Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step20/zero/11.mlp.dense_h_to_4h.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step20/zero/11.mlp.dense_h_to_4h.weight/fp32.pt +3 -0
- ckpts/universal/global_step20/zero/14.attention.query_key_value.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step20/zero/14.attention.query_key_value.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step20/zero/14.attention.query_key_value.weight/fp32.pt +3 -0
- ckpts/universal/global_step20/zero/6.mlp.dense_4h_to_h.weight/fp32.pt +3 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/_autocast_to_full_precision_compositeimplicitautograd_dispatch.h +23 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/_cast_Short_compositeimplicitautograd_dispatch.h +23 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/_convert_indices_from_coo_to_csr_meta.h +27 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_div_cpu_dispatch.h +30 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_log2.h +44 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_maximum.h +82 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_pow_cuda_dispatch.h +29 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/_make_per_tensor_quantized_tensor_native.h +23 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/_nested_tensor_storage_offsets_native.h +22 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/_nested_view_from_buffer_copy_compositeexplicitautogradnonfunctional_dispatch.h +23 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/_pdist_backward_compositeexplicitautograd_dispatch.h +24 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/_scaled_mm.h +39 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/_scaled_mm_ops.h +39 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/_test_optional_floatlist_compositeexplicitautograd_dispatch.h +24 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/_test_serialization_subcmul_compositeimplicitautograd_dispatch.h +23 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/_to_copy.h +43 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/_to_sparse.h +43 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/_upsample_nearest_exact1d_backward_cuda_dispatch.h +28 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/_use_cudnn_rnn_flatten_weight_compositeimplicitautograd_dispatch.h +23 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/_values_native.h +21 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/adaptive_max_pool1d_native.h +21 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/addmv_cpu_dispatch.h +26 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/avg_pool3d_compositeexplicitautogradnonfunctional_dispatch.h +23 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/binomial_compositeexplicitautograd_dispatch.h +24 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/broadcast_tensors_ops.h +28 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/clone_native.h +27 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/corrcoef_ops.h +28 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/cudnn_batch_norm_compositeexplicitautograd_dispatch.h +24 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/cudnn_is_acceptable.h +30 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/erfc_cuda_dispatch.h +26 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/fake_quantize_per_tensor_affine_cachemask_native.h +22 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/fbgemm_pack_gemm_matrix_fp16_native.h +21 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/fft_irfft.h +91 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/fft_rfft2_ops.h +39 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/floor_divide_ops.h +83 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/gather_compositeexplicitautogradnonfunctional_dispatch.h +23 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/igammac_meta.h +27 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/index_put_native.h +23 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/lift_fresh_copy_ops.h +39 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_cholesky_ex.h +39 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_ldl_factor_native.h +22 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_solve_triangular_ops.h +39 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/lu_unpack_meta.h +27 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/max_pool1d_with_indices_ops.h +28 -0
ckpts/universal/global_step20/zero/11.mlp.dense_h_to_4h.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6d97ce005a8b3d8c5fdedcafa90c5521aa036cb65f28a36a30f7efd2de663280
|
3 |
+
size 33555627
|
ckpts/universal/global_step20/zero/11.mlp.dense_h_to_4h.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:70479c0d6375b34aad122bd14a0771f355b75351991a0904d8af6b42f38b5217
|
3 |
+
size 33555533
|
ckpts/universal/global_step20/zero/14.attention.query_key_value.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:25606717d1f2de6d4cff86d997de5a76088a20546261b14fba1303d8ec0a4406
|
3 |
+
size 50332828
|
ckpts/universal/global_step20/zero/14.attention.query_key_value.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:edad39ab721aefa4c60ee6d9adceb4d57a19a4b419c4200a694cf541db0028f1
|
3 |
+
size 50332843
|
ckpts/universal/global_step20/zero/14.attention.query_key_value.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:03e68bf5428c61396dc61758f37868c888c88498248f0143a36be7b2feaf5480
|
3 |
+
size 50332749
|
ckpts/universal/global_step20/zero/6.mlp.dense_4h_to_h.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f4d03512624592754cbf0c3d026657121487fc0d900b0ed453f127512e7aad95
|
3 |
+
size 33555533
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_autocast_to_full_precision_compositeimplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeimplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor _autocast_to_full_precision(const at::Tensor & self, bool cuda_enabled, bool cpu_enabled);
|
21 |
+
|
22 |
+
} // namespace compositeimplicitautograd
|
23 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_cast_Short_compositeimplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeimplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor _cast_Short(const at::Tensor & self, bool non_blocking=false);
|
21 |
+
|
22 |
+
} // namespace compositeimplicitautograd
|
23 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_convert_indices_from_coo_to_csr_meta.h
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeMetaFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/TensorIterator.h>
|
13 |
+
#include <ATen/TensorMeta.h>
|
14 |
+
#include <tuple>
|
15 |
+
#include <vector>
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace meta {
|
19 |
+
|
20 |
+
struct TORCH_API structured__convert_indices_from_coo_to_csr : public at::impl::MetaBase {
