Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step20/zero/18.input_layernorm.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step20/zero/18.input_layernorm.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step20/zero/18.input_layernorm.weight/fp32.pt +3 -0
- ckpts/universal/global_step20/zero/23.post_attention_layernorm.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step20/zero/23.post_attention_layernorm.weight/fp32.pt +3 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/VariableTypeUtils.h +445 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/custom_function.h +425 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/functions/accumulate_grad.h +277 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/functions/basic_ops.h +111 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/functions/comm.h +47 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/functions/pybind.h +15 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/functions/tensor.h +186 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/functions/utils.h +114 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/generated/Functions.h +0 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/generated/VariableType.h +59 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/generated/ViewFuncs.h +953 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/generated/python_functions.h +25 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/generated/python_return_types.h +98 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/generated/variable_factories.h +736 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/graph_task.h +226 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/input_buffer.h +45 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/input_metadata.h +113 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/profiler_legacy.h +406 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/utils/error_messages.h +22 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/utils/grad_layout_contract.h +80 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/utils/lambda_post_hook.h +40 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/utils/python_arg_parsing.h +53 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/utils/warnings.h +28 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/utils/wrap_outputs.h +155 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/c10d/GlooDeviceFactory.hpp +32 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/c10d/PrefixStore.hpp +67 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/c10d/ProcessGroupMPI.hpp +271 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/c10d/ProcessGroupUCC.hpp +353 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/c10d/TCPStoreBackend.hpp +77 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/c10d/Types.hpp +180 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/c10d/intra_node_comm.hpp +121 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/c10d/python_comm_hook.h +34 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/lazy/backend/backend_data.h +61 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/lazy/backend/backend_device.h +100 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/lazy/backend/backend_interface.h +158 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/lazy/backend/lowering_context.h +114 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/lazy/core/cache.h +144 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/lazy/core/config.h +28 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/lazy/core/debug_util.h +47 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/lazy/core/dynamic_ir.h +59 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/lazy/core/hash.h +238 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/lazy/core/helpers.h +72 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/lazy/core/internal_ops/ltc_ops.h +52 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/lazy/core/ir.h +298 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/lazy/core/ir_builder.h +150 -0
ckpts/universal/global_step20/zero/18.input_layernorm.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4bf67ee9de3e9a365f0b5dd2d62346c04f5bc8478372f083e5f43cfda7e88ee1
|
3 |
+
size 9372
|
ckpts/universal/global_step20/zero/18.input_layernorm.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a05841f7b201086703b3692b033146486a1a777398e619e698428a1368047331
|
3 |
+
size 9387
|
ckpts/universal/global_step20/zero/18.input_layernorm.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5c1ab797cd65eea281261d164318c9bbd434394fe28cb719f216ea66a49101f9
|
3 |
+
size 9293
|
ckpts/universal/global_step20/zero/23.post_attention_layernorm.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:539e3c1bea482bacd5ab0e6177e9c45ba71f0639fec27dbe5eab772b96b399e2
|
3 |
+
size 9387
|
ckpts/universal/global_step20/zero/23.post_attention_layernorm.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ab7caf72f6597487410090f38a56899ff4c9e75f11e8832cbb3cf76dc2f31a2c
|
3 |
+
size 9293
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/VariableTypeUtils.h
ADDED
@@ -0,0 +1,445 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/util/irange.h>
|
4 |
+
|
5 |
+
#include <ATen/core/boxing/KernelFunction.h>
|
6 |
+
#include <ATen/core/dispatch/Dispatcher.h>
|
7 |
+
|
8 |
+
#include <torch/csrc/autograd/edge.h>
|
9 |
+
#include <torch/csrc/autograd/function.h>
|
10 |
+
#include <torch/csrc/autograd/functions/basic_ops.h>
|
11 |
+
#include <torch/csrc/autograd/functions/tensor.h>
|
12 |
+
#include <torch/csrc/autograd/grad_mode.h>
|
13 |
+
#include <torch/csrc/autograd/saved_variable.h>
|
14 |
+
#include <torch/csrc/autograd/variable.h>
|
15 |
+
|
16 |
+
#include <torch/csrc/autograd/functions/utils.h>
|
17 |
+
#include <torch/csrc/autograd/jit_decomp_interface.h>
|
18 |
+
#include <torch/csrc/utils/variadic.h>
|
19 |
+
|
20 |
+
#include <cstddef>
|
21 |
+
#include <functional>
|
22 |
+
#include <memory>
|
23 |
+
#include <utility>
|
24 |
+
#include <vector>
|
25 |
+
|
26 |
+
#ifdef _MSC_VER
|
27 |
+
#ifdef Type
|
28 |
+
#undef Type
|
29 |
+
#endif
|
30 |
+
#endif
|
31 |
+
|
32 |
+
namespace torch {
|
33 |
+
namespace autograd {
|
34 |
+
enum class can_mutate_inplace_result {
|
35 |
+
success,
|
36 |
+
non_default_backward_view,
|
37 |
+
view_of_leaf,
|
38 |
+
is_leaf,
|
39 |
+
};
|
40 |
+
|
41 |
+
// The requires_grad argument is used to know if the inplace operation needs
|
42 |
+
// gradient to be setup for it.
|
43 |
+
// In particular, we can have tensor.requires_grad() != requires_grad when
|
44 |
+
// writing a Tensor that requires gradients inplace into a Tensor that does not
|
45 |
+
// require gradients: a = torch.rand(2) b = torch.rand(2, requires_grad=True)
|
46 |
+
// a.copy_(b)
|
47 |
+
inline can_mutate_inplace_result can_mutate_inplace(
|
48 |
+
const at::Tensor& tensor,
|
49 |
+
bool requires_grad) {
|
50 |
+
if (!requires_grad || !GradMode::is_enabled()) {
|
51 |
+
return can_mutate_inplace_result::success;
|
52 |
+
}
|
53 |
+
auto diff_view_meta = impl::get_view_autograd_meta(tensor);
|
54 |
+
if (diff_view_meta && diff_view_meta->has_bw_view()) {
|
55 |
+
if (diff_view_meta->get_creation_meta() != CreationMeta::DEFAULT) {
|
56 |
+
return can_mutate_inplace_result::non_default_backward_view;
|
57 |
+
}
|
58 |
+
if (tensor.requires_grad() && tensor._base().is_leaf()) {
|
59 |
+
return can_mutate_inplace_result::view_of_leaf;
|
60 |
+
}
|
61 |
+
}
|
62 |
+
if (tensor.requires_grad() && tensor.is_leaf()) {
|
63 |
+
return can_mutate_inplace_result::is_leaf;
|
64 |
+
}
|
65 |
+
return can_mutate_inplace_result::success;
|
66 |
+
}
|
67 |
+
|
68 |
+
inline void check_inplace(const at::Tensor& tensor, bool requires_grad) {
|
69 |
+
switch (can_mutate_inplace(tensor, requires_grad)) {
|
70 |
+
case can_mutate_inplace_result::success:
|
71 |
+
return;
|
72 |
+
case can_mutate_inplace_result::non_default_backward_view: {
|
73 |
+
return handle_view_on_rebase(impl::get_view_autograd_meta(tensor));
|
74 |
+
}
|
75 |
+
case can_mutate_inplace_result::view_of_leaf:
|
76 |
+
TORCH_CHECK(
|
77 |
+
false,
|
78 |
+
"a view of a leaf Variable that requires grad is being used in an in-place operation.");
|
79 |
+
break;
|
80 |
+
|
81 |
+
case can_mutate_inplace_result::is_leaf:
|
82 |
+
TORCH_CHECK(
|
83 |
+
false,
|
84 |
+
"a leaf Variable that requires grad is being used in an in-place operation.");
|
85 |
+
break;
|
86 |
+
}
|
87 |
+
TORCH_INTERNAL_ASSERT(false);
|
88 |
+
}
|
89 |
+
|
90 |
+
inline void check_inplace(at::ITensorListRef tensors, bool requires_grad) {
|
91 |
+
for (const auto& tensor : tensors) {
|
92 |
+
check_inplace(tensor, requires_grad);
|
93 |
+
}
|
94 |
+
}
|
95 |
+
|
96 |
+
inline void throw_error_out_requires_grad(const char* name) {
|
97 |
+
AT_ERROR(
|
98 |
+
name,
|
99 |
+
"(): functions with out=... arguments don't support automatic differentiation, "
|
100 |
+
"but one of the arguments requires grad.");
|
101 |
+
}
|
102 |
+
|
103 |
+
inline void throw_error_for_complex_autograd(
|
104 |
+
const at::Tensor& tensor,
|
105 |
+
const char* name) {
|
106 |
+
if (tensor.requires_grad()) {
|
107 |
+
TORCH_CHECK(
|
108 |
+
!tensor.is_complex(),
|
109 |
+
name,
|
110 |
+
" does not support automatic differentiation for outputs with complex dtype.");
|
111 |
+
}
|
112 |
+
}
|
113 |
+
|
114 |
+
inline void throw_error_if_base_and_tensor_are_same(
|
115 |
+
const at::Tensor& base,
|
116 |
+
const at::Tensor& tensor) {
|
117 |
+
TORCH_CHECK(
|
118 |
+
base.unsafeGetTensorImpl() != tensor.unsafeGetTensorImpl(),
|
119 |
+
"View operation returned a tensor that is the same as the input base tensor. This "
|
120 |
+
"is no longer allowed; you must explicitly create a new tensor (e.g., using .detach()). "
|
121 |
+
"As a user, you could have made a mistake implementing __torch_dispatch__ or a Python "
|
122 |
+
"operator decomposition or meta registration; if that's not the case, please "
|
123 |
+
"report a bug to PyTorch or the backend you are using.");
|
124 |
+
}
|
125 |
+
|
126 |
+
inline void throw_error_for_complex_autograd(
|
127 |
+
at::ITensorListRef tensorlist,
|
128 |
+
const char* name) {
|
129 |
+
for (const auto& tensor : tensorlist) {
|
130 |
+
throw_error_for_complex_autograd(tensor, name);
|
131 |
+
}
|
132 |
+
}
|
133 |
+
|
134 |
+
// TODO: Blegh, bare references
|
135 |
+
|
136 |
+
inline void rebase_history(const Variable& var, std::shared_ptr<Node> grad_fn) {
|
137 |
+
if (grad_fn && var.defined()) {
|
138 |
+
grad_fn->add_input_metadata(var);
|
139 |
+
impl::rebase_history(var, {std::move(grad_fn), 0});
|
140 |
+
}
|
141 |
+
}
|
142 |
+
|
143 |
+
inline void rebase_history(
|
144 |
+
const std::vector<Variable>& vars,
|
145 |
+
const std::shared_ptr<Node>& grad_fn) {
|
146 |
+
if (grad_fn) {
|
147 |
+
for (auto& var : vars) {
|
148 |
+
if (var.defined()) {
|
149 |
+
auto output_nr = grad_fn->add_input_metadata(var);
|
150 |
+
impl::rebase_history(var, {grad_fn, output_nr});
|
151 |
+
} else {
|
152 |
+
grad_fn->add_input_metadata(Node::undefined_input());
|
153 |
+
}
|
154 |
+
}
|
155 |
+
}
|
156 |
+
}
|
157 |
+
|
158 |
+
inline void increment_version(const at::Tensor& t) {
|
159 |
+
impl::bump_version(t);
|
160 |
+
}
|
161 |
+
|
162 |
+
struct Flatten : IterArgs<Flatten> {
|
163 |
+
Flatten(variable_list& out) : out(out) {}
|
164 |
+
// NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members)
|
165 |
+
variable_list& out;
|
166 |
+
void operator()(const at::Tensor& x) {
|
167 |
+
out.emplace_back(x);
|
168 |
+
}
|
169 |
+
void operator()(const c10::optional<at::Tensor>& x) {
|
170 |
+
if (x.has_value())
|
171 |
+
out.emplace_back(x.value());
|
172 |
+
}
|
173 |
+
void operator()(at::ArrayRef<at::Tensor> xs) {
|
174 |
+
out.insert(out.end(), xs.begin(), xs.end());
|
175 |
+
}
|
176 |
+
};
|
177 |
+
|
178 |
+
template <typename... Args>
|
179 |
+
inline variable_list flatten_tensor_args(Args&&... args) {
|
180 |
+
variable_list out;
|
181 |
+
out.reserve(count_tensors(std::forward<Args>(args)...));
|
182 |
+
Flatten(out).apply(std::forward<Args>(args)...);
|
183 |
+
return out; // RVO
|
184 |
+
}
|
185 |
+
|
186 |
+
// See NOTE [ Autograd View Variables ] for details.
|
187 |
+
inline at::Tensor as_view(
|
188 |
+
const at::Tensor& base,
|
189 |
+
const at::Tensor& tensor,
|
190 |
+
bool is_bw_differentiable,
|
191 |
+
bool is_fw_differentiable,
|
192 |
+
std::unique_ptr<ViewFunc> view_func = nullptr,
|
193 |
+
std::function<at::Tensor(const at::Tensor&)> rev_view_func = nullptr,
|
194 |
+
CreationMeta creation_meta = CreationMeta::DEFAULT,
|
195 |
+
bool allow_tensor_metadata_change = true) {
|
196 |
+
// Note [View of inference tensor]
|
197 |
+
// For inference tensor this code can only be hit outside InferenceMode
|
198 |
+
// since ADInplaceOrView is in the default_included_set.
|
199 |
+
// If Inplace and View were separate dispatch keys we can just put Inplace
|
200 |
+
// in the default_included_set, so that view ops on inference tensor doesn't
|
201 |
+
// have to go through as_view even outside InferenceMode.
|
202 |
+
if (base.is_inference())
|
203 |
+
return tensor;
|
204 |
+
|
205 |
+
auto diff_view_meta = torch::autograd::impl::get_view_autograd_meta(base);
|
206 |
+
|
207 |
+
// To speed up the most common case, we specially handle when both the forward
|
208 |
+
// and backward view infos are the same, and so a single shared ViewInfo can
|
209 |
+
// be used for both of them.
|
210 |
+
if ((!diff_view_meta || diff_view_meta->shared_view_info()) &&
|
211 |
+
is_bw_differentiable && is_fw_differentiable) {
|
212 |
+
throw_error_if_base_and_tensor_are_same(base, tensor);
|
213 |
+
if (diff_view_meta) {
|
214 |
+
creation_meta = propagate_creation_meta(
|
215 |
+
diff_view_meta->get_creation_meta(), creation_meta);
|
216 |
+
return make_variable_differentiable_view(
|
217 |
+
tensor,
|
218 |
+
diff_view_meta->get_backward_view().chain(
|
219 |
+
base, tensor, std::move(view_func), std::move(rev_view_func)),
|
220 |
+
c10::nullopt,
|
221 |
+
/*shared_view_info*/ true,
|
222 |
+
creation_meta,
|
223 |
+
allow_tensor_metadata_change);
|
224 |
+
} else {
|
225 |
+
return make_variable_differentiable_view(
|
226 |
+
tensor,
|
227 |
+
ViewInfo(base, std::move(view_func), std::move(rev_view_func)),
|
228 |
+
c10::nullopt,
|
229 |
+
/*shared_view_info*/ true,
|
230 |
+
creation_meta,
|
231 |
+
allow_tensor_metadata_change);
|
232 |
+
}
|
233 |
+
}
|
234 |
+
|
235 |
+
// If they cannot be shared, create the required view infos
|
236 |
+
c10::optional<ViewInfo> new_bw_info;
|
237 |
+
c10::optional<ViewInfo> new_fw_info;
|
238 |
+
|
239 |
+
if (is_bw_differentiable) {
|
240 |
+
auto bw_view_func = view_func ? view_func->clone_and_set() : nullptr;
|
241 |
+
if (diff_view_meta && diff_view_meta->has_bw_view()) {
|
242 |
+
const auto& base_bw_info = diff_view_meta->get_backward_view();
|
243 |
+
new_bw_info = base_bw_info.chain(
|
244 |
+
base, tensor, std::move(bw_view_func), rev_view_func);
|
245 |
+
} else {
|
246 |
+
new_bw_info = ViewInfo(base, std::move(bw_view_func), rev_view_func);
|
247 |
+
}
|
248 |
+
} else {
|
249 |
+
TORCH_CHECK(
|
250 |
+
creation_meta == CreationMeta::DEFAULT,
|
251 |
+
"Non-backward differentiable views must have creation_meta=CreationMeta::DEFAULT");
|
252 |
+
}
|
253 |
+
|
254 |
+
if (is_fw_differentiable) {
|
255 |
+
// Check if base is a forward differentiable view
|
256 |
+
if (diff_view_meta && diff_view_meta->has_fw_view()) {
|
257 |
+
const auto& base_fw_info = diff_view_meta->get_forward_view();
|
258 |
+
new_fw_info = base_fw_info.chain(
|
259 |
+
base, tensor, std::move(view_func), std::move(rev_view_func));
|
260 |
+
} else {
|
261 |
+
new_fw_info =
|
262 |
+
ViewInfo(base, std::move(view_func), std::move(rev_view_func));
|
263 |
+
}
|
264 |
+
}
|
265 |
+
|
266 |
+
if (is_fw_differentiable || is_bw_differentiable) {
|
267 |
+
if (diff_view_meta && diff_view_meta->has_bw_view()) {
|
268 |
+
creation_meta = propagate_creation_meta(
|
269 |
+
diff_view_meta->get_creation_meta(), creation_meta);
|
270 |
+
}
|
271 |
+
throw_error_if_base_and_tensor_are_same(base, tensor);
|
272 |
+
return make_variable_differentiable_view(
|
273 |
+
tensor,
|
274 |
+
std::move(new_bw_info),
|
275 |
+
std::move(new_fw_info),
|
276 |
+
/*shared_view_info*/ false,
|
277 |
+
creation_meta,
|
278 |
+
allow_tensor_metadata_change);
|
279 |
+
} else {
|
280 |
+
return make_variable_non_differentiable_view(
|
281 |
+
base, tensor, allow_tensor_metadata_change);
|
282 |
+
}
|
283 |
+
}
|
284 |
+
|
285 |
+
inline void check_no_requires_grad(
|
286 |
+
const at::Tensor& tensor,
|
287 |
+
const char* name,
|
288 |
+
const char* fn_name = "",
|
289 |
+
bool check_grad_mode = true) {
|
290 |
+
TORCH_CHECK(
|
291 |
+
!(tensor.defined() && tensor.requires_grad()) ||
|
292 |
+
!(check_grad_mode && GradMode::is_enabled()),
|
293 |
+
"The function '",
|
294 |
+
fn_name,
|
295 |
+
"' is not differentiable with respect to argument '",
|
296 |
+
name,
|
297 |
+
"'. This input cannot have requires_grad True.");
|
298 |
+
}
|
299 |
+
|
300 |
+
inline void check_no_requires_grad(
|
301 |
+
const c10::optional<at::Tensor>& tensor,
|
302 |
+
const char* name,
|
303 |
+
const char* fn_name = "") {
|
304 |
+
if (tensor.has_value()) {
|
305 |
+
check_no_requires_grad(*tensor, name, fn_name);
|
306 |
+
}
|
307 |
+
}
|
308 |
+
|
309 |
+
inline void check_no_requires_grad(
|
310 |
+
at::ITensorListRef tensors,
|
311 |
+
const char* name,
|
312 |
+
const char* fn_name = "") {
|
313 |
+
// GradMode check is expensive, so check it only once for TensorLists
|
314 |
+
if (!GradMode::is_enabled()) {
|
315 |
+
return;
|
316 |
+
}
|
317 |
+
for (auto& tensor : tensors) {
|
318 |
+
check_no_requires_grad(tensor, name, fn_name, /*check_grad_mode*/ false);
|
319 |
+
}
|
320 |
+
}
|
321 |
+
|
322 |
+
inline void check_no_requires_grad(
|
323 |
+
const c10::List<c10::optional<at::Tensor>>& tensors,
|
324 |
+
const char* name,
|
325 |
+
const char* fn_name = "") {
|
326 |
+
// GradMode check is expensive, so check it only once for TensorLists
|
327 |
+
if (!GradMode::is_enabled()) {
|
328 |
+
return;
|
329 |
+
}
|
330 |
+
for (c10::optional<at::Tensor> tensor : tensors) {
|
331 |
+
if (tensor.has_value()) {
|
332 |
+
check_no_requires_grad(*tensor, name, fn_name, /*check_grad_mode*/ false);
|
333 |
+
}
|
334 |
+
}
|
335 |
+
}
|
336 |
+
|
337 |
+
// Assumed that saved tensor lists are never inplace outputs
|
338 |
+
inline std::vector<SavedVariable> make_saved_variable_list(
|
339 |
+
at::ITensorListRef tensors,
|
340 |
+
const bool is_output = false) {
|
341 |
+
return fmap(tensors, [&is_output](const at::Tensor& tensor) -> SavedVariable {
|
342 |
+
return SavedVariable{tensor, is_output /* is output */};
|
343 |
+
});
|
344 |
+
}
|
345 |
+
|
346 |
+
// Assumed that saved tensor lists are never inplace outputs
|
347 |
+
inline std::vector<SavedVariable> make_saved_variable_list(
|
348 |
+
const c10::List<c10::optional<at::Tensor>>& tensors,
|
349 |
+
const bool is_output = false) {
|
350 |
+
return fmap(
|
351 |
+
tensors,
|
352 |
+
[&is_output](const c10::optional<at::Tensor>& tensor) -> SavedVariable {
|
353 |
+
if (tensor.has_value()) {
|
354 |
+
return SavedVariable{*tensor, is_output /* is output */};
|
355 |
+
} else {
|
356 |
+
return SavedVariable{at::Tensor(), is_output /* is output */};
|
357 |
+
}
|
358 |
+
});
|
359 |
+
}
|
360 |
+
|
361 |
+
inline std::vector<std::vector<int64_t>> to_args_sizes(
|
362 |
+
at::ITensorListRef tensors) {
|
363 |
+
std::vector<std::vector<int64_t>> args_sizes(tensors.size());
|
364 |
+
size_t i = 0;
|
365 |
+
for (const auto& t : tensors) {
|
366 |
+
args_sizes[i++] = t.sizes().vec();
|
367 |
+
}
|
368 |
+
return args_sizes;
|
369 |
+
}
|
370 |
+
|
371 |
+
inline std::vector<std::vector<c10::SymInt>> to_args_sizes_symint(
|
372 |
+
at::ITensorListRef tensors) {
|
373 |
+
std::vector<std::vector<c10::SymInt>> args_sizes(tensors.size());
|
374 |
+
size_t i = 0;
|
375 |
+
for (const auto& t : tensors) {
|
376 |
+
args_sizes[i++] = t.sym_sizes().vec();
|
377 |
+
}
|
378 |
+
return args_sizes;
|
379 |
+
}
|
380 |
+
|
381 |
+
inline std::vector<c10::ScalarType> to_args_scalartypes(
|
382 |
+
at::ITensorListRef tensors) {
|
383 |
+
std::vector<c10::ScalarType> args_scalartypes(tensors.size());
|
384 |
+
size_t i = 0;
|
385 |
+
for (const auto& t : tensors) {
|
386 |
+
args_scalartypes[i++] = t.scalar_type();
|
387 |
+
}
|
388 |
+
return args_scalartypes;
|
389 |
+
}
|
390 |
+
|
391 |
+
namespace impl {
|
392 |
+
|
393 |
+
namespace {
|
394 |
+
|
395 |
+
// If run_jit_decomposition were not a member function, we would be able
|
396 |
+
// to pass this as a template parameter to c10::Boxedkernel::makeFromFunction.
|
397 |
+
// However, member functions cannot be passed this way - instead we wrap our
|
398 |
+
// call in this functor so it can be passed to c10::BoxedKernel::makeFromFunctor
|
399 |
+
class WrapperFunctor final : public c10::OperatorKernel {
|
400 |
+
public:
|
401 |
+
WrapperFunctor(JitDecompInterface* impl) : impl_(impl){};
|
402 |
+
|
403 |
+
void operator()(
|
404 |
+
const c10::OperatorHandle& op,
|
405 |
+
c10::DispatchKeySet ks,
|
406 |
+
torch::jit::Stack* stack) {
|
407 |
+
impl_->run_jit_decomposition(op, stack);
|
408 |
+
}
|
409 |
+
JitDecompInterface* impl_;
|
410 |
+
};
|
411 |
+
|
412 |
+
} // namespace
|
413 |
+
|
414 |
+
template <class Return, class... Args>
|
415 |
+
Return run_jit_decomposition_with_args_for_jvp(
|
416 |
+
c10::string_view name,
|
417 |
+
const c10::OperatorHandle& opHandle,
|
418 |
+
c10::DispatchKeySet dispatchKeySet,
|
419 |
+
Args&&... args) {
|
420 |
+
// see NOTE: [Jit Decomposition Interface]
|
421 |
+
JitDecompInterface* impl = getJitDecompImpl();
|
422 |
+
|
423 |
+
TORCH_CHECK_NOT_IMPLEMENTED(
|
424 |
+
impl && impl->has_jit_decomposition(opHandle.schema()),
|
425 |
+
"Trying to use forward AD with ",
|
426 |
+
name,
|
427 |
+
" that does not support it because it has not been implemented yet.\nPlease file an issue "
|
428 |
+
"to PyTorch at https://github.com/pytorch/pytorch/issues/new?template=feature-request.yml "
|
429 |
+
"so that we can prioritize its implementation.\n"
|
430 |
+
"Note that forward AD support for some operators require PyTorch to be built with "
|
431 |
+
"TorchScript and for JIT to be enabled. "
|
432 |
+
"If the environment var PYTORCH_JIT=0 is set or if the library is not built with TorchScript, "
|
433 |
+
"some operators may no longer be used with forward AD.");
|
434 |
+
|
435 |
+
return c10::KernelFunction::makeFromBoxedKernel(
|
436 |
+
c10::BoxedKernel::makeFromFunctor(
|
437 |
+
std::make_unique<WrapperFunctor>(impl)))
|
438 |
+
.call<Return, Args...>(
|
439 |
+
opHandle, dispatchKeySet, std::forward<Args>(args)...);
|
440 |
+
}
|
441 |
+
|
442 |
+
} // namespace impl
|
443 |
+
|
444 |
+
} // namespace autograd
|
445 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/custom_function.h
ADDED
@@ -0,0 +1,425 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/core/ivalue.h>
|
4 |
+
#include <c10/core/SymInt.h>
|
5 |
+
#include <c10/util/flat_hash_map.h>
|
6 |
+
#include <c10/util/irange.h>
|
7 |
+
#include <torch/csrc/autograd/function.h>
|
8 |
+
#include <torch/csrc/autograd/variable.h>
|
9 |
+
#include <torch/csrc/autograd/variable_info.h>
|
10 |
+
#include <vector>
|
11 |
+
|
12 |
+
namespace torch::autograd {
|
13 |
+
|
14 |
+
using optional_variable_list = std::vector<c10::optional<Variable>>;
|
15 |
+
using _jvp_fn_t = std::function<variable_list(variable_list, variable_list)>;
|
16 |
+
using _view_as_self_fn_t = std::function<at::Tensor(at::Tensor)>;
|
17 |
+
|
18 |
+
TORCH_API std::vector<c10::optional<Variable>> _wrap_outputs(
|
19 |
+
const variable_list& input_vars,
|
20 |
+
const std::unordered_set<at::TensorImpl*>& non_differentiable,
|
21 |
+
const std::unordered_set<at::TensorImpl*>& dirty_inputs,
|
22 |
+
const at::ArrayRef<c10::optional<Variable>> raw_outputs,
|
23 |
+
const std::shared_ptr<Node>& cdata,
|
24 |
+
const _jvp_fn_t& jvp_user_function,
|
25 |
+
const std::unordered_set<at::TensorImpl*>& to_save_if_setup_context,
|
26 |
+
const _view_as_self_fn_t& view_as_self_fn);
|
27 |
+
|
28 |
+
TORCH_API void check_variable_result(
|
29 |
+
const at::TensorBase& original,
|
30 |
+
const at::TensorBase& result,
|
31 |
+
const std::string& hook_name);
|
32 |
+
|
33 |
+
// Get the return type of the forward function of the custom Function class X
|
34 |
+
template <typename X, typename... Args>
|
35 |
+
using forward_t = decltype(X::forward(nullptr, std::declval<Args>()...));
|
36 |
+
|
37 |
+
/// To use custom autograd operations, implement a Function subclass with
|
38 |
+
/// static forward and backward functions:
|
39 |
+
///
|
40 |
+
/// `forward` can take as many arguments as you want and should return either a
|
41 |
+
/// variable list or a Variable. Use of any direct Variable arguments will be
|
42 |
+
/// registered in the graph but no vectors/sets or any other data structures
|
43 |
+
/// will be traversed. You can use c10::optional<Tensor> as one of the arguments
|
44 |
+
/// and it will be registered as a variable in the graph if the argument has a
|
45 |
+
/// value. It should take a pointer to `torch::autograd::AutogradContext` as the
|
46 |
+
/// first argument. Variables can be saved in the `ctx` using
|
47 |
+
/// `ctx->save_for_backward`
|
48 |
+
/// (see `torch::autograd::AutogradContext::save_for_backward`) and other data
|
49 |
+
/// can be saved in the `ctx->saved_data` map
|
50 |
+
/// (see `torch::autograd::AutogradContext::saved_data`)
|
51 |
+
/// in the form of `<std::string, at::IValue>` pairs.
|
52 |
+
///
|
53 |
+
/// `backward` should take a pointer to `torch::autograd::AutogradContext`
|
54 |
+
/// and a variable list containing as many Variables as there were outputs from
|
55 |
+
/// `forward` as arguments. It should return as many Variables as there were
|
56 |
+
/// inputs with each of them containing the gradient w.r.t. its corresponding
|
57 |
+
/// input. Variables saved in `forward` can be accessed with
|
58 |
+
/// `ctx->get_saved_variables` (see
|
59 |
+
/// `torch::autograd::AutogradContext::get_saved_variables`) and other saved
|
60 |
+
/// data can be accessed from `ctx->saved_data`.
|
61 |
+
///
|
62 |
+
/// For example:
|
63 |
+
/// ```
|
64 |
+
/// class MyFunction : public Function<MyFunction> {
|
65 |
+
/// public:
|
66 |
+
/// static variable_list forward(AutogradContext *ctx, int n, Variable var) {
|
67 |
+
/// // Save data for backward in context
|
68 |
+
/// ctx->saved_data["n"] = n;
|
69 |
+
/// var.mul_(2);
|
70 |
+
/// // Mark var as modified by inplace operation
|
71 |
+
/// ctx->mark_dirty({var});
|
72 |
+
/// return {var};
|
73 |
+
/// }
|
74 |
+
///
|
75 |
+
/// static variable_list backward(AutogradContext *ctx, variable_list
|
76 |
+
/// grad_output) {
|
77 |
+
/// // Use data saved in forward
|
78 |
+
/// auto n = ctx->saved_data["n"].toInt();
|
79 |
+
/// return {grad_output[0]*n};
|
80 |
+
/// }
|
81 |
+
/// };
|
82 |
+
/// ```
|
83 |
+
///
|
84 |
+
/// To use `MyFunction`:
|
85 |
+
/// ```
|
86 |
+
/// Variable x;
|
87 |
+
/// auto y = MyFunction::apply(6, x);
|
88 |
+
/// // Example backward call
|
89 |
+
/// y[0].sum().backward();
|
90 |
+
/// ```
|
91 |
+
template <class T>
|
92 |
+
struct TORCH_API Function {
|
93 |
+
// We need to use a different template parameter than T here because T will
|
94 |
+
// inherit from Function, and when Function<T> is instantiated, T::forward
|
95 |
+
// is not declared yet.
|
96 |
+
// The enable_if check is to ensure that the user doesn't explicitly provide
|
97 |
+
// the parameter X.
|
98 |
+
template <typename X = T, typename... Args>
|
99 |
+
static auto apply(Args&&... args)
|
100 |
+
-> std::enable_if_t<std::is_same_v<X, T>, forward_t<X, Args...>>;
|
101 |
+
};
|
102 |
+
|
103 |
+
/// Context to save information during `forward` that can be accessed in
|
104 |
+
/// `backward` in custom autograd operations (see `torch::autograd::Function`
|
105 |
+
/// for details).
|
106 |
+
struct TORCH_API AutogradContext {
|
107 |
+
AutogradContext() = default;
|
108 |
+
AutogradContext(const AutogradContext& other) = delete;
|
109 |
+
AutogradContext& operator=(const AutogradContext& other) = delete;
|
110 |
+
|
111 |
+
/// Can be used to save non-variable data for `backward`.
|
112 |
+
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
|
113 |
+
ska::flat_hash_map<std::string, at::IValue> saved_data;
|
114 |
+
|
115 |
+
/// Saves the list of variables for a future call to `backward`. This
|
116 |
+
/// should be called at most once from inside of `forward`.
|
117 |
+
void save_for_backward(variable_list to_save);
|
118 |
+
/// Marks variables in the list as modified in an in-place operation. This
|
119 |
+
/// should be called at most once from inside of `forward` and all arguments
|
120 |
+
/// should be inputs.
|
121 |
+
void mark_dirty(const variable_list& inputs);
|
122 |
+
/// Marks outputs in the list as not requiring gradients. This should be
|
123 |
+
/// called at most once from inside of `forward` and all arguments should be
|
124 |
+
/// outputs.
|
125 |
+
void mark_non_differentiable(const variable_list& outputs);
|
126 |
+
// Sets whether undefined output grad tensors should be expanded to tensors
|
127 |
+
// full of zeros before calling backward function. Default value is true.
|
128 |
+
void set_materialize_grads(bool value);
|
129 |
+
|
130 |
+
/// Get the list of variables that were saved in `forward` using
|
131 |
+
/// `save_for_backward()`. Before returning them to the user, a check is made
|
132 |
+
/// to ensure that they were not modified by any in-place operations.
|
133 |
+
variable_list get_saved_variables() const;
|
134 |
+
const std::unordered_set<at::TensorImpl*>& get_and_bump_dirty() const;
|
135 |
+
const std::unordered_set<at::TensorImpl*>& get_non_differentiable() const;
|
136 |
+
|
137 |
+
/// Expose the Node's `task_should_compute_output` method to the cpp
|
138 |
+
/// custom autograd Function as `needs_input_grad`.
|
139 |
+
bool needs_input_grad(size_t output_edge_index) const;
|
140 |
+
bool needs_input_grad(std::initializer_list<IndexRange> idxs) const;
|
141 |
+
|
142 |
+
private:
|
143 |
+
std::unordered_set<at::TensorImpl*> non_differentiable_;
|
144 |
+
std::unordered_set<at::TensorImpl*> dirty_inputs_;
|
145 |
+
std::vector<torch::autograd::SavedVariable> saved_variables_;
|
146 |
+
variable_list to_save_;
|
147 |
+
bool materialize_grads_{true};
|
148 |
+
|
149 |
+
// The CppNode in the autograd graph that owns this AutogradContext. We need a
|
150 |
+
// weak_ptr to avoid a refcycle. Since grad_fn_ owns this AutogradContext, it
|
151 |
+
// will always be alive when we want to use it.
|
152 |
+
std::weak_ptr<Node> grad_fn_;
|
153 |
+
bool has_freed_buffers_{false};
|
154 |
+
|
155 |
+
void save_variables();
|
156 |
+
|
157 |
+
template <class T>
|
158 |
+
friend struct CppNode;
|
159 |
+
};
|
160 |
+
|
161 |
+
// CppNode<T> is the Node in the autograd graph that represents the user defined
|
162 |
+
// backward function for Function<T>. Calls to CppNode::apply are forward to
|
163 |
+
// T::backward().
|
164 |
+
template <class T>
|
165 |
+
struct CppNode : public Node {
|
166 |
+
variable_list apply(variable_list&& inputs) override;
|
167 |
+
AutogradContext ctx_;
|
168 |
+
std::vector<bool> is_variable_input_;
|
169 |
+
std::vector<VariableInfo> input_info_;
|
170 |
+
std::vector<VariableInfo> output_info_;
|
171 |
+
|
172 |
+
void release_variables() override;
|
173 |
+
|
174 |
+
void set_ctx_grad_fn(const std::shared_ptr<Node>& node);
|
175 |
+
void save_variables_to_ctx();
|
176 |
+
};
|
177 |
+
|
178 |
+
struct ExtractVariables : IterArgs<ExtractVariables> {
|
179 |
+
// NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members)
|
180 |
+
std::vector<bool>& is_var_;
|
181 |
+
// NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members)
|
182 |
+
variable_list& list_;
|
183 |
+
ExtractVariables(std::vector<bool>& is_var, variable_list& list)
|
184 |
+
: is_var_(is_var), list_(list) {}
|
185 |
+
void operator()(const c10::optional<at::Tensor>& x) {
|
186 |
+
// NOLINTNEXTLINE(bugprone-branch-clone)
|
187 |
+
if (x.has_value() && x.value().defined()) {
|
188 |
+
is_var_.push_back(true);
|
189 |
+
list_.emplace_back(x.value());
|
190 |
+
} else {
|
191 |
+
is_var_.push_back(false);
|
192 |
+
}
|
193 |
+
}
|
194 |
+
void operator()(const at::Tensor& x) {
|
195 |
+
is_var_.push_back(true);
|
196 |
+
list_.emplace_back(x);
|
197 |
+
}
|
198 |
+
void operator()(const at::TensorList& list) {
|
199 |
+
for (const at::Tensor& x : list) {
|
200 |
+
is_var_.push_back(true);
|
201 |
+
list_.emplace_back(x);
|
202 |
+
}
|
203 |
+
}
|
204 |
+
template <typename T>
|
205 |
+
void operator()(const T& x) {
|
206 |
+
is_var_.push_back(false);
|
207 |
+
}
|
208 |
+
};
|
209 |
+
|
210 |
+
template <typename... Args>
|
211 |
+
inline void extract_vars(
|
212 |
+
std::vector<bool>& is_var,
|
213 |
+
variable_list& list,
|
214 |
+
Args&&... args) {
|
215 |
+
ExtractVariables(is_var, list).apply(std::forward<Args>(args)...);
|
216 |
+
}
|
217 |
+
|
218 |
+
template <typename T>
|
219 |
+
std::enable_if_t<std::is_same_v<T, variable_list>, T> to_output_type(
|
220 |
+
std::vector<c10::optional<Variable>>& output_list) {
|
221 |
+
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
|
222 |
+
variable_list result;
|
223 |
+
std::transform(
|
224 |
+
output_list.begin(),
|
225 |
+
output_list.end(),
|
226 |
+
std::back_inserter(result),
|
227 |
+
[](const c10::optional<Variable>& var) { return *var; });
|
228 |
+
return result;
|
229 |
+
}
|
230 |
+
|
231 |
+
template <typename T>
|
232 |
+
std::enable_if_t<std::is_same_v<T, Variable>, T> to_output_type(
|
233 |
+
std::vector<c10::optional<Variable>>& output_list) {
|
234 |
+
return *output_list[0];
|
235 |
+
}
|
236 |
+
|
237 |
+
inline std::vector<c10::optional<Variable>> to_optional(Variable& output) {
|
238 |
+
return std::vector<c10::optional<Variable>>{output};
|
239 |
+
}
|
240 |
+
|
241 |
+
inline std::vector<c10::optional<Variable>> to_optional(variable_list& output) {
|
242 |
+
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
|
243 |
+
std::vector<c10::optional<Variable>> result;
|
244 |
+
std::transform(
|
245 |
+
output.begin(),
|
246 |
+
output.end(),
|
247 |
+
std::back_inserter(result),
|
248 |
+
[](const Variable& var) { return var; });
|
249 |
+
return result;
|
250 |
+
}
|
251 |
+
|
252 |
+
template <class T>
|
253 |
+
template <typename X, typename... Args>
|
254 |
+
auto Function<T>::apply(Args&&... args)
|
255 |
+
-> std::enable_if_t<std::is_same_v<X, T>, forward_t<X, Args...>> {
|
256 |
+
const auto& functorch_tls = at::functorch::functorchTLSAccessor();
|
257 |
+
if (functorch_tls) {
|
258 |
+
// Function support for functorch is handled in Python.
|
259 |
+
// Here we are dealing with a (C++) Function, which is not supported.
|
260 |
+
// Let's raise an error instead of being silently incorrect.
|
261 |
+
functorch_tls->checkSupportsCppAutogradFunction();
|
262 |
+
}
|
263 |
+
|
264 |
+
std::shared_ptr<CppNode<T>> node(new CppNode<T>(), deleteNode);
|
265 |
+
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
|
266 |
+
variable_list input_vars;
|
267 |
+
|
268 |
+
const size_t num_inputs = sizeof...(Args);
|
269 |
+
input_vars.reserve(num_inputs);
|
270 |
+
node->is_variable_input_.reserve(num_inputs);
|
271 |
+
// TODO Add tracing here
|
272 |
+
extract_vars(node->is_variable_input_, input_vars, args...);
|
273 |
+
|
274 |
+
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
|
275 |
+
bool is_executable =
|
276 |
+
GradMode::is_enabled() && any_variable_requires_grad(input_vars);
|
277 |
+
auto next_edges =
|
278 |
+
(is_executable ? collect_next_edges(input_vars) : edge_list());
|
279 |
+
node->set_ctx_grad_fn(node);
|
280 |
+
node->set_next_edges(std::move(next_edges));
|
281 |
+
node->clear_input_metadata();
|
282 |
+
|
283 |
+
node->input_info_.reserve(input_vars.size());
|
284 |
+
for (auto& var : input_vars) {
|
285 |
+
node->input_info_.emplace_back(var);
|
286 |
+
}
|
287 |
+
|
288 |
+
using forward_return_t = forward_t<X, Args...>;
|
289 |
+
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
|
290 |
+
forward_return_t outputs;
|
291 |
+
{
|
292 |
+
AutoGradMode grad_mode(false);
|
293 |
+
outputs = T::forward(&node->ctx_, std::forward<Args>(args)...);
|
294 |
+
}
|
295 |
+
|
296 |
+
_jvp_fn_t jvp_fn = [](const variable_list& inputs,
|
297 |
+
const variable_list& gI) -> variable_list {
|
298 |
+
TORCH_CHECK(
|
299 |
+
false,
|
300 |
+
"jvp is not implemented for the c++ API of custom Function yet.",
|
301 |
+
"Please open a feature request on GitHub if you need this.");
|
302 |
+
};
|
303 |
+
|
304 |
+
auto view_as_self_fn = [](const at::Tensor& x) -> at::Tensor {
|
305 |
+
return x.view_as(x);
|
306 |
+
};
|
307 |
+
|
308 |
+
auto wrapped_outputs = _wrap_outputs(
|
309 |
+
input_vars,
|
310 |
+
node->ctx_.get_non_differentiable(),
|
311 |
+
node->ctx_.get_and_bump_dirty(),
|
312 |
+
to_optional(outputs),
|
313 |
+
is_executable ? node : nullptr,
|
314 |
+
jvp_fn,
|
315 |
+
{},
|
316 |
+
view_as_self_fn);
|
317 |
+
|
318 |
+
node->output_info_.reserve(wrapped_outputs.size());
|
319 |
+
for (auto& output : wrapped_outputs) {
|
320 |
+
if (is_executable && output.has_value()) {
|
321 |
+
node->output_info_.emplace_back(output.value());
|
322 |
+
} else if (is_executable) {
|
323 |
+
node->output_info_.emplace_back();
|
324 |
+
}
|
325 |
+
}
|
326 |
+
|
327 |
+
if (is_executable) {
|
328 |
+
node->save_variables_to_ctx();
|
329 |
+
}
|
330 |
+
|
331 |
+
// wrapped_outputs will be a variable_list so, convert it to the correct
|
332 |
+
// return type. Only Variable and variable_list are accepted as return types.
|
333 |
+
return to_output_type<forward_return_t>(wrapped_outputs);
|
334 |
+
}
|
335 |
+
|
336 |
+
// The logic here is the same as PyNode::apply, so changes to it should be done
|
337 |
+
// in both the places
|
338 |
+
template <class T>
|
339 |
+
// NOLINTNEXTLINE(cppcoreguidelines-rvalue-reference-param-not-moved)
|
340 |
+
variable_list CppNode<T>::apply(variable_list&& inputs) {
|
341 |
+
at::OptionalDeviceGuard _device_guard;
|
342 |
+
|
343 |
+
auto num_inputs = inputs.size();
|
344 |
+
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
|
345 |
+
variable_list backward_inputs;
|
346 |
+
backward_inputs.reserve(num_inputs);
|
347 |
+
for (const auto i : c10::irange(num_inputs)) {
|
348 |
+
if (inputs[i].defined() || !ctx_.materialize_grads_) {
|
349 |
+
backward_inputs.emplace_back(std::move(inputs[i]));
|
350 |
+
} else {
|
351 |
+
backward_inputs.emplace_back(output_info_[i].zeros(_device_guard));
|
352 |
+
}
|
353 |
+
}
|
354 |
+
|
355 |
+
// Acquire lock to here protect thread safety on custom C++ Autograd Node
|
356 |
+
// This is needed for the custom Autograd Node since we don't know if the
|
357 |
+
// user defined Node will write to the shared data during backward.
|
358 |
+
// see Note [Thread Safety on Autograd Node]
|
359 |
+
std::lock_guard<std::mutex> lock(mutex_);
|
360 |
+
|
361 |
+
auto outputs = T::backward(&ctx_, backward_inputs);
|
362 |
+
|
363 |
+
const auto num_forward_inputs =
|
364 |
+
static_cast<int64_t>(is_variable_input_.size());
|
365 |
+
auto num_outputs = static_cast<int64_t>(outputs.size());
|
366 |
+
// Returning too many results is ok, but only as long as they're all
|
367 |
+
// undefined. Truncate the result vector in that case.
