Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step120/zero/11.mlp.dense_4h_to_h.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step120/zero/11.mlp.dense_4h_to_h.weight/fp32.pt +3 -0
- ckpts/universal/global_step120/zero/14.input_layernorm.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step120/zero/14.input_layernorm.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step120/zero/14.input_layernorm.weight/fp32.pt +3 -0
- ckpts/universal/global_step120/zero/20.post_attention_layernorm.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step120/zero/20.post_attention_layernorm.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step120/zero/20.post_attention_layernorm.weight/fp32.pt +3 -0
- ckpts/universal/global_step120/zero/24.mlp.dense_4h_to_h.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step120/zero/24.mlp.dense_4h_to_h.weight/fp32.pt +3 -0
- ckpts/universal/global_step120/zero/5.mlp.dense_4h_to_h.weight/exp_avg_sq.pt +3 -0
- venv/lib/python3.10/site-packages/sympy/core/add.py +1287 -0
- venv/lib/python3.10/site-packages/sympy/core/alphabets.py +4 -0
- venv/lib/python3.10/site-packages/sympy/core/backend.py +84 -0
- venv/lib/python3.10/site-packages/sympy/core/core.py +63 -0
- venv/lib/python3.10/site-packages/sympy/core/decorators.py +238 -0
- venv/lib/python3.10/site-packages/sympy/core/evalf.py +1801 -0
- venv/lib/python3.10/site-packages/sympy/core/mod.py +238 -0
- venv/lib/python3.10/site-packages/sympy/core/parameters.py +161 -0
- venv/lib/python3.10/site-packages/sympy/core/power.py +2004 -0
- venv/lib/python3.10/site-packages/sympy/core/relational.py +1587 -0
- venv/lib/python3.10/site-packages/sympy/core/sorting.py +309 -0
- venv/lib/python3.10/site-packages/sympy/core/trace.py +12 -0
- venv/lib/python3.10/site-packages/sympy/solvers/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/solvers/__pycache__/bivariate.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/solvers/__pycache__/decompogen.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/solvers/__pycache__/deutils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/solvers/__pycache__/inequalities.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/solvers/__pycache__/pde.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/solvers/__pycache__/polysys.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/solvers/__pycache__/recurr.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/solvers/__pycache__/solvers.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/solvers/__pycache__/solveset.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/solvers/benchmarks/__init__.py +0 -0
- venv/lib/python3.10/site-packages/sympy/solvers/benchmarks/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/solvers/benchmarks/__pycache__/bench_solvers.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/solvers/benchmarks/bench_solvers.py +12 -0
- venv/lib/python3.10/site-packages/sympy/solvers/diophantine/__init__.py +5 -0
- venv/lib/python3.10/site-packages/sympy/solvers/diophantine/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/solvers/diophantine/__pycache__/diophantine.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/solvers/diophantine/diophantine.py +0 -0
- venv/lib/python3.10/site-packages/sympy/solvers/diophantine/tests/__init__.py +0 -0
- venv/lib/python3.10/site-packages/sympy/solvers/diophantine/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/solvers/diophantine/tests/__pycache__/test_diophantine.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/solvers/diophantine/tests/test_diophantine.py +1037 -0
- venv/lib/python3.10/site-packages/sympy/solvers/ode/__init__.py +16 -0
- venv/lib/python3.10/site-packages/sympy/solvers/ode/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/solvers/ode/__pycache__/hypergeometric.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/solvers/ode/__pycache__/lie_group.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/solvers/ode/__pycache__/nonhomogeneous.cpython-310.pyc +0 -0
ckpts/universal/global_step120/zero/11.mlp.dense_4h_to_h.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b52e0c49f8ba36772094d243ff57ea468caffec36365d7965894ef18c69c09e1
|
3 |
+
size 33555627
|
ckpts/universal/global_step120/zero/11.mlp.dense_4h_to_h.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a2066afedd5ba39e417fe0ca4bb0dd4eec14af5b673c6093a15f42bb12b85bae
|
3 |
+
size 33555533
|
ckpts/universal/global_step120/zero/14.input_layernorm.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3ffde4b05fd5f228b10401cc470fe1826e8c65dd62bb5db16c42cf5b1d8c6615
|
3 |
+
size 9372
|
ckpts/universal/global_step120/zero/14.input_layernorm.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:db31c7c8a727f102713d18886e43d4a6e9cb28ee5e6235788ad4025d077145fb
|
3 |
+
size 9387
|
ckpts/universal/global_step120/zero/14.input_layernorm.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:469ca80dcb5385265a7cdde3b0ff4f4eed282fd515c929dae464e5d7f0409334
