops/_segment_reduce_backward_native.h>
281
+ #include <ATen/ops/_shape_as_tensor_native.h>
282
+ #include <ATen/ops/_slow_conv2d_backward_native.h>
283
+ #include <ATen/ops/_slow_conv2d_forward_native.h>
284
+ #include <ATen/ops/_sobol_engine_draw_native.h>
285
+ #include <ATen/ops/_sobol_engine_ff_native.h>
286
+ #include <ATen/ops/_sobol_engine_initialize_state_native.h>
287
+ #include <ATen/ops/_sobol_engine_scramble_native.h>
288
+ #include <ATen/ops/_softmax_native.h>
289
+ #include <ATen/ops/_softmax_backward_data_native.h>
290
+ #include <ATen/ops/_sparse_addmm_native.h>
291
+ #include <ATen/ops/_sparse_broadcast_to_native.h>
292
+ #include <ATen/ops/_sparse_broadcast_to_copy_native.h>
293
+ #include <ATen/ops/_sparse_bsc_tensor_unsafe_native.h>
294
+ #include <ATen/ops/_sparse_bsr_tensor_unsafe_native.h>
295
+ #include <ATen/ops/_sparse_compressed_tensor_unsafe_native.h>
296
+ #include <ATen/ops/_sparse_coo_tensor_unsafe_native.h>
297
+ #include <ATen/ops/_sparse_coo_tensor_with_dims_native.h>
298
+ #include <ATen/ops/_sparse_coo_tensor_with_dims_and_tensors_native.h>
299
+ #include <ATen/ops/_sparse_csc_tensor_unsafe_native.h>
300
+ #include <ATen/ops/_sparse_csr_prod_native.h>
301
+ #include <ATen/ops/_sparse_csr_sum_native.h>
302
+ #include <ATen/ops/_sparse_csr_tensor_unsafe_native.h>
303
+ #include <ATen/ops/_sparse_log_softmax_native.h>
304
+ #include <ATen/ops/_sparse_log_softmax_backward_data_native.h>
305
+ #include <ATen/ops/_sparse_mask_projection_native.h>
306
+ #include <ATen/ops/_sparse_mm_native.h>
307
+ #include <ATen/ops/_sparse_mm_reduce_impl_native.h>
308
+ #include <ATen/ops/_sparse_mm_reduce_impl_backward_native.h>
309
+ #include <ATen/ops/_sparse_semi_structured_linear_native.h>
310
+ #include <ATen/ops/_sparse_softmax_native.h>
311
+ #include <ATen/ops/_sparse_softmax_backward_data_native.h>
312
+ #include <ATen/ops/_sparse_sparse_matmul_native.h>
313
+ #include <ATen/ops/_sparse_sum_native.h>
314
+ #include <ATen/ops/_sparse_sum_backward_native.h>
315
+ #include <ATen/ops/_spdiags_native.h>
316
+ #include <ATen/ops/_stack_native.h>
317
+ #include <ATen/ops/_standard_gamma_native.h>
318
+ #include <ATen/ops/_standard_gamma_grad_native.h>
319
+ #include <ATen/ops/_test_ambiguous_defaults_native.h>
320
+ #include <ATen/ops/_test_autograd_multiple_dispatch_native.h>
321
+ #include <ATen/ops/_test_autograd_multiple_dispatch_view_native.h>
322
+ #include <ATen/ops/_test_autograd_multiple_dispatch_view_copy_native.h>
323
+ #include <ATen/ops/_test_check_tensor_native.h>
324
+ #include <ATen/ops/_test_functorch_fallback_native.h>
325
+ #include <ATen/ops/_test_optional_filled_intlist_native.h>
326
+ #include <ATen/ops/_test_optional_floatlist_native.h>
327
+ #include <ATen/ops/_test_optional_intlist_native.h>
328
+ #include <ATen/ops/_test_parallel_materialize_native.h>
329
+ #include <ATen/ops/_test_serialization_subcmul_native.h>
330
+ #include <ATen/ops/_test_string_default_native.h>
331
+ #include <ATen/ops/_test_warn_in_autograd_native.h>
332
+ #include <ATen/ops/_thnn_differentiable_gru_cell_backward_native.h>
333
+ #include <ATen/ops/_thnn_differentiable_lstm_cell_backward_native.h>
334
+ #include <ATen/ops/_thnn_fused_gru_cell_native.h>
335
+ #include <ATen/ops/_thnn_fused_gru_cell_backward_native.h>
336
+ #include <ATen/ops/_thnn_fused_lstm_cell_native.h>
337
+ #include <ATen/ops/_thnn_fused_lstm_cell_backward_native.h>
338
+ #include <ATen/ops/_thnn_fused_lstm_cell_backward_impl_native.h>
339
+ #include <ATen/ops/_to_copy_native.h>
340
+ #include <ATen/ops/_to_cpu_native.h>
341
+ #include <ATen/ops/_to_dense_native.h>
342
+ #include <ATen/ops/_to_sparse_native.h>
343
+ #include <ATen/ops/_to_sparse_bsc_native.h>
344
+ #include <ATen/ops/_to_sparse_bsr_native.h>
345
+ #include <ATen/ops/_to_sparse_csc_native.h>
346
+ #include <ATen/ops/_to_sparse_csr_native.h>
347
+ #include <ATen/ops/_to_sparse_semi_structured_native.h>
348
+ #include <ATen/ops/_transform_bias_rescale_qkv_native.h>
349
+ #include <ATen/ops/_transformer_encoder_layer_fwd_native.h>
350
+ #include <ATen/ops/_trilinear_native.h>
351
+ #include <ATen/ops/_triton_multi_head_attention_native.h>
352
+ #include <ATen/ops/_triton_scaled_dot_attention_native.h>
353
+ #include <ATen/ops/_unique_native.h>
354
+ #include <ATen/ops/_unique2_native.h>
355
+ #include <ATen/ops/_unpack_dual_native.h>
356
+ #include <ATen/ops/_unsafe_index_native.h>
357
+ #include <ATen/ops/_unsafe_index_put_native.h>
358
+ #include <ATen/ops/_unsafe_view_native.h>
359
+ #include <ATen/ops/_upsample_bicubic2d_aa_native.h>
360
+ #include <ATen/ops/_upsample_bicubic2d_aa_backward_native.h>
361
+ #include <ATen/ops/_upsample_bilinear2d_aa_native.h>
362
+ #include <ATen/ops/_upsample_bilinear2d_aa_backward_native.h>
363
+ #include <ATen/ops/_upsample_nearest_exact1d_native.h>
364
+ #include <ATen/ops/_upsample_nearest_exact1d_backward_native.h>
365
+ #include <ATen/ops/_upsample_nearest_exact2d_native.h>
366
+ #include <ATen/ops/_upsample_nearest_exact2d_backward_native.h>
367
+ #include <ATen/ops/_upsample_nearest_exact3d_native.h>
368
+ #include <ATen/ops/_upsample_nearest_exact3d_backward_native.h>
369
+ #include <ATen/ops/_use_cudnn_ctc_loss_native.h>
370
+ #include <ATen/ops/_use_cudnn_rnn_flatten_weight_native.h>
371
+ #include <ATen/ops/_validate_compressed_sparse_indices_native.h>
372
+ #include <ATen/ops/_validate_sparse_bsc_tensor_args_native.h>
373
+ #include <ATen/ops/_validate_sparse_bsr_tensor_args_native.h>
374
+ #include <ATen/ops/_validate_sparse_compressed_tensor_args_native.h>
375
+ #include <ATen/ops/_validate_sparse_coo_tensor_args_native.h>
376
+ #include <ATen/ops/_validate_sparse_csc_tensor_args_native.h>
377
+ #include <ATen/ops/_validate_sparse_csr_tensor_args_native.h>
378
+ #include <ATen/ops/_values_native.h>
379
+ #include <ATen/ops/_values_copy_native.h>
380
+ #include <ATen/ops/_version_native.h>
381
+ #include <ATen/ops/_weight_int4pack_mm_native.h>
382
+ #include <ATen/ops/_weight_int8pack_mm_native.h>
383
+ #include <ATen/ops/_weight_norm_native.h>
384
+ #include <ATen/ops/_weight_norm_differentiable_backward_native.h>
385
+ #include <ATen/ops/_weight_norm_interface_native.h>
386
+ #include <ATen/ops/_weight_norm_interface_backward_native.h>
387
+ #include <ATen/ops/abs_native.h>
388
+ #include <ATen/ops/absolute_native.h>
389
+ #include <ATen/ops/acos_native.h>
390
+ #include <ATen/ops/acosh_native.h>
391
+ #include <ATen/ops/adaptive_avg_pool1d_native.h>
392
+ #include <ATen/ops/adaptive_avg_pool2d_native.h>
393
+ #include <ATen/ops/adaptive_avg_pool3d_native.h>
394
+ #include <ATen/ops/adaptive_avg_pool3d_backward_native.h>
395
+ #include <ATen/ops/adaptive_max_pool1d_native.h>
396
+ #include <ATen/ops/adaptive_max_pool2d_native.h>
397
+ #include <ATen/ops/adaptive_max_pool2d_backward_native.h>
398
+ #include <ATen/ops/adaptive_max_pool3d_native.h>
399
+ #include <ATen/ops/adaptive_max_pool3d_backward_native.h>
400
+ #include <ATen/ops/add_native.h>
401
+ #include <ATen/ops/addbmm_native.h>
402
+ #include <ATen/ops/addcdiv_native.h>
403
+ #include <ATen/ops/addcmul_native.h>
404
+ #include <ATen/ops/addmm_native.h>
405
+ #include <ATen/ops/addmv_native.h>
406
+ #include <ATen/ops/addr_native.h>
407
+ #include <ATen/ops/adjoint_native.h>
408
+ #include <ATen/ops/affine_grid_generator_native.h>
409
+ #include <ATen/ops/affine_grid_generator_backward_native.h>
410
+ #include <ATen/ops/alias_native.h>
411
+ #include <ATen/ops/alias_copy_native.h>
412
+ #include <ATen/ops/align_as_native.h>
413
+ #include <ATen/ops/align_tensors_native.h>
414
+ #include <ATen/ops/align_to_native.h>
415
+ #include <ATen/ops/all_native.h>
416
+ #include <ATen/ops/allclose_native.h>
417
+ #include <ATen/ops/alpha_dropout_native.h>
418
+ #include <ATen/ops/amax_native.h>
419
+ #include <ATen/ops/amin_native.h>
420
+ #include <ATen/ops/aminmax_native.h>
421
+ #include <ATen/ops/and_native.h>
422
+ #include <ATen/ops/angle_native.h>
423
+ #include <ATen/ops/any_native.h>
424
+ #include <ATen/ops/arange_native.h>
425
+ #include <ATen/ops/arccos_native.h>
426
+ #include <ATen/ops/arccosh_native.h>
427
+ #include <ATen/ops/arcsin_native.h>
428
+ #include <ATen/ops/arcsinh_native.h>
429
+ #include <ATen/ops/arctan_native.h>
430
+ #include <ATen/ops/arctan2_native.h>
431
+ #include <ATen/ops/arctanh_native.h>
432
+ #include <ATen/ops/argmax_native.h>
433
+ #include <ATen/ops/argmin_native.h>
434
+ #include <ATen/ops/argsort_native.h>
435
+ #include <ATen/ops/argwhere_native.h>
436
+ #include <ATen/ops/as_strided_native.h>
437
+ #include <ATen/ops/as_strided_copy_native.h>
438
+ #include <ATen/ops/as_strided_scatter_native.h>
439
+ #include <ATen/ops/asin_native.h>
440
+ #include <ATen/ops/asinh_native.h>
441
+ #include <ATen/ops/atan_native.h>
442
+ #include <ATen/ops/atan2_native.h>
443
+ #include <ATen/ops/atanh_native.h>
444
+ #include <ATen/ops/atleast_1d_native.h>
445
+ #include <ATen/ops/atleast_2d_native.h>
446
+ #include <ATen/ops/atleast_3d_native.h>
447
+ #include <ATen/ops/avg_pool1d_native.h>
448
+ #include <ATen/ops/avg_pool2d_native.h>
449
+ #include <ATen/ops/avg_pool2d_backward_native.h>
450
+ #include <ATen/ops/avg_pool3d_native.h>
451
+ #include <ATen/ops/avg_pool3d_backward_native.h>
452
+ #include <ATen/ops/baddbmm_native.h>
453
+ #include <ATen/ops/bartlett_window_native.h>
454
+ #include <ATen/ops/batch_norm_native.h>
455
+ #include <ATen/ops/batch_norm_backward_elemt_native.h>
456
+ #include <ATen/ops/batch_norm_backward_reduce_native.h>
457
+ #include <ATen/ops/batch_norm_elemt_native.h>
458
+ #include <ATen/ops/batch_norm_gather_stats_native.h>
459
+ #include <ATen/ops/batch_norm_gather_stats_with_counts_native.h>
460
+ #include <ATen/ops/batch_norm_stats_native.h>
461
+ #include <ATen/ops/batch_norm_update_stats_native.h>
462
+ #include <ATen/ops/bernoulli_native.h>
463
+ #include <ATen/ops/bilinear_native.h>
464
+ #include <ATen/ops/binary_cross_entropy_native.h>
465
+ #include <ATen/ops/binary_cross_entropy_backward_native.h>
466
+ #include <ATen/ops/binary_cross_entropy_with_logits_native.h>
467
+ #include <ATen/ops/bincount_native.h>
468
+ #include <ATen/ops/binomial_native.h>
469
+ #include <ATen/ops/bitwise_and_native.h>
470
+ #include <ATen/ops/bitwise_left_shift_native.h>
471
+ #include <ATen/ops/bitwise_not_native.h>
472
+ #include <ATen/ops/bitwise_or_native.h>
473
+ #include <ATen/ops/bitwise_right_shift_native.h>
474
+ #include <ATen/ops/bitwise_xor_native.h>
475
+ #include <ATen/ops/blackman_window_native.h>
476
+ #include <ATen/ops/block_diag_native.h>
477
+ #include <ATen/ops/bmm_native.h>
478
+ #include <ATen/ops/broadcast_tensors_native.h>
479
+ #include <ATen/ops/broadcast_to_native.h>
480
+ #include <ATen/ops/bucketize_native.h>
481
+ #include <ATen/ops/can_cast_native.h>
482
+ #include <ATen/ops/cartesian_prod_native.h>
483
+ #include <ATen/ops/cat_native.h>
484
+ #include <ATen/ops/cauchy_native.h>
485
+ #include <ATen/ops/ccol_indices_native.h>
486
+ #include <ATen/ops/ccol_indices_copy_native.h>
487
+ #include <ATen/ops/cdist_native.h>
488
+ #include <ATen/ops/ceil_native.h>
489
+ #include <ATen/ops/celu_native.h>
490
+ #include <ATen/ops/chain_matmul_native.h>
491
+ #include <ATen/ops/chalf_native.h>
492
+ #include <ATen/ops/channel_shuffle_native.h>
493
+ #include <ATen/ops/cholesky_native.h>
494
+ #include <ATen/ops/cholesky_inverse_native.h>
495
+ #include <ATen/ops/cholesky_solve_native.h>
496
+ #include <ATen/ops/choose_qparams_optimized_native.h>
497
+ #include <ATen/ops/chunk_native.h>
498
+ #include <ATen/ops/clamp_native.h>
499
+ #include <ATen/ops/clamp_max_native.h>
500
+ #include <ATen/ops/clamp_min_native.h>
501
+ #include <ATen/ops/clip_native.h>
502
+ #include <ATen/ops/clone_native.h>
503
+ #include <ATen/ops/coalesce_native.h>
504
+ #include <ATen/ops/col2im_native.h>
505
+ #include <ATen/ops/col_indices_native.h>
506
+ #include <ATen/ops/col_indices_copy_native.h>
507
+ #include <ATen/ops/column_stack_native.h>
508
+ #include <ATen/ops/combinations_native.h>
509
+ #include <ATen/ops/complex_native.h>
510
+ #include <ATen/ops/concat_native.h>
511
+ #include <ATen/ops/concatenate_native.h>
512
+ #include <ATen/ops/conj_native.h>
513
+ #include <ATen/ops/conj_physical_native.h>
514
+ #include <ATen/ops/constant_pad_nd_native.h>
515
+ #include <ATen/ops/contiguous_native.h>
516
+ #include <ATen/ops/conv1d_native.h>
517
+ #include <ATen/ops/conv2d_native.h>
518
+ #include <ATen/ops/conv3d_native.h>
519
+ #include <ATen/ops/conv_depthwise3d_native.h>
520
+ #include <ATen/ops/conv_tbc_native.h>
521
+ #include <ATen/ops/conv_tbc_backward_native.h>
522
+ #include <ATen/ops/conv_transpose1d_native.h>
523
+ #include <ATen/ops/conv_transpose2d_native.h>
524
+ #include <ATen/ops/conv_transpose3d_native.h>
525
+ #include <ATen/ops/convolution_native.h>
526
+ #include <ATen/ops/convolution_backward_native.h>
527
+ #include <ATen/ops/convolution_backward_overrideable_native.h>
528
+ #include <ATen/ops/convolution_overrideable_native.h>
529
+ #include <ATen/ops/copy_native.h>
530
+ #include <ATen/ops/copy_sparse_to_sparse_native.h>
531
+ #include <ATen/ops/copysign_native.h>
532
+ #include <ATen/ops/corrcoef_native.h>
533
+ #include <ATen/ops/cos_native.h>
534
+ #include <ATen/ops/cosh_native.h>
535
+ #include <ATen/ops/cosine_embedding_loss_native.h>
536
+ #include <ATen/ops/cosine_similarity_native.h>
537
+ #include <ATen/ops/count_nonzero_native.h>
538
+ #include <ATen/ops/cov_native.h>
539
+ #include <ATen/ops/cross_native.h>
540
+ #include <ATen/ops/cross_entropy_loss_native.h>
541
+ #include <ATen/ops/crow_indices_native.h>
542
+ #include <ATen/ops/crow_indices_copy_native.h>
543
+ #include <ATen/ops/ctc_loss_native.h>
544
+ #include <ATen/ops/cudnn_affine_grid_generator_native.h>
545
+ #include <ATen/ops/cudnn_affine_grid_generator_backward_native.h>
546
+ #include <ATen/ops/cudnn_batch_norm_native.h>
547
+ #include <ATen/ops/cudnn_batch_norm_backward_native.h>
548
+ #include <ATen/ops/cudnn_convolution_native.h>
549
+ #include <ATen/ops/cudnn_convolution_add_relu_native.h>
550
+ #include <ATen/ops/cudnn_convolution_relu_native.h>
551
+ #include <ATen/ops/cudnn_convolution_transpose_native.h>
552
+ #include <ATen/ops/cudnn_grid_sampler_native.h>
553
+ #include <ATen/ops/cudnn_grid_sampler_backward_native.h>
554
+ #include <ATen/ops/cudnn_is_acceptable_native.h>
555
+ #include <ATen/ops/cummax_native.h>
556
+ #include <ATen/ops/cummaxmin_backward_native.h>
557
+ #include <ATen/ops/cummin_native.h>
558
+ #include <ATen/ops/cumprod_native.h>
559
+ #include <ATen/ops/cumprod_backward_native.h>
560
+ #include <ATen/ops/cumsum_native.h>
561
+ #include <ATen/ops/cumulative_trapezoid_native.h>
562
+ #include <ATen/ops/data_native.h>
563
+ #include <ATen/ops/deg2rad_native.h>
564
+ #include <ATen/ops/dense_dim_native.h>
565
+ #include <ATen/ops/dequantize_native.h>
566
+ #include <ATen/ops/det_native.h>
567
+ #include <ATen/ops/detach_native.h>
568
+ #include <ATen/ops/detach_copy_native.h>
569
+ #include <ATen/ops/diag_native.h>
570
+ #include <ATen/ops/diag_embed_native.h>
571
+ #include <ATen/ops/diagflat_native.h>
572
+ #include <ATen/ops/diagonal_native.h>
573
+ #include <ATen/ops/diagonal_backward_native.h>
574
+ #include <ATen/ops/diagonal_copy_native.h>
575
+ #include <ATen/ops/diagonal_scatter_native.h>
576
+ #include <ATen/ops/diff_native.h>
577
+ #include <ATen/ops/digamma_native.h>
578
+ #include <ATen/ops/dist_native.h>
579
+ #include <ATen/ops/div_native.h>
580
+ #include <ATen/ops/divide_native.h>
581
+ #include <ATen/ops/dot_native.h>
582
+ #include <ATen/ops/dropout_native.h>
583
+ #include <ATen/ops/dsplit_native.h>
584
+ #include <ATen/ops/dstack_native.h>
585
+ #include <ATen/ops/einsum_native.h>
586
+ #include <ATen/ops/elu_native.h>
587
+ #include <ATen/ops/elu_backward_native.h>
588
+ #include <ATen/ops/embedding_native.h>
589
+ #include <ATen/ops/embedding_backward_native.h>
590
+ #include <ATen/ops/embedding_bag_native.h>
591
+ #include <ATen/ops/embedding_dense_backward_native.h>
592
+ #include <ATen/ops/embedding_renorm_native.h>
593
+ #include <ATen/ops/embedding_sparse_backward_native.h>
594
+ #include <ATen/ops/empty_native.h>
595
+ #include <ATen/ops/empty_like_native.h>
596
+ #include <ATen/ops/empty_permuted_native.h>
597
+ #include <ATen/ops/empty_quantized_native.h>
598
+ #include <ATen/ops/empty_strided_native.h>
599
+ #include <ATen/ops/eq_native.h>
600
+ #include <ATen/ops/equal_native.h>
601
+ #include <ATen/ops/erf_native.h>
602
+ #include <ATen/ops/erfc_native.h>
603
+ #include <ATen/ops/erfinv_native.h>
604
+ #include <ATen/ops/exp_native.h>
605
+ #include <ATen/ops/exp2_native.h>
606
+ #include <ATen/ops/expand_native.h>
607
+ #include <ATen/ops/expand_as_native.h>
608
+ #include <ATen/ops/expand_copy_native.h>
609
+ #include <ATen/ops/expm1_native.h>
610
+ #include <ATen/ops/exponential_native.h>
611
+ #include <ATen/ops/eye_native.h>
612
+ #include <ATen/ops/fake_quantize_per_channel_affine_native.h>
613
+ #include <ATen/ops/fake_quantize_per_channel_affine_cachemask_native.h>
614
+ #include <ATen/ops/fake_quantize_per_channel_affine_cachemask_backward_native.h>
615
+ #include <ATen/ops/fake_quantize_per_tensor_affine_native.h>
616
+ #include <ATen/ops/fake_quantize_per_tensor_affine_cachemask_native.h>
617
+ #include <ATen/ops/fake_quantize_per_tensor_affine_cachemask_backward_native.h>
618
+ #include <ATen/ops/fbgemm_linear_fp16_weight_native.h>
619
+ #include <ATen/ops/fbgemm_linear_fp16_weight_fp32_activation_native.h>
620
+ #include <ATen/ops/fbgemm_linear_int8_weight_native.h>
621
+ #include <ATen/ops/fbgemm_linear_int8_weight_fp32_activation_native.h>
622
+ #include <ATen/ops/fbgemm_linear_quantize_weight_native.h>
623
+ #include <ATen/ops/fbgemm_pack_gemm_matrix_fp16_native.h>
624
+ #include <ATen/ops/fbgemm_pack_quantized_matrix_native.h>
625
+ #include <ATen/ops/feature_alpha_dropout_native.h>
626
+ #include <ATen/ops/feature_dropout_native.h>
627
+ #include <ATen/ops/fft_fft_native.h>
628
+ #include <ATen/ops/fft_fft2_native.h>
629
+ #include <ATen/ops/fft_fftfreq_native.h>
630
+ #include <ATen/ops/fft_fftn_native.h>
631
+ #include <ATen/ops/fft_fftshift_native.h>
632
+ #include <ATen/ops/fft_hfft_native.h>
633
+ #include <ATen/ops/fft_hfft2_native.h>
634
+ #include <ATen/ops/fft_hfftn_native.h>
635
+ #include <ATen/ops/fft_ifft_native.h>
636
+ #include <ATen/ops/fft_ifft2_native.h>
637
+ #include <ATen/ops/fft_ifftn_native.h>
638
+ #include <ATen/ops/fft_ifftshift_native.h>
639
+ #include <ATen/ops/fft_ihfft_native.h>
640
+ #include <ATen/ops/fft_ihfft2_native.h>
641
+ #include <ATen/ops/fft_ihfftn_native.h>
642
+ #include <ATen/ops/fft_irfft_native.h>
643
+ #include <ATen/ops/fft_irfft2_native.h>
644
+ #include <ATen/ops/fft_irfftn_native.h>
645
+ #include <ATen/ops/fft_rfft_native.h>
646
+ #include <ATen/ops/fft_rfft2_native.h>
647
+ #include <ATen/ops/fft_rfftfreq_native.h>
648
+ #include <ATen/ops/fft_rfftn_native.h>
649
+ #include <ATen/ops/fill_native.h>
650
+ #include <ATen/ops/fill_diagonal_native.h>
651
+ #include <ATen/ops/fix_native.h>
652
+ #include <ATen/ops/flatten_native.h>
653
+ #include <ATen/ops/flatten_dense_tensors_native.h>
654
+ #include <ATen/ops/flip_native.h>
655
+ #include <ATen/ops/fliplr_native.h>
656
+ #include <ATen/ops/flipud_native.h>
657
+ #include <ATen/ops/float_power_native.h>
658
+ #include <ATen/ops/floor_native.h>
659
+ #include <ATen/ops/floor_divide_native.h>
660
+ #include <ATen/ops/fmax_native.h>
661
+ #include <ATen/ops/fmin_native.h>
662
+ #include <ATen/ops/fmod_native.h>
663
+ #include <ATen/ops/frac_native.h>
664
+ #include <ATen/ops/fractional_max_pool2d_native.h>
665
+ #include <ATen/ops/fractional_max_pool2d_backward_native.h>
666
+ #include <ATen/ops/fractional_max_pool3d_native.h>
667
+ #include <ATen/ops/fractional_max_pool3d_backward_native.h>
668
+ #include <ATen/ops/frexp_native.h>
669
+ #include <ATen/ops/frobenius_norm_native.h>
670
+ #include <ATen/ops/from_file_native.h>
671
+ #include <ATen/ops/full_native.h>
672
+ #include <ATen/ops/full_like_native.h>
673
+ #include <ATen/ops/fused_moving_avg_obs_fake_quant_native.h>
674
+ #include <ATen/ops/gather_native.h>
675
+ #include <ATen/ops/gather_backward_native.h>
676
+ #include <ATen/ops/gcd_native.h>
677
+ #include <ATen/ops/ge_native.h>
678
+ #include <ATen/ops/gelu_native.h>
679
+ #include <ATen/ops/gelu_backward_native.h>
680
+ #include <ATen/ops/geometric_native.h>
681
+ #include <ATen/ops/geqrf_native.h>
682
+ #include <ATen/ops/ger_native.h>
683
+ #include <ATen/ops/glu_native.h>
684
+ #include <ATen/ops/glu_backward_native.h>
685
+ #include <ATen/ops/glu_backward_jvp_native.h>
686
+ #include <ATen/ops/glu_jvp_native.h>
687
+ #include <ATen/ops/gradient_native.h>
688
+ #include <ATen/ops/greater_native.h>
689
+ #include <ATen/ops/greater_equal_native.h>
690
+ #include <ATen/ops/grid_sampler_native.h>
691
+ #include <ATen/ops/grid_sampler_2d_native.h>
692
+ #include <ATen/ops/grid_sampler_2d_backward_native.h>
693
+ #include <ATen/ops/grid_sampler_3d_native.h>
694
+ #include <ATen/ops/grid_sampler_3d_backward_native.h>
695
+ #include <ATen/ops/group_norm_native.h>
696
+ #include <ATen/ops/gru_native.h>
697
+ #include <ATen/ops/gru_cell_native.h>
698
+ #include <ATen/ops/gt_native.h>
699
+ #include <ATen/ops/hamming_window_native.h>
700
+ #include <ATen/ops/hann_window_native.h>
701
+ #include <ATen/ops/hardshrink_native.h>
702
+ #include <ATen/ops/hardshrink_backward_native.h>
703
+ #include <ATen/ops/hardsigmoid_native.h>
704
+ #include <ATen/ops/hardsigmoid_backward_native.h>
705
+ #include <ATen/ops/hardswish_native.h>
706
+ #include <ATen/ops/hardswish_backward_native.h>
707
+ #include <ATen/ops/hardtanh_native.h>
708
+ #include <ATen/ops/hardtanh_backward_native.h>
709
+ #include <ATen/ops/heaviside_native.h>
710
+ #include <ATen/ops/hinge_embedding_loss_native.h>
711
+ #include <ATen/ops/histc_native.h>
712
+ #include <ATen/ops/histogram_native.h>
713
+ #include <ATen/ops/histogramdd_native.h>
714
+ #include <ATen/ops/hsplit_native.h>
715
+ #include <ATen/ops/hspmm_native.h>
716
+ #include <ATen/ops/hstack_native.h>
717
+ #include <ATen/ops/huber_loss_native.h>
718
+ #include <ATen/ops/huber_loss_backward_native.h>
719
+ #include <ATen/ops/hypot_native.h>
720
+ #include <ATen/ops/i0_native.h>
721
+ #include <ATen/ops/igamma_native.h>
722
+ #include <ATen/ops/igammac_native.h>
723
+ #include <ATen/ops/im2col_native.h>
724
+ #include <ATen/ops/imag_native.h>
725
+ #include <ATen/ops/index_native.h>
726
+ #include <ATen/ops/index_add_native.h>
727
+ #include <ATen/ops/index_copy_native.h>
728
+ #include <ATen/ops/index_fill_native.h>
729
+ #include <ATen/ops/index_put_native.h>
730
+ #include <ATen/ops/index_reduce_native.h>
731
+ #include <ATen/ops/index_select_native.h>
732
+ #include <ATen/ops/index_select_backward_native.h>
733
+ #include <ATen/ops/indices_native.h>
734
+ #include <ATen/ops/indices_copy_native.h>
735
+ #include <ATen/ops/infinitely_differentiable_gelu_backward_native.h>
736
+ #include <ATen/ops/inner_native.h>
737
+ #include <ATen/ops/instance_norm_native.h>
738
+ #include <ATen/ops/int_repr_native.h>
739
+ #include <ATen/ops/inverse_native.h>
740
+ #include <ATen/ops/is_coalesced_native.h>
741
+ #include <ATen/ops/is_complex_native.h>
742
+ #include <ATen/ops/is_conj_native.h>
743
+ #include <ATen/ops/is_distributed_native.h>
744
+ #include <ATen/ops/is_floating_point_native.h>
745
+ #include <ATen/ops/is_inference_native.h>
746
+ #include <ATen/ops/is_leaf_native.h>
747
+ #include <ATen/ops/is_neg_native.h>
748
+ #include <ATen/ops/is_nonzero_native.h>
749
+ #include <ATen/ops/is_pinned_native.h>
750
+ #include <ATen/ops/is_same_size_native.h>
751
+ #include <ATen/ops/is_set_to_native.h>
752
+ #include <ATen/ops/is_signed_native.h>
753
+ #include <ATen/ops/is_vulkan_available_native.h>
754
+ #include <ATen/ops/isclose_native.h>
755
+ #include <ATen/ops/isfinite_native.h>
756
+ #include <ATen/ops/isin_native.h>
757
+ #include <ATen/ops/isinf_native.h>
758
+ #include <ATen/ops/isnan_native.h>
759
+ #include <ATen/ops/isneginf_native.h>
760
+ #include <ATen/ops/isposinf_native.h>
761
+ #include <ATen/ops/isreal_native.h>
762
+ #include <ATen/ops/istft_native.h>
763
+ #include <ATen/ops/item_native.h>
764
+ #include <ATen/ops/kaiser_window_native.h>
765
+ #include <ATen/ops/kl_div_native.h>
766
+ #include <ATen/ops/kron_native.h>
767
+ #include <ATen/ops/kthvalue_native.h>
768
+ #include <ATen/ops/l1_loss_native.h>
769
+ #include <ATen/ops/layer_norm_native.h>
770
+ #include <ATen/ops/lcm_native.h>
771
+ #include <ATen/ops/ldexp_native.h>
772
+ #include <ATen/ops/le_native.h>
773
+ #include <ATen/ops/leaky_relu_native.h>
774
+ #include <ATen/ops/leaky_relu_backward_native.h>
775
+ #include <ATen/ops/lerp_native.h>
776
+ #include <ATen/ops/less_native.h>
777
+ #include <ATen/ops/less_equal_native.h>
778
+ #include <ATen/ops/lgamma_native.h>
779
+ #include <ATen/ops/lift_native.h>
780
+ #include <ATen/ops/lift_fresh_native.h>
781
+ #include <ATen/ops/lift_fresh_copy_native.h>
782
+ #include <ATen/ops/linalg_cholesky_native.h>
783
+ #include <ATen/ops/linalg_cholesky_ex_native.h>
784
+ #include <ATen/ops/linalg_cond_native.h>
785
+ #include <ATen/ops/linalg_cross_native.h>
786
+ #include <ATen/ops/linalg_det_native.h>
787
+ #include <ATen/ops/linalg_diagonal_native.h>
788
+ #include <ATen/ops/linalg_eig_native.h>
789
+ #include <ATen/ops/linalg_eigh_native.h>
790
+ #include <ATen/ops/linalg_eigvals_native.h>
791
+ #include <ATen/ops/linalg_eigvalsh_native.h>
792
+ #include <ATen/ops/linalg_householder_product_native.h>
793
+ #include <ATen/ops/linalg_inv_native.h>
794
+ #include <ATen/ops/linalg_inv_ex_native.h>
795
+ #include <ATen/ops/linalg_ldl_factor_native.h>
796
+ #include <ATen/ops/linalg_ldl_factor_ex_native.h>
797
+ #include <ATen/ops/linalg_ldl_solve_native.h>