|
368 |
+
if (num_outputs > num_forward_inputs) {
|
369 |
+
bool all_undef = true;
|
370 |
+
for (const auto i : c10::irange(num_forward_inputs, num_outputs)) {
|
371 |
+
all_undef &= (!outputs[i].defined());
|
372 |
+
}
|
373 |
+
if (all_undef) {
|
374 |
+
outputs.resize(num_forward_inputs);
|
375 |
+
num_outputs = num_forward_inputs;
|
376 |
+
}
|
377 |
+
}
|
378 |
+
|
379 |
+
if (num_outputs != num_forward_inputs) {
|
380 |
+
std::string msg("function ");
|
381 |
+
msg += name() + " returned an incorrect number of gradients (expected ";
|
382 |
+
msg += c10::to_string(num_forward_inputs) + ", got ";
|
383 |
+
msg += c10::to_string(num_outputs) + ")";
|
384 |
+
throw std::runtime_error(msg);
|
385 |
+
}
|
386 |
+
|
387 |
+
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
|
388 |
+
variable_list results;
|
389 |
+
results.reserve(num_outputs);
|
390 |
+
for (const auto i : c10::irange(num_outputs)) {
|
391 |
+
if (!is_variable_input_[i]) {
|
392 |
+
if (outputs[i].defined()) {
|
393 |
+
std::string msg("function ");
|
394 |
+
msg += name() +
|
395 |
+
" returned a gradient different that is defined at position ";
|
396 |
+
msg += c10::to_string(i + 1) +
|
397 |
+
", but the corresponding forward input was not a Variable";
|
398 |
+
throw std::runtime_error(msg);
|
399 |
+
}
|
400 |
+
continue;
|
401 |
+
}
|
402 |
+
results.emplace_back(outputs[i]);
|
403 |
+
}
|
404 |
+
return results;
|
405 |
+
}
|
406 |
+
|
407 |
+
template <class T>
|
408 |
+
void CppNode<T>::release_variables() {
|
409 |
+
// lock to ensure thread safety, see [Thread Safety on Autograd Node]
|
410 |
+
std::lock_guard<std::mutex> lock(mutex_);
|
411 |
+
ctx_.saved_variables_.clear();
|
412 |
+
ctx_.has_freed_buffers_ = true;
|
413 |
+
}
|
414 |
+
|
415 |
+
template <class T>
|
416 |
+
void CppNode<T>::save_variables_to_ctx() {
|
417 |
+
ctx_.save_variables();
|
418 |
+
}
|
419 |
+
|
420 |
+
template <class T>
|
421 |
+
void CppNode<T>::set_ctx_grad_fn(const std::shared_ptr<Node>& node) {
|
422 |
+
ctx_.grad_fn_ = node;
|
423 |
+
}
|
424 |
+
|
425 |
+
} // namespace torch::autograd
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/functions/accumulate_grad.h
ADDED
@@ -0,0 +1,277 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/CachedTensorUtils.h>
|
4 |
+
#include <ATen/LegacyBatchedTensorImpl.h>
|
5 |
+
#include <ATen/TensorOperators.h>
|
6 |
+
#include <torch/csrc/Export.h>
|
7 |
+
#include <torch/csrc/autograd/function.h>
|
8 |
+
#include <torch/csrc/autograd/utils/grad_layout_contract.h>
|
9 |
+
#include <torch/csrc/autograd/variable.h>
|
10 |
+
|
11 |
+
#ifndef AT_PER_OPERATOR_HEADERS
|
12 |
+
#include <ATen/Functions.h>
|
13 |
+
#else
|
14 |
+
#include <ATen/ops/_sparse_coo_tensor_unsafe.h>
|
15 |
+
#endif
|
16 |
+
|
17 |
+
#include <mutex>
|
18 |
+
|
19 |
+
namespace torch {
|
20 |
+
namespace autograd {
|
21 |
+
|
22 |
+
#define CHECK_RESULT(RESULT, VAR) \
|
23 |
+
if (!(RESULT.is_sparse() || VAR.is_sparse() || RESULT.is_sparse_csr() || \
|
24 |
+
VAR.is_sparse_csr())) { \
|
25 |
+
if (!utils::obeys_layout_contract(RESULT, VAR)) { \
|
26 |
+
TORCH_WARN_ONCE( \
|
27 |
+
"grad and param do not obey the gradient layout contract. " \
|
28 |
+
"This is not an error, but may impair performance.\n" \
|
29 |
+
"grad.sizes() = ", \
|
30 |
+
RESULT.sizes(), \
|
31 |
+
", strides() = ", \
|
32 |
+
RESULT.strides(), \
|
33 |
+
"\n", \
|
34 |
+
"param.sizes() = ", \
|
35 |
+
VAR.sizes(), \
|
36 |
+
", strides() = ", \
|
37 |
+
VAR.strides()); \
|
38 |
+
} \
|
39 |
+
}
|
40 |
+
|
41 |
+
struct TORCH_API AccumulateGrad : public Node {
|
42 |
+
explicit AccumulateGrad(Variable variable_);
|
43 |
+
|
44 |
+
variable_list apply(variable_list&& grads) override;
|
45 |
+
|
46 |
+
std::vector<std::unique_ptr<FunctionPreHook>>& tensor_pre_hooks() noexcept
|
47 |
+
override {
|
48 |
+
// NB: Since the AccumulateGrad Node is only a weak ref from the Tensor,
|
49 |
+
// it can be destroyed even though the Tensor is still alive (contrary
|
50 |
+
// to all other Nodes). So we must lazily read the Tensor hooks here.
|
51 |
+
return impl::hooks(variable);
|
52 |
+
}
|
53 |
+
|
54 |
+
std::unique_ptr<PostAccumulateGradHook>& tensor_post_acc_grad_hooks() noexcept
|
55 |
+
override {
|
56 |
+
// NB: Since the AccumulateGrad Node is only a weak ref from the Tensor,
|
57 |
+
// it can be destroyed even though the Tensor is still alive (contrary
|
58 |
+
// to all other Nodes). So we must lazily read the Tensor hooks here.
|
59 |
+
return impl::post_acc_grad_hooks(variable);
|
60 |
+
}
|
61 |
+
|
62 |
+
// Given a variable with its current grad as variable_grad, accumulates
|
63 |
+
// new_grad into variable_grad if in place accumulation is possible.
|
64 |
+
// Otherwise, uses 'update_grad' to update the grad for the variable.
|
65 |
+
|
66 |
+
// "Gradient Layout Contract"
|
67 |
+
//
|
68 |
+
// AccumulateGrad tries to stash strided (non-sparse) grads with memory layout
|
69 |
+
// (strides) such that variables and grads interact efficiently in later
|
70 |
+
// optimizer kernels, and grads interact efficiently with c10d::Reducer.cpp.
|
71 |
+
//
|
72 |
+
// Specifically, AccumulateGrad tries to ensure the following
|
73 |
+
// (cf torch/csrc/autograd/utils/grad_layout_contract.h):
|
74 |
+
// (1) if variable.is_non_overlapping_and_dense(), the stashed grad's
|
75 |
+
// strides match variable.
|
76 |
+
// (2) else, stashed grad is rowmajor contiguous.
|
77 |
+
// If variable's grad does not exist (!variable_grad.defined())
|
78 |
+
// AccumulateGrad steals new_grad if it's stealable and obeys the contract
|
79 |
+
// already, otherwise it deep copies new_grad into an obedient clone.
|
80 |
+
//
|
81 |
+
// If variable's grad already exists (variable_grad.defined()), new_grad must
|
82 |
+
// be added to variable_grad. If we aren't setting up for double backward
|
83 |
+
// (!GradMode::is_enabled()), AccumulateGrad performs "variable_grad +=
|
84 |
+
// new_grad" in-place, which keeps variable_grad's layout. We assume (hope)
|
85 |
+
// variable_grad was created obeying (1) or (2) at some point in the past.
|
86 |
+
//
|
87 |
+
// If we are setting up for double backward, AccumulateGrad updates the grad
|
88 |
+
// out-of-place via "variable_grad + new_grad." TensorIterator operator+
|
89 |
+
// decides result's layout. Typically TensorIterator matches strides of the
|
90 |
+
// first arg, so we once again assume (hope) variable_grad was originally
|
91 |
+
// created obeying (1) or (2).
|
92 |
+
//
|
93 |
+
// AccumulateGrad does not enforce the contract with 100% certainty. Examples:
|
94 |
+
// - If a user manually permutes a param or its grad, then runs a fwd+bwd,
|
95 |
+
// variable_grad += new_grad keeps variable_grad's layout without
|
96 |
+
// rechecking the contract.
|
97 |
+
// - If TensorIterator changes its corner cases about operator+'s result
|
98 |
+
// (for example, giving more or less priority to channels_last inputs, see
|
99 |
+
// https://github.com/pytorch/pytorch/pull/37968) the result may not obey.
|
100 |
+
//
|
101 |
+
// Fortunately, if a given grad doesn't satisfy (1) or (2), the penalty is
|
102 |
+
// degraded performance in Reducer.cpp or optimizer kernels, not death by
|
103 |
+
// assert or silently bad numerics.
|
104 |
+
|
105 |
+
// variable: the variable whose grad we're accumulating.
|
106 |
+
// variable_grad: the current grad for the variable.
|
107 |
+
// new_grad: new grad we want to accumulate for the variable.
|
108 |
+
// num_expected_refs: the number of refs we expect to hold internally
|
109 |
+
// such that it is safe to avoid cloning the grad
|
110 |
+
// if use_count() of the grad is less than or equal
|
111 |
+
// to this value (in addition to post_hooks).
|
112 |
+
// update_grad: Function that is used to update grad for the variable.
|
113 |
+
// The argument to the function is a Tensor which
|
114 |
+
// is used to set a new value for the grad.
|
115 |
+
template <typename T>
|
116 |
+
static void accumulateGrad(
|
117 |
+
const Variable& variable,
|
118 |
+
at::Tensor& variable_grad,
|
119 |
+
const at::Tensor& new_grad,
|
120 |
+
size_t num_expected_refs,
|
121 |
+
const T& update_grad) {
|
122 |
+
if (!variable_grad.defined()) {
|
123 |
+
if (!GradMode::is_enabled() && !new_grad.is_sparse() &&
|
124 |
+
!new_grad.is_sparse_csr() &&
|
125 |
+
!(variable.is_sparse_csr() && new_grad.layout() == at::kStrided) &&
|
126 |
+
at::caching::adjusted_use_count(new_grad) <= num_expected_refs &&
|
127 |
+
(new_grad.is_mkldnn() ||
|
128 |
+
utils::obeys_layout_contract(new_grad, variable))) {
|
129 |
+
// we aren't setting up for double-backward
|
130 |
+
// not sparse
|
131 |
+
// no other user-visible tensor references new_grad
|
132 |
+
// new_grad obeys the "Gradient Layout Contract", there has a special
|
133 |
+
// case, For MKLDNN tensor, which is a opaque tensor, assuming it obeys
|
134 |
+
// layout_contract. Under these conditions, we can steal new_grad
|
135 |
+
// without a deep copy.
|
136 |
+
update_grad(new_grad.detach());
|
137 |
+
} else if (
|
138 |
+
!GradMode::is_enabled() && new_grad.is_sparse() &&
|
139 |
+
new_grad._indices().is_contiguous() &&
|
140 |
+
new_grad._values().is_contiguous() &&
|
141 |
+
// Use count for indices and values should always be <=1 since the
|
142 |
+
// SparseTensor should be the only one holding a reference to these.
|
143 |
+
new_grad._indices().use_count() <= 1 &&
|
144 |
+
new_grad._values().use_count() <= 1 &&
|
145 |
+
new_grad.use_count() <= num_expected_refs) {
|
146 |
+
// Can't detach sparse tensor (since metadata changes are not allowed
|
147 |
+
// after detach), so just create a new one for the grad which is a
|
148 |
+
// shallow copy. We need a shallow copy so that modifying the original
|
149 |
+
// grad tensor doesn't modify the grad we accumulate.
|
150 |
+
// We only skip clone if indices and values themselves are contiguous
|
151 |
+
// for backward compatibility reasons. Since without this optimization,
|
152 |
+
// earlier we would clone the entire SparseTensor which cloned indices
|
153 |
+
// and values.
|
154 |
+
// For details see https://github.com/pytorch/pytorch/issues/34375.
|
155 |
+
|
156 |
+
// No scenario where we expect this to be true currently
|
157 |
+
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(
|
158 |
+
!at::caching::is_cached_tensor(new_grad._indices()) &&
|
159 |
+
!at::caching::is_cached_tensor(new_grad._values()) &&
|
160 |
+
!at::caching::is_cached_tensor(new_grad));
|
161 |
+
|
162 |
+
update_grad(at::_sparse_coo_tensor_unsafe(
|
163 |
+
new_grad._indices(),
|
164 |
+
new_grad._values(),
|
165 |
+
new_grad.sizes(),
|
166 |
+
new_grad.options()));
|
167 |
+
} else {
|
168 |
+
if (new_grad.is_sparse() || new_grad.is_sparse_csr() ||
|
169 |
+
new_grad.is_nested()) {
|
170 |
+
update_grad(new_grad.clone());
|
171 |
+
} else {
|
172 |
+
if (new_grad.is_mkldnn()) {
|
173 |
+
update_grad(new_grad.clone());
|
174 |
+
} else {
|
175 |
+
// Deep copies new_grad according to the "Gradient Layout Contract."
|
176 |
+
update_grad(utils::clone_obey_contract(new_grad, variable));
|
177 |
+
}
|
178 |
+
}
|
179 |
+
}
|
180 |
+
} else if (!GradMode::is_enabled()) {
|
181 |
+
// This case is not strictly necessary, but it makes the first-order only
|
182 |
+
// case slightly more efficient.
|
183 |
+
if (variable_grad.is_sparse() && !new_grad.is_sparse()) {
|
184 |
+
// If `variable_grad` is sparse and `new_grad` is not sparse, their
|
185 |
+
// sum is not sparse, and we must change the TensorImpl type of
|
186 |
+
// `variable_grad` for it to store the result. However, changing the
|
187 |
+
// TensorImpl type of a tensor requires changing the tensor itself, and
|
188 |
+
// thus in this case we have to change the grad tensor.
|
189 |
+
auto result = new_grad + variable_grad;
|
190 |
+
CHECK_RESULT(result, variable);
|
191 |
+
update_grad(std::move(result));
|
192 |
+
} else if (!at::inplaceIsVmapCompatible(variable_grad, new_grad)) {
|
193 |
+
// Ideally we'd perform an in-place operation to avoid changing
|
194 |
+
// the grad tensor. However, if that's impossible because the grads
|
195 |
+
// are vmap-incompatible (See NOTE: [vmap-incompatible in-place
|
196 |
+
// operations]), then we just add them out-of-place.
|
197 |
+
auto result = variable_grad + new_grad;
|
198 |
+
CHECK_RESULT(result, variable);
|
199 |
+
update_grad(std::move(result));
|
200 |
+
} else {
|
201 |
+
// In this case we can avoid changing the grad tensor. There are three
|
202 |
+
// scenarios when we'll hit this case:
|
203 |
+
//
|
204 |
+
// 1. `variable_grad` is sparse, and `new_grad` is sparse.
|
205 |
+
// 2. `variable_grad` is dense, and `new_grad` is sparse.
|
206 |
+
// 3. `variable_grad` is dense, and `new_grad` is dense.
|
207 |
+
// 4. `variable_grad` is mkldnn, and `new_grad` is mkldnn.
|
208 |
+
//
|
209 |
+
// In all of these four cases, `variable_grad += new_grad` is a
|
210 |
+
// valid operation which adds `new_grad` to `variable_grad` in
|
211 |
+
// place. `variable_grad` is thus still referring to the same tensor
|
212 |
+
// after the operation.
|
213 |
+
// Also DistributedDataParallel(DDP) package relies on grad being
|
214 |
+
// mutated in place for saving peak memory usage. DDP will still
|
215 |
+
// work correctly if it is mutated out of place here, but DDP will
|
216 |
+
// maintain one extra copy of grad tensors in buffer and thus
|
217 |
+
// increase peak memory usage.
|
218 |
+
variable_grad += new_grad;
|
219 |
+
CHECK_RESULT(variable_grad, variable);
|
220 |
+
// ^ We could enforce the contract more aggressively here by writing:
|
221 |
+
// if (variable_grad.is_sparse() || new_grad.is_sparse()) {
|
222 |
+
// variable_grad += new_grad;
|
223 |
+
// } else if (obeys_layout_contract(variable_grad, variable)) {
|
224 |
+
// variable_grad += new_grad;
|
225 |
+
// } else {
|
226 |
+
// result = at::empty_strided(variable.sizes(), variable.strides(),
|
227 |
+
// variable.options().memory_format(c10::nullopt));
|
228 |
+
// update_grad(at::native::add_out(result, variable_grad,
|
229 |
+
// new_grad, 1.0);
|
230 |
+
// }
|
231 |
+
// However, that accumulation is sometimes in place and sometimes not,
|
232 |
+
// which may break user code.
|
233 |
+
}
|
234 |
+
} else {
|
235 |
+
at::Tensor result;
|
236 |
+
if (variable_grad.is_sparse() && !new_grad.is_sparse()) {
|
237 |
+
// CPU backend throws an error on sparse + dense, so prefer dense +
|
238 |
+
// sparse here.
|
239 |
+
result = new_grad + variable_grad;
|
240 |
+
} else {
|
241 |
+
// Assumes operator+ result typically matches strides of first arg,
|
242 |
+
// and hopes variable_grad was originally created obeying layout
|
243 |
+
// contract.
|
244 |
+
result = variable_grad + new_grad;
|
245 |
+
}
|
246 |
+
CHECK_RESULT(result, variable);
|
247 |
+
update_grad(std::move(result));
|
248 |
+
// ^ We could enforce the contract more aggressively here by saying
|
249 |
+
// if (obeys_layout_contract(new_grad, variable)) {
|
250 |
+
// update_grad(new_grad + variable_grad);
|
251 |
+
// } else {
|
252 |
+
// update_grad(variable_grad + new_grad);
|
253 |
+
// }
|
254 |
+
// such that the stashed grad is likely to have the right strides if
|
255 |
+
// either variable_grad or new_grad already has the right strides.
|
256 |
+
// We could enforce the contract with certainty by saying
|
257 |
+
// auto result = variable_grad + new_grad (or vice versa), checking
|
258 |
+
// result's layout, and copying to an obedient clone if necessary before
|
259 |
+
// update_grad. The copy would require another gmem pass. We can't create
|
260 |
+
// empty result with the right layout then add_out into it with a single
|
261 |
+
// kernel, because GradMode is enabled in this branch, and add_out isn't
|
262 |
+
// differentiable. Maybe more trouble than it's worth.
|
263 |
+
}
|
264 |
+
}
|
265 |
+
|
266 |
+
void compiled_args(CompiledNodeArgs& args) override;
|
267 |
+
variable_list apply_with_saved(
|
268 |
+
const variable_list& inputs,
|
269 |
+
SwapSavedVariables& saved) override;
|
270 |
+
|
271 |
+
Variable variable;
|
272 |
+
};
|
273 |
+
|
274 |
+
#undef CHECK_RESULT
|
275 |
+
|
276 |
+
} // namespace autograd
|
277 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/functions/basic_ops.h
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/util/irange.h>
|
4 |
+
#include <torch/csrc/Export.h>
|
5 |
+
#include <torch/csrc/autograd/function.h>
|
6 |
+
#include <torch/csrc/autograd/variable.h>
|
7 |
+
|
8 |
+
#include <memory>
|
9 |
+
#include <string>
|
10 |
+
#include <vector>
|
11 |
+
|
12 |
+
namespace torch {
|
13 |
+
namespace autograd {
|
14 |
+
|
15 |
+
struct TORCH_API Error : public Node {
|
16 |
+
Error(std::string msg, edge_list&& next_edges)
|
17 |
+
: Node(std::move(next_edges)), msg(std::move(msg)) {}
|
18 |
+
|
19 |
+
Error(std::string msg) : msg(std::move(msg)) {}
|
20 |
+
|
21 |
+
variable_list apply(variable_list&& inputs) override;
|
22 |
+
|
23 |
+
void compiled_args(CompiledNodeArgs& args) override;
|
24 |
+
variable_list apply_with_saved(
|
25 |
+
const variable_list& inputs,
|
26 |
+
SwapSavedVariables& saved) override;
|
27 |
+
|
28 |
+
std::string msg;
|
29 |
+
};
|
30 |
+
|
31 |
+
// We print grad_fn names in tensor printing. For functions with backward
|
32 |
+
// NYI, grad_fn=<Error> will be printed if we use Error, which is confusing. So
|
33 |
+
// special case with a new NotImplemented function here.
|
34 |
+
struct TORCH_API NotImplemented : public Error {
|
35 |
+
NotImplemented(const std::string& forward_fn, edge_list&& next_edges)
|
36 |
+
: Error(
|
37 |
+
"derivative for " + forward_fn + " is not implemented",
|
38 |
+
std::move(next_edges)) {}
|
39 |
+
|
40 |
+
NotImplemented(const std::string& forward_fn)
|
41 |
+
: Error("derivative for " + forward_fn + " is not implemented") {}
|
42 |
+
};
|
43 |
+
|
44 |
+
// Identity in forward, Error in backward. Used to implement
|
45 |
+
// @once_differentiable
|
46 |
+
struct TORCH_API DelayedError : public Node {
|
47 |
+
DelayedError(std::string msg, int64_t num_inputs) : msg(std::move(msg)) {
|
48 |
+
// NOLINTNEXTLINE(clang-analyzer-deadcode.DeadStores)
|
49 |
+
for (const auto i : c10::irange(num_inputs)) {
|
50 |
+
(void)i; // Suppress unused variable warning
|
51 |
+
add_input_metadata(Node::undefined_input());
|
52 |
+
}
|
53 |
+
}
|
54 |
+
|
55 |
+
variable_list apply(variable_list&& inputs) override;
|
56 |
+
|
57 |
+
std::string msg;
|
58 |
+
};
|
59 |
+
|
60 |
+
struct TORCH_API UndefinedGrad : public Node {
|
61 |
+
UndefinedGrad() {
|
62 |
+
add_input_metadata(Node::undefined_input());
|
63 |
+
}
|
64 |
+
|
65 |
+
variable_list apply(variable_list&& inputs) override;
|
66 |
+
};
|
67 |
+
|
68 |
+
struct TORCH_API UndefinedGradBackward : public Node {
|
69 |
+
UndefinedGradBackward(edge_list&& next_edges) : Node(std::move(next_edges)) {}
|
70 |
+
|
71 |
+
UndefinedGradBackward() = default;
|
72 |
+
|
73 |
+
variable_list apply(variable_list&& inputs) override;
|
74 |
+
|
75 |
+
void compiled_args(CompiledNodeArgs& args) override {}
|
76 |
+
variable_list apply_with_saved(
|
77 |
+
const variable_list& inputs,
|
78 |
+
SwapSavedVariables& saved) override {
|
79 |
+
return apply(variable_list(inputs));
|
80 |
+
}
|
81 |
+
};
|
82 |
+
|
83 |
+
struct TORCH_API GraphRoot : public Node {
|
84 |
+
GraphRoot(edge_list functions, variable_list inputs)
|
85 |
+
: Node(std::move(functions)), outputs(std::move(inputs)) {
|
86 |
+
// Ensures calls to stream() on a GraphRoot instance reflect current
|
87 |
+
// stream(s) on devices of root grad tensors at the time the instance is
|
88 |
+
// constructed.
|
89 |
+
for (const auto& t : outputs) {
|
90 |
+
add_input_metadata(t);
|
91 |
+
}
|
92 |
+
}
|
93 |
+
|
94 |
+
variable_list apply(variable_list&& inputs) override {
|
95 |
+
return outputs;
|
96 |
+
}
|
97 |
+
|
98 |
+
void compiled_args(CompiledNodeArgs& args) override;
|
99 |
+
variable_list apply_with_saved(
|
100 |
+
const variable_list& inputs,
|
101 |
+
SwapSavedVariables& saved) override;
|
102 |
+
|
103 |
+
variable_list outputs;
|
104 |
+
};
|
105 |
+
|
106 |
+
struct TORCH_API Identity : public Node {
|
107 |
+
variable_list apply(variable_list&& inputs) override;
|
108 |
+
};
|
109 |
+
|
110 |
+
} // namespace autograd
|
111 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/functions/comm.h
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/Export.h>
|
4 |
+
#include <torch/csrc/autograd/function.h>
|
5 |
+
#include <torch/csrc/autograd/variable.h>
|
6 |
+
|
7 |
+
#include <ATen/ATen.h>
|
8 |
+
#include <c10/cuda/CUDAStream.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
|
11 |
+
#include <cstddef>
|
12 |
+
#include <vector>
|
13 |
+
|
14 |
+
namespace torch {
|
15 |
+
namespace autograd {
|
16 |
+
|
17 |
+
struct TORCH_CUDA_CU_API Scatter : public Node {
|
18 |
+
explicit Scatter(
|
19 |
+
std::vector<at::Device> devices,
|
20 |
+
c10::optional<std::vector<int64_t>> chunk_sizes = c10::nullopt,
|
21 |
+
int64_t dim = 0,
|
22 |
+
c10::optional<std::vector<c10::optional<at::cuda::CUDAStream>>> streams =
|
23 |
+
c10::nullopt,
|
24 |
+
bool unsqueeze_scalars = false);
|
25 |
+
~Scatter() override;
|
26 |
+
|
27 |
+
variable_list apply(variable_list&& inputs) override;
|
28 |
+
|
29 |
+
std::vector<at::Device> devices_;
|
30 |
+
c10::optional<std::vector<int64_t>> chunk_sizes_;
|
31 |
+
int64_t dim_;
|
32 |
+
c10::optional<std::vector<c10::optional<at::cuda::CUDAStream>>> streams_;
|
33 |
+
bool unsqueeze_scalars_;
|
34 |
+
};
|
35 |
+
|
36 |
+
struct TORCH_CUDA_CU_API Gather : public Node {
|
37 |
+
explicit Gather(const at::Device& destination_device, int64_t dim = 0);
|
38 |
+
~Gather() override;
|
39 |
+
|
40 |
+
variable_list apply(variable_list&& inputs) override;
|
41 |
+
|
42 |
+
at::Device destination_device_;
|
43 |
+
int64_t dim_;
|
44 |
+
};
|
45 |
+
|
46 |
+
} // namespace autograd
|
47 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/functions/pybind.h
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <pybind11/pybind11.h>
|
4 |
+
#include <pybind11/stl.h>
|
5 |
+
#include <torch/csrc/python_headers.h>
|
6 |
+
#include <torch/csrc/utils/pybind.h>
|
7 |
+
|
8 |
+
#include <torch/csrc/autograd/python_cpp_function.h>
|
9 |
+
#include <torch/csrc/autograd/python_function.h>
|
10 |
+
|
11 |
+
namespace py = pybind11;
|
12 |
+
|
13 |
+
namespace pybind11 {
|
14 |
+
namespace detail {}
|
15 |
+
} // namespace pybind11
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/functions/tensor.h
ADDED
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/Export.h>
|
4 |
+
#include <torch/csrc/autograd/function.h>
|
5 |
+
#include <torch/csrc/autograd/variable.h>
|
6 |
+
|
7 |
+
#include <ATen/TensorGeometry.h>
|
8 |
+
#include <ATen/core/DeprecatedTypeProperties.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
|
11 |
+
#include <cstdint>
|
12 |
+
#include <memory>
|
13 |
+
|
14 |
+
namespace torch {
|
15 |
+
namespace autograd {
|
16 |
+
|
17 |
+
struct TORCH_API CopyBackwards : public Node {
|
18 |
+
variable_list apply(variable_list&& grads) override;
|
19 |
+
void compiled_args(CompiledNodeArgs& args) override;
|
20 |
+
variable_list apply_with_saved(
|
21 |
+
const variable_list& inputs,
|
22 |
+
SwapSavedVariables& saved) override;
|
23 |
+
|
24 |
+
at::TensorOptions src_options;
|
25 |
+
};
|
26 |
+
|
27 |
+
// Note [View + Inplace update for base tensor]
|
28 |
+
//
|
29 |
+
// This note covers a few important topics related to view + inplace handling.
|
30 |
+
// - It explains what is the CopySlices Node and why we need it.
|
31 |
+
// - It explains the considerations on what is saved for backward in
|
32 |
+
// CopySlices.
|
33 |
+
// - It explains why we need to sometimes change the exec_info of the current
|
34 |
+
// backward
|
35 |
+
//
|
36 |
+
// What is CopySlices?
|
37 |
+
// ~~~~~~~~~~~~~~~~~~~
|
38 |
+
//
|
39 |
+
// We support autograd with inplace mutation; e.g., if you write x.mul_(2)
|
40 |
+
// the autograd will work as if you now had multiple Tensors under the hood and
|
41 |
+
// you did
|
42 |
+
// x = t.clone()
|
43 |
+
// x0 = x
|
44 |
+
// x1 = x0 * 2
|
45 |
+
// x = x1
|
46 |
+
// As you can see here, after this operation, x.grad_fn now points to x1.grad_fn
|
47 |
+
// (the MulBackward node) and this node points to x's original grad_fn (which is
|
48 |
+
// also x0.grad_fn). It is important to keep in mind that after the inplace,
|
49 |
+
// there is no Tensor object that represents the x0 state anymore. But the graph
|
50 |
+
// for it is still around in autograd (in case x was used before being modified
|
51 |
+
// inplace). See Example 1 in
|
52 |
+
// https://docs.google.com/drawings/d/1-T5DyYfChMX1ONQkY-zU-hj_ayQ2zmA5CBOKDWqvEhE
|
53 |
+
// We call this rebasing the history of the Tensor.
|
54 |
+
//
|
55 |
+
// Now, a difficult situation is what happens if x is a differentiable view
|
56 |
+
// of a base b.
|
57 |
+
// b = t.clone()
|
58 |
+
// x = b.select(0, 0)
|
59 |
+
// x *= 2
|
60 |
+
// With the same approach as above, this will become
|
61 |
+
// b = t.clone()
|
62 |
+
// x = b.select(0, 0)
|
63 |
+
// b0 = b
|
64 |
+
// x0 = x
|
65 |
+
// x1 = x0 * 2
|
66 |
+
// b1 = b0.select_scatter(x1, 0, 0)
|
67 |
+
// x2 = b1.select(0, 0)
|
68 |
+
// x = x2
|
69 |
+
// b = b1
|
70 |
+
// As you can see here, not only we need to modify x's grad_fn, we also need to
|
71 |
+
// modify the one from b. We also need to ensure that the new grad_fn on x is
|
72 |
+
// linked to b's new grad_fn. The chain the select_scatter, multiplication and
|
73 |
+
// select is what CopySlices does, all wrapped into a single Node.
|
74 |
+
//
|
75 |
+
// See Example 1 in
|
76 |
+
// https://docs.google.com/drawings/d/1-T5DyYfChMX1ONQkY-zU-hj_ayQ2zmA5CBOKDWqvEhE
|
77 |
+
//
|
78 |
+
// What do we need to save in CopySlices to run backward?
|
79 |
+
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
80 |
+
//
|
81 |
+
// We need to perform grad_view = fn(grad_view), but out-of-place.
|
82 |
+
// view_fn_ is an optional function saved in DifferentiableViewMeta
|
83 |
+
// from forward pass, so that we can recover we when as_strided is not
|
84 |
+
// supported. It preserves the invariants:
|
85 |
+
// view = view_fn_(base)
|
86 |
+
// grad_view = view_fn_(grad_base)
|
87 |
+
//
|
88 |
+
// When as_strided is supported (e.g. strided CPU/CUDA Tensors), view_fn_
|
89 |
+
// is empty and we save TensorGeometry(view) instead.
|
90 |
+
// With the TensorGeometry information we can use `as_strided` call which
|
91 |
+
// is more efficient to recover views in backward.
|
92 |
+
//
|
93 |
+
// For example:
|
94 |
+
// view_1 = view_op_1(base)
|
95 |
+
// view_2 = view_op_2(view_1)
|
96 |
+
// ...
|
97 |
+
// view_n = view_op_n(view_n-1)
|
98 |
+
// view_n = inplace_op(view_n)
|
99 |
+
//
|
100 |
+
// In CPU/CUDA case where we support efficient as_strided implementation,
|
101 |
+
// grad_view_n can be calculated through 1 step.
|
102 |
+
//
|
103 |
+
// grad_view_n = grad_base.as_strided(view_sizes, view_strides, view_offset);
|
104 |
+
//
|
105 |
+
// But in XLA backend where we don't have full support of as_strided,
|
106 |
+
// it has to save a chained lambda function view_fn_, to exactly
|
107 |
+
// replay how the view was done in forward.
|
108 |
+
//
|
109 |
+
// view_fn_ = view_op_n(...(view_op_2(view_op_1())))
|
110 |
+
// grad_view_n = view_fn_(grad_base)
|
111 |
+
//
|
112 |
+
// This chain view_fn_ works as long as forward view ops are implemented,
|
113 |
+
// e.g XLA simulates view without a real Storage behind Tensor, but it's less
|
114 |
+
// efficient than the as_strided one so we should be careful to only use it when
|
115 |
+
// necessary.
|
116 |
+
//
|
117 |
+
// - For CPU/CUDA we save TensorGeometry of both base and view tensors,
|
118 |
+
// That's all we need to pass into as_strided.
|
119 |
+
// E.g. int[] sizes, int[] strides, and int storage_offset.
|
120 |
+
// - For XLA we use view_fn_, which captures all forward view op arguments
|
121 |
+
// by **value**.
|
122 |
+
// E.g for at::narrow, int dim, int start, in length are saved.
|
123 |
+
//
|
124 |
+
// Theoretically we could also save Tensor `view` in CopySlices Node, but
|
125 |
+
// it's far more expensive than what we currently save.
|
126 |
+
// 1. We cannot afford keeping large tensors alive to recover views only.
|
127 |
+
// 2. There are inplace checks when Tensors are loaded back to make sure
|
128 |
+
// they haven't been changed (including size metadata).
|
129 |
+
// So saving metadata like TensorGeometry/view arguments is much better
|
130 |
+
// because it is minimal information needed to recover views, as well as it
|
131 |
+
// allows the user to modify the original Tensor without preventing the
|
132 |
+
// backward pass from running.
|
133 |
+
//
|
134 |
+
// Why do we manually change exec_info in the apply?
|
135 |
+
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
136 |
+
//
|
137 |
+
// Using the same example as before,
|
138 |
+
// b = t.clone()
|
139 |
+
// x = b.select(0, 0)
|
140 |
+
// x *= y
|
141 |
+
//
|
142 |
+
// You can see the visualization at
|
143 |
+
// https://docs.google.com/drawings/d/1Bx-Hcz-zlIv7PabQqnPhUIVIs9F8WWi48svqMsAUMFs
|
144 |
+
// which contains the wrapped MulBackward Node and show what it links to.
|
145 |
+
// Since a backward can happen between any subset of the inputs (t and y) and
|
146 |
+
// outputs (o, x, b). It is possible to get into a state where CopySlices's 0th
|
147 |
+
// next function (CloneBackward) needs gradient but MulBackward's 0th next
|
148 |
+
// function (SelectBackward) is not. This happens if you do autograd.grad
|
149 |
+
// between x and t for example.
|
150 |
+
// In such a case, we do need to mark SelectBackward as requiring gradient such
|
151 |
+
// that, during the execution of MulBackward, we will actually compute gradient
|
152 |
+
// for the 0th input.
|
153 |
+
//
|
154 |
+
// All the other next functions are always shared (this is asserted in the apply
|
155 |
+
// code) and so nothing needs to be done for them.
|
156 |
+
|
157 |
+
// See Note [View + Inplace update for view tensor] for what we do to view
|
158 |
+
// tensor when an in-place operation happens.
|
159 |
+
struct TORCH_API CopySlices : public Node {
|
160 |
+
CopySlices(
|
161 |
+
const Variable& base_var,
|
162 |
+
at::TensorGeometry view_,
|
163 |
+
std::unique_ptr<ViewFunc> view_fn_,
|
164 |
+
std::shared_ptr<Node> fn_);
|
165 |
+
|
166 |
+
// common code between apply/apply_with_saved
|
167 |
+
template <typename T>
|
168 |
+
variable_list apply_impl(variable_list&& inputs, const T& call_fn);
|
169 |
+
|
170 |
+
variable_list apply(variable_list&& inputs) override;
|
171 |
+
void release_variables() override;
|
172 |
+
void compiled_args(CompiledNodeArgs& args) override;
|
173 |
+
variable_list apply_with_saved(
|
174 |
+
const variable_list& inputs,
|
175 |
+
SwapSavedVariables& saved) override;
|
176 |
+
|
177 |
+
at::TensorGeometry base;
|
178 |
+
// view and view_fn are redundant and view_fn will be used if available.
|
179 |
+
// See Note [View + Inplace update for base tensor] for details.
|
180 |
+
at::TensorGeometry view;
|
181 |
+
std::unique_ptr<ViewFunc> view_fn;
|
182 |
+
std::shared_ptr<Node> fn;
|
183 |
+
};
|
184 |
+
|
185 |
+
} // namespace autograd
|
186 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/functions/utils.h
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/Export.h>
|
4 |
+
#include <torch/csrc/autograd/InferenceMode.h>
|
5 |
+
#include <torch/csrc/autograd/autograd.h>
|
6 |
+
#include <torch/csrc/autograd/function.h>
|
7 |
+
#include <torch/csrc/autograd/variable.h>
|
8 |
+
#include <torch/csrc/utils/variadic.h>
|
9 |
+
|
10 |
+
#include <ATen/core/Tensor.h>
|
11 |
+
|
12 |
+
#include <functional>
|
13 |
+
#include <memory>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
namespace torch {
|
17 |
+
namespace autograd {
|
18 |
+
|
19 |
+
using function_constructor = std::function<std::shared_ptr<Node>(edge_list&&)>;
|
20 |
+
|
21 |
+
/**
|
22 |
+
* Wraps the tensor outputs in variables and creates the grad_fn and sets the
|
23 |
+
* grad_fn if necessary.
|
24 |
+
*/
|
25 |
+
TORCH_API variable_list wrap_outputs(
|
26 |
+
const variable_list& inputs,
|
27 |
+
tensor_list&& outputs,
|
28 |
+
const function_constructor& ctr);
|
29 |
+
|
30 |
+
/// Checks that inputs contains exactly `args` items and that the first
|
31 |
+
/// `required_args`
|
32 |
+
/// items are not nullptr. If not specified, `required_args` defaults to `args`.
|
33 |
+
TORCH_API void check_input_variables(
|
34 |
+
const char* name,
|
35 |
+
const variable_list& inputs,
|
36 |
+
int args,
|
37 |
+
int required_args = -1,
|
38 |
+
bool allow_undefined = false);
|
39 |
+
|
40 |
+
struct ComputeRequiresGrad : IterArgs<ComputeRequiresGrad> {
|
41 |
+
bool out = false;
|
42 |
+
using IterArgs<ComputeRequiresGrad>::operator();
|
43 |
+
void operator()(const at::Tensor& tensor) {
|
44 |
+
const auto& var = static_cast<const Variable&>(tensor);
|
45 |
+
if (var.defined() && var.requires_grad()) {
|
46 |
+
out = true;
|
47 |
+
}
|
48 |
+
}
|
49 |
+
void operator()(const c10::optional<at::Tensor>& tensor) {
|
50 |
+
if (tensor.has_value()) {
|
51 |
+
(*this)(*tensor);
|
52 |
+
}
|
53 |
+
}
|
54 |
+
bool short_circuit() {
|
55 |
+
return out;
|
56 |
+
}
|
57 |
+
};
|
58 |
+
|
59 |
+
template <typename... Args>
|
60 |
+
inline bool compute_requires_grad(Args&&... args) {
|
61 |
+
if (!GradMode::is_enabled()) {
|
62 |
+
return false;
|
63 |
+
}
|
64 |
+
return ComputeRequiresGrad().apply(std::forward<Args>(args)...).out;
|
65 |
+
}
|
66 |
+
|
67 |
+
inline void set_history(
|
68 |
+
const at::Tensor& variable,
|
69 |
+
const std::shared_ptr<Node>& grad_fn) {
|
70 |
+
TORCH_CHECK(grad_fn != nullptr);
|
71 |
+
if (variable.defined()) {
|
72 |
+
// If the codegen triggers this, you most likely want to add your newly
|
73 |
+
// added function to the DONT_REQUIRE_DERIVATIVE list in
|
74 |
+
// tools/autograd/gen_variable_type.py
|
75 |
+
TORCH_INTERNAL_ASSERT(isDifferentiableType(variable.scalar_type()));
|
76 |
+
auto output_nr = grad_fn->add_input_metadata(variable);
|
77 |
+
impl::set_gradient_edge(variable, {grad_fn, output_nr});
|
78 |
+
} else {
|
79 |
+
grad_fn->add_input_metadata(Node::undefined_input());
|
80 |
+
}
|
81 |
+
}
|
82 |
+
|
83 |
+
inline void set_history(
|
84 |
+
const std::vector<Variable>& variables,
|
85 |
+
const std::shared_ptr<Node>& grad_fn) {
|
86 |
+
for (auto& variable : variables) {
|
87 |
+
set_history(variable, grad_fn);
|
88 |
+
}
|
89 |
+
}
|
90 |
+
|
91 |
+
inline bool isFwGradDefined(const c10::optional<at::Tensor>& t) {
|
92 |
+
return t.has_value() && t->defined() && t->_fw_grad(/*level */ 0).defined();
|
93 |
+
}
|
94 |
+
|
95 |
+
inline bool isFwGradDefinedTensorList(const at::ITensorListRef& variables) {
|
96 |
+
bool ret = false;
|
97 |
+
for (auto& variable : variables) {
|
98 |
+
ret |= isFwGradDefined(variable);
|
99 |
+
}
|
100 |
+
return ret;
|
101 |
+
}
|
102 |
+
|
103 |
+
inline bool isFwGradDefinedTensorList(
|
104 |
+
const c10::List<c10::optional<at::Tensor>>& li) {
|
105 |
+
bool ret = false;
|
106 |
+
for (auto i : c10::irange(li.size())) {
|
107 |
+
auto t = li.get(i);
|
108 |
+
ret |= (t.has_value() && isFwGradDefined(t.value()));
|
109 |
+
}
|
110 |
+
return ret;
|
111 |
+
}
|
112 |
+
|
113 |
+
} // namespace autograd
|
114 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/generated/Functions.h
ADDED
The diff for this file is too large to render.
