Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +3 -0
- lm-evaluation-harness/tests/testdata/anagrams1-v0-greedy_until +1 -0
- lm-evaluation-harness/tests/testdata/anli_r3-v0-loglikelihood +1 -0
- lm-evaluation-harness/tests/testdata/anli_r3-v0-res.json +1 -0
- lm-evaluation-harness/tests/testdata/arithmetic_2ds-v0-res.json +1 -0
- lm-evaluation-harness/tests/testdata/arithmetic_5ds-v0-loglikelihood +1 -0
- lm-evaluation-harness/tests/testdata/blimp_determiner_noun_agreement_1-v0-loglikelihood +1 -0
- lm-evaluation-harness/tests/testdata/blimp_drop_argument-v0-loglikelihood +1 -0
- lm-evaluation-harness/tests/testdata/blimp_existential_there_subject_raising-v0-res.json +1 -0
- lm-evaluation-harness/tests/testdata/blimp_npi_present_2-v0-loglikelihood +1 -0
- lm-evaluation-harness/tests/testdata/blimp_principle_A_case_2-v0-loglikelihood +1 -0
- lm-evaluation-harness/tests/testdata/blimp_principle_A_domain_3-v0-loglikelihood +1 -0
- lm-evaluation-harness/tests/testdata/blimp_principle_A_domain_3-v0-res.json +1 -0
- lm-evaluation-harness/tests/testdata/blimp_principle_A_reconstruction-v0-loglikelihood +1 -0
- lm-evaluation-harness/tests/testdata/blimp_sentential_negation_npi_scope-v0-res.json +1 -0
- lm-evaluation-harness/tests/testdata/blimp_sentential_subject_island-v0-loglikelihood +1 -0
- lm-evaluation-harness/tests/testdata/blimp_superlative_quantifiers_2-v0-loglikelihood +1 -0
- lm-evaluation-harness/tests/testdata/blimp_wh_vs_that_with_gap_long_distance-v0-res.json +1 -0
- lm-evaluation-harness/tests/testdata/crows_pairs_english_age-v0-res.json +1 -0
- lm-evaluation-harness/tests/testdata/crows_pairs_english_autre-v0-res.json +1 -0
- lm-evaluation-harness/tests/testdata/crows_pairs_english_sexual_orientation-v0-res.json +1 -0
- lm-evaluation-harness/tests/testdata/drop-v0-res.json +1 -0
- lm-evaluation-harness/tests/testdata/drop-v1-greedy_until +1 -0
- lm-evaluation-harness/tests/testdata/headqa_es-v0-res.json +1 -0
- lm-evaluation-harness/tests/testdata/hendrycksTest-college_medicine-v0-loglikelihood +1 -0
- lm-evaluation-harness/tests/testdata/hendrycksTest-global_facts-v0-res.json +1 -0
- lm-evaluation-harness/tests/testdata/hendrycksTest-high_school_chemistry-v0-loglikelihood +1 -0
- lm-evaluation-harness/tests/testdata/hendrycksTest-high_school_government_and_politics-v0-res.json +1 -0
- lm-evaluation-harness/tests/testdata/hendrycksTest-high_school_us_history-v0-loglikelihood +1 -0
- lm-evaluation-harness/tests/testdata/hendrycksTest-professional_accounting-v0-res.json +1 -0
- lm-evaluation-harness/tests/testdata/hendrycksTest-public_relations-v0-loglikelihood +1 -0
- lm-evaluation-harness/tests/testdata/math_counting_and_prob-v1-greedy_until +1 -0
- lm-evaluation-harness/tests/testdata/math_precalc-v0-greedy_until +1 -0
- lm-evaluation-harness/tests/testdata/mc_taco-v0-loglikelihood +1 -0
- lm-evaluation-harness/tests/testdata/mutual_plus-v1-res.json +1 -0
- lm-evaluation-harness/tests/testdata/pile_opensubtitles-v1-loglikelihood_rolling +1 -0
- lm-evaluation-harness/tests/testdata/qa4mre_2011-v0-loglikelihood +1 -0
- lm-evaluation-harness/tests/testdata/squad2-v0-loglikelihood +1 -0
- lm-evaluation-harness/tests/testdata/wmt16-en-de-v0-res.json +1 -0
- venv/lib/python3.10/site-packages/nvidia/cuda_cupti/lib/libcheckpoint.so +3 -0
- venv/lib/python3.10/site-packages/nvidia/cuda_cupti/lib/libcupti.so.12 +3 -0
- venv/lib/python3.10/site-packages/nvidia/cuda_cupti/lib/libnvperf_target.so +3 -0
- venv/lib/python3.10/site-packages/transformers/models/bloom/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/bloom/__pycache__/configuration_bloom.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/bloom/__pycache__/convert_bloom_original_checkpoint_to_pytorch.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/bloom/__pycache__/modeling_bloom.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/bloom/__pycache__/modeling_flax_bloom.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/bloom/__pycache__/tokenization_bloom_fast.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/bloom/modeling_bloom.py +1243 -0
- venv/lib/python3.10/site-packages/transformers/models/codegen/__init__.py +73 -0
.gitattributes
CHANGED
|
@@ -83,3 +83,6 @@ venv/lib/python3.10/site-packages/torch/lib/libtorch_cuda_linalg.so filter=lfs d
|
|
| 83 |
venv/lib/python3.10/site-packages/pyarrow/libarrow_flight.so.1600 filter=lfs diff=lfs merge=lfs -text
|
| 84 |
venv/lib/python3.10/site-packages/pyarrow/libarrow.so.1600 filter=lfs diff=lfs merge=lfs -text
|
| 85 |
venv/lib/python3.10/site-packages/regex/_regex.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
venv/lib/python3.10/site-packages/pyarrow/libarrow_flight.so.1600 filter=lfs diff=lfs merge=lfs -text
|
| 84 |
venv/lib/python3.10/site-packages/pyarrow/libarrow.so.1600 filter=lfs diff=lfs merge=lfs -text
|
| 85 |
venv/lib/python3.10/site-packages/regex/_regex.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
| 86 |
+
venv/lib/python3.10/site-packages/nvidia/cuda_cupti/lib/libcheckpoint.so filter=lfs diff=lfs merge=lfs -text
|
| 87 |
+
venv/lib/python3.10/site-packages/nvidia/cuda_cupti/lib/libcupti.so.12 filter=lfs diff=lfs merge=lfs -text
|
| 88 |
+
venv/lib/python3.10/site-packages/nvidia/cuda_cupti/lib/libnvperf_target.so filter=lfs diff=lfs merge=lfs -text
|
lm-evaluation-harness/tests/testdata/anagrams1-v0-greedy_until
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
7c0c5246d3f751f39119a5629ac1d4b2c6fd2a315f78d6de9b2c387e24e3fef1
|
lm-evaluation-harness/tests/testdata/anli_r3-v0-loglikelihood
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
6b6e5c6a794f2fbff78b7aa24fe0c90156039334bbd1cb34f7af9fc6e6183845
|
lm-evaluation-harness/tests/testdata/anli_r3-v0-res.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"results": {"anli_r3": {"acc": 0.31916666666666665, "acc_stderr": 0.01346230971200514}}, "versions": {"anli_r3": 0}}
|
lm-evaluation-harness/tests/testdata/arithmetic_2ds-v0-res.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"results": {"arithmetic_2ds": {"acc": 0.0, "acc_stderr": 0.0}}, "versions": {"arithmetic_2ds": 0}}
|
lm-evaluation-harness/tests/testdata/arithmetic_5ds-v0-loglikelihood
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
2888d6d098a5ef8c1e7f0d8295ba80826e2e04e431f57508dfb71d53e1cd4604
|
lm-evaluation-harness/tests/testdata/blimp_determiner_noun_agreement_1-v0-loglikelihood
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
2df8cc7f17089f7e8c7d974dcb324c809d30ef059a5be22aed6b69f44230809f
|
lm-evaluation-harness/tests/testdata/blimp_drop_argument-v0-loglikelihood
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
616109e63f162dcd31a632943e7ef0c9e0431afeb179e83e9b04b39007b16f5b
|
lm-evaluation-harness/tests/testdata/blimp_existential_there_subject_raising-v0-res.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"results": {"blimp_existential_there_subject_raising": {"acc": 0.485, "acc_stderr": 0.0158121796418149}}, "versions": {"blimp_existential_there_subject_raising": 0}}
|
lm-evaluation-harness/tests/testdata/blimp_npi_present_2-v0-loglikelihood
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
fdb688ac6259bb65d234ef0a36e9a9ee449f9608f633b12e1943b462aead8e17
|
lm-evaluation-harness/tests/testdata/blimp_principle_A_case_2-v0-loglikelihood
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
cd68adb65c891d672e22bf53c054b2083ab08bc1da43951732b409c942d14bc7
|
lm-evaluation-harness/tests/testdata/blimp_principle_A_domain_3-v0-loglikelihood
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
38454befedcf1f3f6ef27d3bef9ccfdfb3e94a7ab32d86a63493a920d2d50093
|
lm-evaluation-harness/tests/testdata/blimp_principle_A_domain_3-v0-res.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"results": {"blimp_principle_A_domain_3": {"acc": 0.485, "acc_stderr": 0.0158121796418149}}, "versions": {"blimp_principle_A_domain_3": 0}}
|
lm-evaluation-harness/tests/testdata/blimp_principle_A_reconstruction-v0-loglikelihood
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
894efedfd8750d5b8de6157f9b2ed2b51b5290d3a78ea9b041fc62d34e96efbc
|
lm-evaluation-harness/tests/testdata/blimp_sentential_negation_npi_scope-v0-res.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"results": {"blimp_sentential_negation_npi_scope": {"acc": 0.485, "acc_stderr": 0.0158121796418149}}, "versions": {"blimp_sentential_negation_npi_scope": 0}}
|
lm-evaluation-harness/tests/testdata/blimp_sentential_subject_island-v0-loglikelihood
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
80f5f98fad26240de2767fe58c4b18d864df41cbfa76f06c84c3fce9f14f4833
|
lm-evaluation-harness/tests/testdata/blimp_superlative_quantifiers_2-v0-loglikelihood
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
59c20ff0f632cf42afc74ecc682cf92e5e740417b01e6cf9a610a3bc544d2ea5
|
lm-evaluation-harness/tests/testdata/blimp_wh_vs_that_with_gap_long_distance-v0-res.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"results": {"blimp_wh_vs_that_with_gap_long_distance": {"acc": 0.485, "acc_stderr": 0.0158121796418149}}, "versions": {"blimp_wh_vs_that_with_gap_long_distance": 0}}
|
lm-evaluation-harness/tests/testdata/crows_pairs_english_age-v0-res.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"results": {"crows_pairs_english_age": {"likelihood_difference": 0.3160680928470684, "likelihood_difference_stderr": 0.02397758321605678, "pct_stereotype": 0.43956043956043955, "pct_stereotype_stderr": 0.05231815698566189}}, "versions": {"crows_pairs_english_age": 0}}