798
+ #include <ATen/ops/linalg_lstsq_native.h>
799
+ #include <ATen/ops/linalg_lu_native.h>
800
+ #include <ATen/ops/linalg_lu_factor_native.h>
801
+ #include <ATen/ops/linalg_lu_factor_ex_native.h>
802
+ #include <ATen/ops/linalg_lu_solve_native.h>
803
+ #include <ATen/ops/linalg_matmul_native.h>
804
+ #include <ATen/ops/linalg_matrix_exp_native.h>
805
+ #include <ATen/ops/linalg_matrix_norm_native.h>
806
+ #include <ATen/ops/linalg_matrix_power_native.h>
807
+ #include <ATen/ops/linalg_matrix_rank_native.h>
808
+ #include <ATen/ops/linalg_multi_dot_native.h>
809
+ #include <ATen/ops/linalg_norm_native.h>
810
+ #include <ATen/ops/linalg_pinv_native.h>
811
+ #include <ATen/ops/linalg_qr_native.h>
812
+ #include <ATen/ops/linalg_slogdet_native.h>
813
+ #include <ATen/ops/linalg_solve_native.h>
814
+ #include <ATen/ops/linalg_solve_ex_native.h>
815
+ #include <ATen/ops/linalg_solve_triangular_native.h>
816
+ #include <ATen/ops/linalg_svd_native.h>
817
+ #include <ATen/ops/linalg_svdvals_native.h>
818
+ #include <ATen/ops/linalg_tensorinv_native.h>
819
+ #include <ATen/ops/linalg_tensorsolve_native.h>
820
+ #include <ATen/ops/linalg_vander_native.h>
821
+ #include <ATen/ops/linalg_vecdot_native.h>
822
+ #include <ATen/ops/linalg_vector_norm_native.h>
823
+ #include <ATen/ops/linear_native.h>
824
+ #include <ATen/ops/linear_backward_native.h>
825
+ #include <ATen/ops/linspace_native.h>
826
+ #include <ATen/ops/log_native.h>
827
+ #include <ATen/ops/log10_native.h>
828
+ #include <ATen/ops/log1p_native.h>
829
+ #include <ATen/ops/log2_native.h>
830
+ #include <ATen/ops/log_normal_native.h>
831
+ #include <ATen/ops/log_sigmoid_native.h>
832
+ #include <ATen/ops/log_sigmoid_backward_native.h>
833
+ #include <ATen/ops/log_sigmoid_forward_native.h>
834
+ #include <ATen/ops/log_softmax_native.h>
835
+ #include <ATen/ops/logaddexp_native.h>
836
+ #include <ATen/ops/logaddexp2_native.h>
837
+ #include <ATen/ops/logcumsumexp_native.h>
838
+ #include <ATen/ops/logdet_native.h>
839
+ #include <ATen/ops/logical_and_native.h>
840
+ #include <ATen/ops/logical_not_native.h>
841
+ #include <ATen/ops/logical_or_native.h>
842
+ #include <ATen/ops/logical_xor_native.h>
843
+ #include <ATen/ops/logit_native.h>
844
+ #include <ATen/ops/logit_backward_native.h>
845
+ #include <ATen/ops/logspace_native.h>
846
+ #include <ATen/ops/logsumexp_native.h>
847
+ #include <ATen/ops/lshift_native.h>
848
+ #include <ATen/ops/lstm_native.h>
849
+ #include <ATen/ops/lstm_cell_native.h>
850
+ #include <ATen/ops/lstm_mps_backward_native.h>
851
+ #include <ATen/ops/lt_native.h>
852
+ #include <ATen/ops/lu_solve_native.h>
853
+ #include <ATen/ops/lu_unpack_native.h>
854
+ #include <ATen/ops/mH_native.h>
855
+ #include <ATen/ops/mT_native.h>
856
+ #include <ATen/ops/margin_ranking_loss_native.h>
857
+ #include <ATen/ops/masked_fill_native.h>
858
+ #include <ATen/ops/masked_scatter_native.h>
859
+ #include <ATen/ops/masked_scatter_backward_native.h>
860
+ #include <ATen/ops/masked_select_native.h>
861
+ #include <ATen/ops/masked_select_backward_native.h>
862
+ #include <ATen/ops/matmul_native.h>
863
+ #include <ATen/ops/matmul_backward_native.h>
864
+ #include <ATen/ops/matrix_H_native.h>
865
+ #include <ATen/ops/matrix_exp_native.h>
866
+ #include <ATen/ops/matrix_exp_backward_native.h>
867
+ #include <ATen/ops/matrix_power_native.h>
868
+ #include <ATen/ops/max_native.h>
869
+ #include <ATen/ops/max_pool1d_native.h>
870
+ #include <ATen/ops/max_pool1d_with_indices_native.h>
871
+ #include <ATen/ops/max_pool2d_native.h>
872
+ #include <ATen/ops/max_pool2d_backward_native.h>
873
+ #include <ATen/ops/max_pool2d_with_indices_native.h>
874
+ #include <ATen/ops/max_pool2d_with_indices_backward_native.h>
875
+ #include <ATen/ops/max_pool3d_native.h>
876
+ #include <ATen/ops/max_pool3d_with_indices_native.h>
877
+ #include <ATen/ops/max_pool3d_with_indices_backward_native.h>
878
+ #include <ATen/ops/max_unpool2d_native.h>
879
+ #include <ATen/ops/max_unpool3d_native.h>
880
+ #include <ATen/ops/maximum_native.h>
881
+ #include <ATen/ops/mean_native.h>
882
+ #include <ATen/ops/median_native.h>
883
+ #include <ATen/ops/meshgrid_native.h>
884
+ #include <ATen/ops/min_native.h>
885
+ #include <ATen/ops/minimum_native.h>
886
+ #include <ATen/ops/miopen_batch_norm_native.h>
887
+ #include <ATen/ops/miopen_batch_norm_backward_native.h>
888
+ #include <ATen/ops/miopen_convolution_native.h>
889
+ #include <ATen/ops/miopen_convolution_add_relu_native.h>
890
+ #include <ATen/ops/miopen_convolution_relu_native.h>
891
+ #include <ATen/ops/miopen_convolution_transpose_native.h>
892
+ #include <ATen/ops/miopen_depthwise_convolution_native.h>
893
+ #include <ATen/ops/miopen_rnn_native.h>
894
+ #include <ATen/ops/miopen_rnn_backward_native.h>
895
+ #include <ATen/ops/mish_native.h>
896
+ #include <ATen/ops/mish_backward_native.h>
897
+ #include <ATen/ops/mkldnn_adaptive_avg_pool2d_native.h>
898
+ #include <ATen/ops/mkldnn_adaptive_avg_pool2d_backward_native.h>
899
+ #include <ATen/ops/mkldnn_convolution_native.h>
900
+ #include <ATen/ops/mkldnn_linear_native.h>
901
+ #include <ATen/ops/mkldnn_linear_backward_native.h>
902
+ #include <ATen/ops/mkldnn_linear_backward_input_native.h>
903
+ #include <ATen/ops/mkldnn_linear_backward_weights_native.h>
904
+ #include <ATen/ops/mkldnn_max_pool2d_native.h>
905
+ #include <ATen/ops/mkldnn_max_pool2d_backward_native.h>
906
+ #include <ATen/ops/mkldnn_max_pool3d_native.h>
907
+ #include <ATen/ops/mkldnn_max_pool3d_backward_native.h>
908
+ #include <ATen/ops/mkldnn_reorder_conv2d_weight_native.h>
909
+ #include <ATen/ops/mkldnn_reorder_conv3d_weight_native.h>
910
+ #include <ATen/ops/mkldnn_rnn_layer_native.h>
911
+ #include <ATen/ops/mkldnn_rnn_layer_backward_native.h>
912
+ #include <ATen/ops/mm_native.h>
913
+ #include <ATen/ops/mode_native.h>
914
+ #include <ATen/ops/moveaxis_native.h>
915
+ #include <ATen/ops/movedim_native.h>
916
+ #include <ATen/ops/mps_convolution_backward_native.h>
917
+ #include <ATen/ops/mps_convolution_transpose_backward_native.h>
918
+ #include <ATen/ops/mse_loss_native.h>
919
+ #include <ATen/ops/mse_loss_backward_native.h>
920
+ #include <ATen/ops/msort_native.h>
921
+ #include <ATen/ops/mul_native.h>
922
+ #include <ATen/ops/multi_margin_loss_native.h>
923
+ #include <ATen/ops/multi_margin_loss_backward_native.h>
924
+ #include <ATen/ops/multilabel_margin_loss_native.h>
925
+ #include <ATen/ops/multilabel_margin_loss_backward_native.h>
926
+ #include <ATen/ops/multilabel_margin_loss_forward_native.h>
927
+ #include <ATen/ops/multinomial_native.h>
928
+ #include <ATen/ops/multiply_native.h>
929
+ #include <ATen/ops/mv_native.h>
930
+ #include <ATen/ops/mvlgamma_native.h>
931
+ #include <ATen/ops/nan_to_num_native.h>
932
+ #include <ATen/ops/nanmean_native.h>
933
+ #include <ATen/ops/nanmedian_native.h>
934
+ #include <ATen/ops/nanquantile_native.h>
935
+ #include <ATen/ops/nansum_native.h>
936
+ #include <ATen/ops/narrow_native.h>
937
+ #include <ATen/ops/narrow_copy_native.h>
938
+ #include <ATen/ops/native_batch_norm_native.h>
939
+ #include <ATen/ops/native_batch_norm_backward_native.h>
940
+ #include <ATen/ops/native_channel_shuffle_native.h>
941
+ #include <ATen/ops/native_dropout_native.h>
942
+ #include <ATen/ops/native_dropout_backward_native.h>
943
+ #include <ATen/ops/native_group_norm_native.h>
944
+ #include <ATen/ops/native_group_norm_backward_native.h>
945
+ #include <ATen/ops/native_layer_norm_native.h>
946
+ #include <ATen/ops/native_layer_norm_backward_native.h>
947
+ #include <ATen/ops/native_norm_native.h>
948
+ #include <ATen/ops/ne_native.h>
949
+ #include <ATen/ops/neg_native.h>
950
+ #include <ATen/ops/negative_native.h>
951
+ #include <ATen/ops/nested_to_padded_tensor_native.h>
952
+ #include <ATen/ops/new_empty_native.h>
953
+ #include <ATen/ops/new_empty_strided_native.h>
954
+ #include <ATen/ops/new_full_native.h>
955
+ #include <ATen/ops/new_ones_native.h>
956
+ #include <ATen/ops/new_zeros_native.h>
957
+ #include <ATen/ops/nextafter_native.h>
958
+ #include <ATen/ops/nll_loss_native.h>
959
+ #include <ATen/ops/nll_loss2d_native.h>
960
+ #include <ATen/ops/nll_loss2d_backward_native.h>
961
+ #include <ATen/ops/nll_loss2d_forward_native.h>
962
+ #include <ATen/ops/nll_loss_backward_native.h>
963
+ #include <ATen/ops/nll_loss_forward_native.h>
964
+ #include <ATen/ops/nll_loss_nd_native.h>
965
+ #include <ATen/ops/nonzero_native.h>
966
+ #include <ATen/ops/nonzero_numpy_native.h>
967
+ #include <ATen/ops/nonzero_static_native.h>
968
+ #include <ATen/ops/norm_native.h>
969
+ #include <ATen/ops/norm_except_dim_native.h>
970
+ #include <ATen/ops/normal_native.h>
971
+ #include <ATen/ops/not_equal_native.h>
972
+ #include <ATen/ops/nuclear_norm_native.h>
973
+ #include <ATen/ops/numpy_T_native.h>
974
+ #include <ATen/ops/one_hot_native.h>
975
+ #include <ATen/ops/ones_native.h>
976
+ #include <ATen/ops/ones_like_native.h>
977
+ #include <ATen/ops/or_native.h>
978
+ #include <ATen/ops/orgqr_native.h>
979
+ #include <ATen/ops/ormqr_native.h>
980
+ #include <ATen/ops/outer_native.h>
981
+ #include <ATen/ops/output_nr_native.h>
982
+ #include <ATen/ops/pad_native.h>
983
+ #include <ATen/ops/pad_sequence_native.h>
984
+ #include <ATen/ops/pairwise_distance_native.h>
985
+ #include <ATen/ops/pdist_native.h>
986
+ #include <ATen/ops/permute_native.h>
987
+ #include <ATen/ops/permute_copy_native.h>
988
+ #include <ATen/ops/pin_memory_native.h>
989
+ #include <ATen/ops/pinverse_native.h>
990
+ #include <ATen/ops/pixel_shuffle_native.h>
991
+ #include <ATen/ops/pixel_unshuffle_native.h>
992
+ #include <ATen/ops/poisson_native.h>
993
+ #include <ATen/ops/poisson_nll_loss_native.h>
994
+ #include <ATen/ops/polar_native.h>
995
+ #include <ATen/ops/polygamma_native.h>
996
+ #include <ATen/ops/positive_native.h>
997
+ #include <ATen/ops/pow_native.h>
998
+ #include <ATen/ops/prelu_native.h>
999
+ #include <ATen/ops/prod_native.h>
1000
+ #include <ATen/ops/promote_types_native.h>
1001
+ #include <ATen/ops/put_native.h>
1002
+ #include <ATen/ops/q_per_channel_axis_native.h>
1003
+ #include <ATen/ops/q_per_channel_scales_native.h>
1004
+ #include <ATen/ops/q_per_channel_zero_points_native.h>
1005
+ #include <ATen/ops/q_scale_native.h>
1006
+ #include <ATen/ops/q_zero_point_native.h>
1007
+ #include <ATen/ops/qr_native.h>
1008
+ #include <ATen/ops/qscheme_native.h>
1009
+ #include <ATen/ops/quantile_native.h>
1010
+ #include <ATen/ops/quantize_per_channel_native.h>
1011
+ #include <ATen/ops/quantize_per_tensor_native.h>
1012
+ #include <ATen/ops/quantize_per_tensor_dynamic_native.h>
1013
+ #include <ATen/ops/quantized_batch_norm_native.h>
1014
+ #include <ATen/ops/quantized_gru_cell_native.h>
1015
+ #include <ATen/ops/quantized_lstm_cell_native.h>
1016
+ #include <ATen/ops/quantized_max_pool1d_native.h>
1017
+ #include <ATen/ops/quantized_max_pool2d_native.h>
1018
+ #include <ATen/ops/quantized_max_pool3d_native.h>
1019
+ #include <ATen/ops/quantized_rnn_relu_cell_native.h>
1020
+ #include <ATen/ops/quantized_rnn_tanh_cell_native.h>
1021
+ #include <ATen/ops/rad2deg_native.h>
1022
+ #include <ATen/ops/rand_native.h>
1023
+ #include <ATen/ops/rand_like_native.h>
1024
+ #include <ATen/ops/randint_native.h>
1025
+ #include <ATen/ops/randint_like_native.h>
1026
+ #include <ATen/ops/randn_native.h>
1027
+ #include <ATen/ops/randn_like_native.h>
1028
+ #include <ATen/ops/random_native.h>
1029
+ #include <ATen/ops/randperm_native.h>
1030
+ #include <ATen/ops/range_native.h>
1031
+ #include <ATen/ops/ravel_native.h>
1032
+ #include <ATen/ops/real_native.h>
1033
+ #include <ATen/ops/reciprocal_native.h>
1034
+ #include <ATen/ops/record_stream_native.h>
1035
+ #include <ATen/ops/refine_names_native.h>
1036
+ #include <ATen/ops/reflection_pad1d_native.h>
1037
+ #include <ATen/ops/reflection_pad1d_backward_native.h>
1038
+ #include <ATen/ops/reflection_pad2d_native.h>
1039
+ #include <ATen/ops/reflection_pad2d_backward_native.h>
1040
+ #include <ATen/ops/reflection_pad3d_native.h>
1041
+ #include <ATen/ops/reflection_pad3d_backward_native.h>
1042
+ #include <ATen/ops/relu_native.h>
1043
+ #include <ATen/ops/relu6_native.h>
1044
+ #include <ATen/ops/remainder_native.h>
1045
+ #include <ATen/ops/rename_native.h>
1046
+ #include <ATen/ops/renorm_native.h>
1047
+ #include <ATen/ops/repeat_native.h>
1048
+ #include <ATen/ops/repeat_interleave_native.h>
1049
+ #include <ATen/ops/replication_pad1d_native.h>
1050
+ #include <ATen/ops/replication_pad1d_backward_native.h>
1051
+ #include <ATen/ops/replication_pad2d_native.h>
1052
+ #include <ATen/ops/replication_pad2d_backward_native.h>
1053
+ #include <ATen/ops/replication_pad3d_native.h>
1054
+ #include <ATen/ops/replication_pad3d_backward_native.h>
1055
+ #include <ATen/ops/requires_grad_native.h>
1056
+ #include <ATen/ops/reshape_native.h>
1057
+ #include <ATen/ops/reshape_as_native.h>
1058
+ #include <ATen/ops/resize_native.h>
1059
+ #include <ATen/ops/resize_as_native.h>
1060
+ #include <ATen/ops/resize_as_sparse_native.h>
1061
+ #include <ATen/ops/resolve_conj_native.h>
1062
+ #include <ATen/ops/resolve_neg_native.h>
1063
+ #include <ATen/ops/result_type_native.h>
1064
+ #include <ATen/ops/retain_grad_native.h>
1065
+ #include <ATen/ops/retains_grad_native.h>
1066
+ #include <ATen/ops/rnn_relu_native.h>
1067
+ #include <ATen/ops/rnn_relu_cell_native.h>
1068
+ #include <ATen/ops/rnn_tanh_native.h>
1069
+ #include <ATen/ops/rnn_tanh_cell_native.h>
1070
+ #include <ATen/ops/roll_native.h>
1071
+ #include <ATen/ops/rot90_native.h>
1072
+ #include <ATen/ops/round_native.h>
1073
+ #include <ATen/ops/row_indices_native.h>
1074
+ #include <ATen/ops/row_indices_copy_native.h>
1075
+ #include <ATen/ops/row_stack_native.h>
1076
+ #include <ATen/ops/rrelu_native.h>
1077
+ #include <ATen/ops/rrelu_with_noise_native.h>
1078
+ #include <ATen/ops/rrelu_with_noise_backward_native.h>
1079
+ #include <ATen/ops/rshift_native.h>
1080
+ #include <ATen/ops/rsqrt_native.h>
1081
+ #include <ATen/ops/rsub_native.h>
1082
+ #include <ATen/ops/scalar_tensor_native.h>
1083
+ #include <ATen/ops/scaled_dot_product_attention_native.h>
1084
+ #include <ATen/ops/scatter_native.h>
1085
+ #include <ATen/ops/scatter_add_native.h>
1086
+ #include <ATen/ops/scatter_reduce_native.h>
1087
+ #include <ATen/ops/searchsorted_native.h>
1088
+ #include <ATen/ops/segment_reduce_native.h>
1089
+ #include <ATen/ops/select_native.h>
1090
+ #include <ATen/ops/select_backward_native.h>
1091
+ #include <ATen/ops/select_copy_native.h>
1092
+ #include <ATen/ops/select_scatter_native.h>
1093
+ #include <ATen/ops/selu_native.h>
1094
+ #include <ATen/ops/set_native.h>
1095
+ #include <ATen/ops/set_data_native.h>
1096
+ #include <ATen/ops/sgn_native.h>
1097
+ #include <ATen/ops/sigmoid_native.h>
1098
+ #include <ATen/ops/sigmoid_backward_native.h>
1099
+ #include <ATen/ops/sign_native.h>
1100
+ #include <ATen/ops/signbit_native.h>
1101
+ #include <ATen/ops/silu_native.h>
1102
+ #include <ATen/ops/silu_backward_native.h>
1103
+ #include <ATen/ops/sin_native.h>
1104
+ #include <ATen/ops/sinc_native.h>
1105
+ #include <ATen/ops/sinh_native.h>
1106
+ #include <ATen/ops/size_native.h>
1107
+ #include <ATen/ops/slice_native.h>
1108
+ #include <ATen/ops/slice_backward_native.h>
1109
+ #include <ATen/ops/slice_copy_native.h>
1110
+ #include <ATen/ops/slice_inverse_native.h>
1111
+ #include <ATen/ops/slice_scatter_native.h>
1112
+ #include <ATen/ops/slogdet_native.h>
1113
+ #include <ATen/ops/slow_conv3d_native.h>
1114
+ #include <ATen/ops/slow_conv3d_forward_native.h>
1115
+ #include <ATen/ops/slow_conv_dilated2d_native.h>
1116
+ #include <ATen/ops/slow_conv_dilated3d_native.h>
1117
+ #include <ATen/ops/slow_conv_transpose2d_native.h>
1118
+ #include <ATen/ops/slow_conv_transpose3d_native.h>
1119
+ #include <ATen/ops/smm_native.h>
1120
+ #include <ATen/ops/smooth_l1_loss_native.h>
1121
+ #include <ATen/ops/smooth_l1_loss_backward_native.h>
1122
+ #include <ATen/ops/soft_margin_loss_native.h>
1123
+ #include <ATen/ops/soft_margin_loss_backward_native.h>
1124
+ #include <ATen/ops/softmax_native.h>
1125
+ #include <ATen/ops/softplus_native.h>
1126
+ #include <ATen/ops/softplus_backward_native.h>
1127
+ #include <ATen/ops/softshrink_native.h>
1128
+ #include <ATen/ops/softshrink_backward_native.h>
1129
+ #include <ATen/ops/sort_native.h>
1130
+ #include <ATen/ops/sparse_bsc_tensor_native.h>
1131
+ #include <ATen/ops/sparse_bsr_tensor_native.h>
1132
+ #include <ATen/ops/sparse_compressed_tensor_native.h>
1133
+ #include <ATen/ops/sparse_coo_tensor_native.h>
1134
+ #include <ATen/ops/sparse_csc_tensor_native.h>
1135
+ #include <ATen/ops/sparse_csr_tensor_native.h>
1136
+ #include <ATen/ops/sparse_dim_native.h>
1137
+ #include <ATen/ops/sparse_mask_native.h>
1138
+ #include <ATen/ops/sparse_resize_native.h>
1139
+ #include <ATen/ops/sparse_resize_and_clear_native.h>
1140
+ #include <ATen/ops/sparse_sampled_addmm_native.h>
1141
+ #include <ATen/ops/special_airy_ai_native.h>
1142
+ #include <ATen/ops/special_bessel_j0_native.h>
1143
+ #include <ATen/ops/special_bessel_j1_native.h>
1144
+ #include <ATen/ops/special_bessel_y0_native.h>
1145
+ #include <ATen/ops/special_bessel_y1_native.h>
1146
+ #include <ATen/ops/special_chebyshev_polynomial_t_native.h>
1147
+ #include <ATen/ops/special_chebyshev_polynomial_u_native.h>
1148
+ #include <ATen/ops/special_chebyshev_polynomial_v_native.h>
1149
+ #include <ATen/ops/special_chebyshev_polynomial_w_native.h>
1150
+ #include <ATen/ops/special_digamma_native.h>
1151
+ #include <ATen/ops/special_entr_native.h>
1152
+ #include <ATen/ops/special_erf_native.h>
1153
+ #include <ATen/ops/special_erfc_native.h>
1154
+ #include <ATen/ops/special_erfcx_native.h>
1155
+ #include <ATen/ops/special_erfinv_native.h>
1156
+ #include <ATen/ops/special_exp2_native.h>
1157
+ #include <ATen/ops/special_expit_native.h>
1158
+ #include <ATen/ops/special_expm1_native.h>
1159
+ #include <ATen/ops/special_gammainc_native.h>
1160
+ #include <ATen/ops/special_gammaincc_native.h>
1161
+ #include <ATen/ops/special_gammaln_native.h>
1162
+ #include <ATen/ops/special_hermite_polynomial_h_native.h>
1163
+ #include <ATen/ops/special_hermite_polynomial_he_native.h>
1164
+ #include <ATen/ops/special_i0_native.h>
1165
+ #include <ATen/ops/special_i0e_native.h>
1166
+ #include <ATen/ops/special_i1_native.h>
1167
+ #include <ATen/ops/special_i1e_native.h>
1168
+ #include <ATen/ops/special_laguerre_polynomial_l_native.h>
1169
+ #include <ATen/ops/special_legendre_polynomial_p_native.h>
1170
+ #include <ATen/ops/special_log1p_native.h>
1171
+ #include <ATen/ops/special_log_ndtr_native.h>
1172
+ #include <ATen/ops/special_log_softmax_native.h>
1173
+ #include <ATen/ops/special_logit_native.h>
1174
+ #include <ATen/ops/special_logsumexp_native.h>
1175
+ #include <ATen/ops/special_modified_bessel_i0_native.h>
1176
+ #include <ATen/ops/special_modified_bessel_i1_native.h>
1177
+ #include <ATen/ops/special_modified_bessel_k0_native.h>
1178
+ #include <ATen/ops/special_modified_bessel_k1_native.h>
1179
+ #include <ATen/ops/special_multigammaln_native.h>
1180
+ #include <ATen/ops/special_ndtr_native.h>
1181
+ #include <ATen/ops/special_ndtri_native.h>
1182
+ #include <ATen/ops/special_polygamma_native.h>
1183
+ #include <ATen/ops/special_psi_native.h>
1184
+ #include <ATen/ops/special_round_native.h>
1185
+ #include <ATen/ops/special_scaled_modified_bessel_k0_native.h>
1186
+ #include <ATen/ops/special_scaled_modified_bessel_k1_native.h>
1187
+ #include <ATen/ops/special_shifted_chebyshev_polynomial_t_native.h>
1188
+ #include <ATen/ops/special_shifted_chebyshev_polynomial_u_native.h>
1189
+ #include <ATen/ops/special_shifted_chebyshev_polynomial_v_native.h>
1190
+ #include <ATen/ops/special_shifted_chebyshev_polynomial_w_native.h>
1191
+ #include <ATen/ops/special_sinc_native.h>
1192
+ #include <ATen/ops/special_softmax_native.h>
1193
+ #include <ATen/ops/special_spherical_bessel_j0_native.h>
1194
+ #include <ATen/ops/special_xlog1py_native.h>
1195
+ #include <ATen/ops/special_xlogy_native.h>
1196
+ #include <ATen/ops/special_zeta_native.h>
1197
+ #include <ATen/ops/split_native.h>
1198
+ #include <ATen/ops/split_copy_native.h>
1199
+ #include <ATen/ops/split_with_sizes_native.h>
1200
+ #include <ATen/ops/split_with_sizes_copy_native.h>
1201
+ #include <ATen/ops/sqrt_native.h>
1202
+ #include <ATen/ops/square_native.h>
1203
+ #include <ATen/ops/squeeze_native.h>
1204
+ #include <ATen/ops/squeeze_copy_native.h>
1205
+ #include <ATen/ops/sspaddmm_native.h>
1206
+ #include <ATen/ops/stack_native.h>
1207
+ #include <ATen/ops/std_native.h>
1208
+ #include <ATen/ops/std_mean_native.h>
1209
+ #include <ATen/ops/stft_native.h>
1210
+ #include <ATen/ops/stride_native.h>
1211
+ #include <ATen/ops/sub_native.h>
1212
+ #include <ATen/ops/subtract_native.h>
1213
+ #include <ATen/ops/sum_native.h>
1214
+ #include <ATen/ops/sum_to_size_native.h>
1215
+ #include <ATen/ops/svd_native.h>
1216
+ #include <ATen/ops/swapaxes_native.h>
1217
+ #include <ATen/ops/swapdims_native.h>
1218
+ #include <ATen/ops/sym_constrain_range_native.h>
1219
+ #include <ATen/ops/sym_constrain_range_for_size_native.h>
1220
+ #include <ATen/ops/sym_numel_native.h>
1221
+ #include <ATen/ops/sym_size_native.h>
1222
+ #include <ATen/ops/sym_storage_offset_native.h>
1223
+ #include <ATen/ops/sym_stride_native.h>
1224
+ #include <ATen/ops/t_native.h>
1225
+ #include <ATen/ops/t_copy_native.h>
1226
+ #include <ATen/ops/take_native.h>
1227
+ #include <ATen/ops/take_along_dim_native.h>
1228
+ #include <ATen/ops/tan_native.h>
1229
+ #include <ATen/ops/tanh_native.h>
1230
+ #include <ATen/ops/tanh_backward_native.h>
1231
+ #include <ATen/ops/tensor_split_native.h>
1232
+ #include <ATen/ops/tensordot_native.h>
1233
+ #include <ATen/ops/thnn_conv2d_native.h>
1234
+ #include <ATen/ops/threshold_native.h>
1235
+ #include <ATen/ops/threshold_backward_native.h>
1236
+ #include <ATen/ops/tile_native.h>
1237
+ #include <ATen/ops/to_native.h>
1238
+ #include <ATen/ops/to_dense_native.h>
1239
+ #include <ATen/ops/to_dense_backward_native.h>
1240
+ #include <ATen/ops/to_mkldnn_native.h>
1241
+ #include <ATen/ops/to_mkldnn_backward_native.h>
1242
+ #include <ATen/ops/to_padded_tensor_native.h>
1243
+ #include <ATen/ops/to_sparse_native.h>
1244
+ #include <ATen/ops/to_sparse_bsc_native.h>
1245
+ #include <ATen/ops/to_sparse_bsr_native.h>
1246
+ #include <ATen/ops/to_sparse_csc_native.h>
1247
+ #include <ATen/ops/to_sparse_csr_native.h>
1248
+ #include <ATen/ops/topk_native.h>
1249
+ #include <ATen/ops/trace_native.h>
1250
+ #include <ATen/ops/trace_backward_native.h>
1251
+ #include <ATen/ops/transpose_native.h>
1252
+ #include <ATen/ops/transpose_copy_native.h>
1253
+ #include <ATen/ops/trapezoid_native.h>
1254
+ #include <ATen/ops/trapz_native.h>
1255
+ #include <ATen/ops/triangular_solve_native.h>
1256
+ #include <ATen/ops/tril_native.h>
1257
+ #include <ATen/ops/tril_indices_native.h>
1258
+ #include <ATen/ops/triplet_margin_loss_native.h>
1259
+ #include <ATen/ops/triu_native.h>
1260
+ #include <ATen/ops/triu_indices_native.h>
1261
+ #include <ATen/ops/true_divide_native.h>
1262
+ #include <ATen/ops/trunc_native.h>
1263
+ #include <ATen/ops/type_as_native.h>
1264
+ #include <ATen/ops/unbind_native.h>
1265
+ #include <ATen/ops/unbind_copy_native.h>
1266
+ #include <ATen/ops/unflatten_native.h>
1267
+ #include <ATen/ops/unflatten_dense_tensors_native.h>
1268
+ #include <ATen/ops/unfold_native.h>
1269
+ #include <ATen/ops/unfold_backward_native.h>
1270
+ #include <ATen/ops/unfold_copy_native.h>
1271
+ #include <ATen/ops/uniform_native.h>
1272
+ #include <ATen/ops/unique_consecutive_native.h>
1273
+ #include <ATen/ops/unique_dim_native.h>
1274
+ #include <ATen/ops/unique_dim_consecutive_native.h>
1275
+ #include <ATen/ops/unsafe_chunk_native.h>
1276
+ #include <ATen/ops/unsafe_split_native.h>
1277
+ #include <ATen/ops/unsafe_split_with_sizes_native.h>
1278
+ #include <ATen/ops/unsqueeze_native.h>
1279
+ #include <ATen/ops/unsqueeze_copy_native.h>
1280
+ #include <ATen/ops/upsample_bicubic2d_native.h>
1281
+ #include <ATen/ops/upsample_bicubic2d_backward_native.h>
1282
+ #include <ATen/ops/upsample_bilinear2d_native.h>
1283
+ #include <ATen/ops/upsample_bilinear2d_backward_native.h>
1284
+ #include <ATen/ops/upsample_linear1d_native.h>
1285
+ #include <ATen/ops/upsample_linear1d_backward_native.h>
1286
+ #include <ATen/ops/upsample_nearest1d_native.h>
1287
+ #include <ATen/ops/upsample_nearest1d_backward_native.h>
1288
+ #include <ATen/ops/upsample_nearest2d_native.h>
1289
+ #include <ATen/ops/upsample_nearest2d_backward_native.h>
1290
+ #include <ATen/ops/upsample_nearest3d_native.h>
1291
+ #include <ATen/ops/upsample_nearest3d_backward_native.h>
1292
+ #include <ATen/ops/upsample_trilinear3d_native.h>
1293
+ #include <ATen/ops/upsample_trilinear3d_backward_native.h>
1294
+ #include <ATen/ops/value_selecting_reduction_backward_native.h>
1295
+ #include <ATen/ops/values_native.h>
1296
+ #include <ATen/ops/values_copy_native.h>
1297
+ #include <ATen/ops/vander_native.h>
1298
+ #include <ATen/ops/var_native.h>
1299
+ #include <ATen/ops/var_mean_native.h>
1300
+ #include <ATen/ops/vdot_native.h>
1301
+ #include <ATen/ops/view_native.h>
1302
+ #include <ATen/ops/view_as_native.h>
1303
+ #include <ATen/ops/view_as_complex_native.h>
1304
+ #include <ATen/ops/view_as_complex_copy_native.h>
1305
+ #include <ATen/ops/view_as_real_native.h>
1306
+ #include <ATen/ops/view_as_real_copy_native.h>
1307
+ #include <ATen/ops/view_copy_native.h>
1308
+ #include <ATen/ops/vsplit_native.h>
1309
+ #include <ATen/ops/vstack_native.h>
1310
+ #include <ATen/ops/where_native.h>
1311
+ #include <ATen/ops/xlogy_native.h>
1312
+ #include <ATen/ops/xor_native.h>
1313
+ #include <ATen/ops/zero_native.h>
1314
+ #include <ATen/ops/zeros_native.h>
1315
+ #include <ATen/ops/zeros_like_native.h>
1316
+
1317