See raw diff
|
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/generated/VariableType.h
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated from ../tools/autograd/templates/VariableType.h
|
4 |
+
|
5 |
+
#include <ATen/core/Tensor.h>
|
6 |
+
#include <ATen/Context.h>
|
7 |
+
|
8 |
+
#include <c10/util/intrusive_ptr.h>
|
9 |
+
|
10 |
+
#include <torch/csrc/Export.h>
|
11 |
+
#include <torch/csrc/autograd/autograd_not_implemented_fallback.h>
|
12 |
+
|
13 |
+
#include <cstdint> // for size_t
|
14 |
+
#include <functional> // for function
|
15 |
+
#include <memory> // for unique_ptr
|
16 |
+
#include <string>
|
17 |
+
#include <vector>
|
18 |
+
|
19 |
+
namespace at {
|
20 |
+
struct Quantizer;
|
21 |
+
};
|
22 |
+
|
23 |
+
namespace torch { namespace autograd {
|
24 |
+
|
25 |
+
using Variable = at::Tensor;
|
26 |
+
using at::Context;
|
27 |
+
using at::Device;
|
28 |
+
using at::Dimname;
|
29 |
+
using at::DimnameList;
|
30 |
+
using at::Generator;
|
31 |
+
using at::IntArrayRef;
|
32 |
+
using at::MemoryFormat;
|
33 |
+
using at::QScheme;
|
34 |
+
using at::Scalar;
|
35 |
+
using at::ScalarType;
|
36 |
+
using at::Storage;
|
37 |
+
using at::Tensor;
|
38 |
+
using at::TensorList;
|
39 |
+
using at::TensorOptions;
|
40 |
+
using at::Quantizer;
|
41 |
+
// This is temporary typedef to enable Quantizer in aten native function API
|
42 |
+
// we'll remove them when we are actually exposing Quantizer class
|
43 |
+
// to frontend
|
44 |
+
using ConstQuantizerPtr = const c10::intrusive_ptr<Quantizer>&;
|
45 |
+
using c10::optional;
|
46 |
+
|
47 |
+
namespace VariableType {
|
48 |
+
TORCH_API std::vector<at::DeprecatedTypeProperties*> allCUDATypes();
|
49 |
+
TORCH_API std::vector<at::DeprecatedTypeProperties*> allXPUTypes();
|
50 |
+
TORCH_API std::vector<at::DeprecatedTypeProperties*> allCPUTypes();
|
51 |
+
TORCH_API std::vector<at::DeprecatedTypeProperties*> allPrivateUser1Types();
|
52 |
+
|
53 |
+
at::Tensor & unpack(Tensor & t, const char * name, int pos);
|
54 |
+
const at::Tensor & unpack(const Tensor & t, const char * name, int pos);
|
55 |
+
at::Tensor unpack_opt(const Tensor & t, const char * name, int pos);
|
56 |
+
std::vector<at::Tensor> unpack(const at::ITensorListRef& tl, const char *name, int pos);
|
57 |
+
};
|
58 |
+
|
59 |
+
}} // namespace torch::autograd
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/generated/ViewFuncs.h
ADDED
@@ -0,0 +1,953 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated from ../tools/autograd/templates/ViewFuncs.h
|
4 |
+
|
5 |
+
#include <torch/library.h>
|
6 |
+
#include <torch/csrc/autograd/variable.h>
|
7 |
+
#include <c10/core/SymIntArrayRef.h>
|
8 |
+
|
9 |
+
#ifndef AT_PER_OPERATOR_HEADERS
|
10 |
+
#include <ATen/Operators.h>
|
11 |
+
#else
|
12 |
+
#include <ATen/ops/_conj_ops.h>
|
13 |
+
#include <ATen/ops/_indices_ops.h>
|
14 |
+
#include <ATen/ops/_neg_view_ops.h>
|
15 |
+
#include <ATen/ops/_nested_get_values_ops.h>
|
16 |
+
#include <ATen/ops/_nested_view_from_buffer_ops.h>
|
17 |
+
#include <ATen/ops/_nested_view_from_jagged_ops.h>
|
18 |
+
#include <ATen/ops/_reshape_alias_ops.h>
|
19 |
+
#include <ATen/ops/_test_autograd_multiple_dispatch_view_ops.h>
|
20 |
+
#include <ATen/ops/_values_ops.h>
|
21 |
+
#include <ATen/ops/alias_ops.h>
|
22 |
+
#include <ATen/ops/as_strided_ops.h>
|
23 |
+
#include <ATen/ops/ccol_indices_ops.h>
|
24 |
+
#include <ATen/ops/chunk_ops.h>
|
25 |
+
#include <ATen/ops/col_indices_ops.h>
|
26 |
+
#include <ATen/ops/crow_indices_ops.h>
|
27 |
+
#include <ATen/ops/diagonal_ops.h>
|
28 |
+
#include <ATen/ops/expand_ops.h>
|
29 |
+
#include <ATen/ops/indices_ops.h>
|
30 |
+
#include <ATen/ops/narrow_ops.h>
|
31 |
+
#include <ATen/ops/permute_ops.h>
|
32 |
+
#include <ATen/ops/row_indices_ops.h>
|
33 |
+
#include <ATen/ops/select_ops.h>
|
34 |
+
#include <ATen/ops/slice_ops.h>
|
35 |
+
#include <ATen/ops/slice_inverse_ops.h>
|
36 |
+
#include <ATen/ops/split_ops.h>
|
37 |
+
#include <ATen/ops/split_with_sizes_ops.h>
|
38 |
+
#include <ATen/ops/squeeze_ops.h>
|
39 |
+
#include <ATen/ops/squeeze_ops.h>
|
40 |
+
#include <ATen/ops/squeeze_ops.h>
|
41 |
+
#include <ATen/ops/t_ops.h>
|
42 |
+
#include <ATen/ops/transpose_ops.h>
|
43 |
+
#include <ATen/ops/unbind_ops.h>
|
44 |
+
#include <ATen/ops/unfold_ops.h>
|
45 |
+
#include <ATen/ops/unsqueeze_ops.h>
|
46 |
+
#include <ATen/ops/values_ops.h>
|
47 |
+
#include <ATen/ops/view_ops.h>
|
48 |
+
#include <ATen/ops/view_ops.h>
|
49 |
+
#include <ATen/ops/view_as_complex_ops.h>
|
50 |
+
#include <ATen/ops/view_as_real_ops.h>
|
51 |
+
#endif
|
52 |
+
|
53 |
+
namespace torch::autograd::generated {
|
54 |
+
|
55 |
+
using at::Scalar;
|
56 |
+
using at::Tensor;
|
57 |
+
using at::IntArrayRef;
|
58 |
+
using at::ArrayRef;
|
59 |
+
using at::Type;
|
60 |
+
using at::ScalarType;
|
61 |
+
using c10::optional;
|
62 |
+
using c10::fmap;
|
63 |
+
|
64 |
+
#define _CONJ_VIEW_FUNC_AVAILABLE
|
65 |
+
struct _ConjViewFunc : public torch::autograd::ViewFunc {
|
66 |
+
_ConjViewFunc()
|
67 |
+
{};
|
68 |
+
virtual ~_ConjViewFunc() override {};
|
69 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
70 |
+
virtual size_t num_symints() const override;
|
71 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
72 |
+
virtual size_t num_tensors() const override;
|
73 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
74 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
75 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
76 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
77 |
+
|
78 |
+
protected:
|
79 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
80 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
81 |
+
|
82 |
+
private:
|
83 |
+
|
84 |
+
};
|
85 |
+
|
86 |
+
#define _INDICES_VIEW_FUNC_AVAILABLE
|
87 |
+
struct _IndicesViewFunc : public torch::autograd::ViewFunc {
|
88 |
+
_IndicesViewFunc()
|
89 |
+
{};
|
90 |
+
virtual ~_IndicesViewFunc() override {};
|
91 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
92 |
+
virtual size_t num_symints() const override;
|
93 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
94 |
+
virtual size_t num_tensors() const override;
|
95 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
96 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
97 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
98 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
99 |
+
|
100 |
+
protected:
|
101 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
102 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
103 |
+
|
104 |
+
private:
|
105 |
+
|
106 |
+
};
|
107 |
+
|
108 |
+
#define _NEG_VIEW_VIEW_FUNC_AVAILABLE
|
109 |
+
struct _NegViewViewFunc : public torch::autograd::ViewFunc {
|
110 |
+
_NegViewViewFunc()
|
111 |
+
{};
|
112 |
+
virtual ~_NegViewViewFunc() override {};
|
113 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
114 |
+
virtual size_t num_symints() const override;
|
115 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
116 |
+
virtual size_t num_tensors() const override;
|
117 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
118 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
119 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
120 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
121 |
+
|
122 |
+
protected:
|
123 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
124 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
125 |
+
|
126 |
+
private:
|
127 |
+
|
128 |
+
};
|
129 |
+
|
130 |
+
#define _NESTED_GET_VALUES_VIEW_FUNC_AVAILABLE
|
131 |
+
struct _NestedGetValuesViewFunc : public torch::autograd::ViewFunc {
|
132 |
+
_NestedGetValuesViewFunc()
|
133 |
+
{};
|
134 |
+
virtual ~_NestedGetValuesViewFunc() override {};
|
135 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
136 |
+
virtual size_t num_symints() const override;
|
137 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
138 |
+
virtual size_t num_tensors() const override;
|
139 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
140 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
141 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
142 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
143 |
+
|
144 |
+
protected:
|
145 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
146 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
147 |
+
|
148 |
+
private:
|
149 |
+
|
150 |
+
};
|
151 |
+
|
152 |
+
#define _NESTED_VIEW_FROM_BUFFER_VIEW_FUNC_AVAILABLE
|
153 |
+
struct _NestedViewFromBufferViewFunc : public torch::autograd::ViewFunc {
|
154 |
+
_NestedViewFromBufferViewFunc(const at::Tensor & nested_size, const at::Tensor & nested_strides, const at::Tensor & offsets) : nested_size(nested_size), nested_strides(nested_strides), offsets(offsets)
|
155 |
+
{};
|
156 |
+
virtual ~_NestedViewFromBufferViewFunc() override {};
|
157 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
158 |
+
virtual size_t num_symints() const override;
|
159 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
160 |
+
virtual size_t num_tensors() const override;
|
161 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
162 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
163 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
164 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
165 |
+
|
166 |
+
protected:
|
167 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
168 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
169 |
+
|
170 |
+
private:
|
171 |
+
at::Tensor nested_size;
|
172 |
+
at::Tensor nested_strides;
|
173 |
+
at::Tensor offsets;
|
174 |
+
};
|
175 |
+
|
176 |
+
#define _NESTED_VIEW_FROM_JAGGED_VIEW_FUNC_AVAILABLE
|
177 |
+
struct _NestedViewFromJaggedViewFunc : public torch::autograd::ViewFunc {
|
178 |
+
_NestedViewFromJaggedViewFunc(const at::Tensor & offsets, const at::Tensor & dummy, const c10::optional<at::Tensor> & lengths, int64_t ragged_idx) : offsets(offsets), dummy(dummy), lengths(lengths), ragged_idx(ragged_idx)
|
179 |
+
{};
|
180 |
+
virtual ~_NestedViewFromJaggedViewFunc() override {};
|
181 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
182 |
+
virtual size_t num_symints() const override;
|
183 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
184 |
+
virtual size_t num_tensors() const override;
|
185 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
186 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
187 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
188 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
189 |
+
|
190 |
+
protected:
|
191 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
192 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
193 |
+
|
194 |
+
private:
|
195 |
+
at::Tensor offsets;
|
196 |
+
at::Tensor dummy;
|
197 |
+
c10::optional<at::Tensor> lengths;
|
198 |
+
int64_t ragged_idx;
|
199 |
+
};
|
200 |
+
|
201 |
+
#define _RESHAPE_ALIAS_VIEW_FUNC_AVAILABLE
|
202 |
+
struct _ReshapeAliasViewFunc : public torch::autograd::ViewFunc {
|
203 |
+
_ReshapeAliasViewFunc(c10::SymIntArrayRef size, c10::SymIntArrayRef stride) : size(size.vec()), stride(stride.vec())
|
204 |
+
{};
|
205 |
+
virtual ~_ReshapeAliasViewFunc() override {};
|
206 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
207 |
+
virtual size_t num_symints() const override;
|
208 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
209 |
+
virtual size_t num_tensors() const override;
|
210 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
211 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
212 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
213 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
214 |
+
|
215 |
+
protected:
|
216 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
217 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
218 |
+
|
219 |
+
private:
|
220 |
+
::std::vector<c10::SymInt> size;
|
221 |
+
::std::vector<c10::SymInt> stride;
|
222 |
+
};
|
223 |
+
|
224 |
+
#define _TEST_AUTOGRAD_MULTIPLE_DISPATCH_VIEW_VIEW_FUNC_AVAILABLE
|
225 |
+
struct _TestAutogradMultipleDispatchViewViewFunc : public torch::autograd::ViewFunc {
|
226 |
+
_TestAutogradMultipleDispatchViewViewFunc()
|
227 |
+
{};
|
228 |
+
virtual ~_TestAutogradMultipleDispatchViewViewFunc() override {};
|
229 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
230 |
+
virtual size_t num_symints() const override;
|
231 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
232 |
+
virtual size_t num_tensors() const override;
|
233 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
234 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
235 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
236 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
237 |
+
|
238 |
+
protected:
|
239 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
240 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
241 |
+
|
242 |
+
private:
|
243 |
+
|
244 |
+
};
|
245 |
+
|
246 |
+
#define _VALUES_VIEW_FUNC_AVAILABLE
|
247 |
+
struct _ValuesViewFunc : public torch::autograd::ViewFunc {
|
248 |
+
_ValuesViewFunc()
|
249 |
+
{};
|
250 |
+
virtual ~_ValuesViewFunc() override {};
|
251 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
252 |
+
virtual size_t num_symints() const override;
|
253 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
254 |
+
virtual size_t num_tensors() const override;
|
255 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
256 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
257 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
258 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
259 |
+
|
260 |
+
protected:
|
261 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
262 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
263 |
+
|
264 |
+
private:
|
265 |
+
|
266 |
+
};
|
267 |
+
|
268 |
+
#define ALIAS_VIEW_FUNC_AVAILABLE
|
269 |
+
struct AliasViewFunc : public torch::autograd::ViewFunc {
|
270 |
+
AliasViewFunc()
|
271 |
+
{};
|
272 |
+
virtual ~AliasViewFunc() override {};
|
273 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
274 |
+
virtual size_t num_symints() const override;
|
275 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
276 |
+
virtual size_t num_tensors() const override;
|
277 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
278 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
279 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
280 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
281 |
+
|
282 |
+
protected:
|
283 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
284 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
285 |
+
|
286 |
+
private:
|
287 |
+
|
288 |
+
};
|
289 |
+
|
290 |
+
#define AS_STRIDED_VIEW_FUNC_AVAILABLE
|
291 |
+
struct AsStridedViewFunc : public torch::autograd::ViewFunc {
|
292 |
+
AsStridedViewFunc(c10::SymIntArrayRef size, c10::SymIntArrayRef stride, c10::optional<c10::SymInt> storage_offset) : size(size.vec()), stride(stride.vec()), storage_offset(storage_offset)
|
293 |
+
{};
|
294 |
+
virtual ~AsStridedViewFunc() override {};
|
295 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
296 |
+
virtual size_t num_symints() const override;
|
297 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
298 |
+
virtual size_t num_tensors() const override;
|
299 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
300 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
301 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
302 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
303 |
+
|
304 |
+
protected:
|
305 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
306 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
307 |
+
|
308 |
+
private:
|
309 |
+
::std::vector<c10::SymInt> size;
|
310 |
+
::std::vector<c10::SymInt> stride;
|
311 |
+
c10::optional<c10::SymInt> storage_offset;
|
312 |
+
};
|
313 |
+
|
314 |
+
#define CCOL_INDICES_VIEW_FUNC_AVAILABLE
|
315 |
+
struct CcolIndicesViewFunc : public torch::autograd::ViewFunc {
|
316 |
+
CcolIndicesViewFunc()
|
317 |
+
{};
|
318 |
+
virtual ~CcolIndicesViewFunc() override {};
|
319 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
320 |
+
virtual size_t num_symints() const override;
|
321 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
322 |
+
virtual size_t num_tensors() const override;
|
323 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
324 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
325 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
326 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
327 |
+
|
328 |
+
protected:
|
329 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
330 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
331 |
+
|
332 |
+
private:
|
333 |
+
|
334 |
+
};
|
335 |
+
|
336 |
+
#define CHUNK_VIEW_FUNC_AVAILABLE
|
337 |
+
struct ChunkViewFunc : public torch::autograd::ViewFunc {
|
338 |
+
ChunkViewFunc(int64_t chunks, int64_t dim, int64_t view_idx) : chunks(chunks), dim(dim), view_idx(view_idx)
|
339 |
+
{};
|
340 |
+
virtual ~ChunkViewFunc() override {};
|
341 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
342 |
+
virtual size_t num_symints() const override;
|
343 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
344 |
+
virtual size_t num_tensors() const override;
|
345 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
346 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
347 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
348 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
349 |
+
|
350 |
+
protected:
|
351 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
352 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
353 |
+
|
354 |
+
private:
|
355 |
+
int64_t chunks;
|
356 |
+
int64_t dim;
|
357 |
+
int64_t view_idx;
|
358 |
+
};
|
359 |
+
|
360 |
+
#define COL_INDICES_VIEW_FUNC_AVAILABLE
|
361 |
+
struct ColIndicesViewFunc : public torch::autograd::ViewFunc {
|
362 |
+
ColIndicesViewFunc()
|
363 |
+
{};
|
364 |
+
virtual ~ColIndicesViewFunc() override {};
|
365 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
366 |
+
virtual size_t num_symints() const override;
|
367 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
368 |
+
virtual size_t num_tensors() const override;
|
369 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
370 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
371 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
372 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
373 |
+
|
374 |
+
protected:
|
375 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
376 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
377 |
+
|
378 |
+
private:
|
379 |
+
|
380 |
+
};
|
381 |
+
|
382 |
+
#define CROW_INDICES_VIEW_FUNC_AVAILABLE
|
383 |
+
struct CrowIndicesViewFunc : public torch::autograd::ViewFunc {
|
384 |
+
CrowIndicesViewFunc()
|
385 |
+
{};
|
386 |
+
virtual ~CrowIndicesViewFunc() override {};
|
387 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
388 |
+
virtual size_t num_symints() const override;
|
389 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
390 |
+
virtual size_t num_tensors() const override;
|
391 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
392 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
393 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
394 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
395 |
+
|
396 |
+
protected:
|
397 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
398 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
399 |
+
|
400 |
+
private:
|
401 |
+
|
402 |
+
};
|
403 |
+
|
404 |
+
#define DIAGONAL_VIEW_FUNC_AVAILABLE
|
405 |
+
struct DiagonalViewFunc : public torch::autograd::ViewFunc {
|
406 |
+
DiagonalViewFunc(int64_t offset, int64_t dim1, int64_t dim2) : offset(offset), dim1(dim1), dim2(dim2)
|
407 |
+
{};
|
408 |
+
virtual ~DiagonalViewFunc() override {};
|
409 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
410 |
+
virtual size_t num_symints() const override;
|
411 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
412 |
+
virtual size_t num_tensors() const override;
|
413 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
414 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
415 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
416 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
417 |
+
|
418 |
+
protected:
|
419 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
420 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
421 |
+
|
422 |
+
private:
|
423 |
+
int64_t offset;
|
424 |
+
int64_t dim1;
|
425 |
+
int64_t dim2;
|
426 |
+
};
|
427 |
+
|
428 |
+
#define EXPAND_VIEW_FUNC_AVAILABLE
|
429 |
+
struct ExpandViewFunc : public torch::autograd::ViewFunc {
|
430 |
+
ExpandViewFunc(c10::SymIntArrayRef size, bool implicit) : size(size.vec()), implicit(implicit)
|
431 |
+
{};
|
432 |
+
virtual ~ExpandViewFunc() override {};
|
433 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
434 |
+
virtual size_t num_symints() const override;
|
435 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
436 |
+
virtual size_t num_tensors() const override;
|
437 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
438 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
439 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
440 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
441 |
+
|
442 |
+
protected:
|
443 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
444 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
445 |
+
|
446 |
+
private:
|
447 |
+
::std::vector<c10::SymInt> size;
|
448 |
+
bool implicit;
|
449 |
+
};
|
450 |
+
|
451 |
+
#define INDICES_VIEW_FUNC_AVAILABLE
|
452 |
+
struct IndicesViewFunc : public torch::autograd::ViewFunc {
|
453 |
+
IndicesViewFunc()
|
454 |
+
{};
|
455 |
+
virtual ~IndicesViewFunc() override {};
|
456 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
457 |
+
virtual size_t num_symints() const override;
|
458 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
459 |
+
virtual size_t num_tensors() const override;
|
460 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
461 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
462 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
463 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
464 |
+
|
465 |
+
protected:
|
466 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
467 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
468 |
+
|
469 |
+
private:
|
470 |
+
|
471 |
+
};
|
472 |
+
|
473 |
+
#define NARROW_VIEW_FUNC_AVAILABLE
|
474 |
+
struct NarrowViewFunc : public torch::autograd::ViewFunc {
|
475 |
+
NarrowViewFunc(int64_t dim, c10::SymInt start, c10::SymInt length) : dim(dim), start(start), length(length)
|
476 |
+
{};
|
477 |
+
virtual ~NarrowViewFunc() override {};
|
478 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
479 |
+
virtual size_t num_symints() const override;
|
480 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
481 |
+
virtual size_t num_tensors() const override;
|
482 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
483 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
484 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
485 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
486 |
+
|
487 |
+
protected:
|
488 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
489 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
490 |
+
|
491 |
+
private:
|
492 |
+
int64_t dim;
|
493 |
+
c10::SymInt start;
|
494 |
+
c10::SymInt length;
|
495 |
+
};
|
496 |
+
|
497 |
+
#define PERMUTE_VIEW_FUNC_AVAILABLE
|
498 |
+
struct PermuteViewFunc : public torch::autograd::ViewFunc {
|
499 |
+
PermuteViewFunc(at::IntArrayRef dims) : dims(dims.vec())
|
500 |
+
{};
|
501 |
+
virtual ~PermuteViewFunc() override {};
|
502 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
503 |
+
virtual size_t num_symints() const override;
|
504 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
505 |
+
virtual size_t num_tensors() const override;
|
506 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
507 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
508 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
509 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
510 |
+
|
511 |
+
protected:
|
512 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
513 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
514 |
+
|
515 |
+
private:
|
516 |
+
::std::vector<int64_t> dims;
|
517 |
+
};
|
518 |
+
|
519 |
+
#define ROW_INDICES_VIEW_FUNC_AVAILABLE
|
520 |
+
struct RowIndicesViewFunc : public torch::autograd::ViewFunc {
|
521 |
+
RowIndicesViewFunc()
|
522 |
+
{};
|
523 |
+
virtual ~RowIndicesViewFunc() override {};
|
524 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
525 |
+
virtual size_t num_symints() const override;
|
526 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
527 |
+
virtual size_t num_tensors() const override;
|
528 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
529 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
530 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
531 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
532 |
+
|
533 |
+
protected:
|
534 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
535 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
536 |
+
|
537 |
+
private:
|
538 |
+
|
539 |
+
};
|
540 |
+
|
541 |
+
#define SELECT_INT_VIEW_FUNC_AVAILABLE
|
542 |
+
struct SelectIntViewFunc : public torch::autograd::ViewFunc {
|
543 |
+
SelectIntViewFunc(int64_t dim, c10::SymInt index) : dim(dim), index(index)
|
544 |
+
{};
|
545 |
+
virtual ~SelectIntViewFunc() override {};
|
546 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
547 |
+
virtual size_t num_symints() const override;
|
548 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
549 |
+
virtual size_t num_tensors() const override;
|
550 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
551 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
552 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
553 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
554 |
+
|
555 |
+
protected:
|
556 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
557 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
558 |
+
|
559 |
+
private:
|
560 |
+
int64_t dim;
|
561 |
+
c10::SymInt index;
|
562 |
+
};
|
563 |
+
|
564 |
+
#define SLICE_TENSOR_VIEW_FUNC_AVAILABLE
|
565 |
+
struct SliceTensorViewFunc : public torch::autograd::ViewFunc {
|
566 |
+
SliceTensorViewFunc(int64_t dim, c10::optional<c10::SymInt> start, c10::optional<c10::SymInt> end, c10::SymInt step) : dim(dim), start(start), end(end), step(step)
|
567 |
+
{};
|
568 |
+
virtual ~SliceTensorViewFunc() override {};
|
569 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
570 |
+
virtual size_t num_symints() const override;
|
571 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
572 |
+
virtual size_t num_tensors() const override;
|
573 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
574 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
575 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
576 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
577 |
+
|
578 |
+
protected:
|
579 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
580 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
581 |
+
|
582 |
+
private:
|
583 |
+
int64_t dim;
|
584 |
+
c10::optional<c10::SymInt> start;
|
585 |
+
c10::optional<c10::SymInt> end;
|
586 |
+
c10::SymInt step;
|
587 |
+
};
|
588 |
+
|
589 |
+
#define SLICE_INVERSE_VIEW_FUNC_AVAILABLE
|
590 |
+
struct SliceInverseViewFunc : public torch::autograd::ViewFunc {
|
591 |
+
SliceInverseViewFunc(const at::Tensor & src, int64_t dim, c10::optional<c10::SymInt> start, c10::optional<c10::SymInt> end, c10::SymInt step) : src(src), dim(dim), start(start), end(end), step(step)
|
592 |
+
{};
|
593 |
+
virtual ~SliceInverseViewFunc() override {};
|
594 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
595 |
+
virtual size_t num_symints() const override;
|
596 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
597 |
+
virtual size_t num_tensors() const override;
|
598 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
599 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
600 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
601 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
602 |
+
|
603 |
+
protected:
|
604 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
605 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
606 |
+
|
607 |
+
private:
|
608 |
+
at::Tensor src;
|
609 |
+
int64_t dim;
|
610 |
+
c10::optional<c10::SymInt> start;
|
611 |
+
c10::optional<c10::SymInt> end;
|
612 |
+
c10::SymInt step;
|
613 |
+
};
|
614 |
+
|
615 |
+
#define SPLIT_TENSOR_VIEW_FUNC_AVAILABLE
|
616 |
+
struct SplitTensorViewFunc : public torch::autograd::ViewFunc {
|
617 |
+
SplitTensorViewFunc(c10::SymInt split_size, int64_t dim, int64_t view_idx) : split_size(split_size), dim(dim), view_idx(view_idx)
|
618 |
+
{};
|
619 |
+
virtual ~SplitTensorViewFunc() override {};
|
620 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
621 |
+
virtual size_t num_symints() const override;
|
622 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
623 |
+
virtual size_t num_tensors() const override;
|
624 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
625 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
626 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
627 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
628 |
+
|
629 |
+
protected:
|
630 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
631 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
632 |
+
|
633 |
+
private:
|
634 |
+
c10::SymInt split_size;
|
635 |
+
int64_t dim;
|
636 |
+
int64_t view_idx;
|
637 |
+
};
|
638 |
+
|
639 |
+
#define SPLIT_WITH_SIZES_VIEW_FUNC_AVAILABLE
|
640 |
+
struct SplitWithSizesViewFunc : public torch::autograd::ViewFunc {
|
641 |
+
SplitWithSizesViewFunc(c10::SymIntArrayRef split_sizes, int64_t dim, int64_t view_idx) : split_sizes(split_sizes.vec()), dim(dim), view_idx(view_idx)
|
642 |
+
{};
|
643 |
+
virtual ~SplitWithSizesViewFunc() override {};
|
644 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
645 |
+
virtual size_t num_symints() const override;
|
646 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
647 |
+
virtual size_t num_tensors() const override;
|
648 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
649 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
650 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
651 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
652 |
+
|
653 |
+
protected:
|
654 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
655 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
656 |
+
|
657 |
+
private:
|
658 |
+
::std::vector<c10::SymInt> split_sizes;
|
659 |
+
int64_t dim;
|
660 |
+
int64_t view_idx;
|
661 |
+
};
|
662 |
+
|
663 |
+
#define SQUEEZE_VIEW_FUNC_AVAILABLE
|
664 |
+
struct SqueezeViewFunc : public torch::autograd::ViewFunc {
|
665 |
+
SqueezeViewFunc()
|
666 |
+
{};
|
667 |
+
virtual ~SqueezeViewFunc() override {};
|
668 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
669 |
+
virtual size_t num_symints() const override;
|
670 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
671 |
+
virtual size_t num_tensors() const override;
|
672 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
673 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
674 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
675 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
676 |
+
|
677 |
+
protected:
|
678 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
679 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
680 |
+
|
681 |
+
private:
|
682 |
+
|
683 |
+
};
|
684 |
+
|
685 |
+
#define SQUEEZE_DIM_VIEW_FUNC_AVAILABLE
|
686 |
+
struct SqueezeDimViewFunc : public torch::autograd::ViewFunc {
|
687 |
+
SqueezeDimViewFunc(int64_t dim) : dim(dim)
|
688 |
+
{};
|
689 |
+
virtual ~SqueezeDimViewFunc() override {};
|
690 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
691 |
+
virtual size_t num_symints() const override;
|
692 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
693 |
+
virtual size_t num_tensors() const override;
|
694 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
695 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
696 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
697 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
698 |
+
|
699 |
+
protected:
|
700 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
701 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
702 |
+
|
703 |
+
private:
|
704 |
+
int64_t dim;
|
705 |
+
};
|
706 |
+
|
707 |
+
#define SQUEEZE_DIMS_VIEW_FUNC_AVAILABLE
|
708 |
+
struct SqueezeDimsViewFunc : public torch::autograd::ViewFunc {
|
709 |
+
SqueezeDimsViewFunc(at::IntArrayRef dim) : dim(dim.vec())
|
710 |
+
{};
|
711 |
+
virtual ~SqueezeDimsViewFunc() override {};
|
712 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
713 |
+
virtual size_t num_symints() const override;
|
714 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
715 |
+
virtual size_t num_tensors() const override;
|
716 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
717 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
718 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
719 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
720 |
+
|
721 |
+
protected:
|
722 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
723 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
724 |
+
|
725 |
+
private:
|
726 |
+
::std::vector<int64_t> dim;
|
727 |
+
};
|
728 |
+
|
729 |
+
#define T_VIEW_FUNC_AVAILABLE
|
730 |
+
struct TViewFunc : public torch::autograd::ViewFunc {
|
731 |
+
TViewFunc()
|
732 |
+
{};
|
733 |
+
virtual ~TViewFunc() override {};
|
734 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
735 |
+
virtual size_t num_symints() const override;
|
736 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
737 |
+
virtual size_t num_tensors() const override;
|
738 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
739 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
740 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
741 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
742 |
+
|
743 |
+
protected:
|
744 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
745 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
746 |
+
|
747 |
+
private:
|
748 |
+
|
749 |
+
};
|
750 |
+
|
751 |
+
#define TRANSPOSE_INT_VIEW_FUNC_AVAILABLE
|
752 |
+
struct TransposeIntViewFunc : public torch::autograd::ViewFunc {
|
753 |
+
TransposeIntViewFunc(int64_t dim0, int64_t dim1) : dim0(dim0), dim1(dim1)
|
754 |
+
{};
|
755 |
+
virtual ~TransposeIntViewFunc() override {};
|
756 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
757 |
+
virtual size_t num_symints() const override;
|
758 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
759 |
+
virtual size_t num_tensors() const override;
|
760 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
761 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
762 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
763 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
764 |
+
|
765 |
+
protected:
|
766 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
767 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
768 |
+
|
769 |
+
private:
|
770 |
+
int64_t dim0;
|
771 |
+
int64_t dim1;
|
772 |
+
};
|
773 |
+
|
774 |
+
#define UNBIND_INT_VIEW_FUNC_AVAILABLE
|
775 |
+
struct UnbindIntViewFunc : public torch::autograd::ViewFunc {
|
776 |
+
UnbindIntViewFunc(int64_t dim, int64_t view_idx) : dim(dim), view_idx(view_idx)
|
777 |
+
{};
|
778 |
+
virtual ~UnbindIntViewFunc() override {};
|
779 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
780 |
+
virtual size_t num_symints() const override;
|
781 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
782 |
+
virtual size_t num_tensors() const override;
|
783 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
784 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
785 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
786 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
787 |
+
|
788 |
+
protected:
|
789 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
790 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
791 |
+
|
792 |
+
private:
|
793 |
+
int64_t dim;
|
794 |
+
int64_t view_idx;
|
795 |
+
};
|
796 |
+
|
797 |
+
#define UNFOLD_VIEW_FUNC_AVAILABLE
|
798 |
+
struct UnfoldViewFunc : public torch::autograd::ViewFunc {
|
799 |
+
UnfoldViewFunc(int64_t dimension, int64_t size, int64_t step) : dimension(dimension), size(size), step(step)
|
800 |
+
{};
|
801 |
+
virtual ~UnfoldViewFunc() override {};
|
802 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
803 |
+
virtual size_t num_symints() const override;
|
804 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
805 |
+
virtual size_t num_tensors() const override;
|
806 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
807 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
808 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
809 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
810 |
+
|
811 |
+
protected:
|
812 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
813 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
814 |
+
|
815 |
+
private:
|
816 |
+
int64_t dimension;
|
817 |
+
int64_t size;
|
818 |
+
int64_t step;
|
819 |
+
};
|
820 |
+
|
821 |
+
#define UNSQUEEZE_VIEW_FUNC_AVAILABLE
|
822 |
+
struct UnsqueezeViewFunc : public torch::autograd::ViewFunc {
|
823 |
+
UnsqueezeViewFunc(int64_t dim) : dim(dim)
|
824 |
+
{};
|
825 |
+
virtual ~UnsqueezeViewFunc() override {};
|
826 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
827 |
+
virtual size_t num_symints() const override;
|
828 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
829 |
+
virtual size_t num_tensors() const override;
|
830 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
831 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
832 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
833 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
834 |
+
|
835 |
+
protected:
|
836 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
837 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
838 |
+
|
839 |
+
private:
|
840 |
+
int64_t dim;
|
841 |
+
};
|
842 |
+
|
843 |
+
#define VALUES_VIEW_FUNC_AVAILABLE
|
844 |
+
struct ValuesViewFunc : public torch::autograd::ViewFunc {
|
845 |
+
ValuesViewFunc()
|
846 |
+
{};
|
847 |
+
virtual ~ValuesViewFunc() override {};
|
848 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
849 |
+
virtual size_t num_symints() const override;
|
850 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
851 |
+
virtual size_t num_tensors() const override;
|
852 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
853 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
854 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
855 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
856 |
+
|
857 |
+
protected:
|
858 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
859 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
860 |
+
|
861 |
+
private:
|
862 |
+
|
863 |
+
};
|
864 |
+
|
865 |
+
#define VIEW_VIEW_FUNC_AVAILABLE
|
866 |
+
struct ViewViewFunc : public torch::autograd::ViewFunc {
|
867 |
+
ViewViewFunc(c10::SymIntArrayRef size) : size(size.vec())
|
868 |
+
{};
|
869 |
+
virtual ~ViewViewFunc() override {};
|
870 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
871 |
+
virtual size_t num_symints() const override;
|
872 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
873 |
+
virtual size_t num_tensors() const override;
|
874 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
875 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
876 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
877 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
878 |
+
|
879 |
+
protected:
|
880 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
881 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
882 |
+
|
883 |
+
private:
|
884 |
+
::std::vector<c10::SymInt> size;
|
885 |
+
};
|
886 |
+
|
887 |
+
#define VIEW_DTYPE_VIEW_FUNC_AVAILABLE
|
888 |
+
struct ViewDtypeViewFunc : public torch::autograd::ViewFunc {
|
889 |
+
ViewDtypeViewFunc(at::ScalarType dtype) : dtype(dtype)
|
890 |
+
{};
|
891 |
+
virtual ~ViewDtypeViewFunc() override {};
|
892 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
893 |
+
virtual size_t num_symints() const override;
|
894 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
895 |
+
virtual size_t num_tensors() const override;
|
896 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
897 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
898 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
899 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
900 |
+
|
901 |
+
protected:
|
902 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
903 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
904 |
+
|
905 |
+
private:
|
906 |
+
at::ScalarType dtype;
|
907 |
+
};
|
908 |
+
|
909 |
+
#define VIEW_AS_COMPLEX_VIEW_FUNC_AVAILABLE
|
910 |
+
struct ViewAsComplexViewFunc : public torch::autograd::ViewFunc {
|
911 |
+
ViewAsComplexViewFunc()
|
912 |
+
{};
|
913 |
+
virtual ~ViewAsComplexViewFunc() override {};
|
914 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
915 |
+
virtual size_t num_symints() const override;
|
916 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
917 |
+
virtual size_t num_tensors() const override;
|
918 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
919 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
920 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
921 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
922 |
+
|
923 |
+
protected:
|
924 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
925 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
926 |
+
|
927 |
+
private:
|
928 |
+
|
929 |
+
};
|
930 |
+
|
931 |
+
#define VIEW_AS_REAL_VIEW_FUNC_AVAILABLE
|
932 |
+
struct ViewAsRealViewFunc : public torch::autograd::ViewFunc {
|
933 |
+
ViewAsRealViewFunc()
|
934 |
+
{};
|
935 |
+
virtual ~ViewAsRealViewFunc() override {};
|
936 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
937 |
+
virtual size_t num_symints() const override;
|
938 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
939 |
+
virtual size_t num_tensors() const override;
|
940 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
941 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
942 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
943 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
944 |
+
|
945 |
+
protected:
|
946 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
947 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
948 |
+
|
949 |
+
private:
|
950 |
+
|
951 |
+
};
|
952 |
+
|
953 |
+
} // namespace torch::autograd::generated
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/generated/python_functions.h
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <Python.h>
|
4 |
+
|
5 |
+
// @generated from ../tools/autograd/templates/python_functions.h
|
6 |
+
|
7 |
+
// Python bindings for automatically generated autograd functions
|
8 |
+
|
9 |
+
namespace torch { namespace autograd { namespace generated {
|
10 |
+
|
11 |
+
void initialize_autogenerated_functions_0(PyObject* module);
|
12 |
+
void initialize_autogenerated_functions_1(PyObject* module);
|
13 |
+
void initialize_autogenerated_functions_2(PyObject* module);
|
14 |
+
void initialize_autogenerated_functions_3(PyObject* module);
|
15 |
+
void initialize_autogenerated_functions_4(PyObject* module);
|
16 |
+
|
17 |
+
inline void initialize_autogenerated_functions(PyObject* module) {
|
18 |
+
initialize_autogenerated_functions_0(module);
|
19 |
+
initialize_autogenerated_functions_1(module);
|
20 |
+
initialize_autogenerated_functions_2(module);
|
21 |
+
initialize_autogenerated_functions_3(module);
|
22 |
+
initialize_autogenerated_functions_4(module);
|
23 |
+
}
|
24 |
+
|
25 |
+
}}} // namespace torch::autograd::generated
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/generated/python_return_types.h
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
namespace torch {
|
4 |
+
namespace autograd {
|
5 |
+
namespace generated {
|
6 |
+
|
7 |
+
PyTypeObject* get__fake_quantize_per_tensor_affine_cachemask_tensor_qparams_structseq();
|
8 |
+
PyTypeObject* get__fused_moving_avg_obs_fq_helper_structseq();
|
9 |
+
PyTypeObject* get__linalg_det_structseq();
|
10 |
+
PyTypeObject* get__linalg_det_out_structseq();
|
11 |
+
PyTypeObject* get__linalg_eigh_structseq();
|
12 |
+
PyTypeObject* get__linalg_eigh_out_structseq();
|
13 |
+
PyTypeObject* get__linalg_slogdet_structseq();
|
14 |
+
PyTypeObject* get__linalg_slogdet_out_structseq();
|
15 |
+
PyTypeObject* get__linalg_solve_ex_structseq();
|
16 |
+
PyTypeObject* get__linalg_solve_ex_out_structseq();
|
17 |
+
PyTypeObject* get__linalg_svd_structseq();
|
18 |
+
PyTypeObject* get__linalg_svd_out_structseq();
|
19 |
+
PyTypeObject* get__lu_with_info_structseq();
|
20 |
+
PyTypeObject* get__scaled_dot_product_cudnn_attention_structseq();
|
21 |
+
PyTypeObject* get__scaled_dot_product_efficient_attention_structseq();
|
22 |
+
PyTypeObject* get__scaled_dot_product_flash_attention_structseq();
|
23 |
+
PyTypeObject* get__scaled_dot_product_flash_attention_for_cpu_structseq();
|
24 |
+
PyTypeObject* get__unpack_dual_structseq();
|
25 |
+
PyTypeObject* get_aminmax_structseq();
|
26 |
+
PyTypeObject* get_aminmax_out_structseq();
|
27 |
+
PyTypeObject* get_cummax_structseq();
|
28 |
+
PyTypeObject* get_cummax_out_structseq();
|
29 |
+
PyTypeObject* get_cummin_structseq();
|
30 |
+
PyTypeObject* get_cummin_out_structseq();
|
31 |
+
PyTypeObject* get_frexp_structseq();
|
32 |
+
PyTypeObject* get_frexp_out_structseq();
|
33 |
+
PyTypeObject* get_geqrf_out_structseq();
|
34 |
+
PyTypeObject* get_geqrf_structseq();
|
35 |
+
PyTypeObject* get_histogram_out_structseq();
|
36 |
+
PyTypeObject* get_histogram_structseq();
|
37 |
+
PyTypeObject* get_histogramdd_structseq();
|
38 |
+
PyTypeObject* get_kthvalue_structseq();
|
39 |
+
PyTypeObject* get_kthvalue_out_structseq();
|
40 |
+
PyTypeObject* get_linalg_cholesky_ex_structseq();
|
41 |
+
PyTypeObject* get_linalg_cholesky_ex_out_structseq();
|
42 |
+
PyTypeObject* get_linalg_eig_structseq();
|
43 |
+
PyTypeObject* get_linalg_eig_out_structseq();
|
44 |
+
PyTypeObject* get_linalg_eigh_structseq();
|
45 |
+
PyTypeObject* get_linalg_eigh_out_structseq();
|
46 |
+
PyTypeObject* get_linalg_inv_ex_structseq();
|
47 |
+
PyTypeObject* get_linalg_inv_ex_out_structseq();
|
48 |
+
PyTypeObject* get_linalg_ldl_factor_structseq();
|
49 |
+
PyTypeObject* get_linalg_ldl_factor_out_structseq();
|
50 |
+
PyTypeObject* get_linalg_ldl_factor_ex_structseq();
|
51 |
+
PyTypeObject* get_linalg_ldl_factor_ex_out_structseq();
|
52 |
+
PyTypeObject* get_linalg_lstsq_structseq();
|
53 |
+
PyTypeObject* get_linalg_lstsq_out_structseq();
|
54 |
+
PyTypeObject* get_linalg_lu_structseq();
|
55 |
+
PyTypeObject* get_linalg_lu_out_structseq();
|
56 |
+
PyTypeObject* get_linalg_lu_factor_structseq();
|
57 |
+
PyTypeObject* get_linalg_lu_factor_out_structseq();
|
58 |
+
PyTypeObject* get_linalg_lu_factor_ex_structseq();
|
59 |
+
PyTypeObject* get_linalg_lu_factor_ex_out_structseq();
|
60 |
+
PyTypeObject* get_linalg_qr_structseq();
|
61 |
+
PyTypeObject* get_linalg_qr_out_structseq();
|
62 |
+
PyTypeObject* get_linalg_slogdet_structseq();
|
63 |
+
PyTypeObject* get_linalg_slogdet_out_structseq();
|
64 |
+
PyTypeObject* get_linalg_solve_ex_structseq();
|
65 |
+
PyTypeObject* get_linalg_solve_ex_out_structseq();
|
66 |
+
PyTypeObject* get_linalg_svd_structseq();
|
67 |
+
PyTypeObject* get_linalg_svd_out_structseq();
|
68 |
+
PyTypeObject* get_lu_unpack_structseq();
|
69 |
+
PyTypeObject* get_lu_unpack_out_structseq();
|
70 |
+
PyTypeObject* get_max_structseq();
|
71 |
+
PyTypeObject* get_max_out_structseq();
|
72 |
+
PyTypeObject* get_median_structseq();
|
73 |
+
PyTypeObject* get_median_out_structseq();
|
74 |
+
PyTypeObject* get_min_structseq();
|
75 |
+
PyTypeObject* get_min_out_structseq();
|
76 |
+
PyTypeObject* get_mode_structseq();
|
77 |
+
PyTypeObject* get_mode_out_structseq();
|
78 |
+
PyTypeObject* get_nanmedian_structseq();
|
79 |
+
PyTypeObject* get_nanmedian_out_structseq();
|
80 |
+
PyTypeObject* get_qr_out_structseq();
|
81 |
+
PyTypeObject* get_qr_structseq();
|
82 |
+
PyTypeObject* get_slogdet_structseq();
|
83 |
+
PyTypeObject* get_slogdet_out_structseq();
|
84 |
+
PyTypeObject* get_sort_out_structseq();
|
85 |
+
PyTypeObject* get_sort_structseq();
|
86 |
+
PyTypeObject* get_svd_out_structseq();
|
87 |
+
PyTypeObject* get_svd_structseq();
|
88 |
+
PyTypeObject* get_topk_out_structseq();
|
89 |
+
PyTypeObject* get_topk_structseq();
|
90 |
+
PyTypeObject* get_triangular_solve_out_structseq();
|
91 |
+
PyTypeObject* get_triangular_solve_structseq();
|
92 |
+
|
93 |
+
}
|
94 |
+
|
95 |
+
void initReturnTypes(PyObject* module);
|
96 |
+
|
97 |
+
} // namespace autograd
|
98 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/generated/variable_factories.h
ADDED
@@ -0,0 +1,736 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated from ../tools/autograd/templates/variable_factories.h
|
4 |
+
|
5 |
+
#include <ATen/core/Tensor.h>
|
6 |
+
#include <ATen/TracerMode.h>
|
7 |
+
#include <ATen/core/grad_mode.h>
|
8 |
+
#include <c10/util/ArrayRef.h>
|
9 |
+
#include <c10/core/MemoryFormat.h>
|
10 |
+
#include <torch/csrc/api/include/torch/detail/TensorDataContainer.h>
|
11 |
+
#include <torch/csrc/autograd/variable.h>
|
12 |
+
|
13 |
+
#ifndef AT_PER_OPERATOR_HEADERS
|
14 |
+
#include <ATen/Functions.h>
|
15 |
+
#else
|
16 |
+
#include <ATen/ops/from_blob.h>
|
17 |
+
#include <ATen/ops/_make_dep_token.h>
|
18 |
+
#include <ATen/ops/_cudnn_init_dropout_state.h>
|
19 |
+
#include <ATen/ops/arange.h>
|
20 |
+
#include <ATen/ops/arange.h>
|
21 |
+
#include <ATen/ops/arange.h>
|
22 |
+
#include <ATen/ops/bartlett_window.h>
|
23 |
+
#include <ATen/ops/bartlett_window.h>
|
24 |
+
#include <ATen/ops/blackman_window.h>
|
25 |
+
#include <ATen/ops/blackman_window.h>
|
26 |
+
#include <ATen/ops/empty.h>
|
27 |
+
#include <ATen/ops/empty.h>
|
28 |
+
#include <ATen/ops/empty_permuted.h>
|
29 |
+
#include <ATen/ops/_empty_affine_quantized.h>
|
30 |
+
#include <ATen/ops/_empty_per_channel_affine_quantized.h>
|
31 |
+
#include <ATen/ops/empty_quantized.h>
|
32 |
+
#include <ATen/ops/empty_like.h>
|
33 |
+
#include <ATen/ops/empty_strided.h>
|
34 |
+
#include <ATen/ops/eye.h>
|
35 |
+
#include <ATen/ops/eye.h>
|
36 |
+
#include <ATen/ops/full.h>
|
37 |
+
#include <ATen/ops/full.h>
|
38 |
+
#include <ATen/ops/full_like.h>
|
39 |
+
#include <ATen/ops/from_file.h>
|
40 |
+
#include <ATen/ops/hann_window.h>
|
41 |
+
#include <ATen/ops/hann_window.h>
|
42 |
+
#include <ATen/ops/hamming_window.h>
|
43 |
+
#include <ATen/ops/hamming_window.h>
|
44 |
+
#include <ATen/ops/hamming_window.h>
|
45 |
+
#include <ATen/ops/hamming_window.h>
|
46 |
+
#include <ATen/ops/kaiser_window.h>
|
47 |
+
#include <ATen/ops/kaiser_window.h>
|
48 |
+
#include <ATen/ops/kaiser_window.h>
|
49 |
+
#include <ATen/ops/linspace.h>
|
50 |
+
#include <ATen/ops/linspace.h>
|
51 |
+
#include <ATen/ops/linspace.h>
|
52 |
+
#include <ATen/ops/linspace.h>
|
53 |
+
#include <ATen/ops/logspace.h>
|
54 |
+
#include <ATen/ops/logspace.h>
|
55 |
+
#include <ATen/ops/logspace.h>
|
56 |
+
#include <ATen/ops/logspace.h>
|
57 |
+
#include <ATen/ops/ones.h>
|
58 |
+
#include <ATen/ops/ones.h>
|
59 |
+
#include <ATen/ops/ones_like.h>
|
60 |
+
#include <ATen/ops/scalar_tensor.h>
|
61 |
+
#include <ATen/ops/rand.h>
|
62 |
+
#include <ATen/ops/rand.h>
|
63 |
+
#include <ATen/ops/rand.h>
|
64 |
+
#include <ATen/ops/rand.h>
|
65 |
+
#include <ATen/ops/rand_like.h>
|
66 |
+
#include <ATen/ops/randint.h>
|
67 |
+
#include <ATen/ops/randint.h>
|
68 |
+
#include <ATen/ops/randint.h>
|
69 |
+
#include <ATen/ops/randint.h>
|
70 |
+
#include <ATen/ops/randint_like.h>
|
71 |
+
#include <ATen/ops/randint_like.h>
|
72 |
+
#include <ATen/ops/randn.h>
|
73 |
+
#include <ATen/ops/randn.h>
|
74 |
+
#include <ATen/ops/randn.h>
|
75 |
+
#include <ATen/ops/randn.h>
|
76 |
+
#include <ATen/ops/randn_like.h>
|
77 |
+
#include <ATen/ops/randperm.h>
|
78 |
+
#include <ATen/ops/randperm.h>
|
79 |
+
#include <ATen/ops/range.h>
|
80 |
+
#include <ATen/ops/range.h>
|
81 |
+
#include <ATen/ops/zeros.h>
|
82 |
+
#include <ATen/ops/_efficientzerotensor.h>
|
83 |
+
#include <ATen/ops/zeros.h>
|
84 |
+
#include <ATen/ops/zeros_like.h>
|
85 |
+
#include <ATen/ops/sparse_compressed_tensor.h>
|
86 |
+
#include <ATen/ops/sparse_csr_tensor.h>
|
87 |
+
#include <ATen/ops/sparse_csc_tensor.h>
|
88 |
+
#include <ATen/ops/sparse_bsr_tensor.h>
|
89 |
+
#include <ATen/ops/sparse_bsc_tensor.h>
|
90 |
+
#include <ATen/ops/sparse_compressed_tensor.h>
|
91 |
+
#include <ATen/ops/sparse_csr_tensor.h>
|
92 |
+
#include <ATen/ops/sparse_csc_tensor.h>
|
93 |
+
#include <ATen/ops/sparse_bsr_tensor.h>
|
94 |
+
#include <ATen/ops/sparse_bsc_tensor.h>
|
95 |
+
#include <ATen/ops/_sparse_compressed_tensor_unsafe.h>
|
96 |
+
#include <ATen/ops/_sparse_csr_tensor_unsafe.h>
|
97 |
+
#include <ATen/ops/_sparse_csc_tensor_unsafe.h>
|
98 |
+
#include <ATen/ops/_sparse_bsr_tensor_unsafe.h>
|
99 |
+
#include <ATen/ops/_sparse_bsc_tensor_unsafe.h>
|
100 |
+
#include <ATen/ops/sparse_coo_tensor.h>
|
101 |
+
#include <ATen/ops/sparse_coo_tensor.h>
|
102 |
+
#include <ATen/ops/sparse_coo_tensor.h>
|
103 |
+
#include <ATen/ops/_sparse_coo_tensor_unsafe.h>
|
104 |
+
#include <ATen/ops/_sparse_coo_tensor_with_dims.h>
|
105 |
+
#include <ATen/ops/_sparse_coo_tensor_with_dims_and_tensors.h>
|
106 |
+
#include <ATen/ops/_to_copy.h>
|
107 |
+
#include <ATen/ops/tril_indices.h>
|
108 |
+
#include <ATen/ops/triu_indices.h>
|
109 |
+
#include <ATen/ops/normal.h>
|
110 |
+
#include <ATen/ops/fft_fftfreq.h>
|
111 |
+
#include <ATen/ops/fft_rfftfreq.h>
|
112 |
+
#endif
|
113 |
+
|
114 |
+
#include <functional>
|
115 |
+
#include <initializer_list>
|
116 |
+
#include <utility>
|
117 |
+
|
118 |
+
namespace torch {
|
119 |
+
|
120 |
+
/// NOTE: Currently `torch::tensor(...)` doesn't support mixed data types
|
121 |
+
/// (i.e. `torch::tensor({{bool, 2.0}})` doesn't work). We might be able to
|
122 |
+
/// support it in the future by iterating over all sub-lists to find
|
123 |
+
/// the largest data type that can represent all of the elements, or by using
|
124 |
+
/// variadic templates.