|
21 |
+
|
22 |
+
|
23 |
+
void meta(const at::Tensor & self, int64_t size, bool out_int32);
|
24 |
+
};
|
25 |
+
|
26 |
+
} // namespace native
|
27 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_div_cpu_dispatch.h
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cpu {
|
19 |
+
|
20 |
+
TORCH_API ::std::vector<at::Tensor> _foreach_div(at::TensorList self, const at::Scalar & scalar);
|
21 |
+
TORCH_API void _foreach_div_(at::TensorList self, const at::Scalar & scalar);
|
22 |
+
TORCH_API ::std::vector<at::Tensor> _foreach_div(at::TensorList self, at::TensorList other);
|
23 |
+
TORCH_API void _foreach_div_(at::TensorList self, at::TensorList other);
|
24 |
+
TORCH_API ::std::vector<at::Tensor> _foreach_div(at::TensorList self, at::ArrayRef<at::Scalar> scalars);
|
25 |
+
TORCH_API void _foreach_div_(at::TensorList self, at::ArrayRef<at::Scalar> scalars);
|
26 |
+
TORCH_API ::std::vector<at::Tensor> _foreach_div(at::TensorList self, const at::Tensor & other);
|
27 |
+
TORCH_API void _foreach_div_(at::TensorList self, const at::Tensor & other);
|
28 |
+
|
29 |
+
} // namespace cpu
|
30 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_log2.h
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/_foreach_log2_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::_foreach_log2(Tensor[] self) -> Tensor[]
|
26 |
+
inline ::std::vector<at::Tensor> _foreach_log2(at::TensorList self) {
|
27 |
+
return at::_ops::_foreach_log2::call(self);
|
28 |
+
}
|
29 |
+
|
30 |
+
// aten::_foreach_log2_(Tensor(a!)[] self) -> ()
|
31 |
+
inline void _foreach_log2_(at::TensorList self) {
|
32 |
+
return at::_ops::_foreach_log2_::call(self);
|
33 |
+
}
|
34 |
+
|
35 |
+
// aten::_foreach_log2.out(Tensor[] self, *, Tensor(a!)[] out) -> ()
|
36 |
+
inline void _foreach_log2_out(at::TensorList out, at::TensorList self) {
|
37 |
+
return at::_ops::_foreach_log2_out::call(self, out);
|
38 |
+
}
|
39 |
+
// aten::_foreach_log2.out(Tensor[] self, *, Tensor(a!)[] out) -> ()
|
40 |
+
inline void _foreach_log2_outf(at::TensorList self, at::TensorList out) {
|
41 |
+
return at::_ops::_foreach_log2_out::call(self, out);
|
42 |
+
}
|
43 |
+
|
44 |
+
}
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_maximum.h
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/_foreach_maximum_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::_foreach_maximum.Scalar(Tensor[] self, Scalar scalar) -> Tensor[]
|
26 |
+
inline ::std::vector<at::Tensor> _foreach_maximum(at::TensorList self, const at::Scalar & scalar) {
|
27 |
+
return at::_ops::_foreach_maximum_Scalar::call(self, scalar);
|
28 |
+
}
|
29 |
+
|
30 |
+
// aten::_foreach_maximum_.Scalar(Tensor(a!)[] self, Scalar scalar) -> ()
|
31 |
+
inline void _foreach_maximum_(at::TensorList self, const at::Scalar & scalar) {
|
32 |
+
return at::_ops::_foreach_maximum__Scalar::call(self, scalar);
|
33 |
+
}
|
34 |
+
|
35 |
+
// aten::_foreach_maximum.List(Tensor[] self, Tensor[] other) -> Tensor[]
|
36 |
+
inline ::std::vector<at::Tensor> _foreach_maximum(at::TensorList self, at::TensorList other) {
|
37 |
+
return at::_ops::_foreach_maximum_List::call(self, other);
|
38 |
+
}
|
39 |
+
|
40 |
+
// aten::_foreach_maximum_.List(Tensor(a!)[] self, Tensor[] other) -> ()
|
41 |
+
inline void _foreach_maximum_(at::TensorList self, at::TensorList other) {
|
42 |
+
return at::_ops::_foreach_maximum__List::call(self, other);
|
43 |
+
}
|
44 |
+
|
45 |
+
// aten::_foreach_maximum.ScalarList(Tensor[] self, Scalar[] scalars) -> Tensor[]
|
46 |
+
inline ::std::vector<at::Tensor> _foreach_maximum(at::TensorList self, at::ArrayRef<at::Scalar> scalars) {
|
47 |
+
return at::_ops::_foreach_maximum_ScalarList::call(self, scalars);
|
48 |
+
}
|
49 |
+
|
50 |
+
// aten::_foreach_maximum_.ScalarList(Tensor(a!)[] self, Scalar[] scalars) -> ()
|
51 |
+
inline void _foreach_maximum_(at::TensorList self, at::ArrayRef<at::Scalar> scalars) {
|
52 |
+
return at::_ops::_foreach_maximum__ScalarList::call(self, scalars);
|
53 |
+
}
|
54 |
+
|
55 |
+
// aten::_foreach_maximum.Scalar_out(Tensor[] self, Scalar scalar, *, Tensor(a!)[] out) -> ()
|
56 |
+
inline void _foreach_maximum_out(at::TensorList out, at::TensorList self, const at::Scalar & scalar) {
|
57 |
+
return at::_ops::_foreach_maximum_Scalar_out::call(self, scalar, out);
|
58 |
+
}
|
59 |
+
// aten::_foreach_maximum.Scalar_out(Tensor[] self, Scalar scalar, *, Tensor(a!)[] out) -> ()
|
60 |
+
inline void _foreach_maximum_outf(at::TensorList self, const at::Scalar & scalar, at::TensorList out) {
|
61 |
+
return at::_ops::_foreach_maximum_Scalar_out::call(self, scalar, out);
|
62 |
+
}
|
63 |
+
|
64 |
+
// aten::_foreach_maximum.List_out(Tensor[] self, Tensor[] other, *, Tensor(a!)[] out) -> ()
|
65 |
+
inline void _foreach_maximum_out(at::TensorList out, at::TensorList self, at::TensorList other) {
|
66 |
+
return at::_ops::_foreach_maximum_List_out::call(self, other, out);
|
67 |
+
}
|
68 |
+
// aten::_foreach_maximum.List_out(Tensor[] self, Tensor[] other, *, Tensor(a!)[] out) -> ()
|
69 |
+
inline void _foreach_maximum_outf(at::TensorList self, at::TensorList other, at::TensorList out) {
|
70 |
+
return at::_ops::_foreach_maximum_List_out::call(self, other, out);
|
71 |
+
}
|
72 |
+
|
73 |
+
// aten::_foreach_maximum.ScalarList_out(Tensor[] self, Scalar[] scalars, *, Tensor(a!)[] out) -> ()
|
74 |
+
inline void _foreach_maximum_out(at::TensorList out, at::TensorList self, at::ArrayRef<at::Scalar> scalars) {
|
75 |
+
return at::_ops::_foreach_maximum_ScalarList_out::call(self, scalars, out);
|
76 |
+
}
|
77 |
+
// aten::_foreach_maximum.ScalarList_out(Tensor[] self, Scalar[] scalars, *, Tensor(a!)[] out) -> ()
|
78 |
+
inline void _foreach_maximum_outf(at::TensorList self, at::ArrayRef<at::Scalar> scalars, at::TensorList out) {
|
79 |
+
return at::_ops::_foreach_maximum_ScalarList_out::call(self, scalars, out);
|
80 |
+
}
|
81 |
+
|
82 |
+
}
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_pow_cuda_dispatch.h
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cuda {
|
19 |
+
|
20 |
+
TORCH_API ::std::vector<at::Tensor> _foreach_pow(at::TensorList self, at::TensorList exponent);
|
21 |
+
TORCH_API void _foreach_pow_(at::TensorList self, at::TensorList exponent);
|
22 |
+
TORCH_API ::std::vector<at::Tensor> _foreach_pow(at::TensorList self, const at::Scalar & exponent);
|
23 |
+
TORCH_API void _foreach_pow_(at::TensorList self, const at::Scalar & exponent);
|
24 |
+
TORCH_API ::std::vector<at::Tensor> _foreach_pow(at::TensorList self, at::ArrayRef<at::Scalar> exponent);
|
25 |
+
TORCH_API void _foreach_pow_(at::TensorList self, at::ArrayRef<at::Scalar> exponent);
|
26 |
+
TORCH_API ::std::vector<at::Tensor> _foreach_pow(const at::Scalar & self, at::TensorList exponent);
|
27 |
+
|
28 |
+
} // namespace cuda
|