+
venv/lib/python3.10/site-packages/torch/include/ATen/NativeMetaFunctions.h ADDED
@@ -0,0 +1,1303 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeMetaFunctions.h
4
+
5
+ #include <ATen/core/Tensor.h>
6
+ #include <ATen/core/IListRef.h>
7
+ #include <ATen/TensorMeta.h>
8
+ #include <ATen/TensorIterator.h>
9
+
10
+ #include <ATen/ops/_adaptive_avg_pool2d_meta.h>
11
+ #include <ATen/ops/_adaptive_avg_pool2d_backward_meta.h>
12
+ #include <ATen/ops/_adaptive_avg_pool3d_meta.h>
13
+ #include <ATen/ops/_adaptive_avg_pool3d_backward_meta.h>
14
+ #include <ATen/ops/_add_batch_dim_meta.h>
15
+ #include <ATen/ops/_add_relu_meta.h>
16
+ #include <ATen/ops/_addmm_activation_meta.h>
17
+ #include <ATen/ops/_aminmax_meta.h>
18
+ #include <ATen/ops/_amp_foreach_non_finite_check_and_unscale_meta.h>
19
+ #include <ATen/ops/_amp_update_scale_meta.h>
20
+ #include <ATen/ops/_assert_async_meta.h>
21
+ #include <ATen/ops/_assert_scalar_meta.h>
22
+ #include <ATen/ops/_assert_tensor_metadata_meta.h>
23
+ #include <ATen/ops/_autocast_to_full_precision_meta.h>
24
+ #include <ATen/ops/_autocast_to_reduced_precision_meta.h>
25
+ #include <ATen/ops/_backward_meta.h>
26
+ #include <ATen/ops/_batch_norm_impl_index_meta.h>
27
+ #include <ATen/ops/_batch_norm_impl_index_backward_meta.h>
28
+ #include <ATen/ops/_cast_Byte_meta.h>
29
+ #include <ATen/ops/_cast_Char_meta.h>
30
+ #include <ATen/ops/_cast_Double_meta.h>
31
+ #include <ATen/ops/_cast_Float_meta.h>
32
+ #include <ATen/ops/_cast_Half_meta.h>
33
+ #include <ATen/ops/_cast_Int_meta.h>
34
+ #include <ATen/ops/_cast_Long_meta.h>
35
+ #include <ATen/ops/_cast_Short_meta.h>
36
+ #include <ATen/ops/_cdist_backward_meta.h>
37
+ #include <ATen/ops/_cdist_forward_meta.h>
38
+ #include <ATen/ops/_cholesky_solve_helper_meta.h>
39
+ #include <ATen/ops/_choose_qparams_per_tensor_meta.h>
40
+ #include <ATen/ops/_chunk_cat_meta.h>
41
+ #include <ATen/ops/_coalesce_meta.h>
42
+ #include <ATen/ops/_coalesced_meta.h>
43
+ #include <ATen/ops/_compute_linear_combination_meta.h>
44
+ #include <ATen/ops/_conj_meta.h>
45
+ #include <ATen/ops/_conj_copy_meta.h>
46
+ #include <ATen/ops/_conj_physical_meta.h>
47
+ #include <ATen/ops/_conv_depthwise2d_meta.h>
48
+ #include <ATen/ops/_convert_indices_from_coo_to_csr_meta.h>
49
+ #include <ATen/ops/_convert_indices_from_csr_to_coo_meta.h>
50
+ #include <ATen/ops/_convert_weight_to_int4pack_meta.h>
51
+ #include <ATen/ops/_convolution_meta.h>
52
+ #include <ATen/ops/_convolution_double_backward_meta.h>
53
+ #include <ATen/ops/_convolution_mode_meta.h>
54
+ #include <ATen/ops/_copy_from_meta.h>
55
+ #include <ATen/ops/_copy_from_and_resize_meta.h>
56
+ #include <ATen/ops/_cslt_compress_meta.h>
57
+ #include <ATen/ops/_cslt_sparse_mm_meta.h>
58
+ #include <ATen/ops/_cslt_sparse_mm_search_meta.h>
59
+ #include <ATen/ops/_ctc_loss_meta.h>
60
+ #include <ATen/ops/_ctc_loss_backward_meta.h>
61
+ #include <ATen/ops/_cudnn_ctc_loss_meta.h>
62
+ #include <ATen/ops/_cudnn_init_dropout_state_meta.h>
63
+ #include <ATen/ops/_cudnn_rnn_meta.h>
64
+ #include <ATen/ops/_cudnn_rnn_backward_meta.h>
65
+ #include <ATen/ops/_cudnn_rnn_flatten_weight_meta.h>
66
+ #include <ATen/ops/_cufft_clear_plan_cache_meta.h>
67
+ #include <ATen/ops/_cufft_get_plan_cache_max_size_meta.h>
68
+ #include <ATen/ops/_cufft_get_plan_cache_size_meta.h>
69
+ #include <ATen/ops/_cufft_set_plan_cache_max_size_meta.h>
70
+ #include <ATen/ops/_cummax_helper_meta.h>
71
+ #include <ATen/ops/_cummin_helper_meta.h>
72
+ #include <ATen/ops/_debug_has_internal_overlap_meta.h>
73
+ #include <ATen/ops/_dimI_meta.h>
74
+ #include <ATen/ops/_dimV_meta.h>
75
+ #include <ATen/ops/_dim_arange_meta.h>
76
+ #include <ATen/ops/_dirichlet_grad_meta.h>
77
+ #include <ATen/ops/_efficient_attention_backward_meta.h>
78
+ #include <ATen/ops/_efficient_attention_forward_meta.h>
79
+ #include <ATen/ops/_efficientzerotensor_meta.h>
80
+ #include <ATen/ops/_embedding_bag_meta.h>
81
+ #include <ATen/ops/_embedding_bag_backward_meta.h>
82
+ #include <ATen/ops/_embedding_bag_dense_backward_meta.h>
83
+ #include <ATen/ops/_embedding_bag_forward_only_meta.h>
84
+ #include <ATen/ops/_embedding_bag_per_sample_weights_backward_meta.h>
85
+ #include <ATen/ops/_embedding_bag_sparse_backward_meta.h>
86
+ #include <ATen/ops/_empty_affine_quantized_meta.h>
87
+ #include <ATen/ops/_empty_per_channel_affine_quantized_meta.h>
88
+ #include <ATen/ops/_euclidean_dist_meta.h>
89
+ #include <ATen/ops/_fake_quantize_learnable_per_channel_affine_meta.h>
90
+ #include <ATen/ops/_fake_quantize_learnable_per_channel_affine_backward_meta.h>
91
+ #include <ATen/ops/_fake_quantize_learnable_per_tensor_affine_meta.h>
92
+ #include <ATen/ops/_fake_quantize_learnable_per_tensor_affine_backward_meta.h>
93
+ #include <ATen/ops/_fake_quantize_per_tensor_affine_cachemask_tensor_qparams_meta.h>
94
+ #include <ATen/ops/_fft_c2c_meta.h>
95
+ #include <ATen/ops/_fft_c2r_meta.h>
96
+ #include <ATen/ops/_fft_r2c_meta.h>
97
+ #include <ATen/ops/_fill_mem_eff_dropout_mask_meta.h>
98
+ #include <ATen/ops/_flash_attention_backward_meta.h>
99
+ #include <ATen/ops/_flash_attention_forward_meta.h>
100
+ #include <ATen/ops/_foobar_meta.h>
101
+ #include <ATen/ops/_foreach_abs_meta.h>
102
+ #include <ATen/ops/_foreach_acos_meta.h>
103
+ #include <ATen/ops/_foreach_add_meta.h>
104
+ #include <ATen/ops/_foreach_addcdiv_meta.h>
105
+ #include <ATen/ops/_foreach_addcmul_meta.h>
106
+ #include <ATen/ops/_foreach_asin_meta.h>
107
+ #include <ATen/ops/_foreach_atan_meta.h>
108
+ #include <ATen/ops/_foreach_ceil_meta.h>
109
+ #include <ATen/ops/_foreach_clamp_max_meta.h>
110
+ #include <ATen/ops/_foreach_clamp_min_meta.h>
111
+ #include <ATen/ops/_foreach_copy_meta.h>
112
+ #include <ATen/ops/_foreach_cos_meta.h>
113
+ #include <ATen/ops/_foreach_cosh_meta.h>
114
+ #include <ATen/ops/_foreach_div_meta.h>
115
+ #include <ATen/ops/_foreach_erf_meta.h>
116
+ #include <ATen/ops/_foreach_erfc_meta.h>
117
+ #include <ATen/ops/_foreach_exp_meta.h>
118
+ #include <ATen/ops/_foreach_expm1_meta.h>
119
+ #include <ATen/ops/_foreach_floor_meta.h>
120
+ #include <ATen/ops/_foreach_frac_meta.h>
121
+ #include <ATen/ops/_foreach_lerp_meta.h>
122
+ #include <ATen/ops/_foreach_lgamma_meta.h>
123
+ #include <ATen/ops/_foreach_log_meta.h>
124
+ #include <ATen/ops/_foreach_log10_meta.h>
125
+ #include <ATen/ops/_foreach_log1p_meta.h>
126
+ #include <ATen/ops/_foreach_log2_meta.h>
127
+ #include <ATen/ops/_foreach_maximum_meta.h>
128
+ #include <ATen/ops/_foreach_minimum_meta.h>
129
+ #include <ATen/ops/_foreach_mul_meta.h>
130
+ #include <ATen/ops/_foreach_neg_meta.h>
131
+ #include <ATen/ops/_foreach_norm_meta.h>
132
+ #include <ATen/ops/_foreach_pow_meta.h>
133
+ #include <ATen/ops/_foreach_reciprocal_meta.h>
134
+ #include <ATen/ops/_foreach_round_meta.h>
135
+ #include <ATen/ops/_foreach_sigmoid_meta.h>
136
+ #include <ATen/ops/_foreach_sign_meta.h>
137
+ #include <ATen/ops/_foreach_sin_meta.h>
138
+ #include <ATen/ops/_foreach_sinh_meta.h>
139
+ #include <ATen/ops/_foreach_sqrt_meta.h>
140
+ #include <ATen/ops/_foreach_sub_meta.h>
141
+ #include <ATen/ops/_foreach_tan_meta.h>
142
+ #include <ATen/ops/_foreach_tanh_meta.h>
143
+ #include <ATen/ops/_foreach_trunc_meta.h>
144
+ #include <ATen/ops/_foreach_zero_meta.h>
145
+ #include <ATen/ops/_functional_assert_async_meta.h>
146
+ #include <ATen/ops/_functional_assert_scalar_meta.h>
147
+ #include <ATen/ops/_functional_sym_constrain_range_meta.h>
148
+ #include <ATen/ops/_functional_sym_constrain_range_for_size_meta.h>
149
+ #include <ATen/ops/_fused_adam_meta.h>
150
+ #include <ATen/ops/_fused_adamw_meta.h>
151
+ #include <ATen/ops/_fused_dropout_meta.h>
152
+ #include <ATen/ops/_fused_moving_avg_obs_fq_helper_meta.h>
153
+ #include <ATen/ops/_fused_sdp_choice_meta.h>
154
+ #include <ATen/ops/_fused_sgd_meta.h>
155
+ #include <ATen/ops/_fw_primal_meta.h>
156
+ #include <ATen/ops/_fw_primal_copy_meta.h>
157
+ #include <ATen/ops/_gather_sparse_backward_meta.h>
158
+ #include <ATen/ops/_grid_sampler_2d_cpu_fallback_meta.h>
159
+ #include <ATen/ops/_grid_sampler_2d_cpu_fallback_backward_meta.h>
160
+ #include <ATen/ops/_has_compatible_shallow_copy_type_meta.h>
161
+ #include <ATen/ops/_has_same_storage_numel_meta.h>
162
+ #include <ATen/ops/_histogramdd_bin_edges_meta.h>
163
+ #include <ATen/ops/_histogramdd_from_bin_cts_meta.h>
164
+ #include <ATen/ops/_histogramdd_from_bin_tensors_meta.h>
165
+ #include <ATen/ops/_index_put_impl_meta.h>
166
+ #include <ATen/ops/_indices_meta.h>
167
+ #include <ATen/ops/_indices_copy_meta.h>
168
+ #include <ATen/ops/_int_mm_meta.h>
169
+ #include <ATen/ops/_is_all_true_meta.h>
170
+ #include <ATen/ops/_is_any_true_meta.h>
171
+ #include <ATen/ops/_is_zerotensor_meta.h>
172
+ #include <ATen/ops/_lazy_clone_meta.h>
173
+ #include <ATen/ops/_linalg_check_errors_meta.h>
174
+ #include <ATen/ops/_linalg_det_meta.h>
175
+ #include <ATen/ops/_linalg_eigh_meta.h>
176
+ #include <ATen/ops/_linalg_eigvals_meta.h>
177
+ #include <ATen/ops/_linalg_slogdet_meta.h>
178
+ #include <ATen/ops/_linalg_solve_ex_meta.h>
179
+ #include <ATen/ops/_linalg_svd_meta.h>
180
+ #include <ATen/ops/_local_scalar_dense_meta.h>
181
+ #include <ATen/ops/_log_softmax_meta.h>
182
+ #include <ATen/ops/_log_softmax_backward_data_meta.h>
183
+ #include <ATen/ops/_logcumsumexp_meta.h>
184
+ #include <ATen/ops/_lstm_mps_meta.h>
185
+ #include <ATen/ops/_lu_with_info_meta.h>
186
+ #include <ATen/ops/_make_dep_token_meta.h>
187
+ #include <ATen/ops/_make_dual_meta.h>
188
+ #include <ATen/ops/_make_dual_copy_meta.h>
189
+ #include <ATen/ops/_make_per_channel_quantized_tensor_meta.h>
190
+ #include <ATen/ops/_make_per_tensor_quantized_tensor_meta.h>
191
+ #include <ATen/ops/_masked_scale_meta.h>
192
+ #include <ATen/ops/_masked_softmax_meta.h>
193
+ #include <ATen/ops/_masked_softmax_backward_meta.h>
194
+ #include <ATen/ops/_mixed_dtypes_linear_meta.h>
195
+ #include <ATen/ops/_mkldnn_reshape_meta.h>
196
+ #include <ATen/ops/_mkldnn_transpose_meta.h>
197
+ #include <ATen/ops/_mps_convolution_meta.h>
198
+ #include <ATen/ops/_mps_convolution_transpose_meta.h>
199
+ #include <ATen/ops/_native_batch_norm_legit_meta.h>
200
+ #include <ATen/ops/_native_batch_norm_legit_no_training_meta.h>
201
+ #include <ATen/ops/_native_multi_head_attention_meta.h>
202
+ #include <ATen/ops/_neg_view_meta.h>
203
+ #include <ATen/ops/_neg_view_copy_meta.h>
204
+ #include <ATen/ops/_nested_from_padded_meta.h>
205
+ #include <ATen/ops/_nested_from_padded_and_nested_example_meta.h>
206
+ #include <ATen/ops/_nested_get_jagged_dummy_meta.h>
207
+ #include <ATen/ops/_nested_get_lengths_meta.h>
208
+ #include <ATen/ops/_nested_get_offsets_meta.h>
209
+ #include <ATen/ops/_nested_get_ragged_idx_meta.h>
210
+ #include <ATen/ops/_nested_get_values_meta.h>
211
+ #include <ATen/ops/_nested_get_values_copy_meta.h>
212
+ #include <ATen/ops/_nested_select_backward_meta.h>
213
+ #include <ATen/ops/_nested_sum_backward_meta.h>
214
+ #include <ATen/ops/_nested_tensor_from_mask_meta.h>
215
+ #include <ATen/ops/_nested_tensor_from_mask_left_aligned_meta.h>
216
+ #include <ATen/ops/_nested_tensor_from_tensor_list_meta.h>
217
+ #include <ATen/ops/_nested_tensor_size_meta.h>
218
+ #include <ATen/ops/_nested_tensor_softmax_with_shape_meta.h>
219
+ #include <ATen/ops/_nested_tensor_storage_offsets_meta.h>
220
+ #include <ATen/ops/_nested_tensor_strides_meta.h>
221
+ #include <ATen/ops/_nested_view_from_buffer_meta.h>
222
+ #include <ATen/ops/_nested_view_from_buffer_copy_meta.h>
223
+ #include <ATen/ops/_nested_view_from_jagged_meta.h>
224
+ #include <ATen/ops/_nested_view_from_jagged_copy_meta.h>
225
+ #include <ATen/ops/_new_zeros_with_same_feature_meta_meta.h>
226
+ #include <ATen/ops/_nnpack_available_meta.h>
227
+ #include <ATen/ops/_nnpack_spatial_convolution_meta.h>
228
+ #include <ATen/ops/_nnz_meta.h>
229
+ #include <ATen/ops/_pack_padded_sequence_meta.h>
230
+ #include <ATen/ops/_pack_padded_sequence_backward_meta.h>
231
+ #include <ATen/ops/_pad_circular_meta.h>
232
+ #include <ATen/ops/_pad_enum_meta.h>
233
+ #include <ATen/ops/_pad_packed_sequence_meta.h>
234
+ #include <ATen/ops/_pdist_backward_meta.h>
235
+ #include <ATen/ops/_pdist_forward_meta.h>
236
+ #include <ATen/ops/_pin_memory_meta.h>
237
+ #include <ATen/ops/_prelu_kernel_meta.h>
238
+ #include <ATen/ops/_prelu_kernel_backward_meta.h>
239
+ #include <ATen/ops/_print_meta.h>
240
+ #include <ATen/ops/_propagate_xla_data_meta.h>
241
+ #include <ATen/ops/_remove_batch_dim_meta.h>
242
+ #include <ATen/ops/_reshape_alias_meta.h>
243
+ #include <ATen/ops/_reshape_alias_copy_meta.h>
244
+ #include <ATen/ops/_reshape_copy_meta.h>
245
+ #include <ATen/ops/_reshape_from_tensor_meta.h>
246
+ #include <ATen/ops/_resize_output_meta.h>
247
+ #include <ATen/ops/_rowwise_prune_meta.h>
248
+ #include <ATen/ops/_sample_dirichlet_meta.h>
249
+ #include <ATen/ops/_saturate_weight_to_fp16_meta.h>
250
+ #include <ATen/ops/_scaled_dot_product_attention_math_meta.h>
251
+ #include <ATen/ops/_scaled_dot_product_cudnn_attention_meta.h>
252
+ #include <ATen/ops/_scaled_dot_product_efficient_attention_meta.h>
253
+ #include <ATen/ops/_scaled_dot_product_efficient_attention_backward_meta.h>
254
+ #include <ATen/ops/_scaled_dot_product_flash_attention_meta.h>
255
+ #include <ATen/ops/_scaled_dot_product_flash_attention_backward_meta.h>
256
+ #include <ATen/ops/_scaled_dot_product_flash_attention_for_cpu_meta.h>
257
+ #include <ATen/ops/_scaled_dot_product_flash_attention_for_cpu_backward_meta.h>
258
+ #include <ATen/ops/_scaled_mm_meta.h>
259
+ #include <ATen/ops/_segment_reduce_backward_meta.h>
260
+ #include <ATen/ops/_shape_as_tensor_meta.h>
261
+ #include <ATen/ops/_slow_conv2d_backward_meta.h>
262
+ #include <ATen/ops/_slow_conv2d_forward_meta.h>
263
+ #include <ATen/ops/_sobol_engine_draw_meta.h>
264
+ #include <ATen/ops/_sobol_engine_ff_meta.h>
265
+ #include <ATen/ops/_sobol_engine_initialize_state_meta.h>
266
+ #include <ATen/ops/_sobol_engine_scramble_meta.h>
267
+ #include <ATen/ops/_softmax_meta.h>
268
+ #include <ATen/ops/_softmax_backward_data_meta.h>
269
+ #include <ATen/ops/_sparse_addmm_meta.h>
270
+ #include <ATen/ops/_sparse_broadcast_to_meta.h>
271
+ #include <ATen/ops/_sparse_broadcast_to_copy_meta.h>
272
+ #include <ATen/ops/_sparse_bsc_tensor_unsafe_meta.h>
273
+ #include <ATen/ops/_sparse_bsr_tensor_unsafe_meta.h>
274
+ #include <ATen/ops/_sparse_compressed_tensor_unsafe_meta.h>
275
+ #include <ATen/ops/_sparse_coo_tensor_unsafe_meta.h>
276
+ #include <ATen/ops/_sparse_coo_tensor_with_dims_meta.h>
277
+ #include <ATen/ops/_sparse_coo_tensor_with_dims_and_tensors_meta.h>
278
+ #include <ATen/ops/_sparse_csc_tensor_unsafe_meta.h>
279
+ #include <ATen/ops/_sparse_csr_prod_meta.h>
280
+ #include <ATen/ops/_sparse_csr_sum_meta.h>
281
+ #include <ATen/ops/_sparse_csr_tensor_unsafe_meta.h>
282
+ #include <ATen/ops/_sparse_log_softmax_meta.h>
283
+ #include <ATen/ops/_sparse_log_softmax_backward_data_meta.h>
284
+ #include <ATen/ops/_sparse_mask_projection_meta.h>
285
+ #include <ATen/ops/_sparse_mm_meta.h>
286
+ #include <ATen/ops/_sparse_mm_reduce_impl_meta.h>
287
+ #include <ATen/ops/_sparse_mm_reduce_impl_backward_meta.h>
288
+ #include <ATen/ops/_sparse_semi_structured_linear_meta.h>
289
+ #include <ATen/ops/_sparse_softmax_meta.h>
290
+ #include <ATen/ops/_sparse_softmax_backward_data_meta.h>
291
+ #include <ATen/ops/_sparse_sparse_matmul_meta.h>
292
+ #include <ATen/ops/_sparse_sum_meta.h>
293
+ #include <ATen/ops/_sparse_sum_backward_meta.h>
294
+ #include <ATen/ops/_spdiags_meta.h>
295
+ #include <ATen/ops/_stack_meta.h>
296
+ #include <ATen/ops/_standard_gamma_meta.h>
297
+ #include <ATen/ops/_standard_gamma_grad_meta.h>
298
+ #include <ATen/ops/_test_ambiguous_defaults_meta.h>
299
+ #include <ATen/ops/_test_autograd_multiple_dispatch_meta.h>
300
+ #include <ATen/ops/_test_autograd_multiple_dispatch_view_meta.h>
301
+ #include <ATen/ops/_test_autograd_multiple_dispatch_view_copy_meta.h>
302
+ #include <ATen/ops/_test_check_tensor_meta.h>
303
+ #include <ATen/ops/_test_functorch_fallback_meta.h>
304
+ #include <ATen/ops/_test_optional_filled_intlist_meta.h>
305
+ #include <ATen/ops/_test_optional_floatlist_meta.h>
306
+ #include <ATen/ops/_test_optional_intlist_meta.h>
307
+ #include <ATen/ops/_test_parallel_materialize_meta.h>
308
+ #include <ATen/ops/_test_serialization_subcmul_meta.h>
309
+ #include <ATen/ops/_test_string_default_meta.h>
310
+ #include <ATen/ops/_test_warn_in_autograd_meta.h>
311
+ #include <ATen/ops/_thnn_differentiable_gru_cell_backward_meta.h>
312
+ #include <ATen/ops/_thnn_differentiable_lstm_cell_backward_meta.h>
313
+ #include <ATen/ops/_thnn_fused_gru_cell_meta.h>
314
+ #include <ATen/ops/_thnn_fused_gru_cell_backward_meta.h>
315
+ #include <ATen/ops/_thnn_fused_lstm_cell_meta.h>
316
+ #include <ATen/ops/_thnn_fused_lstm_cell_backward_meta.h>
317
+ #include <ATen/ops/_thnn_fused_lstm_cell_backward_impl_meta.h>
318
+ #include <ATen/ops/_to_copy_meta.h>
319
+ #include <ATen/ops/_to_cpu_meta.h>
320
+ #include <ATen/ops/_to_dense_meta.h>
321
+ #include <ATen/ops/_to_sparse_meta.h>
322
+ #include <ATen/ops/_to_sparse_bsc_meta.h>
323
+ #include <ATen/ops/_to_sparse_bsr_meta.h>
324
+ #include <ATen/ops/_to_sparse_csc_meta.h>
325
+ #include <ATen/ops/_to_sparse_csr_meta.h>
326
+ #include <ATen/ops/_to_sparse_semi_structured_meta.h>
327
+ #include <ATen/ops/_transform_bias_rescale_qkv_meta.h>
328
+ #include <ATen/ops/_transformer_encoder_layer_fwd_meta.h>
329
+ #include <ATen/ops/_trilinear_meta.h>
330
+ #include <ATen/ops/_triton_multi_head_attention_meta.h>
331
+ #include <ATen/ops/_triton_scaled_dot_attention_meta.h>
332
+ #include <ATen/ops/_unique_meta.h>
333
+ #include <ATen/ops/_unique2_meta.h>
334
+ #include <ATen/ops/_unpack_dual_meta.h>
335
+ #include <ATen/ops/_unsafe_index_meta.h>
336
+ #include <ATen/ops/_unsafe_index_put_meta.h>
337
+ #include <ATen/ops/_unsafe_view_meta.h>
338
+ #include <ATen/ops/_upsample_bicubic2d_aa_meta.h>
339
+ #include <ATen/ops/_upsample_bicubic2d_aa_backward_meta.h>
340
+ #include <ATen/ops/_upsample_bilinear2d_aa_meta.h>
341
+ #include <ATen/ops/_upsample_bilinear2d_aa_backward_meta.h>
342
+ #include <ATen/ops/_upsample_nearest_exact1d_meta.h>
343
+ #include <ATen/ops/_upsample_nearest_exact1d_backward_meta.h>
344
+ #include <ATen/ops/_upsample_nearest_exact2d_meta.h>
345
+ #include <ATen/ops/_upsample_nearest_exact2d_backward_meta.h>
346
+ #include <ATen/ops/_upsample_nearest_exact3d_meta.h>
347
+ #include <ATen/ops/_upsample_nearest_exact3d_backward_meta.h>
348
+ #include <ATen/ops/_use_cudnn_ctc_loss_meta.h>
349
+ #include <ATen/ops/_use_cudnn_rnn_flatten_weight_meta.h>
350
+ #include <ATen/ops/_validate_compressed_sparse_indices_meta.h>
351
+ #include <ATen/ops/_validate_sparse_bsc_tensor_args_meta.h>
352
+ #include <ATen/ops/_validate_sparse_bsr_tensor_args_meta.h>
353
+ #include <ATen/ops/_validate_sparse_compressed_tensor_args_meta.h>
354
+ #include <ATen/ops/_validate_sparse_coo_tensor_args_meta.h>
355
+ #include <ATen/ops/_validate_sparse_csc_tensor_args_meta.h>
356
+ #include <ATen/ops/_validate_sparse_csr_tensor_args_meta.h>
357
+ #include <ATen/ops/_values_meta.h>
358
+ #include <ATen/ops/_values_copy_meta.h>
359
+ #include <ATen/ops/_version_meta.h>
360
+ #include <ATen/ops/_weight_int4pack_mm_meta.h>
361
+ #include <ATen/ops/_weight_int8pack_mm_meta.h>
362
+ #include <ATen/ops/_weight_norm_meta.h>
363
+ #include <ATen/ops/_weight_norm_differentiable_backward_meta.h>
364
+ #include <ATen/ops/_weight_norm_interface_meta.h>
365
+ #include <ATen/ops/_weight_norm_interface_backward_meta.h>
366
+ #include <ATen/ops/abs_meta.h>
367
+ #include <ATen/ops/absolute_meta.h>
368
+ #include <ATen/ops/acos_meta.h>
369
+ #include <ATen/ops/acosh_meta.h>
370
+ #include <ATen/ops/adaptive_avg_pool1d_meta.h>
371
+ #include <ATen/ops/adaptive_avg_pool2d_meta.h>
372
+ #include <ATen/ops/adaptive_avg_pool3d_meta.h>
373
+ #include <ATen/ops/adaptive_avg_pool3d_backward_meta.h>
374
+ #include <ATen/ops/adaptive_max_pool1d_meta.h>
375
+ #include <ATen/ops/adaptive_max_pool2d_meta.h>
376
+ #include <ATen/ops/adaptive_max_pool2d_backward_meta.h>
377
+ #include <ATen/ops/adaptive_max_pool3d_meta.h>
378
+ #include <ATen/ops/adaptive_max_pool3d_backward_meta.h>
379
+ #include <ATen/ops/add_meta.h>
380
+ #include <ATen/ops/addbmm_meta.h>
381
+ #include <ATen/ops/addcdiv_meta.h>
382
+ #include <ATen/ops/addcmul_meta.h>
383
+ #include <ATen/ops/addmm_meta.h>
384
+ #include <ATen/ops/addmv_meta.h>
385
+ #include <ATen/ops/addr_meta.h>
386
+ #include <ATen/ops/adjoint_meta.h>
387
+ #include <ATen/ops/affine_grid_generator_meta.h>
388
+ #include <ATen/ops/affine_grid_generator_backward_meta.h>
389
+ #include <ATen/ops/alias_meta.h>
390
+ #include <ATen/ops/alias_copy_meta.h>
391
+ #include <ATen/ops/align_as_meta.h>
392
+ #include <ATen/ops/align_tensors_meta.h>
393
+ #include <ATen/ops/align_to_meta.h>
394
+ #include <ATen/ops/all_meta.h>
395
+ #include <ATen/ops/allclose_meta.h>
396
+ #include <ATen/ops/alpha_dropout_meta.h>
397
+ #include <ATen/ops/amax_meta.h>
398
+ #include <ATen/ops/amin_meta.h>
399
+ #include <ATen/ops/aminmax_meta.h>
400
+ #include <ATen/ops/and_meta.h>
401
+ #include <ATen/ops/angle_meta.h>
402
+ #include <ATen/ops/any_meta.h>
403
+ #include <ATen/ops/arange_meta.h>
404
+ #include <ATen/ops/arccos_meta.h>
405
+ #include <ATen/ops/arccosh_meta.h>
406
+ #include <ATen/ops/arcsin_meta.h>
407
+ #include <ATen/ops/arcsinh_meta.h>
408
+ #include <ATen/ops/arctan_meta.h>
409
+ #include <ATen/ops/arctan2_meta.h>
410
+ #include <ATen/ops/arctanh_meta.h>
411
+ #include <ATen/ops/argmax_meta.h>
412
+ #include <ATen/ops/argmin_meta.h>
413
+ #include <ATen/ops/argsort_meta.h>
414
+ #include <ATen/ops/argwhere_meta.h>
415
+ #include <ATen/ops/as_strided_meta.h>
416
+ #include <ATen/ops/as_strided_copy_meta.h>
417
+ #include <ATen/ops/as_strided_scatter_meta.h>
418
+ #include <ATen/ops/asin_meta.h>
419
+ #include <ATen/ops/asinh_meta.h>
420
+ #include <ATen/ops/atan_meta.h>
421
+ #include <ATen/ops/atan2_meta.h>
422
+ #include <ATen/ops/atanh_meta.h>
423
+ #include <ATen/ops/atleast_1d_meta.h>
424
+ #include <ATen/ops/atleast_2d_meta.h>
425
+ #include <ATen/ops/atleast_3d_meta.h>
426
+ #include <ATen/ops/avg_pool1d_meta.h>
427
+ #include <ATen/ops/avg_pool2d_meta.h>
428
+ #include <ATen/ops/avg_pool2d_backward_meta.h>
429
+ #include <ATen/ops/avg_pool3d_meta.h>
430
+ #include <ATen/ops/avg_pool3d_backward_meta.h>
431
+ #include <ATen/ops/baddbmm_meta.h>
432
+ #include <ATen/ops/bartlett_window_meta.h>
433
+ #include <ATen/ops/batch_norm_meta.h>
434
+ #include <ATen/ops/batch_norm_backward_elemt_meta.h>
435
+ #include <ATen/ops/batch_norm_backward_reduce_meta.h>
436
+ #include <ATen/ops/batch_norm_elemt_meta.h>
437
+ #include <ATen/ops/batch_norm_gather_stats_meta.h>
438
+ #include <ATen/ops/batch_norm_gather_stats_with_counts_meta.h>
439
+ #include <ATen/ops/batch_norm_stats_meta.h>
440
+ #include <ATen/ops/batch_norm_update_stats_meta.h>
441
+ #include <ATen/ops/bernoulli_meta.h>
442
+ #include <ATen/ops/bilinear_meta.h>
443
+ #include <ATen/ops/binary_cross_entropy_meta.h>
444
+ #include <ATen/ops/binary_cross_entropy_backward_meta.h>
445
+ #include <ATen/ops/binary_cross_entropy_with_logits_meta.h>
446
+ #include <ATen/ops/bincount_meta.h>
447
+ #include <ATen/ops/binomial_meta.h>
448
+ #include <ATen/ops/bitwise_and_meta.h>
449
+ #include <ATen/ops/bitwise_left_shift_meta.h>
450
+ #include <ATen/ops/bitwise_not_meta.h>
451
+ #include <ATen/ops/bitwise_or_meta.h>
452
+ #include <ATen/ops/bitwise_right_shift_meta.h>
453
+ #include <ATen/ops/bitwise_xor_meta.h>
454
+ #include <ATen/ops/blackman_window_meta.h>
455
+ #include <ATen/ops/block_diag_meta.h>
456
+ #include <ATen/ops/bmm_meta.h>
457
+ #include <ATen/ops/broadcast_tensors_meta.h>
458
+ #include <ATen/ops/broadcast_to_meta.h>
459
+ #include <ATen/ops/bucketize_meta.h>
460
+ #include <ATen/ops/can_cast_meta.h>
461
+ #include <ATen/ops/cartesian_prod_meta.h>
462
+ #include <ATen/ops/cat_meta.h>
463
+ #include <ATen/ops/cauchy_meta.h>
464
+ #include <ATen/ops/ccol_indices_meta.h>
465
+ #include <ATen/ops/ccol_indices_copy_meta.h>
466
+ #include <ATen/ops/cdist_meta.h>
467
+ #include <ATen/ops/ceil_meta.h>
468
+ #include <ATen/ops/celu_meta.h>
469
+ #include <ATen/ops/chain_matmul_meta.h>
470
+ #include <ATen/ops/chalf_meta.h>
471
+ #include <ATen/ops/channel_shuffle_meta.h>
472
+ #include <ATen/ops/cholesky_meta.h>
473
+ #include <ATen/ops/cholesky_inverse_meta.h>
474
+ #include <ATen/ops/cholesky_solve_meta.h>
475
+ #include <ATen/ops/choose_qparams_optimized_meta.h>
476
+ #include <ATen/ops/chunk_meta.h>
477
+ #include <ATen/ops/clamp_meta.h>
478
+ #include <ATen/ops/clamp_max_meta.h>
479
+ #include <ATen/ops/clamp_min_meta.h>
480
+ #include <ATen/ops/clip_meta.h>
481
+ #include <ATen/ops/clone_meta.h>
482
+ #include <ATen/ops/coalesce_meta.h>
483
+ #include <ATen/ops/col2im_meta.h>
484
+ #include <ATen/ops/col_indices_meta.h>
485
+ #include <ATen/ops/col_indices_copy_meta.h>
486
+ #include <ATen/ops/column_stack_meta.h>
487
+ #include <ATen/ops/combinations_meta.h>
488
+ #include <ATen/ops/complex_meta.h>
489
+ #include <ATen/ops/concat_meta.h>
490
+ #include <ATen/ops/concatenate_meta.h>
491
+ #include <ATen/ops/conj_meta.h>
492
+ #include <ATen/ops/conj_physical_meta.h>
493
+ #include <ATen/ops/constant_pad_nd_meta.h>
494
+ #include <ATen/ops/contiguous_meta.h>
495
+ #include <ATen/ops/conv1d_meta.h>
496
+ #include <ATen/ops/conv2d_meta.h>
497
+ #include <ATen/ops/conv3d_meta.h>
498
+ #include <ATen/ops/conv_depthwise3d_meta.h>
499
+ #include <ATen/ops/conv_tbc_meta.h>
500
+ #include <ATen/ops/conv_tbc_backward_meta.h>
501
+ #include <ATen/ops/conv_transpose1d_meta.h>
502
+ #include <ATen/ops/conv_transpose2d_meta.h>
503
+ #include <ATen/ops/conv_transpose3d_meta.h>
504
+ #include <ATen/ops/convolution_meta.h>