|
125 |
+
///
|
126 |
+
/// NOTE: C++ `torch::tensor` with a floating-point type or an `at::ArrayRef` / `std::vector` /
|
127 |
+
/// (nested) braced-init-list of floating-point types always produces a tensor of dtype
|
128 |
+
/// `torch::get_default_dtype()`, matching Python `torch.tensor` behavior.
|
129 |
+
///
|
130 |
+
/// NOTE: C++ `torch::tensor` with an integer type or an `at::ArrayRef` / `std::vector` /
|
131 |
+
/// (nested) braced-init-list of integer types always produces a tensor of dtype `at::kLong`
|
132 |
+
/// (aka. int64_t), matching Python `torch.tensor` behavior.
|
133 |
+
///
|
134 |
+
/// NOTE: The following dtypes are not supported by `torch::tensor` currently:
|
135 |
+
/// - `unsigned int`
|
136 |
+
/// - `unsigned long int`
|
137 |
+
/// - `unsigned long long int`
|
138 |
+
/// - `long long int`
|
139 |
+
inline at::Tensor tensor(detail::TensorDataContainer tensor_data_container, const at::TensorOptions& options = {}) {
|
140 |
+
return autograd::make_variable(
|
141 |
+
// note: we remove the requires_grad setting from the TensorOptions because
|
142 |
+
// it is ignored anyways (and we actually have an assertion that it isn't set
|
143 |
+
// which would fail otherwise). We handle requires_grad explicitly here
|
144 |
+
// instead of passing it through to the kernel.
|
145 |
+
tensor_data_container.convert_to_tensor(options.requires_grad(c10::nullopt)),
|
146 |
+
options.requires_grad());
|
147 |
+
}
|
148 |
+
|
149 |
+
/// A generic deleter function.
|
150 |
+
using Deleter = std::function<void(void*)>;
|
151 |
+
using at::MemoryFormat;
|
152 |
+
|
153 |
+
/// Exposes the given `data` as a `Tensor` without taking ownership of the
|
154 |
+
/// original data. `sizes` should specify the shape of the tensor, `strides` the
|
155 |
+
/// stride in each dimension. The `deleter` function (a
|
156 |
+
/// `std::function<void(void*)>`) will be called on the `data` when the Tensor
|
157 |
+
/// data would normally be deallocated. The `TensorOptions` specify additional
|
158 |
+
/// configuration options for the returned tensor, such as what type to
|
159 |
+
/// interpret the `data` as.
|
160 |
+
inline at::Tensor from_blob(
|
161 |
+
void* data,
|
162 |
+
at::IntArrayRef sizes,
|
163 |
+
at::IntArrayRef strides,
|
164 |
+
const Deleter& deleter,
|
165 |
+
const at::TensorOptions& options = at::TensorOptions()) {
|
166 |
+
at::Tensor tensor = ([&]() {
|
167 |
+
at::AutoDispatchBelowAutograd guard; // TODO: remove
|
168 |
+
at::tracer::impl::NoTracerDispatchMode tracer_guard;
|
169 |
+
return at::from_blob(data, sizes, strides, deleter, options.requires_grad(c10::nullopt));
|
170 |
+
})();
|
171 |
+
return autograd::make_variable(tensor, options.requires_grad());
|
172 |
+
}
|
173 |
+
|
174 |
+
/// Exposes the given `data` as a `Tensor` without taking ownership of the
|
175 |
+
/// original data. `sizes` should specify the shape of the tensor, `strides` the
|
176 |
+
/// stride in each dimension. The `TensorOptions`
|
177 |
+
/// specify additional configuration options for the returned tensor, such as
|
178 |
+
/// what type to interpret the `data` as.
|
179 |
+
inline at::Tensor from_blob(
|
180 |
+
void* data,
|
181 |
+
at::IntArrayRef sizes,
|
182 |
+
at::IntArrayRef strides,
|
183 |
+
const at::TensorOptions& options = at::TensorOptions()) {
|
184 |
+
at::Tensor tensor = ([&]() {
|
185 |
+
at::AutoDispatchBelowAutograd guard; // TODO: remove
|
186 |
+
at::tracer::impl::NoTracerDispatchMode tracer_guard;
|
187 |
+
return at::from_blob(data, sizes, strides, options.requires_grad(c10::nullopt));
|
188 |
+
})();
|
189 |
+
return autograd::make_variable(tensor, options.requires_grad());
|
190 |
+
}
|
191 |
+
|
192 |
+
/// Exposes the given `data` as a `Tensor` without taking ownership of the
|
193 |
+
/// original data. `sizes` should specify the shape of the tensor. The `deleter`
|
194 |
+
/// (a `std::function<void(void*)>`) function will be called on the `data` when
|
195 |
+
/// the Tensor data would normally be deallocated. The `TensorOptions` specify
|
196 |
+
/// additional configuration options for the returned tensor, such as what type
|
197 |
+
/// to interpret the `data` as.
|
198 |
+
inline at::Tensor from_blob(
|
199 |
+
void* data,
|
200 |
+
at::IntArrayRef sizes,
|
201 |
+
const Deleter& deleter,
|
202 |
+
const at::TensorOptions& options = at::TensorOptions()) {
|
203 |
+
at::Tensor tensor = ([&]() {
|
204 |
+
at::AutoDispatchBelowAutograd guard; // TODO: remove
|
205 |
+
at::tracer::impl::NoTracerDispatchMode tracer_guard;
|
206 |
+
return at::from_blob(data, sizes, deleter, options.requires_grad(c10::nullopt));
|
207 |
+
})();
|
208 |
+
return autograd::make_variable(tensor, options.requires_grad());
|
209 |
+
}
|
210 |
+
|
211 |
+
/// Exposes the given `data` as a `Tensor` without taking ownership of the
|
212 |
+
/// original data. `sizes` should specify the shape of the tensor. The
|
213 |
+
/// `TensorOptions` specify additional configuration options for the returned
|
214 |
+
/// tensor, such as what type to interpret the `data` as.
|
215 |
+
inline at::Tensor from_blob(
|
216 |
+
void* data,
|
217 |
+
at::IntArrayRef sizes,
|
218 |
+
const at::TensorOptions& options = at::TensorOptions()) {
|
219 |
+
at::Tensor tensor = ([&]() {
|
220 |
+
at::AutoDispatchBelowAutograd guard; // TODO: remove
|
221 |
+
at::tracer::impl::NoTracerDispatchMode tracer_guard;
|
222 |
+
return at::from_blob(data, sizes, options.requires_grad(c10::nullopt));
|
223 |
+
})();
|
224 |
+
return autograd::make_variable(tensor, options.requires_grad());
|
225 |
+
}
|
226 |
+
|
227 |
+
inline at::Tensor _make_dep_token(at::TensorOptions options = {}, c10::optional<at::MemoryFormat> memory_format = c10::nullopt) {
|
228 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
229 |
+
return autograd::make_variable(at::_make_dep_token(at::TensorOptions(options).requires_grad(c10::nullopt), memory_format), /*requires_grad=*/options.requires_grad());
|
230 |
+
}
|
231 |
+
inline at::Tensor _cudnn_init_dropout_state(double dropout, bool train, int64_t dropout_seed, at::TensorOptions options) {
|
232 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
233 |
+
return autograd::make_variable(at::_cudnn_init_dropout_state(dropout, train, dropout_seed, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
234 |
+
}
|
235 |
+
inline at::Tensor arange(const at::Scalar & end, at::TensorOptions options = {}) {
|
236 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
237 |
+
return autograd::make_variable(at::arange(end, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
238 |
+
}
|
239 |
+
inline at::Tensor arange(const at::Scalar & start, const at::Scalar & end, at::TensorOptions options = {}) {
|
240 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
241 |
+
return autograd::make_variable(at::arange(start, end, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
242 |
+
}
|
243 |
+
inline at::Tensor arange(const at::Scalar & start, const at::Scalar & end, const at::Scalar & step, at::TensorOptions options = {}) {
|
244 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
245 |
+
return autograd::make_variable(at::arange(start, end, step, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
246 |
+
}
|
247 |
+
inline at::Tensor bartlett_window(int64_t window_length, at::TensorOptions options = {}) {
|
248 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
249 |
+
return autograd::make_variable(at::bartlett_window(window_length, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
250 |
+
}
|
251 |
+
inline at::Tensor bartlett_window(int64_t window_length, bool periodic, at::TensorOptions options = {}) {
|
252 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
253 |
+
return autograd::make_variable(at::bartlett_window(window_length, periodic, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
254 |
+
}
|
255 |
+
inline at::Tensor blackman_window(int64_t window_length, at::TensorOptions options = {}) {
|
256 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
257 |
+
return autograd::make_variable(at::blackman_window(window_length, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
258 |
+
}
|
259 |
+
inline at::Tensor blackman_window(int64_t window_length, bool periodic, at::TensorOptions options = {}) {
|
260 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
261 |
+
return autograd::make_variable(at::blackman_window(window_length, periodic, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
262 |
+
}
|
263 |
+
inline at::Tensor empty(at::IntArrayRef size, c10::optional<at::DimnameList> names, at::TensorOptions options = {}, c10::optional<at::MemoryFormat> memory_format = c10::nullopt) {
|
264 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
265 |
+
return autograd::make_variable(at::empty(size, names, at::TensorOptions(options).requires_grad(c10::nullopt), memory_format), /*requires_grad=*/options.requires_grad());
|
266 |
+
}
|
267 |
+
inline at::Tensor empty(at::IntArrayRef size, at::TensorOptions options = {}, c10::optional<at::MemoryFormat> memory_format = c10::nullopt) {
|
268 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
269 |
+
return autograd::make_variable(at::empty(size, at::TensorOptions(options).requires_grad(c10::nullopt), memory_format), /*requires_grad=*/options.requires_grad());
|
270 |
+
}
|
271 |
+
inline at::Tensor empty_symint(c10::SymIntArrayRef size, at::TensorOptions options = {}, c10::optional<at::MemoryFormat> memory_format = c10::nullopt) {
|
272 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
273 |
+
return autograd::make_variable(at::empty_symint(size, at::TensorOptions(options).requires_grad(c10::nullopt), memory_format), /*requires_grad=*/options.requires_grad());
|
274 |
+
}
|
275 |
+
inline at::Tensor empty_permuted(at::IntArrayRef size, at::IntArrayRef physical_layout, at::TensorOptions options = {}) {
|
276 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
277 |
+
return autograd::make_variable(at::empty_permuted(size, physical_layout, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
278 |
+
}
|
279 |
+
inline at::Tensor empty_permuted_symint(c10::SymIntArrayRef size, at::IntArrayRef physical_layout, at::TensorOptions options = {}) {
|
280 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
281 |
+
return autograd::make_variable(at::empty_permuted_symint(size, physical_layout, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
282 |
+
}
|
283 |
+
inline at::Tensor _empty_affine_quantized(at::IntArrayRef size, at::TensorOptions options = {}, double scale = 1, int64_t zero_point = 0, c10::optional<at::MemoryFormat> memory_format = MemoryFormat::Contiguous) {
|
284 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
285 |
+
return autograd::make_variable(at::_empty_affine_quantized(size, at::TensorOptions(options).requires_grad(c10::nullopt), scale, zero_point, memory_format), /*requires_grad=*/options.requires_grad());
|
286 |
+
}
|
287 |
+
inline at::Tensor _empty_affine_quantized_symint(c10::SymIntArrayRef size, at::TensorOptions options = {}, double scale = 1, int64_t zero_point = 0, c10::optional<at::MemoryFormat> memory_format = MemoryFormat::Contiguous) {
|
288 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
289 |
+
return autograd::make_variable(at::_empty_affine_quantized_symint(size, at::TensorOptions(options).requires_grad(c10::nullopt), scale, zero_point, memory_format), /*requires_grad=*/options.requires_grad());
|
290 |
+
}
|
291 |
+
inline at::Tensor _empty_per_channel_affine_quantized(at::IntArrayRef size, const at::Tensor & scales, const at::Tensor & zero_points, int64_t axis, at::TensorOptions options = {}, c10::optional<at::MemoryFormat> memory_format = MemoryFormat::Contiguous) {
|
292 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
293 |
+
return autograd::make_variable(at::_empty_per_channel_affine_quantized(size, scales, zero_points, axis, at::TensorOptions(options).requires_grad(c10::nullopt), memory_format), /*requires_grad=*/options.requires_grad());
|
294 |
+
}
|
295 |
+
inline at::Tensor _empty_per_channel_affine_quantized_symint(c10::SymIntArrayRef size, const at::Tensor & scales, const at::Tensor & zero_points, int64_t axis, at::TensorOptions options = {}, c10::optional<at::MemoryFormat> memory_format = MemoryFormat::Contiguous) {
|
296 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
297 |
+
return autograd::make_variable(at::_empty_per_channel_affine_quantized_symint(size, scales, zero_points, axis, at::TensorOptions(options).requires_grad(c10::nullopt), memory_format), /*requires_grad=*/options.requires_grad());
|
298 |
+
}
|
299 |
+
inline at::Tensor empty_quantized(at::IntArrayRef size, const at::Tensor & qtensor, at::TensorOptions options = {}, c10::optional<at::MemoryFormat> memory_format = c10::nullopt) {
|
300 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
301 |
+
return autograd::make_variable(at::empty_quantized(size, qtensor, at::TensorOptions(options).requires_grad(c10::nullopt), memory_format), /*requires_grad=*/options.requires_grad());
|
302 |
+
}
|
303 |
+
inline at::Tensor empty_like(const at::Tensor & self, at::TensorOptions options = {}, c10::optional<at::MemoryFormat> memory_format = c10::nullopt) {
|
304 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
305 |
+
return autograd::make_variable(at::empty_like(self, at::TensorOptions(options).requires_grad(c10::nullopt), memory_format), /*requires_grad=*/options.requires_grad());
|
306 |
+
}
|
307 |
+
inline at::Tensor empty_strided(at::IntArrayRef size, at::IntArrayRef stride, at::TensorOptions options = {}) {
|
308 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
309 |
+
return autograd::make_variable(at::empty_strided(size, stride, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
310 |
+
}
|
311 |
+
inline at::Tensor empty_strided_symint(c10::SymIntArrayRef size, c10::SymIntArrayRef stride, at::TensorOptions options = {}) {
|
312 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
313 |
+
return autograd::make_variable(at::empty_strided_symint(size, stride, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
314 |
+
}
|
315 |
+
inline at::Tensor eye(int64_t n, at::TensorOptions options = {}) {
|
316 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
317 |
+
return autograd::make_variable(at::eye(n, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
318 |
+
}
|
319 |
+
inline at::Tensor eye_symint(c10::SymInt n, at::TensorOptions options = {}) {
|
320 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
321 |
+
return autograd::make_variable(at::eye_symint(n, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
322 |
+
}
|
323 |
+
inline at::Tensor eye(int64_t n, int64_t m, at::TensorOptions options = {}) {
|
324 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
325 |
+
return autograd::make_variable(at::eye(n, m, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
326 |
+
}
|
327 |
+
inline at::Tensor eye_symint(c10::SymInt n, c10::SymInt m, at::TensorOptions options = {}) {
|
328 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
329 |
+
return autograd::make_variable(at::eye_symint(n, m, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
330 |
+
}
|
331 |
+
inline at::Tensor full(at::IntArrayRef size, const at::Scalar & fill_value, c10::optional<at::DimnameList> names, at::TensorOptions options = {}) {
|
332 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
333 |
+
return autograd::make_variable(at::full(size, fill_value, names, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
334 |
+
}
|
335 |
+
inline at::Tensor full(at::IntArrayRef size, const at::Scalar & fill_value, at::TensorOptions options = {}) {
|
336 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
337 |
+
return autograd::make_variable(at::full(size, fill_value, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
338 |
+
}
|
339 |
+
inline at::Tensor full_symint(c10::SymIntArrayRef size, const at::Scalar & fill_value, at::TensorOptions options = {}) {
|
340 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
341 |
+
return autograd::make_variable(at::full_symint(size, fill_value, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
342 |
+
}
|
343 |
+
inline at::Tensor full_like(const at::Tensor & self, const at::Scalar & fill_value, at::TensorOptions options = {}, c10::optional<at::MemoryFormat> memory_format = c10::nullopt) {
|
344 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
345 |
+
return autograd::make_variable(at::full_like(self, fill_value, at::TensorOptions(options).requires_grad(c10::nullopt), memory_format), /*requires_grad=*/options.requires_grad());
|
346 |
+
}
|
347 |
+
inline at::Tensor from_file(c10::string_view filename, c10::optional<bool> shared = c10::nullopt, c10::optional<int64_t> size = 0, at::TensorOptions options = {}) {
|
348 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
349 |
+
return autograd::make_variable(at::from_file(filename, shared, size, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
350 |
+
}
|
351 |
+
inline at::Tensor hann_window(int64_t window_length, at::TensorOptions options = {}) {
|
352 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
353 |
+
return autograd::make_variable(at::hann_window(window_length, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
354 |
+
}
|
355 |
+
inline at::Tensor hann_window(int64_t window_length, bool periodic, at::TensorOptions options = {}) {
|
356 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
357 |
+
return autograd::make_variable(at::hann_window(window_length, periodic, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
358 |
+
}
|
359 |
+
inline at::Tensor hamming_window(int64_t window_length, at::TensorOptions options = {}) {
|
360 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
361 |
+
return autograd::make_variable(at::hamming_window(window_length, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
362 |
+
}
|
363 |
+
inline at::Tensor hamming_window(int64_t window_length, bool periodic, at::TensorOptions options = {}) {
|
364 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
365 |
+
return autograd::make_variable(at::hamming_window(window_length, periodic, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
366 |
+
}
|
367 |
+
inline at::Tensor hamming_window(int64_t window_length, bool periodic, double alpha, at::TensorOptions options = {}) {
|
368 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
369 |
+
return autograd::make_variable(at::hamming_window(window_length, periodic, alpha, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
370 |
+
}
|
371 |
+
inline at::Tensor hamming_window(int64_t window_length, bool periodic, double alpha, double beta, at::TensorOptions options = {}) {
|
372 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
373 |
+
return autograd::make_variable(at::hamming_window(window_length, periodic, alpha, beta, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
374 |
+
}
|
375 |
+
inline at::Tensor kaiser_window(int64_t window_length, at::TensorOptions options = {}) {
|
376 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
377 |
+
return autograd::make_variable(at::kaiser_window(window_length, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
378 |
+
}
|
379 |
+
inline at::Tensor kaiser_window(int64_t window_length, bool periodic, at::TensorOptions options = {}) {
|
380 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
381 |
+
return autograd::make_variable(at::kaiser_window(window_length, periodic, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
382 |
+
}
|
383 |
+
inline at::Tensor kaiser_window(int64_t window_length, bool periodic, double beta, at::TensorOptions options = {}) {
|
384 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
385 |
+
return autograd::make_variable(at::kaiser_window(window_length, periodic, beta, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
386 |
+
}
|
387 |
+
inline at::Tensor linspace(const at::Scalar & start, const at::Scalar & end, int64_t steps, at::TensorOptions options = {}) {
|
388 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
389 |
+
return autograd::make_variable(at::linspace(start, end, steps, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
390 |
+
}
|
391 |
+
inline at::Tensor linspace(const at::Tensor & start, const at::Tensor & end, int64_t steps, at::TensorOptions options = {}) {
|
392 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
393 |
+
return autograd::make_variable(at::linspace(start, end, steps, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
394 |
+
}
|
395 |
+
inline at::Tensor linspace(const at::Tensor & start, const at::Scalar & end, int64_t steps, at::TensorOptions options = {}) {
|
396 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
397 |
+
return autograd::make_variable(at::linspace(start, end, steps, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
398 |
+
}
|
399 |
+
inline at::Tensor linspace(const at::Scalar & start, const at::Tensor & end, int64_t steps, at::TensorOptions options = {}) {
|
400 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
401 |
+
return autograd::make_variable(at::linspace(start, end, steps, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
402 |
+
}
|
403 |
+
inline at::Tensor logspace(const at::Scalar & start, const at::Scalar & end, int64_t steps, double base = 10.0, at::TensorOptions options = {}) {
|
404 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
405 |
+
return autograd::make_variable(at::logspace(start, end, steps, base, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
406 |
+
}
|
407 |
+
inline at::Tensor logspace(const at::Tensor & start, const at::Tensor & end, int64_t steps, double base = 10.0, at::TensorOptions options = {}) {
|
408 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
409 |
+
return autograd::make_variable(at::logspace(start, end, steps, base, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
410 |
+
}
|
411 |
+
inline at::Tensor logspace(const at::Tensor & start, const at::Scalar & end, int64_t steps, double base = 10.0, at::TensorOptions options = {}) {
|
412 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
413 |
+
return autograd::make_variable(at::logspace(start, end, steps, base, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
414 |
+
}
|
415 |
+
inline at::Tensor logspace(const at::Scalar & start, const at::Tensor & end, int64_t steps, double base = 10.0, at::TensorOptions options = {}) {
|
416 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
417 |
+
return autograd::make_variable(at::logspace(start, end, steps, base, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
418 |
+
}
|
419 |
+
inline at::Tensor ones(at::IntArrayRef size, c10::optional<at::DimnameList> names, at::TensorOptions options = {}) {
|
420 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
421 |
+
return autograd::make_variable(at::ones(size, names, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
422 |
+
}
|
423 |
+
inline at::Tensor ones(at::IntArrayRef size, at::TensorOptions options = {}) {
|
424 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
425 |
+
return autograd::make_variable(at::ones(size, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
426 |
+
}
|
427 |
+
inline at::Tensor ones_symint(c10::SymIntArrayRef size, at::TensorOptions options = {}) {
|
428 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
429 |
+
return autograd::make_variable(at::ones_symint(size, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
430 |
+
}
|
431 |
+
inline at::Tensor ones_like(const at::Tensor & self, at::TensorOptions options = {}, c10::optional<at::MemoryFormat> memory_format = c10::nullopt) {
|
432 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
433 |
+
return autograd::make_variable(at::ones_like(self, at::TensorOptions(options).requires_grad(c10::nullopt), memory_format), /*requires_grad=*/options.requires_grad());
|
434 |
+
}
|
435 |
+
inline at::Tensor scalar_tensor(const at::Scalar & s, at::TensorOptions options = {}) {
|
436 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
437 |
+
return autograd::make_variable(at::scalar_tensor(s, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
438 |
+
}
|
439 |
+
inline at::Tensor rand(at::IntArrayRef size, c10::optional<at::DimnameList> names, at::TensorOptions options = {}) {
|
440 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
441 |
+
return autograd::make_variable(at::rand(size, names, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
442 |
+
}
|
443 |
+
inline at::Tensor rand_symint(c10::SymIntArrayRef size, c10::optional<at::DimnameList> names, at::TensorOptions options = {}) {
|
444 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
445 |
+
return autograd::make_variable(at::rand_symint(size, names, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
446 |
+
}
|
447 |
+
inline at::Tensor rand(at::IntArrayRef size, c10::optional<at::Generator> generator, c10::optional<at::DimnameList> names, at::TensorOptions options = {}) {
|
448 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
449 |
+
return autograd::make_variable(at::rand(size, generator, names, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
450 |
+
}
|
451 |
+
inline at::Tensor rand_symint(c10::SymIntArrayRef size, c10::optional<at::Generator> generator, c10::optional<at::DimnameList> names, at::TensorOptions options = {}) {
|
452 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
453 |
+
return autograd::make_variable(at::rand_symint(size, generator, names, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
454 |
+
}
|
455 |
+
inline at::Tensor rand(at::IntArrayRef size, at::TensorOptions options = {}) {
|
456 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
457 |
+
return autograd::make_variable(at::rand(size, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
458 |
+
}
|
459 |
+
inline at::Tensor rand_symint(c10::SymIntArrayRef size, at::TensorOptions options = {}) {
|
460 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
461 |
+
return autograd::make_variable(at::rand_symint(size, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
462 |
+
}
|
463 |
+
inline at::Tensor rand(at::IntArrayRef size, c10::optional<at::Generator> generator, at::TensorOptions options = {}) {
|
464 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
465 |
+
return autograd::make_variable(at::rand(size, generator, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
466 |
+
}
|
467 |
+
inline at::Tensor rand_symint(c10::SymIntArrayRef size, c10::optional<at::Generator> generator, at::TensorOptions options = {}) {
|
468 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
469 |
+
return autograd::make_variable(at::rand_symint(size, generator, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
470 |
+
}
|
471 |
+
inline at::Tensor rand_like(const at::Tensor & self, at::TensorOptions options = {}, c10::optional<at::MemoryFormat> memory_format = c10::nullopt) {
|
472 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
473 |
+
return autograd::make_variable(at::rand_like(self, at::TensorOptions(options).requires_grad(c10::nullopt), memory_format), /*requires_grad=*/options.requires_grad());
|
474 |
+
}
|
475 |
+
inline at::Tensor randint(int64_t high, at::IntArrayRef size, at::TensorOptions options = at::kLong) {
|
476 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
477 |
+
return autograd::make_variable(at::randint(high, size, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
478 |
+
}
|
479 |
+
inline at::Tensor randint_symint(c10::SymInt high, c10::SymIntArrayRef size, at::TensorOptions options = at::kLong) {
|
480 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
481 |
+
return autograd::make_variable(at::randint_symint(high, size, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
482 |
+
}
|
483 |
+
inline at::Tensor randint(int64_t high, at::IntArrayRef size, c10::optional<at::Generator> generator, at::TensorOptions options = at::kLong) {
|
484 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
485 |
+
return autograd::make_variable(at::randint(high, size, generator, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
486 |
+
}
|
487 |
+
inline at::Tensor randint_symint(c10::SymInt high, c10::SymIntArrayRef size, c10::optional<at::Generator> generator, at::TensorOptions options = at::kLong) {
|
488 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
489 |
+
return autograd::make_variable(at::randint_symint(high, size, generator, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
490 |
+
}
|
491 |
+
inline at::Tensor randint(int64_t low, int64_t high, at::IntArrayRef size, at::TensorOptions options = at::kLong) {
|
492 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
493 |
+
return autograd::make_variable(at::randint(low, high, size, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
494 |
+
}
|
495 |
+
inline at::Tensor randint_symint(c10::SymInt low, c10::SymInt high, c10::SymIntArrayRef size, at::TensorOptions options = at::kLong) {
|
496 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
497 |
+
return autograd::make_variable(at::randint_symint(low, high, size, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
498 |
+
}
|
499 |
+
inline at::Tensor randint(int64_t low, int64_t high, at::IntArrayRef size, c10::optional<at::Generator> generator, at::TensorOptions options = at::kLong) {
|
500 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
501 |
+
return autograd::make_variable(at::randint(low, high, size, generator, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
502 |
+
}
|
503 |
+
inline at::Tensor randint_symint(c10::SymInt low, c10::SymInt high, c10::SymIntArrayRef size, c10::optional<at::Generator> generator, at::TensorOptions options = at::kLong) {
|
504 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
505 |
+
return autograd::make_variable(at::randint_symint(low, high, size, generator, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
506 |
+
}
|
507 |
+
inline at::Tensor randint_like(const at::Tensor & self, int64_t high, at::TensorOptions options = {}, c10::optional<at::MemoryFormat> memory_format = c10::nullopt) {
|
508 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
509 |
+
return autograd::make_variable(at::randint_like(self, high, at::TensorOptions(options).requires_grad(c10::nullopt), memory_format), /*requires_grad=*/options.requires_grad());
|
510 |
+
}
|
511 |
+
inline at::Tensor randint_like_symint(const at::Tensor & self, c10::SymInt high, at::TensorOptions options = {}, c10::optional<at::MemoryFormat> memory_format = c10::nullopt) {
|
512 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
513 |
+
return autograd::make_variable(at::randint_like_symint(self, high, at::TensorOptions(options).requires_grad(c10::nullopt), memory_format), /*requires_grad=*/options.requires_grad());
|
514 |
+
}
|
515 |
+
inline at::Tensor randint_like(const at::Tensor & self, int64_t low, int64_t high, at::TensorOptions options = {}, c10::optional<at::MemoryFormat> memory_format = c10::nullopt) {
|
516 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
517 |
+
return autograd::make_variable(at::randint_like(self, low, high, at::TensorOptions(options).requires_grad(c10::nullopt), memory_format), /*requires_grad=*/options.requires_grad());
|
518 |
+
}
|
519 |
+
inline at::Tensor randint_like_symint(const at::Tensor & self, c10::SymInt low, c10::SymInt high, at::TensorOptions options = {}, c10::optional<at::MemoryFormat> memory_format = c10::nullopt) {
|
520 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
521 |
+
return autograd::make_variable(at::randint_like_symint(self, low, high, at::TensorOptions(options).requires_grad(c10::nullopt), memory_format), /*requires_grad=*/options.requires_grad());
|
522 |
+
}
|
523 |
+
inline at::Tensor randn(at::IntArrayRef size, at::TensorOptions options = {}) {
|
524 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
525 |
+
return autograd::make_variable(at::randn(size, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
526 |
+
}
|
527 |
+
inline at::Tensor randn_symint(c10::SymIntArrayRef size, at::TensorOptions options = {}) {
|
528 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
529 |
+
return autograd::make_variable(at::randn_symint(size, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
530 |
+
}
|
531 |
+
inline at::Tensor randn(at::IntArrayRef size, c10::optional<at::Generator> generator, at::TensorOptions options = {}) {
|
532 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
533 |
+
return autograd::make_variable(at::randn(size, generator, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
534 |
+
}
|
535 |
+
inline at::Tensor randn_symint(c10::SymIntArrayRef size, c10::optional<at::Generator> generator, at::TensorOptions options = {}) {
|
536 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
537 |
+
return autograd::make_variable(at::randn_symint(size, generator, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
538 |
+
}
|
539 |
+
inline at::Tensor randn(at::IntArrayRef size, c10::optional<at::DimnameList> names, at::TensorOptions options = {}) {
|
540 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
541 |
+
return autograd::make_variable(at::randn(size, names, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
542 |
+
}
|
543 |
+
inline at::Tensor randn_symint(c10::SymIntArrayRef size, c10::optional<at::DimnameList> names, at::TensorOptions options = {}) {
|
544 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
545 |
+
return autograd::make_variable(at::randn_symint(size, names, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
546 |
+
}
|
547 |
+
inline at::Tensor randn(at::IntArrayRef size, c10::optional<at::Generator> generator, c10::optional<at::DimnameList> names, at::TensorOptions options = {}) {
|
548 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
549 |
+
return autograd::make_variable(at::randn(size, generator, names, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
550 |
+
}
|
551 |
+
inline at::Tensor randn_symint(c10::SymIntArrayRef size, c10::optional<at::Generator> generator, c10::optional<at::DimnameList> names, at::TensorOptions options = {}) {
|
552 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
553 |
+
return autograd::make_variable(at::randn_symint(size, generator, names, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
554 |
+
}
|
555 |
+
inline at::Tensor randn_like(const at::Tensor & self, at::TensorOptions options = {}, c10::optional<at::MemoryFormat> memory_format = c10::nullopt) {
|
556 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
557 |
+
return autograd::make_variable(at::randn_like(self, at::TensorOptions(options).requires_grad(c10::nullopt), memory_format), /*requires_grad=*/options.requires_grad());
|
558 |
+
}
|
559 |
+
inline at::Tensor randperm(int64_t n, at::TensorOptions options = at::kLong) {
|
560 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
561 |
+
return autograd::make_variable(at::randperm(n, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
562 |
+
}
|
563 |
+
inline at::Tensor randperm_symint(c10::SymInt n, at::TensorOptions options = at::kLong) {
|
564 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
565 |
+
return autograd::make_variable(at::randperm_symint(n, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
566 |
+
}
|
567 |
+
inline at::Tensor randperm(int64_t n, c10::optional<at::Generator> generator, at::TensorOptions options = at::kLong) {
|
568 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
569 |
+
return autograd::make_variable(at::randperm(n, generator, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
570 |
+
}
|
571 |
+
inline at::Tensor randperm_symint(c10::SymInt n, c10::optional<at::Generator> generator, at::TensorOptions options = at::kLong) {
|
572 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
573 |
+
return autograd::make_variable(at::randperm_symint(n, generator, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
574 |
+
}
|
575 |
+
inline at::Tensor range(const at::Scalar & start, const at::Scalar & end, const at::Scalar & step = 1, at::TensorOptions options = {}) {
|
576 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
577 |
+
return autograd::make_variable(at::range(start, end, step, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
578 |
+
}
|
579 |
+
inline at::Tensor range(const at::Scalar & start, const at::Scalar & end, at::TensorOptions options = {}) {
|
580 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
581 |
+
return autograd::make_variable(at::range(start, end, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
582 |
+
}
|
583 |
+
inline at::Tensor zeros(at::IntArrayRef size, c10::optional<at::DimnameList> names, at::TensorOptions options = {}) {
|
584 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
585 |
+
return autograd::make_variable(at::zeros(size, names, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
586 |
+
}
|
587 |
+
inline at::Tensor _efficientzerotensor(at::IntArrayRef size, at::TensorOptions options = {}) {
|
588 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
589 |
+
return autograd::make_variable(at::_efficientzerotensor(size, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
590 |
+
}
|
591 |
+
inline at::Tensor _efficientzerotensor_symint(c10::SymIntArrayRef size, at::TensorOptions options = {}) {
|
592 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
593 |
+
return autograd::make_variable(at::_efficientzerotensor_symint(size, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
594 |
+
}
|
595 |
+
inline at::Tensor zeros(at::IntArrayRef size, at::TensorOptions options = {}) {
|
596 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
597 |
+
return autograd::make_variable(at::zeros(size, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
598 |
+
}
|
599 |
+
inline at::Tensor zeros_symint(c10::SymIntArrayRef size, at::TensorOptions options = {}) {
|
600 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
601 |
+
return autograd::make_variable(at::zeros_symint(size, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
602 |
+
}
|
603 |
+
inline at::Tensor zeros_like(const at::Tensor & self, at::TensorOptions options = {}, c10::optional<at::MemoryFormat> memory_format = c10::nullopt) {
|
604 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
605 |
+
return autograd::make_variable(at::zeros_like(self, at::TensorOptions(options).requires_grad(c10::nullopt), memory_format), /*requires_grad=*/options.requires_grad());
|
606 |
+
}
|
607 |
+
inline at::Tensor sparse_compressed_tensor(const at::Tensor & compressed_indices, const at::Tensor & plain_indices, const at::Tensor & values, at::IntArrayRef size, at::TensorOptions options) {
|
608 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
609 |
+
return autograd::make_variable(at::sparse_compressed_tensor(compressed_indices, plain_indices, values, size, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
610 |
+
}
|
611 |
+
inline at::Tensor sparse_compressed_tensor_symint(const at::Tensor & compressed_indices, const at::Tensor & plain_indices, const at::Tensor & values, c10::SymIntArrayRef size, at::TensorOptions options) {
|
612 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
613 |
+
return autograd::make_variable(at::sparse_compressed_tensor_symint(compressed_indices, plain_indices, values, size, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
614 |
+
}
|
615 |
+
inline at::Tensor sparse_csr_tensor(const at::Tensor & crow_indices, const at::Tensor & col_indices, const at::Tensor & values, at::IntArrayRef size, at::TensorOptions options) {
|
616 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
617 |
+
return autograd::make_variable(at::sparse_csr_tensor(crow_indices, col_indices, values, size, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
618 |
+
}
|
619 |
+
inline at::Tensor sparse_csc_tensor(const at::Tensor & ccol_indices, const at::Tensor & row_indices, const at::Tensor & values, at::IntArrayRef size, at::TensorOptions options) {
|
620 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
621 |
+
return autograd::make_variable(at::sparse_csc_tensor(ccol_indices, row_indices, values, size, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
622 |
+
}
|
623 |
+
inline at::Tensor sparse_bsr_tensor(const at::Tensor & crow_indices, const at::Tensor & col_indices, const at::Tensor & values, at::IntArrayRef size, at::TensorOptions options) {
|
624 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
625 |
+
return autograd::make_variable(at::sparse_bsr_tensor(crow_indices, col_indices, values, size, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
626 |
+
}
|
627 |
+
inline at::Tensor sparse_bsc_tensor(const at::Tensor & ccol_indices, const at::Tensor & row_indices, const at::Tensor & values, at::IntArrayRef size, at::TensorOptions options) {
|
628 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
629 |
+
return autograd::make_variable(at::sparse_bsc_tensor(ccol_indices, row_indices, values, size, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
630 |
+
}
|
631 |
+
inline at::Tensor sparse_compressed_tensor(const at::Tensor & compressed_indices, const at::Tensor & plain_indices, const at::Tensor & values, at::TensorOptions options) {
|
632 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
633 |
+
return autograd::make_variable(at::sparse_compressed_tensor(compressed_indices, plain_indices, values, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
634 |
+
}
|
635 |
+
inline at::Tensor sparse_csr_tensor(const at::Tensor & crow_indices, const at::Tensor & col_indices, const at::Tensor & values, at::TensorOptions options) {
|
636 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
637 |
+
return autograd::make_variable(at::sparse_csr_tensor(crow_indices, col_indices, values, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
638 |
+
}
|
639 |
+
inline at::Tensor sparse_csc_tensor(const at::Tensor & ccol_indices, const at::Tensor & row_indices, const at::Tensor & values, at::TensorOptions options) {
|
640 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
641 |
+
return autograd::make_variable(at::sparse_csc_tensor(ccol_indices, row_indices, values, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
642 |
+
}
|
643 |
+
inline at::Tensor sparse_bsr_tensor(const at::Tensor & crow_indices, const at::Tensor & col_indices, const at::Tensor & values, at::TensorOptions options) {
|
644 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
645 |
+
return autograd::make_variable(at::sparse_bsr_tensor(crow_indices, col_indices, values, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
646 |
+
}
|
647 |
+
inline at::Tensor sparse_bsc_tensor(const at::Tensor & ccol_indices, const at::Tensor & row_indices, const at::Tensor & values, at::TensorOptions options) {
|
648 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
649 |
+
return autograd::make_variable(at::sparse_bsc_tensor(ccol_indices, row_indices, values, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
650 |
+
}
|
651 |
+
inline at::Tensor _sparse_compressed_tensor_unsafe(const at::Tensor & compressed_indices, const at::Tensor & plain_indices, const at::Tensor & values, at::IntArrayRef size, at::TensorOptions options = {}) {
|
652 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
653 |
+
return autograd::make_variable(at::_sparse_compressed_tensor_unsafe(compressed_indices, plain_indices, values, size, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
654 |
+
}
|
655 |
+
inline at::Tensor _sparse_compressed_tensor_unsafe_symint(const at::Tensor & compressed_indices, const at::Tensor & plain_indices, const at::Tensor & values, c10::SymIntArrayRef size, at::TensorOptions options = {}) {
|
656 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
657 |
+
return autograd::make_variable(at::_sparse_compressed_tensor_unsafe_symint(compressed_indices, plain_indices, values, size, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
658 |
+
}
|
659 |
+
inline at::Tensor _sparse_csr_tensor_unsafe(const at::Tensor & crow_indices, const at::Tensor & col_indices, const at::Tensor & values, at::IntArrayRef size, at::TensorOptions options = {}) {
|
660 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
661 |
+
return autograd::make_variable(at::_sparse_csr_tensor_unsafe(crow_indices, col_indices, values, size, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
662 |
+
}
|
663 |
+
inline at::Tensor _sparse_csc_tensor_unsafe(const at::Tensor & ccol_indices, const at::Tensor & row_indices, const at::Tensor & values, at::IntArrayRef size, at::TensorOptions options = {}) {
|
664 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
665 |
+
return autograd::make_variable(at::_sparse_csc_tensor_unsafe(ccol_indices, row_indices, values, size, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
666 |
+
}
|
667 |
+
inline at::Tensor _sparse_bsr_tensor_unsafe(const at::Tensor & crow_indices, const at::Tensor & col_indices, const at::Tensor & values, at::IntArrayRef size, at::TensorOptions options = {}) {
|
668 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
669 |
+
return autograd::make_variable(at::_sparse_bsr_tensor_unsafe(crow_indices, col_indices, values, size, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
670 |
+
}
|
671 |
+
inline at::Tensor _sparse_bsc_tensor_unsafe(const at::Tensor & ccol_indices, const at::Tensor & row_indices, const at::Tensor & values, at::IntArrayRef size, at::TensorOptions options = {}) {
|
672 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
673 |
+
return autograd::make_variable(at::_sparse_bsc_tensor_unsafe(ccol_indices, row_indices, values, size, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
674 |
+
}
|
675 |
+
inline at::Tensor sparse_coo_tensor(at::IntArrayRef size, at::TensorOptions options) {
|
676 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
677 |
+
return autograd::make_variable(at::sparse_coo_tensor(size, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
678 |
+
}
|
679 |
+
inline at::Tensor sparse_coo_tensor(const at::Tensor & indices, const at::Tensor & values, at::TensorOptions options = {}, c10::optional<bool> is_coalesced = c10::nullopt) {
|
680 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
681 |
+
return autograd::make_variable(at::sparse_coo_tensor(indices, values, at::TensorOptions(options).requires_grad(c10::nullopt), is_coalesced), /*requires_grad=*/options.requires_grad());
|
682 |
+
}
|
683 |
+
inline at::Tensor sparse_coo_tensor(const at::Tensor & indices, const at::Tensor & values, at::IntArrayRef size, at::TensorOptions options = {}, c10::optional<bool> is_coalesced = c10::nullopt) {
|
684 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
685 |
+
return autograd::make_variable(at::sparse_coo_tensor(indices, values, size, at::TensorOptions(options).requires_grad(c10::nullopt), is_coalesced), /*requires_grad=*/options.requires_grad());
|
686 |
+
}
|
687 |
+
inline at::Tensor _sparse_coo_tensor_unsafe(const at::Tensor & indices, const at::Tensor & values, at::IntArrayRef size, at::TensorOptions options = {}, c10::optional<bool> is_coalesced = c10::nullopt) {
|
688 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
689 |
+
return autograd::make_variable(at::_sparse_coo_tensor_unsafe(indices, values, size, at::TensorOptions(options).requires_grad(c10::nullopt), is_coalesced), /*requires_grad=*/options.requires_grad());
|
690 |
+
}
|
691 |
+
inline at::Tensor _sparse_coo_tensor_unsafe_symint(const at::Tensor & indices, const at::Tensor & values, c10::SymIntArrayRef size, at::TensorOptions options = {}, c10::optional<bool> is_coalesced = c10::nullopt) {
|
692 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
693 |
+
return autograd::make_variable(at::_sparse_coo_tensor_unsafe_symint(indices, values, size, at::TensorOptions(options).requires_grad(c10::nullopt), is_coalesced), /*requires_grad=*/options.requires_grad());
|
694 |
+
}
|
695 |
+
inline at::Tensor _sparse_coo_tensor_with_dims(int64_t sparse_dim, int64_t dense_dim, at::IntArrayRef size, at::TensorOptions options) {
|
696 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
697 |
+
return autograd::make_variable(at::_sparse_coo_tensor_with_dims(sparse_dim, dense_dim, size, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
698 |
+
}
|
699 |
+
inline at::Tensor _sparse_coo_tensor_with_dims_and_tensors(int64_t sparse_dim, int64_t dense_dim, at::IntArrayRef size, const at::Tensor & indices, const at::Tensor & values, at::TensorOptions options, c10::optional<bool> is_coalesced = c10::nullopt) {
|
700 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
701 |
+
return autograd::make_variable(at::_sparse_coo_tensor_with_dims_and_tensors(sparse_dim, dense_dim, size, indices, values, at::TensorOptions(options).requires_grad(c10::nullopt), is_coalesced), /*requires_grad=*/options.requires_grad());
|
702 |
+
}
|
703 |
+
inline at::Tensor _sparse_coo_tensor_with_dims_and_tensors_symint(int64_t sparse_dim, int64_t dense_dim, c10::SymIntArrayRef size, const at::Tensor & indices, const at::Tensor & values, at::TensorOptions options, c10::optional<bool> is_coalesced = c10::nullopt) {
|
704 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
705 |
+
return autograd::make_variable(at::_sparse_coo_tensor_with_dims_and_tensors_symint(sparse_dim, dense_dim, size, indices, values, at::TensorOptions(options).requires_grad(c10::nullopt), is_coalesced), /*requires_grad=*/options.requires_grad());
|
706 |
+
}
|
707 |
+
inline at::Tensor _to_copy(const at::Tensor & self, at::TensorOptions options = {}, bool non_blocking = false, c10::optional<at::MemoryFormat> memory_format = c10::nullopt) {
|
708 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
709 |
+
return autograd::make_variable(at::_to_copy(self, at::TensorOptions(options).requires_grad(c10::nullopt), non_blocking, memory_format), /*requires_grad=*/options.requires_grad());
|
710 |
+
}
|
711 |
+
inline at::Tensor tril_indices(int64_t row, int64_t col, int64_t offset = 0, at::TensorOptions options = at::kLong) {
|
712 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
713 |
+
return autograd::make_variable(at::tril_indices(row, col, offset, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
714 |
+
}
|
715 |
+
inline at::Tensor triu_indices(int64_t row, int64_t col, int64_t offset = 0, at::TensorOptions options = at::kLong) {
|
716 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
717 |
+
return autograd::make_variable(at::triu_indices(row, col, offset, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
718 |
+
}
|
719 |
+
inline at::Tensor normal(double mean, double std, at::IntArrayRef size, c10::optional<at::Generator> generator = c10::nullopt, at::TensorOptions options = {}) {
|
720 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
721 |
+
return autograd::make_variable(at::normal(mean, std, size, generator, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
722 |
+
}
|
723 |
+
inline at::Tensor normal_symint(double mean, double std, c10::SymIntArrayRef size, c10::optional<at::Generator> generator = c10::nullopt, at::TensorOptions options = {}) {
|
724 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
725 |
+
return autograd::make_variable(at::normal_symint(mean, std, size, generator, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
726 |
+
}
|
727 |
+
inline at::Tensor fft_fftfreq(int64_t n, double d = 1.0, at::TensorOptions options = {}) {
|
728 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
729 |
+
return autograd::make_variable(at::fft_fftfreq(n, d, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
730 |
+
}
|
731 |
+
inline at::Tensor fft_rfftfreq(int64_t n, double d = 1.0, at::TensorOptions options = {}) {
|
732 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
733 |
+
return autograd::make_variable(at::fft_rfftfreq(n, d, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
734 |
+
}
|
735 |
+
|
736 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/graph_task.h
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#include <ATen/ThreadLocalState.h>
|
3 |
+
#include <ATen/core/Tensor.h>
|
4 |
+
#include <c10/util/ThreadLocal.h>
|
5 |
+
#include <torch/csrc/autograd/input_buffer.h>
|
6 |
+
#include <torch/csrc/autograd/utils/warnings.h>
|
7 |
+
#include <vector>
|
8 |
+
|
9 |
+
namespace torch::autograd {
|
10 |
+
|
11 |
+
using edge_list = std::vector<Edge>;
|
12 |
+
struct ReadyQueue;
|
13 |
+
|
14 |
+
static constexpr int NO_DEVICE = -2;
|
15 |
+
static constexpr int CPU_DEVICE = -1;
|
16 |
+
|
17 |
+
// GraphTask holds metadata needed for a single execution of backward()
|
18 |
+
struct GraphTask : std::enable_shared_from_this<GraphTask> {
|
19 |
+
std::atomic<uint64_t> outstanding_tasks_{0};
|
20 |
+
// Indicates if an error occurred while executing any task. When this is
|
21 |
+
// true, it signals all threads to stop executing.