|
lm-evaluation-harness/tests/testdata/crows_pairs_english_autre-v0-res.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"results": {"crows_pairs_english_autre": {"likelihood_difference": 0.3424336593343321, "likelihood_difference_stderr": 0.08588068996335849, "pct_stereotype": 0.2727272727272727, "pct_stereotype_stderr": 0.14083575804390605}}, "versions": {"crows_pairs_english_autre": 0}}
|
lm-evaluation-harness/tests/testdata/crows_pairs_english_sexual_orientation-v0-res.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"results": {"crows_pairs_english_sexual_orientation": {"likelihood_difference": 0.31947594049467243, "likelihood_difference_stderr": 0.024404952720497735, "pct_stereotype": 0.43010752688172044, "pct_stereotype_stderr": 0.051616798980291805}}, "versions": {"crows_pairs_english_sexual_orientation": 0}}
|
lm-evaluation-harness/tests/testdata/drop-v0-res.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"results": {"drop": {"em": 0.0, "em_stderr": 0.0, "f1": 0.0, "f1_stderr": 0.0}}, "versions": {"drop": 0}}
|
lm-evaluation-harness/tests/testdata/drop-v1-greedy_until
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
a670f911ab2999d72db15f534b22703d19e7837edbda4f9f199ad587f7aae6b2
|
lm-evaluation-harness/tests/testdata/headqa_es-v0-res.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"results": {"headqa_es": {"acc": 0.23559445660102116, "acc_norm": 0.25018234865062, "acc_norm_stderr": 0.008272783230806014, "acc_stderr": 0.008105688874297972}}, "versions": {"headqa_es": 0}}
|
lm-evaluation-harness/tests/testdata/hendrycksTest-college_medicine-v0-loglikelihood
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
dd6e0a9be1407890e9f8cd4434fb6aa4752ab3d2473837fd465ad99f60ad685e
|
lm-evaluation-harness/tests/testdata/hendrycksTest-global_facts-v0-res.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"results": {"hendrycksTest-global_facts": {"acc": 0.23, "acc_norm": 0.23, "acc_norm_stderr": 0.04229525846816507, "acc_stderr": 0.04229525846816507}}, "versions": {"hendrycksTest-global_facts": 0}}
|
lm-evaluation-harness/tests/testdata/hendrycksTest-high_school_chemistry-v0-loglikelihood
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
f4f338e45415c4b5ee7f1d249155bcd910c8401bd1436760a5ec61cb6bb211b6
|
lm-evaluation-harness/tests/testdata/hendrycksTest-high_school_government_and_politics-v0-res.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"results": {"hendrycksTest-high_school_government_and_politics": {"acc": 0.24352331606217617, "acc_norm": 0.23834196891191708, "acc_norm_stderr": 0.03074890536390988, "acc_stderr": 0.030975436386845436}}, "versions": {"hendrycksTest-high_school_government_and_politics": 0}}
|
lm-evaluation-harness/tests/testdata/hendrycksTest-high_school_us_history-v0-loglikelihood
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
8c65c1a28330dd001d395ac11f1bb80c3b33f5935f503e74067aef6e9e1d9d9b
|
lm-evaluation-harness/tests/testdata/hendrycksTest-professional_accounting-v0-res.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"results": {"hendrycksTest-professional_accounting": {"acc": 0.2553191489361702, "acc_norm": 0.26595744680851063, "acc_norm_stderr": 0.026358065698880582, "acc_stderr": 0.026011992930902006}}, "versions": {"hendrycksTest-professional_accounting": 0}}
|
lm-evaluation-harness/tests/testdata/hendrycksTest-public_relations-v0-loglikelihood
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
ab70f500cf24e876f6ae6bdc27525a1d6074fa9b6ea97770255d9fc2559b36ff
|
lm-evaluation-harness/tests/testdata/math_counting_and_prob-v1-greedy_until
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
2aa9ae43ee9dbb2457525247d7b65358632c5eaa9cbfc40cf95a4f17f5d942ad
|
lm-evaluation-harness/tests/testdata/math_precalc-v0-greedy_until
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
bc834b06fd79473ca6fe38a51b714aad0bf0478c1b0eec787eca34dbdf69cb71
|
lm-evaluation-harness/tests/testdata/mc_taco-v0-loglikelihood
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
1811808ef05afd5f30ffc3471622a3dd7a1b681b17a2f7616695ad6b2a45943c
|
lm-evaluation-harness/tests/testdata/mutual_plus-v1-res.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"results": {"mutual_plus": {"mrr": 0.5275583145221953, "mrr_stderr": 0.009940894824430708, "r@1": 0.26297968397291194, "r@1_stderr": 0.01479889176605113, "r@2": 0.5, "r@2_stderr": 0.01680731613632036}}, "versions": {"mutual_plus": 1}}
|
lm-evaluation-harness/tests/testdata/pile_opensubtitles-v1-loglikelihood_rolling
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
0f1c23a1f4ddec0c2b1ff34de8d1505b0eb9e2868d8edbcc1b6de13d02f32036
|
lm-evaluation-harness/tests/testdata/qa4mre_2011-v0-loglikelihood
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
0d09f17c65768e797633494d2d218e4e46a26f718cab8b0bf3d156b073a8c437
|
lm-evaluation-harness/tests/testdata/squad2-v0-loglikelihood
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
287e87cc6878debcc80d9b6df4e2d0a74ed29068e0e0a80906c8441843a17cee
|
lm-evaluation-harness/tests/testdata/wmt16-en-de-v0-res.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"results": {"wmt16-en-de": {"bleu": 0.0, "bleu_stderr": 0.0, "chrf": 0.010909486120840577, "chrf_stderr": 0.000122611124711072, "ter": 1.0, "ter_stderr": 0.0}}, "versions": {"wmt16-en-de": 0}}
|
venv/lib/python3.10/site-packages/nvidia/cuda_cupti/lib/libcheckpoint.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1626ff119582bca46605bc6d49769ab75314b9993dd647bd64a90dec747bc843
|
| 3 |
+
size 1534104
|
venv/lib/python3.10/site-packages/nvidia/cuda_cupti/lib/libcupti.so.12
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:abc63100e9cf516b8ed1fa25354ae53dbfe8df4838ac525d8d738332c2198dc2
|
| 3 |
+
size 7419504
|
venv/lib/python3.10/site-packages/nvidia/cuda_cupti/lib/libnvperf_target.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fa2587c8d211fbc85e8b88cca0bcebe78c8cc40c81b0c3763ce57ac9e63f0669
|
| 3 |
+
size 5895416
|
venv/lib/python3.10/site-packages/transformers/models/bloom/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (1.56 kB). View file
|
|
|
venv/lib/python3.10/site-packages/transformers/models/bloom/__pycache__/configuration_bloom.cpython-310.pyc
ADDED
|
Binary file (8.79 kB). View file
|
|
|
venv/lib/python3.10/site-packages/transformers/models/bloom/__pycache__/convert_bloom_original_checkpoint_to_pytorch.cpython-310.pyc
ADDED
|
Binary file (6.27 kB). View file
|
|
|
venv/lib/python3.10/site-packages/transformers/models/bloom/__pycache__/modeling_bloom.cpython-310.pyc
ADDED
|
Binary file (35.4 kB). View file
|
|
|
venv/lib/python3.10/site-packages/transformers/models/bloom/__pycache__/modeling_flax_bloom.cpython-310.pyc
ADDED
|
Binary file (21.2 kB). View file
|
|
|
venv/lib/python3.10/site-packages/transformers/models/bloom/__pycache__/tokenization_bloom_fast.cpython-310.pyc
ADDED
|
Binary file (5.7 kB). View file
|
|
|
venv/lib/python3.10/site-packages/transformers/models/bloom/modeling_bloom.py
ADDED
|
@@ -0,0 +1,1243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2022 HuggingFace Inc. team and BigScience workshop.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
"""PyTorch BLOOM model."""
|
| 16 |
+
|
| 17 |
+
import math
|
| 18 |
+
import warnings
|
| 19 |
+
from typing import Optional, Tuple, Union
|
| 20 |
+
|
| 21 |
+
import torch
|
| 22 |
+
import torch.utils.checkpoint
|
| 23 |
+
from torch import nn
|
| 24 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, LayerNorm, MSELoss
|
| 25 |
+
from torch.nn import functional as F
|
| 26 |
+
|
| 27 |
+
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
|
| 28 |
+
from ...modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
|
| 29 |
+
from ...modeling_outputs import (
|
| 30 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
| 31 |
+
CausalLMOutputWithCrossAttentions,
|
| 32 |
+
QuestionAnsweringModelOutput,
|
| 33 |
+
SequenceClassifierOutputWithPast,
|
| 34 |
+
TokenClassifierOutput,
|
| 35 |
+
)
|
| 36 |
+
from ...modeling_utils import PreTrainedModel
|
| 37 |
+
from ...utils import logging
|
| 38 |
+
from .configuration_bloom import BloomConfig
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
logger = logging.get_logger(__name__)
|
| 42 |
+
|
| 43 |
+
_CHECKPOINT_FOR_DOC = "bigscience/bloom-560m"
|
| 44 |
+
_CONFIG_FOR_DOC = "BloomConfig"
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
from ..deprecated._archive_maps import BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def build_alibi_tensor(attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype) -> torch.Tensor:
|
| 51 |
+
"""
|
| 52 |
+
Link to paper: https://arxiv.org/abs/2108.12409 Alibi tensor is not causal as the original paper mentions, it
|
| 53 |
+
relies on a translation invariance of softmax for quick implementation: with l being a tensor, and a fixed value
|
| 54 |
+
`softmax(l+a) = softmax(l)`. Based on
|
| 55 |
+
https://github.com/ofirpress/attention_with_linear_biases/blob/a35aaca144e0eb6b789dfcb46784c4b8e31b7983/fairseq/models/transformer.py#L742
|
| 56 |
+
TODO @thomasw21 this doesn't work as nicely due to the masking strategy, and so masking varies slightly.
|
| 57 |
+
|
| 58 |
+
Args:
|
| 59 |
+
Returns tensor shaped (batch_size * num_heads, 1, max_seq_len)
|
| 60 |
+
attention_mask (`torch.Tensor`):
|
| 61 |
+
Token-wise attention mask, this should be of shape (batch_size, max_seq_len).