505
+ #include <ATen/ops/convolution_backward_meta.h>
506
+ #include <ATen/ops/convolution_backward_overrideable_meta.h>
507
+ #include <ATen/ops/convolution_overrideable_meta.h>
508
+ #include <ATen/ops/copy_meta.h>
509
+ #include <ATen/ops/copy_sparse_to_sparse_meta.h>
510
+ #include <ATen/ops/copysign_meta.h>
511
+ #include <ATen/ops/corrcoef_meta.h>
512
+ #include <ATen/ops/cos_meta.h>
513
+ #include <ATen/ops/cosh_meta.h>
514
+ #include <ATen/ops/cosine_embedding_loss_meta.h>
515
+ #include <ATen/ops/cosine_similarity_meta.h>
516
+ #include <ATen/ops/count_nonzero_meta.h>
517
+ #include <ATen/ops/cov_meta.h>
518
+ #include <ATen/ops/cross_meta.h>
519
+ #include <ATen/ops/cross_entropy_loss_meta.h>
520
+ #include <ATen/ops/crow_indices_meta.h>
521
+ #include <ATen/ops/crow_indices_copy_meta.h>
522
+ #include <ATen/ops/ctc_loss_meta.h>
523
+ #include <ATen/ops/cudnn_affine_grid_generator_meta.h>
524
+ #include <ATen/ops/cudnn_affine_grid_generator_backward_meta.h>
525
+ #include <ATen/ops/cudnn_batch_norm_meta.h>
526
+ #include <ATen/ops/cudnn_batch_norm_backward_meta.h>
527
+ #include <ATen/ops/cudnn_convolution_meta.h>
528
+ #include <ATen/ops/cudnn_convolution_add_relu_meta.h>
529
+ #include <ATen/ops/cudnn_convolution_relu_meta.h>
530
+ #include <ATen/ops/cudnn_convolution_transpose_meta.h>
531
+ #include <ATen/ops/cudnn_grid_sampler_meta.h>
532
+ #include <ATen/ops/cudnn_grid_sampler_backward_meta.h>
533
+ #include <ATen/ops/cudnn_is_acceptable_meta.h>
534
+ #include <ATen/ops/cummax_meta.h>
535
+ #include <ATen/ops/cummaxmin_backward_meta.h>
536
+ #include <ATen/ops/cummin_meta.h>
537
+ #include <ATen/ops/cumprod_meta.h>
538
+ #include <ATen/ops/cumprod_backward_meta.h>
539
+ #include <ATen/ops/cumsum_meta.h>
540
+ #include <ATen/ops/cumulative_trapezoid_meta.h>
541
+ #include <ATen/ops/data_meta.h>
542
+ #include <ATen/ops/deg2rad_meta.h>
543
+ #include <ATen/ops/dense_dim_meta.h>
544
+ #include <ATen/ops/dequantize_meta.h>
545
+ #include <ATen/ops/det_meta.h>
546
+ #include <ATen/ops/detach_meta.h>
547
+ #include <ATen/ops/detach_copy_meta.h>
548
+ #include <ATen/ops/diag_meta.h>
549
+ #include <ATen/ops/diag_embed_meta.h>
550
+ #include <ATen/ops/diagflat_meta.h>
551
+ #include <ATen/ops/diagonal_meta.h>
552
+ #include <ATen/ops/diagonal_backward_meta.h>
553
+ #include <ATen/ops/diagonal_copy_meta.h>
554
+ #include <ATen/ops/diagonal_scatter_meta.h>
555
+ #include <ATen/ops/diff_meta.h>
556
+ #include <ATen/ops/digamma_meta.h>
557
+ #include <ATen/ops/dist_meta.h>
558
+ #include <ATen/ops/div_meta.h>
559
+ #include <ATen/ops/divide_meta.h>
560
+ #include <ATen/ops/dot_meta.h>
561
+ #include <ATen/ops/dropout_meta.h>
562
+ #include <ATen/ops/dsplit_meta.h>
563
+ #include <ATen/ops/dstack_meta.h>
564
+ #include <ATen/ops/einsum_meta.h>
565
+ #include <ATen/ops/elu_meta.h>
566
+ #include <ATen/ops/elu_backward_meta.h>
567
+ #include <ATen/ops/embedding_meta.h>
568
+ #include <ATen/ops/embedding_backward_meta.h>
569
+ #include <ATen/ops/embedding_bag_meta.h>
570
+ #include <ATen/ops/embedding_dense_backward_meta.h>
571
+ #include <ATen/ops/embedding_renorm_meta.h>
572
+ #include <ATen/ops/embedding_sparse_backward_meta.h>
573
+ #include <ATen/ops/empty_meta.h>
574
+ #include <ATen/ops/empty_like_meta.h>
575
+ #include <ATen/ops/empty_permuted_meta.h>
576
+ #include <ATen/ops/empty_quantized_meta.h>
577
+ #include <ATen/ops/empty_strided_meta.h>
578
+ #include <ATen/ops/eq_meta.h>
579
+ #include <ATen/ops/equal_meta.h>
580
+ #include <ATen/ops/erf_meta.h>
581
+ #include <ATen/ops/erfc_meta.h>
582
+ #include <ATen/ops/erfinv_meta.h>
583
+ #include <ATen/ops/exp_meta.h>
584
+ #include <ATen/ops/exp2_meta.h>
585
+ #include <ATen/ops/expand_meta.h>
586
+ #include <ATen/ops/expand_as_meta.h>
587
+ #include <ATen/ops/expand_copy_meta.h>
588
+ #include <ATen/ops/expm1_meta.h>
589
+ #include <ATen/ops/exponential_meta.h>
590
+ #include <ATen/ops/eye_meta.h>
591
+ #include <ATen/ops/fake_quantize_per_channel_affine_meta.h>
592
+ #include <ATen/ops/fake_quantize_per_channel_affine_cachemask_meta.h>
593
+ #include <ATen/ops/fake_quantize_per_channel_affine_cachemask_backward_meta.h>
594
+ #include <ATen/ops/fake_quantize_per_tensor_affine_meta.h>
595
+ #include <ATen/ops/fake_quantize_per_tensor_affine_cachemask_meta.h>
596
+ #include <ATen/ops/fake_quantize_per_tensor_affine_cachemask_backward_meta.h>
597
+ #include <ATen/ops/fbgemm_linear_fp16_weight_meta.h>
598
+ #include <ATen/ops/fbgemm_linear_fp16_weight_fp32_activation_meta.h>
599
+ #include <ATen/ops/fbgemm_linear_int8_weight_meta.h>
600
+ #include <ATen/ops/fbgemm_linear_int8_weight_fp32_activation_meta.h>
601
+ #include <ATen/ops/fbgemm_linear_quantize_weight_meta.h>
602
+ #include <ATen/ops/fbgemm_pack_gemm_matrix_fp16_meta.h>
603
+ #include <ATen/ops/fbgemm_pack_quantized_matrix_meta.h>
604
+ #include <ATen/ops/feature_alpha_dropout_meta.h>
605
+ #include <ATen/ops/feature_dropout_meta.h>
606
+ #include <ATen/ops/fft_fft_meta.h>
607
+ #include <ATen/ops/fft_fft2_meta.h>
608
+ #include <ATen/ops/fft_fftfreq_meta.h>
609
+ #include <ATen/ops/fft_fftn_meta.h>
610
+ #include <ATen/ops/fft_fftshift_meta.h>
611
+ #include <ATen/ops/fft_hfft_meta.h>
612
+ #include <ATen/ops/fft_hfft2_meta.h>
613
+ #include <ATen/ops/fft_hfftn_meta.h>
614
+ #include <ATen/ops/fft_ifft_meta.h>
615
+ #include <ATen/ops/fft_ifft2_meta.h>
616
+ #include <ATen/ops/fft_ifftn_meta.h>
617
+ #include <ATen/ops/fft_ifftshift_meta.h>
618
+ #include <ATen/ops/fft_ihfft_meta.h>
619
+ #include <ATen/ops/fft_ihfft2_meta.h>
620
+ #include <ATen/ops/fft_ihfftn_meta.h>
621
+ #include <ATen/ops/fft_irfft_meta.h>
622
+ #include <ATen/ops/fft_irfft2_meta.h>
623
+ #include <ATen/ops/fft_irfftn_meta.h>
624
+ #include <ATen/ops/fft_rfft_meta.h>
625
+ #include <ATen/ops/fft_rfft2_meta.h>
626
+ #include <ATen/ops/fft_rfftfreq_meta.h>
627
+ #include <ATen/ops/fft_rfftn_meta.h>
628
+ #include <ATen/ops/fill_meta.h>
629
+ #include <ATen/ops/fill_diagonal_meta.h>
630
+ #include <ATen/ops/fix_meta.h>
631
+ #include <ATen/ops/flatten_meta.h>
632
+ #include <ATen/ops/flatten_dense_tensors_meta.h>
633
+ #include <ATen/ops/flip_meta.h>
634
+ #include <ATen/ops/fliplr_meta.h>
635
+ #include <ATen/ops/flipud_meta.h>
636
+ #include <ATen/ops/float_power_meta.h>
637
+ #include <ATen/ops/floor_meta.h>
638
+ #include <ATen/ops/floor_divide_meta.h>
639
+ #include <ATen/ops/fmax_meta.h>
640
+ #include <ATen/ops/fmin_meta.h>
641
+ #include <ATen/ops/fmod_meta.h>
642
+ #include <ATen/ops/frac_meta.h>
643
+ #include <ATen/ops/fractional_max_pool2d_meta.h>
644
+ #include <ATen/ops/fractional_max_pool2d_backward_meta.h>
645
+ #include <ATen/ops/fractional_max_pool3d_meta.h>
646
+ #include <ATen/ops/fractional_max_pool3d_backward_meta.h>
647
+ #include <ATen/ops/frexp_meta.h>
648
+ #include <ATen/ops/frobenius_norm_meta.h>
649
+ #include <ATen/ops/from_file_meta.h>
650
+ #include <ATen/ops/full_meta.h>
651
+ #include <ATen/ops/full_like_meta.h>
652
+ #include <ATen/ops/fused_moving_avg_obs_fake_quant_meta.h>
653
+ #include <ATen/ops/gather_meta.h>
654
+ #include <ATen/ops/gather_backward_meta.h>
655
+ #include <ATen/ops/gcd_meta.h>
656
+ #include <ATen/ops/ge_meta.h>
657
+ #include <ATen/ops/gelu_meta.h>
658
+ #include <ATen/ops/gelu_backward_meta.h>
659
+ #include <ATen/ops/geometric_meta.h>
660
+ #include <ATen/ops/geqrf_meta.h>
661
+ #include <ATen/ops/ger_meta.h>
662
+ #include <ATen/ops/glu_meta.h>
663
+ #include <ATen/ops/glu_backward_meta.h>
664
+ #include <ATen/ops/glu_backward_jvp_meta.h>
665
+ #include <ATen/ops/glu_jvp_meta.h>
666
+ #include <ATen/ops/gradient_meta.h>
667
+ #include <ATen/ops/greater_meta.h>
668
+ #include <ATen/ops/greater_equal_meta.h>
669
+ #include <ATen/ops/grid_sampler_meta.h>
670
+ #include <ATen/ops/grid_sampler_2d_meta.h>
671
+ #include <ATen/ops/grid_sampler_2d_backward_meta.h>
672
+ #include <ATen/ops/grid_sampler_3d_meta.h>
673
+ #include <ATen/ops/grid_sampler_3d_backward_meta.h>
674
+ #include <ATen/ops/group_norm_meta.h>
675
+ #include <ATen/ops/gru_meta.h>
676
+ #include <ATen/ops/gru_cell_meta.h>
677
+ #include <ATen/ops/gt_meta.h>
678
+ #include <ATen/ops/hamming_window_meta.h>
679
+ #include <ATen/ops/hann_window_meta.h>
680
+ #include <ATen/ops/hardshrink_meta.h>
681
+ #include <ATen/ops/hardshrink_backward_meta.h>
682
+ #include <ATen/ops/hardsigmoid_meta.h>
683
+ #include <ATen/ops/hardsigmoid_backward_meta.h>
684
+ #include <ATen/ops/hardswish_meta.h>
685
+ #include <ATen/ops/hardswish_backward_meta.h>
686
+ #include <ATen/ops/hardtanh_meta.h>
687
+ #include <ATen/ops/hardtanh_backward_meta.h>
688
+ #include <ATen/ops/heaviside_meta.h>
689
+ #include <ATen/ops/hinge_embedding_loss_meta.h>
690
+ #include <ATen/ops/histc_meta.h>
691
+ #include <ATen/ops/histogram_meta.h>
692
+ #include <ATen/ops/histogramdd_meta.h>
693
+ #include <ATen/ops/hsplit_meta.h>
694
+ #include <ATen/ops/hspmm_meta.h>
695
+ #include <ATen/ops/hstack_meta.h>
696
+ #include <ATen/ops/huber_loss_meta.h>
697
+ #include <ATen/ops/huber_loss_backward_meta.h>
698
+ #include <ATen/ops/hypot_meta.h>
699
+ #include <ATen/ops/i0_meta.h>
700
+ #include <ATen/ops/igamma_meta.h>
701
+ #include <ATen/ops/igammac_meta.h>
702
+ #include <ATen/ops/im2col_meta.h>
703
+ #include <ATen/ops/imag_meta.h>
704
+ #include <ATen/ops/index_meta.h>
705
+ #include <ATen/ops/index_add_meta.h>
706
+ #include <ATen/ops/index_copy_meta.h>
707
+ #include <ATen/ops/index_fill_meta.h>
708
+ #include <ATen/ops/index_put_meta.h>
709
+ #include <ATen/ops/index_reduce_meta.h>
710
+ #include <ATen/ops/index_select_meta.h>
711
+ #include <ATen/ops/index_select_backward_meta.h>
712
+ #include <ATen/ops/indices_meta.h>
713
+ #include <ATen/ops/indices_copy_meta.h>
714
+ #include <ATen/ops/infinitely_differentiable_gelu_backward_meta.h>
715
+ #include <ATen/ops/inner_meta.h>
716
+ #include <ATen/ops/instance_norm_meta.h>
717
+ #include <ATen/ops/int_repr_meta.h>
718
+ #include <ATen/ops/inverse_meta.h>
719
+ #include <ATen/ops/is_coalesced_meta.h>
720
+ #include <ATen/ops/is_complex_meta.h>
721
+ #include <ATen/ops/is_conj_meta.h>
722
+ #include <ATen/ops/is_distributed_meta.h>
723
+ #include <ATen/ops/is_floating_point_meta.h>
724
+ #include <ATen/ops/is_inference_meta.h>
725
+ #include <ATen/ops/is_leaf_meta.h>
726
+ #include <ATen/ops/is_neg_meta.h>
727
+ #include <ATen/ops/is_nonzero_meta.h>
728
+ #include <ATen/ops/is_pinned_meta.h>
729
+ #include <ATen/ops/is_same_size_meta.h>
730
+ #include <ATen/ops/is_set_to_meta.h>
731
+ #include <ATen/ops/is_signed_meta.h>
732
+ #include <ATen/ops/is_vulkan_available_meta.h>
733
+ #include <ATen/ops/isclose_meta.h>
734
+ #include <ATen/ops/isfinite_meta.h>
735
+ #include <ATen/ops/isin_meta.h>
736
+ #include <ATen/ops/isinf_meta.h>
737
+ #include <ATen/ops/isnan_meta.h>
738
+ #include <ATen/ops/isneginf_meta.h>
739
+ #include <ATen/ops/isposinf_meta.h>
740
+ #include <ATen/ops/isreal_meta.h>
741
+ #include <ATen/ops/istft_meta.h>
742
+ #include <ATen/ops/item_meta.h>
743
+ #include <ATen/ops/kaiser_window_meta.h>
744
+ #include <ATen/ops/kl_div_meta.h>
745
+ #include <ATen/ops/kron_meta.h>
746
+ #include <ATen/ops/kthvalue_meta.h>
747
+ #include <ATen/ops/l1_loss_meta.h>
748
+ #include <ATen/ops/layer_norm_meta.h>
749
+ #include <ATen/ops/lcm_meta.h>
750
+ #include <ATen/ops/ldexp_meta.h>
751
+ #include <ATen/ops/le_meta.h>
752
+ #include <ATen/ops/leaky_relu_meta.h>
753
+ #include <ATen/ops/leaky_relu_backward_meta.h>
754
+ #include <ATen/ops/lerp_meta.h>
755
+ #include <ATen/ops/less_meta.h>
756
+ #include <ATen/ops/less_equal_meta.h>
757
+ #include <ATen/ops/lgamma_meta.h>
758
+ #include <ATen/ops/lift_meta.h>
759
+ #include <ATen/ops/lift_fresh_meta.h>
760
+ #include <ATen/ops/lift_fresh_copy_meta.h>
761
+ #include <ATen/ops/linalg_cholesky_meta.h>
762
+ #include <ATen/ops/linalg_cholesky_ex_meta.h>
763
+ #include <ATen/ops/linalg_cond_meta.h>
764
+ #include <ATen/ops/linalg_cross_meta.h>
765
+ #include <ATen/ops/linalg_det_meta.h>
766
+ #include <ATen/ops/linalg_diagonal_meta.h>
767
+ #include <ATen/ops/linalg_eig_meta.h>
768
+ #include <ATen/ops/linalg_eigh_meta.h>
769
+ #include <ATen/ops/linalg_eigvals_meta.h>
770
+ #include <ATen/ops/linalg_eigvalsh_meta.h>
771
+ #include <ATen/ops/linalg_householder_product_meta.h>
772
+ #include <ATen/ops/linalg_inv_meta.h>
773
+ #include <ATen/ops/linalg_inv_ex_meta.h>
774
+ #include <ATen/ops/linalg_ldl_factor_meta.h>
775
+ #include <ATen/ops/linalg_ldl_factor_ex_meta.h>
776
+ #include <ATen/ops/linalg_ldl_solve_meta.h>
777
+ #include <ATen/ops/linalg_lstsq_meta.h>
778
+ #include <ATen/ops/linalg_lu_meta.h>
779
+ #include <ATen/ops/linalg_lu_factor_meta.h>
780
+ #include <ATen/ops/linalg_lu_factor_ex_meta.h>
781
+ #include <ATen/ops/linalg_lu_solve_meta.h>
782
+ #include <ATen/ops/linalg_matmul_meta.h>
783
+ #include <ATen/ops/linalg_matrix_exp_meta.h>
784
+ #include <ATen/ops/linalg_matrix_norm_meta.h>
785
+ #include <ATen/ops/linalg_matrix_power_meta.h>
786
+ #include <ATen/ops/linalg_matrix_rank_meta.h>
787
+ #include <ATen/ops/linalg_multi_dot_meta.h>
788
+ #include <ATen/ops/linalg_norm_meta.h>
789
+ #include <ATen/ops/linalg_pinv_meta.h>
790
+ #include <ATen/ops/linalg_qr_meta.h>
791
+ #include <ATen/ops/linalg_slogdet_meta.h>
792
+ #include <ATen/ops/linalg_solve_meta.h>
793
+ #include <ATen/ops/linalg_solve_ex_meta.h>
794
+ #include <ATen/ops/linalg_solve_triangular_meta.h>
795
+ #include <ATen/ops/linalg_svd_meta.h>
796
+ #include <ATen/ops/linalg_svdvals_meta.h>
797
+ #include <ATen/ops/linalg_tensorinv_meta.h>
798
+ #include <ATen/ops/linalg_tensorsolve_meta.h>
799
+ #include <ATen/ops/linalg_vander_meta.h>
800
+ #include <ATen/ops/linalg_vecdot_meta.h>
801
+ #include <ATen/ops/linalg_vector_norm_meta.h>
802
+ #include <ATen/ops/linear_meta.h>
803
+ #include <ATen/ops/linear_backward_meta.h>
804
+ #include <ATen/ops/linspace_meta.h>
805
+ #include <ATen/ops/log_meta.h>
806
+ #include <ATen/ops/log10_meta.h>
807
+ #include <ATen/ops/log1p_meta.h>
808
+ #include <ATen/ops/log2_meta.h>
809
+ #include <ATen/ops/log_normal_meta.h>
810
+ #include <ATen/ops/log_sigmoid_meta.h>
811
+ #include <ATen/ops/log_sigmoid_backward_meta.h>
812
+ #include <ATen/ops/log_sigmoid_forward_meta.h>
813
+ #include <ATen/ops/log_softmax_meta.h>
814
+ #include <ATen/ops/logaddexp_meta.h>
815
+ #include <ATen/ops/logaddexp2_meta.h>
816
+ #include <ATen/ops/logcumsumexp_meta.h>
817
+ #include <ATen/ops/logdet_meta.h>
818
+ #include <ATen/ops/logical_and_meta.h>
819
+ #include <ATen/ops/logical_not_meta.h>
820
+ #include <ATen/ops/logical_or_meta.h>
821
+ #include <ATen/ops/logical_xor_meta.h>
822
+ #include <ATen/ops/logit_meta.h>
823
+ #include <ATen/ops/logit_backward_meta.h>
824
+ #include <ATen/ops/logspace_meta.h>
825
+ #include <ATen/ops/logsumexp_meta.h>
826
+ #include <ATen/ops/lshift_meta.h>
827
+ #include <ATen/ops/lstm_meta.h>
828
+ #include <ATen/ops/lstm_cell_meta.h>
829
+ #include <ATen/ops/lstm_mps_backward_meta.h>
830
+ #include <ATen/ops/lt_meta.h>
831
+ #include <ATen/ops/lu_solve_meta.h>
832
+ #include <ATen/ops/lu_unpack_meta.h>
833
+ #include <ATen/ops/mH_meta.h>
834
+ #include <ATen/ops/mT_meta.h>
835
+ #include <ATen/ops/margin_ranking_loss_meta.h>
836
+ #include <ATen/ops/masked_fill_meta.h>
837
+ #include <ATen/ops/masked_scatter_meta.h>
838
+ #include <ATen/ops/masked_scatter_backward_meta.h>
839
+ #include <ATen/ops/masked_select_meta.h>
840
+ #include <ATen/ops/masked_select_backward_meta.h>
841
+ #include <ATen/ops/matmul_meta.h>
842
+ #include <ATen/ops/matmul_backward_meta.h>
843
+ #include <ATen/ops/matrix_H_meta.h>
844
+ #include <ATen/ops/matrix_exp_meta.h>
845
+ #include <ATen/ops/matrix_exp_backward_meta.h>
846
+ #include <ATen/ops/matrix_power_meta.h>
847
+ #include <ATen/ops/max_meta.h>
848
+ #include <ATen/ops/max_pool1d_meta.h>
849
+ #include <ATen/ops/max_pool1d_with_indices_meta.h>
850
+ #include <ATen/ops/max_pool2d_meta.h>
851
+ #include <ATen/ops/max_pool2d_backward_meta.h>
852
+ #include <ATen/ops/max_pool2d_with_indices_meta.h>
853
+ #include <ATen/ops/max_pool2d_with_indices_backward_meta.h>
854
+ #include <ATen/ops/max_pool3d_meta.h>
855
+ #include <ATen/ops/max_pool3d_with_indices_meta.h>
856
+ #include <ATen/ops/max_pool3d_with_indices_backward_meta.h>
857
+ #include <ATen/ops/max_unpool2d_meta.h>
858
+ #include <ATen/ops/max_unpool3d_meta.h>
859
+ #include <ATen/ops/maximum_meta.h>
860
+ #include <ATen/ops/mean_meta.h>
861
+ #include <ATen/ops/median_meta.h>
862
+ #include <ATen/ops/meshgrid_meta.h>
863
+ #include <ATen/ops/min_meta.h>
864
+ #include <ATen/ops/minimum_meta.h>
865
+ #include <ATen/ops/miopen_batch_norm_meta.h>
866
+ #include <ATen/ops/miopen_batch_norm_backward_meta.h>
867
+ #include <ATen/ops/miopen_convolution_meta.h>
868
+ #include <ATen/ops/miopen_convolution_add_relu_meta.h>
869
+ #include <ATen/ops/miopen_convolution_relu_meta.h>
870
+ #include <ATen/ops/miopen_convolution_transpose_meta.h>
871
+ #include <ATen/ops/miopen_depthwise_convolution_meta.h>
872
+ #include <ATen/ops/miopen_rnn_meta.h>
873
+ #include <ATen/ops/miopen_rnn_backward_meta.h>
874
+ #include <ATen/ops/mish_meta.h>
875
+ #include <ATen/ops/mish_backward_meta.h>
876
+ #include <ATen/ops/mkldnn_adaptive_avg_pool2d_meta.h>
877
+ #include <ATen/ops/mkldnn_adaptive_avg_pool2d_backward_meta.h>
878
+ #include <ATen/ops/mkldnn_convolution_meta.h>
879
+ #include <ATen/ops/mkldnn_linear_meta.h>
880
+ #include <ATen/ops/mkldnn_linear_backward_meta.h>
881
+ #include <ATen/ops/mkldnn_linear_backward_input_meta.h>
882
+ #include <ATen/ops/mkldnn_linear_backward_weights_meta.h>
883
+ #include <ATen/ops/mkldnn_max_pool2d_meta.h>
884
+ #include <ATen/ops/mkldnn_max_pool2d_backward_meta.h>
885
+ #include <ATen/ops/mkldnn_max_pool3d_meta.h>
886
+ #include <ATen/ops/mkldnn_max_pool3d_backward_meta.h>
887
+ #include <ATen/ops/mkldnn_reorder_conv2d_weight_meta.h>
888
+ #include <ATen/ops/mkldnn_reorder_conv3d_weight_meta.h>
889
+ #include <ATen/ops/mkldnn_rnn_layer_meta.h>
890
+ #include <ATen/ops/mkldnn_rnn_layer_backward_meta.h>
891
+ #include <ATen/ops/mm_meta.h>
892
+ #include <ATen/ops/mode_meta.h>
893
+ #include <ATen/ops/moveaxis_meta.h>
894
+ #include <ATen/ops/movedim_meta.h>
895
+ #include <ATen/ops/mps_convolution_backward_meta.h>
896
+ #include <ATen/ops/mps_convolution_transpose_backward_meta.h>
897
+ #include <ATen/ops/mse_loss_meta.h>
898
+ #include <ATen/ops/mse_loss_backward_meta.h>
899
+ #include <ATen/ops/msort_meta.h>
900
+ #include <ATen/ops/mul_meta.h>
901
+ #include <ATen/ops/multi_margin_loss_meta.h>
902
+ #include <ATen/ops/multi_margin_loss_backward_meta.h>
903
+ #include <ATen/ops/multilabel_margin_loss_meta.h>
904
+ #include <ATen/ops/multilabel_margin_loss_backward_meta.h>
905
+ #include <ATen/ops/multilabel_margin_loss_forward_meta.h>
906
+ #include <ATen/ops/multinomial_meta.h>
907
+ #include <ATen/ops/multiply_meta.h>
908
+ #include <ATen/ops/mv_meta.h>
909
+ #include <ATen/ops/mvlgamma_meta.h>
910
+ #include <ATen/ops/nan_to_num_meta.h>
911
+ #include <ATen/ops/nanmean_meta.h>
912
+ #include <ATen/ops/nanmedian_meta.h>
913
+ #include <ATen/ops/nanquantile_meta.h>
914
+ #include <ATen/ops/nansum_meta.h>
915
+ #include <ATen/ops/narrow_meta.h>
916
+ #include <ATen/ops/narrow_copy_meta.h>
917
+ #include <ATen/ops/native_batch_norm_meta.h>
918
+ #include <ATen/ops/native_batch_norm_backward_meta.h>
919
+ #include <ATen/ops/native_channel_shuffle_meta.h>
920
+ #include <ATen/ops/native_dropout_meta.h>
921
+ #include <ATen/ops/native_dropout_backward_meta.h>
922
+ #include <ATen/ops/native_group_norm_meta.h>
923
+ #include <ATen/ops/native_group_norm_backward_meta.h>
924
+ #include <ATen/ops/native_layer_norm_meta.h>
925
+ #include <ATen/ops/native_layer_norm_backward_meta.h>
926
+ #include <ATen/ops/native_norm_meta.h>
927
+ #include <ATen/ops/ne_meta.h>
928
+ #include <ATen/ops/neg_meta.h>
929
+ #include <ATen/ops/negative_meta.h>
930
+ #include <ATen/ops/nested_to_padded_tensor_meta.h>
931
+ #include <ATen/ops/new_empty_meta.h>
932
+ #include <ATen/ops/new_empty_strided_meta.h>
933
+ #include <ATen/ops/new_full_meta.h>
934
+ #include <ATen/ops/new_ones_meta.h>
935
+ #include <ATen/ops/new_zeros_meta.h>
936
+ #include <ATen/ops/nextafter_meta.h>
937
+ #include <ATen/ops/nll_loss_meta.h>
938
+ #include <ATen/ops/nll_loss2d_meta.h>
939
+ #include <ATen/ops/nll_loss2d_backward_meta.h>
940
+ #include <ATen/ops/nll_loss2d_forward_meta.h>
941
+ #include <ATen/ops/nll_loss_backward_meta.h>
942
+ #include <ATen/ops/nll_loss_forward_meta.h>
943
+ #include <ATen/ops/nll_loss_nd_meta.h>
944
+ #include <ATen/ops/nonzero_meta.h>
945
+ #include <ATen/ops/nonzero_numpy_meta.h>
946
+ #include <ATen/ops/nonzero_static_meta.h>
947
+ #include <ATen/ops/norm_meta.h>
948
+ #include <ATen/ops/norm_except_dim_meta.h>
949
+ #include <ATen/ops/normal_meta.h>
950
+ #include <ATen/ops/not_equal_meta.h>
951
+ #include <ATen/ops/nuclear_norm_meta.h>
952
+ #include <ATen/ops/numpy_T_meta.h>
953
+ #include <ATen/ops/one_hot_meta.h>
954
+ #include <ATen/ops/ones_meta.h>
955
+ #include <ATen/ops/ones_like_meta.h>
956
+ #include <ATen/ops/or_meta.h>
957
+ #include <ATen/ops/orgqr_meta.h>
958
+ #include <ATen/ops/ormqr_meta.h>
959
+ #include <ATen/ops/outer_meta.h>
960
+ #include <ATen/ops/output_nr_meta.h>
961
+ #include <ATen/ops/pad_meta.h>
962
+ #include <ATen/ops/pad_sequence_meta.h>
963
+ #include <ATen/ops/pairwise_distance_meta.h>
964
+ #include <ATen/ops/pdist_meta.h>
965
+ #include <ATen/ops/permute_meta.h>
966
+ #include <ATen/ops/permute_copy_meta.h>
967
+ #include <ATen/ops/pin_memory_meta.h>
968
+ #include <ATen/ops/pinverse_meta.h>
969
+ #include <ATen/ops/pixel_shuffle_meta.h>
970
+ #include <ATen/ops/pixel_unshuffle_meta.h>
971
+ #include <ATen/ops/poisson_meta.h>
972
+ #include <ATen/ops/poisson_nll_loss_meta.h>
973
+ #include <ATen/ops/polar_meta.h>
974
+ #include <ATen/ops/polygamma_meta.h>
975
+ #include <ATen/ops/positive_meta.h>
976
+ #include <ATen/ops/pow_meta.h>
977
+ #include <ATen/ops/prelu_meta.h>
978
+ #include <ATen/ops/prod_meta.h>
979
+ #include <ATen/ops/promote_types_meta.h>
980
+ #include <ATen/ops/put_meta.h>
981
+ #include <ATen/ops/q_per_channel_axis_meta.h>
982
+ #include <ATen/ops/q_per_channel_scales_meta.h>
983
+ #include <ATen/ops/q_per_channel_zero_points_meta.h>
984
+ #include <ATen/ops/q_scale_meta.h>
985
+ #include <ATen/ops/q_zero_point_meta.h>
986
+ #include <ATen/ops/qr_meta.h>
987
+ #include <ATen/ops/qscheme_meta.h>
988
+ #include <ATen/ops/quantile_meta.h>
989
+ #include <ATen/ops/quantize_per_channel_meta.h>
990
+ #include <ATen/ops/quantize_per_tensor_meta.h>
991
+ #include <ATen/ops/quantize_per_tensor_dynamic_meta.h>
992
+ #include <ATen/ops/quantized_batch_norm_meta.h>
993
+ #include <ATen/ops/quantized_gru_cell_meta.h>
994
+ #include <ATen/ops/quantized_lstm_cell_meta.h>
995
+ #include <ATen/ops/quantized_max_pool1d_meta.h>
996
+ #include <ATen/ops/quantized_max_pool2d_meta.h>
997
+ #include <ATen/ops/quantized_max_pool3d_meta.h>
998
+ #include <ATen/ops/quantized_rnn_relu_cell_meta.h>
999
+ #include <ATen/ops/quantized_rnn_tanh_cell_meta.h>
1000
+ #include <ATen/ops/rad2deg_meta.h>
1001
+ #include <ATen/ops/rand_meta.h>
1002
+ #include <ATen/ops/rand_like_meta.h>
1003
+ #include <ATen/ops/randint_meta.h>
1004
+ #include <ATen/ops/randint_like_meta.h>
1005
+ #include <ATen/ops/randn_meta.h>
1006
+ #include <ATen/ops/randn_like_meta.h>
1007
+ #include <ATen/ops/random_meta.h>
1008
+ #include <ATen/ops/randperm_meta.h>
1009
+ #include <ATen/ops/range_meta.h>
1010
+ #include <ATen/ops/ravel_meta.h>
1011
+ #include <ATen/ops/real_meta.h>
1012
+ #include <ATen/ops/reciprocal_meta.h>
1013
+ #include <ATen/ops/record_stream_meta.h>
1014
+ #include <ATen/ops/refine_names_meta.h>
1015
+ #include <ATen/ops/reflection_pad1d_meta.h>
1016
+ #include <ATen/ops/reflection_pad1d_backward_meta.h>
1017
+ #include <ATen/ops/reflection_pad2d_meta.h>
1018
+ #include <ATen/ops/reflection_pad2d_backward_meta.h>
1019
+ #include <ATen/ops/reflection_pad3d_meta.h>
1020
+ #include <ATen/ops/reflection_pad3d_backward_meta.h>
1021
+ #include <ATen/ops/relu_meta.h>
1022
+ #include <ATen/ops/relu6_meta.h>
1023
+ #include <ATen/ops/remainder_meta.h>
1024
+ #include <ATen/ops/rename_meta.h>
1025
+ #include <ATen/ops/renorm_meta.h>
1026
+ #include <ATen/ops/repeat_meta.h>
1027
+ #include <ATen/ops/repeat_interleave_meta.h>
1028
+ #include <ATen/ops/replication_pad1d_meta.h>
1029
+ #include <ATen/ops/replication_pad1d_backward_meta.h>
1030
+ #include <ATen/ops/replication_pad2d_meta.h>
1031
+ #include <ATen/ops/replication_pad2d_backward_meta.h>
1032
+ #include <ATen/ops/replication_pad3d_meta.h>
1033
+ #include <ATen/ops/replication_pad3d_backward_meta.h>
1034
+ #include <ATen/ops/requires_grad_meta.h>
1035
+ #include <ATen/ops/reshape_meta.h>
1036
+ #include <ATen/ops/reshape_as_meta.h>
1037
+ #include <ATen/ops/resize_meta.h>
1038
+ #include <ATen/ops/resize_as_meta.h>
1039
+ #include <ATen/ops/resize_as_sparse_meta.h>
1040
+ #include <ATen/ops/resolve_conj_meta.h>
1041
+ #include <ATen/ops/resolve_neg_meta.h>
1042
+ #include <ATen/ops/result_type_meta.h>
1043
+ #include <ATen/ops/retain_grad_meta.h>
1044
+ #include <ATen/ops/retains_grad_meta.h>
1045
+ #include <ATen/ops/rnn_relu_meta.h>
1046
+ #include <ATen/ops/rnn_relu_cell_meta.h>
1047
+ #include <ATen/ops/rnn_tanh_meta.h>
1048
+ #include <ATen/ops/rnn_tanh_cell_meta.h>
1049
+ #include <ATen/ops/roll_meta.h>
1050
+ #include <ATen/ops/rot90_meta.h>
1051
+ #include <ATen/ops/round_meta.h>
1052
+ #include <ATen/ops/row_indices_meta.h>
1053
+ #include <ATen/ops/row_indices_copy_meta.h>
1054
+ #include <ATen/ops/row_stack_meta.h>
1055
+ #include <ATen/ops/rrelu_meta.h>
1056
+ #include <ATen/ops/rrelu_with_noise_meta.h>
1057
+ #include <ATen/ops/rrelu_with_noise_backward_meta.h>
1058
+ #include <ATen/ops/rshift_meta.h>
1059