|
22 |
+
std::atomic_bool has_error_{false};
|
23 |
+
std::atomic_bool future_completed_{false};
|
24 |
+
// It is safe to read keep_graph_ without synchronization
|
25 |
+
bool keep_graph_;
|
26 |
+
|
27 |
+
// To protect reads/writes to not_ready_, dependencies_, captured_vars_,
|
28 |
+
// has_error_, future_result_, cpu_ready_queue_, and leaf_streams.
|
29 |
+
std::mutex mutex_;
|
30 |
+
std::unordered_map<Node*, InputBuffer> not_ready_;
|
31 |
+
std::unordered_map<Node*, int> dependencies_;
|
32 |
+
|
33 |
+
// Records the nodes that are in the graph
|
34 |
+
std::unordered_set<Node*> nodes_in_graph_;
|
35 |
+
c10::SmallVector<Node*, 4> graph_roots_;
|
36 |
+
// Note [Exec info]
|
37 |
+
// Exec info is created for each GraphTask, which allows filtering paths on
|
38 |
+
// the graph that are not needed. It has a bit complicated semantics. If it's
|
39 |
+
// empty, it means the task is run in a "default" mode, which means that all
|
40 |
+
// next_edges we encounter should get executed. If it's not empty, only
|
41 |
+
// functions that have an entry and this entry has needed == True should be
|
42 |
+
// executed. exec_info is only empty when the graph is executed via
|
43 |
+
// .backward() and the inputs parameter is not passed. Otherwise, when
|
44 |
+
// executed through .grad(), or when inputs arg is specified for .backward(),
|
45 |
+
// exec_info will be non-empty.
|
46 |
+
//
|
47 |
+
struct ExecInfo {
|
48 |
+
struct Capture {
|
49 |
+
Capture(const Capture&) = delete;
|
50 |
+
Capture(Capture&&) = default;
|
51 |
+
|
52 |
+
Capture(int input_idx, int output_idx)
|
53 |
+
: input_idx_(input_idx), output_idx_(output_idx) {}
|
54 |
+
int input_idx_; // within Node inputs
|
55 |
+
int output_idx_; // within the output vector of a GraphTask
|
56 |
+
|
57 |
+
// This hook will be executed after a grad is captured. The captured
|
58 |
+
// grad will be replaced by the return value of the hook.
|
59 |
+
struct GradCaptureHook {
|
60 |
+
virtual ~GradCaptureHook() = default;
|
61 |
+
virtual at::Tensor operator()(const at::Tensor& grad) = 0;
|
62 |
+
};
|
63 |
+
// NOTE [Deprecated capture hooks]
|
64 |
+
//
|
65 |
+
// The current status of capture hooks is that we continue to support
|
66 |
+
// the single usage of it by distributed in the dist_engine. If anyone
|
67 |
+
// else needs to use it for other purposes, they should file an issue.
|
68 |
+
//
|
69 |
+
// Capture hooks were originally created because there did not exist
|
70 |
+
// any way to register pre/post hooks to grad_fn in a way such that it
|
71 |
+
// would still be executed even if that is the grad_fn of a Tensor
|
72 |
+
// passed as input= of .grad. As far as I know, only dist_engine uses
|
73 |
+
// this hook.
|
74 |
+
//
|
75 |
+
// However, there are other alternatives today like tensor hooks that can
|
76 |
+
// replace the usage that originally motivated its creation. Also,
|
77 |
+
// Captures hooks are an outlier in terms of the types of hook that
|
78 |
+
// autograd offers in how it is registered and behaves, e.g. it is a hook
|
79 |
+
// registered not to the graph, but to a particular graph_task! This makes
|
80 |
+
// it a burden to maintain.
|
81 |
+
//
|
82 |
+
// It would be very nice to clean up/do a migration from pre/post
|
83 |
+
// hooks used in distributed to use tensor hooks, but for now we just
|
84 |
+
// mark this method as deprecated to prevent additional usage.
|
85 |
+
//
|
86 |
+
// If you still think you really need to capture hooks, please file an
|
87 |
+
// issue (and tag autograd).
|
88 |
+
const std::vector<std::unique_ptr<GradCaptureHook>>&
|
89 |
+
DO_NOT_USE_DEPRECATED_get_capture_hooks() const {
|
90 |
+
return hooks_;
|
91 |
+
}
|
92 |
+
// See NOTE [deprecated capture hooks]
|
93 |
+
void DO_NOT_USE_DEPRECATED_register_capture_hook(
|
94 |
+
std::unique_ptr<GradCaptureHook> hook) {
|
95 |
+
hooks_.push_back(std::move(hook));
|
96 |
+
}
|
97 |
+
|
98 |
+
private:
|
99 |
+
// The hooks will be called one by one in the order as they were added.
|
100 |
+
// The input grad of a hook will be the output of its preceding hook. The
|
101 |
+
// first hook will take the captured grad as the input. The output of the
|
102 |
+
// last hook will replace the captured grad.
|
103 |
+
std::vector<std::unique_ptr<GradCaptureHook>> hooks_;
|
104 |
+
};
|
105 |
+
|
106 |
+
bool should_execute() const {
|
107 |
+
return needed_ || captures_;
|
108 |
+
}
|
109 |
+
|
110 |
+
bool needed_ = false;
|
111 |
+
std::unique_ptr<std::vector<Capture>> captures_;
|
112 |
+
};
|
113 |
+
// exec_info_ is safe to read without synchronization
|
114 |
+
std::unordered_map<Node*, ExecInfo> exec_info_;
|
115 |
+
// Captures variables are grads captured that we return to the user. After
|
116 |
+
// execution of the GraphTask is completed, the captured_vars_ are moved
|
117 |
+
// out of the GraphTask and are no longer valid.
|
118 |
+
std::vector<Variable> captured_vars_;
|
119 |
+
|
120 |
+
// Note: this field is not ready to be used until the proper
|
121 |
+
// `thread_locals_.set_grad_mode()` call in the constructor.
|
122 |
+
at::ThreadLocalState thread_locals_ = at::ThreadLocalState();
|
123 |
+
|
124 |
+
std::unordered_set<c10::Stream> leaf_streams;
|
125 |
+
|
126 |
+
// Per-device current streams of the execute() that called this GraphTask.
|
127 |
+
// These will be synced with leaf_streams in exec_post_processing.
|
128 |
+
std::vector<c10::optional<c10::Stream>> caller_current_streams_;
|
129 |
+
|
130 |
+
// Collects caller_current_streams_ for the accelerator device.
|
131 |
+
void stash_current_streams();
|
132 |
+
|
133 |
+
void init_to_execute(
|
134 |
+
Node& graph_root,
|
135 |
+
const edge_list& outputs,
|
136 |
+
bool accumulate_grad,
|
137 |
+
uint64_t min_topo_nr);
|
138 |
+
|
139 |
+
// The value of worker_device in the thread that created this task.
|
140 |
+
// See Note [Reentrant backwards]
|
141 |
+
// Safe to read owner_ and reentrant_depth_ without synchronization
|
142 |
+
int owner_;
|
143 |
+
// The number of parent graph tasks for this graph task
|
144 |
+
// NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members)
|
145 |
+
const int reentrant_depth_;
|
146 |
+
|
147 |
+
bool can_checkpoint() const {
|
148 |
+
return exec_info_.empty();
|
149 |
+
}
|
150 |
+
|
151 |
+
// check if the GraphTask is completed or not
|
152 |
+
bool completed();
|
153 |
+
// mark the graph task as completed and trigger post processing
|
154 |
+
void mark_as_completed_and_run_post_processing();
|
155 |
+
|
156 |
+
// Set an appropriate exception on this graph_task which was encountered while
|
157 |
+
// running the provided function.
|
158 |
+
void set_exception(std::exception_ptr eptr, const std::shared_ptr<Node>& fn);
|
159 |
+
|
160 |
+
// Set an appropriate exception on this graph_task which was encountered while
|
161 |
+
// running the provided function. But doesn't signal completion on
|
162 |
+
// 'future_result_' right away. The user needs to explicitly mark
|
163 |
+
// 'future_result_' completed with an appropriate exception.
|
164 |
+
void set_exception_without_signal(const std::shared_ptr<Node>& fn);
|
165 |
+
|
166 |
+
// Whether or not to stop execution for this GraphTask when an error is
|
167 |
+
// encountered. When set to true, this would cause Engine::execute() to throw
|
168 |
+
// an exception as soon as the autograd engine receives an exception.
|
169 |
+
bool exit_on_error_;
|
170 |
+
|
171 |
+
// CPU threads are dedicated to processing CPU work for the backward they
|
172 |
+
// invoked. So any given graph task maintains its own cpu_ready_queue_ where
|
173 |
+
// you should send work for it to be done. We memoize the cpu_ready_queue_ per
|
174 |
+
// GraphTask so that we know which ready queue we should push to if we are on
|
175 |
+
// device thread (i.e. GPU) and but next NodeTask should be run on CPU.
|
176 |
+
std::shared_ptr<ReadyQueue> cpu_ready_queue_;
|
177 |
+
|
178 |
+
// Future representing the completion of the graph task. Notified when all
|
179 |
+
// tasks are done.
|
180 |
+
c10::intrusive_ptr<at::ivalue::Future> future_result_;
|
181 |
+
|
182 |
+
// Final callbacks installed during execution of this GraphTask
|
183 |
+
std::vector<std::function<void()>> final_callbacks_;
|
184 |
+
// To protect reads and writes to final_callbacks_. Intentionally no reusing
|
185 |
+
// mutex_ as the two are protecting different data structures.
|
186 |
+
std::mutex final_callbacks_lock_;
|
187 |
+
|
188 |
+
utils::DelayWarningHandler warning_handler_;
|
189 |
+
|
190 |
+
uint64_t id_;
|
191 |
+
|
192 |
+
GraphTask(
|
193 |
+
bool keep_graph,
|
194 |
+
bool grad_mode,
|
195 |
+
int reentrant_depth,
|
196 |
+
std::shared_ptr<ReadyQueue> cpu_ready_queue,
|
197 |
+
c10::SmallVector<Node*, 4> graph_roots,
|
198 |
+
bool exit_on_error = false);
|
199 |
+
|
200 |
+
private:
|
201 |
+
// run GraphTask post processing
|
202 |
+
void exec_post_processing();
|
203 |
+
};
|
204 |
+
|
205 |
+
// The guard that sets and restores current_graph_task.
|
206 |
+
class GraphTaskGuard {
|
207 |
+
public:
|
208 |
+
explicit GraphTaskGuard(std::shared_ptr<GraphTask> graph_task);
|
209 |
+
~GraphTaskGuard();
|
210 |
+
|
211 |
+
void restore_current_graph_task();
|
212 |
+
|
213 |
+
private:
|
214 |
+
std::shared_ptr<GraphTask> last_graph_task_;
|
215 |
+
};
|
216 |
+
|
217 |
+
TORCH_API const std::unordered_map<Node*, GraphTask::ExecInfo>*
|
218 |
+
get_current_graph_task_exec_info();
|
219 |
+
TORCH_API const std::unordered_set<Node*>*
|
220 |
+
get_current_graph_task_nodes_in_graph();
|
221 |
+
TORCH_API bool get_current_graph_task_keep_graph();
|
222 |
+
TORCH_API std::vector<Node*> get_current_graph_task_execution_order();
|
223 |
+
TORCH_API int get_current_graph_task_id();
|
224 |
+
void add_node_to_current_graph_task_exec_info(Node* fn);
|
225 |
+
|
226 |
+
} // namespace torch::autograd
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/input_buffer.h
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// The InputBuffer class accumulates a list of Variables for use by a
|
4 |
+
// function. It implements logic to avoid modifying the passed
|
5 |
+
// values in-place (adding an input twice will accumulate the result).
|
6 |
+
// This behaviour is needed and used only in backward graphs.
|
7 |
+
|
8 |
+
#include <utility>
|
9 |
+
#include <vector>
|
10 |
+
|
11 |
+
#include <c10/core/Stream.h>
|
12 |
+
#include <c10/util/Optional.h>
|
13 |
+
#include <torch/csrc/autograd/variable.h>
|
14 |
+
|
15 |
+
namespace torch::autograd {
|
16 |
+
|
17 |
+
struct InputBuffer {
|
18 |
+
explicit InputBuffer(size_t size) : buffer(size) {}
|
19 |
+
InputBuffer(const InputBuffer& other) = delete;
|
20 |
+
InputBuffer(InputBuffer&& other) = default;
|
21 |
+
explicit InputBuffer(variable_list&& inputs) : buffer(std::move(inputs)){};
|
22 |
+
InputBuffer& operator=(InputBuffer&& other) = default;
|
23 |
+
|
24 |
+
// Accumulates the variable at a specified index.
|
25 |
+
// The optional CUDA streams determine which stream the accumulation
|
26 |
+
// is run on and how the addition is synchronized.
|
27 |
+
TORCH_API void add(
|
28 |
+
size_t pos,
|
29 |
+
Variable&& var,
|
30 |
+
const c10::optional<c10::Stream>& opt_producer_stream,
|
31 |
+
const c10::optional<c10::Stream>& opt_consumer_stream);
|
32 |
+
|
33 |
+
at::Device device() const;
|
34 |
+
|
35 |
+
Variable operator[](size_t pos) {
|
36 |
+
return buffer[pos];
|
37 |
+
}
|
38 |
+
|
39 |
+
// Returns the inputs as a list of variables. Destroys given InputBuffer.
|
40 |
+
static std::vector<Variable> variables(InputBuffer&& g);
|
41 |
+
|
42 |
+
std::vector<Variable> buffer;
|
43 |
+
};
|
44 |
+
|
45 |
+
} // namespace torch::autograd
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/input_metadata.h
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/ExpandUtils.h>
|
4 |
+
#include <ATen/NestedTensorImpl.h>
|
5 |
+
#include <ATen/core/Tensor.h>
|
6 |
+
#include <c10/core/Device.h>
|
7 |
+
#include <c10/core/DeviceType.h>
|
8 |
+
#include <c10/core/Stream.h>
|
9 |
+
#include <c10/core/SymIntArrayRef.h>
|
10 |
+
#include <c10/core/TensorImpl.h>
|
11 |
+
#include <c10/core/impl/DeviceGuardImplInterface.h>
|
12 |
+
#include <c10/util/DimVector.h>
|
13 |
+
#include <c10/util/Exception.h>
|
14 |
+
#include <c10/util/SmallVector.h>
|
15 |
+
|
16 |
+
#ifndef AT_PER_OPERATOR_HEADERS
|
17 |
+
#include <ATen/Functions.h>
|
18 |
+
#else
|
19 |
+
#include <ATen/ops/zeros.h>
|
20 |
+
#endif
|
21 |
+
|
22 |
+
namespace torch::autograd {
|
23 |
+
|
24 |
+
using SymIntSmallVec = c10::SmallVector<c10::SymInt, c10::kDimVectorStaticSize>;
|
25 |
+
using MetadataShape = std::variant<SymIntSmallVec, at::Tensor>;
|
26 |
+
|
27 |
+
/**
|
28 |
+
* Records TensorOptions, shape of the tensor, whether or not the Python
|
29 |
+
* dispatch key is set (tensor subclass), and, where applicable, the stream the
|
30 |
+
* corresponding operation took place on.
|
31 |
+
*
|
32 |
+
* If is_valid() is false, then the corresponding input is not used and may be
|
33 |
+
* an undefined tensor.
|
34 |
+
*/
|
35 |
+
struct TORCH_API InputMetadata {
|
36 |
+
InputMetadata() = default;
|
37 |
+
InputMetadata(
|
38 |
+
const at::TensorOptions& options,
|
39 |
+
MetadataShape input_shape,
|
40 |
+
bool is_tensor_subclass,
|
41 |
+
bool is_nested);
|
42 |
+
InputMetadata(const at::Tensor& t);
|
43 |
+
|
44 |
+
const at::TensorOptions& options() const {
|
45 |
+
return options_;
|
46 |
+
}
|
47 |
+
|
48 |
+
caffe2::TypeMeta dtype() const {
|
49 |
+
return options_.dtype();
|
50 |
+
}
|
51 |
+
|
52 |
+
at::Device device() const {
|
53 |
+
return options_.device();
|
54 |
+
}
|
55 |
+
|
56 |
+
at::Layout layout() const {
|
57 |
+
return options_.layout();
|
58 |
+
}
|
59 |
+
|
60 |
+
c10::Stream stream() const {
|
61 |
+
return stream_;
|
62 |
+
}
|
63 |
+
|
64 |
+
bool is_tensor_subclass() const {
|
65 |
+
return is_tensor_subclass_;
|
66 |
+
}
|
67 |
+
|
68 |
+
at::Tensor zeros_like() const;
|
69 |
+
|
70 |
+
bool is_same_shape(const at::Tensor& grad) const;
|
71 |
+
|
72 |
+
bool is_expandable_to_shape(const at::Tensor& grad) const;
|
73 |
+
|
74 |
+
at::Tensor reduce_grad(at::Tensor& grad) const;
|
75 |
+
|
76 |
+
at::Tensor maybe_reduce(
|
77 |
+
const size_t index,
|
78 |
+
at::Tensor grad,
|
79 |
+
const std::function<std::string(const std::string&)>& format_error) const;
|
80 |
+
|
81 |
+
std::stringstream incompatible_shape_error_message(
|
82 |
+
const size_t index,
|
83 |
+
const at::Tensor& grad) const;
|
84 |
+
|
85 |
+
bool was_default_constructed() const {
|
86 |
+
return was_default_constructed_;
|
87 |
+
}
|
88 |
+
|
89 |
+
bool is_cpp_nested_tensor() const;
|
90 |
+
|
91 |
+
bool is_nested_tensor() const {
|
92 |
+
return is_nested_;
|
93 |
+
}
|
94 |
+
|
95 |
+
c10::SymIntArrayRef shape_as_dim_vector() const;
|
96 |
+
|
97 |
+
// Danger: not thread safe, caller must protect with lock
|
98 |
+
SymIntSmallVec& mutable_shape_as_dim_vector();
|
99 |
+
|
100 |
+
private:
|
101 |
+
at::Tensor shape_as_tensor() const;
|
102 |
+
bool is_nestedness_same(const at::Tensor& grad) const;
|
103 |
+
bool maybe_expandable_to(const at::Tensor& grad) const;
|
104 |
+
|
105 |
+
// NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members)
|
106 |
+
const at::TensorOptions options_;
|
107 |
+
MetadataShape shape_;
|
108 |
+
c10::Stream stream_ = c10::Stream(c10::Stream::Default::DEFAULT, device());
|
109 |
+
bool is_tensor_subclass_ = false;
|
110 |
+
bool is_nested_ = false;
|
111 |
+
bool was_default_constructed_ = true;
|
112 |
+
};
|
113 |
+
} // namespace torch::autograd
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/profiler_legacy.h
ADDED
@@ -0,0 +1,406 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <cstdint>
|
4 |
+
#include <iostream>
|
5 |
+
#include <memory>
|
6 |
+
#include <mutex>
|
7 |
+
#include <string>
|
8 |
+
#include <vector>
|
9 |
+
|
10 |
+
#include <torch/csrc/Export.h>
|
11 |
+
#include <torch/csrc/profiler/api.h>
|
12 |
+
#include <torch/csrc/profiler/stubs/base.h>
|
13 |
+
#include <torch/csrc/profiler/util.h>
|
14 |
+
|
15 |
+
namespace torch::autograd {
|
16 |
+
|
17 |
+
struct Node;
|
18 |
+
|
19 |
+
namespace profiler {
|
20 |
+
|
21 |
+
enum class C10_API_ENUM EventKind : uint16_t {
|
22 |
+
Mark,
|
23 |
+
PushRange,
|
24 |
+
PopRange,
|
25 |
+
MemoryAlloc,
|
26 |
+
};
|
27 |
+
|
28 |
+
// To be deprecated, once we switch to Kineto profiling
|
29 |
+
struct TORCH_API LegacyEvent {
|
30 |
+
LegacyEvent(
|
31 |
+
EventKind kind,
|
32 |
+
at::StringView name,
|
33 |
+
uint16_t thread_id,
|
34 |
+
bool record_cuda,
|
35 |
+
at::RecordFunctionHandle handle = 0,
|
36 |
+
std::vector<std::vector<int64_t>>&& shapes = {},
|
37 |
+
int64_t node_id = -1,
|
38 |
+
bool is_async = false)
|
39 |
+
: name_(std::move(name)),
|
40 |
+
kind_(kind),
|
41 |
+
thread_id_(thread_id),
|
42 |
+
handle_(handle),
|
43 |
+
shapes_(std::move(shapes)),
|
44 |
+
node_id_(node_id),
|
45 |
+
is_async_(is_async) {
|
46 |
+
record(record_cuda);
|
47 |
+
}
|
48 |
+
|
49 |
+
// Constructor to be used in conjunction with LegacyEvent::fromIValue.
|
50 |
+
LegacyEvent(
|
51 |
+
EventKind kind,
|
52 |
+
at::StringView name,
|
53 |
+
uint16_t thread_id,
|
54 |
+
at::RecordFunctionHandle handle,
|
55 |
+
std::vector<std::vector<int64_t>>&& shapes,
|
56 |
+
int64_t node_id,
|
57 |
+
bool is_remote,
|
58 |
+
int64_t cpu_memory_usage,
|
59 |
+
int64_t cpu_ns,
|
60 |
+
bool cuda_recorded,
|
61 |
+
int64_t cuda_memory_usage = 0,
|
62 |
+
c10::DeviceIndex device = -1,
|
63 |
+
double cuda_us = -1)
|
64 |
+
: cpu_ns_(cpu_ns),
|
65 |
+
name_(std::move(name)),
|
66 |
+
kind_(kind),
|
67 |
+
thread_id_(thread_id),
|
68 |
+
handle_(handle),
|
69 |
+
shapes_(std::move(shapes)),
|
70 |
+
cpu_memory_usage_(cpu_memory_usage),
|
71 |
+
cuda_memory_usage_(cuda_memory_usage),
|
72 |
+
device_(device),
|
73 |
+
node_id_(node_id),
|
74 |
+
is_remote_(is_remote),
|
75 |
+
cuda_us_(static_cast<int64_t>(cuda_us)) {
|
76 |
+
// Sanity check values that were deserialized
|
77 |
+
TORCH_INTERNAL_ASSERT(cpu_ns_ > 0);
|
78 |
+
if (cuda_recorded) {
|
79 |
+
TORCH_INTERNAL_ASSERT(device_ >= 0);
|
80 |
+
TORCH_INTERNAL_ASSERT(cuda_us_ >= 0);
|
81 |
+
}
|
82 |
+
}
|
83 |
+
|
84 |
+
// Returns IValues corresponding to event structure, to be used for
|
85 |
+
// serialization.
|
86 |
+
at::IValue toIValue() const;
|
87 |
+
|
88 |
+
// Reconstructs an event from IValues given by toIValue.
|
89 |
+
static LegacyEvent fromIValue(const at::IValue& eventIValue);
|
90 |
+
|
91 |
+
void record(bool record_cuda);
|
92 |
+
|
93 |
+
std::string kindStr() const {
|
94 |
+
switch (kind_) {
|
95 |
+
case EventKind::Mark:
|
96 |
+
return "mark";
|
97 |
+
case EventKind::PushRange:
|
98 |
+
return "push";
|
99 |
+
case EventKind::PopRange:
|
100 |
+
return "pop";
|
101 |
+
case EventKind::MemoryAlloc:
|
102 |
+
return "memory_alloc";
|
103 |
+
}
|
104 |
+
throw std::runtime_error("unknown event kind");
|
105 |
+
}
|
106 |
+
|
107 |
+
EventKind kind() const {
|
108 |
+
return kind_;
|
109 |
+
}
|
110 |
+
|
111 |
+
const char* name() const {
|
112 |
+
return name_.str();
|
113 |
+
}
|
114 |
+
|
115 |
+
uint64_t threadId() const {
|
116 |
+
return thread_id_;
|
117 |
+
}
|
118 |
+
|
119 |
+
std::vector<std::vector<int64_t>> shapes() const {
|
120 |
+
return shapes_;
|
121 |
+
}
|
122 |
+
|
123 |
+
double cpuElapsedUs(const LegacyEvent& e) const {
|
124 |
+
return static_cast<double>(e.cpu_ns_ - cpu_ns_) / (1000.0);
|
125 |
+
}
|
126 |
+
|
127 |
+
void setCpuUs(int64_t cpu_us) {
|
128 |
+
cpu_ns_ = cpu_us * 1000;
|
129 |
+
}
|
130 |
+
|
131 |
+
double cpuUs() const {
|
132 |
+
return static_cast<double>(cpu_ns_) / (1000.0);
|
133 |
+
}
|
134 |
+
|
135 |
+
double cudaElapsedUs(const LegacyEvent& e) const;
|
136 |
+
|
137 |
+
bool hasCuda() const {
|
138 |
+
return cuda_event != nullptr || (isRemote() && device_ != -1);
|
139 |
+
}
|
140 |
+
|
141 |
+
c10::DeviceIndex device() const {
|
142 |
+
return device_;
|
143 |
+
}
|
144 |
+
|
145 |
+
void updateMemoryStats(int64_t alloc_size, c10::Device device) {
|
146 |
+
if (device.is_cuda() || device.type() == c10::DeviceType::HIP) {
|
147 |
+
cuda_memory_usage_ = alloc_size;
|
148 |
+
} else if (
|
149 |
+
device.is_cpu() || device.type() == c10::DeviceType::MKLDNN ||
|
150 |
+
device.type() == c10::DeviceType::IDEEP) {
|
151 |
+
cpu_memory_usage_ = alloc_size;
|
152 |
+
} else {
|
153 |
+
LOG(WARNING) << "Unsupported memory profiling device: " << device;
|
154 |
+
}
|
155 |
+
}
|
156 |
+
|
157 |
+
int64_t cpuMemoryUsage() const {
|
158 |
+
return cpu_memory_usage_;
|
159 |
+
}
|
160 |
+
|
161 |
+
int64_t cudaMemoryUsage() const {
|
162 |
+
return cuda_memory_usage_;
|
163 |
+
}
|
164 |
+
|
165 |
+
at::RecordFunctionHandle handle() const {
|
166 |
+
return handle_;
|
167 |
+
}
|
168 |
+
|
169 |
+
// Node ID corresponding to this event.
|
170 |
+
int64_t nodeId() const {
|
171 |
+
return node_id_;
|
172 |
+
}
|
173 |
+
|
174 |
+
// Set Node ID on this event.
|
175 |
+
void setNodeId(int64_t node_id) {
|
176 |
+
node_id_ = node_id;
|
177 |
+
}
|
178 |
+
|
179 |
+
void setName(at::StringView newName_) {
|
180 |
+
name_ = std::move(newName_);
|
181 |
+
}
|
182 |
+
|
183 |
+
bool isRemote() const {
|
184 |
+
return is_remote_;
|
185 |
+
}
|
186 |
+
|
187 |
+
void setCudaUs(int64_t cuda_us) {
|
188 |
+
cuda_us_ = cuda_us;
|
189 |
+
}
|
190 |
+
|
191 |
+
void setSequenceNr(int64_t sequence_nr) {
|
192 |
+
sequence_nr_ = sequence_nr;
|
193 |
+
}
|
194 |
+
|
195 |
+
int64_t sequenceNr() const {
|
196 |
+
return sequence_nr_;
|
197 |
+
}
|
198 |
+
|
199 |
+
void setCorrelationId(uint64_t correlation_id) {
|
200 |
+
correlation_id_ = correlation_id;
|
201 |
+
}
|
202 |
+
|
203 |
+
uint64_t correlationId() const {
|
204 |
+
return correlation_id_;
|
205 |
+
}
|
206 |
+
|
207 |
+
const std::vector<std::string>& stack() const {
|
208 |
+
return stack_;
|
209 |
+
}
|
210 |
+
|
211 |
+
void setStack(const std::vector<std::string>& stack) {
|
212 |
+
stack_ = stack;
|
213 |
+
}
|
214 |
+
|
215 |
+
uint64_t fwdThreadId() const {
|
216 |
+
return fwd_thread_id_;
|
217 |
+
}
|
218 |
+
|
219 |
+
void setFwdThreadId(uint64_t fwd_thread_id) {
|
220 |
+
fwd_thread_id_ = fwd_thread_id;
|
221 |
+
}
|
222 |
+
|
223 |
+
uint8_t scope() const {
|
224 |
+
return scope_;
|
225 |
+
}
|
226 |
+
|
227 |
+
void setScope(uint8_t scope) {
|
228 |
+
scope_ = scope;
|
229 |
+
}
|
230 |
+
|
231 |
+
const std::unordered_map<std::string, c10::IValue>& extraArgs() const {
|
232 |
+
return extra_args_;
|
233 |
+
}
|
234 |
+
|
235 |
+
void setExtraArgs(std::unordered_map<std::string, c10::IValue>&& save_args) {
|
236 |
+
extra_args_ = std::move(save_args);
|
237 |
+
}
|
238 |
+
|
239 |
+
uint64_t flops() {
|
240 |
+
return flops_;
|
241 |
+
}
|
242 |
+
|
243 |
+
bool isAsync() {
|
244 |
+
return is_async_;
|
245 |
+
}
|
246 |
+
|
247 |
+
void setFlops(uint64_t flops) {
|
248 |
+
flops_ = flops;
|
249 |
+
}
|
250 |
+
|
251 |
+
private:
|
252 |
+
// signed to allow for negative intervals, initialized for safety.
|
253 |
+
int64_t cpu_ns_ = 0;
|
254 |
+
at::StringView name_;
|
255 |
+
EventKind kind_;
|
256 |
+
uint64_t thread_id_;
|
257 |
+
uint64_t fwd_thread_id_{0};
|
258 |
+
at::RecordFunctionHandle handle_{0};
|
259 |
+
std::vector<std::vector<int64_t>> shapes_;
|
260 |
+
int64_t cpu_memory_usage_ = 0;
|
261 |
+
int64_t cuda_memory_usage_ = 0;
|
262 |
+
c10::DeviceIndex device_ = -1;
|
263 |
+
torch::profiler::impl::ProfilerVoidEventStub cuda_event = nullptr;
|
264 |
+
int64_t node_id_ = 0;
|
265 |
+
bool is_remote_ = false;
|
266 |
+
int64_t cuda_us_ = -1;
|
267 |
+
int64_t sequence_nr_ = -1;
|
268 |
+
bool is_async_ = false;
|
269 |
+
|
270 |
+
std::vector<std::string> stack_;
|
271 |
+
uint8_t scope_{0};
|
272 |
+
uint64_t correlation_id_{0};
|
273 |
+
// Extra arguments for computing op flops
|
274 |
+
std::unordered_map<std::string, c10::IValue> extra_args_;
|
275 |
+
uint64_t flops_ = 0;
|
276 |
+
};
|
277 |
+
|
278 |
+
// a linked-list of fixed sized vectors, to avoid
|
279 |
+
// a std::vector resize from taking a large amount of time inside
|
280 |
+
// a profiling event
|
281 |
+
struct RangeEventList {
|
282 |
+
RangeEventList() {
|
283 |
+
events_.reserve(kReservedCapacity);
|
284 |
+
}
|
285 |
+
|
286 |
+
template <typename... Args>
|
287 |
+
void record(Args&&... args) {
|
288 |
+
std::lock_guard<std::mutex> guard(mutex_);
|
289 |
+
events_.emplace_back(std::forward<Args>(args)...);
|
290 |
+
}
|
291 |
+
|
292 |
+
std::vector<LegacyEvent> consolidate() {
|
293 |
+
std::lock_guard<std::mutex> lock(mutex_);
|
294 |
+
std::vector<LegacyEvent> result;
|
295 |
+
result.insert(
|
296 |
+
result.begin(),
|
297 |
+
std::make_move_iterator(events_.begin()),
|
298 |
+
std::make_move_iterator(events_.end()));
|
299 |
+
events_.erase(events_.begin(), events_.end());
|
300 |
+
return result;
|
301 |
+
}
|
302 |
+
|
303 |
+
size_t size() {
|
304 |
+
std::lock_guard<std::mutex> lock(mutex_);
|
305 |
+
return events_.size();
|
306 |
+
}
|
307 |
+
|
308 |
+
private:
|
309 |
+
// This mutex is used to serialize access when different threads are writing
|
310 |
+
// to the same instance of RangeEventList.
|
311 |
+
std::mutex mutex_;
|
312 |
+
std::vector<LegacyEvent> events_;
|
313 |
+
|
314 |
+
static const size_t kReservedCapacity = 1024;
|
315 |
+
};
|
316 |
+
|
317 |
+
// A struct to control settings of disableProfiler options.
|
318 |
+
struct TORCH_API ProfilerDisableOptions {
|
319 |
+
ProfilerDisableOptions() = default;
|
320 |
+
ProfilerDisableOptions(bool shouldCleanupTLSState, bool shouldConsolidate)
|
321 |
+
: cleanupTLSState(shouldCleanupTLSState),
|
322 |
+
consolidate(shouldConsolidate) {}
|
323 |
+
// Whether we should clean up profiler states that are thread local, such as
|
324 |
+
// ThreadLocalDebugInfo and thread local RecordFunction callbacks.
|
325 |
+
bool cleanupTLSState = true;
|
326 |
+
// Whether we should consolidate all currently recorded profiled events. If
|
327 |
+
// false, will not consolidate and other threads can continue to write to the
|
328 |
+
// event lists.
|
329 |
+
bool consolidate = true;
|
330 |
+
};
|
331 |
+
|
332 |
+
// NOTE: profiler mode is thread local, with automatic propagation
|
333 |
+
// across thread boundary (e.g. at::launch tasks)
|
334 |
+
TORCH_API void enableProfilerLegacy(
|
335 |
+
const torch::profiler::impl::ProfilerConfig&);
|
336 |
+
using thread_event_lists = std::vector<std::vector<LegacyEvent>>;
|
337 |
+
TORCH_API thread_event_lists disableProfilerLegacy(
|
338 |
+
c10::optional<ProfilerDisableOptions> profilerDisableOptions =
|
339 |
+
c10::nullopt);
|
340 |
+
|
341 |
+
// adds profiledEvents to the current thread local recorded events. Each event
|
342 |
+
// will be marked with node ID given by fromNodeId.
|
343 |
+
TORCH_API void addEventList(std::vector<LegacyEvent>&& profiledEvents);
|
344 |
+
// Writes profiled events to a stream.
|
345 |
+
TORCH_API void writeProfilerEventsToStream(
|
346 |
+
std::ostream& out,
|
347 |
+
const std::vector<LegacyEvent*>& events);
|
348 |
+
|
349 |
+
// Usage:
|
350 |
+
// {
|
351 |
+
// RecordProfile guard("filename.trace");
|
352 |
+
// // code you want to profile
|
353 |
+
// }
|
354 |
+
// Then open filename.trace in chrome://tracing
|
355 |
+
struct TORCH_API RecordProfile {
|
356 |
+
RecordProfile(std::ostream& out);
|
357 |
+
RecordProfile(const std::string& filename);
|
358 |
+
|
359 |
+
~RecordProfile();
|
360 |
+
|
361 |
+
private:
|
362 |
+
void init();
|
363 |
+
std::unique_ptr<std::ofstream> file_;
|
364 |
+
std::ostream& out_;
|
365 |
+
void processEvents(const std::vector<LegacyEvent*>& events);
|
366 |
+
};
|
367 |
+
|
368 |
+
// A guard that enables the legacy profiler, taking in an optional callback to
|
369 |
+
// process the results Usage:
|
370 |
+
// {
|
371 |
+
// TLSLegacyProfilerGuard g([](thread_event_lists profilerResults) {
|
372 |
+
// // process profilerResults
|
373 |
+
// });
|
374 |
+
// Code to profile
|
375 |
+
// }
|
376 |
+
struct TORCH_API TLSLegacyProfilerGuard {
|
377 |
+
explicit TLSLegacyProfilerGuard(
|
378 |
+
const torch::profiler::impl::ProfilerConfig& cfg,
|
379 |
+
c10::optional<std::function<void(const thread_event_lists&)>>
|
380 |
+
resultCallback = c10::nullopt,
|
381 |
+
c10::optional<ProfilerDisableOptions> profilerDisableOptions =
|
382 |
+
c10::nullopt)
|
383 |
+
: cb_(std::move(resultCallback)),
|
384 |
+
profilerDisableOptions_(profilerDisableOptions) {
|
385 |
+
enableProfilerLegacy(cfg);
|
386 |
+
}
|
387 |
+
~TLSLegacyProfilerGuard() {
|
388 |
+
thread_event_lists event_lists =
|
389 |
+
disableProfilerLegacy(profilerDisableOptions_);
|
390 |
+
if (cb_) {
|
391 |
+
try {
|
392 |
+
(*cb_)(event_lists);
|
393 |
+
} catch (const std::exception& e) {
|
394 |
+
LOG(ERROR) << "Got error processing profiler events: " << e.what();
|
395 |
+
}
|
396 |
+
}
|
397 |
+
}
|
398 |
+
|
399 |
+
private:
|
400 |
+
c10::optional<std::function<void(const thread_event_lists&)>> cb_;
|
401 |
+
// NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members)
|
402 |
+
const c10::optional<ProfilerDisableOptions> profilerDisableOptions_;
|
403 |
+
};
|
404 |
+
|
405 |
+
} // namespace profiler
|
406 |
+
} // namespace torch::autograd
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/utils/error_messages.h
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <sstream>
|
4 |
+
|
5 |
+
namespace torch {
|
6 |
+
namespace autograd {
|
7 |
+
namespace utils {
|
8 |
+
|
9 |
+
inline std::string requires_grad_leaf_error(bool requires_grad) {
|
10 |
+
std::ostringstream oss;
|
11 |
+
oss << "you can only change requires_grad flags of leaf variables.";
|
12 |
+
if (requires_grad == false) {
|
13 |
+
oss << " If you want to use a computed variable in a subgraph "
|
14 |
+
"that doesn't require differentiation use "
|
15 |
+
"var_no_grad = var.detach().";
|
16 |
+
}
|
17 |
+
return oss.str();
|
18 |
+
}
|
19 |
+
|
20 |
+
} // namespace utils
|
21 |
+
} // namespace autograd
|
22 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/utils/grad_layout_contract.h
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/Tensor.h>
|
4 |
+
|
5 |
+
namespace torch {
|
6 |
+
namespace autograd {
|
7 |
+
namespace utils {
|
8 |
+
|
9 |
+
// Helper functions to enforce the "Gradient Layout Contract" described in
|
10 |
+
// torch/csrc/autograd/functions/accumulate_grad.h.
|
11 |
+
|
12 |
+
// Checks if grad obeys the contract with variable.
|
13 |
+
inline bool obeys_layout_contract(
|
14 |
+
const at::Tensor& grad,
|
15 |
+
const at::Tensor& variable) {
|
16 |
+
TORCH_INTERNAL_ASSERT(!grad.is_sparse());
|
17 |
+
TORCH_INTERNAL_ASSERT(!grad.is_sparse_csr());
|
18 |
+
TORCH_INTERNAL_ASSERT(!variable.is_sparse_csr());
|
19 |
+
|
20 |
+
// NOLINTNEXTLINE(bugprone-branch-clone)
|
21 |
+
if (variable.is_nested()) {
|
22 |
+
// TODO: Nested Tensor does not have an implementation of detach. The
|
23 |
+
// current implementation of nested tensor likely does obey the gradient
|
24 |
+
// contract and should return true, but this would likely change in the
|
25 |
+
// future
|
26 |
+
return false;
|
27 |
+
} else if (variable.is_sparse()) {
|
28 |
+
// Gradient Layout Contract is not applicable for sparse layouts
|
29 |
+
return false;
|
30 |
+
} else if (variable.is_non_overlapping_and_dense()) {
|
31 |
+
// Only look at stride for dimensions that are not of size 1.
|
32 |
+
const auto& grad_sizes = grad.sym_sizes();
|
33 |
+
const auto& grad_strides = grad.sym_strides();
|
34 |
+
const auto& variable_strides = variable.sym_strides();
|
35 |
+
for (const auto idx : c10::irange(grad_sizes.size())) {
|
36 |
+
if (grad_sizes[idx] != 1) {
|
37 |
+
if (grad_strides[idx] != variable_strides[idx]) {
|
38 |
+
return false;
|
39 |
+
}
|
40 |
+
} else {
|
41 |
+
// This should not be needed but we don't check if a Tensor has views
|
42 |
+
// before stashing it. And 0-strided Tensors of size 1 are actually
|
43 |
+
// views for ops like cat.
|
44 |
+
// TODO: Actually detect views in the accumulateGrad function so that
|
45 |
+
// this Tensor is not considered at all.
|
46 |
+
if (grad_strides[idx] == 0) {
|
47 |
+
return false;
|
48 |
+
}
|
49 |
+
}
|
50 |
+
}
|
51 |
+
return true;
|
52 |
+
} else {
|
53 |
+
return grad.is_contiguous(at::MemoryFormat::Contiguous);
|
54 |
+
}
|
55 |
+
}
|
56 |
+
|
57 |
+
// Creates a clone of new_grad that obeys the contract with variable.
|
58 |
+
// The clone should attach to new_grad's history if GradMode::is_enabled().
|
59 |
+
inline at::Tensor clone_obey_contract(
|
60 |
+
const at::Tensor& new_grad,
|
61 |
+
const at::Tensor& variable) {
|
62 |
+
if (variable.is_non_overlapping_and_dense()) {
|
63 |
+
// (1)
|
64 |
+
// Does this dicey-looking sequence attach the result to new_grad's
|
65 |
+
// history if GradMode::is_enabled()? Yes, and @alband says it should.
|
66 |
+
return std::move(new_grad
|
67 |
+
.new_empty_strided_symint(
|
68 |
+
variable.sym_sizes(),
|
69 |
+
variable.sym_strides(),
|
70 |
+
variable.options().memory_format(c10::nullopt))
|
71 |
+
.copy_(new_grad));
|
72 |
+
} else {
|
73 |
+
// (2)
|
74 |
+
return new_grad.clone(at::MemoryFormat::Contiguous);
|
75 |
+
}
|
76 |
+
}
|
77 |
+
|
78 |
+
} // namespace utils
|
79 |
+
} // namespace autograd
|
80 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/utils/lambda_post_hook.h
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/autograd/function_hook.h>
|
4 |
+
|
5 |
+
namespace torch {
|
6 |
+
namespace autograd {
|
7 |
+
namespace utils {
|
8 |
+
|
9 |
+
// Turns lambda into a torch::autograd::FunctionPostHook.
|
10 |
+
class LambdaPostHook : public torch::autograd::FunctionPostHook {
|
11 |
+
using variable_list = std::vector<torch::autograd::Variable>;
|
12 |
+
using fn_type =
|
13 |
+
std::function<variable_list(const variable_list&, const variable_list&)>;
|
14 |
+
using compiled_fn_type = std::function<void(CompiledNodeArgs&)>;
|
15 |
+
|
16 |
+
public:
|
17 |
+
// The lambda function takes as arguments the outputs and inputs of the
|
18 |
+
// autograd function and can modify the outputs of the autograd function by
|
19 |
+
// returning a new output if needed.
|
20 |
+
/* implicit */ LambdaPostHook(fn_type fn) : fn_(std::move(fn)) {}
|
21 |
+
|
22 |
+
LambdaPostHook(fn_type fn, compiled_fn_type compiled_fn)
|
23 |
+
: fn_(std::move(fn)), compiled_fn_(std::move(compiled_fn)) {}
|
24 |
+
|
25 |
+
variable_list operator()(
|
26 |
+
const variable_list& outputs,
|
27 |
+
const variable_list& inputs) override {
|
28 |
+
return fn_(outputs, inputs);
|
29 |
+
}
|
30 |
+
|
31 |
+
void compiled_args(CompiledNodeArgs& args) override {}
|
32 |
+
|
33 |
+
protected:
|
34 |
+
std::function<variable_list(const variable_list&, const variable_list&)> fn_;
|
35 |
+
compiled_fn_type compiled_fn_;
|
36 |
+
};
|
37 |
+
|
38 |
+
} // namespace utils
|
39 |
+
} // namespace autograd
|
40 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/utils/python_arg_parsing.h
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/core/Tensor.h>
|
4 |
+
#include <torch/csrc/python_headers.h>
|
5 |
+
|
6 |
+
#include <torch/csrc/utils/python_arg_parser.h>
|
7 |
+
|
8 |
+
namespace torch {
|
9 |
+
namespace autograd {
|
10 |
+
namespace utils {
|
11 |
+
|
12 |
+
// The parameter allow_copy is to accept copy for Tensor.to (and by proxy
|
13 |
+
// PackedSequences.to) but not nn.Module.to.