|
3 |
+
size 9293
|
ckpts/universal/global_step120/zero/20.post_attention_layernorm.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ce67db68e1f415307ac462bf595a1c592cbfbba65c157a7155c25691e1e0e4c0
|
3 |
+
size 9372
|
ckpts/universal/global_step120/zero/20.post_attention_layernorm.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:346bbe948843055fa9b2a5bcd21c2eec7f116ca48836e98badf19ab8687b3b39
|
3 |
+
size 9387
|
ckpts/universal/global_step120/zero/20.post_attention_layernorm.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e60f3e5e5b455ced5a141a0d56ab43bd10b814894897cb46b737830878dc5b35
|
3 |
+
size 9293
|
ckpts/universal/global_step120/zero/24.mlp.dense_4h_to_h.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:116b57da1f77bc8a2490e1177fbaef43913dead5bdefa000fe87537aece53523
|
3 |
+
size 33555627
|
ckpts/universal/global_step120/zero/24.mlp.dense_4h_to_h.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fd98c8354e01844182b9e134cb8f61c2ff74ab55ddcee3c04fd8ebf4c7d22a5d
|
3 |
+
size 33555533
|
ckpts/universal/global_step120/zero/5.mlp.dense_4h_to_h.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3ca85bb2dc05ab5bdd9e72a9f3f6f4514fcd4d7f461185d659d09ae0e80e56f2
|
3 |
+
size 33555627
|
venv/lib/python3.10/site-packages/sympy/core/add.py
ADDED
@@ -0,0 +1,1287 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Tuple as tTuple
|
2 |
+
from collections import defaultdict
|
3 |
+
from functools import cmp_to_key, reduce
|
4 |
+
from operator import attrgetter
|
5 |
+
from .basic import Basic
|
6 |
+
from .parameters import global_parameters
|
7 |
+
from .logic import _fuzzy_group, fuzzy_or, fuzzy_not
|
8 |
+
from .singleton import S
|
9 |
+
from .operations import AssocOp, AssocOpDispatcher
|
10 |
+
from .cache import cacheit
|
11 |
+
from .numbers import ilcm, igcd, equal_valued
|
12 |
+
from .expr import Expr
|
13 |
+
from .kind import UndefinedKind
|
14 |
+
from sympy.utilities.iterables import is_sequence, sift
|
15 |
+
|
16 |
+
# Key for sorting commutative args in canonical order
|
17 |
+
_args_sortkey = cmp_to_key(Basic.compare)
|
18 |
+
|
19 |
+
|
20 |
+
def _could_extract_minus_sign(expr):
|
21 |
+
# assume expr is Add-like
|
22 |
+
# We choose the one with less arguments with minus signs
|
23 |
+
negative_args = sum(1 for i in expr.args
|
24 |
+
if i.could_extract_minus_sign())
|
25 |
+
positive_args = len(expr.args) - negative_args
|
26 |
+
if positive_args > negative_args:
|
27 |
+
return False
|
28 |
+
elif positive_args < negative_args:
|
29 |
+
return True
|
30 |
+
# choose based on .sort_key() to prefer
|
31 |
+
# x - 1 instead of 1 - x and
|
32 |
+
# 3 - sqrt(2) instead of -3 + sqrt(2)
|
33 |
+
return bool(expr.sort_key() < (-expr).sort_key())
|
34 |
+
|
35 |
+
|
36 |
+
def _addsort(args):
|
37 |
+
# in-place sorting of args
|
38 |
+
args.sort(key=_args_sortkey)
|
39 |
+
|
40 |
+
|
41 |
+
def _unevaluated_Add(*args):
|
42 |
+
"""Return a well-formed unevaluated Add: Numbers are collected and
|
43 |
+
put in slot 0 and args are sorted. Use this when args have changed
|
44 |
+
but you still want to return an unevaluated Add.
|
45 |
+
|
46 |
+
Examples
|
47 |
+
========
|
48 |
+
|
49 |
+
>>> from sympy.core.add import _unevaluated_Add as uAdd
|
50 |
+
>>> from sympy import S, Add
|
51 |
+
>>> from sympy.abc import x, y
|
52 |
+
>>> a = uAdd(*[S(1.0), x, S(2)])
|
53 |
+
>>> a.args[0]
|
54 |
+
3.00000000000000
|
55 |
+
>>> a.args[1]
|
56 |
+
x
|
57 |
+
|
58 |
+
Beyond the Number being in slot 0, there is no other assurance of
|
59 |
+
order for the arguments since they are hash sorted. So, for testing
|
60 |
+
purposes, output produced by this in some other function can only
|
61 |
+
be tested against the output of this function or as one of several
|
62 |
+
options:
|
63 |
+
|
64 |
+
>>> opts = (Add(x, y, evaluate=False), Add(y, x, evaluate=False))
|
65 |
+
>>> a = uAdd(x, y)
|
66 |
+
>>> assert a in opts and a == uAdd(x, y)
|
67 |
+
>>> uAdd(x + 1, x + 2)
|
68 |
+
x + x + 3
|
69 |
+
"""
|
70 |
+
args = list(args)
|
71 |
+
newargs = []
|
72 |
+
co = S.Zero
|
73 |
+
while args:
|
74 |
+
a = args.pop()
|
75 |
+
if a.is_Add:
|
76 |
+
# this will keep nesting from building up
|
77 |
+
# so that x + (x + 1) -> x + x + 1 (3 args)
|
78 |
+
args.extend(a.args)
|
79 |
+
elif a.is_Number:
|
80 |
+
co += a
|
81 |
+
else:
|
82 |
+
newargs.append(a)
|
83 |
+
_addsort(newargs)
|
84 |
+
if co:
|
85 |
+
newargs.insert(0, co)
|
86 |
+
return Add._from_args(newargs)
|
87 |
+
|
88 |
+
|
89 |
+
class Add(Expr, AssocOp):
|
90 |
+
"""
|
91 |
+
Expression representing addition operation for algebraic group.
|
92 |
+
|
93 |
+
.. deprecated:: 1.7
|
94 |
+
|
95 |
+
Using arguments that aren't subclasses of :class:`~.Expr` in core
|
96 |
+
operators (:class:`~.Mul`, :class:`~.Add`, and :class:`~.Pow`) is
|
97 |
+
deprecated. See :ref:`non-expr-args-deprecated` for details.