+ #include <ATen/ops/rsqrt_meta.h>
1060
+ #include <ATen/ops/rsub_meta.h>
1061
+ #include <ATen/ops/scalar_tensor_meta.h>
1062
+ #include <ATen/ops/scaled_dot_product_attention_meta.h>
1063
+ #include <ATen/ops/scatter_meta.h>
1064
+ #include <ATen/ops/scatter_add_meta.h>
1065
+ #include <ATen/ops/scatter_reduce_meta.h>
1066
+ #include <ATen/ops/searchsorted_meta.h>
1067
+ #include <ATen/ops/segment_reduce_meta.h>
1068
+ #include <ATen/ops/select_meta.h>
1069
+ #include <ATen/ops/select_backward_meta.h>
1070
+ #include <ATen/ops/select_copy_meta.h>
1071
+ #include <ATen/ops/select_scatter_meta.h>
1072
+ #include <ATen/ops/selu_meta.h>
1073
+ #include <ATen/ops/set_meta.h>
1074
+ #include <ATen/ops/set_data_meta.h>
1075
+ #include <ATen/ops/sgn_meta.h>
1076
+ #include <ATen/ops/sigmoid_meta.h>
1077
+ #include <ATen/ops/sigmoid_backward_meta.h>
1078
+ #include <ATen/ops/sign_meta.h>
1079
+ #include <ATen/ops/signbit_meta.h>
1080
+ #include <ATen/ops/silu_meta.h>
1081
+ #include <ATen/ops/silu_backward_meta.h>
1082
+ #include <ATen/ops/sin_meta.h>
1083
+ #include <ATen/ops/sinc_meta.h>
1084
+ #include <ATen/ops/sinh_meta.h>
1085
+ #include <ATen/ops/size_meta.h>
1086
+ #include <ATen/ops/slice_meta.h>
1087
+ #include <ATen/ops/slice_backward_meta.h>
1088
+ #include <ATen/ops/slice_copy_meta.h>
1089
+ #include <ATen/ops/slice_inverse_meta.h>
1090
+ #include <ATen/ops/slice_scatter_meta.h>
1091
+ #include <ATen/ops/slogdet_meta.h>
1092
+ #include <ATen/ops/slow_conv3d_meta.h>
1093
+ #include <ATen/ops/slow_conv3d_forward_meta.h>
1094
+ #include <ATen/ops/slow_conv_dilated2d_meta.h>
1095
+ #include <ATen/ops/slow_conv_dilated3d_meta.h>
1096
+ #include <ATen/ops/slow_conv_transpose2d_meta.h>
1097
+ #include <ATen/ops/slow_conv_transpose3d_meta.h>
1098
+ #include <ATen/ops/smm_meta.h>
1099
+ #include <ATen/ops/smooth_l1_loss_meta.h>
1100
+ #include <ATen/ops/smooth_l1_loss_backward_meta.h>
1101
+ #include <ATen/ops/soft_margin_loss_meta.h>
1102
+ #include <ATen/ops/soft_margin_loss_backward_meta.h>
1103
+ #include <ATen/ops/softmax_meta.h>
1104
+ #include <ATen/ops/softplus_meta.h>
1105
+ #include <ATen/ops/softplus_backward_meta.h>
1106
+ #include <ATen/ops/softshrink_meta.h>
1107
+ #include <ATen/ops/softshrink_backward_meta.h>
1108
+ #include <ATen/ops/sort_meta.h>
1109
+ #include <ATen/ops/sparse_bsc_tensor_meta.h>
1110
+ #include <ATen/ops/sparse_bsr_tensor_meta.h>
1111
+ #include <ATen/ops/sparse_compressed_tensor_meta.h>
1112
+ #include <ATen/ops/sparse_coo_tensor_meta.h>
1113
+ #include <ATen/ops/sparse_csc_tensor_meta.h>
1114
+ #include <ATen/ops/sparse_csr_tensor_meta.h>
1115
+ #include <ATen/ops/sparse_dim_meta.h>
1116
+ #include <ATen/ops/sparse_mask_meta.h>
1117
+ #include <ATen/ops/sparse_resize_meta.h>
1118
+ #include <ATen/ops/sparse_resize_and_clear_meta.h>
1119
+ #include <ATen/ops/sparse_sampled_addmm_meta.h>
1120
+ #include <ATen/ops/special_airy_ai_meta.h>
1121
+ #include <ATen/ops/special_bessel_j0_meta.h>
1122
+ #include <ATen/ops/special_bessel_j1_meta.h>
1123
+ #include <ATen/ops/special_bessel_y0_meta.h>
1124
+ #include <ATen/ops/special_bessel_y1_meta.h>
1125
+ #include <ATen/ops/special_chebyshev_polynomial_t_meta.h>
1126
+ #include <ATen/ops/special_chebyshev_polynomial_u_meta.h>
1127
+ #include <ATen/ops/special_chebyshev_polynomial_v_meta.h>
1128
+ #include <ATen/ops/special_chebyshev_polynomial_w_meta.h>
1129
+ #include <ATen/ops/special_digamma_meta.h>
1130
+ #include <ATen/ops/special_entr_meta.h>
1131
+ #include <ATen/ops/special_erf_meta.h>
1132
+ #include <ATen/ops/special_erfc_meta.h>
1133
+ #include <ATen/ops/special_erfcx_meta.h>
1134
+ #include <ATen/ops/special_erfinv_meta.h>
1135
+ #include <ATen/ops/special_exp2_meta.h>
1136
+ #include <ATen/ops/special_expit_meta.h>
1137
+ #include <ATen/ops/special_expm1_meta.h>
1138
+ #include <ATen/ops/special_gammainc_meta.h>
1139
+ #include <ATen/ops/special_gammaincc_meta.h>
1140
+ #include <ATen/ops/special_gammaln_meta.h>
1141
+ #include <ATen/ops/special_hermite_polynomial_h_meta.h>
1142
+ #include <ATen/ops/special_hermite_polynomial_he_meta.h>
1143
+ #include <ATen/ops/special_i0_meta.h>
1144
+ #include <ATen/ops/special_i0e_meta.h>
1145
+ #include <ATen/ops/special_i1_meta.h>
1146
+ #include <ATen/ops/special_i1e_meta.h>
1147
+ #include <ATen/ops/special_laguerre_polynomial_l_meta.h>
1148
+ #include <ATen/ops/special_legendre_polynomial_p_meta.h>
1149
+ #include <ATen/ops/special_log1p_meta.h>
1150
+ #include <ATen/ops/special_log_ndtr_meta.h>
1151
+ #include <ATen/ops/special_log_softmax_meta.h>
1152
+ #include <ATen/ops/special_logit_meta.h>
1153
+ #include <ATen/ops/special_logsumexp_meta.h>
1154
+ #include <ATen/ops/special_modified_bessel_i0_meta.h>
1155
+ #include <ATen/ops/special_modified_bessel_i1_meta.h>
1156
+ #include <ATen/ops/special_modified_bessel_k0_meta.h>
1157
+ #include <ATen/ops/special_modified_bessel_k1_meta.h>
1158
+ #include <ATen/ops/special_multigammaln_meta.h>
1159
+ #include <ATen/ops/special_ndtr_meta.h>
1160
+ #include <ATen/ops/special_ndtri_meta.h>
1161
+ #include <ATen/ops/special_polygamma_meta.h>
1162
+ #include <ATen/ops/special_psi_meta.h>
1163
+ #include <ATen/ops/special_round_meta.h>
1164
+ #include <ATen/ops/special_scaled_modified_bessel_k0_meta.h>
1165
+ #include <ATen/ops/special_scaled_modified_bessel_k1_meta.h>
1166
+ #include <ATen/ops/special_shifted_chebyshev_polynomial_t_meta.h>
1167
+ #include <ATen/ops/special_shifted_chebyshev_polynomial_u_meta.h>
1168
+ #include <ATen/ops/special_shifted_chebyshev_polynomial_v_meta.h>
1169
+ #include <ATen/ops/special_shifted_chebyshev_polynomial_w_meta.h>
1170
+ #include <ATen/ops/special_sinc_meta.h>
1171
+ #include <ATen/ops/special_softmax_meta.h>
1172
+ #include <ATen/ops/special_spherical_bessel_j0_meta.h>
1173
+ #include <ATen/ops/special_xlog1py_meta.h>
1174
+ #include <ATen/ops/special_xlogy_meta.h>
1175
+ #include <ATen/ops/special_zeta_meta.h>
1176
+ #include <ATen/ops/split_meta.h>
1177
+ #include <ATen/ops/split_copy_meta.h>
1178
+ #include <ATen/ops/split_with_sizes_meta.h>
1179
+ #include <ATen/ops/split_with_sizes_copy_meta.h>
1180
+ #include <ATen/ops/sqrt_meta.h>
1181
+ #include <ATen/ops/square_meta.h>
1182
+ #include <ATen/ops/squeeze_meta.h>
1183
+ #include <ATen/ops/squeeze_copy_meta.h>
1184
+ #include <ATen/ops/sspaddmm_meta.h>
1185
+ #include <ATen/ops/stack_meta.h>
1186
+ #include <ATen/ops/std_meta.h>
1187
+ #include <ATen/ops/std_mean_meta.h>
1188
+ #include <ATen/ops/stft_meta.h>
1189
+ #include <ATen/ops/stride_meta.h>
1190
+ #include <ATen/ops/sub_meta.h>
1191
+ #include <ATen/ops/subtract_meta.h>
1192
+ #include <ATen/ops/sum_meta.h>
1193
+ #include <ATen/ops/sum_to_size_meta.h>
1194
+ #include <ATen/ops/svd_meta.h>
1195
+ #include <ATen/ops/swapaxes_meta.h>
1196
+ #include <ATen/ops/swapdims_meta.h>
1197
+ #include <ATen/ops/sym_constrain_range_meta.h>
1198
+ #include <ATen/ops/sym_constrain_range_for_size_meta.h>
1199
+ #include <ATen/ops/sym_numel_meta.h>
1200
+ #include <ATen/ops/sym_size_meta.h>
1201
+ #include <ATen/ops/sym_storage_offset_meta.h>
1202
+ #include <ATen/ops/sym_stride_meta.h>
1203
+ #include <ATen/ops/t_meta.h>
1204
+ #include <ATen/ops/t_copy_meta.h>
1205
+ #include <ATen/ops/take_meta.h>
1206
+ #include <ATen/ops/take_along_dim_meta.h>
1207
+ #include <ATen/ops/tan_meta.h>
1208
+ #include <ATen/ops/tanh_meta.h>
1209
+ #include <ATen/ops/tanh_backward_meta.h>
1210
+ #include <ATen/ops/tensor_split_meta.h>
1211
+ #include <ATen/ops/tensordot_meta.h>
1212
+ #include <ATen/ops/thnn_conv2d_meta.h>
1213
+ #include <ATen/ops/threshold_meta.h>
1214
+ #include <ATen/ops/threshold_backward_meta.h>
1215
+ #include <ATen/ops/tile_meta.h>
1216
+ #include <ATen/ops/to_meta.h>
1217
+ #include <ATen/ops/to_dense_meta.h>
1218
+ #include <ATen/ops/to_dense_backward_meta.h>
1219
+ #include <ATen/ops/to_mkldnn_meta.h>
1220
+ #include <ATen/ops/to_mkldnn_backward_meta.h>
1221
+ #include <ATen/ops/to_padded_tensor_meta.h>
1222
+ #include <ATen/ops/to_sparse_meta.h>
1223
+ #include <ATen/ops/to_sparse_bsc_meta.h>
1224
+ #include <ATen/ops/to_sparse_bsr_meta.h>
1225
+ #include <ATen/ops/to_sparse_csc_meta.h>
1226
+ #include <ATen/ops/to_sparse_csr_meta.h>
1227
+ #include <ATen/ops/topk_meta.h>
1228
+ #include <ATen/ops/trace_meta.h>
1229
+ #include <ATen/ops/trace_backward_meta.h>
1230
+ #include <ATen/ops/transpose_meta.h>
1231
+ #include <ATen/ops/transpose_copy_meta.h>
1232
+ #include <ATen/ops/trapezoid_meta.h>
1233
+ #include <ATen/ops/trapz_meta.h>
1234
+ #include <ATen/ops/triangular_solve_meta.h>
1235
+ #include <ATen/ops/tril_meta.h>
1236
+ #include <ATen/ops/tril_indices_meta.h>
1237
+ #include <ATen/ops/triplet_margin_loss_meta.h>
1238
+ #include <ATen/ops/triu_meta.h>
1239
+ #include <ATen/ops/triu_indices_meta.h>
1240
+ #include <ATen/ops/true_divide_meta.h>
1241
+ #include <ATen/ops/trunc_meta.h>
1242
+ #include <ATen/ops/type_as_meta.h>
1243
+ #include <ATen/ops/unbind_meta.h>
1244
+ #include <ATen/ops/unbind_copy_meta.h>
1245
+ #include <ATen/ops/unflatten_meta.h>
1246
+ #include <ATen/ops/unflatten_dense_tensors_meta.h>
1247
+ #include <ATen/ops/unfold_meta.h>
1248
+ #include <ATen/ops/unfold_backward_meta.h>
1249
+ #include <ATen/ops/unfold_copy_meta.h>
1250
+ #include <ATen/ops/uniform_meta.h>
1251
+ #include <ATen/ops/unique_consecutive_meta.h>
1252
+ #include <ATen/ops/unique_dim_meta.h>
1253
+ #include <ATen/ops/unique_dim_consecutive_meta.h>
1254
+ #include <ATen/ops/unsafe_chunk_meta.h>
1255
+ #include <ATen/ops/unsafe_split_meta.h>
1256
+ #include <ATen/ops/unsafe_split_with_sizes_meta.h>
1257
+ #include <ATen/ops/unsqueeze_meta.h>
1258
+ #include <ATen/ops/unsqueeze_copy_meta.h>
1259
+ #include <ATen/ops/upsample_bicubic2d_meta.h>
1260
+ #include <ATen/ops/upsample_bicubic2d_backward_meta.h>
1261
+ #include <ATen/ops/upsample_bilinear2d_meta.h>
1262
+ #include <ATen/ops/upsample_bilinear2d_backward_meta.h>
1263
+ #include <ATen/ops/upsample_linear1d_meta.h>
1264
+ #include <ATen/ops/upsample_linear1d_backward_meta.h>
1265
+ #include <ATen/ops/upsample_nearest1d_meta.h>
1266
+ #include <ATen/ops/upsample_nearest1d_backward_meta.h>
1267
+ #include <ATen/ops/upsample_nearest2d_meta.h>
1268
+ #include <ATen/ops/upsample_nearest2d_backward_meta.h>
1269
+ #include <ATen/ops/upsample_nearest3d_meta.h>
1270
+ #include <ATen/ops/upsample_nearest3d_backward_meta.h>
1271
+ #include <ATen/ops/upsample_trilinear3d_meta.h>
1272
+ #include <ATen/ops/upsample_trilinear3d_backward_meta.h>
1273
+ #include <ATen/ops/value_selecting_reduction_backward_meta.h>
1274
+ #include <ATen/ops/values_meta.h>
1275
+ #include <ATen/ops/values_copy_meta.h>
1276
+ #include <ATen/ops/vander_meta.h>
1277
+ #include <ATen/ops/var_meta.h>
1278
+ #include <ATen/ops/var_mean_meta.h>
1279
+ #include <ATen/ops/vdot_meta.h>
1280
+ #include <ATen/ops/view_meta.h>
1281
+ #include <ATen/ops/view_as_meta.h>
1282
+ #include <ATen/ops/view_as_complex_meta.h>
1283
+ #include <ATen/ops/view_as_complex_copy_meta.h>
1284
+ #include <ATen/ops/view_as_real_meta.h>
1285
+ #include <ATen/ops/view_as_real_copy_meta.h>
1286
+ #include <ATen/ops/view_copy_meta.h>
1287
+ #include <ATen/ops/vsplit_meta.h>
1288
+ #include <ATen/ops/vstack_meta.h>
1289
+ #include <ATen/ops/where_meta.h>
1290
+ #include <ATen/ops/xlogy_meta.h>
1291
+ #include <ATen/ops/xor_meta.h>
1292
+ #include <ATen/ops/zero_meta.h>
1293
+ #include <ATen/ops/zeros_meta.h>
1294
+ #include <ATen/ops/zeros_like_meta.h>
1295
+
1296
+ namespace at {
1297
+
1298
+ namespace meta {
1299
+
1300
+
1301
+
1302
+ } // namespace meta
1303
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/NumericUtils.h ADDED
@@ -0,0 +1,203 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #ifdef __HIPCC__
4
+ #include <hip/hip_runtime.h>
5
+ #endif
6
+
7
+ #include <c10/macros/Macros.h>
8
+ #include <c10/util/BFloat16.h>
9
+ #include <c10/util/Float8_e4m3fn.h>
10
+ #include <c10/util/Float8_e4m3fnuz.h>
11
+ #include <c10/util/Float8_e5m2.h>
12
+ #include <c10/util/Float8_e5m2fnuz.h>
13
+ #include <c10/util/Half.h>
14
+ #include <c10/util/complex.h>
15
+
16
+ #include <cmath>
17
+ #include <type_traits>
18
+
19
+ namespace at {
20
+
21
+ // std::isnan isn't performant to use on integral types; it will
22
+ // (uselessly) convert to floating point and then do the test.
23
+ // This function is.
24
+
25
+ template <typename T, std::enable_if_t<std::is_integral_v<T>, int> = 0>
26
+ inline C10_HOST_DEVICE bool _isnan(T /*val*/) {
27
+ return false;
28
+ }
29
+
30
+ template <typename T, std::enable_if_t<std::is_floating_point_v<T>, int> = 0>
31
+ inline C10_HOST_DEVICE bool _isnan(T val) {
32
+ #if defined(__CUDACC__) || defined(__HIPCC__)
33
+ return ::isnan(val);
34
+ #else
35
+ return std::isnan(val);
36
+ #endif
37
+ }
38
+
39
+ template <typename T, std::enable_if_t<c10::is_complex<T>::value, int> = 0>
40
+ inline C10_HOST_DEVICE bool _isnan(T val) {
41
+ return std::isnan(val.real()) || std::isnan(val.imag());
42
+ }
43
+
44
+ template <typename T, std::enable_if_t<std::is_same_v<T, at::Half>, int> = 0>
45
+ inline C10_HOST_DEVICE bool _isnan(T val) {
46
+ return at::_isnan(static_cast<float>(val));
47
+ }
48
+
49
+ template <
50
+ typename T,
51
+ std::enable_if_t<std::is_same_v<T, at::BFloat16>, int> = 0>
52
+ inline C10_HOST_DEVICE bool _isnan(at::BFloat16 val) {
53
+ return at::_isnan(static_cast<float>(val));
54
+ }
55
+
56
+ inline C10_HOST_DEVICE bool _isnan(at::BFloat16 val) {
57
+ return at::_isnan(static_cast<float>(val));
58
+ }
59
+
60
+ template <
61
+ typename T,
62
+ std::enable_if_t<std::is_same_v<T, at::Float8_e5m2>, int> = 0>
63
+ inline C10_HOST_DEVICE bool _isnan(T val) {
64
+ return val.isnan();
65
+ }
66
+
67
+ template <
68
+ typename T,
69
+ std::enable_if_t<std::is_same_v<T, at::Float8_e4m3fn>, int> = 0>
70
+ inline C10_HOST_DEVICE bool _isnan(T val) {
71
+ return val.isnan();
72
+ }
73
+
74
+ template <
75
+ typename T,
76
+ std::enable_if_t<std::is_same_v<T, at::Float8_e5m2fnuz>, int> = 0>
77
+ inline C10_HOST_DEVICE bool _isnan(T val) {
78
+ return val.isnan();
79
+ }
80
+
81
+ template <
82
+ typename T,
83
+ std::enable_if_t<std::is_same_v<T, at::Float8_e4m3fnuz>, int> = 0>
84
+ inline C10_HOST_DEVICE bool _isnan(T val) {
85
+ return val.isnan();
86
+ }
87
+
88
+ // std::isinf isn't performant to use on integral types; it will
89
+ // (uselessly) convert to floating point and then do the test.
90
+ // This function is.
91
+
92
+ template <typename T, std::enable_if_t<std::is_integral_v<T>, int> = 0>
93
+ inline C10_HOST_DEVICE bool _isinf(T /*val*/) {
94
+ return false;
95
+ }
96
+
97
+ template <typename T, std::enable_if_t<std::is_floating_point_v<T>, int> = 0>
98
+ inline C10_HOST_DEVICE bool _isinf(T val) {
99
+ #if defined(__CUDACC__) || defined(__HIPCC__)
100
+ return ::isinf(val);
101
+ #else
102
+ return std::isinf(val);
103
+ #endif
104
+ }
105
+
106
+ inline C10_HOST_DEVICE bool _isinf(at::Half val) {
107
+ return at::_isinf(static_cast<float>(val));
108
+ }
109
+
110
+ inline C10_HOST_DEVICE bool _isinf(at::BFloat16 val) {
111
+ return at::_isinf(static_cast<float>(val));
112
+ }
113
+
114
+ inline C10_HOST_DEVICE bool _isinf(at::Float8_e5m2 val) {
115
+ return val.isinf();
116
+ }
117
+
118
+ inline C10_HOST_DEVICE bool _isinf(at::Float8_e4m3fn val) {
119
+ return false;
120
+ }
121
+
122
+ inline C10_HOST_DEVICE bool _isinf(at::Float8_e5m2fnuz val) {
123
+ return false;
124
+ }
125
+
126
+ inline C10_HOST_DEVICE bool _isinf(at::Float8_e4m3fnuz val) {
127
+ return false;
128
+ }
129
+
130
+ template <typename T>
131
+ C10_HOST_DEVICE inline T exp(T x) {
132
+ static_assert(
133
+ !std::is_same_v<T, double>,
134
+ "this template must be used with float or less precise type");
135
+ #if defined(__CUDA_ARCH__) || defined(__HIP_ARCH__)
136
+ // use __expf fast approximation for peak bandwidth
137
+ return __expf(x);
138
+ #else
139
+ return ::exp(x);
140
+ #endif
141
+ }
142
+
143
+ template <>
144
+ C10_HOST_DEVICE inline double exp<double>(double x) {
145
+ return ::exp(x);
146
+ }
147
+
148
+ template <typename T>
149
+ C10_HOST_DEVICE inline T log(T x) {
150
+ static_assert(
151
+ !std::is_same_v<T, double>,
152
+ "this template must be used with float or less precise type");
153
+ #if defined(__CUDA_ARCH__) || defined(__HIP_ARCH__)
154
+ // use __logf fast approximation for peak bandwidth
155
+ return __logf(x);
156
+ #else
157
+ return ::log(x);
158
+ #endif
159
+ }
160
+
161
+ template <>
162
+ C10_HOST_DEVICE inline double log<double>(double x) {
163
+ return ::log(x);
164
+ }
165
+
166
+ template <typename T>
167
+ C10_HOST_DEVICE inline T log1p(T x) {
168
+ static_assert(
169
+ !std::is_same_v<T, double>,
170
+ "this template must be used with float or less precise type");
171
+ #if defined(__CUDA_ARCH__) || defined(__HIP_ARCH__)
172
+ // use __logf fast approximation for peak bandwidth
173
+ // NOTE: There is no __log1pf so unfortunately we lose precision.
174
+ return __logf(1.0f + x);
175
+ #else
176
+ return ::log1p(x);
177
+ #endif
178
+ }
179
+
180
+ template <>
181
+ C10_HOST_DEVICE inline double log1p<double>(double x) {
182
+ return ::log1p(x);
183
+ }
184
+
185
+ template <typename T>
186
+ C10_HOST_DEVICE inline T tan(T x) {
187
+ static_assert(
188
+ !std::is_same_v<T, double>,
189
+ "this template must be used with float or less precise type");
190
+ #if defined(__CUDA_ARCH__) || defined(__HIP_ARCH__)
191
+ // use __tanf fast approximation for peak bandwidth
192
+ return __tanf(x);
193
+ #else
194
+ return ::tan(x);
195
+ #endif
196
+ }
197
+
198
+ template <>
199
+ C10_HOST_DEVICE inline double tan<double>(double x) {
200
+ return ::tan(x);
201
+ }
202
+
203
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/PTThreadPool.h ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <ATen/Parallel.h>
4
+ #include <c10/core/thread_pool.h>
5
+
6
+ namespace at {
7
+
8
+ class TORCH_API PTThreadPool : public c10::ThreadPool {
9
+ public:
10
+ explicit PTThreadPool(int pool_size, int numa_node_id = -1)
11
+ : c10::ThreadPool(pool_size, numa_node_id, []() {
12
+ c10::setThreadName("PTThreadPool");
13
+ at::init_num_threads();
14
+ }) {}
15
+ };
16
+
17
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/PadNd.h ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ #include <c10/util/Exception.h>
3
+ #include <c10/util/string_view.h>
4
+
5
+ namespace at {
6
+
7
+ enum class padding_mode {
8
+ reflect,
9
+ replicate,
10
+ circular,
11
+ constant,
12
+ };
13
+
14
+ static inline c10::string_view padding_mode_string(padding_mode m) {
15
+ switch (m) {
16
+ case padding_mode::reflect:
17
+ return "reflect";
18
+ case padding_mode::replicate:
19
+ return "replicate";
20
+ case padding_mode::circular:
21
+ return "circular";
22
+ case padding_mode::constant:
23
+ return "constant";
24
+ }
25
+ TORCH_CHECK(false, "Invalid padding mode (", static_cast<int64_t>(m), ")");
26
+ }
27
+
28
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/Parallel-inl.h ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <c10/util/Exception.h>
4
+ #include <c10/util/ParallelGuard.h>
5
+ #include <c10/util/SmallVector.h>
6
+
7
+ namespace at {
8
+
9
+ template <class F>
10
+ inline void parallel_for(
11
+ const int64_t begin,
12
+ const int64_t end,
13
+ const int64_t grain_size,
14
+ const F& f) {
15
+ TORCH_INTERNAL_ASSERT_DEBUG_ONLY(grain_size >= 0);
16
+ if (begin >= end) {
17
+ return;
18
+ }
19
+
20
+ #ifdef INTRA_OP_PARALLEL
21
+ at::internal::lazy_init_num_threads();
22
+ const auto numiter = end - begin;
23
+ const bool use_parallel =
24
+ (numiter > grain_size && numiter > 1 && !at::in_parallel_region() &&
25
+ at::get_num_threads() > 1);
26
+ if (!use_parallel) {
27
+ internal::ThreadIdGuard tid_guard(0);
28
+ c10::ParallelGuard guard(true);
29
+ f(begin, end);
30
+ return;
31
+ }
32
+
33
+ internal::invoke_parallel(
34
+ begin, end, grain_size, [&](int64_t begin, int64_t end) {
35
+ c10::ParallelGuard guard(true);
36
+ f(begin, end);
37
+ });
38
+ #else
39
+ internal::ThreadIdGuard tid_guard(0);
40
+ c10::ParallelGuard guard(true);
41
+ f(begin, end);
42
+ #endif
43
+ }
44
+
45
+ template <class scalar_t, class F, class SF>
46
+ inline scalar_t parallel_reduce(
47
+ const int64_t begin,
48
+ const int64_t end,
49
+ const int64_t grain_size,
50
+ const scalar_t ident,
51
+ const F& f,
52
+ const SF& sf) {
53
+ TORCH_CHECK(grain_size >= 0);
54
+ if (begin >= end) {
55
+ return ident;
56
+ }
57
+
58
+ #ifdef INTRA_OP_PARALLEL
59
+ at::internal::lazy_init_num_threads();
60
+ const auto max_threads = at::get_num_threads();
61
+ const bool use_parallel =
62
+ ((end - begin) > grain_size && !at::in_parallel_region() &&
63
+ max_threads > 1);
64
+ if (!use_parallel) {
65
+ internal::ThreadIdGuard tid_guard(0);
66
+ c10::ParallelGuard guard(true);
67
+ return f(begin, end, ident);
68
+ }
69
+
70
+ c10::SmallVector<scalar_t, 64> results(max_threads, ident);
71
+ internal::invoke_parallel(
72
+ begin,
73
+ end,
74
+ grain_size,
75
+ [&](const int64_t my_begin, const int64_t my_end) {
76
+ const auto tid = at::get_thread_num();
77
+ c10::ParallelGuard guard(true);
78
+ results[tid] = f(my_begin, my_end, ident);
79
+ });
80
+
81
+ scalar_t result = ident;
82
+ for (auto partial_result : results) {
83
+ result = sf(result, partial_result);
84
+ }
85
+ return result;
86
+ #else
87
+ internal::ThreadIdGuard tid_guard(0);
88
+ c10::ParallelGuard guard(true);
89
+ return f(begin, end, ident);
90
+ #endif
91
+ }
92
+
93
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ParallelNativeTBB.h ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <atomic>
4
+ #include <cstddef>
5
+ #include <exception>
6
+
7
+ #include <c10/util/Exception.h>
8
+
9
+ #ifdef _WIN32
10
+ #ifndef WIN32_LEAN_AND_MEAN
11
+ #define WIN32_LEAN_AND_MEAN
12
+ #endif
13
+ #endif
14
+ #include <tbb/tbb.h>
15
+
16
+ #define INTRA_OP_PARALLEL
17
+
18
+ namespace at::internal {
19
+
20
+ template <typename F>
21
+ inline void invoke_parallel(
22
+ const int64_t begin,
23
+ const int64_t end,
24
+ const int64_t grain_size,
25
+ const F& f) {
26
+ // Choose number of tasks based on grain size and number of threads.
27
+ int64_t chunk_size = divup((end - begin), get_num_threads());
28
+ // Make sure each task is at least grain_size size.
29
+ chunk_size = std::max(grain_size, chunk_size);
30
+
31
+ std::atomic_flag err_flag = ATOMIC_FLAG_INIT;
32
+ std::exception_ptr eptr;
33
+ tbb::parallel_for(
34
+ tbb::blocked_range<int64_t>(begin, end, chunk_size),
35
+ [&eptr, &err_flag, f](const tbb::blocked_range<int64_t>& r) {
36
+ try {
37
+ internal::ThreadIdGuard tid_guard(
38
+ tbb::this_task_arena::current_thread_index());
39
+ f(r.begin(), r.end());
40
+ } catch (...) {
41
+ if (!err_flag.test_and_set()) {
42
+ eptr = std::current_exception();
43
+ }
44
+ }
45
+ },
46
+ tbb::static_partitioner{});
47
+ if (eptr) {
48
+ std::rethrow_exception(eptr);
49
+ }
50
+ }
51
+
52
+ } // namespace at::internal
venv/lib/python3.10/site-packages/torch/include/ATen/RedispatchFunctions.h ADDED
The diff for this file is too large to render. See raw diff
 
venv/lib/python3.10/site-packages/torch/include/ATen/SavedTensorHooks.h ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <c10/macros/Export.h>
4
+ #include <c10/util/Optional.h>
5
+ #include <c10/util/python_stub.h>
6
+ #include <stack>
7
+ #include <string>
8
+
9
+ #include <utility>
10
+
11
+ namespace at {
12
+
13
+ namespace impl {
14
+
15
+ struct TORCH_API SavedTensorDefaultHooksTLS {
16
+ // PyObject is defined in c10/util/python_stub.h
17
+ std::stack<std::pair<PyObject*, PyObject*>> stack;
18
+
19
+ // See NOTE: [Disabling SavedTensorDefaultHooks] for context
20
+ // NOTE: [disabled_error_message invariant]
21
+ // disabled_error_message is nullopt IFF Saved Tensor hooks is enabled
22
+ // We did this for efficiency (so we didn't have to keep a separate bool
23
+ // around)
24
+ c10::optional<std::string> disabled_error_message;
25
+ };
26
+
27
+ } // namespace impl
28
+
29
+ struct TORCH_API SavedTensorDefaultHooks {
30
+ static void push_hooks(PyObject* pack_hook, PyObject* unpack_hook);
31
+ static void pop_hooks();
32
+ static std::pair<PyObject*, PyObject*> get_hooks();
33
+ static void lazy_initialize();
34
+ static std::stack<std::pair<PyObject*, PyObject*>> get_stack();
35
+ static void set_stack(std::stack<std::pair<PyObject*, PyObject*>>);
36
+
37
+ static const impl::SavedTensorDefaultHooksTLS& get_tls_state();
38
+ static void set_tls_state(const impl::SavedTensorDefaultHooksTLS& tls);
39
+
40
+ // NOTE: [Disabling SavedTensorDefaultHooks]
41
+ // A developer of a PyTorch feature may choose to disable SavedTensorDefault
42
+ // hooks, especially if their feature does not work with it. If they are
43
+ // disabled, then the following will raise an error:
44
+ // - Attempting to push_hooks
45
+ // - calling disable(message) with a non-zero stack (from get_stack) size
46
+ static void disable(const std::string& error_message);
47
+ static void enable();
48
+ static bool is_enabled();
49
+ static const c10::optional<std::string>& get_disabled_error_message();
50
+ };
51
+
52
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/Scalar.h ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <ATen/core/Scalar.h>
venv/lib/python3.10/site-packages/torch/include/ATen/ScalarOps.h ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <ATen/Tensor.h>
4
+ #include <c10/core/Scalar.h>
5
+
6
+ #ifndef AT_PER_OPERATOR_HEADERS
7
+ #include <ATen/Functions.h>
8
+ #else
9
+ #include <ATen/ops/scalar_tensor.h>
10
+ #endif
11
+
12
+ namespace at::detail {
13
+ // When filling a number to 1-element CPU tensor, we want to skip
14
+ // everything but manipulate data ptr directly.
15
+ // Ideally this fast pass should be implemented in TensorIterator,
16
+ // but we also want to skip compute_types which in not avoidable
17
+ // in TensorIterator for now.