|
14 |
+
inline std::tuple<
|
15 |
+
c10::optional<at::Device>,
|
16 |
+
c10::optional<at::ScalarType>,
|
17 |
+
bool,
|
18 |
+
bool,
|
19 |
+
c10::optional<at::MemoryFormat>>
|
20 |
+
parse_to_conversion(PythonArgs& r, bool allow_copy) {
|
21 |
+
if (r.idx == 0) {
|
22 |
+
if (!allow_copy && !r.isNone(3))
|
23 |
+
throw std::runtime_error(".to() does not accept copy argument");
|
24 |
+
return std::make_tuple(
|
25 |
+
r.deviceOptional(0),
|
26 |
+
r.scalartypeOptional(1),
|
27 |
+
r.toBool(2),
|
28 |
+
r.toBool(3),
|
29 |
+
r.memoryformatOptional(4));
|
30 |
+
} else if (r.idx == 1) {
|
31 |
+
if (!allow_copy && !r.isNone(2))
|
32 |
+
throw std::runtime_error(".to() does not accept copy argument");
|
33 |
+
return std::make_tuple(
|
34 |
+
c10::nullopt,
|
35 |
+
r.scalartype(0),
|
36 |
+
r.toBool(1),
|
37 |
+
r.toBool(2),
|
38 |
+
r.memoryformatOptional(3));
|
39 |
+
} else {
|
40 |
+
auto tensor = r.tensor(0);
|
41 |
+
if (!allow_copy && !r.isNone(2))
|
42 |
+
throw std::runtime_error(".to() does not accept copy argument");
|
43 |
+
return std::make_tuple(
|
44 |
+
tensor.device(),
|
45 |
+
tensor.scalar_type(),
|
46 |
+
r.toBool(1),
|
47 |
+
r.toBool(2),
|
48 |
+
r.memoryformatOptional(3));
|
49 |
+
}
|
50 |
+
}
|
51 |
+
} // namespace utils
|
52 |
+
} // namespace autograd
|
53 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/utils/warnings.h
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#include <c10/util/Exception.h>
|
3 |
+
|
4 |
+
#include <mutex>
|
5 |
+
#include <vector>
|
6 |
+
|
7 |
+
namespace torch {
|
8 |
+
namespace autograd {
|
9 |
+
namespace utils {
|
10 |
+
|
11 |
+
// Warning handler for multi-threaded contexts. Gather warnings from
|
12 |
+
// all threads into a single queue, then process together at the end
|
13 |
+
// in the main thread.
|
14 |
+
class DelayWarningHandler : public at::WarningHandler {
|
15 |
+
public:
|
16 |
+
~DelayWarningHandler() override = default;
|
17 |
+
void replay_warnings();
|
18 |
+
|
19 |
+
private:
|
20 |
+
void process(const c10::Warning& warning) override;
|
21 |
+
|
22 |
+
std::vector<c10::Warning> warnings_;
|
23 |
+
std::mutex mutex_;
|
24 |
+
};
|
25 |
+
|
26 |
+
} // namespace utils
|
27 |
+
} // namespace autograd
|
28 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/utils/wrap_outputs.h
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// Wrap tensor operation outputs as PyObject*
|
4 |
+
|
5 |
+
#include <ATen/ScalarOps.h>
|
6 |
+
#include <ATen/core/Tensor.h>
|
7 |
+
#include <c10/util/irange.h>
|
8 |
+
#include <torch/csrc/python_headers.h>
|
9 |
+
#include <initializer_list>
|
10 |
+
#include <tuple>
|
11 |
+
|
12 |
+
#include <torch/csrc/Dtype.h>
|
13 |
+
#include <torch/csrc/DynamicTypes.h>
|
14 |
+
#include <torch/csrc/Layout.h>
|
15 |
+
#include <torch/csrc/QScheme.h>
|
16 |
+
#include <torch/csrc/autograd/python_variable.h>
|
17 |
+
#include <torch/csrc/autograd/variable.h>
|
18 |
+
#include <torch/csrc/utils/python_numbers.h>
|
19 |
+
#include <torch/csrc/utils/tensor_qschemes.h>
|
20 |
+
|
21 |
+
namespace torch {
|
22 |
+
namespace autograd {
|
23 |
+
namespace utils {
|
24 |
+
|
25 |
+
inline PyObject* wrap(bool value) {
|
26 |
+
if (value) {
|
27 |
+
Py_RETURN_TRUE;
|
28 |
+
} else {
|
29 |
+
Py_RETURN_FALSE;
|
30 |
+
}
|
31 |
+
}
|
32 |
+
|
33 |
+
inline PyObject* wrap(c10::DeviceIndex value) {
|
34 |
+
return THPUtils_packDeviceIndex(value);
|
35 |
+
}
|
36 |
+
|
37 |
+
inline PyObject* wrap(int64_t value) {
|
38 |
+
return THPUtils_packInt64(value);
|
39 |
+
}
|
40 |
+
|
41 |
+
inline PyObject* wrap(double value) {
|
42 |
+
return PyFloat_FromDouble(value);
|
43 |
+
}
|
44 |
+
|
45 |
+
inline PyObject* wrap(c10::complex<double> value) {
|
46 |
+
// I could probably also use FromComplex with a reinterpret cast,
|
47 |
+
// but... eh.
|
48 |
+
return PyComplex_FromDoubles(value.real(), value.imag());
|
49 |
+
}
|
50 |
+
|
51 |
+
inline PyObject* wrap(void* value) {
|
52 |
+
return THPUtils_packInt64(reinterpret_cast<intptr_t>(value));
|
53 |
+
}
|
54 |
+
|
55 |
+
inline PyObject* wrap(THPDtype* dtype) {
|
56 |
+
Py_INCREF(dtype);
|
57 |
+
return (PyObject*)dtype;
|
58 |
+
}
|
59 |
+
|
60 |
+
inline PyObject* wrap(at::ScalarType scalarType) {
|
61 |
+
return wrap(getTHPDtype(scalarType));
|
62 |
+
}
|
63 |
+
|
64 |
+
inline PyObject* wrap(THPLayout* layout) {
|
65 |
+
Py_INCREF(layout);
|
66 |
+
return (PyObject*)layout;
|
67 |
+
}
|
68 |
+
|
69 |
+
inline PyObject* wrap(at::Layout layout) {
|
70 |
+
return wrap(getTHPLayout(layout));
|
71 |
+
}
|
72 |
+
|
73 |
+
inline PyObject* wrap(at::Tensor tensor) {
|
74 |
+
return THPVariable_Wrap(Variable(std::move(tensor)));
|
75 |
+
}
|
76 |
+
|
77 |
+
inline PyObject* wrap(const at::Scalar& scalar) {
|
78 |
+
return wrap(scalar_to_tensor(scalar));
|
79 |
+
}
|
80 |
+
|
81 |
+
inline PyObject* wrap(at::QScheme qscheme) {
|
82 |
+
auto* thp_qscheme = torch::utils::getTHPQScheme(qscheme);
|
83 |
+
Py_INCREF(thp_qscheme);
|
84 |
+
return thp_qscheme;
|
85 |
+
}
|
86 |
+
|
87 |
+
inline PyObject* wrap(at::TensorList tl) {
|
88 |
+
auto r = THPObjectPtr{PyTuple_New(tl.size())};
|
89 |
+
if (!r)
|
90 |
+
throw python_error();
|
91 |
+
for (const auto i : c10::irange(tl.size())) {
|
92 |
+
PyTuple_SET_ITEM(r.get(), i, wrap(tl[i]));
|
93 |
+
}
|
94 |
+
return r.release();
|
95 |
+
}
|
96 |
+
|
97 |
+
inline PyObject* wrap(at::IntArrayRef list) {
|
98 |
+
auto r = THPObjectPtr{PyTuple_New(list.size())};
|
99 |
+
if (!r)
|
100 |
+
throw python_error();
|
101 |
+
for (const auto i : c10::irange(list.size())) {
|
102 |
+
PyTuple_SET_ITEM(r.get(), i, wrap(list[i]));
|
103 |
+
}
|
104 |
+
return r.release();
|
105 |
+
}
|
106 |
+
|
107 |
+
inline PyObject* wrap(at::Stream stream) {
|
108 |
+
return THPStream_Wrap(stream);
|
109 |
+
}
|
110 |
+
|
111 |
+
namespace detail {
|
112 |
+
template <typename F, typename Tuple, size_t... Is>
|
113 |
+
void apply_with_idx_impl(
|
114 |
+
const F& f,
|
115 |
+
Tuple& t,
|
116 |
+
std::index_sequence<Is...> /*indices*/) {
|
117 |
+
(void)std::initializer_list<int>{(f(std::get<Is>(t), Is), 0)...};
|
118 |
+
}
|
119 |
+
|
120 |
+
// For tuple(a, b, c), calls f(a, 0), f(b, 1), f(c, 2)
|
121 |
+
template <typename F, typename... Ts>
|
122 |
+
void apply_with_idx(const F& f, std::tuple<Ts...>& t) {
|
123 |
+
apply_with_idx_impl(f, t, std::index_sequence_for<Ts...>{});
|
124 |
+
}
|
125 |
+
} // namespace detail
|
126 |
+
|
127 |
+
template <typename... Ts>
|
128 |
+
PyObject* wrap(std::tuple<Ts...> values) {
|
129 |
+
auto r = THPObjectPtr{PyTuple_New(sizeof...(Ts))};
|
130 |
+
if (!r)
|
131 |
+
throw python_error();
|
132 |
+
detail::apply_with_idx(
|
133 |
+
[&](auto& value, size_t idx) {
|
134 |
+
PyTuple_SET_ITEM(r.get(), idx, wrap(std::move(value)));
|
135 |
+
},
|
136 |
+
values);
|
137 |
+
return r.release();
|
138 |
+
}
|
139 |
+
|
140 |
+
template <typename... Ts>
|
141 |
+
PyObject* wrap(PyTypeObject* type, std::tuple<Ts...> values) {
|
142 |
+
auto r = THPObjectPtr{PyStructSequence_New(type)};
|
143 |
+
if (!r)
|
144 |
+
throw python_error();
|
145 |
+
detail::apply_with_idx(
|
146 |
+
[&](auto& value, size_t idx) {
|
147 |
+
PyStructSequence_SET_ITEM(r.get(), idx, wrap(std::move(value)));
|
148 |
+
},
|
149 |
+
values);
|
150 |
+
return r.release();
|
151 |
+
}
|
152 |
+
|
153 |
+
} // namespace utils
|
154 |
+
} // namespace autograd
|
155 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/c10d/GlooDeviceFactory.hpp
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#ifdef USE_C10D_GLOO
|
4 |
+
|
5 |
+
#include <string>
|
6 |
+
|
7 |
+
#include <c10/util/Registry.h>
|
8 |
+
#include <gloo/config.h>
|
9 |
+
#include <gloo/transport/device.h>
|
10 |
+
|
11 |
+
namespace c10d {
|
12 |
+
|
13 |
+
class TORCH_API GlooDeviceFactory {
|
14 |
+
public:
|
15 |
+
// Create new device instance for specific interface.
|
16 |
+
static std::shared_ptr<::gloo::transport::Device> makeDeviceForInterface(
|
17 |
+
const std::string& interface);
|
18 |
+
|
19 |
+
// Create new device instance for specific hostname or address.
|
20 |
+
static std::shared_ptr<::gloo::transport::Device> makeDeviceForHostname(
|
21 |
+
const std::string& hostname);
|
22 |
+
};
|
23 |
+
|
24 |
+
TORCH_DECLARE_SHARED_REGISTRY(
|
25 |
+
GlooDeviceRegistry,
|
26 |
+
::gloo::transport::Device,
|
27 |
+
const std::string&, /* interface */
|
28 |
+
const std::string& /* hostname */);
|
29 |
+
|
30 |
+
} // namespace c10d
|
31 |
+
|
32 |
+
#endif // USE_C10D_GLOO
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/c10d/PrefixStore.hpp
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/distributed/c10d/Store.hpp>
|
4 |
+
#include <memory>
|
5 |
+
|
6 |
+
namespace c10d {
|
7 |
+
|
8 |
+
class TORCH_API PrefixStore : public Store {
|
9 |
+
public:
|
10 |
+
explicit PrefixStore(std::string prefix, c10::intrusive_ptr<Store> store);
|
11 |
+
|
12 |
+
using Store::set;
|
13 |
+
void set(const std::string& key, const std::vector<uint8_t>& value) override;
|
14 |
+
|
15 |
+
using Store::compareSet;
|
16 |
+
std::vector<uint8_t> compareSet(
|
17 |
+
const std::string& key,
|
18 |
+
const std::vector<uint8_t>& expectedValue,
|
19 |
+
const std::vector<uint8_t>& desiredValue) override;
|
20 |
+
|
21 |
+
std::vector<uint8_t> get(const std::string& key) override;
|
22 |
+
|
23 |
+
int64_t add(const std::string& key, int64_t value) override;
|
24 |
+
|
25 |
+
bool deleteKey(const std::string& key) override;
|
26 |
+
|
27 |
+
int64_t getNumKeys() override;
|
28 |
+
|
29 |
+
bool check(const std::vector<std::string>& keys) override;
|
30 |
+
|
31 |
+
void wait(const std::vector<std::string>& keys) override;
|
32 |
+
|
33 |
+
void wait(
|
34 |
+
const std::vector<std::string>& keys,
|
35 |
+
const std::chrono::milliseconds& timeout) override;
|
36 |
+
|
37 |
+
const std::chrono::milliseconds& getTimeout() const noexcept override;
|
38 |
+
|
39 |
+
void setTimeout(const std::chrono::milliseconds& timeout) override;
|
40 |
+
|
41 |
+
void append(const std::string& key, const std::vector<uint8_t>& value)
|
42 |
+
override;
|
43 |
+
|
44 |
+
std::vector<std::vector<uint8_t>> multiGet(
|
45 |
+
const std::vector<std::string>& keys) override;
|
46 |
+
|
47 |
+
void multiSet(
|
48 |
+
const std::vector<std::string>& keys,
|
49 |
+
const std::vector<std::vector<uint8_t>>& values) override;
|
50 |
+
|
51 |
+
// Returns true if this store support append, multiGet and multiSet
|
52 |
+
bool hasExtendedApi() const override;
|
53 |
+
|
54 |
+
c10::intrusive_ptr<Store> getUnderlyingStore();
|
55 |
+
|
56 |
+
// Recursively to fetch the store before layers of wrapping with PrefixStore.
|
57 |
+
c10::intrusive_ptr<Store> getUnderlyingNonPrefixStore();
|
58 |
+
|
59 |
+
protected:
|
60 |
+
std::string prefix_;
|
61 |
+
c10::intrusive_ptr<Store> store_;
|
62 |
+
|
63 |
+
std::string joinKey(const std::string& key);
|
64 |
+
std::vector<std::string> joinKeys(const std::vector<std::string>& keys);
|
65 |
+
};
|
66 |
+
|
67 |
+
} // namespace c10d
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/c10d/ProcessGroupMPI.hpp
ADDED
@@ -0,0 +1,271 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#ifdef USE_C10D_MPI
|
4 |
+
|
5 |
+
#include <condition_variable>
|
6 |
+
#include <deque>
|
7 |
+
#include <exception>
|
8 |
+
#include <memory>
|
9 |
+
#include <mutex>
|
10 |
+
#include <thread>
|
11 |
+
#include <vector>
|
12 |
+
|
13 |
+
#include <ATen/core/ivalue.h>
|
14 |
+
#include <ATen/core/ivalue_inl.h>
|
15 |
+
|
16 |
+
#include <torch/csrc/distributed/c10d/Backend.hpp>
|
17 |
+
#include <torch/csrc/distributed/c10d/Types.hpp>
|
18 |
+
#include <torch/csrc/distributed/c10d/Utils.hpp>
|
19 |
+
|
20 |
+
#include <c10/util/CallOnce.h>
|
21 |
+
|
22 |
+
#include <mpi.h>
|
23 |
+
|
24 |
+
namespace c10d {
|
25 |
+
|
26 |
+
constexpr const char* MPI_BACKEND_NAME = "mpi";
|
27 |
+
|
28 |
+
// WorkEntry is the state associated with a single MPI run instance.
|
29 |
+
// It include the source Tensor list and destination Tensor list, as well as
|
30 |
+
// The actual run function that will operate either on src or dst or both.
|
31 |
+
struct WorkEntry {
|
32 |
+
explicit WorkEntry(
|
33 |
+
std::vector<at::Tensor>* srcPtr,
|
34 |
+
std::vector<at::Tensor>* dstPtr,
|
35 |
+
std::function<void(std::unique_ptr<WorkEntry>&)> run)
|
36 |
+
: dst(dstPtr ? *dstPtr : std::vector<at::Tensor>()), run(std::move(run)) {
|
37 |
+
if (srcPtr) {
|
38 |
+
src = *srcPtr;
|
39 |
+
}
|
40 |
+
}
|
41 |
+
|
42 |
+
// Not copyable
|
43 |
+
WorkEntry(const WorkEntry&) = delete;
|
44 |
+
// Not copy assignable
|
45 |
+
WorkEntry& operator=(const WorkEntry&) = delete;
|
46 |
+
|
47 |
+
// For input and output tensors (in-place), we will always use src
|
48 |
+
std::vector<at::Tensor> src;
|
49 |
+
|
50 |
+
// Copy of user provided outputs.
|
51 |
+
const std::vector<at::Tensor> dst;
|
52 |
+
|
53 |
+
// src rank returned, for recv only
|
54 |
+
int* srcRank = nullptr;
|
55 |
+
std::function<void(std::unique_ptr<WorkEntry>&)> run;
|
56 |
+
};
|
57 |
+
|
58 |
+
// ProcessGroupMPI implements MPI bindings for c10d.
|
59 |
+
//
|
60 |
+
// All functions on this class are expected to be called in the same
|
61 |
+
// order across processes in the group. This is the only way that we
|
62 |
+
// can guarantee to match up the same calls across processes.
|
63 |
+
//
|
64 |
+
// All MPI functions provided by this class is asynchronously scheduled on a
|
65 |
+
// Worker thread. Therefore, ProcessGroupMPI requires the MPI implementation
|
66 |
+
// that is used to have a minimum thread support value of MPI_THREAD_SERIALIZED.
|
67 |
+
// That is, The process may be multi-threaded, and multiple threads may make
|
68 |
+
// MPI calls, but only one at a time: MPI calls are not made concurrently from
|
69 |
+
// two distinct threads (all MPI calls are serialized). However, with
|
70 |
+
// MPI_THREAD_SERIALIZED, ProcessGroupMPI will only support a singe process
|
71 |
+
// group. In other words, no more than 1 process group can be created globally.
|
72 |
+
//
|
73 |
+
// If you would like to use multiple ProcessGroupMPI, it requires your MPI
|
74 |
+
// implementation to have a thread support value of MPI_THREAD_MULTIPLE, that
|
75 |
+
// is, multiple threads may call MPI, with no restriction.
|
76 |
+
//
|
77 |
+
// Also note that ProcessGroupMPI only supports a single Tensor operation. In
|
78 |
+
// other words, the size of the input Tensor vector should always be 1.
|
79 |
+
//
|
80 |
+
// CUDA tensor can be supported if the MPI used is CUDA-aware MPI, and
|
81 |
+
// ProcessGroupMPI will automatically detect this support.
|
82 |
+
class TORCH_API ProcessGroupMPI : public Backend {
|
83 |
+
public:
|
84 |
+
class WorkMPI : public Work {
|
85 |
+
public:
|
86 |
+
explicit WorkMPI(
|
87 |
+
std::vector<at::Tensor> outputTensors,
|
88 |
+
const char* profilingTitle = nullptr,
|
89 |
+
const c10::optional<std::vector<at::Tensor>>& inputTensors =
|
90 |
+
c10::nullopt)
|
91 |
+
: Work(-1, OpType::UNKNOWN, profilingTitle, inputTensors),
|
92 |
+
outputTensors_(std::move(outputTensors)),
|
93 |
+
future_(c10::make_intrusive<at::ivalue::Future>(
|
94 |
+
c10::ListType::create(c10::TensorType::get()))) {}
|
95 |
+
|
96 |
+
std::vector<at::Tensor> result() override;
|
97 |
+
|
98 |
+
c10::intrusive_ptr<c10::ivalue::Future> getFuture() override;
|
99 |
+
|
100 |
+
protected:
|
101 |
+
friend class ProcessGroupMPI;
|
102 |
+
|
103 |
+
private:
|
104 |
+
void finishWorkMPI();
|
105 |
+
void finishWorkMPIError(std::exception_ptr eptr);
|
106 |
+
|
107 |
+
std::vector<at::Tensor> outputTensors_;
|
108 |
+
c10::intrusive_ptr<at::ivalue::Future> future_;
|
109 |
+
};
|
110 |
+
|
111 |
+
class AsyncWork : public Work {
|
112 |
+
public:
|
113 |
+
AsyncWork(
|
114 |
+
MPI_Request request,
|
115 |
+
std::vector<at::Tensor> outputTensors,
|
116 |
+
const char* profilingTitle = nullptr,
|
117 |
+
const c10::optional<std::vector<at::Tensor>>& inputTensors =
|
118 |
+
c10::nullopt);
|
119 |
+
|
120 |
+
~AsyncWork() override;
|
121 |
+
|
122 |
+
bool isCompleted() override;
|
123 |
+
|
124 |
+
bool isSuccess() const override;
|
125 |
+
|
126 |
+
int sourceRank() const override;
|
127 |
+
|
128 |
+
bool wait(std::chrono::milliseconds timeout = kUnsetTimeout) override;
|
129 |
+
|
130 |
+
void abort() override;
|
131 |
+
|
132 |
+
std::vector<at::Tensor> result() override;
|
133 |
+
|
134 |
+
protected:
|
135 |
+
void populateException();
|
136 |
+
|
137 |
+
private:
|
138 |
+
const std::vector<at::Tensor> outputTensors_;
|
139 |
+
MPI_Request request_;
|
140 |
+
MPI_Status status_;
|
141 |
+
};
|
142 |
+
|
143 |
+
// Constructor will spawn up the worker thread loop
|
144 |
+
explicit ProcessGroupMPI(int rank, int size, MPI_Comm pgComm);
|
145 |
+
|
146 |
+
~ProcessGroupMPI() override;
|
147 |
+
|
148 |
+
// Abort the MPI program, needs to be called when exception is detected
|
149 |
+
void abort();
|
150 |
+
|
151 |
+
const std::string getBackendName() const override {
|
152 |
+
return std::string(MPI_BACKEND_NAME);
|
153 |
+
}
|
154 |
+
|
155 |
+
c10::intrusive_ptr<Work> broadcast(
|
156 |
+
std::vector<at::Tensor>& data,
|
157 |
+
const BroadcastOptions& opts = BroadcastOptions()) override;
|
158 |
+
|
159 |
+
c10::intrusive_ptr<Work> allreduce(
|
160 |
+
std::vector<at::Tensor>& tensors,
|
161 |
+
const AllreduceOptions& opts = AllreduceOptions()) override;
|
162 |
+
|
163 |
+
c10::intrusive_ptr<Work> allreduce_coalesced(
|
164 |
+
std::vector<at::Tensor>& tensors,
|
165 |
+
const AllreduceCoalescedOptions& opts =
|
166 |
+
AllreduceCoalescedOptions()) override;
|
167 |
+
|
168 |
+
c10::intrusive_ptr<Work> reduce(
|
169 |
+
std::vector<at::Tensor>& tensors,
|
170 |
+
const ReduceOptions& opts = ReduceOptions()) override;
|
171 |
+
|
172 |
+
c10::intrusive_ptr<Work> allgather(
|
173 |
+
std::vector<std::vector<at::Tensor>>& outputTensors,
|
174 |
+
std::vector<at::Tensor>& inputTensors,
|
175 |
+
const AllgatherOptions& opts = AllgatherOptions()) override;
|
176 |
+
|
177 |
+
c10::intrusive_ptr<Work> _allgather_base(
|
178 |
+
at::Tensor& outputbuffer,
|
179 |
+
at::Tensor& inputbuffer,
|
180 |
+
const AllgatherOptions& opts = AllgatherOptions()) override;
|
181 |
+
|
182 |
+
c10::intrusive_ptr<Work> allgather_coalesced(
|
183 |
+
std::vector<std::vector<at::Tensor>>& outputTensorLists,
|
184 |
+
std::vector<at::Tensor>& inputTensors,
|
185 |
+
const AllgatherOptions& opts = AllgatherOptions()) override;
|
186 |
+
|
187 |
+
c10::intrusive_ptr<Work> gather(
|
188 |
+
std::vector<std::vector<at::Tensor>>& outputTensors,
|
189 |
+
std::vector<at::Tensor>& inputTensors,
|
190 |
+
const GatherOptions& opts = GatherOptions()) override;
|
191 |
+
|
192 |
+
c10::intrusive_ptr<Work> scatter(
|
193 |
+
std::vector<at::Tensor>& outputTensors,
|
194 |
+
std::vector<std::vector<at::Tensor>>& inputTensors,
|
195 |
+
const ScatterOptions& opts = ScatterOptions()) override;
|
196 |
+
|
197 |
+
c10::intrusive_ptr<Work> reduce_scatter(
|
198 |
+
std::vector<at::Tensor>& outputTensors,
|
199 |
+
std::vector<std::vector<at::Tensor>>& inputTensors,
|
200 |
+
const ReduceScatterOptions& opts = ReduceScatterOptions()) override;
|
201 |
+
|
202 |
+
c10::intrusive_ptr<Work> alltoall_base(
|
203 |
+
at::Tensor& outputTensor,
|
204 |
+
at::Tensor& inputTensor,
|
205 |
+
std::vector<int64_t>& outputSplitSizes,
|
206 |
+
std::vector<int64_t>& inputSplitSizes,
|
207 |
+
const AllToAllOptions& opts = AllToAllOptions()) override;
|
208 |
+
|
209 |
+
c10::intrusive_ptr<Work> alltoall(
|
210 |
+
std::vector<at::Tensor>& outputTensors,
|
211 |
+
std::vector<at::Tensor>& inputTensors,
|
212 |
+
const AllToAllOptions& opts = AllToAllOptions()) override;
|
213 |
+
|
214 |
+
c10::intrusive_ptr<Work> send(
|
215 |
+
std::vector<at::Tensor>& tensors,
|
216 |
+
int dstRank,
|
217 |
+
int tag) override;
|
218 |
+
|
219 |
+
c10::intrusive_ptr<Work> recv(
|
220 |
+
std::vector<at::Tensor>& tensors,
|
221 |
+
int srcRank,
|
222 |
+
int tag) override;
|
223 |
+
|
224 |
+
c10::intrusive_ptr<Work> recvAnysource(
|
225 |
+
std::vector<at::Tensor>& tensor,
|
226 |
+
int tag) override;
|
227 |
+
|
228 |
+
c10::intrusive_ptr<Work> barrier(
|
229 |
+
const BarrierOptions& opts = BarrierOptions()) override;
|
230 |
+
|
231 |
+
// Creating a new ProcessGroupMPI, will initialize MPI if not initialized
|
232 |
+
static c10::intrusive_ptr<ProcessGroupMPI> createProcessGroupMPI(
|
233 |
+
std::vector<int> ranks = {});
|
234 |
+
|
235 |
+
protected:
|
236 |
+
using WorkType =
|
237 |
+
std::tuple<std::unique_ptr<WorkEntry>, c10::intrusive_ptr<WorkMPI>>;
|
238 |
+
// Worker thread loop
|
239 |
+
void runLoop();
|
240 |
+
// Helper function that is called by the destructor
|
241 |
+
void destroy();
|
242 |
+
|
243 |
+
c10::intrusive_ptr<Work> enqueue(
|
244 |
+
std::unique_ptr<WorkEntry> entry,
|
245 |
+
const char* profilingTitle = nullptr,
|
246 |
+
const c10::optional<std::vector<at::Tensor>>& inputTensors =
|
247 |
+
c10::nullopt);
|
248 |
+
|
249 |
+
bool stop_;
|
250 |
+
|
251 |
+
std::mutex pgMutex_;
|
252 |
+
std::thread workerThread_;
|
253 |
+
|
254 |
+
std::deque<WorkType> queue_;
|
255 |
+
std::condition_variable queueProduceCV_;
|
256 |
+
std::condition_variable queueConsumeCV_;
|
257 |
+
|
258 |
+
// Global states
|
259 |
+
static void initMPIOnce();
|
260 |
+
static void mpiExit();
|
261 |
+
static c10::once_flag onceFlagInitMPI;
|
262 |
+
|
263 |
+
static std::mutex pgGlobalMutex_;
|
264 |
+
static int mpiThreadSupport_;
|
265 |
+
|
266 |
+
MPI_Comm pgComm_;
|
267 |
+
};
|
268 |
+
|
269 |
+
} // namespace c10d
|
270 |
+
|
271 |
+
#endif // USE_C10D_MPI
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/c10d/ProcessGroupUCC.hpp
ADDED
@@ -0,0 +1,353 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#ifdef USE_C10D_UCC
|
4 |
+
|
5 |
+
#include <torch/csrc/distributed/c10d/UCCUtils.hpp>
|
6 |
+
|
7 |
+
#include <exception>
|
8 |
+
#include <memory>
|
9 |
+
#include <mutex>
|
10 |
+
#include <queue>
|
11 |
+
#include <thread>
|
12 |
+
#include <vector>
|
13 |
+
|
14 |
+
#include <torch/csrc/distributed/c10d/Backend.hpp>
|
15 |
+
#include <torch/csrc/distributed/c10d/Store.hpp>
|
16 |
+
#include <torch/csrc/distributed/c10d/Types.hpp>
|
17 |
+
#include <torch/csrc/distributed/c10d/Utils.hpp>
|
18 |
+
#ifdef USE_CUDA
|
19 |
+
#include <ATen/cuda/CUDAEvent.h>
|
20 |
+
#include <c10/cuda/CUDAStream.h>
|
21 |
+
#endif
|
22 |
+
|
23 |
+
namespace c10d {
|
24 |
+
|
25 |
+
#define TORCH_UCC_DEVICE_NOT_SET -2
|
26 |
+
|
27 |
+
#ifdef USE_CUDA
|
28 |
+
#define SAVE_TENSORS(_TENSORS, _DATA) \
|
29 |
+
do { \
|
30 |
+
if ((_TENSORS)[0].device().is_cuda()) { \
|
31 |
+
for (const auto i : c10::irange((_TENSORS).size())) { \
|
32 |
+
c10::cuda::CUDACachingAllocator::recordStream( \
|
33 |
+
(_TENSORS)[i].storage().data_ptr(), (*stream)); \
|
34 |
+
} \
|
35 |
+
} else { \
|
36 |
+
(_DATA) = (_TENSORS); \
|
37 |
+
} \
|
38 |
+
} while (0)
|
39 |
+
|
40 |
+
#else
|
41 |
+
#define SAVE_TENSORS(_TENSORS, _DATA) (_DATA) = (_TENSORS);
|
42 |
+
#endif
|
43 |
+
|
44 |
+
constexpr const char* UCC_BACKEND_NAME = "ucc";
|
45 |
+
|
46 |
+
struct event_pool_t {
|
47 |
+
#ifdef USE_CUDA
|
48 |
+
std::queue<std::unique_ptr<at::cuda::CUDAEvent>> event_pool;
|
49 |
+
#endif
|
50 |
+
std::mutex event_pool_mutex;
|
51 |
+
};
|
52 |
+
|
53 |
+
class Comm;
|
54 |
+
|
55 |
+
// UCC does not support multiple CUDA devices per process.
|
56 |
+
class TORCH_API ProcessGroupUCC : public Backend {
|
57 |
+
private:
|
58 |
+
void set_timeout(ucc_coll_args_t& args);
|
59 |
+
|
60 |
+
public:
|
61 |
+
class WorkData {
|
62 |
+
public:
|
63 |
+
std::vector<at::Tensor> src;
|
64 |
+
std::vector<at::Tensor> dst;
|
65 |
+
std::vector<at::Tensor> flat;
|
66 |
+
WorkData() {}
|
67 |
+
virtual ~WorkData() = default;
|
68 |
+
};
|
69 |
+
class AlltoallWorkData : public WorkData {
|
70 |
+
public:
|
71 |
+
AlltoallWorkData(int size)
|
72 |
+
: send_lengths(size),
|
73 |
+
send_offsets(size),
|
74 |
+
recv_lengths(size),
|
75 |
+
recv_offsets(size) {}
|
76 |
+
std::vector<uint64_t> send_lengths;
|
77 |
+
std::vector<uint64_t> send_offsets;
|
78 |
+
std::vector<uint64_t> recv_lengths;
|
79 |
+
std::vector<uint64_t> recv_offsets;
|
80 |
+
};
|
81 |
+
|
82 |
+
class AllgathervWorkData : public WorkData {
|
83 |
+
public:
|
84 |
+
AllgathervWorkData(int size) : recv_lengths(size), recv_offsets(size) {}
|
85 |
+
std::vector<uint64_t> recv_lengths;
|
86 |
+
std::vector<uint64_t> recv_offsets;
|
87 |
+
};
|
88 |
+
|
89 |
+
class ScattervWorkData : public WorkData {
|
90 |
+
public:
|
91 |
+
ScattervWorkData(int size) : send_lengths(size), send_offsets(size) {}
|
92 |
+
std::vector<uint64_t> send_lengths;
|
93 |
+
std::vector<uint64_t> send_offsets;
|
94 |
+
};
|
95 |
+
|
96 |
+
class ProgressEntry {
|
97 |
+
friend class ProcessGroupUCC;
|
98 |
+
friend class Comm;
|
99 |
+
|
100 |
+
public:
|
101 |
+
ProgressEntry(CommBase* comm, ucc_coll_req_h request)
|
102 |
+
: status_(UCC_INPROGRESS), comm_(comm), request_(request) {}
|
103 |
+
// Finalizes UCC status or exception of collective request.
|
104 |
+
void finalize(std::exception_ptr eptr = nullptr);
|
105 |
+
ucc_status_t status_;
|
106 |
+
CommBase* comm_;
|
107 |
+
ucc_coll_req_h request_;
|
108 |
+
std::unique_ptr<WorkData> data;
|
109 |
+
c10::intrusive_ptr<c10::ivalue::Future> future_;
|
110 |
+
std::exception_ptr eptr_;
|
111 |
+
};
|
112 |
+
|
113 |
+
class WorkUCC : public Work {
|
114 |
+
friend class ProcessGroupUCC;
|
115 |
+
friend class Comm;
|
116 |
+
|
117 |
+
public:
|
118 |
+
WorkUCC(
|
119 |
+
OpType opType,
|
120 |
+
uint64_t seq,
|
121 |
+
const char* prof_title,
|
122 |
+
const c10::optional<std::vector<at::Tensor>>& inputs,
|
123 |
+
const c10::intrusive_ptr<ProcessGroupUCCLogger>& logger)
|
124 |
+
: Work(-1, opType, prof_title, inputs), logger_(logger), seq_(seq) {}
|
125 |
+
~WorkUCC();
|
126 |
+
void setException();
|
127 |
+
void setAndThrowException();
|
128 |
+
bool isCompleted() override;
|
129 |
+
bool isSuccess() const override;
|
130 |
+
bool wait(std::chrono::milliseconds timeout = kUnsetTimeout) override;
|
131 |
+
c10::intrusive_ptr<c10::ivalue::Future> getFuture() override;
|
132 |
+
std::vector<at::Tensor> result() override;
|
133 |
+
int sourceRank() const override;
|
134 |
+
#ifdef USE_CUDA
|
135 |
+
std::unique_ptr<at::cuda::CUDAEvent> fence = nullptr;
|
136 |
+
event_pool_t* ep = nullptr;
|
137 |
+
#endif
|
138 |
+
int sourceRank_;
|
139 |
+
|
140 |
+
protected:
|
141 |
+
std::shared_ptr<ProgressEntry> entry_;
|
142 |
+
c10::intrusive_ptr<ProcessGroupUCCLogger> logger_;
|
143 |
+
uint64_t seq_;
|
144 |
+
|
145 |
+
private:
|
146 |
+
// The future returned by getFuture.
|
147 |
+
c10::intrusive_ptr<at::ivalue::Future> future_;
|
148 |
+
// Store a reference to collective's outputs, used by result
|
149 |
+
std::shared_ptr<std::vector<at::Tensor>> outputs_;
|
150 |
+
};
|
151 |
+
|
152 |
+
explicit ProcessGroupUCC(
|
153 |
+
const c10::intrusive_ptr<Store>& store,
|
154 |
+
int rank = -1,
|
155 |
+
int size = -1,
|
156 |
+
std::chrono::duration<float> timeout = kBackendDefaultTimeout);
|
157 |
+
|
158 |
+
void initComm(c10::Device dev);
|
159 |
+
|
160 |
+
~ProcessGroupUCC() override;
|
161 |
+
|
162 |
+
const std::string getBackendName() const override {
|
163 |
+
return std::string(UCC_BACKEND_NAME);
|
164 |
+
}
|
165 |
+
|
166 |
+
#ifdef USE_CUDA
|
167 |
+
std::unique_ptr<at::cuda::CUDAEvent> getPooledEvent();
|
168 |
+
#endif
|
169 |
+
|
170 |
+
// Performs a health check by initializing dummy UCC & UCX communicators and
|
171 |
+
// then destroying them. This will help indicate and signal any
|
172 |
+
// UCC/UCX-related issues prior to the first collective. The actual
|
173 |
+
// initialization and subsequent destruction is ran on a separate thread and
|
174 |
+
// the main thread is signalled about timeouts/errors to report to the
|
175 |
+
// application.
|
176 |
+
void runHealthCheck();
|
177 |
+
|
178 |
+
template <typename PreProcess, typename PostProcess>
|
179 |
+
c10::intrusive_ptr<Work> collective_post(
|
180 |
+
OpType opType,
|
181 |
+
PreProcess preproc,
|
182 |
+
PostProcess postproc,
|
183 |
+
ucc_coll_args_t& coll,
|
184 |
+
std::unique_ptr<ProcessGroupUCC::WorkData> data,
|
185 |
+
c10::Device dev,
|
186 |
+
std::vector<at::Tensor>& inputTensors,
|
187 |
+
std::vector<at::Tensor>& outputTensors,
|
188 |
+
const char* prof_title);
|
189 |
+
|
190 |
+
c10::intrusive_ptr<Work> broadcast(
|
191 |
+
std::vector<at::Tensor>& data,
|
192 |
+
const BroadcastOptions& opts = BroadcastOptions()) override;
|
193 |
+
|
194 |
+
c10::intrusive_ptr<Work> allreduce(
|
195 |
+
std::vector<at::Tensor>& tensors,
|
196 |
+
const AllreduceOptions& opts = AllreduceOptions()) override;
|
197 |
+
|
198 |
+
c10::intrusive_ptr<Work> allreduce_coalesced(
|
199 |
+
std::vector<at::Tensor>& tensors,
|
200 |
+
const AllreduceCoalescedOptions& opts =
|
201 |
+
AllreduceCoalescedOptions()) override;
|
202 |
+
|
203 |
+
c10::intrusive_ptr<Work> reduce(
|
204 |
+
std::vector<at::Tensor>& tensors,
|
205 |
+
const ReduceOptions& opts = ReduceOptions()) override;
|
206 |
+
|
207 |
+
c10::intrusive_ptr<Work> allgather(
|
208 |
+
std::vector<std::vector<at::Tensor>>& outputTensors,
|
209 |
+
std::vector<at::Tensor>& inputTensors,
|
210 |
+
const AllgatherOptions& opts = AllgatherOptions()) override;
|
211 |
+
|
212 |
+
c10::intrusive_ptr<Work> _allgather_base(
|
213 |
+
at::Tensor& outputBuffer,
|
214 |
+
at::Tensor& inputBuffer,
|
215 |
+
const AllgatherOptions& opts = AllgatherOptions()) override;
|
216 |
+
|
217 |
+
c10::intrusive_ptr<Work> barrier(
|
218 |
+
const BarrierOptions& opts = BarrierOptions()) override;
|
219 |
+
|
220 |
+
c10::intrusive_ptr<Work> gather(
|
221 |
+
std::vector<std::vector<at::Tensor>>& outputTensors,
|
222 |
+
std::vector<at::Tensor>& inputTensors,
|
223 |
+
const GatherOptions& opts = GatherOptions()) override;
|
224 |
+
|
225 |
+
c10::intrusive_ptr<Work> scatter(
|
226 |
+
std::vector<at::Tensor>& outputTensors,
|
227 |
+
std::vector<std::vector<at::Tensor>>& inputTensors,
|
228 |
+
const ScatterOptions& opts = ScatterOptions()) override;
|
229 |
+
|
230 |
+
c10::intrusive_ptr<Work> reduce_scatter(
|
231 |
+
std::vector<at::Tensor>& outputTensors,
|
232 |
+
std::vector<std::vector<at::Tensor>>& inputTensors,
|
233 |
+
const ReduceScatterOptions& opts = ReduceScatterOptions()) override;
|
234 |
+
|
235 |
+
c10::intrusive_ptr<Work> alltoall_base(
|
236 |
+
at::Tensor& outputTensor,
|
237 |
+
at::Tensor& inputTensor,
|
238 |
+
std::vector<int64_t>& outputSplitSizes,
|
239 |
+
std::vector<int64_t>& inputSplitSizes,
|
240 |
+
const AllToAllOptions& opts = AllToAllOptions()) override;
|
241 |
+
|
242 |
+
c10::intrusive_ptr<Work> alltoall(
|
243 |
+
std::vector<at::Tensor>& outputTensors,
|
244 |
+
std::vector<at::Tensor>& inputTensors,
|
245 |
+
const AllToAllOptions& opts = AllToAllOptions()) override;
|
246 |
+
|
247 |
+
c10::intrusive_ptr<Work> send(
|
248 |
+
std::vector<at::Tensor>& tensors,
|
249 |
+
int dstRank,
|
250 |
+
int tag) override;
|
251 |
+
|
252 |
+
c10::intrusive_ptr<Work> recv(
|
253 |
+
std::vector<at::Tensor>& tensors,
|
254 |
+
int srcRank,
|
255 |
+
int tag) override;
|
256 |
+
|
257 |
+
// Counting for the sequential number of UCC collective_post call.
|
258 |
+
uint64_t seq_{0};
|
259 |
+
|
260 |
+
// Agrees on an initial sequence number for the whole group by having rank 0
|
261 |
+
// create it and broadcast it to other ranks using the store.
|
262 |
+
void setSequenceNumberForGroup() override;
|
263 |
+
|
264 |
+
// Retrieves the current sequence number for the whole group, which should be
|
265 |
+
// in sync. If the returned number is not consistent across the group, it
|
266 |
+
// may indicate that there is some sort of collective desynchronization.
|
267 |
+
uint64_t getSequenceNumberForGroup() override;
|
268 |
+
|
269 |
+
static c10::intrusive_ptr<Backend> createProcessGroupUCC(
|
270 |
+
const c10::intrusive_ptr<::c10d::Store>& store,
|
271 |
+
int rank,
|
272 |
+
int size,
|
273 |
+
const std::chrono::duration<float>& timeout);
|
274 |
+
|
275 |
+
protected:
|
276 |
+
const std::chrono::duration<float> timeout_;
|
277 |
+
std::shared_ptr<torch_ucc_oob_coll_info_t> oob;
|
278 |
+
std::shared_ptr<Comm> comm = {nullptr};
|
279 |
+
uint32_t comm_id;
|
280 |
+
ucc_team_h team{nullptr};
|
281 |
+
ucc_ee_h cuda_ee{nullptr};
|
282 |
+
ucc_ee_h cuda_ee_p2p[2]{nullptr, nullptr};
|
283 |
+
|
284 |
+
#ifdef USE_CUDA
|
285 |
+
std::unique_ptr<at::cuda::CUDAStream> stream = nullptr;
|
286 |
+
std::unique_ptr<at::cuda::CUDAStream> stream_p2p[2] = {nullptr, nullptr};
|
287 |
+
event_pool_t ep;
|
288 |
+
#endif
|
289 |
+
c10::intrusive_ptr<ProcessGroupUCCLogger> logger;
|
290 |
+
};
|
291 |
+
|
292 |
+
class Comm {
|
293 |
+
c10::intrusive_ptr<ProcessGroupUCCLogger> logger;
|
294 |
+
std::shared_ptr<torch_ucc_oob_coll_info_t> oob;
|
295 |
+
CommUCC ucc_comm;
|
296 |
+
std::mutex mutex;
|
297 |
+
std::thread progress_thread;
|
298 |
+
std::condition_variable queue_produce_cv;
|
299 |
+
std::condition_variable queue_consume_cv;
|
300 |
+
std::deque<std::shared_ptr<ProcessGroupUCC::ProgressEntry>> progress_queue;
|
301 |
+
bool stop_progress_loop;
|
302 |
+
bool collective_inprogress;
|
303 |
+
torch_ucc_phase_t finalize_phase;
|
304 |
+
|
305 |
+
public:
|
306 |
+
c10::DeviceIndex cuda_device_index;
|
307 |
+
Comm(
|
308 |
+
const c10::intrusive_ptr<ProcessGroupUCCLogger>& logger,
|
309 |
+
std::shared_ptr<torch_ucc_oob_coll_info_t> oob,
|
310 |
+
c10::Device dev,
|
311 |
+
bool is_health_check);
|
312 |
+
|
313 |
+
~Comm();
|
314 |
+
|
315 |
+
void ucc_create_team(
|
316 |
+
ucc_team_h& team,
|
317 |
+
std::shared_ptr<torch_ucc_oob_coll_info_t> oob);
|
318 |
+
|
319 |
+
void ucc_destroy_team(ucc_team_h& team);
|
320 |
+
|
321 |
+
c10::intrusive_ptr<Work> enqueue_p2p(
|
322 |
+
OpType opType,
|
323 |
+
ucc_coll_req_h request,
|
324 |
+
const char* prof_title);
|
325 |
+
|
326 |
+
#ifdef USE_CUDA
|
327 |
+
void enqueue_cuda_collective(
|
328 |
+
std::unique_ptr<ProcessGroupUCC::WorkData> data,
|
329 |
+
c10::intrusive_ptr<ProcessGroupUCC::WorkUCC> work,
|
330 |
+
ucc_coll_args_t& coll,
|
331 |
+
ucc_team_h team,
|
332 |
+
ucc_ee_h ee);
|
333 |
+
#endif
|
334 |
+
|
335 |
+
void enqueue_collective(
|
336 |
+
std::unique_ptr<ProcessGroupUCC::WorkData> data,
|
337 |
+
c10::intrusive_ptr<ProcessGroupUCC::WorkUCC> work,
|
338 |
+
ucc_coll_args_t& coll,
|
339 |
+
ucc_team_h team);
|
340 |
+
|
341 |
+
static std::shared_ptr<Comm> get_comm(
|
342 |
+
uint32_t& id,
|
343 |
+
c10::Device dev,
|
344 |
+
std::shared_ptr<torch_ucc_oob_coll_info_t> oob,
|
345 |
+
const c10::intrusive_ptr<ProcessGroupUCCLogger>& logger,
|
346 |
+
bool is_health_check = false);
|
347 |
+
|
348 |
+
void progress_loop();
|
349 |
+
};
|
350 |
+
|
351 |
+
} // namespace c10d
|
352 |
+
|
353 |
+
#endif // USE_C10D_UCC
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/c10d/TCPStoreBackend.hpp
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <chrono>
|
4 |
+
#include <thread>
|
5 |
+
#include <vector>
|
6 |
+
|
7 |
+
#include <torch/csrc/distributed/c10d/TCPStore.hpp>
|
8 |
+
#include <torch/csrc/distributed/c10d/socket.h>
|
9 |
+
|
10 |
+
#ifdef _WIN32
|
11 |
+
#include <io.h>
|
12 |
+
#include <winsock2.h>
|
13 |
+
#else
|
14 |
+
#include <poll.h>
|
15 |
+
#include <unistd.h>
|
16 |
+
#endif
|
17 |
+
|
18 |
+
namespace c10d {
|
19 |
+
namespace detail {
|
20 |
+
|
21 |
+
// Magic number for client validation.