|
98 |
+
|
99 |
+
Every argument of ``Add()`` must be ``Expr``. Infix operator ``+``
|
100 |
+
on most scalar objects in SymPy calls this class.
|
101 |
+
|
102 |
+
Another use of ``Add()`` is to represent the structure of abstract
|
103 |
+
addition so that its arguments can be substituted to return different
|
104 |
+
class. Refer to examples section for this.
|
105 |
+
|
106 |
+
``Add()`` evaluates the argument unless ``evaluate=False`` is passed.
|
107 |
+
The evaluation logic includes:
|
108 |
+
|
109 |
+
1. Flattening
|
110 |
+
``Add(x, Add(y, z))`` -> ``Add(x, y, z)``
|
111 |
+
|
112 |
+
2. Identity removing
|
113 |
+
``Add(x, 0, y)`` -> ``Add(x, y)``
|
114 |
+
|
115 |
+
3. Coefficient collecting by ``.as_coeff_Mul()``
|
116 |
+
``Add(x, 2*x)`` -> ``Mul(3, x)``
|
117 |
+
|
118 |
+
4. Term sorting
|
119 |
+
``Add(y, x, 2)`` -> ``Add(2, x, y)``
|
120 |
+
|
121 |
+
If no argument is passed, identity element 0 is returned. If single
|
122 |
+
element is passed, that element is returned.
|
123 |
+
|
124 |
+
Note that ``Add(*args)`` is more efficient than ``sum(args)`` because
|
125 |
+
it flattens the arguments. ``sum(a, b, c, ...)`` recursively adds the
|
126 |
+
arguments as ``a + (b + (c + ...))``, which has quadratic complexity.
|
127 |
+
On the other hand, ``Add(a, b, c, d)`` does not assume nested
|
128 |
+
structure, making the complexity linear.
|
129 |
+
|
130 |
+
Since addition is group operation, every argument should have the
|
131 |
+
same :obj:`sympy.core.kind.Kind()`.
|
132 |
+
|
133 |
+
Examples
|
134 |
+
========
|
135 |
+
|
136 |
+
>>> from sympy import Add, I
|
137 |
+
>>> from sympy.abc import x, y
|
138 |
+
>>> Add(x, 1)
|
139 |
+
x + 1
|
140 |
+
>>> Add(x, x)
|
141 |
+
2*x
|
142 |
+
>>> 2*x**2 + 3*x + I*y + 2*y + 2*x/5 + 1.0*y + 1
|
143 |
+
2*x**2 + 17*x/5 + 3.0*y + I*y + 1
|
144 |
+
|
145 |
+
If ``evaluate=False`` is passed, result is not evaluated.
|
146 |
+
|
147 |
+
>>> Add(1, 2, evaluate=False)
|
148 |
+
1 + 2
|
149 |
+
>>> Add(x, x, evaluate=False)
|
150 |
+
x + x
|
151 |
+
|
152 |
+
``Add()`` also represents the general structure of addition operation.
|
153 |
+
|
154 |
+
>>> from sympy import MatrixSymbol
|
155 |
+
>>> A,B = MatrixSymbol('A', 2,2), MatrixSymbol('B', 2,2)
|
156 |
+
>>> expr = Add(x,y).subs({x:A, y:B})
|
157 |
+
>>> expr
|
158 |
+
A + B
|
159 |
+
>>> type(expr)
|
160 |
+
<class 'sympy.matrices.expressions.matadd.MatAdd'>
|
161 |
+
|
162 |
+
Note that the printers do not display in args order.
|
163 |
+
|
164 |
+
>>> Add(x, 1)
|
165 |
+
x + 1
|
166 |
+
>>> Add(x, 1).args
|
167 |
+
(1, x)
|
168 |
+
|
169 |
+
See Also
|
170 |
+
========
|
171 |
+
|
172 |
+
MatAdd
|
173 |
+
|
174 |
+
"""
|
175 |
+
|
176 |
+
__slots__ = ()
|
177 |
+
|
178 |
+
args: tTuple[Expr, ...]
|
179 |
+
|
180 |
+
is_Add = True
|
181 |
+
|
182 |
+
_args_type = Expr
|
183 |
+
|
184 |
+
@classmethod
|
185 |
+
def flatten(cls, seq):
|
186 |
+
"""
|
187 |
+
Takes the sequence "seq" of nested Adds and returns a flatten list.
|
188 |
+
|
189 |
+
Returns: (commutative_part, noncommutative_part, order_symbols)
|
190 |
+
|
191 |
+
Applies associativity, all terms are commutable with respect to
|
192 |
+
addition.