18
+ Tensor& scalar_fill(Tensor& self, const Scalar& value);
19
+ TORCH_API Tensor scalar_tensor_static(
20
+ const Scalar& s,
21
+ c10::optional<ScalarType> dtype_opt,
22
+ c10::optional<Device> device_opt);
23
+ } // namespace at::detail
24
+
25
+ // This is in the c10 namespace because we use ADL to find the functions in it.
26
+ namespace c10 {
27
+
28
+ // FIXME: this should be (and was) Scalar::toTensor, but there is currently no
29
+ // way to implement this without going through Derived Types (which are not part
30
+ // of core).
31
+ inline at::Tensor scalar_to_tensor(
32
+ const Scalar& s,
33
+ const Device device = at::kCPU) {
34
+ // This is the fast track we have for CPU scalar tensors.
35
+ if (device == at::kCPU) {
36
+ return at::detail::scalar_tensor_static(s, s.type(), at::kCPU);
37
+ }
38
+ return at::scalar_tensor(s, at::device(device).dtype(s.type()));
39
+ }
40
+
41
+ } // namespace c10
42
+
43
+ namespace at::native {
44
+
45
+ inline Tensor wrapped_scalar_tensor(
46
+ const Scalar& scalar,
47
+ const Device device = at::kCPU) {
48
+ auto tensor = scalar_to_tensor(scalar, device);
49
+ tensor.unsafeGetTensorImpl()->set_wrapped_number(true);
50
+ return tensor;
51
+ }
52
+
53
+ } // namespace at::native
venv/lib/python3.10/site-packages/torch/include/ATen/SmallVector.h ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ #pragma once
2
+ #include <c10/util/SmallVector.h>
venv/lib/python3.10/site-packages/torch/include/ATen/SparseCsrTensorImpl.h ADDED
@@ -0,0 +1,186 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <ATen/Tensor.h>
4
+ #include <c10/core/TensorImpl.h>
5
+ #include <c10/util/Exception.h>
6
+ namespace at {
7
+
8
+ // Struct implementing a sparse CSR tensor. It uses three 1-D tensors for
9
+ // denoting the data: `crow_indices_`, `col_indices_` and `values_`.
10
+ // The `crow_indices_` tensor is a integer tensor of shape `(size(0) + 1)`
11
+ // that represents the compressed row indices of the CSR tensor. The
12
+ // `col_indices_` tensor is an integer tensor of shape `(nnz())`
13
+ // that explicitly stores the column indices of each value of the sparse
14
+ // tensor. The `values_` tensor can be of any pytorch-supported data type
15
+ // and has shape `(nnz())`.
16
+ //
17
+ // Since the main advantage of the CSR format over the COO format is speed of
18
+ // computation, care must be taken to facilitate smooth interfacing of
19
+ // these data structures with optimized libraries such as MKL and MAGMA.
20
+ // Since the MKL interface for pytorch currently uses indexing with int32
21
+ // type, it is important to make sure that the `crow_indices` and `col_indices`
22
+ // are of type int32 when calling MKL routines such as SPMM or SPMV.
23
+ //
24
+ // If not calling MKL, it should be alright to use 64 bit integer tensors
25
+ // for indexing.
26
+ struct TORCH_API SparseCsrTensorImpl : public TensorImpl {
27
+ Tensor crow_indices_;
28
+ Tensor col_indices_;
29
+ Tensor values_;
30
+ Layout layout_;
31
+
32
+ public:
33
+ explicit SparseCsrTensorImpl(
34
+ at::DispatchKeySet,
35
+ at::Device device,
36
+ Layout layout,
37
+ const caffe2::TypeMeta);
38
+
39
+ void resize_(int64_t nnz, IntArrayRef size);
40
+ void resize_and_clear_(
41
+ int64_t sparse_dim,
42
+ int64_t dense_dim,
43
+ IntArrayRef size);
44
+ void resize_as_sparse_compressed_tensor_(const Tensor& src);
45
+ void set_member_tensors(
46
+ const Tensor& crow_indices,
47
+ const Tensor& col_indices,
48
+ const Tensor& values,
49
+ c10::SymIntArrayRef size);
50
+ void set_member_tensors(
51
+ const Tensor& crow_indices,
52
+ const Tensor& col_indices,
53
+ const Tensor& values,
54
+ IntArrayRef size);
55
+ const Tensor& compressed_indices() const {
56
+ return crow_indices_;
57
+ }
58
+ const Tensor& plain_indices() const {
59
+ return col_indices_;
60
+ }
61
+ const Tensor& values() const {
62
+ return values_;
63
+ }
64
+ int64_t nnz() {
65
+ return col_indices_.size(-1);
66
+ }
67
+
68
+ inline int64_t batch_dim() const noexcept {
69
+ return crow_indices_.dim() - 1;
70
+ }
71
+
72
+ inline int64_t sparse_dim() const noexcept {
73
+ return 2;
74
+ }
75
+
76
+ inline int64_t dense_dim() const noexcept {
77
+ return values_.dim() - batch_dim() - block_dim() - 1;
78
+ }
79
+
80
+ private:
81
+ inline int64_t block_dim() const noexcept {
82
+ return (layout_ == kSparseBsr || layout_ == kSparseBsc ? 2 : 0);
83
+ }
84
+
85
+ protected:
86
+ IntArrayRef strides_custom() const override;
87
+ SymIntArrayRef sym_strides_custom() const override;
88
+ bool is_contiguous_custom(MemoryFormat) const override;
89
+
90
+ public:
91
+ void set_size(int64_t dim, int64_t new_size) override;
92
+ void set_stride(int64_t dim, int64_t new_stride) override;
93
+ void set_storage_offset(int64_t storage_offset) override;
94
+ Layout layout_impl() const override {
95
+ return layout_;
96
+ }
97
+ void set_layout(Layout layout) {
98
+ switch (layout) {
99
+ case kSparseCsr:
100
+ case kSparseCsc:
101
+ case kSparseBsr:
102
+ case kSparseBsc:
103
+ layout_ = layout;
104
+ break;
105
+ default:
106
+ TORCH_CHECK(false, "unsupported layout ", layout);
107
+ }
108
+ }
109
+
110
+ /**
111
+ * Return a TensorImpl that is a shallow-copy of this TensorImpl.
112
+ *
113
+ * For usage of `version_counter` and `allow_tensor_metadata_change`,
114
+ * see NOTE [ TensorImpl Shallow-Copying ].
115
+ */
116
+ c10::intrusive_ptr<TensorImpl> shallow_copy_and_detach(
117
+ const c10::VariableVersion& version_counter,
118
+ bool allow_tensor_metadata_change) const override {
119
+ auto impl = c10::make_intrusive<SparseCsrTensorImpl>(
120
+ key_set(), device(), layout_impl(), dtype());
121
+ copy_tensor_metadata(
122
+ /*src_sparse_impl=*/this,
123
+ /*dest_sparse_impl=*/impl.get(),
124
+ /*version_counter=*/version_counter,
125
+ /*allow_tensor_metadata_change=*/allow_tensor_metadata_change);
126
+ impl->refresh_numel();
127
+ return impl;
128
+ }
129
+
130
+ /**
131
+ * Return a TensorImpl that is a shallow-copy of this TensorImpl.
132
+ *
133
+ * For usage of `version_counter` and `allow_tensor_metadata_change`,
134
+ * see NOTE [ TensorImpl Shallow-Copying ].
135
+ */
136
+ c10::intrusive_ptr<TensorImpl> shallow_copy_and_detach(
137
+ c10::VariableVersion&& version_counter,
138
+ bool allow_tensor_metadata_change) const override {
139
+ auto impl = c10::make_intrusive<SparseCsrTensorImpl>(
140
+ key_set(), device(), layout_impl(), dtype());
141
+ copy_tensor_metadata(
142
+ /*src_sparse_impl=*/this,
143
+ /*dest_sparse_impl=*/impl.get(),
144
+ /*version_counter=*/std::move(version_counter),
145
+ /*allow_tensor_metadata_change=*/allow_tensor_metadata_change);
146
+ impl->refresh_numel();
147
+ return impl;
148
+ }
149
+
150
+ private:
151
+ explicit SparseCsrTensorImpl(
152
+ at::DispatchKeySet key_set,
153
+ const caffe2::TypeMeta data_type,
154
+ at::Tensor crow_indices,
155
+ at::Tensor col_indices,
156
+ at::Tensor values,
157
+ at::Layout layout);
158
+
159
+ const char* tensorimpl_type_name() const override;
160
+
161
+ /**
162
+ * Copy the tensor metadata fields (e.g. sizes / strides / storage pointer /
163
+ * storage_offset) from one TensorImpl to another TensorImpl.
164
+ *
165
+ * For usage of `version_counter` and `allow_tensor_metadata_change`, see NOTE
166
+ * [ TensorImpl Shallow-Copying ].
167
+ */
168
+ static void copy_tensor_metadata(
169
+ const SparseCsrTensorImpl* src_sparse_impl,
170
+ SparseCsrTensorImpl* dest_sparse_impl,
171
+ c10::VariableVersion version_counter,
172
+ bool allow_tensor_metadata_change) {
173
+ TensorImpl::copy_tensor_metadata(
174
+ src_sparse_impl,
175
+ dest_sparse_impl,
176
+ std::move(version_counter),
177
+ allow_tensor_metadata_change);
178
+
179
+ // Sparse-specific fields
180
+ dest_sparse_impl->crow_indices_ = src_sparse_impl->compressed_indices();
181
+ dest_sparse_impl->col_indices_ = src_sparse_impl->plain_indices();
182
+ dest_sparse_impl->values_ = src_sparse_impl->values();
183
+ dest_sparse_impl->layout_ = src_sparse_impl->layout_impl();
184
+ }
185
+ };
186
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/SparseTensorImpl.h ADDED
@@ -0,0 +1,400 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <ATen/Tensor.h>
4
+ #include <c10/core/TensorImpl.h>
5
+ #include <c10/util/Exception.h>
6
+ #include <c10/util/irange.h>
7
+
8
+ #ifndef AT_PER_OPERATOR_HEADERS
9
+ #include <ATen/Functions.h>
10
+ #else
11
+ #include <ATen/ops/empty.h>
12
+ #include <ATen/ops/resize.h>
13
+ #endif
14
+
15
+ namespace at {
16
+ struct TORCH_API SparseTensorImpl : public TensorImpl {
17
+ // Stored in COO format, indices + values.
18
+
19
+ // INVARIANTS:
20
+ // sparse_dim: range [0, len(shape)]; sparse_dim + dense_dim = len(shape)
21
+ // dense_dim : range [0, len(shape)]; sparse_dim + dense_dim = len(shape)
22
+ // _indices.shape: dimensionality: 2, shape: (sparse_dim, nnz)
23
+ // _values.shape: dimensionality: 1 + dense_dim. shape: (nnz,
24
+ // shape[sparse_dim:])
25
+
26
+ int64_t sparse_dim_ = 0; // number of sparse dimensions
27
+ int64_t dense_dim_ = 0; // number of dense dimensions
28
+
29
+ Tensor indices_; // always a LongTensor
30
+ Tensor values_;
31
+
32
+ // A sparse tensor is 'coalesced' if every index occurs at most once in
33
+ // the indices tensor, and the indices are in sorted order. (This means
34
+ // that it is very easy to convert a coalesced tensor to CSR format: you
35
+ // need only compute CSR format indices.)
36
+ //
37
+ // Most math operations can only be performed on coalesced sparse tensors,
38
+ // because many algorithms proceed by merging two sorted lists (of indices).
39
+ bool coalesced_ = false;
40
+
41
+ // compute_numel with integer multiplication overflow check, see gh-57542
42
+ void refresh_numel() {
43
+ TensorImpl::safe_refresh_numel();
44
+ }
45
+
46
+ public:
47
+ // Public for now...
48
+ explicit SparseTensorImpl(at::DispatchKeySet, const caffe2::TypeMeta);
49
+
50
+ void release_resources() override;
51
+
52
+ int64_t nnz() const {
53
+ return values_.size(0);
54
+ }
55
+
56
+ c10::SymInt sym_nnz() const {
57
+ return values_.sym_size(0);
58
+ }
59
+ int64_t sparse_dim() const {
60
+ return sparse_dim_;
61
+ }
62
+ int64_t dense_dim() const {
63
+ return dense_dim_;
64
+ }
65
+ bool coalesced() const {
66
+ return coalesced_;
67
+ }
68
+ Tensor indices() const {
69
+ return indices_;
70
+ }
71
+ Tensor values() const {
72
+ return values_;
73
+ }
74
+
75
+ void set_size(int64_t dim, int64_t new_size) override;
76
+ void set_stride(int64_t dim, int64_t new_stride) override;
77
+ void set_storage_offset(int64_t storage_offset) override;
78
+
79
+ #ifdef DEBUG
80
+ bool has_storage() const override;
81
+ #endif
82
+
83
+ // WARNING: This function does NOT preserve invariants of sparse_dim/dense_dim
84
+ // with respect to indices and values
85
+ void raw_resize_(int64_t sparse_dim, int64_t dense_dim, IntArrayRef size) {
86
+ TORCH_CHECK(
87
+ allow_tensor_metadata_change(),
88
+ "raw_resize_ ",
89
+ err_msg_tensor_metadata_change_not_allowed);
90
+ TORCH_CHECK(
91
+ !has_symbolic_sizes_strides_,
92
+ "raw_resize_ called on tensor with symbolic shape")
93
+ set_sizes_and_strides(size, std::vector<int64_t>(size.size()));
94
+ sparse_dim_ = sparse_dim;
95
+ dense_dim_ = dense_dim;
96
+ refresh_numel();
97
+ }
98
+
99
+ // NOTE: This function preserves invariants of sparse_dim/dense_dim with
100
+ // respect to indices and values.
101
+ //
102
+ // NOTE: This function supports the following cases:
103
+ // 1. When we keep the number of dense dimensions unchanged, and NOT shrinking
104
+ // the size of any of the dense dimensions.
105
+ // 2. When we keep the number of sparse dimensions unchanged, and NOT
106
+ // shrinking the size of any of the sparse dimensions.
107
+ // 3. When the sparse tensor has zero nnz, in which case we are free to change
108
+ // the shapes of both its sparse and dense dimensions.
109
+ //
110
+ // This function DOESN'T support (and will throw an error) the following
111
+ // cases:
112
+ // 1. When we attempt to change the number of sparse dimensions on a non-empty
113
+ // sparse tensor (such an operation will invalidate the indices stored).
114
+ // 2. When we attempt to change the number of dense dimensions on a non-empty
115
+ // sparse tensor (such an operation will behave differently from an equivalent
116
+ // dense tensor's resize method, and for API consistency we don't support it).
117
+ // 3. When we attempt to shrink the size of any of the dense dimensions on a
118
+ // non-empty sparse tensor (such an operation will behave differently from an
119
+ // equivalent dense tensor's resize method, and for API consistency we don't
120
+ // support it).
121
+ // 4. When we attempt to shrink the size of any of the sparse dimensions on a
122
+ // non-empty sparse tensor (this could make some of the stored indices
123
+ // out-of-bound and thus unsafe).
124
+ template <typename T>
125
+ void _resize_(int64_t sparse_dim, int64_t dense_dim, ArrayRef<T> size) {
126
+ TORCH_CHECK(
127
+ allow_tensor_metadata_change(),
128
+ "resize_ ",
129
+ err_msg_tensor_metadata_change_not_allowed);
130
+ TORCH_CHECK(
131
+ !has_symbolic_sizes_strides_,
132
+ "resize_ called on tensor with symbolic shape")
133
+ TORCH_CHECK(
134
+ sparse_dim + dense_dim == static_cast<int64_t>(size.size()),
135
+ "number of dimensions must be sparse_dim (",
136
+ sparse_dim,
137
+ ") + dense_dim (",
138
+ dense_dim,
139
+ "), but got ",
140
+ size.size());
141
+ if (nnz() > 0) {
142
+ auto alt_options_msg =
143
+ "You could try the following options:\n\
144
+ 1. If you need an empty sparse tensor of this size, call `x = torch.sparse_coo_tensor(size)`.\n\
145
+ 2. If you need to resize this tensor, you have the following options:\n\
146
+ 1. For both sparse and dense dimensions, keep the number of them constant and the size of them non-shrinking, and then try the same call again.\n\
147
+ 2. Or, create a new sparse tensor with the correct indices and values from this sparse tensor.";
148
+
149
+ TORCH_CHECK(
150
+ sparse_dim == sparse_dim_,
151
+ "changing the number of sparse dimensions (from ",
152
+ sparse_dim_,
153
+ " to ",
154
+ sparse_dim,
155
+ ") on a non-empty sparse tensor is not supported.\n",
156
+ alt_options_msg);
157
+
158
+ TORCH_CHECK(
159
+ dense_dim == dense_dim_,
160
+ "changing the number of dense dimensions (from ",
161
+ dense_dim_,
162
+ " to ",
163
+ dense_dim,
164
+ ") on a non-empty sparse tensor is not supported.\n",
165
+ alt_options_msg);
166
+
167
+ bool shrinking_sparse_dims = false;
168
+ bool shrinking_dense_dim = false;
169
+ auto sparse_size_original = generic_sizes<T>().slice(0, sparse_dim);
170
+ auto sparse_size_new = size.slice(0, sparse_dim);
171
+ for (const auto i : c10::irange(sparse_dim)) {
172
+ if (sparse_size_new[i] < sparse_size_original[i]) {
173
+ shrinking_sparse_dims = true;
174
+ break;
175
+ }
176
+ }
177
+ auto dense_size_original = generic_sizes<T>().slice(sparse_dim);
178
+ auto dense_size_new = size.slice(sparse_dim);
179
+ for (const auto i : c10::irange(dense_dim)) {
180
+ if (dense_size_new[i] < dense_size_original[i]) {
181
+ shrinking_dense_dim = true;
182
+ break;
183
+ }
184
+ }
185
+
186
+ TORCH_CHECK(
187
+ !shrinking_sparse_dims,
188
+ "shrinking the size of sparse dimensions (from ",
189
+ sparse_size_original,
190
+ " to ",
191
+ sparse_size_new,
192
+ ") on a non-empty sparse tensor is not supported.\n",
193
+ alt_options_msg);
194
+
195
+ TORCH_CHECK(
196
+ !shrinking_dense_dim,
197
+ "shrinking the size of dense dimensions (from ",
198
+ dense_size_original,
199
+ " to ",
200
+ dense_size_new,
201
+ ") on a non-empty sparse tensor is not supported.\n",
202
+ alt_options_msg);
203
+ }
204
+
205
+ auto sizes_and_strides = generic_sizes<T>();
206
+ const bool size_equals_sizes = std::equal(
207
+ size.begin(),
208
+ size.end(),
209
+ sizes_and_strides.begin(),
210
+ sizes_and_strides.end());
211
+ if ((!size_equals_sizes) || (sparse_dim != sparse_dim_) ||
212
+ (dense_dim != dense_dim_)) {
213
+ auto nnz = at::symint::sizes<T>(values())[0];
214
+ std::vector<T> values_size = {nnz};
215
+ auto dense_size = size.slice(sparse_dim);
216
+ values_size.insert(
217
+ values_size.end(), dense_size.begin(), dense_size.end());
218
+ at::symint::resize_<T>(values_, values_size);
219
+ at::symint::resize_<T>(indices_, {T(sparse_dim), nnz});
220
+ }
221
+
222
+ if (!size_equals_sizes) {
223
+ set_sizes_and_strides(size, std::vector<T>(size.size()));
224
+ }
225
+ sparse_dim_ = sparse_dim;
226
+ dense_dim_ = dense_dim;
227
+ refresh_numel();
228
+ }
229
+
230
+ void resize_(int64_t sparse_dim, int64_t dense_dim, ArrayRef<int64_t> size) {
231
+ return _resize_(sparse_dim, dense_dim, size);
232
+ }
233
+
234
+ void resize_(
235
+ int64_t sparse_dim,
236
+ int64_t dense_dim,
237
+ ArrayRef<c10::SymInt> size) {
238
+ return _resize_(sparse_dim, dense_dim, size);
239
+ }
240
+
241
+ // NOTE: this function will resize the sparse tensor and also set `indices`
242
+ // and `values` to empty.
243
+ void resize_and_clear_(
244
+ int64_t sparse_dim,
245
+ int64_t dense_dim,
246
+ IntArrayRef size) {
247
+ TORCH_CHECK(
248
+ allow_tensor_metadata_change(),
249
+ "resize_and_clear_ ",
250
+ err_msg_tensor_metadata_change_not_allowed);
251
+ TORCH_CHECK(
252
+ !has_symbolic_sizes_strides_,
253
+ "resize_and_clear_ called on tensor with symbolic shape")
254
+ TORCH_CHECK(
255
+ sparse_dim + dense_dim == static_cast<int64_t>(size.size()),
256
+ "number of dimensions must be sparse_dim (",
257
+ sparse_dim,
258
+ ") + dense_dim (",
259
+ dense_dim,
260
+ "), but got ",
261
+ size.size());
262
+
263
+ set_sizes_and_strides(size, std::vector<int64_t>(size.size()));
264
+ sparse_dim_ = sparse_dim;
265
+ dense_dim_ = dense_dim;
266
+
267
+ auto empty_indices = at::empty({sparse_dim, 0}, indices().options());
268
+ std::vector<int64_t> values_size = {0};
269
+ auto dense_size = sizes().slice(sparse_dim);
270
+ values_size.insert(values_size.end(), dense_size.begin(), dense_size.end());
271
+ auto empty_values = at::empty(values_size, values().options());
272
+ set_indices_and_values_unsafe(empty_indices, empty_values);
273
+ refresh_numel();
274
+ }
275
+
276
+ void set_coalesced(bool coalesced) {
277
+ TORCH_CHECK(
278
+ allow_tensor_metadata_change(),
279
+ "set_coalesced ",
280
+ err_msg_tensor_metadata_change_not_allowed);
281
+ coalesced_ = coalesced;
282
+ }
283
+
284
+ // NOTE: this function is only used internally and not exposed to Python
285
+ // frontend
286
+ void set_nnz_and_narrow(int64_t new_nnz) {
287
+ TORCH_CHECK(
288
+ allow_tensor_metadata_change(),
289
+ "set_nnz_and_narrow ",
290
+ err_msg_tensor_metadata_change_not_allowed);
291
+ AT_ASSERT(new_nnz <= nnz());
292
+ indices_ = indices_.narrow(1, 0, new_nnz);
293
+ values_ = values_.narrow(0, 0, new_nnz);
294
+ if (new_nnz < 2) {
295
+ coalesced_ = true;
296
+ }
297
+ }
298
+
299
+ // Takes indices and values and directly puts them into the sparse tensor, no
300
+ // copy. NOTE: this function is unsafe because it doesn't check whether any
301
+ // indices are out of boundaries of `sizes`, so it should ONLY be used where
302
+ // we know that the indices are guaranteed to be within bounds. This used to
303
+ // be called THSTensor_(_move) NB: This used to be able to avoid a refcount
304
+ // bump, but I was too lazy to make it happen
305
+ void set_indices_and_values_unsafe(
306
+ const Tensor& indices,
307
+ const Tensor& values);
308
+
309
+ /**
310
+ * Return a TensorImpl that is a shallow-copy of this TensorImpl.
311
+ *
312
+ * For usage of `version_counter` and `allow_tensor_metadata_change`,
313
+ * see NOTE [ TensorImpl Shallow-Copying ].
314
+ */
315
+ c10::intrusive_ptr<TensorImpl> shallow_copy_and_detach(
316
+ const c10::VariableVersion& version_counter,
317
+ bool allow_tensor_metadata_change) const override {
318
+ auto impl = c10::make_intrusive<SparseTensorImpl>(key_set(), dtype());
319
+ copy_tensor_metadata(
320
+ /*src_sparse_impl=*/this,
321
+ /*dest_sparse_impl=*/impl.get(),
322
+ /*version_counter=*/version_counter,
323
+ /*allow_tensor_metadata_change=*/allow_tensor_metadata_change);
324
+ impl->refresh_numel();
325
+ return impl;
326
+ }
327
+
328
+ /**
329
+ * Return a TensorImpl that is a shallow-copy of this TensorImpl.
330
+ *
331
+ * For usage of `version_counter` and `allow_tensor_metadata_change`,
332
+ * see NOTE [ TensorImpl Shallow-Copying ].
333
+ */
334
+ c10::intrusive_ptr<TensorImpl> shallow_copy_and_detach(
335
+ c10::VariableVersion&& version_counter,
336
+ bool allow_tensor_metadata_change) const override {
337
+ auto impl = c10::make_intrusive<SparseTensorImpl>(key_set(), dtype());
338
+ copy_tensor_metadata(
339
+ /*src_sparse_impl=*/this,
340
+ /*dest_sparse_impl=*/impl.get(),
341
+ /*version_counter=*/std::move(version_counter),
342
+ /*allow_tensor_metadata_change=*/allow_tensor_metadata_change);
343
+ impl->refresh_numel();
344
+ return impl;
345
+ }
346
+
347
+ /**
348
+ * Shallow-copies data from another TensorImpl into this TensorImpl.
349
+ *
350
+ * For why this function doesn't check this TensorImpl's
351
+ * `allow_tensor_metadata_change_`, see NOTE [ TensorImpl Shallow-Copying ].
352
+ */
353
+ void shallow_copy_from(const c10::intrusive_ptr<TensorImpl>& impl) override {
354
+ AT_ASSERT(has_compatible_shallow_copy_type(impl->key_set()));
355
+ auto sparse_impl = static_cast<const SparseTensorImpl*>(impl.get());
356
+ copy_tensor_metadata(
357
+ /*src_sparse_impl=*/sparse_impl,
358
+ /*dest_sparse_impl=*/this,
359
+ /*version_counter=*/version_counter(),
360
+ /*allow_tensor_metadata_change=*/allow_tensor_metadata_change());
361
+ refresh_numel();
362
+ }
363
+
364
+ private:
365
+ explicit SparseTensorImpl(
366
+ at::DispatchKeySet,
367
+ const caffe2::TypeMeta,
368
+ at::Tensor indices,
369
+ at::Tensor values);
370
+
371
+ /**
372
+ * Copy the tensor metadata fields (e.g. sizes / strides / storage pointer /
373
+ * storage_offset) from one TensorImpl to another TensorImpl.
374
+ *
375
+ * For usage of `version_counter` and `allow_tensor_metadata_change`, see NOTE
376
+ * [ TensorImpl Shallow-Copying ].
377
+ */
378
+ static void copy_tensor_metadata(
379
+ const SparseTensorImpl* src_sparse_impl,
380
+ SparseTensorImpl* dest_sparse_impl,
381
+ c10::VariableVersion version_counter,
382
+ bool allow_tensor_metadata_change) {
383
+ TensorImpl::copy_tensor_metadata(
384
+ src_sparse_impl,
385
+ dest_sparse_impl,
386
+ std::move(version_counter),
387
+ allow_tensor_metadata_change);
388
+
389
+ // Sparse-specific fields
390
+ dest_sparse_impl->sparse_dim_ = src_sparse_impl->sparse_dim();
391
+ dest_sparse_impl->dense_dim_ = src_sparse_impl->dense_dim();
392
+ dest_sparse_impl->indices_ = src_sparse_impl->indices();
393
+ dest_sparse_impl->values_ = src_sparse_impl->values();
394
+ dest_sparse_impl->coalesced_ = src_sparse_impl->coalesced();
395
+ }
396
+
397
+ const char* tensorimpl_type_name() const override;
398
+ };
399
+
400
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/StorageUtils.h ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <c10/core/Storage.h>
4
+ #include <c10/core/StorageImpl.h>
5
+ #include <c10/util/intrusive_ptr.h>
6
+
7
+ namespace at {
8
+
9
+ class TensorBase;
10
+
11
+ // Here we define a series of utils to create/manipulate ATen backed
12
+ // c10 storage implementations.
13
+
14
+ /**
15
+ * Create a new shared memory storage impl managed by file descriptor
16
+ *
17
+ * @param size size in bytes
18
+ */
19
+ C10_EXPORT c10::intrusive_ptr<c10::StorageImpl> new_shm_fd_storage(size_t size);
20
+
21
+ /**
22
+ * Copy src to dst
23
+ * Caller must guarantee the validness of the storage objects
24
+ * during the entire copy process, esp. when it's async.
25
+ *
26
+ * This can probably live in c10 namespace later if needed,
27
+ * but for now keep it in at to keep implementation simple.
28
+ *
29
+ * @param dst dst tensor
30
+ * @param src src tensor
31
+ * @param non_blocking (default false) whether this operation blocks caller
32
+ */
33
+ C10_EXPORT void storage_copy(
34
+ c10::Storage& dst,
35
+ const c10::Storage& src,
36
+ bool non_blocking = false);
37
+
38
+ /**
39
+ * In place change the storage to shm based.
40
+ *
41
+ * This is only applicable to CPU tensors not already shared.
42
+ * Otherwise, it's a no op to mirror the THP tensor behavior:
43
+ * https://pytorch.org/docs/stable/generated/torch.Tensor.share_memory_.html
44
+ *
45
+ * @param t a tensor
46
+ */
47
+ C10_EXPORT void share_memory_(TensorBase& t);
48
+
49
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/TensorIndexing.h ADDED
@@ -0,0 +1,735 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <ATen/ExpandUtils.h>
4
+ #include <ATen/ScalarOps.h>
5
+ #include <ATen/core/Tensor.h>
6
+ #include <ATen/core/TensorBody.h>
7
+ #include <c10/core/SymInt.h>
8
+ #include <c10/util/Optional.h>
9
+ #include <c10/util/irange.h>
10
+
11
+ #ifndef AT_PER_OPERATOR_HEADERS
12
+ #include <ATen/Functions.h>
13
+ #include <ATen/NativeFunctions.h>
14
+ #else
15
+ #include <ATen/ops/alias.h>
16
+ #include <ATen/ops/empty.h>
17
+ #include <ATen/ops/scalar_tensor.h>
18
+ #include <ATen/ops/zeros.h>
19
+ #endif
20
+
21
+ #include <ATen/core/List.h>
22
+
23
+ #include <utility>
24
+
25
+ namespace at::indexing {
26
+
27
+ constexpr int64_t INDEX_MIN = c10::SymInt::min_representable_int();
28
+ constexpr int64_t INDEX_MAX = -(INDEX_MIN + 1);
29
+
30
+ enum class TensorIndexType { None, Ellipsis, SymInt, Boolean, Slice, Tensor };
31
+
32
+ constexpr c10::nullopt_t None = c10::nullopt;
33
+
34
+ struct TORCH_API EllipsisIndexType final {
35
+ EllipsisIndexType() = default;
36
+ };
37
+ TORCH_API extern const EllipsisIndexType Ellipsis;
38
+
39
+ struct TORCH_API Slice final {
40
+ public:
41
+ Slice(
42
+ c10::optional<c10::SymInt> start_index = c10::nullopt,
43
+ c10::optional<c10::SymInt> stop_index = c10::nullopt,
44
+ c10::optional<c10::SymInt> step_index = c10::nullopt) {
45
+ if (!step_index.has_value()) {
46
+ step_ = c10::SymInt(1);
47
+ } else {
48
+ step_ = std::move(step_index).value();
49
+ }
50
+
51
+ TORCH_CHECK_VALUE(step_ != 0, "slice step cannot be zero");
52
+
53
+ if (!start_index.has_value()) {
54
+ start_ = c10::SymInt(step_ < 0 ? INDEX_MAX : 0);
55
+ } else {
56
+ start_ = std::move(start_index).value();
57
+ }
58
+
59
+ if (!stop_index.has_value()) {
60
+ stop_ = c10::SymInt(step_ < 0 ? INDEX_MIN : INDEX_MAX);
61
+ } else {
62
+ stop_ = std::move(stop_index).value();
63
+ }
64
+ }
65
+
66
+ inline c10::SymInt start() const {
67
+ return start_;
68
+ }
69
+
70
+ inline c10::SymInt stop() const {
71
+ return stop_;
72
+ }
73
+
74
+ inline c10::SymInt step() const {
75
+ return step_;
76
+ }
77
+
78
+ private:
79
+ c10::SymInt start_;
80
+ c10::SymInt stop_;
81
+ c10::SymInt step_;
82
+ };
83
+
84
+ TORCH_API std::ostream& operator<<(std::ostream& stream, const Slice& slice);
85
+
86
+ // `at::indexing::TensorIndex` is used for converting C++ tensor indices such as
87
+ // `{None, "...", Ellipsis, 0, true, Slice(1, None, 2), torch::tensor({1, 2})}`
88
+ // into its equivalent `std::vector<TensorIndex>`, so that further tensor
89
+ // indexing operations can be performed using the supplied indices.