|
| 62 |
+
num_heads (`int`, *required*):
|
| 63 |
+
number of heads
|
| 64 |
+
dtype (`torch.dtype`, *optional*, default=`torch.bfloat16`):
|
| 65 |
+
dtype of the output tensor
|
| 66 |
+
"""
|
| 67 |
+
batch_size, seq_length = attention_mask.shape
|
| 68 |
+
closest_power_of_2 = 2 ** math.floor(math.log2(num_heads))
|
| 69 |
+
base = torch.tensor(
|
| 70 |
+
2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32
|
| 71 |
+
)
|
| 72 |
+
powers = torch.arange(1, 1 + closest_power_of_2, device=attention_mask.device, dtype=torch.int32)
|
| 73 |
+
slopes = torch.pow(base, powers)
|
| 74 |
+
|
| 75 |
+
if closest_power_of_2 != num_heads:
|
| 76 |
+
extra_base = torch.tensor(
|
| 77 |
+
2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32
|
| 78 |
+
)
|
| 79 |
+
num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2)
|
| 80 |
+
extra_powers = torch.arange(1, 1 + 2 * num_remaining_heads, 2, device=attention_mask.device, dtype=torch.int32)
|
| 81 |
+
slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0)
|
| 82 |
+
|
| 83 |
+
# Note: alibi will added to the attention bias that will be applied to the query, key product of attention
|
| 84 |
+
# => therefore alibi will have to be of shape (batch_size, num_heads, query_length, key_length)
|
| 85 |
+
# => here we set (batch_size=1, num_heads=num_heads, query_length=1, key_length=max_length)
|
| 86 |
+
# => the query_length dimension will then be broadcasted correctly
|
| 87 |
+
# This is more or less identical to T5's relative position bias:
|
| 88 |
+
# https://github.com/huggingface/transformers/blob/f681437203baa7671de3174b0fa583c349d9d5e1/src/transformers/models/t5/modeling_t5.py#L527
|
| 89 |
+
arange_tensor = ((attention_mask.cumsum(dim=-1) - 1) * attention_mask)[:, None, :]
|
| 90 |
+
alibi = slopes[..., None] * arange_tensor
|
| 91 |
+
return alibi.reshape(batch_size * num_heads, 1, seq_length).to(dtype)
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def dropout_add(x: torch.Tensor, residual: torch.Tensor, prob: float, training: bool) -> torch.Tensor:
|
| 95 |
+
"""
|
| 96 |
+
Dropout add function
|
| 97 |
+
|
| 98 |
+
Args:
|
| 99 |
+
x (`torch.tensor`, *required*):
|
| 100 |
+
input tensor
|
| 101 |
+
residual (`torch.tensor`, *required*):
|
| 102 |
+
residual tensor
|
| 103 |
+
prob (`float`, *required*):
|
| 104 |
+
dropout probability
|
| 105 |
+
training (`bool`, *required*):
|
| 106 |
+
training mode
|
| 107 |
+
"""
|
| 108 |
+
out = F.dropout(x, p=prob, training=training)
|
| 109 |
+
out = residual + out
|
| 110 |
+
return out
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
def bloom_gelu_forward(x: torch.Tensor) -> torch.Tensor:
|
| 114 |
+
"""
|
| 115 |
+
Custom bias GELU function. Adapted from Megatron-DeepSpeed code. Here we use a simple implementation (inference) to
|
| 116 |
+
make the model jitable.
|
| 117 |
+
|
| 118 |
+
Args:
|
| 119 |
+
x (`torch.tensor`, *required*):
|
| 120 |
+
input hidden states
|
| 121 |
+
"""
|
| 122 |
+
return x * 0.5 * (1.0 + torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x)))
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
def bloom_gelu_back(g: torch.Tensor, x: torch.Tensor) -> torch.Tensor:
|
| 126 |
+
"""
|
| 127 |
+
gradient of tanh approximation of gelu gradient of actual gelu is: 0.5 * (1. + torch.erf(x * 0.70710678)) +
|
| 128 |
+
0.3989423 * x * torch.exp(-0.5 * x * x)
|
| 129 |
+
|
| 130 |
+
Args:
|
| 131 |
+
g (`torch.tensor`, *required*):
|
| 132 |
+
gradient output tensor
|
| 133 |
+
x (`torch.tensor`, *required*):
|
| 134 |
+
input tensor
|
| 135 |
+
"""
|
| 136 |
+
x = x[0] # x is a tuple of 1 element, needs to unpack it first
|
| 137 |
+
tanh_out = torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x))
|
| 138 |
+
# sqrt(2/pi) * 3 * 0.044715 -> 0.1070322243
|
| 139 |
+
ff = 0.5 * x * ((1 - tanh_out * tanh_out) * (0.79788456 + 0.1070322243 * x * x)) + 0.5 * (1 + tanh_out)
|
| 140 |
+
return ff * g
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
class GeLUFunction(torch.autograd.Function):
|
| 144 |
+
@staticmethod
|
| 145 |
+
def forward(ctx, input: torch.Tensor) -> torch.Tensor:
|
| 146 |
+
ctx.save_for_backward(input)
|
| 147 |
+
return bloom_gelu_forward(input)
|
| 148 |
+
|
| 149 |
+
@staticmethod
|
| 150 |
+
def backward(ctx, grad_output: torch.Tensor) -> torch.Tensor:
|
| 151 |
+
input = ctx.saved_tensors
|
| 152 |
+
tmp = bloom_gelu_back(grad_output, input)
|
| 153 |
+
return tmp
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
class BloomGelu(nn.Module):
|
| 157 |
+
"""
|
| 158 |
+
BloomBiasGelu wrapper function that make use of the simple function on inference mode to make the model
|
| 159 |
+
torchscriptable and use the autograd function in training mode to get the accurate results of the gradients Partly
|
| 160 |
+
copied from Megatron-DeepSpeed code and adapted for our needs
|
| 161 |
+
|
| 162 |
+
See here why autograd functions are not torchscriptable: https://github.com/pytorch/pytorch/issues/22329
|
| 163 |
+
"""
|
| 164 |
+
|
| 165 |
+
def __init__(self):
|
| 166 |
+
super().__init__()
|
| 167 |
+
|
| 168 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 169 |
+
if self.training:
|
| 170 |
+
return GeLUFunction.apply(x)
|
| 171 |
+
else:
|
| 172 |
+
return bloom_gelu_forward(x)
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
class BloomAttention(nn.Module):
|
| 176 |
+
def __init__(self, config: BloomConfig):
|
| 177 |
+
super().__init__()
|
| 178 |
+
|
| 179 |
+
self.pretraining_tp = config.pretraining_tp
|
| 180 |
+
self.slow_but_exact = config.slow_but_exact
|
| 181 |
+
|
| 182 |
+
self.hidden_size = config.hidden_size
|
| 183 |
+
self.num_heads = config.n_head
|
| 184 |
+
self.head_dim = self.hidden_size // self.num_heads
|
| 185 |
+
self.split_size = self.hidden_size
|
| 186 |
+
self.hidden_dropout = config.hidden_dropout
|
| 187 |
+
|
| 188 |
+
if self.head_dim * self.num_heads != self.hidden_size:
|
| 189 |
+
raise ValueError(
|
| 190 |
+
f"`hidden_size` must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:"
|
| 191 |
+
f" {self.num_heads})."
|
| 192 |
+
)
|
| 193 |
+
|
| 194 |
+
# Layer-wise attention scaling
|
| 195 |
+
self.inv_norm_factor = 1.0 / math.sqrt(self.head_dim)
|
| 196 |
+
self.beta = 1.0
|
| 197 |
+
|
| 198 |
+
self.query_key_value = nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=True)
|
| 199 |
+
self.dense = nn.Linear(self.hidden_size, self.hidden_size)
|
| 200 |
+
self.attention_dropout = nn.Dropout(config.attention_dropout)
|
| 201 |
+
|
| 202 |
+
def _split_heads(self, fused_qkv: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
| 203 |
+
"""
|
| 204 |
+
Split the last dimension into (num_heads, head_dim) without making any copies, results share same memory
|
| 205 |
+
storage as `fused_qkv`
|
| 206 |
+
|
| 207 |
+
Args:
|
| 208 |
+
fused_qkv (`torch.tensor`, *required*): [batch_size, seq_length, num_heads * 3 * head_dim]
|
| 209 |
+
|
| 210 |
+
Returns:
|
| 211 |
+
query: [batch_size, seq_length, num_heads, head_dim] key: [batch_size, seq_length, num_heads, head_dim]
|
| 212 |
+
value: [batch_size, seq_length, num_heads, head_dim]
|
| 213 |
+
"""
|
| 214 |
+
batch_size, seq_length, three_times_hidden_size = fused_qkv.shape
|
| 215 |
+
fused_qkv = fused_qkv.view(batch_size, seq_length, self.num_heads, 3, self.head_dim)
|
| 216 |
+
return fused_qkv[..., 0, :], fused_qkv[..., 1, :], fused_qkv[..., 2, :]
|
| 217 |
+
|
| 218 |
+
def _merge_heads(self, x: torch.Tensor) -> torch.Tensor:
|
| 219 |
+
"""
|
| 220 |
+
Merge heads together over the last dimension
|
| 221 |
+
|
| 222 |
+
Args:
|
| 223 |
+
x (`torch.tensor`, *required*): [batch_size * num_heads, seq_length, head_dim]
|
| 224 |
+
|
| 225 |
+
Returns:
|
| 226 |
+
torch.tensor: [batch_size, seq_length, num_heads * head_dim]
|
| 227 |
+
"""
|
| 228 |
+
# What we want to achieve is:
|
| 229 |
+
# batch_size * num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads * head_dim
|
| 230 |
+
batch_size_and_num_heads, seq_length, _ = x.shape
|
| 231 |
+
batch_size = batch_size_and_num_heads // self.num_heads
|
| 232 |
+
|
| 233 |
+
# First view to decompose the batch size
|
| 234 |
+
# batch_size * num_heads, seq_length, head_dim -> batch_size, num_heads, seq_length, head_dim
|
| 235 |
+
x = x.view(batch_size, self.num_heads, seq_length, self.head_dim)
|
| 236 |
+
|
| 237 |
+
# batch_size, num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads, head_dim
|
| 238 |
+
x = x.permute(0, 2, 1, 3)
|
| 239 |
+
|
| 240 |
+