|
193 |
+
|
194 |
+
NB: the removal of 0 is already handled by AssocOp.__new__
|
195 |
+
|
196 |
+
See Also
|
197 |
+
========
|
198 |
+
|
199 |
+
sympy.core.mul.Mul.flatten
|
200 |
+
|
201 |
+
"""
|
202 |
+
from sympy.calculus.accumulationbounds import AccumBounds
|
203 |
+
from sympy.matrices.expressions import MatrixExpr
|
204 |
+
from sympy.tensor.tensor import TensExpr
|
205 |
+
rv = None
|
206 |
+
if len(seq) == 2:
|
207 |
+
a, b = seq
|
208 |
+
if b.is_Rational:
|
209 |
+
a, b = b, a
|
210 |
+
if a.is_Rational:
|
211 |
+
if b.is_Mul:
|
212 |
+
rv = [a, b], [], None
|
213 |
+
if rv:
|
214 |
+
if all(s.is_commutative for s in rv[0]):
|
215 |
+
return rv
|
216 |
+
return [], rv[0], None
|
217 |
+
|
218 |
+
terms = {} # term -> coeff
|
219 |
+
# e.g. x**2 -> 5 for ... + 5*x**2 + ...
|
220 |
+
|
221 |
+
coeff = S.Zero # coefficient (Number or zoo) to always be in slot 0
|
222 |
+
# e.g. 3 + ...
|
223 |
+
order_factors = []
|
224 |
+
|
225 |
+
extra = []
|
226 |
+
|
227 |
+
for o in seq:
|
228 |
+
|
229 |
+
# O(x)
|
230 |
+
if o.is_Order:
|
231 |
+
if o.expr.is_zero:
|
232 |
+
continue
|
233 |
+
for o1 in order_factors:
|
234 |
+
if o1.contains(o):
|
235 |
+
o = None
|
236 |
+
break
|
237 |
+
if o is None:
|
238 |
+
continue
|
239 |
+
order_factors = [o] + [
|
240 |
+
o1 for o1 in order_factors if not o.contains(o1)]
|
241 |
+
continue
|
242 |
+
|
243 |
+
# 3 or NaN
|
244 |
+
elif o.is_Number:
|
245 |
+
if (o is S.NaN or coeff is S.ComplexInfinity and
|
246 |
+
o.is_finite is False) and not extra:
|
247 |
+
# we know for sure the result will be nan
|
248 |
+
return [S.NaN], [], None
|
249 |
+
if coeff.is_Number or isinstance(coeff, AccumBounds):
|
250 |
+
coeff += o
|
251 |
+
if coeff is S.NaN and not extra:
|
252 |
+
# we know for sure the result will be nan
|
253 |
+
return [S.NaN], [], None
|
254 |
+
continue
|
255 |
+
|
256 |
+
elif isinstance(o, AccumBounds):
|
257 |
+
coeff = o.__add__(coeff)
|
258 |
+
continue
|
259 |
+
|
260 |
+
elif isinstance(o, MatrixExpr):
|
261 |
+
# can't add 0 to Matrix so make sure coeff is not 0
|
262 |
+
extra.append(o)
|
263 |
+
continue
|
264 |
+
|
265 |
+
elif isinstance(o, TensExpr):
|
266 |
+
coeff = o.__add__(coeff) if coeff else o
|
267 |
+
continue
|
268 |
+
|
269 |
+
elif o is S.ComplexInfinity:
|
270 |
+
if coeff.is_finite is False and not extra:
|
271 |
+
# we know for sure the result will be nan
|
272 |
+
return [S.NaN], [], None
|
273 |
+
coeff = S.ComplexInfinity
|
274 |
+
continue
|
275 |
+
|
276 |
+
# Add([...])
|
277 |
+
elif o.is_Add:
|
278 |
+
# NB: here we assume Add is always commutative
|
279 |
+
seq.extend(o.args) # TODO zerocopy?
|
280 |
+
continue
|
281 |
+
|
282 |
+
# Mul([...])
|
283 |
+
elif o.is_Mul:
|
284 |
+
c, s = o.as_coeff_Mul()
|
285 |
+
|
286 |
+
# check for unevaluated Pow, e.g. 2**3 or 2**(-1/2)
|
287 |
+
elif o.is_Pow:
|
288 |
+
b, e = o.as_base_exp()
|
289 |
+
if b.is_Number and (e.is_Integer or
|
290 |
+
(e.is_Rational and e.is_negative)):
|
291 |
+
seq.append(b**e)
|
292 |
+
continue
|
293 |
+
c, s = S.One, o
|
294 |
+
|
295 |
+
else:
|
296 |
+
# everything else
|
297 |
+
c = S.One
|
298 |
+
s = o
|
299 |
+
|
300 |
+
# now we have:
|
301 |
+
# o = c*s, where
|
302 |
+
#
|
303 |
+
# c is a Number
|
304 |
+
# s is an expression with number factor extracted
|
305 |
+
# let's collect terms with the same s, so e.g.
|
306 |
+
# 2*x**2 + 3*x**2 -> 5*x**2
|
307 |
+
if s in terms:
|
308 |
+
terms[s] += c
|
309 |
+
if terms[s] is S.NaN and not extra:
|
310 |
+
# we know for sure the result will be nan
|
311 |
+
return [S.NaN], [], None
|
312 |
+
else:
|
313 |
+
terms[s] = c
|
314 |
+
|
315 |
+
# now let's construct new args:
|
316 |
+
# [2*x**2, x**3, 7*x**4, pi, ...]
|
317 |
+
newseq = []
|
318 |
+
noncommutative = False
|
319 |
+
for s, c in terms.items():
|
320 |
+
# 0*s
|
321 |
+
if c.is_zero:
|
322 |
+
continue
|
323 |
+
# 1*s
|
324 |
+
elif c is S.One:
|
325 |
+
newseq.append(s)
|
326 |
+
# c*s
|
327 |
+
else:
|
328 |
+
if s.is_Mul:
|
329 |
+
# Mul, already keeps its arguments in perfect order.
|
330 |
+
# so we can simply put c in slot0 and go the fast way.
|
331 |
+
cs = s._new_rawargs(*((c,) + s.args))
|
332 |
+
newseq.append(cs)
|
333 |
+
elif s.is_Add:
|
334 |
+
# we just re-create the unevaluated Mul
|
335 |
+
newseq.append(Mul(c, s, evaluate=False))
|
336 |
+
else:
|
337 |
+
# alternatively we have to call all Mul's machinery (slow)
|
338 |
+
newseq.append(Mul(c, s))
|
339 |
+
|
340 |
+
noncommutative = noncommutative or not s.is_commutative
|
341 |
+
|
342 |
+
# oo, -oo
|
343 |
+
if coeff is S.Infinity:
|
344 |
+
newseq = [f for f in newseq if not (f.is_extended_nonnegative or f.is_real)]
|
345 |
+
|
346 |
+
elif coeff is S.NegativeInfinity:
|
347 |
+
newseq = [f for f in newseq if not (f.is_extended_nonpositive or f.is_real)]
|
348 |
+
|
349 |
+
if coeff is S.ComplexInfinity:
|
350 |
+
# zoo might be
|
351 |
+
# infinite_real + finite_im
|
352 |
+
# finite_real + infinite_im
|
353 |
+
# infinite_real + infinite_im
|
354 |
+
# addition of a finite real or imaginary number won't be able to
|
355 |
+
# change the zoo nature; adding an infinite qualtity would result
|
356 |
+
# in a NaN condition if it had sign opposite of the infinite
|
357 |
+
# portion of zoo, e.g., infinite_real - infinite_real.
|
358 |
+
newseq = [c for c in newseq if not (c.is_finite and
|
359 |
+
c.is_extended_real is not None)]
|
360 |
+
|
361 |
+
# process O(x)
|
362 |
+
if order_factors:
|
363 |
+
newseq2 = []
|
364 |
+
for t in newseq:
|
365 |
+
for o in order_factors:
|
366 |
+
# x + O(x) -> O(x)
|
367 |
+
if o.contains(t):
|
368 |
+
t = None
|
369 |
+
break
|
370 |
+
# x + O(x**2) -> x + O(x**2)
|
371 |
+
if t is not None:
|
372 |
+
newseq2.append(t)
|
373 |
+
newseq = newseq2 + order_factors
|
374 |
+
# 1 + O(1) -> O(1)
|
375 |
+
for o in order_factors:
|
376 |
+
if o.contains(coeff):
|
377 |
+
coeff = S.Zero
|
378 |
+
break
|
379 |
+
|
380 |
+
# order args canonically
|
381 |
+
_addsort(newseq)
|
382 |
+
|
383 |
+
# current code expects coeff to be first
|
384 |
+
if coeff is not S.Zero:
|
385 |
+
newseq.insert(0, coeff)
|
386 |
+
|
387 |
+
if extra:
|
388 |
+
newseq += extra
|
389 |
+
noncommutative = True
|
390 |
+
|
391 |
+
# we are done
|
392 |
+
if noncommutative:
|
393 |
+
return [], newseq, None
|
394 |
+
else:
|
395 |
+
return newseq, [], None
|
396 |
+
|
397 |
+
@classmethod
|
398 |
+
def class_key(cls):
|
399 |
+
return 3, 1, cls.__name__
|
400 |
+
|
401 |
+
@property
|
402 |
+
def kind(self):
|
403 |
+
k = attrgetter('kind')
|
404 |
+
kinds = map(k, self.args)
|
405 |
+
kinds = frozenset(kinds)
|
406 |
+
if len(kinds) != 1:
|
407 |
+
# Since addition is group operator, kind must be same.
|
408 |
+
# We know that this is unexpected signature, so return this.
|
409 |
+
result = UndefinedKind
|
410 |
+
else:
|
411 |
+
result, = kinds
|
412 |
+
return result
|
413 |
+
|
414 |
+
def could_extract_minus_sign(self):
|
415 |
+
return _could_extract_minus_sign(self)
|
416 |
+
|
417 |
+
@cacheit
|
418 |
+
def as_coeff_add(self, *deps):
|
419 |
+
"""
|
420 |
+
Returns a tuple (coeff, args) where self is treated as an Add and coeff
|
421 |
+
is the Number term and args is a tuple of all other terms.
|
422 |
+
|
423 |
+
Examples
|
424 |
+
========
|
425 |
+
|
426 |
+
>>> from sympy.abc import x
|
427 |
+
>>> (7 + 3*x).as_coeff_add()
|
428 |
+
(7, (3*x,))
|
429 |
+
>>> (7*x).as_coeff_add()
|
430 |
+
(0, (7*x,))
|
431 |
+
"""
|
432 |
+
if deps:
|
433 |
+
l1, l2 = sift(self.args, lambda x: x.has_free(*deps), binary=True)
|
434 |
+
return self._new_rawargs(*l2), tuple(l1)
|
435 |
+
coeff, notrat = self.args[0].as_coeff_add()
|
436 |
+
if coeff is not S.Zero:
|
437 |
+
return coeff, notrat + self.args[1:]
|
438 |
+
return S.Zero, self.args
|
439 |
+
|
440 |
+
def as_coeff_Add(self, rational=False, deps=None):
|
441 |
+
"""
|
442 |
+
Efficiently extract the coefficient of a summation.