29 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_make_per_tensor_quantized_tensor_native.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API at::Tensor & _make_per_tensor_quantized_tensor_out(const at::Tensor & self, double scale, int64_t zero_point, at::Tensor & out);
|
20 |
+
TORCH_API at::Tensor make_per_tensor_quantized_tensor_cpu(const at::Tensor & self, double scale, int64_t zero_point);
|
21 |
+
TORCH_API at::Tensor make_per_tensor_quantized_tensor_cuda(const at::Tensor & self, double scale, int64_t zero_point);
|
22 |
+
} // namespace native
|
23 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_nested_tensor_storage_offsets_native.h
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API at::Tensor & _nested_tensor_storage_offsets_out(const at::Tensor & self, at::Tensor & out);
|
20 |
+
TORCH_API at::Tensor _nested_tensor_storage_offsets(const at::Tensor & self);
|
21 |
+
} // namespace native
|
22 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_nested_view_from_buffer_copy_compositeexplicitautogradnonfunctional_dispatch.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeexplicitautogradnonfunctional {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor _nested_view_from_buffer_copy(const at::Tensor & self, const at::Tensor & nested_size, const at::Tensor & nested_strides, const at::Tensor & offsets);
|
21 |
+
|
22 |
+
} // namespace compositeexplicitautogradnonfunctional
|
23 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_pdist_backward_compositeexplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeexplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor & _pdist_backward_out(at::Tensor & out, const at::Tensor & grad, const at::Tensor & self, double p, const at::Tensor & pdist);
|
21 |
+
TORCH_API at::Tensor & _pdist_backward_outf(const at::Tensor & grad, const at::Tensor & self, double p, const at::Tensor & pdist, at::Tensor & out);
|
22 |
+
|
23 |
+
} // namespace compositeexplicitautograd
|
24 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_scaled_mm.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/_scaled_mm_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::_scaled_mm(Tensor self, Tensor mat2, *, Tensor? bias=None, ScalarType? out_dtype=None, Tensor? scale_a=None, Tensor? scale_b=None, Tensor? scale_result=None, bool use_fast_accum=False) -> (Tensor, Tensor)
|
26 |
+
inline ::std::tuple<at::Tensor,at::Tensor> _scaled_mm(const at::Tensor & self, const at::Tensor & mat2, const c10::optional<at::Tensor> & bias={}, c10::optional<at::ScalarType> out_dtype=c10::nullopt, const c10::optional<at::Tensor> & scale_a={}, const c10::optional<at::Tensor> & scale_b={}, const c10::optional<at::Tensor> & scale_result={}, bool use_fast_accum=false) {
|
27 |
+
return at::_ops::_scaled_mm::call(self, mat2, bias, out_dtype, scale_a, scale_b, scale_result, use_fast_accum);
|
28 |
+
}
|
29 |
+
|
30 |
+
// aten::_scaled_mm.out(Tensor self, Tensor mat2, *, Tensor? bias=None, ScalarType? out_dtype=None, Tensor? scale_a=None, Tensor? scale_b=None, Tensor? scale_result=None, bool use_fast_accum=False, Tensor(a!) out, Tensor(b!) out_amax) -> (Tensor(a!), Tensor(b!))
|
31 |
+
inline ::std::tuple<at::Tensor &,at::Tensor &> _scaled_mm_out(at::Tensor & out, at::Tensor & out_amax, const at::Tensor & self, const at::Tensor & mat2, const c10::optional<at::Tensor> & bias={}, c10::optional<at::ScalarType> out_dtype=c10::nullopt, const c10::optional<at::Tensor> & scale_a={}, const c10::optional<at::Tensor> & scale_b={}, const c10::optional<at::Tensor> & scale_result={}, bool use_fast_accum=false) {
|
32 |
+
return at::_ops::_scaled_mm_out::call(self, mat2, bias, out_dtype, scale_a, scale_b, scale_result, use_fast_accum, out, out_amax);
|
33 |
+
}
|
34 |
+
// aten::_scaled_mm.out(Tensor self, Tensor mat2, *, Tensor? bias=None, ScalarType? out_dtype=None, Tensor? scale_a=None, Tensor? scale_b=None, Tensor? scale_result=None, bool use_fast_accum=False, Tensor(a!) out, Tensor(b!) out_amax) -> (Tensor(a!), Tensor(b!))
|
35 |
+
inline ::std::tuple<at::Tensor &,at::Tensor &> _scaled_mm_outf(const at::Tensor & self, const at::Tensor & mat2, const c10::optional<at::Tensor> & bias, c10::optional<at::ScalarType> out_dtype, const c10::optional<at::Tensor> & scale_a, const c10::optional<at::Tensor> & scale_b, const c10::optional<at::Tensor> & scale_result, bool use_fast_accum, at::Tensor & out, at::Tensor & out_amax) {
|
36 |
+
return at::_ops::_scaled_mm_out::call(self, mat2, bias, out_dtype, scale_a, scale_b, scale_result, use_fast_accum, out, out_amax);
|
37 |
+
}
|
38 |
+
|
39 |
+
}
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_scaled_mm_ops.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API _scaled_mm {
|
18 |
+
using schema = ::std::tuple<at::Tensor,at::Tensor> (const at::Tensor &, const at::Tensor &, const c10::optional<at::Tensor> &, c10::optional<at::ScalarType>, const c10::optional<at::Tensor> &, const c10::optional<at::Tensor> &, const c10::optional<at::Tensor> &, bool);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_scaled_mm")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_scaled_mm(Tensor self, Tensor mat2, *, Tensor? bias=None, ScalarType? out_dtype=None, Tensor? scale_a=None, Tensor? scale_b=None, Tensor? scale_result=None, bool use_fast_accum=False) -> (Tensor, Tensor)")
|
24 |
+
static ::std::tuple<at::Tensor,at::Tensor> call(const at::Tensor & self, const at::Tensor & mat2, const c10::optional<at::Tensor> & bias, c10::optional<at::ScalarType> out_dtype, const c10::optional<at::Tensor> & scale_a, const c10::optional<at::Tensor> & scale_b, const c10::optional<at::Tensor> & scale_result, bool use_fast_accum);
|
25 |
+
static ::std::tuple<at::Tensor,at::Tensor> redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & mat2, const c10::optional<at::Tensor> & bias, c10::optional<at::ScalarType> out_dtype, const c10::optional<at::Tensor> & scale_a, const c10::optional<at::Tensor> & scale_b, const c10::optional<at::Tensor> & scale_result, bool use_fast_accum);
|
26 |
+
};
|
27 |
+
|
28 |
+
struct TORCH_API _scaled_mm_out {
|
29 |
+
using schema = ::std::tuple<at::Tensor &,at::Tensor &> (const at::Tensor &, const at::Tensor &, const c10::optional<at::Tensor> &, c10::optional<at::ScalarType>, const c10::optional<at::Tensor> &, const c10::optional<at::Tensor> &, const c10::optional<at::Tensor> &, bool, at::Tensor &, at::Tensor &);
|
30 |
+
using ptr_schema = schema*;
|
31 |
+
// See Note [static constexpr char* members for windows NVCC]
|
32 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_scaled_mm")
|
33 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
|
34 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_scaled_mm.out(Tensor self, Tensor mat2, *, Tensor? bias=None, ScalarType? out_dtype=None, Tensor? scale_a=None, Tensor? scale_b=None, Tensor? scale_result=None, bool use_fast_accum=False, Tensor(a!) out, Tensor(b!) out_amax) -> (Tensor(a!), Tensor(b!))")