# batch_size, seq_length, num_heads, head_dim -> batch_size, seq_length, num_heads * head_dim
|
| 241 |
+
return x.reshape(batch_size, seq_length, self.num_heads * self.head_dim)
|
| 242 |
+
|
| 243 |
+
def forward(
|
| 244 |
+
self,
|
| 245 |
+
hidden_states: torch.Tensor,
|
| 246 |
+
residual: torch.Tensor,
|
| 247 |
+
alibi: torch.Tensor,
|
| 248 |
+
attention_mask: torch.Tensor,
|
| 249 |
+
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 250 |
+
head_mask: Optional[torch.Tensor] = None,
|
| 251 |
+
use_cache: bool = False,
|
| 252 |
+
output_attentions: bool = False,
|
| 253 |
+
):
|
| 254 |
+
fused_qkv = self.query_key_value(hidden_states) # [batch_size, seq_length, 3 x hidden_size]
|
| 255 |
+
|
| 256 |
+
# 3 x [batch_size, seq_length, num_heads, head_dim]
|
| 257 |
+
(query_layer, key_layer, value_layer) = self._split_heads(fused_qkv)
|
| 258 |
+
|
| 259 |
+
batch_size, q_length, _, _ = query_layer.shape
|
| 260 |
+
|
| 261 |
+
query_layer = query_layer.transpose(1, 2).reshape(batch_size * self.num_heads, q_length, self.head_dim)
|
| 262 |
+
key_layer = key_layer.permute(0, 2, 3, 1).reshape(batch_size * self.num_heads, self.head_dim, q_length)
|
| 263 |
+
value_layer = value_layer.transpose(1, 2).reshape(batch_size * self.num_heads, q_length, self.head_dim)
|
| 264 |
+
if layer_past is not None:
|
| 265 |
+
past_key, past_value = layer_past
|
| 266 |
+
# concatenate along seq_length dimension:
|
| 267 |
+
# - key: [batch_size * self.num_heads, head_dim, kv_length]
|
| 268 |
+
# - value: [batch_size * self.num_heads, kv_length, head_dim]
|
| 269 |
+
key_layer = torch.cat((past_key, key_layer), dim=2)
|
| 270 |
+
value_layer = torch.cat((past_value, value_layer), dim=1)
|
| 271 |
+
|
| 272 |
+
_, _, kv_length = key_layer.shape
|
| 273 |
+
|
| 274 |
+
if use_cache is True:
|
| 275 |
+
present = (key_layer, value_layer)
|
| 276 |
+
else:
|
| 277 |
+
present = None
|
| 278 |
+
|
| 279 |
+
# [batch_size * num_heads, q_length, kv_length]
|
| 280 |
+
# we use `torch.Tensor.baddbmm` instead of `torch.baddbmm` as the latter isn't supported by TorchScript v1.11
|
| 281 |
+
matmul_result = alibi.baddbmm(
|
| 282 |
+
batch1=query_layer,
|
| 283 |
+
batch2=key_layer,
|
| 284 |
+
beta=self.beta,
|
| 285 |
+
alpha=self.inv_norm_factor,
|
| 286 |
+
)
|
| 287 |
+
|
| 288 |
+
# change view to [batch_size, num_heads, q_length, kv_length]
|
| 289 |
+
attention_scores = matmul_result.view(batch_size, self.num_heads, q_length, kv_length)
|
| 290 |
+
|
| 291 |
+
# cast attention scores to fp32, compute scaled softmax and cast back to initial dtype - [batch_size, num_heads, q_length, kv_length]
|
| 292 |
+
input_dtype = attention_scores.dtype
|
| 293 |
+
# `float16` has a minimum value of -65504.0, whereas `bfloat16` and `float32` have a minimum value of `-3.4e+38`
|
| 294 |
+
if input_dtype == torch.float16:
|
| 295 |
+
attention_scores = attention_scores.to(torch.float)
|
| 296 |
+
attn_weights = torch.masked_fill(attention_scores, attention_mask, torch.finfo(attention_scores.dtype).min)
|
| 297 |
+
attention_probs = F.softmax(attn_weights, dim=-1, dtype=torch.float32).to(input_dtype)
|
| 298 |
+
|
| 299 |
+
# [batch_size, num_heads, q_length, kv_length]
|
| 300 |
+
attention_probs = self.attention_dropout(attention_probs)
|
| 301 |
+
|
| 302 |
+
if head_mask is not None:
|
| 303 |
+
attention_probs = attention_probs * head_mask
|
| 304 |
+
|
| 305 |
+
# change view [batch_size x num_heads, q_length, kv_length]
|
| 306 |
+
attention_probs_reshaped = attention_probs.view(batch_size * self.num_heads, q_length, kv_length)
|
| 307 |
+
|
| 308 |
+
# matmul: [batch_size * num_heads, q_length, head_dim]
|
| 309 |
+
context_layer = torch.bmm(attention_probs_reshaped, value_layer)
|
| 310 |
+
|
| 311 |
+
# change view [batch_size, q_length, num_heads * head_dim]
|
| 312 |
+
context_layer = self._merge_heads(context_layer)
|
| 313 |
+
|
| 314 |
+
# aggregate results across tp ranks. See here: https://github.com/pytorch/pytorch/issues/76232
|
| 315 |
+
if self.pretraining_tp > 1 and self.slow_but_exact:
|
| 316 |
+
slices = self.hidden_size / self.pretraining_tp
|
| 317 |
+
output_tensor = torch.zeros_like(context_layer)
|
| 318 |
+
for i in range(self.pretraining_tp):
|
| 319 |
+
output_tensor = output_tensor + F.linear(
|
| 320 |
+
context_layer[:, :, int(i * slices) : int((i + 1) * slices)],
|
| 321 |
+
self.dense.weight[:, int(i * slices) : int((i + 1) * slices)],
|
| 322 |
+
)
|
| 323 |
+
else:
|
| 324 |
+
output_tensor = self.dense(context_layer)
|
| 325 |
+
|
| 326 |
+
output_tensor = dropout_add(output_tensor, residual, self.hidden_dropout, self.training)
|
| 327 |
+
|
| 328 |
+
outputs = (output_tensor, present)
|
| 329 |
+
if output_attentions:
|
| 330 |
+
outputs += (attention_probs,)
|
| 331 |
+
|
| 332 |
+
return outputs
|
| 333 |
+
|
| 334 |
+
|
| 335 |
+
class BloomMLP(nn.Module):
|
| 336 |
+
def __init__(self, config: BloomConfig):
|
| 337 |
+
super().__init__()
|
| 338 |
+
hidden_size = config.hidden_size
|
| 339 |
+
|
| 340 |
+
self.pretraining_tp = config.pretraining_tp
|
| 341 |
+
self.slow_but_exact = config.slow_but_exact
|
| 342 |
+
self.dense_h_to_4h = nn.Linear(hidden_size, 4 * hidden_size)
|
| 343 |
+
self.gelu_impl = BloomGelu()
|
| 344 |
+
self.dense_4h_to_h = nn.Linear(4 * hidden_size, hidden_size)
|
| 345 |
+
self.hidden_dropout = config.hidden_dropout
|
| 346 |
+
|
| 347 |
+
def forward(self, hidden_states: torch.Tensor, residual: torch.Tensor) -> torch.Tensor:
|
| 348 |
+
hidden_states = self.gelu_impl(self.dense_h_to_4h(hidden_states))
|
| 349 |
+
|
| 350 |
+
if self.pretraining_tp > 1 and self.slow_but_exact:
|
| 351 |
+
intermediate_output = torch.zeros_like(residual)
|
| 352 |
+
slices = self.dense_4h_to_h.weight.shape[-1] / self.pretraining_tp
|
| 353 |
+
for i in range(self.pretraining_tp):
|
| 354 |
+
intermediate_output = intermediate_output + F.linear(
|
| 355 |
+
hidden_states[:, :, int(i * slices) : int((i + 1) * slices)],
|
| 356 |
+
self.dense_4h_to_h.weight[:, int(i * slices) : int((i + 1) * slices)],
|
| 357 |
+
)
|
| 358 |
+
else:
|
| 359 |
+
intermediate_output = self.dense_4h_to_h(hidden_states)
|
| 360 |
+
|
| 361 |
+
output = dropout_add(intermediate_output, residual, self.hidden_dropout, self.training)
|
| 362 |
+
|
| 363 |
+
return output
|
| 364 |
+
|
| 365 |
+
|
| 366 |
+
class BloomBlock(nn.Module):
|
| 367 |
+
def __init__(self, config: BloomConfig):
|
| 368 |
+
super().__init__()
|
| 369 |
+
hidden_size = config.hidden_size
|
| 370 |
+
|
| 371 |
+
self.input_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
| 372 |
+
self.num_heads = config.n_head
|
| 373 |
+
self.self_attention = BloomAttention(config)
|
| 374 |
+
self.post_attention_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
| 375 |
+
|
| 376 |
+
self.mlp = BloomMLP(config)
|
| 377 |
+
|
| 378 |
+
self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm
|
| 379 |
+
self.hidden_dropout = config.hidden_dropout
|
| 380 |
+
|
| 381 |
+
def forward(
|
| 382 |
+
self,
|
| 383 |
+
hidden_states: torch.Tensor,
|
| 384 |
+
alibi: torch.Tensor,
|
| 385 |
+
attention_mask: torch.Tensor,
|
| 386 |
+
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 387 |
+
head_mask: Optional[torch.Tensor] = None,
|
| 388 |
+
use_cache: bool = False,
|
| 389 |
+
output_attentions: bool = False,
|
| 390 |
+
):
|
| 391 |
+
# hidden_states: [batch_size, seq_length, hidden_size]
|
| 392 |
+
|
| 393 |
+
# Layer norm at the beginning of the transformer layer.
|
| 394 |
+
layernorm_output = self.input_layernorm(hidden_states)
|
| 395 |
+
|
| 396 |
+
# Layer norm post the self attention.
|
| 397 |
+
if self.apply_residual_connection_post_layernorm:
|
| 398 |
+
residual = layernorm_output
|
| 399 |
+
else:
|
| 400 |
+
residual = hidden_states
|
| 401 |
+
|
| 402 |
+
# Self attention.
|
| 403 |
+
attn_outputs = self.self_attention(
|
| 404 |
+
layernorm_output,
|
| 405 |
+
residual,
|
| 406 |
+
layer_past=layer_past,
|
| 407 |
+
attention_mask=attention_mask,
|
| 408 |
+
alibi=alibi,
|
| 409 |
+
head_mask=head_mask,
|
| 410 |
+
use_cache=use_cache,
|
| 411 |
+
output_attentions=output_attentions,
|
| 412 |
+
)
|
| 413 |
+
|
| 414 |
+
attention_output = attn_outputs[0]
|
| 415 |
+
|
| 416 |
+
outputs = attn_outputs[1:]
|
| 417 |
+
|
| 418 |
+
layernorm_output = self.post_attention_layernorm(attention_output)
|
| 419 |
+
|
| 420 |
+
# Get residual
|
| 421 |
+
if self.apply_residual_connection_post_layernorm:
|
| 422 |
+
residual = layernorm_output
|
| 423 |
+
else:
|
| 424 |
+
residual = attention_output
|
| 425 |
+
|
| 426 |
+
# MLP.
|
| 427 |
+
output = self.mlp(layernorm_output, residual)
|
| 428 |
+
|
| 429 |
+
if use_cache:
|
| 430 |
+
outputs = (output,) + outputs
|
| 431 |
+
else:
|
| 432 |
+
outputs = (output,) + outputs[1:]
|
| 433 |
+
|
| 434 |
+
return outputs # hidden_states, present, attentions
|
| 435 |
+
|
| 436 |
+
|
| 437 |
+
class BloomPreTrainedModel(PreTrainedModel):
|
| 438 |
+
config_class = BloomConfig
|
| 439 |
+
base_model_prefix = "transformer"
|
| 440 |
+
supports_gradient_checkpointing = True
|
| 441 |
+
_no_split_modules = ["BloomBlock"]
|
| 442 |
+
_skip_keys_device_placement = "past_key_values"
|
| 443 |
+
|
| 444 |
+
def __init__(self, *inputs, **kwargs):
|
| 445 |
+
super().__init__(*inputs, **kwargs)
|
| 446 |
+
|
| 447 |
+
def _init_weights(self, module: nn.Module):
|
| 448 |
+
"""Initialize the weights."""
|
| 449 |
+
if isinstance(module, nn.Linear):
|
| 450 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
| 451 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
| 452 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 453 |
+
if module.bias is not None:
|
| 454 |
+
module.bias.data.zero_()
|
| 455 |
+
elif isinstance(module, nn.Embedding):
|
| 456 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 457 |
+
if module.padding_idx is not None:
|
| 458 |
+
module.weight.data[module.padding_idx].zero_()
|
| 459 |
+
elif isinstance(module, LayerNorm):
|
| 460 |
+
module.bias.data.zero_()
|
| 461 |
+
module.weight.data.fill_(1.0)
|
| 462 |
+
|
| 463 |
+
@staticmethod
|
| 464 |
+
def _convert_to_standard_cache(
|
| 465 |
+
past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]], batch_size: int
|
| 466 |
+
) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]:
|
| 467 |
+
"""
|
| 468 |
+
Standardizes the format of the cache so as to match most implementations, i.e. to tuple(tuple([batch_size,
|
| 469 |
+
num_heads, ...]))
|
| 470 |
+
"""
|
| 471 |
+
batch_size_times_num_heads, head_dim, seq_length = past_key_value[0][0].shape
|
| 472 |
+
num_heads = batch_size_times_num_heads // batch_size
|
| 473 |
+
# key: [batch_size * num_heads, head_dim, seq_length] -> [batch_size, num_heads, head_dim, seq_length]
|
| 474 |
+
# value: [batch_size * num_heads, seq_length, head_dim] -> [batch_size, num_heads, seq_length, head_dim]
|
| 475 |
+
return tuple(
|
| 476 |
+
(
|
| 477 |
+
layer_past[0].view(batch_size, num_heads, head_dim, seq_length),
|
| 478 |
+
layer_past[1].view(batch_size, num_heads, seq_length, head_dim),
|
| 479 |
+
)
|
| 480 |
+
for layer_past in past_key_value
|
| 481 |
+
)
|
| 482 |
+
|
| 483 |
+
@staticmethod
|
| 484 |
+
def _convert_to_bloom_cache(
|
| 485 |
+
past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]],
|
| 486 |
+
) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]:
|
| 487 |
+
"""
|
| 488 |
+
Converts the cache to the format expected by Bloom, i.e. to tuple(tuple([batch_size * num_heads, ...]))
|
| 489 |
+
"""
|
| 490 |
+
batch_size, num_heads, head_dim, seq_length = past_key_value[0][0].shape
|
| 491 |
+
batch_size_times_num_heads = batch_size * num_heads
|
| 492 |
+
# key: [batch_size, num_heads, head_dim, seq_length] -> [batch_size * num_heads, head_dim, seq_length]
|
| 493 |
+
# value: [batch_size, num_heads, seq_length, head_dim] -> [batch_size * num_heads, seq_length, head_dim]
|
| 494 |
+
return tuple(
|
| 495 |
+
(
|
| 496 |
+
layer_past[0].view(batch_size_times_num_heads, head_dim, seq_length),
|
| 497 |
+
layer_past[1].view(batch_size_times_num_heads, seq_length, head_dim),
|
| 498 |
+
)
|
| 499 |
+
for layer_past in past_key_value
|
| 500 |
+
)
|
| 501 |
+
|
| 502 |
+
|
| 503 |
+
BLOOM_START_DOCSTRING = r"""
|
| 504 |
+
|
| 505 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
| 506 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings etc.)
|
| 507 |
+
|
| 508 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
| 509 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
| 510 |
+
and behavior.
|
| 511 |
+
|
| 512 |
+
Parameters:
|
| 513 |
+
config ([`BloomConfig`]): Model configuration class with all the parameters of the model.
|
| 514 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
| 515 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
| 516 |
+
"""
|
| 517 |
+
|
| 518 |
+
BLOOM_INPUTS_DOCSTRING = r"""
|
| 519 |
+
Args:
|
| 520 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
|
| 521 |
+
`input_ids_length` = `sequence_length` if `past_key_values` is `None` else `past_key_values[0][0].shape[2]`
|
| 522 |
+
(`sequence_length` of input past key value states). Indices of input sequence tokens in the vocabulary.
|
| 523 |
+
|
| 524 |
+
If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as
|
| 525 |
+
`input_ids`.
|
| 526 |
+
|
| 527 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 528 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 529 |
+
|
| 530 |
+
[What are input IDs?](../glossary#input-ids)
|
| 531 |
+
past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.n_layers`):
|
| 532 |
+
Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
|
| 533 |
+
`past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have
|
| 534 |
+
their past given to this model should not be passed as `input_ids` as they have already been computed.
|
| 535 |
+
|
| 536 |
+
Each element of `past_key_values` is a tuple (past_key, past_value):
|
| 537 |
+
- past_key: [batch_size * num_heads, head_dim, kv_length]
|
| 538 |
+
- past_value: [batch_size * num_heads, kv_length, head_dim]
|
| 539 |
+
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 540 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 541 |
+
|
| 542 |
+
- 1 for tokens that are **not masked**,
|
| 543 |
+
- 0 for tokens that are **masked**.
|
| 544 |
+
|
| 545 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 546 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
| 547 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
| 548 |
+
|
| 549 |
+
- 1 indicates the head is **not masked**,
|
| 550 |
+
- 0 indicates the head is **masked**.
|
| 551 |
+
|
| 552 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
| 553 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
| 554 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
| 555 |
+
model's internal embedding lookup matrix.
|
| 556 |
+
|
| 557 |
+
If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see
|
| 558 |
+
`past_key_values`).
|
| 559 |
+
use_cache (`bool`, *optional*):
|
| 560 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
| 561 |
+
`past_key_values`).
|
| 562 |
+
output_attentions (`bool`, *optional*):
|
| 563 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 564 |
+
tensors for more detail.
|
| 565 |
+
output_hidden_states (`bool`, *optional*):
|
| 566 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 567 |
+
more detail.