|
443 |
+
"""
|
444 |
+
coeff, args = self.args[0], self.args[1:]
|
445 |
+
|
446 |
+
if coeff.is_Number and not rational or coeff.is_Rational:
|
447 |
+
return coeff, self._new_rawargs(*args)
|
448 |
+
return S.Zero, self
|
449 |
+
|
450 |
+
# Note, we intentionally do not implement Add.as_coeff_mul(). Rather, we
|
451 |
+
# let Expr.as_coeff_mul() just always return (S.One, self) for an Add. See
|
452 |
+
# issue 5524.
|
453 |
+
|
454 |
+
def _eval_power(self, e):
|
455 |
+
from .evalf import pure_complex
|
456 |
+
from .relational import is_eq
|
457 |
+
if len(self.args) == 2 and any(_.is_infinite for _ in self.args):
|
458 |
+
if e.is_zero is False and is_eq(e, S.One) is False:
|
459 |
+
# looking for literal a + I*b
|
460 |
+
a, b = self.args
|
461 |
+
if a.coeff(S.ImaginaryUnit):
|
462 |
+
a, b = b, a
|
463 |
+
ico = b.coeff(S.ImaginaryUnit)
|
464 |
+
if ico and ico.is_extended_real and a.is_extended_real:
|
465 |
+
if e.is_extended_negative:
|
466 |
+
return S.Zero
|
467 |
+
if e.is_extended_positive:
|
468 |
+
return S.ComplexInfinity
|
469 |
+
return
|
470 |
+
if e.is_Rational and self.is_number:
|
471 |
+
ri = pure_complex(self)
|
472 |
+
if ri:
|
473 |
+
r, i = ri
|
474 |
+
if e.q == 2:
|
475 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
476 |
+
D = sqrt(r**2 + i**2)
|
477 |
+
if D.is_Rational:
|
478 |
+
from .exprtools import factor_terms
|
479 |
+
from sympy.functions.elementary.complexes import sign
|
480 |
+
from .function import expand_multinomial
|
481 |
+
# (r, i, D) is a Pythagorean triple
|
482 |
+
root = sqrt(factor_terms((D - r)/2))**e.p
|
483 |
+
return root*expand_multinomial((
|
484 |
+
# principle value
|
485 |
+
(D + r)/abs(i) + sign(i)*S.ImaginaryUnit)**e.p)
|
486 |
+
elif e == -1:
|
487 |
+
return _unevaluated_Mul(
|
488 |
+
r - i*S.ImaginaryUnit,
|
489 |
+
1/(r**2 + i**2))
|
490 |
+
elif e.is_Number and abs(e) != 1:
|
491 |
+
# handle the Float case: (2.0 + 4*x)**e -> 4**e*(0.5 + x)**e
|
492 |
+
c, m = zip(*[i.as_coeff_Mul() for i in self.args])
|
493 |
+
if any(i.is_Float for i in c): # XXX should this always be done?
|
494 |
+
big = -1
|
495 |
+
for i in c:
|
496 |
+
if abs(i) >= big:
|
497 |
+
big = abs(i)
|
498 |
+
if big > 0 and not equal_valued(big, 1):
|
499 |
+
from sympy.functions.elementary.complexes import sign
|
500 |
+
bigs = (big, -big)
|
501 |
+
c = [sign(i) if i in bigs else i/big for i in c]
|
502 |
+
addpow = Add(*[c*m for c, m in zip(c, m)])**e
|
503 |
+
return big**e*addpow
|
504 |
+
|
505 |
+
@cacheit
|
506 |
+
def _eval_derivative(self, s):
|
507 |
+
return self.func(*[a.diff(s) for a in self.args])
|
508 |
+
|
509 |
+
def _eval_nseries(self, x, n, logx, cdir=0):
|
510 |
+
terms = [t.nseries(x, n=n, logx=logx, cdir=cdir) for t in self.args]
|
511 |
+
return self.func(*terms)
|
512 |
+
|
513 |
+
def _matches_simple(self, expr, repl_dict):
|
514 |
+
# handle (w+3).matches('x+5') -> {w: x+2}
|
515 |
+
coeff, terms = self.as_coeff_add()
|
516 |
+
if len(terms) == 1:
|
517 |
+
return terms[0].matches(expr - coeff, repl_dict)
|
518 |
+
return
|
519 |
+
|
520 |
+
def matches(self, expr, repl_dict=None, old=False):
|
521 |
+
return self._matches_commutative(expr, repl_dict, old)
|
522 |
+
|
523 |
+
@staticmethod
|
524 |
+
def _combine_inverse(lhs, rhs):
|
525 |
+
"""
|
526 |
+
Returns lhs - rhs, but treats oo like a symbol so oo - oo
|
527 |
+
returns 0, instead of a nan.
|
528 |
+
"""
|
529 |
+
from sympy.simplify.simplify import signsimp
|
530 |
+
inf = (S.Infinity, S.NegativeInfinity)
|
531 |
+
if lhs.has(*inf) or rhs.has(*inf):
|
532 |
+
from .symbol import Dummy
|
533 |
+
oo = Dummy('oo')
|
534 |
+
reps = {
|
535 |
+
S.Infinity: oo,
|
536 |
+
S.NegativeInfinity: -oo}
|
537 |
+
ireps = {v: k for k, v in reps.items()}
|
538 |
+
eq = lhs.xreplace(reps) - rhs.xreplace(reps)
|
539 |
+
if eq.has(oo):
|
540 |
+
eq = eq.replace(
|
541 |
+
lambda x: x.is_Pow and x.base is oo,
|
542 |
+
lambda x: x.base)
|
543 |
+
rv = eq.xreplace(ireps)
|
544 |
+
else:
|
545 |
+
rv = lhs - rhs
|
546 |
+
srv = signsimp(rv)
|
547 |
+
return srv if srv.is_Number else rv
|
548 |
+
|
549 |
+
@cacheit
|
550 |
+
def as_two_terms(self):
|
551 |
+
"""Return head and tail of self.