|
22 |
+
static const uint32_t validationMagicNumber = 0x3C85F7CE;
|
23 |
+
|
24 |
+
enum class QueryType : uint8_t {
|
25 |
+
VALIDATE,
|
26 |
+
SET,
|
27 |
+
COMPARE_SET,
|
28 |
+
GET,
|
29 |
+
ADD,
|
30 |
+
CHECK,
|
31 |
+
WAIT,
|
32 |
+
GETNUMKEYS,
|
33 |
+
DELETE_KEY,
|
34 |
+
APPEND,
|
35 |
+
MULTI_GET,
|
36 |
+
MULTI_SET,
|
37 |
+
CANCEL_WAIT,
|
38 |
+
};
|
39 |
+
|
40 |
+
enum class CheckResponseType : uint8_t { READY, NOT_READY };
|
41 |
+
|
42 |
+
enum class WaitResponseType : uint8_t { STOP_WAITING, WAIT_CANCELED };
|
43 |
+
|
44 |
+
// Abstract base class to handle thread state for TCPStoreMasterDaemon.
|
45 |
+
// Contains the windows/unix implementations to signal a
|
46 |
+
// shutdown sequence for the thread
|
47 |
+
class BackgroundThread {
|
48 |
+
public:
|
49 |
+
explicit BackgroundThread();
|
50 |
+
|
51 |
+
virtual ~BackgroundThread() = 0;
|
52 |
+
virtual std::uint16_t port() const = 0;
|
53 |
+
|
54 |
+
void start();
|
55 |
+
bool stop_requested();
|
56 |
+
|
57 |
+
protected:
|
58 |
+
void dispose();
|
59 |
+
virtual void run() = 0;
|
60 |
+
virtual void stop() = 0;
|
61 |
+
bool is_running() {
|
62 |
+
return is_running_.load();
|
63 |
+
}
|
64 |
+
|
65 |
+
private:
|
66 |
+
std::atomic<bool> is_running_;
|
67 |
+
std::thread daemonThread_{};
|
68 |
+
};
|
69 |
+
|
70 |
+
std::unique_ptr<BackgroundThread> create_tcpstore_backend(
|
71 |
+
const TCPStoreOptions& opts);
|
72 |
+
std::unique_ptr<BackgroundThread> create_libuv_tcpstore_backend(
|
73 |
+
const TCPStoreOptions& opts);
|
74 |
+
bool is_libuv_tcpstore_backend_available();
|
75 |
+
|
76 |
+
} // namespace detail
|
77 |
+
} // namespace c10d
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/c10d/Types.hpp
ADDED
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/distributed/c10d/Store.hpp>
|
4 |
+
|
5 |
+
#include <chrono>
|
6 |
+
#include <cstdint>
|
7 |
+
|
8 |
+
#include <ATen/core/Tensor.h>
|
9 |
+
#include <ATen/core/ivalue.h>
|
10 |
+
|
11 |
+
#include <c10/macros/Macros.h>
|
12 |
+
#include <c10/util/intrusive_ptr.h>
|
13 |
+
|
14 |
+
namespace c10d {
|
15 |
+
|
16 |
+
// Base class for supplementary data potentially needed by ReduceOps
|
17 |
+
struct TORCH_API _SupplementBase : torch::CustomClassHolder {
|
18 |
+
~_SupplementBase() override = default;
|
19 |
+
};
|
20 |
+
|
21 |
+
// Supplementary data specific to NCCL PREMUL_SUM
|
22 |
+
// The point of use in ProcessGroupNCCL knows how to unpack it.
|
23 |
+
struct NCCLPreMulSumSupplement : _SupplementBase {
|
24 |
+
double double_factor{0.0};
|
25 |
+
at::Tensor tensor_factor;
|
26 |
+
NCCLPreMulSumSupplement(double f) : double_factor{f} {}
|
27 |
+
NCCLPreMulSumSupplement(at::Tensor t) : tensor_factor{std::move(t)} {
|
28 |
+
TORCH_CHECK_EQ(tensor_factor.numel(), 1);
|
29 |
+
}
|
30 |
+
};
|
31 |
+
|
32 |
+
// Other ReduceOps that need different supplementary data can also
|
33 |
+
// derive from _SupplementBase.
|
34 |
+
struct TORCH_API ReduceOp : torch::CustomClassHolder {
|
35 |
+
// note(crcrpar): RedOpType could be defined outside of `ReduceOp`
|
36 |
+
enum RedOpType : uint8_t {
|
37 |
+
SUM = 0,
|
38 |
+
AVG = 1,
|
39 |
+
PRODUCT = 2,
|
40 |
+
MIN = 3,
|
41 |
+
MAX = 4,
|
42 |
+
BAND = 5, // Bitwise AND
|
43 |
+
BOR = 6, // Bitwise OR
|
44 |
+
BXOR = 7, // Bitwise XOR
|
45 |
+
PREMUL_SUM = 8, // Multiply by a user-supplied constant before summing.
|
46 |
+
UNUSED = 9
|
47 |
+
};
|
48 |
+
|
49 |
+
ReduceOp() = default;
|
50 |
+
|
51 |
+
ReduceOp(RedOpType op) : op_(op) {
|
52 |
+
TORCH_INTERNAL_ASSERT(
|
53 |
+
op_ != PREMUL_SUM,
|
54 |
+
"Use `torch.distributed._make_nccl_premul_sum` to create an instance of ReduceOp with PREMUL_SUM");
|
55 |
+
}
|
56 |
+
|
57 |
+
ReduceOp(
|
58 |
+
RedOpType op,
|
59 |
+
c10::intrusive_ptr<_SupplementBase> optional_supplement) {
|
60 |
+
if (optional_supplement.get()) {
|
61 |
+
op_ = op;
|
62 |
+
} else {
|
63 |
+
supplement_ = optional_supplement;
|
64 |
+
}
|
65 |
+
}
|
66 |
+
|
67 |
+
// The heap resource supplement_, if it exists, is managed by a
|
68 |
+
// c10::intrusive_ptr, so constructors and operator= can be simple
|
69 |
+
ReduceOp(const ReduceOp& other)
|
70 |
+
: op_(other.op_), supplement_(other.supplement_) {}
|
71 |
+
|
72 |
+
const ReduceOp& operator=(const ReduceOp& other) {
|
73 |
+
op_ = other.op_;
|
74 |
+
supplement_ = other.supplement_;
|
75 |
+
return *this;
|
76 |
+
}
|
77 |
+
|
78 |
+
operator RedOpType() const {
|
79 |
+
return op_;
|
80 |
+
}
|
81 |
+
|
82 |
+
bool operator==(const std::uint8_t other) {
|
83 |
+
TORCH_INTERNAL_ASSERT(other < 9, "Invalid other op value");
|
84 |
+
return other == op_;
|
85 |
+
}
|
86 |
+
|
87 |
+
bool operator==(const ReduceOp::RedOpType other) {
|
88 |
+
return *this == static_cast<std::uint8_t>(other);
|
89 |
+
}
|
90 |
+
|
91 |
+
// todo(crcrpar): Handle `RedOpType::PREMUL_SUM` with its scaling factor.
|
92 |
+
bool operator==(const ReduceOp& other) {
|
93 |
+
return *this == other.op_;
|
94 |
+
}
|
95 |
+
|
96 |
+
RedOpType op_ = SUM;
|
97 |
+
// supplement_ is "type-erased" storage for optional supplementary
|
98 |
+
// data the op might need.
|
99 |
+
// The point of use will know the derived type supplement_ really is,
|
100 |
+
// and downcast its pointer to extract the data as the needed type(s).
|
101 |
+
// Right now, only PREMUL_SUM needs supplementary data, but the same
|
102 |
+
// mechanism could extend to support other nontrivial reduce ops with
|
103 |
+
// different supplementary payloads.
|
104 |
+
c10::intrusive_ptr<_SupplementBase> supplement_;
|
105 |
+
};
|
106 |
+
|
107 |
+
template <typename T>
|
108 |
+
ReduceOp makeNCCLPreMulSum(const T& factor) {
|
109 |
+
ReduceOp rop;
|
110 |
+
rop.op_ = ReduceOp::PREMUL_SUM;
|
111 |
+
rop.supplement_ = c10::make_intrusive<NCCLPreMulSumSupplement>(factor);
|
112 |
+
return rop;
|
113 |
+
}
|
114 |
+
|
115 |
+
constexpr auto kUnsetTimeout = std::chrono::milliseconds(-1);
|
116 |
+
|
117 |
+
struct BroadcastOptions {
|
118 |
+
int64_t rootRank = 0;
|
119 |
+
int64_t rootTensor = 0;
|
120 |
+
std::chrono::milliseconds timeout = kUnsetTimeout;
|
121 |
+
bool asyncOp = true;
|
122 |
+
};
|
123 |
+
|
124 |
+
struct AllreduceOptions {
|
125 |
+
ReduceOp reduceOp = ReduceOp::SUM;
|
126 |
+
std::chrono::milliseconds timeout = kUnsetTimeout;
|
127 |
+
c10::optional<at::Tensor> sparseIndices = c10::nullopt;
|
128 |
+
};
|
129 |
+
|
130 |
+
struct AllreduceCoalescedOptions : AllreduceOptions {};
|
131 |
+
|
132 |
+
struct ReduceOptions {
|
133 |
+
ReduceOp reduceOp = ReduceOp::SUM;
|
134 |
+
int64_t rootRank = 0;
|
135 |
+
int64_t rootTensor = 0;
|
136 |
+
std::chrono::milliseconds timeout = kUnsetTimeout;
|
137 |
+
};
|
138 |
+
|
139 |
+
struct AllgatherOptions {
|
140 |
+
std::chrono::milliseconds timeout = kUnsetTimeout;
|
141 |
+
bool asyncOp = true;
|
142 |
+
};
|
143 |
+
|
144 |
+
struct GatherOptions {
|
145 |
+
int64_t rootRank = 0;
|
146 |
+
std::chrono::milliseconds timeout = kUnsetTimeout;
|
147 |
+
};
|
148 |
+
|
149 |
+
struct ScatterOptions {
|
150 |
+
int64_t rootRank = 0;
|
151 |
+
std::chrono::milliseconds timeout = kUnsetTimeout;
|
152 |
+
bool asyncOp = true;
|
153 |
+
};
|
154 |
+
|
155 |
+
struct ReduceScatterOptions {
|
156 |
+
ReduceOp reduceOp = ReduceOp::SUM;
|
157 |
+
std::chrono::milliseconds timeout = kUnsetTimeout;
|
158 |
+
bool asyncOp = true;
|
159 |
+
};
|
160 |
+
|
161 |
+
struct AllToAllOptions {
|
162 |
+
std::chrono::milliseconds timeout = kUnsetTimeout;
|
163 |
+
};
|
164 |
+
|
165 |
+
struct BarrierOptions {
|
166 |
+
std::vector<int64_t> device_ids;
|
167 |
+
std::chrono::milliseconds timeout = kUnsetTimeout;
|
168 |
+
c10::optional<at::Device> device;
|
169 |
+
};
|
170 |
+
|
171 |
+
struct DistributedBackendOptions {
|
172 |
+
c10::intrusive_ptr<::c10d::Store> store;
|
173 |
+
int group_rank;
|
174 |
+
int group_size;
|
175 |
+
std::chrono::duration<float> timeout;
|
176 |
+
std::string group_id;
|
177 |
+
std::vector<int64_t> global_ranks_in_group;
|
178 |
+
};
|
179 |
+
|
180 |
+
} // namespace c10d
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/c10d/intra_node_comm.hpp
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/ATen.h>
|
4 |
+
#include <ATen/cuda/CUDAEvent.h>
|
5 |
+
#include <c10/cuda/CUDAStream.h>
|
6 |
+
#include <torch/csrc/distributed/c10d/Store.hpp>
|
7 |
+
#include <torch/csrc/distributed/c10d/Work.hpp>
|
8 |
+
|
9 |
+
namespace c10d {
|
10 |
+
namespace intra_node_comm {
|
11 |
+
|
12 |
+
constexpr size_t kMaxDevices = 8;
|
13 |
+
constexpr size_t kDefaultBufferSize = 10 * 1024 * 1024;
|
14 |
+
|
15 |
+
using NvlMesh = std::array<std::array<size_t, kMaxDevices>, kMaxDevices>;
|
16 |
+
using HybridCubeMesh = std::array<std::array<int, 4>, kMaxDevices>;
|
17 |
+
|
18 |
+
enum class Topology { UNKNOWN = 0, FULLY_CONNECTED = 1, HYBRID_CUBE_MESH = 2 };
|
19 |
+
|
20 |
+
enum class AllReduceAlgo { NONE = 0, ONE_SHOT = 1, TWO_SHOT = 2, HCM = 3 };
|
21 |
+
|
22 |
+
class TORCH_API IntraNodeComm : public c10::intrusive_ptr_target {
|
23 |
+
public:
|
24 |
+
IntraNodeComm(
|
25 |
+
Topology topology,
|
26 |
+
std::array<void*, kMaxDevices> p2pStates,
|
27 |
+
std::array<void*, kMaxDevices> buffers,
|
28 |
+
void* p2pStatesDev,
|
29 |
+
void* buffersDev,
|
30 |
+
void* topoInfo,
|
31 |
+
size_t rank,
|
32 |
+
size_t worldSize,
|
33 |
+
size_t bufferSize = kDefaultBufferSize);
|
34 |
+
|
35 |
+
~IntraNodeComm();
|
36 |
+
|
37 |
+
/**
|
38 |
+
* Rendezvous via a c10d::Store.
|
39 |
+
* This function may return nullptr if intra-node comm is not applicable.
|
40 |
+
* It guarantees all participants either succeeds or abort.
|
41 |
+
*/
|
42 |
+
static c10::intrusive_ptr<IntraNodeComm> rendezvous(
|
43 |
+
c10::intrusive_ptr<c10d::Store> store,
|
44 |
+
const std::string& prefix,
|
45 |
+
size_t rank,
|
46 |
+
size_t worldSize,
|
47 |
+
size_t bufferSize = kDefaultBufferSize);
|
48 |
+
|
49 |
+
/**
|
50 |
+
* Selects a AllReduceAlgo that we think will outperform nccl.
|
51 |
+
* Returns AllReduceAlgo::NONE if we don't think we can outperform nccl.
|
52 |
+
*/
|
53 |
+
AllReduceAlgo selectAllReduceAlgo(const at::Tensor& input);
|
54 |
+
|
55 |
+
at::Tensor allReduce(const at::Tensor& input, AllReduceAlgo algo);
|
56 |
+
|
57 |
+
private:
|
58 |
+
at::Tensor oneShotAllReduce(
|
59 |
+
const at::Tensor& input,
|
60 |
+
at::cuda::CUDAStream& stream);
|
61 |
+
|
62 |
+
at::Tensor twoShotAllReduce(
|
63 |
+
const at::Tensor& input,
|
64 |
+
at::cuda::CUDAStream& stream);
|
65 |
+
|
66 |
+
at::Tensor hybridCubeMeshAllReduce(
|
67 |
+
const at::Tensor& input,
|
68 |
+
at::cuda::CUDAStream& stream);
|
69 |
+
|
70 |
+
Topology topology_;
|
71 |
+
std::array<void*, kMaxDevices> p2pStates_;
|
72 |
+
std::array<void*, kMaxDevices> buffers_;
|
73 |
+
void* p2pStatesDev_;
|
74 |
+
void* buffersDev_;
|
75 |
+
void* topoInfo_;
|
76 |
+
size_t rank_;
|
77 |
+
size_t worldSize_;
|
78 |
+
size_t bufferSize_;
|
79 |
+
};
|
80 |
+
|
81 |
+
/**
|
82 |
+
* NOTE [IntraNodeComm Stream Semantics]
|
83 |
+
*
|
84 |
+
* ProcessGroupNCCL launches kernels differently from the conventional PyTorch
|
85 |
+
* CUDA semantics: it always launches collective kernels onto a dedicated
|
86 |
+
* communication stream. Therefore, it needs to:
|
87 |
+
*
|
88 |
+
* - Synchronize the calling stream and the comm stream.
|
89 |
+
* - Ensure the memory safety of the operands (via record_stream or stashing).
|
90 |
+
* - Synchronize the waiting stream with the comm stream.
|
91 |
+
*
|
92 |
+
* Unconditionally performing these tasks makes sense when we expect most of the
|
93 |
+
* communication to benefit from compute/comm overlap. However, IntraNodeComm
|
94 |
+
* primarily aims to optimize small, latency-sensitive, blocking communication,
|
95 |
+
* in which the overhead incurred by the above steps can be quite pronounced.
|
96 |
+
*
|
97 |
+
* Thus, IntraNodeComm follows the conventional PyTorch CUDA semantics and
|
98 |
+
* launches kernels onto the stream specified by the user. Although the user
|
99 |
+
* can perform neccessary synchronization via wait_stream, to provide a UX
|
100 |
+
* consistent to that of ProcessGroupNCCL, the neccessary stream
|
101 |
+
* synchronization can also be performed via IntraNodeWork::wait().
|
102 |
+
*/
|
103 |
+
class IntraNodeCommWork : public c10d::Work {
|
104 |
+
public:
|
105 |
+
IntraNodeCommWork() : c10d::Work() {
|
106 |
+
event_.record();
|
107 |
+
}
|
108 |
+
|
109 |
+
bool wait(std::chrono::milliseconds timeout = kNoTimeout) override {
|
110 |
+
event_.block(at::cuda::getCurrentCUDAStream());
|
111 |
+
return true;
|
112 |
+
}
|
113 |
+
|
114 |
+
private:
|
115 |
+
at::cuda::CUDAEvent event_;
|
116 |
+
};
|
117 |
+
|
118 |
+
TORCH_API int64_t getIntraNodeCommUsageCounter();
|
119 |
+
|
120 |
+
} // namespace intra_node_comm
|
121 |
+
} // namespace c10d
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/c10d/python_comm_hook.h
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/distributed/c10d/comm.hpp>
|
4 |
+
|
5 |
+
#include <ATen/ATen.h>
|
6 |
+
#include <ATen/core/ivalue.h>
|
7 |
+
#include <torch/csrc/distributed/c10d/ProcessGroup.hpp>
|
8 |
+
#include <torch/csrc/utils/pybind.h>
|
9 |
+
|
10 |
+
namespace c10d {
|
11 |
+
|
12 |
+
class TORCH_PYTHON_API PythonCommHook : public CommHookInterface {
|
13 |
+
public:
|
14 |
+
// Takes a state and a callable hook. The inputs are Python objects.
|
15 |
+
// The state is passed to the hook in runHook method, and it can be used to
|
16 |
+
// maintain and update any state information during the execution of the hook.
|
17 |
+
// The hook performs user-specified processing and returns a future indicating
|
18 |
+
// asychronous communication of gradients.
|
19 |
+
PythonCommHook(py::object state, py::object hook)
|
20 |
+
: state_(std::move(state)), hook_(std::move(hook)) {}
|
21 |
+
|
22 |
+
~PythonCommHook() override;
|
23 |
+
|
24 |
+
c10::intrusive_ptr<c10::ivalue::Future> runHook(GradBucket& bucket) override;
|
25 |
+
|
26 |
+
at::Tensor parseHookResult(const c10::IValue& result) override;
|
27 |
+
|
28 |
+
private:
|
29 |
+
// Only needed for stateful communication.
|
30 |
+
py::object state_;
|
31 |
+
py::object hook_;
|
32 |
+
};
|
33 |
+
|
34 |
+
} // namespace c10d
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/lazy/backend/backend_data.h
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/lazy/backend/backend_device.h>
|
4 |
+
#include <torch/csrc/lazy/core/shape.h>
|
5 |
+
#include <cstring>
|
6 |
+
|
7 |
+
namespace torch {
|
8 |
+
namespace lazy {
|
9 |
+
|
10 |
+
class TORCH_API BackendData {
|
11 |
+
public:
|
12 |
+
struct Info {
|
13 |
+
/**
|
14 |
+
* Used by Lazy Graph Executor to tag info on BackendData objs
|
15 |
+
* */
|
16 |
+
virtual ~Info() = default;
|
17 |
+
};
|
18 |
+
/**
|
19 |
+
* Represents (Tensor) data stored on a backend device
|
20 |
+
* in its native format.
|
21 |
+
* */
|
22 |
+
using Handle = int64_t;
|
23 |
+
|
24 |
+
BackendData(BackendDevice device, Shape shape)
|
25 |
+
: device_(std::move(device)), shape_(std::move(shape)) {}
|
26 |
+
|
27 |
+
virtual ~BackendData() = default;
|
28 |
+
|
29 |
+
const BackendDevice& device() const {
|
30 |
+
return device_;
|
31 |
+
}
|
32 |
+
|
33 |
+
const Shape& shape() const {
|
34 |
+
return shape_;
|
35 |
+
}
|
36 |
+
|
37 |
+
Info* info() const {
|
38 |
+
return info_.get();
|
39 |
+
}
|
40 |
+
|
41 |
+
std::shared_ptr<Info> SetInfo(std::shared_ptr<Info> info) {
|
42 |
+
std::swap(info, info_);
|
43 |
+
return info;
|
44 |
+
}
|
45 |
+
|
46 |
+
virtual Handle GetHandle() = 0;
|
47 |
+
|
48 |
+
virtual void Assign(const BackendData& data) = 0;
|
49 |
+
|
50 |
+
virtual bool HasValue() const = 0;
|
51 |
+
|
52 |
+
private:
|
53 |
+
BackendDevice device_;
|
54 |
+
Shape shape_;
|
55 |
+
std::shared_ptr<Info> info_;
|
56 |
+
};
|
57 |
+
|
58 |
+
using BackendDataPtr = std::shared_ptr<BackendData>;
|
59 |
+
|
60 |
+
} // namespace lazy
|
61 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/lazy/backend/backend_device.h
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <memory>
|
4 |
+
#include <ostream>
|
5 |
+
#include <string>
|
6 |
+
|
7 |
+
#include <ATen/Tensor.h>
|
8 |
+
#include <c10/macros/Export.h>
|
9 |
+
#include <c10/util/Deprecated.h>
|
10 |
+
#include <c10/util/Optional.h>
|
11 |
+
|
12 |
+
namespace c10 {
|
13 |
+
struct Device;
|
14 |
+
}
|
15 |
+
|
16 |
+
namespace torch {
|
17 |
+
namespace lazy {
|
18 |
+
|
19 |
+
// Backend should extend it and define their own supported hardware types.
|
20 |
+
struct TORCH_API BackendDeviceType {
|
21 |
+
int8_t type{(int8_t)at::kCPU};
|
22 |
+
// Note: previous default value was '0', which actually maps to at::kCPU, at
|
23 |
+
// least now it is explicit, we may want to make default/undefined semantics
|
24 |
+
// more clear though
|
25 |
+
BackendDeviceType() : type((int8_t)at::kCPU) {}
|
26 |
+
BackendDeviceType(int8_t type) : type(type) {}
|
27 |
+
|
28 |
+
virtual ~BackendDeviceType() = default;
|
29 |
+
virtual std::string toString() const {
|
30 |
+
return "Unknown";
|
31 |
+
}
|
32 |
+
};
|
33 |
+
|
34 |
+
class TORCH_API BackendDevice {
|
35 |
+
public:
|
36 |
+
// The default constructor will set both the device type and ordinal
|
37 |
+
// to backend specific defaults.
|
38 |
+
BackendDevice();
|
39 |
+
BackendDevice(std::shared_ptr<BackendDeviceType>&& type, int64_t ordinal);
|
40 |
+
|
41 |
+
int8_t type() const;
|
42 |
+
int64_t ordinal() const {
|
43 |
+
return ordinal_;
|
44 |
+
}
|
45 |
+
|
46 |
+
bool operator==(const BackendDevice& other) const {
|
47 |
+
return compare(other) == 0;
|
48 |
+
}
|
49 |
+
bool operator!=(const BackendDevice& other) const {
|
50 |
+
return compare(other) != 0;
|
51 |
+
}
|
52 |
+
bool operator<(const BackendDevice& rhs) const {
|
53 |
+
return compare(rhs) < 0;
|
54 |
+
}
|
55 |
+
|
56 |
+
std::string toString() const;
|
57 |
+
|
58 |
+
private:
|
59 |
+
int compare(const BackendDevice& rhs) const;
|
60 |
+
|
61 |
+
// Use shared_ptr instead of unique_ptr so that BackendDevice can be copied.
|
62 |
+
std::shared_ptr<BackendDeviceType> type_;
|
63 |
+
int64_t ordinal_;
|
64 |
+
};
|
65 |
+
|
66 |
+
TORCH_API std::ostream& operator<<(
|
67 |
+
std::ostream& os,
|
68 |
+
const BackendDevice& device);
|
69 |
+
|
70 |
+
// Helpers for converting a c10::Device to BackendDevice and vice versa.
|
71 |
+
TORCH_API BackendDevice atenDeviceToBackendDevice(const c10::Device& device);
|
72 |
+
TORCH_API c10::Device backendDeviceToAtenDevice(const BackendDevice& device);
|
73 |
+
|
74 |
+
// Tries to extract the backend device out of the lazy tensor. Returns nullopt
|
75 |
+
// if the input is not a lazy tensor.
|
76 |
+
TORCH_API c10::optional<BackendDevice> GetBackendDevice(
|
77 |
+
const at::ITensorListRef tensors);
|
78 |
+
TORCH_API c10::optional<BackendDevice> GetBackendDevice(
|
79 |
+
const at::TensorList tensors);
|
80 |
+
TORCH_API c10::optional<BackendDevice> GetBackendDevice(
|
81 |
+
const at::Tensor& tensor);
|
82 |
+
TORCH_API c10::optional<BackendDevice> GetBackendDevice(
|
83 |
+
const c10::optional<c10::Device>& device);
|
84 |
+
|
85 |
+
// For variadic template.
|
86 |
+
TORCH_API c10::optional<BackendDevice> GetBackendDevice();
|
87 |
+
|
88 |
+
template <typename T, typename... Args>
|
89 |
+
c10::optional<BackendDevice> GetBackendDevice(
|
90 |
+
const T& tensor,
|
91 |
+
const Args&... forward_tensors) {
|
92 |
+
auto optional_device = GetBackendDevice(tensor);
|
93 |
+
if (optional_device) {
|
94 |
+
return optional_device;
|
95 |
+
}
|
96 |
+
return GetBackendDevice(forward_tensors...);
|
97 |
+
}
|
98 |
+
|
99 |
+
} // namespace lazy
|
100 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/lazy/backend/backend_interface.h
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/Tensor.h>
|
4 |
+
#include <torch/csrc/lazy/backend/backend_data.h>
|
5 |
+
#include <torch/csrc/lazy/backend/backend_device.h>
|
6 |
+
#include <torch/csrc/lazy/backend/lowering_context.h>
|
7 |
+
#include <torch/csrc/lazy/core/lazy_graph_executor.h>
|
8 |
+
#include <torch/csrc/lazy/core/shape.h>
|
9 |
+
#include <torch/csrc/lazy/core/tensor.h>
|
10 |
+
#include <atomic>
|
11 |
+
|
12 |
+
namespace torch {
|
13 |
+
namespace lazy {
|
14 |
+
|
15 |
+
struct IrBuilder;
|
16 |
+
|
17 |
+
/**
|
18 |
+
* Work in progress- don't treat this as a stable interface yet!
|
19 |
+
*/
|
20 |
+
class TORCH_API BackendImplInterface {
|
21 |
+
public:
|
22 |
+
virtual ~BackendImplInterface() = default;
|
23 |
+
|
24 |
+
/**
|
25 |
+
* Initialization/Teardown
|
26 |
+
* */
|
27 |
+
// No-op by default. Allows custom functionality to be exposed through
|
28 |
+
// extension bindings.
|
29 |
+
virtual void InitializeAtenBindings() const {}
|
30 |
+
|
31 |
+
virtual void PrepareToExit() const = 0;
|
32 |
+
|
33 |
+
/**
|
34 |
+
* Configuration
|
35 |
+
* */
|
36 |
+
|
37 |
+
virtual void SetRngSeed(size_t seed) const = 0;
|
38 |
+
|
39 |
+
/**
|
40 |
+
* IR Tracing
|
41 |
+
* */
|
42 |
+
|
43 |
+
virtual const IrBuilder* GetIrBuilder() const = 0;
|
44 |
+
|
45 |
+
/**
|
46 |
+
* Data Transfer
|
47 |
+
* */
|
48 |
+
|
49 |
+
virtual BackendDataPtr MakeComputationDataFromTensor(
|
50 |
+
const at::Tensor& tensor,
|
51 |
+
const Shape& shape,
|
52 |
+
const BackendDevice& device) const = 0;
|
53 |
+
virtual BackendDataPtr MakeComputationDataFromScalar(
|
54 |
+
const at::Scalar& scalar,
|
55 |
+
const torch::lazy::BackendDevice& device) const = 0;
|
56 |
+
virtual BackendDataPtr CreateDataPlaceholder(
|
57 |
+
const BackendDevice& device,
|
58 |
+
const Shape& shape) const = 0;
|
59 |
+
|
60 |
+
// Gets backend data if the node is a device data node. Otherwise returns
|
61 |
+
// nullptr
|
62 |
+
virtual BackendDataPtr GetComputationDataFromNode(const Node*) const = 0;
|
63 |
+
|
64 |
+
virtual at::Tensor MakeTensorFromComputationData(
|
65 |
+
const BackendDataPtr data,
|
66 |
+
c10::optional<at::ScalarType> logical_scalar_type) const = 0;
|
67 |
+
|
68 |
+
/**
|
69 |
+
* Lowering, Compilation, Execution
|
70 |
+
* */
|
71 |
+
|
72 |
+
virtual std::unique_ptr<LoweringContext> CreateLoweringContext(
|
73 |
+
const std::string& name,
|
74 |
+
BackendDevice device,
|
75 |
+
c10::ArrayRef<const torch::lazy::Node*> post_order,
|
76 |
+
Util::EmissionMap emit_status) const = 0;
|
77 |
+
|
78 |
+
virtual std::unique_ptr<LoweringContext> CreateLoweringContext(
|
79 |
+
const std::string& name,
|
80 |
+
BackendDevice device) const = 0;
|
81 |
+
|
82 |
+
// TODO(whc) need to keep this?
|
83 |
+
virtual std::vector<std::string> GetCompilationDevices(
|
84 |
+
const std::string& device,
|
85 |
+
c10::ArrayRef<std::string> devices) const = 0;
|
86 |
+
|
87 |
+
virtual std::vector<ComputationPtr> Compile(
|
88 |
+
std::vector<ComputationPtr> instances) const = 0;
|
89 |
+
|
90 |
+
virtual std::vector<BackendDataPtr> ExecuteComputation(
|
91 |
+
torch::lazy::ComputationPtr computation,
|
92 |
+
c10::ArrayRef<BackendDataPtr> arguments,
|
93 |
+
const BackendDevice& device) const = 0;
|
94 |
+
|
95 |
+
/**
|
96 |
+
* Device Configuration
|
97 |
+
* */
|
98 |
+
|
99 |
+
// Set or get the default device type.
|
100 |
+
// For backends used with virtual c10::Devices, this configures what real
|
101 |
+
// device type the backend should use, and matters if the backend supports
|
102 |
+
// more than one type of real device.
|
103 |
+
virtual std::shared_ptr<BackendDeviceType> GetDefaultDeviceType() const = 0;
|
104 |
+
virtual void SetDefaultDeviceType(int8_t type) = 0;
|
105 |
+
|
106 |
+
// Set or get the default device ordinal.
|
107 |
+
// For backends that supports multi-device, this configures what the
|
108 |
+
// default device the backend should use.
|
109 |
+
virtual int64_t GetDefaultDeviceOrdinal() const = 0;
|
110 |
+
virtual void SetDefaultDeviceOrdinal(int64_t) = 0;
|
111 |
+
|
112 |
+
// Specify which aten device should be used for eager fallback
|
113 |
+
// may change depending on current 'Default' DeviceType
|
114 |
+
virtual at::DeviceType EagerFallbackDeviceType() const = 0;
|
115 |
+
|
116 |
+
// Query all available backend devices
|
117 |
+
virtual std::vector<BackendDevice> GetBackendDevices() const = 0;
|
118 |
+
|
119 |
+
virtual std::string CreateMetricReport() const {
|
120 |
+
return "";
|
121 |
+
}
|
122 |
+
|
123 |
+
// Map a particular c10:: device to a concrete backend device
|
124 |
+
// Note:: c10:: devices may be virtual or concrete. xla:: and lazy:: are
|
125 |
+
// virtual devices, meaning they may map to a gpu, tpu, etc. behind the
|
126 |
+
// scenes. In the future, non-virtual c10:: devices may also use lazy tensors
|
127 |
+
// through a mode, in which case these APIs should still work, but should be
|
128 |
+
// identity mappings.
|
129 |
+
virtual BackendDevice GetBackendDevice(c10::Device device) const = 0;
|
130 |
+
|
131 |
+
// TODO(whc)
|
132 |
+
// Additional APIs expected for supporting distributed training, to be
|
133 |
+
// designed
|
134 |
+
|
135 |
+
/**
|
136 |
+
* Debug/Metrics
|
137 |
+
* */
|
138 |
+
|
139 |
+
// virtual std::map<std::string, Metric> GetMetrics() const = 0;
|
140 |
+
|
141 |
+
// virtual MemoryInfo GetMemoryInfo(const std::string& device) = 0;
|
142 |
+
|
143 |
+
virtual std::string GetComputationBackendText(
|
144 |
+
const ComputationPtr computation) const = 0;
|
145 |
+
};
|
146 |
+
|
147 |
+
class TORCH_API BackendRegistrar {
|
148 |
+
public:
|
149 |
+
BackendRegistrar(const BackendImplInterface* backend_impl_interface);
|
150 |
+
};
|
151 |
+
|
152 |
+
TORCH_API bool hasBackend();
|
153 |
+
TORCH_API const BackendImplInterface* getBackend();
|
154 |
+
|
155 |
+
TORCH_API const IrBuilder* getIrBuilder();
|
156 |
+
|
157 |
+
} // namespace lazy
|
158 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/lazy/backend/lowering_context.h
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <memory>
|
4 |
+
#include <string>
|
5 |
+
#include <unordered_map>
|
6 |
+
#include <utility>
|
7 |
+
#include <vector>
|
8 |
+
|
9 |
+
#include <torch/csrc/lazy/backend/backend_data.h>
|
10 |
+
#include <torch/csrc/lazy/backend/backend_device.h>
|
11 |
+
#include <torch/csrc/lazy/core/ir.h>
|
12 |
+
#include <torch/csrc/lazy/core/ir_util.h>
|
13 |
+
|
14 |
+
namespace torch {
|
15 |
+
namespace lazy {
|
16 |
+
|
17 |
+
class TORCH_API Computation {
|
18 |
+
public:
|
19 |
+
virtual int parameters_size() const = 0;
|
20 |
+
|
21 |
+
virtual const std::vector<Shape>& parameter_shapes() const = 0;
|
22 |
+
|
23 |
+
virtual const std::vector<std::string>& parameter_names() const = 0;
|
24 |
+
|
25 |
+
virtual const Shape& result_shape() const = 0;
|
26 |
+
|
27 |
+
virtual const std::string to_string() const = 0;
|
28 |
+
|
29 |
+
virtual ~Computation() = default;
|
30 |
+
|
31 |
+
// Indicates whether this computation is being executed inside a mark step
|
32 |
+
// Assume false unless set otherwise
|
33 |
+
bool in_mark_step = false;
|
34 |
+
};
|
35 |
+
|
36 |
+
using ComputationPtr = std::shared_ptr<Computation>;
|
37 |
+
|
38 |
+
// Keeps track of the code generation state.
|
39 |
+
class TORCH_API LoweringContext {
|
40 |
+
public:
|
41 |
+
LoweringContext(const std::string& name, BackendDevice device);
|
42 |
+
LoweringContext(
|
43 |
+
const std::string& name,
|
44 |
+
BackendDevice device,
|
45 |
+
c10::ArrayRef<const torch::lazy::Node*> post_order,
|
46 |
+
Util::EmissionMap emit_status);
|
47 |
+
|
48 |
+
virtual ~LoweringContext() = default;
|
49 |
+
|
50 |
+
static std::unique_ptr<LoweringContext> Create(
|
51 |
+
const std::string& name,
|
52 |
+
BackendDevice device,
|
53 |
+
c10::ArrayRef<const torch::lazy::Node*> post_order,
|
54 |
+
Util::EmissionMap emit_status);
|
55 |
+
|
56 |
+
static std::unique_ptr<LoweringContext> Create(
|
57 |
+
const std::string& name,
|
58 |
+
BackendDevice device);
|
59 |
+
|
60 |
+
const BackendDevice& device() const {
|
61 |
+
return device_;
|
62 |
+
};
|
63 |
+
|
64 |
+
// Retrieves the vector holding all the tensors associated with the parameter
|
65 |
+
// instructions which have been created.
|
66 |
+
const std::vector<BackendDataPtr>& GetParametersData() const;
|
67 |
+
|
68 |
+
// Adds a new input/output alias.
|
69 |
+
virtual void SetUpAlias(
|
70 |
+
const std::vector<int64_t>& output_index,
|
71 |
+
int64_t param_number,
|
72 |
+
const std::vector<int64_t>& param_index,
|
73 |
+
bool must_alias = false) {
|
74 |
+
// Dummy default implementation to do nothing.
|
75 |
+
}
|
76 |
+
|
77 |
+
// Check if parameter shape matches result at index.
|
78 |
+
virtual bool CheckResultShape(
|
79 |
+
const BackendDataPtr& parameter_data,
|
80 |
+
size_t result_idx) {
|
81 |
+
// Dummy default implementation to do nothing.
|
82 |
+
return false;
|
83 |
+
}
|
84 |
+
|
85 |
+
// Adds the given output as a component of the result tuple and returns its
|
86 |
+
// assigned position within the tuple.
|
87 |
+
virtual size_t AddResult(const torch::lazy::Output& output) = 0;
|
88 |
+
|
89 |
+
// Associates the given output with the input parameter of the given index and
|
90 |
+
// shape. Only used for the operator-by-operator execution, mostly for
|
91 |
+
// debugging purposes.
|
92 |
+
virtual void AddParameter(
|
93 |
+
const torch::lazy::Output& output,
|
94 |
+
size_t index,
|
95 |
+
const Shape& shape,
|
96 |
+
const std::string& name) = 0;
|
97 |
+
|
98 |
+
// Build the computation capturing all the operations created with the
|
99 |
+
// embedded builder (returned by the builder() API).
|
100 |
+
virtual ComputationPtr Build() = 0;
|
101 |
+
|
102 |
+
size_t GetEmittedNodeCount() const {
|
103 |
+
return emit_status_.size();
|
104 |
+
}
|
105 |
+
|
106 |
+
protected:
|
107 |
+
BackendDevice device_;
|
108 |
+
std::vector<BackendDataPtr> parameters_;
|
109 |
+
std::vector<size_t> parameter_sequence_;
|
110 |
+
Util::EmissionMap emit_status_;
|
111 |
+
};
|
112 |
+
|
113 |
+
} // namespace lazy
|
114 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/lazy/core/cache.h
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/**
|
2 |
+
* Cache utils in this file is adapted from PyTorch/XLA
|
3 |
+
* https://github.com/pytorch/xla/blob/master/third_party/xla_client/cache.h
|
4 |
+
*/
|
5 |
+
|
6 |
+
#pragma once
|
7 |
+
|
8 |
+
#include <functional>
|
9 |
+
#include <list>
|
10 |
+
#include <memory>
|
11 |
+
#include <mutex>
|
12 |
+
#include <unordered_map>
|
13 |
+
#include <utility>
|
14 |
+
|
15 |
+
namespace torch {
|
16 |
+
namespace lazy {
|
17 |
+
|
18 |
+
// Generic key and object cache with LRU expiration policy. The objects of type
|
19 |
+
// T will be stored as std::shared_ptr<T> and taken and returned as such, by the
|
20 |
+
// cache API.
|
21 |
+
template <
|
22 |
+
typename K,
|
23 |
+
typename T,
|
24 |
+
typename H = std::hash<K>,
|
25 |
+
typename E = std::equal_to<K>>
|
26 |
+
class Cache {
|
27 |
+
public:
|
28 |
+
using TypePtr = std::shared_ptr<T>;
|
29 |
+
using Element = std::pair<K, TypePtr>;
|
30 |
+
|
31 |
+
explicit Cache(size_t max_size) : max_size_(max_size) {}
|
32 |
+
|
33 |
+
// Adds an object to the cache, unless it already exists. If the cache grows
|
34 |
+
// beyond the limit set during construction, the oldest used object will be
|
35 |
+
// removed from the cache.
|
36 |
+
TypePtr Add(K key, TypePtr object) {
|
37 |
+
if (!max_size_) {
|
38 |
+
return object;
|
39 |
+
}
|
40 |
+
std::lock_guard<std::mutex> slock(lock_);
|
41 |
+
element_list_.emplace_front(Element(std::move(key), std::move(object)));
|
42 |
+
auto it = element_list_.begin();
|
43 |
+
auto emplace_result = element_map_.emplace(&it->first, it);
|
44 |
+
if (!emplace_result.second) {
|
45 |
+
element_list_.erase(it);
|
46 |
+
DoLRU(emplace_result.first->second);
|
47 |
+
} else if (element_list_.size() > max_size_) {
|
48 |
+
Element* last = &element_list_.back();
|
49 |
+
element_map_.erase(&last->first);
|
50 |
+
element_list_.pop_back();
|
51 |
+
}
|
52 |
+
return emplace_result.first->second->second;
|
53 |
+
}
|
54 |
+
|
55 |
+
// Retrieves the existing object if it exists. If it does, its position in
|
56 |
+
// the LRU list gets moved to the head of the list.
|
57 |
+
// Returns nullptr if no object with the specified key is found within the
|
58 |
+
// cache.