|
35 |
+
static ::std::tuple<at::Tensor &,at::Tensor &> call(const at::Tensor & self, const at::Tensor & mat2, const c10::optional<at::Tensor> & bias, c10::optional<at::ScalarType> out_dtype, const c10::optional<at::Tensor> & scale_a, const c10::optional<at::Tensor> & scale_b, const c10::optional<at::Tensor> & scale_result, bool use_fast_accum, at::Tensor & out, at::Tensor & out_amax);
|
36 |
+
static ::std::tuple<at::Tensor &,at::Tensor &> redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & mat2, const c10::optional<at::Tensor> & bias, c10::optional<at::ScalarType> out_dtype, const c10::optional<at::Tensor> & scale_a, const c10::optional<at::Tensor> & scale_b, const c10::optional<at::Tensor> & scale_result, bool use_fast_accum, at::Tensor & out, at::Tensor & out_amax);
|
37 |
+
};
|
38 |
+
|
39 |
+
}} // namespace at::_ops
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_test_optional_floatlist_compositeexplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeexplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor & _test_optional_floatlist_out(at::Tensor & out, const at::Tensor & values, c10::optional<at::ArrayRef<double>> addends);
|
21 |
+
TORCH_API at::Tensor & _test_optional_floatlist_outf(const at::Tensor & values, c10::optional<at::ArrayRef<double>> addends, at::Tensor & out);
|
22 |
+
|
23 |
+
} // namespace compositeexplicitautograd
|
24 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_test_serialization_subcmul_compositeimplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeimplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor _test_serialization_subcmul(const at::Tensor & self, const at::Tensor & other, const at::Scalar & alpha=1);
|
21 |
+
|
22 |
+
} // namespace compositeimplicitautograd
|
23 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_to_copy.h
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/_to_copy_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::_to_copy(Tensor self, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, bool non_blocking=False, MemoryFormat? memory_format=None) -> Tensor
|
26 |
+
inline at::Tensor _to_copy(const at::Tensor & self, at::TensorOptions options={}, bool non_blocking=false, c10::optional<at::MemoryFormat> memory_format=c10::nullopt) {
|
27 |
+
return at::_ops::_to_copy::call(self, c10::optTypeMetaToScalarType(options.dtype_opt()), options.layout_opt(), options.device_opt(), options.pinned_memory_opt(), non_blocking, c10::impl::check_tensor_options_and_extract_memory_format(options, memory_format));
|
28 |
+
}
|
29 |
+
// aten::_to_copy(Tensor self, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, bool non_blocking=False, MemoryFormat? memory_format=None) -> Tensor
|
30 |
+
inline at::Tensor _to_copy(const at::Tensor & self, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory, bool non_blocking, c10::optional<at::MemoryFormat> memory_format) {
|
31 |
+
return at::_ops::_to_copy::call(self, dtype, layout, device, pin_memory, non_blocking, memory_format);
|
32 |
+
}
|
33 |
+
|
34 |
+
// aten::_to_copy.out(Tensor self, *, bool non_blocking=False, MemoryFormat? memory_format=None, Tensor(a!) out) -> Tensor(a!)
|
35 |
+
inline at::Tensor & _to_copy_out(at::Tensor & out, const at::Tensor & self, bool non_blocking=false, c10::optional<at::MemoryFormat> memory_format=c10::nullopt) {
|
36 |
+
return at::_ops::_to_copy_out::call(self, non_blocking, memory_format, out);
|
37 |
+
}
|
38 |
+
// aten::_to_copy.out(Tensor self, *, bool non_blocking=False, MemoryFormat? memory_format=None, Tensor(a!) out) -> Tensor(a!)
|
39 |
+
inline at::Tensor & _to_copy_outf(const at::Tensor & self, bool non_blocking, c10::optional<at::MemoryFormat> memory_format, at::Tensor & out) {
|
40 |
+
return at::_ops::_to_copy_out::call(self, non_blocking, memory_format, out);
|
41 |
+
}
|
42 |
+
|
43 |
+
}
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_to_sparse.h
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/_to_sparse_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::_to_sparse.sparse_dim_out(Tensor self, int sparse_dim, *, Tensor(a!) out) -> Tensor(a!)
|
26 |
+
inline at::Tensor & _to_sparse_out(at::Tensor & out, const at::Tensor & self, int64_t sparse_dim) {
|
27 |
+
return at::_ops::_to_sparse_sparse_dim_out::call(self, sparse_dim, out);
|
28 |
+
}
|
29 |
+
// aten::_to_sparse.sparse_dim_out(Tensor self, int sparse_dim, *, Tensor(a!) out) -> Tensor(a!)
|
30 |
+
inline at::Tensor & _to_sparse_outf(const at::Tensor & self, int64_t sparse_dim, at::Tensor & out) {
|
31 |
+
return at::_ops::_to_sparse_sparse_dim_out::call(self, sparse_dim, out);
|
32 |
+
}
|
33 |
+
|
34 |
+
// aten::_to_sparse.out(Tensor self, *, Layout? layout=None, int[2]? blocksize=None, int? dense_dim=None, Tensor(a!) out) -> Tensor(a!)
|
35 |
+
inline at::Tensor & _to_sparse_out(at::Tensor & out, const at::Tensor & self, c10::optional<at::Layout> layout=c10::nullopt, at::OptionalIntArrayRef blocksize=c10::nullopt, c10::optional<int64_t> dense_dim=c10::nullopt) {
|
36 |
+
return at::_ops::_to_sparse_out::call(self, layout, blocksize, dense_dim, out);
|
37 |
+
}
|
38 |
+
// aten::_to_sparse.out(Tensor self, *, Layout? layout=None, int[2]? blocksize=None, int? dense_dim=None, Tensor(a!) out) -> Tensor(a!)