|
| 568 |
+
return_dict (`bool`, *optional*):
|
| 569 |
+
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
|
| 570 |
+
"""
|
| 571 |
+
|
| 572 |
+
|
| 573 |
+
@add_start_docstrings(
|
| 574 |
+
"The bare Bloom Model transformer outputting raw hidden-states without any specific head on top.",
|
| 575 |
+
BLOOM_START_DOCSTRING,
|
| 576 |
+
)
|
| 577 |
+
class BloomModel(BloomPreTrainedModel):
|
| 578 |
+
def __init__(self, config: BloomConfig):
|
| 579 |
+
super().__init__(config)
|
| 580 |
+
|
| 581 |
+
self.embed_dim = config.hidden_size
|
| 582 |
+
self.num_heads = config.n_head
|
| 583 |
+
|
| 584 |
+
# Embedding + LN Embedding
|
| 585 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, self.embed_dim)
|
| 586 |
+
self.word_embeddings_layernorm = LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
| 587 |
+
|
| 588 |
+
# Transformer blocks
|
| 589 |
+
self.h = nn.ModuleList([BloomBlock(config) for _ in range(config.num_hidden_layers)])
|
| 590 |
+
|
| 591 |
+
# Final Layer Norm
|
| 592 |
+
self.ln_f = LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
| 593 |
+
|
| 594 |
+
self.gradient_checkpointing = False
|
| 595 |
+
|
| 596 |
+
# Initialize weights and apply final processing
|
| 597 |
+
self.post_init()
|
| 598 |
+
|
| 599 |
+
def build_alibi_tensor(self, attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype) -> torch.Tensor:
|
| 600 |
+
return build_alibi_tensor(attention_mask, num_heads, dtype)
|
| 601 |
+
|
| 602 |
+
def get_input_embeddings(self):
|
| 603 |
+
return self.word_embeddings
|
| 604 |
+
|
| 605 |
+
def set_input_embeddings(self, new_embeddings: torch.Tensor):
|
| 606 |
+
self.word_embeddings = new_embeddings
|
| 607 |
+
|
| 608 |
+
@add_start_docstrings_to_model_forward(BLOOM_INPUTS_DOCSTRING)
|
| 609 |
+
@add_code_sample_docstrings(
|
| 610 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
| 611 |
+
output_type=BaseModelOutputWithPastAndCrossAttentions,
|
| 612 |
+
config_class=_CONFIG_FOR_DOC,
|
| 613 |
+
)
|
| 614 |
+
def forward(
|
| 615 |
+
self,
|
| 616 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 617 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
| 618 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 619 |
+
head_mask: Optional[torch.LongTensor] = None,
|
| 620 |
+
inputs_embeds: Optional[torch.LongTensor] = None,
|
| 621 |
+
use_cache: Optional[bool] = None,
|
| 622 |
+
output_attentions: Optional[bool] = None,
|
| 623 |
+
output_hidden_states: Optional[bool] = None,
|
| 624 |
+
return_dict: Optional[bool] = None,
|
| 625 |
+
**deprecated_arguments,
|
| 626 |
+
) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:
|
| 627 |
+
if deprecated_arguments.pop("position_ids", False) is not False:
|
| 628 |
+
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
|
| 629 |
+
warnings.warn(
|
| 630 |
+
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
|
| 631 |
+
" passing `position_ids`.",
|
| 632 |
+
FutureWarning,
|
| 633 |
+
)
|
| 634 |
+
if len(deprecated_arguments) > 0:
|
| 635 |
+
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
|
| 636 |
+
|
| 637 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 638 |
+
output_hidden_states = (
|
| 639 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 640 |
+
)
|
| 641 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 642 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 643 |
+
|
| 644 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 645 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
| 646 |
+
elif input_ids is not None:
|
| 647 |
+
batch_size, seq_length = input_ids.shape
|
| 648 |
+
elif inputs_embeds is not None:
|
| 649 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
| 650 |
+
else:
|
| 651 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
| 652 |
+
|
| 653 |
+
if past_key_values is None:
|
| 654 |
+
past_key_values = tuple([None] * len(self.h))
|
| 655 |
+
|
| 656 |
+
# Prepare head mask if needed
|
| 657 |
+
# 1.0 in head_mask indicate we keep the head
|
| 658 |
+
# attention_probs has shape batch_size x num_heads x N x N
|
| 659 |
+
# head_mask has shape n_layer x batch x num_heads x N x N
|
| 660 |
+
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
| 661 |
+
|
| 662 |
+
if inputs_embeds is None:
|
| 663 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
| 664 |
+
|
| 665 |
+
hidden_states = self.word_embeddings_layernorm(inputs_embeds)
|
| 666 |
+
|
| 667 |
+
presents = () if use_cache else None
|
| 668 |
+
all_self_attentions = () if output_attentions else None
|
| 669 |
+
all_hidden_states = () if output_hidden_states else None
|
| 670 |
+
|
| 671 |
+
if self.gradient_checkpointing and self.training:
|
| 672 |
+
if use_cache:
|
| 673 |
+
logger.warning_once(
|
| 674 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
| 675 |
+
)
|
| 676 |
+
use_cache = False
|
| 677 |
+
|
| 678 |
+
# Compute alibi tensor: check build_alibi_tensor documentation
|
| 679 |
+
seq_length_with_past = seq_length
|
| 680 |
+
past_key_values_length = 0
|
| 681 |
+
if past_key_values[0] is not None:
|
| 682 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
| 683 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
| 684 |
+
if attention_mask is None:
|
| 685 |
+
attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device)
|
| 686 |
+
else:
|
| 687 |
+
attention_mask = attention_mask.to(hidden_states.device)
|
| 688 |
+
|
| 689 |
+
alibi = self.build_alibi_tensor(attention_mask, self.num_heads, dtype=hidden_states.dtype)
|
| 690 |
+
|
| 691 |
+
causal_mask = _prepare_4d_causal_attention_mask(
|
| 692 |
+
attention_mask,
|
| 693 |
+
input_shape=(batch_size, seq_length),
|
| 694 |
+
inputs_embeds=inputs_embeds,
|
| 695 |
+
past_key_values_length=past_key_values_length,
|
| 696 |
+
)
|
| 697 |
+
causal_mask = causal_mask.bool()
|
| 698 |
+
|
| 699 |
+
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
| 700 |
+
if output_hidden_states:
|
| 701 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 702 |
+
|
| 703 |
+
if self.gradient_checkpointing and self.training:
|
| 704 |
+
outputs = self._gradient_checkpointing_func(
|
| 705 |
+
block.__call__,
|
| 706 |
+
hidden_states,
|
| 707 |
+
alibi,
|
| 708 |
+
causal_mask,
|
| 709 |
+
layer_past,
|
| 710 |
+
head_mask[i],
|
| 711 |
+
use_cache,
|
| 712 |
+
output_attentions,
|
| 713 |
+
)
|
| 714 |
+
else:
|
| 715 |
+
outputs = block(
|
| 716 |
+
hidden_states,
|
| 717 |
+
layer_past=layer_past,
|
| 718 |
+
attention_mask=causal_mask,
|
| 719 |
+
head_mask=head_mask[i],
|
| 720 |
+
use_cache=use_cache,
|
| 721 |
+
output_attentions=output_attentions,
|
| 722 |
+
alibi=alibi,
|
| 723 |
+
)
|
| 724 |
+
|
| 725 |
+
hidden_states = outputs[0]
|
| 726 |
+
if use_cache is True:
|
| 727 |
+
presents = presents + (outputs[1],)
|
| 728 |
+
|
| 729 |
+
if output_attentions:
|
| 730 |
+
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
| 731 |
+
|
| 732 |
+
# Add last hidden state
|
| 733 |
+
hidden_states = self.ln_f(hidden_states)
|
| 734 |
+
|
| 735 |
+
if output_hidden_states:
|
| 736 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 737 |
+
|
| 738 |
+
if not return_dict:
|
| 739 |
+
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
|
| 740 |
+
|
| 741 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
| 742 |
+
last_hidden_state=hidden_states,
|
| 743 |
+
past_key_values=presents,
|
| 744 |
+
hidden_states=all_hidden_states,
|
| 745 |
+
attentions=all_self_attentions,
|
| 746 |
+
)
|
| 747 |
+
|
| 748 |
+
|
| 749 |
+
@add_start_docstrings(
|
| 750 |
+
"""
|
| 751 |
+
The Bloom Model transformer with a language modeling head on top (linear layer with weights tied to the input
|
| 752 |
+
embeddings).
|
| 753 |
+
""",
|
| 754 |
+
BLOOM_START_DOCSTRING,
|
| 755 |
+
)
|
| 756 |
+
class BloomForCausalLM(BloomPreTrainedModel):
|
| 757 |
+
_tied_weights_keys = ["lm_head.weight"]
|
| 758 |
+
|
| 759 |
+
def __init__(self, config: BloomConfig):
|
| 760 |
+
super().__init__(config)
|
| 761 |
+
self.transformer = BloomModel(config)
|
| 762 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 763 |
+
|
| 764 |
+
# Initialize weights and apply final processing
|
| 765 |
+
self.post_init()
|
| 766 |
+
|
| 767 |
+
def get_output_embeddings(self):
|
| 768 |
+
return self.lm_head
|
| 769 |
+
|
| 770 |
+
def set_output_embeddings(self, new_embeddings: torch.Tensor):
|
| 771 |
+
self.lm_head = new_embeddings
|
| 772 |
+
|
| 773 |
+
def prepare_inputs_for_generation(
|
| 774 |
+
self,
|
| 775 |
+
input_ids: torch.LongTensor,
|
| 776 |
+
past_key_values: Optional[torch.Tensor] = None,
|
| 777 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 778 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 779 |
+
**kwargs,
|
| 780 |
+
) -> dict:
|
| 781 |
+
# only last tokens for input_ids if past is not None
|
| 782 |
+
if past_key_values is not None:
|
| 783 |
+
past_length = past_key_values[0][0].shape[2]
|
| 784 |
+
|
| 785 |
+
# Some generation methods already pass only the last input ID
|
| 786 |
+
if input_ids.shape[1] > past_length:
|
| 787 |
+
remove_prefix_length = past_length
|
| 788 |
+
else:
|
| 789 |
+
# Default to old behavior: keep only final ID
|
| 790 |
+
remove_prefix_length = input_ids.shape[1] - 1
|
| 791 |
+
|
| 792 |
+
input_ids = input_ids[:, remove_prefix_length:]
|
| 793 |
+
|
| 794 |
+
# the cache may be in the stardard format (e.g. in contrastive search), convert to bloom's format if needed
|
| 795 |
+
if past_key_values[0][0].shape[0] == input_ids.shape[0]:
|
| 796 |
+
past_key_values = self._convert_to_bloom_cache(past_key_values)
|
| 797 |
+
|
| 798 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
| 799 |
+
if inputs_embeds is not None and past_key_values is None:
|
| 800 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
| 801 |
+
else:
|
| 802 |
+
model_inputs = {"input_ids": input_ids}
|
| 803 |
+
|
| 804 |
+
model_inputs.update(
|
| 805 |
+
{
|
| 806 |
+
"past_key_values": past_key_values,
|
| 807 |
+
"use_cache": kwargs.get("use_cache"),
|
| 808 |
+
"attention_mask": attention_mask,
|
| 809 |
+
}
|
| 810 |
+
)
|
| 811 |
+
return model_inputs
|
| 812 |
+
|
| 813 |
+
@add_start_docstrings_to_model_forward(BLOOM_INPUTS_DOCSTRING)
|
| 814 |
+
@add_code_sample_docstrings(
|
| 815 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
| 816 |
+
output_type=CausalLMOutputWithCrossAttentions,
|
| 817 |
+
config_class=_CONFIG_FOR_DOC,
|
| 818 |
+
)
|
| 819 |
+
def forward(
|
| 820 |
+
self,
|
| 821 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 822 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
| 823 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 824 |
+
head_mask: Optional[torch.Tensor] = None,
|
| 825 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 826 |
+
labels: Optional[torch.Tensor] = None,
|
| 827 |
+
use_cache: Optional[bool] = None,
|
| 828 |
+
output_attentions: Optional[bool] = None,
|
| 829 |
+
output_hidden_states: Optional[bool] = None,
|
| 830 |
+
return_dict: Optional[bool] = None,
|
| 831 |
+
**deprecated_arguments,
|
| 832 |
+
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
|
| 833 |
+
r"""
|
| 834 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 835 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
| 836 |
+
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
| 837 |
+
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
| 838 |
+
"""
|
| 839 |
+
if deprecated_arguments.pop("position_ids", False) is not False:
|
| 840 |
+
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
|
| 841 |
+
warnings.warn(
|
| 842 |
+
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
|
| 843 |
+
" passing `position_ids`.",
|
| 844 |
+
FutureWarning,
|
| 845 |
+
)
|
| 846 |
+
if len(deprecated_arguments) > 0:
|
| 847 |
+
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
|
| 848 |
+
|
| 849 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 850 |
+
|
| 851 |
+
transformer_outputs = self.transformer(
|
| 852 |
+
input_ids,
|
| 853 |
+
past_key_values=past_key_values,
|
| 854 |
+
attention_mask=attention_mask,
|
| 855 |
+
head_mask=head_mask,
|
| 856 |
+
inputs_embeds=inputs_embeds,
|
| 857 |
+
use_cache=use_cache,
|
| 858 |
+
output_attentions=output_attentions,
|
| 859 |
+
output_hidden_states=output_hidden_states,
|
| 860 |
+
return_dict=return_dict,
|
| 861 |
+
)
|
| 862 |
+
hidden_states = transformer_outputs[0]
|
| 863 |
+
|
| 864 |
+
lm_logits = self.lm_head(hidden_states)
|
| 865 |
+
|
| 866 |
+
loss = None
|
| 867 |
+
if labels is not None:
|
| 868 |
+
# move labels to correct device to enable model parallelism
|
| 869 |
+
labels = labels.to(lm_logits.device)
|
| 870 |
+
# Shift so that tokens < n predict n
|
| 871 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
| 872 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 873 |
+
batch_size, seq_length, vocab_size = shift_logits.shape
|
| 874 |
+
# Flatten the tokens
|
| 875 |
+
loss_fct = CrossEntropyLoss()
|
| 876 |
+
loss = loss_fct(
|
| 877 |
+
shift_logits.view(batch_size * seq_length, vocab_size), shift_labels.view(batch_size * seq_length)
|
| 878 |
+
)
|
| 879 |
+
|
| 880 |
+
if not return_dict:
|
| 881 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
| 882 |
+
return ((loss,) + output) if loss is not None else output
|
| 883 |
+
|
| 884 |
+
return CausalLMOutputWithCrossAttentions(
|
| 885 |
+
loss=loss,
|
| 886 |
+
logits=lm_logits,
|
| 887 |
+
past_key_values=transformer_outputs.past_key_values,
|
| 888 |
+
hidden_states=transformer_outputs.hidden_states,
|
| 889 |
+
attentions=transformer_outputs.attentions,
|
| 890 |
+
)
|
| 891 |
+
|
| 892 |
+
def _reorder_cache(
|
| 893 |
+
self, past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor
|
| 894 |
+
) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]:
|
| 895 |
+
"""
|
| 896 |
+
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
|
| 897 |
+
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
|
| 898 |
+
beam_idx at every generation step.