90
+ //
91
+ // There is one-to-one correspondence between Python and C++ tensor index types:
92
+ // Python | C++
93
+ // -----------------------------------------------------
94
+ // `None` | `at::indexing::None`
95
+ // `Ellipsis` | `at::indexing::Ellipsis`
96
+ // `...` | `"..."`
97
+ // `123` | `123`
98
+ // `True` / `False` | `true` / `false`
99
+ // `:` | `Slice()` / `Slice(None, None)`
100
+ // `::` | `Slice()` / `Slice(None, None, None)`
101
+ // `1:` | `Slice(1, None)`
102
+ // `1::` | `Slice(1, None, None)`
103
+ // `:3` | `Slice(None, 3)`
104
+ // `:3:` | `Slice(None, 3, None)`
105
+ // `::2` | `Slice(None, None, 2)`
106
+ // `1:3` | `Slice(1, 3)`
107
+ // `1::2` | `Slice(1, None, 2)`
108
+ // `:3:2` | `Slice(None, 3, 2)`
109
+ // `1:3:2` | `Slice(1, 3, 2)`
110
+ // `torch.tensor([1, 2])`) | `torch::tensor({1, 2})`
111
+ struct TORCH_API TensorIndex final {
112
+ // Case 1: `at::indexing::None`
113
+ TensorIndex(c10::nullopt_t) : type_(TensorIndexType::None) {}
114
+
115
+ // Case 2: "..." / `at::indexing::Ellipsis`
116
+ TensorIndex(at::indexing::EllipsisIndexType)
117
+ : type_(TensorIndexType::Ellipsis) {}
118
+ TensorIndex(const char* str) : TensorIndex(at::indexing::Ellipsis) {
119
+ TORCH_CHECK_VALUE(
120
+ strcmp(str, "...") == 0,
121
+ "Expected \"...\" to represent an ellipsis index, but got \"",
122
+ str,
123
+ "\"");
124
+ }
125
+
126
+ // Case 3: (Sym) Integer value
127
+ TensorIndex(SymInt integer)
128
+ : integer_(std::move(integer)), type_(TensorIndexType::SymInt) {}
129
+ TensorIndex(int64_t integer) : TensorIndex(SymInt(integer)) {}
130
+ TensorIndex(int integer) : TensorIndex(SymInt(integer)) {}
131
+
132
+ // Case 4: Boolean value
133
+ template <class T, class = std::enable_if_t<std::is_same_v<bool, T>>>
134
+ TensorIndex(T boolean) : boolean_(boolean), type_(TensorIndexType::Boolean) {}
135
+
136
+ // Case 5: Slice represented in `at::indexing::Slice` form
137
+ TensorIndex(Slice slice)
138
+ : slice_(std::move(slice)), type_(TensorIndexType::Slice) {}
139
+
140
+ // Case 6: Tensor value
141
+ TensorIndex(Tensor tensor)
142
+ : tensor_(std::move(tensor)), type_(TensorIndexType::Tensor) {}
143
+
144
+ inline bool is_none() const {
145
+ return type_ == TensorIndexType::None;
146
+ }
147
+
148
+ inline bool is_ellipsis() const {
149
+ return type_ == TensorIndexType::Ellipsis;
150
+ }
151
+
152
+ inline bool is_integer() const {
153
+ return type_ == TensorIndexType::SymInt;
154
+ }
155
+
156
+ inline SymInt integer() const {
157
+ return integer_;
158
+ }
159
+
160
+ inline bool is_boolean() const {
161
+ return type_ == TensorIndexType::Boolean;
162
+ }
163
+
164
+ inline bool boolean() const {
165
+ return boolean_;
166
+ }
167
+
168
+ inline bool is_slice() const {
169
+ return type_ == TensorIndexType::Slice;
170
+ }
171
+
172
+ inline const Slice& slice() const {
173
+ return slice_;
174
+ }
175
+
176
+ inline bool is_tensor() const {
177
+ return type_ == TensorIndexType::Tensor;
178
+ }
179
+
180
+ inline const Tensor& tensor() const {
181
+ return tensor_;
182
+ }
183
+
184
+ private:
185
+ SymInt integer_ = 0;
186
+ bool boolean_ = false;
187
+ Slice slice_;
188
+ Tensor tensor_;
189
+ TensorIndexType type_;
190
+ };
191
+
192
+ TORCH_API std::ostream& operator<<(
193
+ std::ostream& stream,
194
+ const TensorIndex& tensor_index);
195
+ TORCH_API std::ostream& operator<<(
196
+ std::ostream& stream,
197
+ const std::vector<TensorIndex>& tensor_indices);
198
+
199
+ namespace impl {
200
+ static inline Tensor applySlice(
201
+ const Tensor& self,
202
+ int64_t dim,
203
+ c10::SymInt start,
204
+ c10::SymInt stop,
205
+ c10::SymInt step,
206
+ bool disable_slice_optimization,
207
+ const at::Device& self_device,
208
+ const c10::optional<SymIntArrayRef>& self_sizes) {
209
+ // TODO: implement negative step
210
+ TORCH_CHECK_VALUE(step > 0, "step must be greater than zero");
211
+
212
+ // See NOTE [nested tensor size for indexing]
213
+ if (self_sizes.has_value()) {
214
+ // Skip this optimization if we are tracing, as the trace may be polymorphic
215
+ // over the shape of the `self` tensor, and we still want to record
216
+ // the slice.
217
+ SymInt length = (self_device == at::kCPU || self_device == at::kCUDA)
218
+ ? (*self_sizes)[dim]
219
+ : self.sym_size(dim);
220
+ if (!disable_slice_optimization &&
221
+ TORCH_GUARD_SIZE_OBLIVIOUS(start.sym_eq(0)) && length == stop &&
222
+ step == 1) {
223
+ return self;
224
+ }
225
+ }
226
+ return self.slice_symint(
227
+ dim, std::move(start), std::move(stop), std::move(step));
228
+ }
229
+
230
+ static inline Tensor applySelect(
231
+ const Tensor& self,
232
+ int64_t dim,
233
+ SymInt index,
234
+ int64_t real_dim,
235
+ const at::Device& /*self_device*/,
236
+ const c10::optional<SymIntArrayRef>& self_sizes) {
237
+ // See NOTE [nested tensor size for indexing]
238
+ if (self_sizes.has_value()) {
239
+ auto maybe_index = index.maybe_as_int();
240
+ if (maybe_index.has_value()) {
241
+ TORCH_CHECK_INDEX(
242
+ !(maybe_index.value() == 0 && dim == 0 && self_sizes->empty()),
243
+ "invalid index of a 0-dim tensor. ",
244
+ "Use `tensor.item()` in Python or `tensor.item<T>()` in C++ to convert a 0-dim tensor to a number");
245
+ }
246
+
247
+ auto size = (*self_sizes)[dim];
248
+ // Note: `size >= -index` is not equivalent to `size > -1 - index` if index
249
+ // is INT64_MIN For std::numeric_limits<int64_t>::min() result of unary
250
+ // minus is undefined by the standard but in practice is equal to self. On
251
+ // the other hand, indexing wraping is valid for all negative int64_t
252
+ // values, as x[INT64_MIN] is the same as x[INT64_MAX]
253
+ TORCH_CHECK_INDEX(
254
+ size > -1 - index && size > index,
255
+ "index ",
256
+ index,
257
+ " is out of bounds for dimension ",
258
+ real_dim,
259
+ " with size ",
260
+ size);
261
+ }
262
+
263
+ // if the index is negative, do not normalize it because that would fix the
264
+ // index on the current tensor size in the tracer. aten::select also works on
265
+ // negative indices
266
+ return self.select_symint(dim, std::move(index));
267
+ }
268
+
269
+ static inline Tensor boolToIndexingTensorCPUOrCUDA(
270
+ const Tensor& self,
271
+ bool value) {
272
+ // booleans add a dimension of size 1. true indexes this dimension as if 0:,
273
+ // false as empty.
274
+ if (value) {
275
+ return at::empty({1}, self.options().dtype(kLong)).fill_(0.);
276
+ } else {
277
+ return at::empty({0}, self.options().dtype(kLong));
278
+ }
279
+ }
280
+
281
+ static inline Tensor boolToIndexingTensorNonNativeDeviceType(
282
+ const Tensor& self,
283
+ bool value) {
284
+ // booleans add a dimension of size 1. true indexes this dimension as if 0:,
285
+ // false as empty.
286
+ if (value) {
287
+ return at::zeros({1}, self.options().dtype(kLong));
288
+ } else {
289
+ return at::empty({0}, self.options().dtype(kLong));
290
+ }
291
+ }
292
+
293
+ static inline Tensor boolToIndexingTensor(
294
+ const Tensor& self,
295
+ bool value,
296
+ const at::Device& self_device) {
297
+ if (self_device == at::kCPU || self_device == at::kCUDA) {
298
+ return boolToIndexingTensorCPUOrCUDA(self, value);
299
+ } else {
300
+ return boolToIndexingTensorNonNativeDeviceType(self, value);
301
+ }
302
+ }
303
+
304
+ static inline Tensor scalarToTensorNonNativeDeviceType(
305
+ const Scalar& v,
306
+ const TensorOptions& options) {
307
+ return at::scalar_tensor(v, options);
308
+ }
309
+
310
+ static inline void recordTensorIndex(
311
+ const Tensor& tensor,
312
+ std::vector<Tensor>& outIndices,
313
+ int64_t* dim_ptr) {
314
+ // TODO: check scalarType
315
+ outIndices.resize(*dim_ptr + 1);
316
+ outIndices[*dim_ptr] = tensor;
317
+ (*dim_ptr)++;
318
+ };
319
+
320
+ static inline c10::List<c10::optional<Tensor>> typeConvertIndices(
321
+ const Tensor& /*self*/,
322
+ std::vector<Tensor>&& indices) {
323
+ c10::List<c10::optional<Tensor>> converted_inds;
324
+ converted_inds.reserve(indices.size());
325
+ for (auto&& i : std::move(indices)) {
326
+ converted_inds.push_back(std::move(i));
327
+ }
328
+ return converted_inds;
329
+ }
330
+
331
+ // NOTE: Why do we mirror instead of replace the `count_specified_dimensions`
332
+ // function in torch/csrc/autograd/python_variable_indexing.cpp? It's because
333
+ // `count_specified_dimensions` is on the hot path of Python tensor multi-dim
334
+ // indexing (i.e. it's called by `applySlicing` which is called by
335
+ // `THPVariable_getitem` / `THPVariable_setitem` when handling indexing of more
336
+ // than one dimension). If we were to merge the Python/C++
337
+ // `count_specified_dimensions` function, on the Python side we would have to
338
+ // construct a `std::vector` container to be consumed by the C++
339
+ // `count_specified_dimensions` function, which adds 100s of nanoseconds
340
+ // overhead and is undesirable.
341
+ static inline int64_t count_specified_dimensions(
342
+ const ArrayRef<TensorIndex>& indices) {
343
+ // Count the number of indexed dimensions (everything but ellipsis and None)
344
+ int64_t count = 0;
345
+ for (auto& obj : indices) {
346
+ if (obj.is_tensor()) {
347
+ auto& tensor = obj.tensor();
348
+ if (tensor.scalar_type() == kByte || tensor.scalar_type() == kBool) {
349
+ count += tensor.dim();
350
+ } else {
351
+ count++;
352
+ }
353
+ } else if (!obj.is_none() && !obj.is_ellipsis() && !obj.is_boolean()) {
354
+ count++;
355
+ }
356
+ }
357
+ return count;
358
+ }
359
+ } // namespace impl
360
+
361
+ // NOTE: Many functions below are only for consumption from Python indexing
362
+ // implementation, they include:
363
+ //
364
+ // - `Tensor scalarToTensor(...)`
365
+ // - `IntArrayRef slicePrefix1sSize(...)`
366
+ // - `void copy_to(...)`
367
+ // - `Tensor handleDimInMultiDimIndexing(...)`
368
+ // - `Tensor dispatch_index(...)`
369
+ // - `Tensor dispatch_index_put_(...)`
370
+ // - `Tensor get_item(...)`
371
+ // - `void set_item(...)`
372
+ //
373
+ // The rest of the functions are in `at::indexing::impl` namespace, signifying
374
+ // that they shouldn't be used from Python indexing implementation.
375
+ static inline Tensor scalarToTensor(
376
+ const Scalar& v,
377
+ const TensorOptions& options,
378
+ const at::Device& self_device) {
379
+ if (self_device == at::kCPU && !v.isSymbolic()) {
380
+ return at::detail::scalar_tensor_static(
381
+ v, options.dtype_opt()->toScalarType(), self_device);
382
+ } else {
383
+ return impl::scalarToTensorNonNativeDeviceType(v, options);
384
+ }
385
+ }
386
+
387
+ // To match numpy semantics:
388
+ // As a special case for backwards compatibility,
389
+ // strip away unit dimensions from the left of 'src'
390
+ static inline SymIntArrayRef slicePrefix1sSize(const SymIntArrayRef& sizes) {
391
+ size_t first_non1_src = sizes.size();
392
+ for (const auto i : c10::irange(sizes.size())) {
393
+ // Unbacked SymInt has different behavior, but this is sound because
394
+ // failing to slice will only ever cause an error, not divergent
395
+ // behavior
396
+ if (!sizes[i].has_hint() || sizes[i] != 1) {
397
+ first_non1_src = i;
398
+ break;
399
+ }
400
+ }
401
+
402
+ return sizes.slice(first_non1_src);
403
+ }
404
+
405
+ static inline void copy_to(const Tensor& dst, const Tensor& src) {
406
+ if (dst.sym_sizes().equals(src.sym_sizes())) {
407
+ // A shortcut to avoid generating hard-coded constant sizes during tracing.
408
+ // This is not a perfect solution: when src & dst have different shapes,
409
+ // constants will still appear. Users can workaround that case by
410
+ // dst[index..] = src.reshape(..)
411
+ dst.copy_(src);
412
+ return;
413
+ } else if (src.dim() == 0 && src.device().type() == at::kCPU) {
414
+ dst.fill_(src);
415
+ return;
416
+ }
417
+ auto src_view = src.view_symint(slicePrefix1sSize(src.sym_sizes()));
418
+ c10::MaybeOwned<Tensor> b_src = expand_inplace(dst, src_view, "setitem");
419
+ dst.copy_(*b_src);
420
+ }
421
+
422
+ // See NOTE [ Setting `disable_slice_optimization` when calling C++ tensor
423
+ // indexing functions from Python ]
424
+ static inline Tensor handleDimInMultiDimIndexing(
425
+ const Tensor& prev_dim_result,
426
+ const Tensor& original_tensor,
427
+ const TensorIndex& index,
428
+ int64_t* dim_ptr,
429
+ int64_t* specified_dims_ptr,
430
+ int64_t real_dim,
431
+ std::vector<Tensor>& outIndices,
432
+ bool disable_slice_optimization,
433
+ const at::Device& original_tensor_device,
434
+ const c10::optional<SymIntArrayRef>& prev_dim_result_sizes) {
435
+ if (index.is_integer()) {
436
+ return impl::applySelect(
437
+ prev_dim_result,
438
+ *dim_ptr,
439
+ index.integer(),
440
+ real_dim,
441
+ original_tensor_device,
442
+ prev_dim_result_sizes);
443
+ } else if (index.is_slice()) {
444
+ Tensor result = impl::applySlice(
445
+ prev_dim_result,
446
+ *dim_ptr,
447
+ index.slice().start(),
448
+ index.slice().stop(),
449
+ index.slice().step(),
450
+ /*disable_slice_optimization=*/disable_slice_optimization,
451
+ original_tensor_device,
452
+ prev_dim_result_sizes);
453
+ (*dim_ptr)++;
454
+ return result;
455
+ } else if (index.is_ellipsis()) {
456
+ (*dim_ptr) += original_tensor.dim() - (*specified_dims_ptr);
457
+ return prev_dim_result;
458
+ } else if (index.is_none()) {
459
+ Tensor result = prev_dim_result.unsqueeze(*dim_ptr);
460
+ (*dim_ptr)++;
461
+ return result;
462
+ } else if (index.is_boolean()) {
463
+ Tensor result = prev_dim_result.unsqueeze(*dim_ptr);
464
+ impl::recordTensorIndex(
465
+ impl::boolToIndexingTensor(
466
+ result, index.boolean(), original_tensor_device),
467
+ outIndices,
468
+ dim_ptr);
469
+ return result;
470
+ } else if (index.is_tensor()) {
471
+ Tensor result = prev_dim_result;
472
+ const Tensor& tensor = index.tensor();
473
+ auto scalar_type = tensor.scalar_type();
474
+ if (tensor.dim() == 0 &&
475
+ at::isIntegralType(scalar_type, /*includeBool=*/true)) {
476
+ if (scalar_type != at::kByte && scalar_type != at::kBool) {
477
+ result = impl::applySelect(
478
+ result,
479
+ *dim_ptr,
480
+ tensor.item<int64_t>(),
481
+ real_dim,
482
+ original_tensor_device,
483
+ prev_dim_result_sizes);
484
+ } else {
485
+ result = result.unsqueeze(*dim_ptr);
486
+ if (scalar_type == at::kBool) {
487
+ impl::recordTensorIndex(
488
+ impl::boolToIndexingTensor(
489
+ result, tensor.item<bool>() != 0, original_tensor_device),
490
+ outIndices,
491
+ dim_ptr);
492
+ } else {
493
+ impl::recordTensorIndex(
494
+ impl::boolToIndexingTensor(
495
+ result, tensor.item<uint8_t>() != 0, original_tensor_device),
496
+ outIndices,
497
+ dim_ptr);
498
+ }
499
+ }
500
+ } else {
501
+ impl::recordTensorIndex(tensor, outIndices, dim_ptr);
502
+ }
503
+ return result;
504
+ } else {
505
+ TORCH_INTERNAL_ASSERT(false, "Invalid TensorIndex type");
506
+ }
507
+ }
508
+
509
+ namespace impl {
510
+ // This mirrors `applySlicing` in
511
+ // torch/csrc/autograd/python_variable_indexing.cpp
512
+ static inline Tensor applySlicing(
513
+ const Tensor& self,
514
+ const ArrayRef<TensorIndex>& indices,
515
+ std::vector<Tensor>& outIndices,
516
+ bool disable_slice_optimization,
517
+ const at::Device& self_device,
518
+ const c10::optional<SymIntArrayRef>& self_sizes) {
519
+ int64_t dim = 0;
520
+ int64_t specified_dims = impl::count_specified_dimensions(indices);
521
+
522
+ // See NOTE [nested tensor size for indexing]
523
+ if (self_sizes.has_value()) {
524
+ TORCH_CHECK_INDEX(
525
+ specified_dims <= (int64_t)self_sizes->size(),
526
+ "too many indices for tensor of dimension ",
527
+ (int)self_sizes->size());
528
+ }
529
+
530
+ Tensor result = self;
531
+ for (const auto i : c10::irange(indices.size())) {
532
+ auto& obj = indices[i];
533
+ // See NOTE [nested tensor size for indexing]
534
+ c10::optional<SymIntArrayRef> result_sizes = result.is_nested()
535
+ ? c10::optional<SymIntArrayRef>(c10::nullopt)
536
+ : c10::optional<SymIntArrayRef>(result.sym_sizes());
537
+ result = handleDimInMultiDimIndexing(
538
+ /*prev_dim_result=*/result,
539
+ /*original_tensor=*/self,
540
+ /*index=*/obj,
541
+ /*dim_ptr=*/&dim,
542
+ /*specified_dims_ptr=*/&specified_dims,
543
+ /*real_dim=*/static_cast<int64_t>(i),
544
+ /*outIndices=*/outIndices,
545
+ /*disable_slice_optimization=*/disable_slice_optimization,
546
+ /*original_tensor_device=*/self_device,
547
+ /*prev_dim_result_sizes=*/result_sizes);
548
+ }
549
+ return result;
550
+ }
551
+ } // namespace impl
552
+
553
+ static inline Tensor dispatch_index(
554
+ const Tensor& self,
555
+ std::vector<Tensor>&& indices) {
556
+ return self.index(impl::typeConvertIndices(self, std::move(indices)));
557
+ }
558
+
559
+ static inline Tensor dispatch_index_put_(
560
+ Tensor& self,
561
+ std::vector<Tensor>&& indices,
562
+ const Tensor& value) {
563
+ return self.index_put_(
564
+ impl::typeConvertIndices(self, std::move(indices)), value);
565
+ }
566
+
567
+ // NOTE [ Setting `disable_slice_optimization` when calling C++ tensor indexing
568
+ // functions from Python ]
569
+ //
570
+ // Question: When should we set `disable_slice_optimization` to `true` when
571
+ // calling C++ tensor indexing functions from Python indexing code?
572
+ //
573
+ // Answer: What "slice optimization" means: when we have a slicing expression
574
+ // like `x[0:5, 0]`, where the sliced tensor was of size 5 in dimension 0, we
575
+ // would skip dispatching the actual slice call as an optimization. However,
576
+ // here are the cases where we DON'T want this optimization:
577
+ //
578
+ // 1. When we are doing 1-D slicing (e.g. `tensor[:]`).
579
+ // Reason: we always return a shallow copy for expressions such as
580
+ // `tensor[:]` / `tensor[...]` / `tensor[:, :]`. (Note that for `tensor[:,
581
+ // :]`, we return an alias of `tensor` by doing the following:
582
+ // ```
583
+ // Tensor sliced = impl::applySlicing(self, indices, tensorIndices,
584
+ // disable_slice_optimization, self_device, self_sizes); if
585
+ // (tensorIndices.empty()) {
586
+ // if (sliced.is_same(self)) {
587
+ // // ensure we return a shallow copy for things like x[...]
588
+ // sliced = at::alias(sliced);
589
+ // }
590
+ // return sliced;
591
+ // }
592
+ // ```)
593
+ // 2. When we are doing JIT tracing.
594
+ // Reason: JIT tracing needs the `self.slice(...)` call to properly trace the
595
+ // slice operation.
596
+
597
+ // This mirrors `THPVariable_getitem` in
598
+ // torch/csrc/autograd/python_variable_indexing.cpp See NOTE [ Setting
599
+ // `disable_slice_optimization` when calling C++ tensor indexing functions from
600
+ // Python ]
601
+ static inline Tensor get_item(
602
+ const Tensor& self,
603
+ const ArrayRef<TensorIndex>& indices,
604
+ bool disable_slice_optimization = false) {
605
+ at::Device self_device = self.device();
606
+ // NOTE [nested tensor size for indexing]
607
+ // nested tensor does not have a size (yet) so for now we represent its size
608
+ // as null may need to be changed after we reach a better solution for nested
609
+ // tensor size
610
+ c10::optional<SymIntArrayRef> self_sizes = self.is_nested()
611
+ ? c10::optional<SymIntArrayRef>(c10::nullopt)
612
+ : c10::optional<SymIntArrayRef>(self.sym_sizes());
613
+
614
+ // handle simple types: integers, slices, none, ellipsis, bool
615
+ if (indices.size() == 1) {
616
+ const TensorIndex& index = indices[0];
617
+ if (index.is_integer()) {
618
+ return impl::applySelect(
619
+ self, 0, index.integer(), 0, self_device, self_sizes);
620
+ } else if (index.is_slice()) {
621
+ return impl::applySlice(
622
+ self,
623
+ 0,
624
+ index.slice().start(),
625
+ index.slice().stop(),
626
+ index.slice().step(),
627
+ /*disable_slice_optimization=*/true,
628
+ self_device,
629
+ self_sizes);
630
+ } else if (index.is_none()) {
631
+ return self.unsqueeze(0);
632
+ } else if (index.is_ellipsis()) {
633
+ return at::alias(self);
634
+ } else if (index.is_boolean()) {
635
+ Tensor result = self.unsqueeze(0);
636
+ return dispatch_index(
637
+ result,
638
+ std::vector<Tensor>{impl::boolToIndexingTensor(
639
+ result, index.boolean(), self_device)});
640
+ }
641
+ }
642
+
643
+ std::vector<Tensor> tensorIndices;
644
+ Tensor sliced = impl::applySlicing(
645
+ self,
646
+ indices,
647
+ tensorIndices,
648
+ disable_slice_optimization,
649
+ self_device,
650
+ self_sizes);
651
+ if (tensorIndices.empty()) {
652
+ if (sliced.is_same(self)) {
653
+ // ensure we return a shallow copy for things like x[...]
654
+ sliced = at::alias(sliced);
655
+ }
656
+ return sliced;
657
+ }
658
+
659
+ // indexing by tensors ("advanced" indexing)
660
+ return dispatch_index(sliced, std::move(tensorIndices));
661
+ }
662
+
663
+ // This mirrors `THPVariable_setitem` in
664
+ // torch/csrc/autograd/python_variable_indexing.cpp for "the assigned value is a
665
+ // Tensor" case See NOTE [ Setting `disable_slice_optimization` when calling C++
666
+ // tensor indexing functions from Python ]
667
+ static inline void set_item(
668
+ const Tensor& self,
669
+ const ArrayRef<TensorIndex>& indices,
670
+ const Tensor& value,
671
+ bool disable_slice_optimization = false) {
672
+ at::Device self_device = self.device();
673
+ SymIntArrayRef self_sizes = self.sym_sizes();
674
+
675
+ // handle simple types: integers, slices, ellipsis, bool
676
+ if (indices.size() == 1) {
677
+ const TensorIndex& index = indices[0];
678
+ if (index.is_boolean() && !index.boolean()) {
679
+ // do nothing for false (technically we should check the size, but we
680
+ // don't have real 0-sized shapes.
681
+ return;
682
+ } else if (index.is_ellipsis()) {
683
+ copy_to(self, value);
684
+ return;
685
+ } else if (index.is_none() || (index.is_boolean() && index.boolean())) {
686
+ copy_to(self.unsqueeze(0), value);
687
+ return;
688
+ } else if (index.is_integer()) {
689
+ copy_to(
690
+ impl::applySelect(
691
+ self, 0, index.integer(), 0, self_device, self_sizes),
692
+ value);
693
+ return;
694
+ } else if (index.is_slice()) {
695
+ copy_to(
696
+ impl::applySlice(
697
+ self,
698
+ 0,
699
+ index.slice().start(),
700
+ index.slice().stop(),
701
+ index.slice().step(),
702
+ /*disable_slice_optimization=*/disable_slice_optimization,
703
+ self_device,
704
+ self_sizes),
705
+ value);
706
+ return;
707
+ }
708
+ }
709
+
710
+ std::vector<Tensor> tensorIndices;
711
+ Tensor sliced = impl::applySlicing(
712
+ self,
713
+ indices,
714
+ tensorIndices,
715
+ disable_slice_optimization,
716
+ self_device,
717
+ self_sizes);
718
+ if (tensorIndices.empty()) {
719
+ copy_to(sliced, value);
720
+ return;
721
+ }
722
+
723
+ SymIntArrayRef valueSizes = value.sym_sizes();
724
+ SymIntArrayRef slicedValueSizes = slicePrefix1sSize(valueSizes);
725
+ Tensor valuesSliced;
726
+ if (!valueSizes.equals(slicedValueSizes)) {
727
+ valuesSliced = value.view_symint(slicedValueSizes);
728
+ } else {
729
+ valuesSliced = value;
730
+ }
731
+ dispatch_index_put_(sliced, std::move(tensorIndices), valuesSliced);
732
+ return;
733
+ }
734
+
735
+ } // namespace at::indexing
venv/lib/python3.10/site-packages/torch/include/ATen/TensorIterator.h ADDED
@@ -0,0 +1,1002 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <ATen/TensorMeta.h>
4
+ #include <ATen/core/Dimname.h>
5
+ #include <ATen/core/Range.h>
6
+ #include <ATen/core/TensorBase.h>
7
+ #include <c10/core/DynamicCast.h>
8
+ #include <c10/util/FunctionRef.h>
9
+ #include <c10/util/MaybeOwned.h>
10
+ #include <c10/util/SmallVector.h>
11
+ #include <c10/util/TypeCast.h>
12
+ #include <c10/util/irange.h>
13
+
14
+ #include <array>
15
+ #include <bitset>
16
+
17
+ namespace at {
18
+ class Tensor;
19
+ class OptionalTensorRef;
20
+ using NameVector = SmallVector<Dimname, kDimVectorStaticSize>;
21
+ } // namespace at
22
+
23
+ // TensorIterator is a helper class for element-wise operations, such as
24
+ // arithmetic, comparisons, and trigonometric functions. It handles
25
+ // broadcasting and type conversions of operands.
26
+ //
27
+ // This is inspired by NumPy's Array Iterator API (NpyIter).
28
+ //
29
+ // The files Loops.h and Loops.cuh provide functions to build kernels that
30
+ // use TensorIterator.
31
+ //
32
+ // Example:
33
+ //
34
+ // auto iter = TensorIteratorConfig()
35
+ // .add_output(output)
36
+ // .add_input(input)
37
+ // .build()
38
+ //
39
+ // [MyKernel.cpp / MyKernel.cu]
40
+ // cpu_kernel(iter, [](float a, float b) {
41
+ // return a + b;
42
+ // });
43
+ //
44
+ // gpu_kernel(iter, []GPU_LAMBDA(float a, float b) -> float {
45
+ // return a + b;
46
+ // });
47
+ //
48
+ // Note [Order of Construction]
49
+ // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
50
+ // When setting up the tensor iterator configuration, the output Tensors
51
+ // have to be added first via
52
+ // TensorIteratorConfig::add_owned_output(at::Tensor). After adding all outputs,
53
+ // the inputs can be added via
54
+ // TensorIteratorConfig::add_owned_input(at::Tensor).
55
+ // Adding another output after inputs have been added will rise an exception.
56
+ //
57
+ // Note [Common Dtype Computation]
58
+ // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
59
+ // Some operations have a natural notion of a "common dtype" or
60
+ // "computation dtype" where all inputs are cast to one dtype, the
61
+ // operation is performed, and then the results are cast to all outputs.
62
+ //
63
+ // TensorIterator infers a common dtype if all inputs have the same dtype,
64
+ // and it computes one using type promotion rules on its inputs if
65
+ // promote_inputs_to_common_dtype_ is true. Attempting to query
66
+ // a common dtype otherwise will throw an exception.
67
+ //
68
+ // Note that the outputs are not considered when computing a common dtype.
69
+
70
+ namespace at {
71
+
72
+ namespace internal {
73
+ // This parameter is heuristically chosen to determine the minimum number of
74
+ // work that warrants parallelism. For example, when summing an array, it is
75
+ // deemed inefficient to parallelise over arrays shorter than 32768. Further,
76
+ // no parallel algorithm (such as parallel_reduce) should split work into
77
+ // smaller than GRAIN_SIZE chunks.
78
+ constexpr int64_t GRAIN_SIZE = 32768;
79
+
80
+ // Storage for a non-owning Tensor, without needing to include Tensor.h
81
+ class TORCH_API OpaqueOptionalTensorRef {
82
+ alignas(alignof(TensorBase)) std::array<char, sizeof(TensorBase)> data_{};
83
+
84
+ public:
85
+ OpaqueOptionalTensorRef();
86
+ OpaqueOptionalTensorRef(const OpaqueOptionalTensorRef&) = default;
87
+ OpaqueOptionalTensorRef& operator=(const OpaqueOptionalTensorRef&) = default;
88
+ OpaqueOptionalTensorRef(OpaqueOptionalTensorRef&&) noexcept = default;
89
+ OpaqueOptionalTensorRef& operator=(OpaqueOptionalTensorRef&&) noexcept =
90
+ default;
91
+ ~OpaqueOptionalTensorRef();
92
+
93
+ OptionalTensorRef* get() {
94
+ return reinterpret_cast<OptionalTensorRef*>(data_.data());
95
+ }
96
+ const OptionalTensorRef* get() const {
97
+ return reinterpret_cast<const OptionalTensorRef*>(data_.data());
98
+ }
99
+
100
+ OptionalTensorRef& operator*() {
101
+ return *get();
102
+ }
103
+ const OptionalTensorRef& operator*() const {
104
+ return *get();
105
+ }
106
+ OptionalTensorRef* operator->() {
107
+ return get();
108
+ }
109
+ const OptionalTensorRef* operator->() const {
110
+ return get();
111
+ }
112
+
113
+ const Tensor& getTensor() const;
114
+ };
115
+ } // namespace internal
116
+
117
+ struct TORCH_API OperandInfo {
118
+ using StrideVector = SmallVector<int64_t, 6>;
119
+ OperandInfo() = default;
120
+ C10_ALWAYS_INLINE explicit OperandInfo(c10::MaybeOwned<TensorBase>&& t) {
121
+ if (t->defined()) {
122
+ device = t->device();
123
+ target_dtype = t->scalar_type();
124
+ current_dtype = target_dtype;
125
+ }
126
+ tensor(std::move(t));
127
+ validate();
128
+ }
129
+
130
+ C10_ALWAYS_INLINE OperandInfo(const OperandInfo&) = default;
131
+ C10_ALWAYS_INLINE OperandInfo& operator=(const OperandInfo&) = default;
132
+ C10_ALWAYS_INLINE OperandInfo(OperandInfo&&) noexcept = default;
133
+ C10_ALWAYS_INLINE OperandInfo& operator=(OperandInfo&&) noexcept = default;
134
+ C10_ALWAYS_INLINE ~OperandInfo() = default;
135
+
136
+ /// The data pointer. This may be different from tensor->data_ptr() if the
137
+ /// iterator is split.
138
+ void* data = nullptr;
139
+
140
+ /// Stride after broadcasting. The stride is in bytes, not number of elements.
141
+ StrideVector stride_bytes;
142
+
143
+ /// The desired device and type for the operand. For inputs, this specifies
144
+ /// that the input should be converted to this type if necessary. For outputs,
145
+ /// this specifies which type to allocate. target_dtype and device are
146
+ /// initialized with the dtype and device of the tensor but during type
147
+ /// promotion target_dtype value can become different from tensor's dtype
148
+ /// also, during type promotion target_dtype and device can be set for an
149
+ /// undefined tensor so that tensor can be properly constructed later.
150
+ c10::optional<Device> device = c10::nullopt;
151
+ ScalarType target_dtype = ScalarType::Undefined;
152
+ // Caches dtype of the tensor, because scalar_type is an expensive operation
153
+ // If dtype of the tensor is changed (e.g. as a result of type promotion or in
154
+ // allocate_outputs), this
155
+ // value should be changed too.
156
+ ScalarType current_dtype = ScalarType::Undefined;
157
+
158
+ bool is_device_defined() const {
159
+ return device.has_value();
160
+ }
161
+ bool is_type_defined() const {
162
+ return target_dtype != ScalarType::Undefined;
163
+ }
164
+ TensorOptions options() const {
165
+ return TensorOptions(target_dtype).device(device);
166
+ }
167
+
168
+ bool is_output = false;
169
+
170
+ bool will_resize = false;
171
+
172
+ bool is_read_write = false;
173
+
174
+ bool is_const = false;
175
+
176
+ void validate() {
177
+ TORCH_CHECK(
178
+ !tensor_base_->defined() || tensor_base_->layout() == kStrided,
179
+ "unsupported tensor layout: ",
180
+ tensor_base_->layout());
181
+ }
182
+
183
+ /// The tensor operand. Note that the strides, data pointer, and
184
+ /// other attributes may differ due to dimension reordering and
185
+ /// coalescing.
186
+ const Tensor& tensor() const {
187
+ return tensor_storage_.getTensor();
188
+ }
189
+ const TensorBase& tensor_base() const {
190
+ return *tensor_base_;
191
+ }
192
+ void tensor(c10::MaybeOwned<TensorBase>&& tensor);
193
+
194
+ // Save the original tensor operand in cases when an output is modified
195
+ // (e.g. if dtype is changed)
196
+ const Tensor& original_tensor() const {
197
+ return original_tensor_storage_.getTensor();
198
+ }
199
+ const TensorBase& original_tensor_base() const {
200
+ return *original_tensor_base_;
201
+ }
202
+
203
+ // Set tensor to a new value, and store the old tensor value in
204
+ // original_tensor Should only ever be called once for the lifetime of an
205
+ // operand
206
+ void exchange_tensor(c10::MaybeOwned<TensorBase>&& new_tensor);
207
+
208
+ // Move original_tensor back into tensor, exchange_tensor must have been
209
+ // called before
210
+ void restore_original_tensor();
211
+
212
+ private:
213
+ c10::MaybeOwned<TensorBase> tensor_base_;
214
+ c10::MaybeOwned<TensorBase> original_tensor_base_ =
215
+ c10::MaybeOwned<TensorBase>::owned(std::in_place);
216
+
217
+ // We store TensorBase visibly in the header to allow inline access.
218
+ // However, we sometimes need a genuine `const Tensor &` for the
219
+ // TensorIterator API. So, we also store a non-owning `Tensor`
220
+ // object in these `_storage_` variables.
221
+ internal::OpaqueOptionalTensorRef tensor_storage_;
222
+ internal::OpaqueOptionalTensorRef original_tensor_storage_;
223
+ };
224
+
225
+ struct SplitUntil32Bit;
226
+
227
+ enum class FastSetupType : uint8_t {
228
+ NONE,
229
+ CONTIGUOUS,
230
+ CHANNELS_LAST,
231
+ NON_OVERLAPPING_DENSE
232
+ };
233
+
234
+ class TensorIteratorConfig;
235
+ struct TensorIterator;
236
+
237
+ struct TORCH_API TensorIteratorBase : public impl::MetaBase {
238
+ using DimMask = std::bitset<64>;
239
+ using PtrVector = SmallVector<char*, 4>;
240
+ using StrideVector = SmallVector<int64_t, 6>;
241
+
242
+ TensorIteratorBase();
243
+ void build(TensorIteratorConfig&);
244
+
245
+ // The inner-loop function operates on the fastest moving dimension. It
246
+ // implements element-wise operations in terms of 1-d strided tensors.