|
39 |
+
inline at::Tensor & _to_sparse_outf(const at::Tensor & self, c10::optional<at::Layout> layout, at::OptionalIntArrayRef blocksize, c10::optional<int64_t> dense_dim, at::Tensor & out) {
|
40 |
+
return at::_ops::_to_sparse_out::call(self, layout, blocksize, dense_dim, out);
|
41 |
+
}
|
42 |
+
|
43 |
+
}
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_upsample_nearest_exact1d_backward_cuda_dispatch.h
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cuda {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor _upsample_nearest_exact1d_backward(const at::Tensor & grad_output, at::IntArrayRef output_size, at::IntArrayRef input_size, c10::optional<double> scales=c10::nullopt);
|
21 |
+
TORCH_API at::Tensor _upsample_nearest_exact1d_backward_symint(const at::Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, c10::optional<double> scales=c10::nullopt);
|
22 |
+
TORCH_API at::Tensor & _upsample_nearest_exact1d_backward_out(at::Tensor & grad_input, const at::Tensor & grad_output, at::IntArrayRef output_size, at::IntArrayRef input_size, c10::optional<double> scales=c10::nullopt);
|
23 |
+
TORCH_API at::Tensor & _upsample_nearest_exact1d_backward_outf(const at::Tensor & grad_output, at::IntArrayRef output_size, at::IntArrayRef input_size, c10::optional<double> scales, at::Tensor & grad_input);
|
24 |
+
TORCH_API at::Tensor & _upsample_nearest_exact1d_backward_symint_out(at::Tensor & grad_input, const at::Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, c10::optional<double> scales=c10::nullopt);
|
25 |
+
TORCH_API at::Tensor & _upsample_nearest_exact1d_backward_symint_outf(const at::Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, c10::optional<double> scales, at::Tensor & grad_input);
|
26 |
+
|
27 |
+
} // namespace cuda
|
28 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_use_cudnn_rnn_flatten_weight_compositeimplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeimplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API bool _use_cudnn_rnn_flatten_weight();
|
21 |
+
|
22 |
+
} // namespace compositeimplicitautograd
|
23 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_values_native.h
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API at::Tensor _values_sparse(const at::Tensor & self);
|
20 |
+
} // namespace native
|
21 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/adaptive_max_pool1d_native.h
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API ::std::tuple<at::Tensor,at::Tensor> adaptive_max_pool1d(const at::Tensor & self, at::IntArrayRef output_size);
|
20 |
+
} // namespace native
|
21 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/addmv_cpu_dispatch.h
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cpu {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor addmv(const at::Tensor & self, const at::Tensor & mat, const at::Tensor & vec, const at::Scalar & beta=1, const at::Scalar & alpha=1);
|
21 |
+
TORCH_API at::Tensor & addmv_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & mat, const at::Tensor & vec, const at::Scalar & beta=1, const at::Scalar & alpha=1);
|
22 |
+
TORCH_API at::Tensor & addmv_outf(const at::Tensor & self, const at::Tensor & mat, const at::Tensor & vec, const at::Scalar & beta, const at::Scalar & alpha, at::Tensor & out);
|
23 |
+
TORCH_API at::Tensor & addmv_(at::Tensor & self, const at::Tensor & mat, const at::Tensor & vec, const at::Scalar & beta=1, const at::Scalar & alpha=1);
|
24 |
+
|
25 |
+
} // namespace cpu
|
26 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/avg_pool3d_compositeexplicitautogradnonfunctional_dispatch.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeexplicitautogradnonfunctional {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor avg_pool3d(const at::Tensor & self, at::IntArrayRef kernel_size, at::IntArrayRef stride={}, at::IntArrayRef padding=0, bool ceil_mode=false, bool count_include_pad=true, c10::optional<int64_t> divisor_override=c10::nullopt);
|
21 |
+
|
22 |
+
} // namespace compositeexplicitautogradnonfunctional
|
23 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/binomial_compositeexplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeexplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor & binomial_out(at::Tensor & out, const at::Tensor & count, const at::Tensor & prob, c10::optional<at::Generator> generator=c10::nullopt);
|
21 |
+
TORCH_API at::Tensor & binomial_outf(const at::Tensor & count, const at::Tensor & prob, c10::optional<at::Generator> generator, at::Tensor & out);
|
22 |
+
|
23 |
+
} // namespace compositeexplicitautograd
|
24 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/broadcast_tensors_ops.h
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API broadcast_tensors {
|
18 |
+
using schema = ::std::vector<at::Tensor> (at::TensorList);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::broadcast_tensors")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "broadcast_tensors(Tensor[] tensors) -> Tensor[]")
|
24 |
+
static ::std::vector<at::Tensor> call(at::TensorList tensors);
|
25 |
+
static ::std::vector<at::Tensor> redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList tensors);
|
26 |
+
};
|
27 |
+
|
28 |
+
}} // namespace at::_ops
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/clone_native.h
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API at::Tensor clone(const at::Tensor & self, c10::optional<at::MemoryFormat> memory_format=c10::nullopt);
|
20 |
+
TORCH_API at::Tensor & clone_out(const at::Tensor & self, c10::optional<at::MemoryFormat> memory_format, at::Tensor & out);
|
21 |
+
TORCH_API at::Tensor clone_nested(const at::Tensor & self, c10::optional<at::MemoryFormat> memory_format=c10::nullopt);
|
22 |
+
TORCH_API at::Tensor clone_sparse(const at::Tensor & self, c10::optional<at::MemoryFormat> memory_format=c10::nullopt);
|
23 |
+
TORCH_API at::Tensor clone_sparse_compressed(const at::Tensor & self, c10::optional<at::MemoryFormat> memory_format=c10::nullopt);
|
24 |
+
TORCH_API at::Tensor mkldnn_clone(const at::Tensor & self, c10::optional<at::MemoryFormat> memory_format=c10::nullopt);
|
25 |
+
TORCH_API at::Tensor quantized_clone(const at::Tensor & self, c10::optional<at::MemoryFormat> memory_format=c10::nullopt);
|
26 |
+
} // namespace native
|
27 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/corrcoef_ops.h
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API corrcoef {
|
18 |
+
using schema = at::Tensor (const at::Tensor &);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::corrcoef")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "corrcoef(Tensor self) -> Tensor")
|
24 |
+
static at::Tensor call(const at::Tensor & self);
|
25 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self);
|
26 |
+
};
|
27 |
+
|
28 |
+
}} // namespace at::_ops