|
552 |
+
|
553 |
+
This is the most efficient way to get the head and tail of an
|
554 |
+
expression.
|
555 |
+
|
556 |
+
- if you want only the head, use self.args[0];
|
557 |
+
- if you want to process the arguments of the tail then use
|
558 |
+
self.as_coef_add() which gives the head and a tuple containing
|
559 |
+
the arguments of the tail when treated as an Add.
|
560 |
+
- if you want the coefficient when self is treated as a Mul
|
561 |
+
then use self.as_coeff_mul()[0]
|
562 |
+
|
563 |
+
>>> from sympy.abc import x, y
|
564 |
+
>>> (3*x - 2*y + 5).as_two_terms()
|
565 |
+
(5, 3*x - 2*y)
|
566 |
+
"""
|
567 |
+
return self.args[0], self._new_rawargs(*self.args[1:])
|
568 |
+
|
569 |
+
def as_numer_denom(self):
|
570 |
+
"""
|
571 |
+
Decomposes an expression to its numerator part and its
|
572 |
+
denominator part.
|
573 |
+
|
574 |
+
Examples
|
575 |
+
========
|
576 |
+
|
577 |
+
>>> from sympy.abc import x, y, z
|
578 |
+
>>> (x*y/z).as_numer_denom()
|
579 |
+
(x*y, z)
|
580 |
+
>>> (x*(y + 1)/y**7).as_numer_denom()
|
581 |
+
(x*(y + 1), y**7)
|
582 |
+
|
583 |
+
See Also
|
584 |
+
========
|
585 |
+
|
586 |
+
sympy.core.expr.Expr.as_numer_denom
|
587 |
+
"""
|
588 |
+
# clear rational denominator
|
589 |
+
content, expr = self.primitive()
|
590 |
+
if not isinstance(expr, Add):
|
591 |
+
return Mul(content, expr, evaluate=False).as_numer_denom()
|
592 |
+
ncon, dcon = content.as_numer_denom()
|
593 |
+
|
594 |
+
# collect numerators and denominators of the terms
|
595 |
+
nd = defaultdict(list)
|
596 |
+
for f in expr.args:
|
597 |
+
ni, di = f.as_numer_denom()
|
598 |
+
nd[di].append(ni)
|
599 |
+
|
600 |
+
# check for quick exit
|
601 |
+
if len(nd) == 1:
|
602 |
+
d, n = nd.popitem()
|
603 |
+
return self.func(
|
604 |
+
*[_keep_coeff(ncon, ni) for ni in n]), _keep_coeff(dcon, d)
|
605 |
+
|
606 |
+
# sum up the terms having a common denominator
|
607 |
+
for d, n in nd.items():
|
608 |
+
if len(n) == 1:
|
609 |
+
nd[d] = n[0]
|
610 |
+
else:
|
611 |
+
nd[d] = self.func(*n)
|
612 |
+
|
613 |
+
# assemble single numerator and denominator
|
614 |
+
denoms, numers = [list(i) for i in zip(*iter(nd.items()))]
|
615 |
+
n, d = self.func(*[Mul(*(denoms[:i] + [numers[i]] + denoms[i + 1:]))
|
616 |
+
for i in range(len(numers))]), Mul(*denoms)
|
617 |
+
|
618 |
+
return _keep_coeff(ncon, n), _keep_coeff(dcon, d)
|
619 |
+
|
620 |
+
def _eval_is_polynomial(self, syms):
|
621 |
+
return all(term._eval_is_polynomial(syms) for term in self.args)
|
622 |
+
|
623 |
+
def _eval_is_rational_function(self, syms):
|
624 |
+
return all(term._eval_is_rational_function(syms) for term in self.args)
|
625 |
+
|
626 |
+
def _eval_is_meromorphic(self, x, a):
|
627 |
+
return _fuzzy_group((arg.is_meromorphic(x, a) for arg in self.args),
|
628 |
+
quick_exit=True)
|
629 |
+
|
630 |
+
def _eval_is_algebraic_expr(self, syms):
|
631 |
+
return all(term._eval_is_algebraic_expr(syms) for term in self.args)
|
632 |
+
|
633 |
+
# assumption methods
|
634 |
+
_eval_is_real = lambda self: _fuzzy_group(
|
635 |
+
(a.is_real for a in self.args), quick_exit=True)
|
636 |
+
_eval_is_extended_real = lambda self: _fuzzy_group(
|
637 |
+
(a.is_extended_real for a in self.args), quick_exit=True)
|
638 |
+
_eval_is_complex = lambda self: _fuzzy_group(
|
639 |
+
(a.is_complex for a in self.args), quick_exit=True)
|
640 |
+
_eval_is_antihermitian = lambda self: _fuzzy_group(
|
641 |
+
(a.is_antihermitian for a in self.args), quick_exit=True)
|
642 |
+
_eval_is_finite = lambda self: _fuzzy_group(
|
643 |
+
(a.is_finite for a in self.args), quick_exit=True)