|
| 899 |
+
|
| 900 |
+
Output shares the same memory storage as `past`.
|
| 901 |
+
"""
|
| 902 |
+
standardized_past = self._convert_to_standard_cache(past, batch_size=len(beam_idx))
|
| 903 |
+
|
| 904 |
+
# Get a copy of `beam_idx` on all the devices where we need those indices.
|
| 905 |
+
device_to_beam_idx = {
|
| 906 |
+
past_state.device: beam_idx.to(past_state.device) for layer_past in past for past_state in layer_past
|
| 907 |
+
}
|
| 908 |
+
reordered_past = tuple(
|
| 909 |
+
(
|
| 910 |
+
layer_past[0].index_select(0, device_to_beam_idx[layer_past[0].device]),
|
| 911 |
+
layer_past[1].index_select(0, device_to_beam_idx[layer_past[0].device]),
|
| 912 |
+
)
|
| 913 |
+
for layer_past in standardized_past
|
| 914 |
+
)
|
| 915 |
+
return self._convert_to_bloom_cache(reordered_past)
|
| 916 |
+
|
| 917 |
+
|
| 918 |
+
@add_start_docstrings(
|
| 919 |
+
"""
|
| 920 |
+
The Bloom Model transformer with a sequence classification head on top (linear layer).
|
| 921 |
+
|
| 922 |
+
[`BloomForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
| 923 |
+
(e.g. GPT-1) do.
|
| 924 |
+
|
| 925 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
| 926 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
| 927 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
| 928 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
| 929 |
+
each row of the batch).
|
| 930 |
+
""",
|
| 931 |
+
BLOOM_START_DOCSTRING,
|
| 932 |
+
)
|
| 933 |
+
class BloomForSequenceClassification(BloomPreTrainedModel):
|
| 934 |
+
def __init__(self, config: BloomConfig):
|
| 935 |
+
super().__init__(config)
|
| 936 |
+
self.num_labels = config.num_labels
|
| 937 |
+
self.transformer = BloomModel(config)
|
| 938 |
+
self.score = nn.Linear(config.hidden_size, config.num_labels, bias=False)
|
| 939 |
+
|
| 940 |
+
# Initialize weights and apply final processing
|
| 941 |
+
self.post_init()
|
| 942 |
+
|
| 943 |
+
@add_start_docstrings_to_model_forward(BLOOM_INPUTS_DOCSTRING)
|
| 944 |
+
@add_code_sample_docstrings(
|
| 945 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
| 946 |
+
output_type=SequenceClassifierOutputWithPast,
|
| 947 |
+
config_class=_CONFIG_FOR_DOC,
|
| 948 |
+
)
|
| 949 |
+
def forward(
|
| 950 |
+
self,
|
| 951 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 952 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
| 953 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 954 |
+
head_mask: Optional[torch.Tensor] = None,
|
| 955 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 956 |
+
labels: Optional[torch.Tensor] = None,
|
| 957 |
+
use_cache: Optional[bool] = None,
|
| 958 |
+
output_attentions: Optional[bool] = None,
|
| 959 |
+
output_hidden_states: Optional[bool] = None,
|
| 960 |
+
return_dict: Optional[bool] = None,
|
| 961 |
+
**deprecated_arguments,
|
| 962 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutputWithPast]:
|
| 963 |
+
r"""
|
| 964 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 965 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
| 966 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 967 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 968 |
+
"""
|
| 969 |
+
if deprecated_arguments.pop("position_ids", False) is not False:
|
| 970 |
+
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
|
| 971 |
+
warnings.warn(
|
| 972 |
+
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
|
| 973 |
+
" passing `position_ids`.",
|
| 974 |
+
FutureWarning,
|
| 975 |
+
)
|
| 976 |
+
if len(deprecated_arguments) > 0:
|
| 977 |
+
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
|
| 978 |
+
|
| 979 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 980 |
+
|
| 981 |
+
transformer_outputs = self.transformer(
|
| 982 |
+
input_ids,
|
| 983 |
+
past_key_values=past_key_values,
|
| 984 |
+
attention_mask=attention_mask,
|
| 985 |
+
head_mask=head_mask,
|
| 986 |
+
inputs_embeds=inputs_embeds,
|
| 987 |
+
use_cache=use_cache,
|
| 988 |
+
output_attentions=output_attentions,
|
| 989 |
+
output_hidden_states=output_hidden_states,
|
| 990 |
+
return_dict=return_dict,
|
| 991 |
+
)
|
| 992 |
+
|
| 993 |
+
hidden_states = transformer_outputs[0]
|
| 994 |
+
logits = self.score(hidden_states)
|
| 995 |
+
|
| 996 |
+
if input_ids is not None:
|
| 997 |
+
batch_size = input_ids.shape[0]
|
| 998 |
+
else:
|
| 999 |
+
batch_size = inputs_embeds.shape[0]
|
| 1000 |
+
|
| 1001 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
| 1002 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
| 1003 |
+
if self.config.pad_token_id is None:
|
| 1004 |
+
sequence_lengths = -1
|
| 1005 |
+
else:
|
| 1006 |
+
if input_ids is not None:
|
| 1007 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
| 1008 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
| 1009 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
| 1010 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
| 1011 |
+
else:
|
| 1012 |
+
sequence_lengths = -1
|
| 1013 |
+
logger.warning(
|
| 1014 |
+
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
|
| 1015 |
+
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
|
| 1016 |
+
)
|
| 1017 |
+
|
| 1018 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
| 1019 |
+
|
| 1020 |
+
loss = None
|
| 1021 |
+
if labels is not None:
|
| 1022 |
+
if self.config.problem_type is None:
|
| 1023 |
+
if self.num_labels == 1:
|
| 1024 |
+
self.config.problem_type = "regression"
|
| 1025 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
| 1026 |
+
self.config.problem_type = "single_label_classification"
|
| 1027 |
+
else:
|
| 1028 |
+
self.config.problem_type = "multi_label_classification"
|
| 1029 |
+
|
| 1030 |
+
if self.config.problem_type == "regression":
|
| 1031 |
+
loss_fct = MSELoss()
|
| 1032 |
+
if self.num_labels == 1:
|
| 1033 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
| 1034 |
+
else:
|
| 1035 |
+
loss = loss_fct(pooled_logits, labels)
|
| 1036 |
+
elif self.config.problem_type == "single_label_classification":
|
| 1037 |
+
loss_fct = CrossEntropyLoss()
|
| 1038 |
+
loss = loss_fct(pooled_logits, labels)
|
| 1039 |
+
elif self.config.problem_type == "multi_label_classification":
|
| 1040 |
+
loss_fct = BCEWithLogitsLoss()
|
| 1041 |
+
loss = loss_fct(pooled_logits, labels)
|
| 1042 |
+
if not return_dict:
|
| 1043 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
| 1044 |
+
return ((loss,) + output) if loss is not None else output
|
| 1045 |
+
|
| 1046 |
+
return SequenceClassifierOutputWithPast(
|
| 1047 |
+
loss=loss,
|
| 1048 |
+
logits=pooled_logits,
|
| 1049 |
+
past_key_values=transformer_outputs.past_key_values,
|
| 1050 |
+
hidden_states=transformer_outputs.hidden_states,
|
| 1051 |
+
attentions=transformer_outputs.attentions,
|
| 1052 |
+
)
|
| 1053 |
+
|
| 1054 |
+
|
| 1055 |
+
@add_start_docstrings(
|
| 1056 |
+
"""
|
| 1057 |
+
Bloom Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
| 1058 |
+
Named-Entity-Recognition (NER) tasks.