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/cudnn_batch_norm_compositeexplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeexplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &> cudnn_batch_norm_out(at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::Tensor & out3, const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, const c10::optional<at::Tensor> & running_mean, const c10::optional<at::Tensor> & running_var, bool training, double exponential_average_factor, double epsilon);
|
21 |
+
TORCH_API ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &> cudnn_batch_norm_outf(const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, const c10::optional<at::Tensor> & running_mean, const c10::optional<at::Tensor> & running_var, bool training, double exponential_average_factor, double epsilon, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::Tensor & out3);
|
22 |
+
|
23 |
+
} // namespace compositeexplicitautograd
|
24 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/cudnn_is_acceptable.h
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/cudnn_is_acceptable_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::cudnn_is_acceptable(Tensor self) -> bool
|
26 |
+
inline bool cudnn_is_acceptable(const at::Tensor & self) {
|
27 |
+
return at::_ops::cudnn_is_acceptable::call(self);
|
28 |
+
}
|
29 |
+
|
30 |
+
}
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/erfc_cuda_dispatch.h
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cuda {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor erfc(const at::Tensor & self);
|
21 |
+
TORCH_API at::Tensor & erfc_out(at::Tensor & out, const at::Tensor & self);
|
22 |
+
TORCH_API at::Tensor & erfc_outf(const at::Tensor & self, at::Tensor & out);
|
23 |
+
TORCH_API at::Tensor & erfc_(at::Tensor & self);
|
24 |
+
|
25 |
+
} // namespace cuda
|
26 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/fake_quantize_per_tensor_affine_cachemask_native.h
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API ::std::tuple<at::Tensor &,at::Tensor &> fake_quantize_per_tensor_affine_cachemask_out(const at::Tensor & self, double scale, int64_t zero_point, int64_t quant_min, int64_t quant_max, at::Tensor & out0, at::Tensor & out1);
|
20 |
+
TORCH_API ::std::tuple<at::Tensor,at::Tensor> fake_quantize_per_tensor_affine_cachemask(const at::Tensor & self, double scale, int64_t zero_point, int64_t quant_min, int64_t quant_max);
|
21 |
+
} // namespace native
|
22 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/fbgemm_pack_gemm_matrix_fp16_native.h
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API at::Tensor fbgemm_pack_gemm_matrix_fp16(const at::Tensor & input);
|
20 |
+
} // namespace native
|
21 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/fft_irfft.h
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/fft_irfft_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::fft_irfft(Tensor self, SymInt? n=None, int dim=-1, str? norm=None) -> Tensor
|
26 |
+
inline at::Tensor fft_irfft(const at::Tensor & self, c10::optional<int64_t> n=c10::nullopt, int64_t dim=-1, c10::optional<c10::string_view> norm=c10::nullopt) {
|
27 |
+
return at::_ops::fft_irfft::call(self, n.has_value() ? c10::make_optional(c10::SymInt(*n)) : c10::nullopt, dim, norm);
|
28 |
+
}
|
29 |
+
namespace symint {
|
30 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
|
31 |
+
at::Tensor fft_irfft(const at::Tensor & self, c10::optional<int64_t> n=c10::nullopt, int64_t dim=-1, c10::optional<c10::string_view> norm=c10::nullopt) {
|
32 |
+
return at::_ops::fft_irfft::call(self, n.has_value() ? c10::make_optional(c10::SymInt(*n)) : c10::nullopt, dim, norm);
|
33 |
+
}
|
34 |
+
}
|
35 |
+
|
36 |
+
// aten::fft_irfft(Tensor self, SymInt? n=None, int dim=-1, str? norm=None) -> Tensor
|
37 |
+
inline at::Tensor fft_irfft_symint(const at::Tensor & self, c10::optional<c10::SymInt> n=c10::nullopt, int64_t dim=-1, c10::optional<c10::string_view> norm=c10::nullopt) {
|
38 |
+
return at::_ops::fft_irfft::call(self, n, dim, norm);
|
39 |
+
}
|
40 |
+
namespace symint {
|
41 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
|
42 |
+
at::Tensor fft_irfft(const at::Tensor & self, c10::optional<c10::SymInt> n=c10::nullopt, int64_t dim=-1, c10::optional<c10::string_view> norm=c10::nullopt) {
|
43 |
+
return at::_ops::fft_irfft::call(self, n, dim, norm);
|
44 |
+
}
|
45 |
+
}
|
46 |
+
|
47 |
+
// aten::fft_irfft.out(Tensor self, SymInt? n=None, int dim=-1, str? norm=None, *, Tensor(a!) out) -> Tensor(a!)
|
48 |
+
inline at::Tensor & fft_irfft_out(at::Tensor & out, const at::Tensor & self, c10::optional<int64_t> n=c10::nullopt, int64_t dim=-1, c10::optional<c10::string_view> norm=c10::nullopt) {
|
49 |
+
return at::_ops::fft_irfft_out::call(self, n.has_value() ? c10::make_optional(c10::SymInt(*n)) : c10::nullopt, dim, norm, out);
|
50 |
+
}
|
51 |
+
namespace symint {
|
52 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
|
53 |
+
at::Tensor & fft_irfft_out(at::Tensor & out, const at::Tensor & self, c10::optional<int64_t> n=c10::nullopt, int64_t dim=-1, c10::optional<c10::string_view> norm=c10::nullopt) {
|
54 |
+
return at::_ops::fft_irfft_out::call(self, n.has_value() ? c10::make_optional(c10::SymInt(*n)) : c10::nullopt, dim, norm, out);
|
55 |
+
}
|
56 |
+
}
|
57 |
+
|
58 |
+
// aten::fft_irfft.out(Tensor self, SymInt? n=None, int dim=-1, str? norm=None, *, Tensor(a!) out) -> Tensor(a!)
|
59 |
+
inline at::Tensor & fft_irfft_outf(const at::Tensor & self, c10::optional<int64_t> n, int64_t dim, c10::optional<c10::string_view> norm, at::Tensor & out) {
|
60 |
+
return at::_ops::fft_irfft_out::call(self, n.has_value() ? c10::make_optional(c10::SymInt(*n)) : c10::nullopt, dim, norm, out);
|
61 |
+
}
|
62 |
+
namespace symint {
|
63 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
|
64 |
+
at::Tensor & fft_irfft_outf(const at::Tensor & self, c10::optional<int64_t> n, int64_t dim, c10::optional<c10::string_view> norm, at::Tensor & out) {
|
65 |
+
return at::_ops::fft_irfft_out::call(self, n.has_value() ? c10::make_optional(c10::SymInt(*n)) : c10::nullopt, dim, norm, out);
|
66 |
+
}
|
67 |
+
}
|
68 |
+
|
69 |
+
// aten::fft_irfft.out(Tensor self, SymInt? n=None, int dim=-1, str? norm=None, *, Tensor(a!) out) -> Tensor(a!)
|
70 |
+
inline at::Tensor & fft_irfft_symint_out(at::Tensor & out, const at::Tensor & self, c10::optional<c10::SymInt> n=c10::nullopt, int64_t dim=-1, c10::optional<c10::string_view> norm=c10::nullopt) {
|
71 |
+
return at::_ops::fft_irfft_out::call(self, n, dim, norm, out);
|
72 |
+
}
|
73 |
+
namespace symint {
|
74 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
|
75 |
+
at::Tensor & fft_irfft_out(at::Tensor & out, const at::Tensor & self, c10::optional<c10::SymInt> n=c10::nullopt, int64_t dim=-1, c10::optional<c10::string_view> norm=c10::nullopt) {
|
76 |
+
return at::_ops::fft_irfft_out::call(self, n, dim, norm, out);
|
77 |
+
}
|
78 |
+
}
|
79 |
+
|
80 |
+
// aten::fft_irfft.out(Tensor self, SymInt? n=None, int dim=-1, str? norm=None, *, Tensor(a!) out) -> Tensor(a!)