|
59 |
+
TypePtr Get(const K& key) {
|
60 |
+
if (!max_size_) {
|
61 |
+
return nullptr;
|
62 |
+
}
|
63 |
+
std::lock_guard<std::mutex> slock(lock_);
|
64 |
+
auto it = element_map_.find(&key);
|
65 |
+
if (it == element_map_.end()) {
|
66 |
+
return nullptr;
|
67 |
+
}
|
68 |
+
DoLRU(it->second);
|
69 |
+
return it->second->second;
|
70 |
+
}
|
71 |
+
|
72 |
+
TypePtr GetLatest() {
|
73 |
+
std::lock_guard<std::mutex> g(lock_);
|
74 |
+
TORCH_CHECK(!element_list_.empty());
|
75 |
+
return element_list_.front().second;
|
76 |
+
}
|
77 |
+
|
78 |
+
bool Erase(const K& key) {
|
79 |
+
if (!max_size_) {
|
80 |
+
return false;
|
81 |
+
}
|
82 |
+
std::lock_guard<std::mutex> slock(lock_);
|
83 |
+
auto it = element_map_.find(&key);
|
84 |
+
if (it == element_map_.end()) {
|
85 |
+
return false;
|
86 |
+
}
|
87 |
+
auto lit = it->second;
|
88 |
+
element_map_.erase(it);
|
89 |
+
element_list_.erase(lit);
|
90 |
+
return true;
|
91 |
+
}
|
92 |
+
|
93 |
+
void Clear() {
|
94 |
+
if (!max_size_) {
|
95 |
+
return;
|
96 |
+
}
|
97 |
+
std::lock_guard<std::mutex> slock(lock_);
|
98 |
+
element_map_.clear();
|
99 |
+
element_list_.clear();
|
100 |
+
}
|
101 |
+
|
102 |
+
int Numel() const {
|
103 |
+
if (!max_size_) {
|
104 |
+
return 0;
|
105 |
+
}
|
106 |
+
std::lock_guard<std::mutex> g(lock_);
|
107 |
+
TORCH_CHECK(element_map_.size() == element_list_.size());
|
108 |
+
return element_map_.size();
|
109 |
+
}
|
110 |
+
|
111 |
+
private:
|
112 |
+
using ElementList = std::list<Element>;
|
113 |
+
|
114 |
+
struct Hasher {
|
115 |
+
size_t operator()(const K* key) const {
|
116 |
+
return hasher(*key);
|
117 |
+
}
|
118 |
+
|
119 |
+
H hasher;
|
120 |
+
};
|
121 |
+
|
122 |
+
struct Equaler {
|
123 |
+
bool operator()(const K* k1, const K* k2) const {
|
124 |
+
return equaler(*k1, *k2);
|
125 |
+
}
|
126 |
+
|
127 |
+
E equaler;
|
128 |
+
};
|
129 |
+
|
130 |
+
using ElementMap = std::
|
131 |
+
unordered_map<const K*, typename ElementList::iterator, Hasher, Equaler>;
|
132 |
+
|
133 |
+
void DoLRU(typename ElementList::iterator it) {
|
134 |
+
element_list_.splice(element_list_.begin(), element_list_, it);
|
135 |
+
}
|
136 |
+
|
137 |
+
mutable std::mutex lock_;
|
138 |
+
const size_t max_size_ = 0;
|
139 |
+
ElementList element_list_;
|
140 |
+
ElementMap element_map_;
|
141 |
+
};
|
142 |
+
|
143 |
+
} // namespace lazy
|
144 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/lazy/core/config.h
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#include <c10/macros/Export.h>
|
3 |
+
#include <c10/util/Flags.h>
|
4 |
+
|
5 |
+
C10_DECLARE_bool(torch_lazy_ir_debug);
|
6 |
+
C10_DECLARE_bool(torch_lazy_handle_special_scalars);
|
7 |
+
C10_DECLARE_bool(torch_lazy_all_numbers_special_scalars);
|
8 |
+
C10_DECLARE_bool(torch_lazy_param_aliasing);
|
9 |
+
C10_DECLARE_bool(torch_lazy_reuse_ir);
|
10 |
+
C10_DECLARE_bool(torch_lazy_use_thread_pool);
|
11 |
+
C10_DECLARE_bool(torch_lazy_enable_device_data_cache);
|
12 |
+
|
13 |
+
C10_DECLARE_int(torch_lazy_compilation_cache_size);
|
14 |
+
C10_DECLARE_int(torch_lazy_device_data_cache_size);
|
15 |
+
C10_DECLARE_int(torch_lazy_io_thread_pool_size);
|
16 |
+
C10_DECLARE_int(torch_lazy_metrics_samples);
|
17 |
+
C10_DECLARE_int(torch_lazy_trim_graph_check_frequency);
|
18 |
+
C10_DECLARE_int(torch_lazy_trim_graph_size);
|
19 |
+
|
20 |
+
C10_DECLARE_string(torch_lazy_metrics_percentiles);
|
21 |
+
|
22 |
+
C10_DECLARE_int(torch_lazy_shape_cache_size);
|
23 |
+
|
24 |
+
namespace torch {
|
25 |
+
namespace lazy {
|
26 |
+
TORCH_API std::string& getLTCForceFallback();
|
27 |
+
}
|
28 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/lazy/core/debug_util.h
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <string>
|
4 |
+
#include <vector>
|
5 |
+
|
6 |
+
#include <torch/csrc/lazy/core/tensor.h>
|
7 |
+
|
8 |
+
namespace torch {
|
9 |
+
namespace lazy {
|
10 |
+
|
11 |
+
TORCH_API std::function<std::vector<SourceLocation>()>&
|
12 |
+
GetPythonFramesFunction();
|
13 |
+
|
14 |
+
TORCH_API std::string GetFirstUserFrameInPython();
|
15 |
+
|
16 |
+
class TORCH_API DebugUtil {
|
17 |
+
public:
|
18 |
+
enum GraphFormat {
|
19 |
+
kText,
|
20 |
+
kDot,
|
21 |
+
kBackend,
|
22 |
+
};
|
23 |
+
|
24 |
+
static GraphFormat GetDefaultGraphFormat();
|
25 |
+
|
26 |
+
// Dumps the current Python frame and the IR Graph whose roots are the IR
|
27 |
+
// values held at the tensors. If indices is not nullptr, it selects the
|
28 |
+
// indices of the tensors whose graph will be emitted.
|
29 |
+
static std::string GetTensorsGraphInfo(
|
30 |
+
c10::ArrayRef<torch::lazy::LazyTensorPtr> tensors,
|
31 |
+
const std::vector<size_t>* indices,
|
32 |
+
GraphFormat format = GetDefaultGraphFormat());
|
33 |
+
|
34 |
+
// If the environment variable LTC_SAVE_TENSORS_FILE is set to the proper
|
35 |
+
// output path, an instance of the report returned by GetTensorsGraphInfo() is
|
36 |
+
// saved.
|
37 |
+
static void SaveTensorsGraphInfo(
|
38 |
+
const char* name,
|
39 |
+
c10::ArrayRef<torch::lazy::LazyTensorPtr> tensors,
|
40 |
+
const std::vector<size_t>* indices,
|
41 |
+
GraphFormat format = GetDefaultGraphFormat());
|
42 |
+
|
43 |
+
static bool ExperimentEnabled(const std::string& name);
|
44 |
+
};
|
45 |
+
|
46 |
+
} // namespace lazy
|
47 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/lazy/core/dynamic_ir.h
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/core/symbol.h>
|
4 |
+
|
5 |
+
#include <functional>
|
6 |
+
#include <memory>
|
7 |
+
#include <set>
|
8 |
+
#include <string>
|
9 |
+
#include <unordered_map>
|
10 |
+
#include <unordered_set>
|
11 |
+
#include <utility>
|
12 |
+
#include <vector>
|
13 |
+
|
14 |
+
#include <c10/core/ScalarType.h>
|
15 |
+
#include <c10/util/Flags.h>
|
16 |
+
#include <torch/csrc/lazy/core/hash.h>
|
17 |
+
#include <torch/csrc/lazy/core/ir.h>
|
18 |
+
#include <torch/csrc/lazy/core/ir_metadata.h>
|
19 |
+
#include <torch/csrc/lazy/ts_backend/ts_node.h>
|
20 |
+
|
21 |
+
namespace torch {
|
22 |
+
namespace lazy {
|
23 |
+
|
24 |
+
/**
|
25 |
+
* The goal of "dynamic" Nodes is to patch a hole in our tracing.
|
26 |
+
* Previously, if a user called `sizes` on a Tensor, it would leak out
|
27 |
+
* of our tracing system, as `sizes` returns a torch.Size or an int. To
|
28 |
+
* prevent this from happening, we introduce DimensionNode, a new type
|
29 |
+
* of Node that abstracts the operation of getting the dimensions of a
|
30 |
+
* Tensor.
|
31 |
+
*
|
32 |
+
* Consider the following example:
|
33 |
+
* ```
|
34 |
+
* numel = x.shape()[0] * x.shape()[1]
|
35 |
+
* ```
|
36 |
+
*
|
37 |
+
* Here, `x.shape()[i]` will be a SizeNode (subclass of DimensionNode),
|
38 |
+
* and the multiplication of the two SizeNodes will be represented by
|
39 |
+
* a SizeMul (also a subclass of DimensionNode). Through this, we can
|
40 |
+
* prevent `numel` from being represented as a Python int and thus
|
41 |
+
* burned into the Graph.
|
42 |
+
*/
|
43 |
+
|
44 |
+
class TORCH_API DimensionNode {
|
45 |
+
public:
|
46 |
+
virtual bool isSymbolic() const {
|
47 |
+
return false;
|
48 |
+
};
|
49 |
+
virtual int64_t getDynamicValue() const {
|
50 |
+
TORCH_CHECK(false, "NYI");
|
51 |
+
};
|
52 |
+
virtual int64_t getStaticValue() const {
|
53 |
+
TORCH_CHECK(false, "NYI");
|
54 |
+
};
|
55 |
+
virtual ~DimensionNode() = default;
|
56 |
+
};
|
57 |
+
|
58 |
+
} // namespace lazy
|
59 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/lazy/core/hash.h
ADDED
@@ -0,0 +1,238 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/**
|
2 |
+
* Hash utils in this file is adapted from PyTorch/XLA
|
3 |
+
* https://github.com/pytorch/xla/blob/e0e5f937a0ba8d904f9608137dc8c51ba439df2d/third_party/xla_client/util.h
|
4 |
+
*/
|
5 |
+
#pragma once
|
6 |
+
|
7 |
+
#include <ATen/Tensor.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <c10/util/int128.h>
|
10 |
+
#include <torch/csrc/Export.h>
|
11 |
+
#include <cstring>
|
12 |
+
#include <set>
|
13 |
+
#include <string>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
namespace torch {
|
17 |
+
namespace lazy {
|
18 |
+
|
19 |
+
using size_t = std::size_t;
|
20 |
+
|
21 |
+
class TORCH_API hash_t : public c10::uint128 {
|
22 |
+
public:
|
23 |
+
// Swich from typedef hash_t = uint128 to provide explicit casters
|
24 |
+
hash_t(int8_t val) : uint128(static_cast<uint32_t>(val)) {}
|
25 |
+
hash_t(int16_t val) : uint128(static_cast<uint32_t>(val)) {}
|
26 |
+
hash_t(int32_t val) : uint128(static_cast<uint32_t>(val)) {}
|
27 |
+
hash_t(int64_t val) : uint128(static_cast<uint64_t>(val)) {}
|
28 |
+
hash_t(uint32_t val) : uint128(val) {}
|
29 |
+
hash_t(uint64_t val) : uint128(val) {}
|
30 |
+
hash_t(uint128 val) : uint128(val) {}
|
31 |
+
hash_t(uint64_t top, uint64_t bottom) : uint128(top, bottom) {}
|
32 |
+
hash_t() : uint128() {}
|
33 |
+
};
|
34 |
+
|
35 |
+
// Std* functions use 64-bit hash
|
36 |
+
size_t TORCH_API StdDataHash(const void* data, size_t size);
|
37 |
+
|
38 |
+
size_t TORCH_API StdHashCombine(uintmax_t a, uintmax_t b);
|
39 |
+
|
40 |
+
// Other functions are all 128-bit
|
41 |
+
hash_t TORCH_API HashBlock(const void* data, size_t n, const hash_t& seed);
|
42 |
+
|
43 |
+
hash_t TORCH_API DataHash(const void* data, size_t size);
|
44 |
+
|
45 |
+
hash_t TORCH_API HashCombine(const hash_t& a, const hash_t& b);
|
46 |
+
|
47 |
+
size_t TORCH_API HashReduce(const hash_t& a);
|
48 |
+
|
49 |
+
// Returns a string representation of a hash
|
50 |
+
std::string TORCH_API HashToString(const hash_t& a);
|
51 |
+
|
52 |
+
struct HashReducer {
|
53 |
+
size_t operator()(const hash_t& value) const {
|
54 |
+
return HashReduce(value);
|
55 |
+
}
|
56 |
+
};
|
57 |
+
|
58 |
+
static inline hash_t StringHash(const char* data) {
|
59 |
+
return DataHash(data, std::strlen(data));
|
60 |
+
}
|
61 |
+
|
62 |
+
// Automatic templated implementation for 'arithmetic' types
|
63 |
+
template <
|
64 |
+
typename T,
|
65 |
+
typename std::enable_if<std::is_arithmetic<T>::value>::type* = nullptr>
|
66 |
+
hash_t Hash(const T& value) {
|
67 |
+
return DataHash(&value, sizeof(value));
|
68 |
+
}
|
69 |
+
|
70 |
+
// added because on macos builds the vector<bool> specialization
|
71 |
+
// breaks falling through to the templated arithmetic types above
|
72 |
+
hash_t TORCH_API Hash(const std::vector<bool>& value);
|
73 |
+
|
74 |
+
// Specialiazed implementations for proprietary types
|
75 |
+
static inline hash_t Hash(const c10::ScalarType& value) {
|
76 |
+
return DataHash(&value, sizeof(value));
|
77 |
+
}
|
78 |
+
|
79 |
+
static inline hash_t Hash(const c10::MemoryFormat& value) {
|
80 |
+
return DataHash(&value, sizeof(value));
|
81 |
+
}
|
82 |
+
|
83 |
+
static inline hash_t Hash(const c10::DeviceType& value) {
|
84 |
+
return DataHash(&value, sizeof(value));
|
85 |
+
}
|
86 |
+
|
87 |
+
static inline hash_t Hash(const c10::Device& value) {
|
88 |
+
return HashCombine(Hash(value.type()), Hash(value.index()));
|
89 |
+
}
|
90 |
+
|
91 |
+
static inline hash_t Hash(const c10::Layout& value) {
|
92 |
+
return DataHash(&value, sizeof(value));
|
93 |
+
}
|
94 |
+
|
95 |
+
static inline hash_t Hash(const c10::Scalar& value) {
|
96 |
+
switch (value.type()) {
|
97 |
+
case c10::ScalarType::ComplexDouble:
|
98 |
+
return Hash(value.toComplexDouble());
|
99 |
+
case c10::ScalarType::Double:
|
100 |
+
return Hash(value.toDouble());
|
101 |
+
case c10::ScalarType::Long:
|
102 |
+
return Hash(value.toLong());
|
103 |
+
case c10::ScalarType::Bool:
|
104 |
+
return Hash(value.toBool());
|
105 |
+
default:
|
106 |
+
TORCH_INTERNAL_ASSERT(false, "Unknown scalar type.", value.type());
|
107 |
+
}
|
108 |
+
}
|
109 |
+
|
110 |
+
static inline hash_t TensorHash(const at::Tensor& tensor) {
|
111 |
+
at::Tensor ctensor = tensor.contiguous();
|
112 |
+
int64_t size = ctensor.numel() * ctensor.element_size();
|
113 |
+
switch (ctensor.scalar_type()) {
|
114 |
+
case at::ScalarType::Bool:
|
115 |
+
return DataHash(ctensor.const_data_ptr<bool>(), size);
|
116 |
+
case at::ScalarType::Byte:
|
117 |
+
return DataHash(ctensor.const_data_ptr<uint8_t>(), size);
|
118 |
+
case at::ScalarType::Char:
|
119 |
+
return DataHash(ctensor.const_data_ptr<int8_t>(), size);
|
120 |
+
case at::ScalarType::Short:
|
121 |
+
return DataHash(ctensor.const_data_ptr<int16_t>(), size);
|
122 |
+
case at::ScalarType::Int:
|
123 |
+
return DataHash(ctensor.const_data_ptr<int32_t>(), size);
|
124 |
+
case at::ScalarType::Long:
|
125 |
+
return DataHash(ctensor.const_data_ptr<int64_t>(), size);
|
126 |
+
case at::ScalarType::Float:
|
127 |
+
return DataHash(ctensor.const_data_ptr<float>(), size);
|
128 |
+
case at::ScalarType::Double:
|
129 |
+
return DataHash(ctensor.const_data_ptr<double>(), size);
|
130 |
+
case at::ScalarType::BFloat16:
|
131 |
+
return DataHash(ctensor.const_data_ptr<at::BFloat16>(), size);
|
132 |
+
case at::ScalarType::Half:
|
133 |
+
return DataHash(ctensor.const_data_ptr<at::Half>(), size);
|
134 |
+
case at::ScalarType::ComplexFloat:
|
135 |
+
return DataHash(ctensor.const_data_ptr<c10::complex<float>>(), size);
|
136 |
+
case at::ScalarType::ComplexDouble:
|
137 |
+
return DataHash(ctensor.const_data_ptr<c10::complex<double>>(), size);
|
138 |
+
default:
|
139 |
+
TORCH_INTERNAL_ASSERT(
|
140 |
+
false, "Unsupported scalar type:", ctensor.scalar_type());
|
141 |
+
}
|
142 |
+
}
|
143 |
+
|
144 |
+
static inline hash_t Hash(const std::string& value) {
|
145 |
+
return DataHash(value.data(), value.size());
|
146 |
+
}
|
147 |
+
|
148 |
+
static inline hash_t Hash(const c10::string_view& value) {
|
149 |
+
return DataHash(value.data(), value.size());
|
150 |
+
}
|
151 |
+
|
152 |
+
static inline hash_t Hash(const at::Generator& value) {
|
153 |
+
return TensorHash(value.get_state());
|
154 |
+
}
|
155 |
+
|
156 |
+
// Taken from glibc's implementation of hashing optionals,
|
157 |
+
// we want to include a contribution to the hash to distinguish
|
158 |
+
// cases where one or another option was null, but we hope it doesn't
|
159 |
+
// collide with an actually scalar value.
|
160 |
+
//
|
161 |
+
// Use an arbitrary randomly-selected 64-bit integer rather than a
|
162 |
+
// small constant that we then hash at runtime so we don't have to
|
163 |
+
// repeatedly hash a constant at runtime.
|
164 |
+
static const int64_t kNullOpt = 0x8655d738f3678dda;
|
165 |
+
|
166 |
+
// Hashing for c10::optional types contributes to hash
|
167 |
+
// for optionals with null value, important to distinguish
|
168 |
+
// between <nullopt, non-nullopt> and <non-nullopt, nullopt> cases
|
169 |
+
template <typename T>
|
170 |
+
hash_t Hash(const c10::optional<T>& value) {
|
171 |
+
if (value.has_value()) {
|
172 |
+
return Hash(value.value());
|
173 |
+
} else {
|
174 |
+
return kNullOpt;
|
175 |
+
}
|
176 |
+
}
|
177 |
+
|
178 |
+
// Hashing of containers
|
179 |
+
// Forward declare to allow hashes of vectors of vectors to work.
|
180 |
+
template <typename T>
|
181 |
+
hash_t ContainerHash(const T& values);
|
182 |
+
|
183 |
+
template <typename T>
|
184 |
+
hash_t Hash(const std::vector<T>& values) {
|
185 |
+
return ContainerHash(values);
|
186 |
+
}
|
187 |
+
|
188 |
+
// Need a special case for optional<container>?
|
189 |
+
template <typename T>
|
190 |
+
hash_t Hash(const c10::optional<std::vector<T>>& value) {
|
191 |
+
if (value.has_value()) {
|
192 |
+
return ContainerHash(value.value());
|
193 |
+
} else {
|
194 |
+
return kNullOpt;
|
195 |
+
}
|
196 |
+
}
|
197 |
+
|
198 |
+
template <typename T>
|
199 |
+
hash_t Hash(const std::set<T>& values) {
|
200 |
+
return ContainerHash(values);
|
201 |
+
}
|
202 |
+
|
203 |
+
template <typename T, typename S>
|
204 |
+
hash_t Hash(const std::pair<T, S>& values) {
|
205 |
+
return HashCombine(Hash(values.first), Hash(values.second));
|
206 |
+
}
|
207 |
+
|
208 |
+
static inline hash_t Hash(const hash_t& value) {
|
209 |
+
return value;
|
210 |
+
}
|
211 |
+
|
212 |
+
template <typename T>
|
213 |
+
hash_t Hash(c10::ArrayRef<T> values) {
|
214 |
+
return ContainerHash(values);
|
215 |
+
}
|
216 |
+
|
217 |
+
template <typename T>
|
218 |
+
hash_t ContainerHash(const T& values) {
|
219 |
+
hash_t h(static_cast<uint64_t>(0x85ebca77c2b2ae63));
|
220 |
+
for (const auto& value : values) {
|
221 |
+
h = HashCombine(h, Hash(value));
|
222 |
+
}
|
223 |
+
return h;
|
224 |
+
}
|
225 |
+
|
226 |
+
// Varargs hashing
|
227 |
+
template <typename T = void>
|
228 |
+
hash_t MHash() {
|
229 |
+
return hash_t(static_cast<uint64_t>(0x165667b19e3779f9));
|
230 |
+
}
|
231 |
+
|
232 |
+
template <typename T, typename... Targs>
|
233 |
+
hash_t MHash(T value, Targs... Fargs) {
|
234 |
+
return HashCombine(Hash(value), MHash(Fargs...));
|
235 |
+
}
|
236 |
+
|
237 |
+
} // namespace lazy
|
238 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/lazy/core/helpers.h
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/core/Scalar.h>
|
4 |
+
#include <c10/util/BFloat16.h>
|
5 |
+
#include <c10/util/Half.h>
|
6 |
+
#include <c10/util/Optional.h>
|
7 |
+
#include <torch/csrc/lazy/core/permutation_util.h>
|
8 |
+
#include <torch/csrc/lazy/core/shape.h>
|
9 |
+
#include <torch/csrc/lazy/core/util.h>
|
10 |
+
|
11 |
+
#include <complex>
|
12 |
+
#include <functional>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
// TODO: Consolidate this file with util.h
|
17 |
+
|
18 |
+
namespace torch {
|
19 |
+
namespace lazy {
|
20 |
+
|
21 |
+
// Converts an iterable container to a vector of int64's.
|
22 |
+
template <typename S>
|
23 |
+
static std::vector<int64_t> ToI64Vector(const S& input) {
|
24 |
+
return ToVector<int64_t>(input);
|
25 |
+
}
|
26 |
+
|
27 |
+
// Creates a set of dimension by dropping the drop_dims ones.
|
28 |
+
TORCH_API std::vector<int64_t> DropDimensions(
|
29 |
+
c10::ArrayRef<int64_t> sizes,
|
30 |
+
c10::ArrayRef<int64_t> drop_dims);
|
31 |
+
|
32 |
+
// Get the canonical dimension index in the [0, rank) interval. Negative
|
33 |
+
// indices are interpreted as follows: -1 is rank-1, -2 is rank-2 etc.
|
34 |
+
TORCH_API int64_t GetCanonicalDimensionIndex(int64_t dim, int64_t rank);
|
35 |
+
|
36 |
+
// Same as above, for multiple dimensions.
|
37 |
+
TORCH_API std::vector<int64_t> GetCanonicalDimensionIndices(
|
38 |
+
c10::ArrayRef<int64_t> dimensions,
|
39 |
+
int64_t rank);
|
40 |
+
|
41 |
+
// Returns the canonical position in the dim dimension, handling negative
|
42 |
+
// values for the position.
|
43 |
+
TORCH_API int64_t GetCanonicalPosition(
|
44 |
+
c10::ArrayRef<int64_t> dimensions,
|
45 |
+
int64_t dim,
|
46 |
+
int64_t pos);
|
47 |
+
|
48 |
+
// Creates a transposition from the given input and dimensions.
|
49 |
+
TORCH_API std::vector<int64_t> MakeTransposePermutation(
|
50 |
+
int64_t dim0,
|
51 |
+
int64_t dim1,
|
52 |
+
int64_t rank);
|
53 |
+
|
54 |
+
// Calculates the protomoted shape to which the input shapes should be
|
55 |
+
// broadcasted for an elementwise operation. The size of the common dimensions
|
56 |
+
// (2,3,4 for shape1, and 0,1,2 for shape2) must either match, or either one
|
57 |
+
// of the two be 1.
|
58 |
+
// Example:
|
59 |
+
// shape1 = [9, 7, 6, 1, 2]
|
60 |
+
// shape2 = [6, 5, 2]
|
61 |
+
// result_shape = [9, 7, 6, 5, 2]
|
62 |
+
TORCH_API std::vector<int64_t> GetPromotedShape(
|
63 |
+
c10::ArrayRef<int64_t> shape1_dims,
|
64 |
+
c10::ArrayRef<int64_t> shape2_dims);
|
65 |
+
|
66 |
+
TORCH_API Shape
|
67 |
+
GetPromotedBinaryOpShape(const Shape& shape1, const Shape& shape2);
|
68 |
+
|
69 |
+
TORCH_API std::vector<std::string> StrSplit(c10::string_view text, char delim);
|
70 |
+
|
71 |
+
} // namespace lazy
|
72 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/lazy/core/internal_ops/ltc_ops.h
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/lazy/core/ir.h>
|
4 |
+
|
5 |
+
#include <c10/util/CallOnce.h>
|
6 |
+
|
7 |
+
#include <mutex>
|
8 |
+
#include <string>
|
9 |
+
|
10 |
+
namespace torch {
|
11 |
+
namespace lazy {
|
12 |
+
|
13 |
+
class TORCH_API OpKindWrapper {
|
14 |
+
public:
|
15 |
+
explicit OpKindWrapper(const char* name) : name_(name) {}
|
16 |
+
|
17 |
+
const OpKind& operator*() const {
|
18 |
+
return get();
|
19 |
+
}
|
20 |
+
|
21 |
+
operator OpKind() const {
|
22 |
+
return get();
|
23 |
+
}
|
24 |
+
|
25 |
+
private:
|
26 |
+
const OpKind& get() const {
|
27 |
+
c10::call_once(once_, [this]() { op_kind_ = OpKind::Get(name_); });
|
28 |
+
return op_kind_;
|
29 |
+
}
|
30 |
+
|
31 |
+
const char* name_;
|
32 |
+
mutable OpKind op_kind_;
|
33 |
+
mutable c10::once_flag once_;
|
34 |
+
};
|
35 |
+
|
36 |
+
const OpKindWrapper ltc_all_to_all("lazy_tensors::all_to_all");
|
37 |
+
const OpKindWrapper ltc_cast("lazy_tensors::cast");
|
38 |
+
const OpKindWrapper ltc_collective_permute("lazy_tensors::collective_permute");
|
39 |
+
const OpKindWrapper ltc_cross_replica_sum("lazy_tensors::cross_replica_sum");
|
40 |
+
const OpKindWrapper ltc_device_data("lazy_tensors::device_data");
|
41 |
+
const OpKindWrapper ltc_get_dimensions_size(
|
42 |
+
"lazy_tensors::ltc_get_dimensions_size");
|
43 |
+
const OpKindWrapper ltc_moving_average("lazy_tensors::moving_average");
|
44 |
+
const OpKindWrapper ltc_nms("lazy_tensors::nms");
|
45 |
+
const OpKindWrapper ltc_not_supported("lazy_tensors::not_supported");
|
46 |
+
const OpKindWrapper ltc_replication_pad("lazy_tensors::replication_pad");
|
47 |
+
const OpKindWrapper ltc_replication_pad_backward(
|
48 |
+
"lazy_tensors::replication_pad_backward");
|
49 |
+
const OpKindWrapper ltc_tensor_data("lazy_tensors::tensor_data");
|
50 |
+
|
51 |
+
} // namespace lazy
|
52 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/lazy/core/ir.h
ADDED
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/core/symbol.h>
|
4 |
+
|
5 |
+
#include <functional>
|
6 |
+
#include <memory>
|
7 |
+
#include <set>
|
8 |
+
#include <string>
|
9 |
+
#include <unordered_map>
|
10 |
+
#include <unordered_set>
|
11 |
+
#include <utility>
|
12 |
+
#include <vector>
|
13 |
+
|
14 |
+
#include <c10/core/ScalarType.h>
|
15 |
+
#include <c10/util/ArrayRef.h>
|
16 |
+
#include <c10/util/Flags.h>
|
17 |
+
#include <torch/csrc/lazy/core/hash.h>
|
18 |
+
#include <torch/csrc/lazy/core/ir_metadata.h>
|
19 |
+
#include <torch/csrc/lazy/core/shape.h>
|
20 |
+
|
21 |
+
C10_DECLARE_bool(ltc_enable_dynamic_shapes);
|
22 |
+
|
23 |
+
namespace torch {
|
24 |
+
namespace lazy {
|
25 |
+
|
26 |
+
static const hash_t kHashSeed(static_cast<uint32_t>(0x5a2d296e9));
|
27 |
+
|
28 |
+
class Node;
|
29 |
+
struct Output;
|
30 |
+
struct Value;
|
31 |
+
|
32 |
+
using NodePtr = std::shared_ptr<Node>;
|
33 |
+
|
34 |
+
// The Kind of operation a Node can be associated to.
|
35 |
+
struct TORCH_API OpKind {
|
36 |
+
OpKind() = default;
|
37 |
+
explicit OpKind(c10::Symbol op) : op(op) {}
|
38 |
+
|
39 |
+
bool operator==(const OpKind& rhs) const {
|
40 |
+
return op == rhs.op;
|
41 |
+
}
|
42 |
+
bool operator!=(const OpKind& rhs) const {
|
43 |
+
return !operator==(rhs);
|
44 |
+
}
|
45 |
+
bool operator<(const OpKind& rhs) const {
|
46 |
+
return c10::unique_t(op) < c10::unique_t(rhs.op);
|
47 |
+
}
|
48 |
+
|
49 |
+
hash_t hash() const;
|
50 |
+
|
51 |
+
std::string ToString() const {
|
52 |
+
return op.toQualString();
|
53 |
+
}
|
54 |
+
|
55 |
+
// Retrieves an existing operation object, or creates a new one. Operations
|
56 |
+
// that are specific to lazy tensors, should live within the 'lazy_tensors::'
|
57 |
+
// namespace.
|
58 |
+
static OpKind Get(const std::string& name);
|
59 |
+
|
60 |
+
c10::Symbol op;
|
61 |
+
};
|
62 |
+
|
63 |
+
inline std::ostream& operator<<(std::ostream& stream, const OpKind& op) {
|
64 |
+
stream << op.ToString();
|
65 |
+
return stream;
|
66 |
+
}
|
67 |
+
|
68 |
+
using OpList = c10::ArrayRef<Value>;
|
69 |
+
|
70 |
+
hash_t OperandHashes(
|
71 |
+
const OpList& operands,
|
72 |
+
const hash_t& seed,
|
73 |
+
bool bakeInSizes);
|
74 |
+
// A node in the graph. Nodes for operations which require extra data to be
|
75 |
+
// stored for lowering should inherit from this class and add an operation
|
76 |
+
// specific member there. For example, a constant might create a new
|
77 |
+
// NodeConstant class (inheriting from Node) with an extra lazy_tensors::Literal
|
78 |
+
// field, or a tensor value might create a new NodeTensor with a computation
|
79 |
+
// client data handle in it.
|
80 |
+
class TORCH_API Node {
|
81 |
+
public:
|
82 |
+
static bool enableDynamicShape();
|
83 |
+
|
84 |
+
// Creates a new node with the given op name. The op is a unique identifier
|
85 |
+
// for the operation. The num_outputs tells how many outputs a given operation
|
86 |
+
// generates.
|
87 |
+
//
|
88 |
+
// None leaf node's node_hash does not contains shape information always.
|
89 |
+
// So we pass in the hash value rather than a function.
|
90 |
+
Node(OpKind op, size_t num_outputs);
|
91 |
+
|
92 |
+
// Construct node with operands and shapes
|
93 |
+
Node(
|
94 |
+
OpKind op,
|
95 |
+
OpList operands,
|
96 |
+
std::vector<Shape>&& shapes,
|
97 |
+
size_t num_outputs = 1);
|
98 |
+
|
99 |
+
// Construct node with operands and shape generated from a function
|
100 |
+
Node(
|
101 |
+
OpKind op,
|
102 |
+
OpList operands,
|
103 |
+
const std::function<Shape()>& shape_fn,
|
104 |
+
size_t num_outputs = 1);
|
105 |
+
|
106 |
+
// Construct node with operands and no shape
|
107 |
+
Node(OpKind op, OpList operands, size_t num_outputs = 1);
|
108 |
+
|
109 |
+
// Construct node with shape and no operands
|
110 |
+
Node(OpKind op, Shape shape, size_t num_outputs = 1);
|
111 |
+
|
112 |
+
virtual ~Node();
|
113 |
+
|
114 |
+
const OpKind& op() const {
|
115 |
+
return op_;
|
116 |
+
}
|
117 |
+
|
118 |
+
size_t num_outputs() const {
|
119 |
+
return num_outputs_;
|
120 |
+
}
|
121 |
+
|
122 |
+
// Retrieves the full shape of the IR Node.
|
123 |
+
virtual c10::ArrayRef<Shape> shapes() const;
|
124 |
+
|
125 |
+
virtual const Shape& shape(size_t output_index = 0) const;
|
126 |
+
|
127 |
+
// Add the shape computed by the shape_fn
|
128 |
+
void addComputedShape(const std::function<Shape()>& shape_fn);
|
129 |
+
|
130 |
+
// Compute the shape using the provided shape_fn if not previously cached
|
131 |
+
Shape computeShape(const std::function<Shape()>& shape_fn);
|
132 |
+
|
133 |
+
virtual const std::vector<Output>& operands() const;
|
134 |
+
|
135 |
+
virtual const Output& operand(size_t i) const;
|
136 |
+
|
137 |
+
// Gets operand at index i if index is valid, or kNullOutput otherwise.
|
138 |
+
virtual const Output& nullable_operand(size_t i) const;
|
139 |
+
|
140 |
+
// Returns the hash of the dag used to look up the compiled graph
|
141 |
+
virtual hash_t hash() const = 0;
|
142 |
+
|
143 |
+
// Returns the hash of the dag used to for shape caching
|
144 |
+
virtual hash_t shapeHash() const = 0;
|
145 |
+
|
146 |
+
const MetaData& metadata() const {
|
147 |
+
return metadata_;
|
148 |
+
}
|
149 |
+
|
150 |
+
UserMetaData* user_metadata() const {
|
151 |
+
return user_metadata_.get();
|
152 |
+
}
|
153 |
+
|
154 |
+
std::shared_ptr<UserMetaData> SetUserMetadata(
|
155 |
+
std::shared_ptr<UserMetaData> user_meta) {
|
156 |
+
std::swap(user_metadata_, user_meta);
|
157 |
+
return user_meta;
|
158 |
+
}
|
159 |
+
|
160 |
+
virtual std::string ToString() const;
|
161 |
+
|
162 |
+
private:
|
163 |
+
// The ID of the operation captured by this node.
|
164 |
+
OpKind op_;
|
165 |
+
size_t num_outputs_ = 1;
|
166 |
+
|
167 |
+
// The IR specific metadata attached to the IR node.
|
168 |
+
MetaData metadata_;
|
169 |
+
// The IR framework user can attach a user defined metadata object deriving
|
170 |
+
// from UserMetaData.
|
171 |
+
std::shared_ptr<UserMetaData> user_metadata_;
|
172 |
+
|
173 |
+
protected:
|
174 |
+
// Adds node's index output number as operand.
|
175 |
+
void AddOperand(NodePtr node, size_t index = 0);
|
176 |
+
|
177 |
+
std::vector<Shape> shapes_;
|
178 |
+
// A node holds a real reference to its operands.
|
179 |
+
std::vector<NodePtr> operands_;
|
180 |
+
// Outputs do not hold references on the nodes, and neither do the uses, since
|
181 |
+
// otherwise we get into circular reference counting.
|
182 |
+
std::vector<Output> operands_as_outputs_;
|
183 |
+
};
|
184 |
+
|
185 |
+
inline std::ostream& operator<<(std::ostream& stream, const Node& node) {
|
186 |
+
stream << node.ToString();
|
187 |
+
return stream;
|
188 |
+
}
|
189 |
+
|
190 |
+
// Note: Keep this version of NodeCast for smooth PyTorch/XLA migration, and
|
191 |
+
// clean up once the migration is done.
|
192 |
+
template <typename T>
|
193 |
+
const T* NodeCast(const Node* node, OpKind op) {
|
194 |
+
if (op != node->op()) {
|
195 |
+
return nullptr;
|
196 |
+
}
|
197 |
+
#ifdef NDEBUG
|
198 |
+
return static_cast<const T*>(node);
|
199 |
+
#else
|
200 |
+
return &dynamic_cast<const T&>(*node);
|
201 |
+
#endif
|
202 |
+
}
|
203 |
+
|
204 |
+
template <typename T>
|
205 |
+
const T* NodeCast(const Node* node) {
|
206 |
+
if (T::ClassOpKind() != node->op()) {
|
207 |
+
return nullptr;
|
208 |
+
}
|
209 |
+
// TODO: Some IR classes share the same opkind, such as Mean and MeanDim, so
|
210 |
+
// static_cast is not safe here. Unless we have opkind unique for each class,
|
211 |
+
// we have to use dynamic_cast here.
|
212 |
+
return dynamic_cast<const T*>(node);
|
213 |
+
}
|
214 |
+
|
215 |
+
// Represents a specific output produced by a node. Since the output of a node
|
216 |
+
// can be composed by multiple outputs, the node+index coordinates fully qualify
|
217 |
+
// each single output.
|
218 |
+
struct TORCH_API Output {
|
219 |
+
struct Hasher {
|
220 |
+
size_t operator()(const Output& output) const;
|
221 |
+
};
|
222 |
+
|
223 |
+
Output() = default;
|
224 |
+
explicit Output(const Node* node, size_t index = 0)
|
225 |
+
: node(node), index(index) {}
|
226 |
+
|
227 |
+
hash_t hash() const;
|
228 |
+
hash_t shapeHash() const;
|
229 |
+
|
230 |
+
bool operator==(const Output& rhs) const {
|
231 |
+
return node == rhs.node && index == rhs.index;
|
232 |
+
}
|
233 |
+
|
234 |
+
// To compare the operands of to-be-constructed node and to-be-reused node
|
235 |
+
bool operator==(const Value& rhs) const;
|
236 |
+
|
237 |
+
bool operator!=(const Output& rhs) const {
|
238 |
+
return !operator==(rhs);
|
239 |
+
}
|
240 |
+
|
241 |
+
const Shape& shape() const {
|
242 |
+
return node->shape(index);
|
243 |
+
}
|
244 |
+
|
245 |
+
std::string ToString() const;
|
246 |
+
|
247 |
+
// The node providing the output.
|
248 |
+
const Node* node{nullptr};
|
249 |
+
// The index in the node's output this output refers to.
|
250 |
+
size_t index{0};
|
251 |
+
};
|
252 |
+
|
253 |
+
inline std::ostream& operator<<(std::ostream& stream, const Output& output) {
|
254 |
+
stream << output.ToString();
|
255 |
+
return stream;
|
256 |
+
}
|
257 |
+
|
258 |
+
template <typename T>
|
259 |
+
using OutputMap = std::unordered_map<Output, T, Output::Hasher>;
|
260 |
+
|
261 |
+
// Represents an input/operand for a Node object.
|
262 |
+
struct TORCH_API Value {
|
263 |
+
Value() = default;
|
264 |
+
/* implicit */ Value(NodePtr&& node, size_t index = 0)
|
265 |
+
: node(std::move(node)), index(index) {}
|
266 |
+
/* implicit */ Value(const NodePtr& node, size_t index = 0)
|
267 |
+
: node(node), index(index) {}
|
268 |
+
|
269 |
+
hash_t hash() const;
|
270 |
+
hash_t shapeHash() const;
|
271 |
+
|
272 |
+
operator bool() const {
|
273 |
+
return node != nullptr;
|
274 |
+
}
|
275 |
+
|
276 |
+
operator Output() const {
|
277 |
+
return Output(node.get(), index);
|
278 |
+
}
|
279 |
+
|
280 |
+
const Shape& shape() const {
|
281 |
+
return node->shape(index);
|
282 |
+
}
|
283 |
+
|
284 |
+
Node* operator->() const {
|
285 |
+
return node.get();
|
286 |
+
}
|
287 |
+
|
288 |
+
NodePtr node;
|
289 |
+
size_t index = 0;
|
290 |
+
};
|
291 |
+
|
292 |
+
} // namespace lazy
|
293 |
+
} // namespace torch
|
294 |
+
|
295 |
+
namespace c10 {
|
296 |
+
// Explicit template instantiation to make ArrayRef<Value> work
|
297 |
+
template class at::ArrayRef<torch::lazy::Value>;
|
298 |
+
} // namespace c10
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/lazy/core/ir_builder.h
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/core/ScalarType.h>
|
4 |
+
#include <c10/util/Optional.h>
|
5 |
+
#include <torch/csrc/lazy/backend/backend_interface.h>
|
6 |
+
#include <torch/csrc/lazy/core/config.h>
|
7 |
+
#include <torch/csrc/lazy/core/ir.h>
|
8 |
+
#include <torch/csrc/lazy/core/tensor.h>
|
9 |
+
#include <torch/csrc/lazy/core/trie.h>
|
10 |
+
#include <vector>
|
11 |
+
|
12 |
+
// This file is part of the backend interface. So, ops shouldn't be added or
|
13 |
+
// removed without due process The exception to this being the view ops which
|
14 |
+
// will be removed soon pending functionalization
|
15 |
+
|
16 |
+
namespace torch {
|
17 |
+
namespace lazy {
|
18 |
+
|
19 |
+
template <typename T, typename... Args>
|
20 |
+
NodePtr ReuseNode(Args&&... args) {
|
21 |
+
if (FLAGS_torch_lazy_reuse_ir) {
|
22 |
+
return LookupNodeFromTrieCache<T>(std::forward<Args>(args)...);
|
23 |
+
}
|
24 |
+
return nullptr;
|
25 |
+
}
|
26 |
+
|
27 |
+
// Caching an IR node into TrieCache
|
28 |
+
static inline void CacheNode(NodePtr node) {
|
29 |
+
if (FLAGS_torch_lazy_reuse_ir) {
|
30 |
+
TrieCache::Get()->Insert(std::move(node));
|
31 |
+
}
|
32 |
+
}
|
33 |
+
|
34 |
+
template <typename T, typename... Args>
|
35 |
+
NodePtr MakeNode(Args&&... args) {
|
36 |
+
return std::make_shared<T>(std::forward<Args>(args)...);
|
37 |
+
}
|
38 |
+
|
39 |
+
// op is passed in for a more efficient node casting, see the implementation of
|
40 |
+
// NodeCast
|
41 |
+
template <typename T, typename... Args>
|
42 |
+
NodePtr ReuseOrMakeNode(Args&&... args) {
|
43 |
+
NodePtr node = ReuseNode<T>(std::forward<Args>(args)...);
|
44 |
+
if (!node) {
|
45 |
+
node = MakeNode<T>(std::forward<Args>(args)...);
|
46 |
+
CacheNode(node);
|
47 |
+
}
|
48 |
+
return node;
|
49 |
+
}
|
50 |
+
|
51 |
+
struct IrBuilder {
|
52 |
+
virtual NodePtr MakeDeviceData(
|
53 |
+
const std::shared_ptr<BackendData>& data) const = 0;
|
54 |
+
virtual NodePtr MakeScalar(
|
55 |
+
const at::Scalar& value,
|
56 |
+
const at::ScalarType& type) const = 0;
|
57 |
+
virtual NodePtr MakeExpand(
|
58 |
+
const Value& input0,
|
59 |
+
const std::vector<int64_t>& size,
|
60 |
+
const bool& is_scalar_expand) const = 0;
|
61 |
+
virtual NodePtr MakeCast(
|
62 |
+
const Value& input0,
|
63 |
+
const at::ScalarType& dtype,
|
64 |
+
const c10::optional<at::ScalarType>& stype = c10::nullopt) const = 0;
|
65 |
+
virtual NodePtr MakeTensorList(const OpList& inputs) const = 0;
|
66 |
+
virtual NodePtr MakeGeneric(
|
67 |
+
const OpKind& op,
|
68 |
+
const OpList& operands,
|
69 |
+
const Shape& shape,
|
70 |
+
const size_t& num_outputs = 1,
|
71 |
+
const hash_t& hash_seed = static_cast<uint32_t>(0x5a2d296e9)) const = 0;
|
72 |
+
|
73 |
+
// dynamic ir nodes
|
74 |
+
virtual NodePtr MakeSizeNode(const Value& input, size_t dim) const = 0;
|
75 |
+
virtual NodePtr MakeSizeAdd(const Value& a, const Value& b) const = 0;
|
76 |
+
virtual NodePtr MakeSizeMul(const Value& a, const Value& b) const = 0;
|
77 |
+
virtual NodePtr MakeSizeDiv(const Value& a, const Value& b) const = 0;
|
78 |
+
|
79 |
+
virtual ~IrBuilder() = default;
|
80 |
+
};
|
81 |
+
|
82 |
+
static inline NodePtr MakeDeviceData(const std::shared_ptr<BackendData>& data) {
|
83 |
+
return getIrBuilder()->MakeDeviceData(data);
|
84 |
+
}
|
85 |
+
static inline NodePtr MakeScalar(
|
86 |
+
const at::Scalar& value,
|
87 |
+
const at::ScalarType& type) {
|
88 |
+
return getIrBuilder()->MakeScalar(value, type);
|
89 |
+
}
|
90 |
+
static inline NodePtr MakeExpand(
|
91 |
+
const Value& input0,
|
92 |
+
const std::vector<int64_t>& size,
|
93 |
+
const bool& is_scalar_expand) {
|
94 |
+
return getIrBuilder()->MakeExpand(input0, size, is_scalar_expand);
|
95 |
+
}
|
96 |
+
static inline NodePtr MakeCast(
|
97 |
+
const Value& input0,
|
98 |
+
const at::ScalarType& dtype,
|
99 |
+
const c10::optional<at::ScalarType>& stype = c10::nullopt) {
|
100 |
+
return getIrBuilder()->MakeCast(input0, dtype, stype);
|
101 |
+
}
|
102 |
+
static inline NodePtr MakeTensorList(const OpList& inputs) {
|
103 |
+
return getIrBuilder()->MakeTensorList(inputs);
|
104 |
+
}
|
105 |
+
static inline NodePtr MakeGeneric(
|
106 |
+
const OpKind& op,
|
107 |
+
const OpList& operands,
|
108 |
+
const Shape& shape,
|
109 |
+
const size_t& num_outputs = 1,
|
110 |
+
const hash_t& hash_seed = static_cast<uint32_t>(0x5a2d296e9)) {
|
111 |
+
return getIrBuilder()->MakeGeneric(
|
112 |
+
op, operands, shape, num_outputs, hash_seed);
|
113 |
+
}
|
114 |
+
|
115 |
+
// dynamic ir nodes
|
116 |
+
static inline NodePtr MakeSizeNode(const Value& input, size_t dim) {
|
117 |
+
return getIrBuilder()->MakeSizeNode(input, dim);
|
118 |
+
}
|
119 |
+
static inline NodePtr MakeSizeAdd(const Value& a, const Value& b) {
|
120 |
+
return getIrBuilder()->MakeSizeAdd(a, b);
|
121 |
+
}
|
122 |
+
static inline NodePtr MakeSizeMul(const Value& a, const Value& b) {
|
123 |
+
return getIrBuilder()->MakeSizeAdd(a, b);
|
124 |
+
}
|
125 |
+
static inline NodePtr MakeSizeDiv(const Value& a, const Value& b) {
|
126 |
+
return getIrBuilder()->MakeSizeDiv(a, b);
|
127 |
+
}
|
128 |
+
|
129 |
+
inline Value GetSymIntValue(c10::SymInt a) {
|
130 |
+
if (auto ma = a.maybe_as_int()) {
|
131 |
+
return Value(MakeScalar(*ma, at::kLong), 0);
|
132 |
+
} else {
|
133 |
+
return Value(
|
134 |
+
dynamic_cast<torch::lazy::SymNodeImpl*>(a.toSymNodeImplUnowned())
|
135 |
+
->node_,
|
136 |
+
0);
|
137 |
+
}
|
138 |
+
}
|
139 |
+
|
140 |
+
// TODO: this should return Value
|
141 |
+
inline std::vector<int64_t> GetSymIntArrayRefValue(c10::SymIntArrayRef arr) {
|
142 |
+
std::vector<int64_t> r;
|
143 |
+
for (const auto& a : arr) {
|
144 |
+
r.emplace_back(a.guard_int(__FILE__, __LINE__));
|
145 |
+
}
|
146 |
+
return r;
|
147 |
+
}
|
148 |
+
|
149 |
+
} // namespace lazy
|
150 |
+
} // namespace torch
|