|
| 1059 |
+
""",
|
| 1060 |
+
BLOOM_START_DOCSTRING,
|
| 1061 |
+
)
|
| 1062 |
+
class BloomForTokenClassification(BloomPreTrainedModel):
|
| 1063 |
+
def __init__(self, config: BloomConfig):
|
| 1064 |
+
super().__init__(config)
|
| 1065 |
+
self.num_labels = config.num_labels
|
| 1066 |
+
|
| 1067 |
+
self.transformer = BloomModel(config)
|
| 1068 |
+
if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None:
|
| 1069 |
+
classifier_dropout = config.classifier_dropout
|
| 1070 |
+
elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None:
|
| 1071 |
+
classifier_dropout = config.hidden_dropout
|
| 1072 |
+
else:
|
| 1073 |
+
classifier_dropout = 0.1
|
| 1074 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
| 1075 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
| 1076 |
+
|
| 1077 |
+
# Initialize weights and apply final processing
|
| 1078 |
+
self.post_init()
|
| 1079 |
+
|
| 1080 |
+
@add_start_docstrings_to_model_forward(BLOOM_INPUTS_DOCSTRING)
|
| 1081 |
+
@add_code_sample_docstrings(
|
| 1082 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
| 1083 |
+
output_type=TokenClassifierOutput,
|
| 1084 |
+
config_class=_CONFIG_FOR_DOC,
|
| 1085 |
+
)
|
| 1086 |
+
def forward(
|
| 1087 |
+
self,
|
| 1088 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 1089 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
| 1090 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1091 |
+
head_mask: Optional[torch.Tensor] = None,
|
| 1092 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 1093 |
+
labels: Optional[torch.Tensor] = None,
|
| 1094 |
+
use_cache: Optional[bool] = None,
|
| 1095 |
+
output_attentions: Optional[bool] = None,
|
| 1096 |
+
output_hidden_states: Optional[bool] = None,
|
| 1097 |
+
return_dict: Optional[bool] = None,
|
| 1098 |
+
**deprecated_arguments,
|
| 1099 |
+
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
|
| 1100 |
+
r"""
|
| 1101 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1102 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
| 1103 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 1104 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 1105 |
+
"""
|
| 1106 |
+
if deprecated_arguments.pop("position_ids", False) is not False:
|
| 1107 |
+
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
|
| 1108 |
+
warnings.warn(
|
| 1109 |
+
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
|
| 1110 |
+
" passing `position_ids`.",
|
| 1111 |
+
FutureWarning,
|
| 1112 |
+
)
|
| 1113 |
+
if len(deprecated_arguments) > 0:
|
| 1114 |
+
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
|
| 1115 |
+
|
| 1116 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1117 |
+
|
| 1118 |
+
transformer_outputs = self.transformer(
|
| 1119 |
+
input_ids,
|
| 1120 |
+
past_key_values=past_key_values,
|
| 1121 |
+
attention_mask=attention_mask,
|
| 1122 |
+
head_mask=head_mask,
|
| 1123 |
+
inputs_embeds=inputs_embeds,
|
| 1124 |
+
use_cache=use_cache,
|
| 1125 |
+
output_attentions=output_attentions,
|
| 1126 |
+
output_hidden_states=output_hidden_states,
|
| 1127 |
+
return_dict=return_dict,
|
| 1128 |
+
)
|
| 1129 |
+
|
| 1130 |
+
hidden_states = transformer_outputs[0]
|
| 1131 |
+
hidden_states = self.dropout(hidden_states)
|
| 1132 |
+
logits = self.classifier(hidden_states)
|
| 1133 |
+
|
| 1134 |
+
loss = None
|
| 1135 |
+
if labels is not None:
|
| 1136 |
+
# move labels to correct device to enable model parallelism
|
| 1137 |
+
labels = labels.to(logits.device)
|
| 1138 |
+
batch_size, seq_length = labels.shape
|
| 1139 |
+
loss_fct = CrossEntropyLoss()
|
| 1140 |
+
loss = loss_fct(
|
| 1141 |
+
logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length)
|
| 1142 |
+
)
|
| 1143 |
+
|
| 1144 |
+
if not return_dict:
|
| 1145 |
+
output = (logits,) + transformer_outputs[2:]
|
| 1146 |
+
return ((loss,) + output) if loss is not None else output
|
| 1147 |
+
|
| 1148 |
+
return TokenClassifierOutput(
|
| 1149 |
+
loss=loss,
|
| 1150 |
+
logits=logits,
|
| 1151 |
+
hidden_states=transformer_outputs.hidden_states,
|
| 1152 |
+
attentions=transformer_outputs.attentions,
|
| 1153 |
+
)
|
| 1154 |
+
|
| 1155 |
+
|
| 1156 |
+
@add_start_docstrings(
|
| 1157 |
+
"""
|
| 1158 |
+
The BLOOM Model transformer with a span classification head on top for extractive question-answering tasks like
|
| 1159 |
+
SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
| 1160 |
+
""",
|
| 1161 |
+
BLOOM_START_DOCSTRING,
|
| 1162 |
+
)
|
| 1163 |
+
class BloomForQuestionAnswering(BloomPreTrainedModel):
|
| 1164 |
+
def __init__(self, config):
|
| 1165 |
+
super().__init__(config)
|
| 1166 |
+
self.transformer = BloomModel(config)
|
| 1167 |
+
self.qa_outputs = nn.Linear(config.hidden_size, 2)
|
| 1168 |
+
|
| 1169 |
+
# Initialize weights and apply final processing
|
| 1170 |
+
self.post_init()
|
| 1171 |
+
|
| 1172 |
+
@add_start_docstrings_to_model_forward(BLOOM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
| 1173 |
+
def forward(
|
| 1174 |
+
self,
|
| 1175 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 1176 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 1177 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1178 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 1179 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1180 |
+
start_positions: Optional[torch.LongTensor] = None,
|
| 1181 |
+
end_positions: Optional[torch.LongTensor] = None,
|
| 1182 |
+
output_attentions: Optional[bool] = None,
|
| 1183 |
+
output_hidden_states: Optional[bool] = None,
|
| 1184 |
+
return_dict: Optional[bool] = None,
|
| 1185 |
+
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
| 1186 |
+
r"""
|
| 1187 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1188 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
| 1189 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
| 1190 |
+
are not taken into account for computing the loss.
|
| 1191 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1192 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
| 1193 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
| 1194 |
+
are not taken into account for computing the loss.
|
| 1195 |
+
"""
|
| 1196 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1197 |
+
|
| 1198 |
+
outputs = self.transformer(
|
| 1199 |
+
input_ids,
|
| 1200 |
+
attention_mask=attention_mask,
|
| 1201 |
+
position_ids=position_ids,
|
| 1202 |
+
head_mask=head_mask,
|
| 1203 |
+
inputs_embeds=inputs_embeds,
|
| 1204 |
+
output_attentions=output_attentions,
|
| 1205 |
+
output_hidden_states=output_hidden_states,
|
| 1206 |
+
return_dict=return_dict,
|
| 1207 |
+
)
|
| 1208 |
+
|
| 1209 |
+
sequence_output = outputs[0]
|
| 1210 |
+
|
| 1211 |
+
logits = self.qa_outputs(sequence_output)
|
| 1212 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
| 1213 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
| 1214 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
| 1215 |
+
|
| 1216 |
+
total_loss = None
|
| 1217 |
+
if start_positions is not None and end_positions is not None:
|
| 1218 |
+
# If we are on multi-GPU, split add a dimension
|
| 1219 |
+
if len(start_positions.size()) > 1:
|
| 1220 |
+
start_positions = start_positions.squeeze(-1)
|
| 1221 |
+
if len(end_positions.size()) > 1:
|
| 1222 |
+
end_positions = end_positions.squeeze(-1)
|
| 1223 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
| 1224 |
+
ignored_index = start_logits.size(1)
|
| 1225 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
| 1226 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
| 1227 |
+
|
| 1228 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
| 1229 |
+
start_loss = loss_fct(start_logits, start_positions)
|
| 1230 |
+
end_loss = loss_fct(end_logits, end_positions)
|
| 1231 |
+
total_loss = (start_loss + end_loss) / 2
|
| 1232 |
+
|
| 1233 |
+
if not return_dict:
|
| 1234 |
+
output = (start_logits, end_logits) + outputs[2:]
|
| 1235 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
| 1236 |
+
|
| 1237 |
+
return QuestionAnsweringModelOutput(
|
| 1238 |
+
loss=total_loss,
|
| 1239 |
+
start_logits=start_logits,
|
| 1240 |
+
end_logits=end_logits,
|
| 1241 |
+
hidden_states=outputs.hidden_states,
|
| 1242 |
+
attentions=outputs.attentions,
|
| 1243 |
+
)
|
venv/lib/python3.10/site-packages/transformers/models/codegen/__init__.py
ADDED
|
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2022 Salesforce authors, The EleutherAI, and HuggingFace Teams. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
from typing import TYPE_CHECKING
|
| 15 |
+
|
| 16 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
_import_structure = {
|
| 20 |
+
"configuration_codegen": ["CODEGEN_PRETRAINED_CONFIG_ARCHIVE_MAP", "CodeGenConfig", "CodeGenOnnxConfig"],
|
| 21 |
+
"tokenization_codegen": ["CodeGenTokenizer"],
|
| 22 |
+
}
|
| 23 |
+
|
| 24 |
+
try:
|
| 25 |
+
if not is_tokenizers_available():
|
| 26 |
+
raise OptionalDependencyNotAvailable()
|
| 27 |
+
except OptionalDependencyNotAvailable:
|
| 28 |
+
pass
|
| 29 |
+
else:
|
| 30 |
+
_import_structure["tokenization_codegen_fast"] = ["CodeGenTokenizerFast"]
|
| 31 |
+
|
| 32 |
+
try:
|
| 33 |
+
if not is_torch_available():
|
| 34 |
+
raise OptionalDependencyNotAvailable()
|
| 35 |
+
except OptionalDependencyNotAvailable:
|
| 36 |
+
pass
|
| 37 |
+
else:
|
| 38 |
+
_import_structure["modeling_codegen"] = [
|
| 39 |
+
"CODEGEN_PRETRAINED_MODEL_ARCHIVE_LIST",
|
| 40 |
+
"CodeGenForCausalLM",
|
| 41 |
+
"CodeGenModel",
|
| 42 |
+
"CodeGenPreTrainedModel",
|
| 43 |
+
]
|
| 44 |
+
|
| 45 |
+
if TYPE_CHECKING:
|
| 46 |
+
from .configuration_codegen import CODEGEN_PRETRAINED_CONFIG_ARCHIVE_MAP, CodeGenConfig, CodeGenOnnxConfig
|
| 47 |
+
from .tokenization_codegen import CodeGenTokenizer
|
| 48 |
+
|
| 49 |
+
try:
|
| 50 |
+
if not is_tokenizers_available():
|
| 51 |
+
raise OptionalDependencyNotAvailable()
|
| 52 |
+
except OptionalDependencyNotAvailable:
|
| 53 |
+
pass
|
| 54 |
+
else:
|
| 55 |
+
from .tokenization_codegen_fast import CodeGenTokenizerFast
|
| 56 |
+
|
| 57 |
+
try:
|
| 58 |
+
if not is_torch_available():
|
| 59 |
+
raise OptionalDependencyNotAvailable()
|
| 60 |
+
except OptionalDependencyNotAvailable:
|
| 61 |
+
pass
|
| 62 |
+
else:
|
| 63 |
+
from .modeling_codegen import (
|
| 64 |
+
CODEGEN_PRETRAINED_MODEL_ARCHIVE_LIST,
|
| 65 |
+
CodeGenForCausalLM,
|
| 66 |
+
CodeGenModel,
|
| 67 |
+
CodeGenPreTrainedModel,
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
else:
|
| 71 |
+
import sys
|
| 72 |
+
|
| 73 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|