|
81 |
+
inline at::Tensor & fft_irfft_symint_outf(const at::Tensor & self, c10::optional<c10::SymInt> n, int64_t dim, c10::optional<c10::string_view> norm, at::Tensor & out) {
|
82 |
+
return at::_ops::fft_irfft_out::call(self, n, dim, norm, out);
|
83 |
+
}
|
84 |
+
namespace symint {
|
85 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
|
86 |
+
at::Tensor & fft_irfft_outf(const at::Tensor & self, c10::optional<c10::SymInt> n, int64_t dim, c10::optional<c10::string_view> norm, at::Tensor & out) {
|
87 |
+
return at::_ops::fft_irfft_out::call(self, n, dim, norm, out);
|
88 |
+
}
|
89 |
+
}
|
90 |
+
|
91 |
+
}
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/fft_rfft2_ops.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API fft_rfft2 {
|
18 |
+
using schema = at::Tensor (const at::Tensor &, at::OptionalSymIntArrayRef, at::IntArrayRef, c10::optional<c10::string_view>);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::fft_rfft2")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "fft_rfft2(Tensor self, SymInt[1]? s=None, int[1] dim=[-2,-1], str? norm=None) -> Tensor")
|
24 |
+
static at::Tensor call(const at::Tensor & self, at::OptionalSymIntArrayRef s, at::IntArrayRef dim, c10::optional<c10::string_view> norm);
|
25 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, at::OptionalSymIntArrayRef s, at::IntArrayRef dim, c10::optional<c10::string_view> norm);
|
26 |
+
};
|
27 |
+
|
28 |
+
struct TORCH_API fft_rfft2_out {
|
29 |
+
using schema = at::Tensor & (const at::Tensor &, at::OptionalSymIntArrayRef, at::IntArrayRef, c10::optional<c10::string_view>, at::Tensor &);
|
30 |
+
using ptr_schema = schema*;
|
31 |
+
// See Note [static constexpr char* members for windows NVCC]
|
32 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::fft_rfft2")
|
33 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
|
34 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "fft_rfft2.out(Tensor self, SymInt[1]? s=None, int[1] dim=[-2,-1], str? norm=None, *, Tensor(a!) out) -> Tensor(a!)")
|
35 |
+
static at::Tensor & call(const at::Tensor & self, at::OptionalSymIntArrayRef s, at::IntArrayRef dim, c10::optional<c10::string_view> norm, at::Tensor & out);
|
36 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, at::OptionalSymIntArrayRef s, at::IntArrayRef dim, c10::optional<c10::string_view> norm, at::Tensor & out);
|
37 |
+
};
|
38 |
+
|
39 |
+
}} // namespace at::_ops
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/floor_divide_ops.h
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API floor_divide {
|
18 |
+
using schema = at::Tensor (const at::Tensor &, const at::Tensor &);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::floor_divide")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "floor_divide(Tensor self, Tensor other) -> Tensor")
|
24 |
+
static at::Tensor call(const at::Tensor & self, const at::Tensor & other);
|
25 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & other);
|
26 |
+
};
|
27 |
+
|
28 |
+
struct TORCH_API floor_divide__Tensor {
|
29 |
+
using schema = at::Tensor & (at::Tensor &, const at::Tensor &);
|
30 |
+
using ptr_schema = schema*;
|
31 |
+
// See Note [static constexpr char* members for windows NVCC]
|
32 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::floor_divide_")
|
33 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "Tensor")
|
34 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "floor_divide_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)")
|
35 |
+
static at::Tensor & call(at::Tensor & self, const at::Tensor & other);
|
36 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, at::Tensor & self, const at::Tensor & other);
|
37 |
+
};
|
38 |
+
|
39 |
+
struct TORCH_API floor_divide_out {
|
40 |
+
using schema = at::Tensor & (const at::Tensor &, const at::Tensor &, at::Tensor &);
|
41 |
+
using ptr_schema = schema*;
|
42 |
+
// See Note [static constexpr char* members for windows NVCC]
|
43 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::floor_divide")
|
44 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
|
45 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "floor_divide.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)")
|
46 |
+
static at::Tensor & call(const at::Tensor & self, const at::Tensor & other, at::Tensor & out);
|
47 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & other, at::Tensor & out);
|
48 |
+
};
|
49 |
+
|
50 |
+
struct TORCH_API floor_divide_Scalar {
|
51 |
+
using schema = at::Tensor (const at::Tensor &, const at::Scalar &);
|
52 |
+
using ptr_schema = schema*;
|
53 |
+
// See Note [static constexpr char* members for windows NVCC]
|
54 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::floor_divide")
|
55 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "Scalar")
|
56 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "floor_divide.Scalar(Tensor self, Scalar other) -> Tensor")
|
57 |
+
static at::Tensor call(const at::Tensor & self, const at::Scalar & other);
|
58 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Scalar & other);
|
59 |
+
};
|
60 |
+
|
61 |
+
struct TORCH_API floor_divide__Scalar {
|
62 |
+
using schema = at::Tensor & (at::Tensor &, const at::Scalar &);
|
63 |
+
using ptr_schema = schema*;
|
64 |
+
// See Note [static constexpr char* members for windows NVCC]
|
65 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::floor_divide_")
|
66 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "Scalar")
|
67 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "floor_divide_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)")
|
68 |
+
static at::Tensor & call(at::Tensor & self, const at::Scalar & other);
|
69 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, at::Tensor & self, const at::Scalar & other);
|
70 |
+
};
|
71 |
+
|
72 |
+
struct TORCH_API floor_divide_Scalar_out {
|
73 |
+
using schema = at::Tensor & (const at::Tensor &, const at::Scalar &, at::Tensor &);
|
74 |
+
using ptr_schema = schema*;
|
75 |
+
// See Note [static constexpr char* members for windows NVCC]
|
76 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::floor_divide")
|
77 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "Scalar_out")
|
78 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "floor_divide.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!)")