247
+ //
248
+ // Arguments:
249
+ // data: data pointers for each operand (length `ntensors`)
250
+ // strides: stride for each operand (length `ntensors`)
251
+ // size: size of inner loop
252
+ //
253
+ // The `size` often matches shape[0], but may be smaller due to
254
+ // parallelization of the inner loop.
255
+ using loop2d_t = c10::function_ref<
256
+ void(char** data, const int64_t* strides, int64_t size0, int64_t size1)>;
257
+
258
+ using loop_subiter_t = c10::function_ref<void(TensorIteratorBase& subiter)>;
259
+
260
+ void foreach_reduced_elt(loop_subiter_t loop, bool parallelize = true);
261
+
262
+ int ndim() const {
263
+ return static_cast<int>(shape_.size());
264
+ }
265
+ IntArrayRef shape() const {
266
+ return shape_;
267
+ }
268
+ int64_t numel() const;
269
+ int ntensors() const {
270
+ return static_cast<int>(operands_.size());
271
+ }
272
+ int noutputs() const {
273
+ return num_outputs_;
274
+ }
275
+ int ninputs() const {
276
+ return ntensors() - noutputs();
277
+ }
278
+ IntArrayRef view_offsets() const {
279
+ return view_offsets_;
280
+ }
281
+
282
+ /// number of elements in the output operand. this is the same as numel() for
283
+ /// operations that are not reductions.
284
+ int64_t num_output_elements() const;
285
+
286
+ /// number of reduced dimensions in a reduction operation
287
+ int num_reduce_dims() const;
288
+
289
+ /// 1-dimensional iteration and no buffering or type conversion
290
+ bool is_trivial_1d() const;
291
+ /// Reducible to 1-dimensional and all operands are contiguous
292
+ bool is_contiguous() const;
293
+ bool is_dim_reduced(int dim) const;
294
+
295
+ /// Accessors for each operand
296
+ IntArrayRef strides(int64_t arg) const {
297
+ return operands_[arg].stride_bytes;
298
+ }
299
+ void* data_ptr(int64_t arg) const;
300
+ ScalarType dtype(int64_t arg = 0) const {
301
+ return operands_[arg].current_dtype;
302
+ }
303
+ ScalarType common_dtype() const {
304
+ TORCH_INTERNAL_ASSERT(
305
+ common_dtype_ != ScalarType::Undefined,
306
+ "Queried for invalid common dtype!");
307
+ return common_dtype_;
308
+ }
309
+ ScalarType input_dtype(int64_t arg = 0) const {
310
+ return operands_[num_outputs_ + arg].current_dtype;
311
+ }
312
+ Device device(int64_t arg = 0) const {
313
+ return operands_[arg].device.value();
314
+ }
315
+ c10::DeviceType device_type(int64_t arg = 0) const {
316
+ return device(arg).type();
317
+ }
318
+ int64_t element_size(int64_t arg) const {
319
+ return static_cast<int64_t>(elementSize(dtype(arg)));
320
+ }
321
+ bool is_scalar(int64_t arg) const;
322
+ bool is_cpu_scalar(int64_t arg) const;
323
+
324
+ const TensorBase& tensor_base(int64_t arg) const {
325
+ return operands_[arg].tensor_base();
326
+ }
327
+ const Tensor& tensor(int64_t arg) const {
328
+ return operands_[arg].tensor();
329
+ }
330
+
331
+ const TensorBase& output_base(int64_t arg = 0) const {
332
+ AT_ASSERT(arg < num_outputs_);
333
+ return tensor_base(arg);
334
+ }
335
+
336
+ const Tensor& output(int64_t arg = 0) const {
337
+ AT_ASSERT(arg < num_outputs_);
338
+ return tensor(arg);
339
+ }
340
+
341
+ const TensorBase& input_base(int64_t arg = 0) const {
342
+ AT_ASSERT(arg >= 0 && arg < ntensors() - num_outputs_);
343
+ return tensor_base(num_outputs_ + arg);
344
+ }
345
+ const Tensor& input(int64_t arg = 0) const {
346
+ AT_ASSERT(arg >= 0 && arg < ntensors() - num_outputs_);
347
+ return tensor(num_outputs_ + arg);
348
+ }
349
+
350
+ // Copies from temporary outputs back to the original outputs
351
+ // NOTE: only used on CPU
352
+ void cast_outputs();
353
+
354
+ /// Removes an operand from this iterator
355
+ void remove_operand(int64_t arg);
356
+ /// Shrinks an iterated dimension
357
+ void narrow(int dim, int64_t start, int64_t size);
358
+ /// Narrows every dim after and including `start_dim` to size one.
359
+ void select_all_keeping_dim(int start_dim, IntArrayRef starts);
360
+ /// Replaces the data pointer for the operand at index `arg`.
361
+ /// The new pointer should have the same sizes, strides and dtype as the
362
+ /// original
363
+ void unsafe_replace_operand(int64_t arg, void* data);
364
+
365
+ /// Splits this TensorIterator into two iterators. Together they iterate over
366
+ /// the entire operation. Used by `with_32bit_indexing()`.
367
+ std::unique_ptr<TensorIterator> split(int dim);
368
+
369
+ /// Returns the dimension with the largest extent: (size[dim]-1) * stride[dim]
370
+ int get_dim_to_split() const;
371
+
372
+ template <typename T>
373
+ T scalar_value(int64_t arg) {
374
+ auto& op = operands_[arg];
375
+ return c10::fetch_and_cast<T>(op.tensor_base().scalar_type(), op.data);
376
+ }
377
+
378
+ /// Return scalar value from original_tensor_base if it is defined. When
379
+ /// common_dtype is Half, casting scalar input to common_dtype might overflow.
380
+ /// If the scalar is aleady given in the type of Half, then return scalar
381
+ /// value from tensor_base.
382
+ template <typename T>
383
+ T original_scalar_value(int64_t arg) {
384
+ auto& original_tensor_base = operands_[arg].original_tensor_base();
385
+ if (original_tensor_base.defined()) {
386
+ TORCH_INTERNAL_ASSERT(
387
+ original_tensor_base.scalar_type() != common_dtype());
388
+ return c10::fetch_and_cast<T>(
389
+ original_tensor_base.scalar_type(),
390
+ original_tensor_base.const_data_ptr());
391
+ } else {
392
+ return scalar_value<T>(arg);
393
+ }
394
+ }
395
+
396
+ private:
397
+ template <typename loop1d_t>
398
+ auto loop_2d_from_1d(const loop1d_t& loop) {
399
+ return
400
+ [loop, ntensor = ntensors()](
401
+ char** base, const int64_t* strides, int64_t size0, int64_t size1) {
402
+ PtrVector data(base, base + ntensor);
403
+ const int64_t* outer_strides = &strides[ntensor];
404
+ for (const auto i : c10::irange(size1)) {
405
+ if (i > 0) {
406
+ for (const auto arg : c10::irange(ntensor)) {
407
+ data[arg] += outer_strides[arg];
408
+ }
409
+ }
410
+ loop(data.data(), strides, size0);
411
+ }
412
+ };
413
+ }
414
+
415
+ public:
416
+ template <
417
+ typename loop1d_t,
418
+ std::enable_if_t<
419
+ std::is_convertible_v<
420
+ loop1d_t,
421
+ c10::function_ref<
422
+ void(char**, const int64_t* strides, int64_t size)>>,
423
+ int> = 0>
424
+ void for_each(loop1d_t loop, int64_t grain_size = at::internal::GRAIN_SIZE) {
425
+ for_each(loop_2d_from_1d(loop), grain_size);
426
+ }
427
+
428
+ void for_each(loop2d_t loop, int64_t grain_size = at::internal::GRAIN_SIZE);
429
+
430
+ void parallel_reduce(loop2d_t loop);
431
+
432
+ template <
433
+ typename loop1d_t,
434
+ std::enable_if_t<
435
+ std::is_convertible_v<
436
+ loop1d_t,
437
+ c10::function_ref<
438
+ void(char**, const int64_t* strides, int64_t size)>>,
439
+ int> = 0>
440
+ void serial_for_each(loop1d_t loop, Range range) {
441
+ serial_for_each(loop_2d_from_1d(loop), range);
442
+ }
443
+
444
+ void serial_for_each(loop2d_t loop, Range range) const;
445
+
446
+ /// Create a strides array for a Tensor with shape of this iterator. The
447
+ /// parameter `element_size` specifies the size of Tensor's data type in
448
+ /// bytes (e.g. `4` for `float`)
449
+ StrideVector compatible_stride(int64_t element_size) const;
450
+
451
+ /// Inverts the re-ordering done by reorder_dimensions. This can only be
452
+ /// called *before* coalesce_dimensions() is called.
453
+ DimVector invert_perm(IntArrayRef input) const;
454
+
455
+ /// Reapply same re-ordering as it is done by reorder_dimensions. This can
456
+ /// only be called *before* coalesce_dimensions() is called.
457
+ DimVector apply_perm_and_mul(IntArrayRef input, int mul) const;
458
+
459
+ /// Helper functions for CPU iteration
460
+ StrideVector get_dim_strides(int dim) const;
461
+ StrideVector get_strides() const;
462
+ StrideVector get_inner_strides() const {
463
+ return get_dim_strides(0);
464
+ }
465
+ PtrVector get_base_ptrs() const;
466
+
467
+ // Helper functions for advanced stride manipulations (e.g. torch.flip)
468
+ void _unsafe_set_arg_strides(const int64_t arg, IntArrayRef strides) {
469
+ operands_[arg].stride_bytes = strides;
470
+ }
471
+ void _unsafe_set_arg_data(const int64_t arg, void* data) {
472
+ operands_[arg].data = data;
473
+ }
474
+
475
+ /// true if the stride computation can use 32-bit arithmetic. Used by GPU
476
+ /// kernels
477
+ bool can_use_32bit_indexing() const;
478
+
479
+ /// An "iteratable" object that recursively splits this iterator into
480
+ /// sub-iterators that can use 32-bit indexing.
481
+ SplitUntil32Bit with_32bit_indexing() const;
482
+
483
+ /// If the kernel should accumulate into the output. Only relevant for CUDA
484
+ /// reductions.
485
+ bool should_accumulate() const {
486
+ return accumulate_;
487
+ }
488
+
489
+ /// Whether this iterator produces the actual output,
490
+ /// as opposed to something that will be accumulated further. Only relevant
491
+ /// for CUDA reductions.
492
+ bool is_final_output() const {
493
+ return final_output_;
494
+ }
495
+
496
+ bool has_contiguous_first_dim() const {
497
+ if (ndim() == 0) {
498
+ return true;
499
+ }
500
+
501
+ int num_tensors = ntensors();
502
+ for (const auto i : c10::irange(num_tensors)) {
503
+ if (strides(i)[0] != element_size(i)) {
504
+ return false;
505
+ }
506
+ }
507
+ return true;
508
+ }
509
+
510
+ void set_output_raw_strided(
511
+ int64_t output_idx,
512
+ IntArrayRef sizes,
513
+ IntArrayRef strides,
514
+ TensorOptions options,
515
+ DimnameList names) override;
516
+
517
+ #define TORCH_DISALLOW_TEMPORARIES_IMPL(methodname, maybestatic) \
518
+ maybestatic void methodname( \
519
+ TensorBase&& out, const TensorBase& a, const TensorBase& b) = delete; \
520
+ maybestatic void methodname( \
521
+ const TensorBase& out, TensorBase&& a, const TensorBase& b) = delete; \
522
+ maybestatic void methodname( \
523
+ const TensorBase& out, const TensorBase& a, TensorBase&& b) = delete; \
524
+ maybestatic void methodname( \
525
+ TensorBase&& out, TensorBase&& a, const TensorBase& b) = delete; \
526
+ maybestatic void methodname( \
527
+ TensorBase&& out, const TensorBase& a, TensorBase&& b) = delete; \
528
+ maybestatic void methodname( \
529
+ const TensorBase& out, TensorBase&& a, TensorBase&& b) = delete; \
530
+ maybestatic void methodname( \
531
+ TensorBase&& out, TensorBase&& a, TensorBase&& b) = delete;
532
+
533
+ #define TORCH_DISALLOW_TEMPORARIES(methodname) \
534
+ TORCH_DISALLOW_TEMPORARIES_IMPL(methodname, )
535
+
536
+ void build_binary_float_op(
537
+ const TensorBase& out,
538
+ const TensorBase& a,
539
+ const TensorBase& b);
540
+ void build_borrowing_binary_float_op(
541
+ const TensorBase& out,
542
+ const TensorBase& a,
543
+ const TensorBase& b);
544
+ TORCH_DISALLOW_TEMPORARIES(build_borrowing_binary_float_op)
545
+ void build_binary_op(
546
+ const TensorBase& out,
547
+ const TensorBase& a,
548
+ const TensorBase& b);
549
+ void build_borrowing_binary_op(
550
+ const TensorBase& out,
551
+ const TensorBase& a,
552
+ const TensorBase& b);
553
+ TORCH_DISALLOW_TEMPORARIES(build_borrowing_binary_op)
554
+ void build_unary_float_op(const TensorBase& out, const TensorBase& a);
555
+ void build_borrowing_unary_float_op(
556
+ const TensorBase& out,
557
+ const TensorBase& a);
558
+ TORCH_DISALLOW_TEMPORARIES(build_borrowing_unary_float_op)
559
+ void build_unary_op(const TensorBase& out, const TensorBase& a);
560
+ // Odd special case needed for pow. Has to borrow the output because
561
+ // it's a structured kernel, but the argument is potentially a copy.
562
+ void build_output_borrowing_argument_owning_unary_op(
563
+ const TensorBase& out,
564
+ const TensorBase& a);
565
+ void build_borrowing_unary_op(const TensorBase& out, const TensorBase& a);
566
+ TORCH_DISALLOW_TEMPORARIES(build_borrowing_unary_op)
567
+ void build_borrowing_unary_force_boolean_op(
568
+ const TensorBase& out,
569
+ const TensorBase& a);
570
+ TORCH_DISALLOW_TEMPORARIES(build_borrowing_unary_force_boolean_op)
571
+ void build_comparison_op(
572
+ const TensorBase& out,
573
+ const TensorBase& a,
574
+ const TensorBase& b);
575
+ void build_borrowing_comparison_op(
576
+ const TensorBase& out,
577
+ const TensorBase& a,
578
+ const TensorBase& b);
579
+ TORCH_DISALLOW_TEMPORARIES(build_borrowing_comparison_op)
580
+ // Another special case: we need to own the second argument for comparison
581
+ // ops.
582
+ void build_borrowing_except_last_argument_comparison_op(
583
+ const TensorBase& out,
584
+ const TensorBase& a,
585
+ const TensorBase& b);
586
+ void build_ternary_op(
587
+ const TensorBase& out,
588
+ const TensorBase& a,
589
+ const TensorBase& b,
590
+ const TensorBase& c);
591
+
592
+ #undef TORCH_DISALLOW_TEMPORARIES
593
+ protected:
594
+ // Mutable reference as it moves tensors out of TensorIteratorConfig
595
+ void populate_operands(TensorIteratorConfig&);
596
+ void mark_outputs();
597
+ void mark_resize_outputs(const TensorIteratorConfig&);
598
+ void compute_mem_overlaps(const TensorIteratorConfig&);
599
+ void compute_shape(const TensorIteratorConfig&);
600
+ void compute_strides(const TensorIteratorConfig&);
601
+ void reorder_dimensions();
602
+ void permute_dimensions(IntArrayRef perm);
603
+ void compute_types(const TensorIteratorConfig&);
604
+ ScalarType compute_common_dtype();
605
+ void allocate_or_resize_outputs();
606
+ bool fast_set_up(const TensorIteratorConfig&);
607
+ FastSetupType compute_fast_setup_type(const TensorIteratorConfig&);
608
+ void compute_names(const TensorIteratorConfig&);
609
+ void propagate_names_to_outputs();
610
+ void coalesce_dimensions();
611
+
612
+ protected:
613
+ /// Records the "computation" shape of the output tensor. The computation
614
+ /// shape is different from the regular shape in a few ways:
615
+ ///
616
+ /// - The shape may be permuted (via permute_dimensions) so that we
617
+ /// process the dimensions in the most computationally efficient order
618
+ /// (rather than the logical order given to us by the users.)
619
+ /// - The shape may have adjacent dimensions collapsed (via
620
+ /// coalesce_dimensions) so that we minimize the number of
621
+ /// dimensions we have to explicitly iterate over. For example,
622
+ /// a pointwise operation on a contiguous tensor "computationally"
623
+ /// consists of only a single dimension.
624
+ ///
625
+ /// In other words, the computation shape is the output shape as it
626
+ /// actually matters for implementing the kernel, but not necessarily the
627
+ /// output shape that the user will see in the end.
628
+ ///
629
+ /// The lifecycle of mutations to shape_ in TensorIterator:
630
+ /// - declare_static_shape() sets an initial shape explicitly
631
+ /// provided by user, otherwise
632
+ /// - compute_shape() computes the true (non-computational) shape
633
+ /// specified by the user.
634
+ /// - reorder_dimensions() reorders dimensions to improve coalescing.
635
+ /// - coalesce_dimensions() then coalesces adjacent dimensions when
636
+ /// possible.
637
+ ///
638
+ /// The shape may also be further modified if we create sub-TensorIterators,
639
+ /// e.g., via narrow or select_all_keeping_dim.
640
+ DimVector shape_;
641
+
642
+ /// Temporarily records the permutation computed by reorder_dimensions.
643
+ /// This permutation maps the computation output dimension (dim) to
644
+ /// the original true output dimension (perm_[dim]). It is used by
645
+ /// invert_perm to undo the permutation. After coalesce_dimensions is
646
+ /// called, the permutation is no longer valid (as, in general, there
647
+ /// is no permutation that will make computation dimensions to
648
+ /// output dimensions); methods that manipulate perm_ are obligated
649
+ /// to test that !has_coalesced_dimensions
650
+ DimVector perm_;
651
+
652
+ /// Has coalesce_dimensions() (or any moral equivalent, e.g., fast_build())
653
+ /// been called? This is SOLELY used to check validity of perm_.
654
+ bool has_coalesced_dimensions_ = false;
655
+
656
+ /// Whether iteration must be fixed. This disables dimension permuting and
657
+ /// also changes how for_each divides work among threads.
658
+ bool enforce_linear_iteration_ = false;
659
+
660
+ /// The index offsets into the original tensors for each dimension.
661
+ /// This is only non-zero when you narrow() a TensorIterator (e.g.,
662
+ /// when you make sub-TensorIterators).
663
+ DimVector view_offsets_;
664
+
665
+ /// The computed names of the output tensor. Computed by compute_names()
666
+ NameVector names_;
667
+
668
+ /// The operands of the TensorIterator: both the inputs and outputs. The
669
+ /// outputs MUST come first in the operands_ list. There is always an
670
+ /// operand for each output of the TensorIterator, even if TensorIterator
671
+ /// will ultimately be responsible for allocating the output; in those
672
+ /// cases, tensor is simply undefined (and will be populated later
673
+ /// during build()).
674
+ ///
675
+ /// This list is initially populated prior to build(), but build() mutates
676
+ /// OperandInfo to populate more information.
677
+ SmallVector<OperandInfo, 4> operands_;
678
+
679
+ /// Number of outputs in operands_ (the length of the outputs prefix
680
+ /// in operands_).
681
+ int num_outputs_ = 0;
682
+
683
+ /// Whether or not all operands have the same shape and are 1d+. Having all
684
+ /// the same shape affects whether or not the iterator is eligible for fast
685
+ /// setup.
686
+ bool all_ops_same_shape_ = false;
687
+ /// Whether or not all operands are 0d, this affects type promotion
688
+ bool all_ops_are_scalars_ = false;
689
+
690
+ /// The "computation" dtype of TensorIterator, specifying what the dtype
691
+ /// we will do the internal computation in TensorIterator. Typically,
692
+ /// this matches the dtype of the output tensors, but not always!
693
+ ScalarType common_dtype_ = ScalarType::Undefined;
694
+
695
+ /// This is currently defined as kCPU, or the device of the first non-CPU
696
+ /// tensor argument. See TensorIteratorBase::compute_types for details.
697
+ Device common_device_ = kCPU;
698
+
699
+ /// Set by split(), see should_accumulate() and is_final_output()
700
+ bool accumulate_ = false;
701
+ bool final_output_ = true;
702
+
703
+ // From TensorIteratorConfig
704
+ bool is_reduction_ = false;
705
+
706
+ /// Set by populate_operands(), says if we're handling meta tensors
707
+ bool is_meta_ = false;
708
+ };
709
+
710
+ struct TORCH_API TensorIterator final : public TensorIteratorBase {
711
+ TensorIterator() : TensorIteratorBase() {}
712
+ // Slicing is OK, TensorIterator guaranteed NOT to have any fields
713
+ TensorIterator(const TensorIteratorBase& iter) : TensorIteratorBase(iter) {}
714
+
715
+ #define TORCH_DISALLOW_TEMPORARIES(methodname) \
716
+ TORCH_DISALLOW_TEMPORARIES_IMPL(methodname, static)
717
+
718
+ static TensorIterator binary_float_op(
719
+ TensorBase& out,
720
+ const TensorBase& a,
721
+ const TensorBase& b);
722
+ static TensorIterator binary_op(
723
+ TensorBase& out,
724
+ const TensorBase& a,
725
+ const TensorBase& b);
726
+ static TensorIterator borrowing_binary_op(
727
+ const TensorBase& out,
728
+ const TensorBase& a,
729
+ const TensorBase& b);
730
+ TORCH_DISALLOW_TEMPORARIES(borrowing_binary_op)
731
+ static TensorIterator comparison_op(
732
+ TensorBase& out,
733
+ const TensorBase& a,
734
+ const TensorBase& b);
735
+ static TensorIterator unary_op(TensorBase& out, const TensorBase& a);
736
+ static TensorIterator unary_float_op(TensorBase& out, const TensorBase& a);
737
+ static TensorIterator nullary_op(TensorBase& out);
738
+ static TensorIterator borrowing_nullary_op(const TensorBase& out);
739
+ static TensorIterator borrowing_nullary_op(TensorBase&& out) = delete;
740
+ static TensorIterator reduce_op(TensorBase& out, const TensorBase& a);
741
+ static TensorIterator reduce_op(
742
+ TensorBase& out1,
743
+ TensorBase& out2,
744
+ const TensorBase& a);
745
+ #undef TORCH_DISALLOW_TEMPORARIES
746
+ #undef TORCH_DISALLOW_TEMPORARIES_IMPL
747
+
748
+ const Tensor& maybe_get_output(int64_t output_idx) override;
749
+ void set_output_raw_strided(
750
+ int64_t output_idx,
751
+ IntArrayRef sizes,
752
+ IntArrayRef strides,
753
+ TensorOptions options,
754
+ DimnameList names) override;
755
+ };
756
+
757
+ class TORCH_API TensorIteratorConfig final {
758
+ public:
759
+ friend struct TensorIteratorBase;
760
+ friend struct TensorIterator;
761
+
762
+ TensorIteratorConfig() = default;
763
+
764
+ C10_DISABLE_COPY_AND_ASSIGN(TensorIteratorConfig);
765
+
766
+ /// Construction
767
+ // Stores input/output Tensors without incrementing the reference count.
768
+ // Important: the outputs have to be added before the inputs.
769
+ TensorIteratorConfig& add_output(const TensorBase& output) {
770
+ return add_borrowed_output(output);
771
+ }
772
+ TensorIteratorConfig& add_input(const TensorBase& input) {
773
+ return add_borrowed_input(input);
774
+ }
775
+ TensorIteratorConfig& add_const_input(const TensorBase& input) {
776
+ return add_borrowed_const_input(input);
777
+ }
778
+
779
+ // Borrowing from temporaries is unlikely to go well.
780
+ TensorIteratorConfig& add_output(TensorBase&& output) = delete;
781
+ TensorIteratorConfig& add_input(TensorBase&& input) = delete;
782
+ TensorIteratorConfig& add_const_input(TensorBase&& input) = delete;
783
+
784
+ // Stores input/output Tensors while incrementing the reference count.
785
+ // Note that add_{in,out}put are nearly always what you
786
+ // want, and the exception (adding an unnamed temporary) won't
787
+ // compile.
788
+ TensorIteratorConfig& add_owned_output(const TensorBase& output);
789
+ TensorIteratorConfig& add_owned_input(const TensorBase& input);
790
+ TensorIteratorConfig& add_owned_const_input(const TensorBase& input);
791
+
792
+ // Advanced API: stores input/output Tensors without incrementing
793
+ // the reference count. The caller must ensure that these Tensors
794
+ // live at least as long as this TensorIteratorConfig and any
795
+ // TensorIteratorBase built from this TensorIteratorConfig.
796
+ // Important: the outputs have to be added before the inputs.
797
+ TensorIteratorConfig& add_borrowed_output(const TensorBase& output);
798
+ TensorIteratorConfig& add_borrowed_input(const TensorBase& input);
799
+ TensorIteratorConfig& add_borrowed_const_input(const TensorBase& input);
800
+
801
+ // Borrowing from temporaries is unlikely to go well.
802
+ TensorIteratorConfig& add_borrowed_output(TensorBase&& output) = delete;
803
+ TensorIteratorConfig& add_borrowed_input(TensorBase&& input) = delete;
804
+ TensorIteratorConfig& add_borrowed_const_input(TensorBase&& input) = delete;
805
+
806
+ // Sets the check_mem_overlap_ flag, which is true by default.
807
+ // If true, inputs are checked for partial overlap with the outputs and
808
+ // outputs are checked for internal overlap (e.g. broadcasted views). An error
809
+ // is raised if unacceptable overlap is detected.
810
+ // If you're migrating an existing operator to using TensorIterator, please
811
+ // consider if the previous implementation checked memory overlap. If it did
812
+ // not, and if the operator is idempotent (for example, Tensor.fill_(0)), then
813
+ // checking memory overlap is BC-breaking. Please don't check memory overlap
814
+ // in that case.
815
+ TensorIteratorConfig& set_check_mem_overlap(bool check_mem_overlap) {
816
+ check_mem_overlap_ = check_mem_overlap;
817
+ return *this;
818
+ }
819
+
820
+ // Sets the check_all_same_dtype_ flag, which is true by default
821
+ // If true, checks that all inputs and defined outputs have the same dtype
822
+ // Setting either of promote_inputs_to_common_dtype_
823
+ // or cast_common_dtype_to_outputs_ to true will set
824
+ // check_all_same_dtype_ to false.
825
+ TensorIteratorConfig& check_all_same_dtype(const bool _check_all_same_dtype) {
826
+ check_all_same_dtype_ = _check_all_same_dtype;
827
+ return *this;
828
+ }
829
+
830
+ // Sets the check_all_same_device_ flag, which is true by default
831
+ // If true, all operands must be on the same device, with the possible
832
+ // exception of CPU scalars, which can be passed to some CUDA kernels
833
+ // as kernel arguments.
834
+ TensorIteratorConfig& check_all_same_device(
835
+ const bool _check_all_same_device) {
836
+ check_all_same_device_ = _check_all_same_device;
837
+ return *this;
838
+ }
839
+
840
+ // Sets the enforce_safe_casting_to_output_ flag, which is false by default
841
+ // If true, the iterator's "common dtype" must be computable
842
+ // (see the [Common Dtype Computation] note) and
843
+ // canCast(common dtype, output dtype) must be true for all outputs.
844
+ TensorIteratorConfig& enforce_safe_casting_to_output(
845
+ const bool _enforce_safe_casting_to_output) {
846
+ enforce_safe_casting_to_output_ = _enforce_safe_casting_to_output;
847
+ return *this;
848
+ }
849
+
850
+ // Sets the enforce_linear_iteration_ flag, which is false by default.
851
+ // If true, iteration goes in the same order as a C-contiguous tensor
852
+ // is layed out in memory. i.e. last dimension iterates fastest.
853
+ //
854
+ // This iteration order can be less efficient and may even prevent
855
+ // vectorization. So only use if the correctness of your kernel depends on it.
856
+ TensorIteratorConfig& enforce_linear_iteration(
857
+ const bool _enforce_linear_iteration = true) {
858
+ enforce_linear_iteration_ = _enforce_linear_iteration;
859
+ return *this;
860
+ }
861
+
862
+ // Sets the promote_inputs_to_common_dtype_ flag, which is false by default
863
+ // If true, the iterator's "common dtype" is always computed (see the
864
+ // [Common Dtype Computation] note) and, on the CPU, temporary copies of
865
+ // the inputs in the common dtype are passed as the actual inputs to
866
+ // the operation.
867
+ // Setting this flag to true sets check_all_same_dtype_ to false.
868
+ TensorIteratorConfig& promote_inputs_to_common_dtype(
869
+ const bool _promote_inputs_to_common_dtype) {
870
+ promote_inputs_to_common_dtype_ = _promote_inputs_to_common_dtype;
871
+ if (_promote_inputs_to_common_dtype) {
872
+ check_all_same_dtype_ = false;
873
+ }
874
+ return *this;
875
+ }
876
+
877
+ // Sets the promote_integer_inputs_to_float_ flag, which is false by default
878
+ // NOTE: If set to true, the promote_inputs_to_common_dtype_ must also be
879
+ // true. If true, if the iterator's "common dtype" is an integral type
880
+ // (including bool)
881
+ // then it is changed to the default float scalar type.
882
+ TensorIteratorConfig& promote_integer_inputs_to_float(
883
+ const bool _promote_integer_inputs_to_float) {
884
+ promote_integer_inputs_to_float_ = _promote_integer_inputs_to_float;
885
+ TORCH_INTERNAL_ASSERT(
886
+ !promote_integer_inputs_to_float_ || promote_inputs_to_common_dtype_);
887
+ return *this;
888
+ }
889
+
890
+ TensorIteratorConfig& is_reduction(const bool _is_reduction) {
891
+ is_reduction_ = _is_reduction;
892
+ return *this;
893
+ }
894
+
895
+ TensorIteratorConfig& allow_cpu_scalars(const bool _allow_cpu_scalars) {
896
+ allow_cpu_scalars_ = _allow_cpu_scalars;
897
+ return *this;
898
+ }
899
+
900
+ // Sets the cast_common_dtype_to_outputs_ flag, which is false by default
901
+ // If true, the iterator's "common dtype" must be computatable
902
+ // (see the [Common Dtype Computation] note) and, on the CPU, temporary
903
+ // copies of the outputs are passed as the actual output to the operation.
904
+ // These temporaries are then copied to the original outputs after
905
+ // the operation is performed (see cast_outputs()).
906
+ // Setting this flag to true sets check_all_same_dtype_ to false.
907
+ TensorIteratorConfig& cast_common_dtype_to_outputs(
908
+ const bool _cast_common_dtype_to_outputs) {
909
+ cast_common_dtype_to_outputs_ = _cast_common_dtype_to_outputs;
910
+ if (_cast_common_dtype_to_outputs) {
911
+ check_all_same_dtype_ = false;
912
+ }
913
+ return *this;
914
+ }
915
+
916
+ TensorIteratorConfig& resize_outputs(bool resize_outputs) {
917
+ resize_outputs_ = resize_outputs;
918
+ return *this;
919
+ }
920
+
921
+ // Bypass output dtype/device computation and fix the dtype/device as
922
+ // specified here.
923
+ TensorIteratorConfig& declare_static_dtype_and_device(
924
+ ScalarType dtype,
925
+ Device device);
926
+ TensorIteratorConfig& declare_static_dtype(ScalarType dtype);
927
+ TensorIteratorConfig& declare_static_device(Device device);
928
+ TensorIteratorConfig& declare_static_shape(IntArrayRef shape);
929
+ TensorIteratorConfig& declare_static_shape(
930
+ IntArrayRef shape,
931
+ IntArrayRef squash_dims);
932
+
933
+ // It would be better if this was && qualified, but this would be at the cost
934
+ // of a lot of boilerplate above
935
+ TensorIterator build() {
936
+ TensorIterator iter;
937
+ iter.build(*this);
938
+ return iter;
939
+ }
940
+
941
+ private:
942
+ bool is_tensor_const(size_t idx);
943
+
944
+ SmallVector<c10::MaybeOwned<TensorBase>, 4> tensors_;
945
+ int num_outputs_ = 0;
946
+ int num_inputs_ = 0;
947
+
948
+ c10::optional<DimVector> static_shape_ = c10::nullopt;
949
+ c10::optional<ScalarType> static_dtype_ = c10::nullopt;
950
+ c10::optional<Device> static_device_ = c10::nullopt;
951
+ bool check_mem_overlap_ = true;
952
+ bool allow_cpu_scalars_ = false;
953
+ bool is_reduction_ = false;
954
+ bool resize_outputs_ = true;
955
+ bool check_all_same_dtype_ = true;
956
+ bool check_all_same_device_ = true;
957
+ bool enforce_safe_casting_to_output_ = false;
958
+ bool enforce_linear_iteration_ = false;
959
+ bool promote_inputs_to_common_dtype_ = false;
960
+ bool promote_integer_inputs_to_float_ = false;
961
+ bool cast_common_dtype_to_outputs_ = false;
962
+
963
+ SmallVector<size_t, 4> const_tensor_indices_;
964
+ };
965
+
966
+ /// A container-like struct that acts as if it contains splits of a
967
+ /// TensorIterator that can use 32-bit indexing. Taken together the splits cover
968
+ /// the original TensorIterator.
969
+ struct TORCH_API SplitUntil32Bit {
970
+ struct TORCH_API iterator {
971
+ iterator() = default;
972
+ iterator(const TensorIteratorBase& iter);
973
+ iterator(iterator&&) = default;
974
+
975
+ // Guaranteed to be a TensorIterator proper!
976
+ TensorIterator& operator*() const;
977
+ iterator& operator++();
978
+ bool operator==(const iterator& other) const {
979
+ // two iterators are equal if they are the same object or they're both
980
+ // empty
981
+ return this == &other || (vec.empty() && other.vec.empty());
982
+ }
983
+ // needed for C++11 range-based for loop
984
+ bool operator!=(const iterator& other) const {
985
+ return !(*this == other);
986
+ }
987
+
988
+ /// stack of TensorIterators to be split
989
+ std::vector<std::unique_ptr<TensorIterator>> vec;
990
+ };
991
+
992
+ SplitUntil32Bit(const TensorIteratorBase& iter) : iter(iter) {}
993
+
994
+ iterator begin() const;
995
+ iterator end() const;
996
+
997
+ private:
998
+ // NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members)
999
+ const TensorIteratorBase& iter;
1000
+ };
1001
+
1002
+ } // namespace at