|
79 |
+
static at::Tensor & call(const at::Tensor & self, const at::Scalar & other, at::Tensor & out);
|
80 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Scalar & other, at::Tensor & out);
|
81 |
+
};
|
82 |
+
|
83 |
+
}} // namespace at::_ops
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/gather_compositeexplicitautogradnonfunctional_dispatch.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeexplicitautogradnonfunctional {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor gather(const at::Tensor & self, int64_t dim, const at::Tensor & index, bool sparse_grad=false);
|
21 |
+
|
22 |
+
} // namespace compositeexplicitautogradnonfunctional
|
23 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/igammac_meta.h
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeMetaFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/TensorIterator.h>
|
13 |
+
#include <ATen/TensorMeta.h>
|
14 |
+
#include <tuple>
|
15 |
+
#include <vector>
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace meta {
|
19 |
+
|
20 |
+
struct TORCH_API structured_igammac : public TensorIteratorBase {
|
21 |
+
|
22 |
+
|
23 |
+
void meta(const at::Tensor & self, const at::Tensor & other);
|
24 |
+
};
|
25 |
+
|
26 |
+
} // namespace native
|
27 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/index_put_native.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API at::Tensor index_put(const at::Tensor & self, const c10::List<c10::optional<at::Tensor>> & indices, const at::Tensor & values, bool accumulate=false);
|
20 |
+
TORCH_API at::Tensor & index_put_out(const at::Tensor & self, const c10::List<c10::optional<at::Tensor>> & indices, const at::Tensor & values, bool accumulate, at::Tensor & out);
|
21 |
+
TORCH_API at::Tensor & index_put_(at::Tensor & self, const c10::List<c10::optional<at::Tensor>> & indices, const at::Tensor & values, bool accumulate=false);
|
22 |
+
} // namespace native
|
23 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/lift_fresh_copy_ops.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API lift_fresh_copy {
|
18 |
+
using schema = at::Tensor (const at::Tensor &);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::lift_fresh_copy")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "lift_fresh_copy(Tensor self) -> Tensor")
|
24 |
+
static at::Tensor call(const at::Tensor & self);
|
25 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self);
|
26 |
+
};
|
27 |
+
|
28 |
+
struct TORCH_API lift_fresh_copy_out {
|
29 |
+
using schema = at::Tensor & (const at::Tensor &, at::Tensor &);
|
30 |
+
using ptr_schema = schema*;
|
31 |
+
// See Note [static constexpr char* members for windows NVCC]
|
32 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::lift_fresh_copy")
|
33 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
|
34 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "lift_fresh_copy.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)")
|
35 |
+
static at::Tensor & call(const at::Tensor & self, at::Tensor & out);
|
36 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, at::Tensor & out);
|
37 |
+
};
|
38 |
+
|
39 |
+
}} // namespace at::_ops
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_cholesky_ex.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/linalg_cholesky_ex_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::linalg_cholesky_ex(Tensor self, *, bool upper=False, bool check_errors=False) -> (Tensor L, Tensor info)
|
26 |
+
inline ::std::tuple<at::Tensor,at::Tensor> linalg_cholesky_ex(const at::Tensor & self, bool upper=false, bool check_errors=false) {
|
27 |
+
return at::_ops::linalg_cholesky_ex::call(self, upper, check_errors);
|
28 |
+
}
|
29 |
+
|
30 |
+
// aten::linalg_cholesky_ex.L(Tensor self, *, bool upper=False, bool check_errors=False, Tensor(a!) L, Tensor(b!) info) -> (Tensor(a!) L, Tensor(b!) info)
|
31 |
+
inline ::std::tuple<at::Tensor &,at::Tensor &> linalg_cholesky_ex_out(at::Tensor & L, at::Tensor & info, const at::Tensor & self, bool upper=false, bool check_errors=false) {
|
32 |
+
return at::_ops::linalg_cholesky_ex_L::call(self, upper, check_errors, L, info);
|
33 |
+
}
|
34 |
+
// aten::linalg_cholesky_ex.L(Tensor self, *, bool upper=False, bool check_errors=False, Tensor(a!) L, Tensor(b!) info) -> (Tensor(a!) L, Tensor(b!) info)
|
35 |
+
inline ::std::tuple<at::Tensor &,at::Tensor &> linalg_cholesky_ex_outf(const at::Tensor & self, bool upper, bool check_errors, at::Tensor & L, at::Tensor & info) {
|
36 |
+
return at::_ops::linalg_cholesky_ex_L::call(self, upper, check_errors, L, info);
|
37 |
+
}
|
38 |
+
|
39 |
+
}
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_ldl_factor_native.h
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API ::std::tuple<at::Tensor,at::Tensor> linalg_ldl_factor(const at::Tensor & self, bool hermitian=false);
|
20 |
+
TORCH_API ::std::tuple<at::Tensor &,at::Tensor &> linalg_ldl_factor_out(const at::Tensor & self, bool hermitian, at::Tensor & LD, at::Tensor & pivots);
|
21 |
+
} // namespace native
|
22 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_solve_triangular_ops.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API linalg_solve_triangular_out {
|
18 |
+
using schema = at::Tensor & (const at::Tensor &, const at::Tensor &, bool, bool, bool, at::Tensor &);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::linalg_solve_triangular")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "linalg_solve_triangular.out(Tensor self, Tensor B, *, bool upper, bool left=True, bool unitriangular=False, Tensor(a!) out) -> Tensor(a!)")
|
24 |
+
static at::Tensor & call(const at::Tensor & self, const at::Tensor & B, bool upper, bool left, bool unitriangular, at::Tensor & out);
|
25 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & B, bool upper, bool left, bool unitriangular, at::Tensor & out);
|
26 |
+
};
|
27 |
+
|
28 |
+
struct TORCH_API linalg_solve_triangular {
|
29 |
+
using schema = at::Tensor (const at::Tensor &, const at::Tensor &, bool, bool, bool);
|
30 |
+
using ptr_schema = schema*;
|
31 |
+
// See Note [static constexpr char* members for windows NVCC]
|
32 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::linalg_solve_triangular")
|
33 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
34 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "linalg_solve_triangular(Tensor self, Tensor B, *, bool upper, bool left=True, bool unitriangular=False) -> Tensor")
|
35 |
+
static at::Tensor call(const at::Tensor & self, const at::Tensor & B, bool upper, bool left, bool unitriangular);
|
36 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & B, bool upper, bool left, bool unitriangular);
|
37 |
+
};
|
38 |
+
|
39 |
+
}} // namespace at::_ops
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/lu_unpack_meta.h
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeMetaFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/TensorIterator.h>
|
13 |
+
#include <ATen/TensorMeta.h>
|
14 |
+
#include <tuple>
|
15 |
+
#include <vector>
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace meta {
|
19 |
+
|
20 |
+
struct TORCH_API structured_lu_unpack : public at::impl::MetaBase {
|
21 |
+
|
22 |
+
|
23 |
+
void meta(const at::Tensor & LU_data, const at::Tensor & LU_pivots, bool unpack_data, bool unpack_pivots);
|
24 |
+
};
|
25 |
+
|
26 |
+
} // namespace native
|
27 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/max_pool1d_with_indices_ops.h
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API max_pool1d_with_indices {
|
18 |
+
using schema = ::std::tuple<at::Tensor,at::Tensor> (const at::Tensor &, at::IntArrayRef, at::IntArrayRef, at::IntArrayRef, at::IntArrayRef, bool);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::max_pool1d_with_indices")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "max_pool1d_with_indices(Tensor self, int[1] kernel_size, int[1] stride=[], int[1] padding=0, int[1] dilation=1, bool ceil_mode=False) -> (Tensor, Tensor)")
|
24 |
+
static ::std::tuple<at::Tensor,at::Tensor> call(const at::Tensor & self, at::IntArrayRef kernel_size, at::IntArrayRef stride, at::IntArrayRef padding, at::IntArrayRef dilation, bool ceil_mode);
|
25 |
+
static ::std::tuple<at::Tensor,at::Tensor> redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, at::IntArrayRef kernel_size, at::IntArrayRef stride, at::IntArrayRef padding, at::IntArrayRef dilation, bool ceil_mode);
|
26 |
+
};
|
27 |
+
|
28 |
+
}} // namespace at::_ops
|