|
644 |
+
_eval_is_hermitian = lambda self: _fuzzy_group(
|
645 |
+
(a.is_hermitian for a in self.args), quick_exit=True)
|
646 |
+
_eval_is_integer = lambda self: _fuzzy_group(
|
647 |
+
(a.is_integer for a in self.args), quick_exit=True)
|
648 |
+
_eval_is_rational = lambda self: _fuzzy_group(
|
649 |
+
(a.is_rational for a in self.args), quick_exit=True)
|
650 |
+
_eval_is_algebraic = lambda self: _fuzzy_group(
|
651 |
+
(a.is_algebraic for a in self.args), quick_exit=True)
|
652 |
+
_eval_is_commutative = lambda self: _fuzzy_group(
|
653 |
+
a.is_commutative for a in self.args)
|
654 |
+
|
655 |
+
def _eval_is_infinite(self):
|
656 |
+
sawinf = False
|
657 |
+
for a in self.args:
|
658 |
+
ainf = a.is_infinite
|
659 |
+
if ainf is None:
|
660 |
+
return None
|
661 |
+
elif ainf is True:
|
662 |
+
# infinite+infinite might not be infinite
|
663 |
+
if sawinf is True:
|
664 |
+
return None
|
665 |
+
sawinf = True
|
666 |
+
return sawinf
|
667 |
+
|
668 |
+
def _eval_is_imaginary(self):
|
669 |
+
nz = []
|
670 |
+
im_I = []
|
671 |
+
for a in self.args:
|
672 |
+
if a.is_extended_real:
|
673 |
+
if a.is_zero:
|
674 |
+
pass
|
675 |
+
elif a.is_zero is False:
|
676 |
+
nz.append(a)
|
677 |
+
else:
|
678 |
+
return
|
679 |
+
elif a.is_imaginary:
|
680 |
+
im_I.append(a*S.ImaginaryUnit)
|
681 |
+
elif a.is_Mul and S.ImaginaryUnit in a.args:
|
682 |
+
coeff, ai = a.as_coeff_mul(S.ImaginaryUnit)
|
683 |
+
if ai == (S.ImaginaryUnit,) and coeff.is_extended_real:
|
684 |
+
im_I.append(-coeff)
|
685 |
+
else:
|
686 |
+
return
|
687 |
+
else:
|
688 |
+
return
|
689 |
+
b = self.func(*nz)
|
690 |
+
if b != self:
|
691 |
+
if b.is_zero:
|
692 |
+
return fuzzy_not(self.func(*im_I).is_zero)
|
693 |
+
elif b.is_zero is False:
|
694 |
+
return False
|
695 |
+
|
696 |
+
def _eval_is_zero(self):
|
697 |
+
if self.is_commutative is False:
|
698 |
+
# issue 10528: there is no way to know if a nc symbol
|
699 |
+
# is zero or not
|
700 |
+
return
|
701 |
+
nz = []
|
702 |
+
z = 0
|
703 |
+
im_or_z = False
|
704 |
+
im = 0
|
705 |
+
for a in self.args:
|
706 |
+
if a.is_extended_real:
|
707 |
+
if a.is_zero:
|
708 |
+
z += 1
|
709 |
+
elif a.is_zero is False:
|
710 |
+
nz.append(a)
|
711 |
+
else:
|
712 |
+
return
|
713 |
+
elif a.is_imaginary:
|
714 |
+
im += 1
|
715 |
+
elif a.is_Mul and S.ImaginaryUnit in a.args:
|
716 |
+
coeff, ai = a.as_coeff_mul(S.ImaginaryUnit)
|
717 |
+
if ai == (S.ImaginaryUnit,) and coeff.is_extended_real:
|
718 |
+
im_or_z = True
|
719 |
+
else:
|
720 |
+
return
|
721 |
+
else:
|
722 |
+
return
|
723 |
+
if z == len(self.args):
|
724 |
+
return True
|
725 |
+
if len(nz) in [0, len(self.args)]:
|
726 |
+
return None
|
727 |
+
b = self.func(*nz)
|
728 |
+
if b.is_zero:
|
729 |
+
if not im_or_z:
|
730 |
+
if im == 0:
|
731 |
+
return True
|
732 |
+
elif im == 1:
|
733 |
+
return False
|
734 |
+
if b.is_zero is False:
|
735 |
+
return False
|
736 |
+
|
737 |
+
def _eval_is_odd(self):
|
738 |
+
l = [f for f in self.args if not (f.is_even is True)]
|
739 |
+
if not l:
|
740 |
+
return False
|
741 |
+
if l[0].is_odd:
|
742 |
+
return self._new_rawargs(*l[1:]).is_even
|
743 |
+
|
744 |
+
def _eval_is_irrational(self):
|
745 |
+
for t in self.args:
|
746 |
+
a = t.is_irrational
|
747 |
+
if a:
|
748 |
+
others = list(self.args)
|
749 |
+
others.remove(t)
|
750 |
+
if all(x.is_rational is True for x in others):
|
751 |
+
return True
|
752 |
+
return None
|
753 |
+
if a is None:
|
754 |
+
return
|
755 |
+
return False
|
756 |
+
|
757 |
+
def _all_nonneg_or_nonppos(self):
|
758 |
+
nn = np = 0
|
759 |
+
for a in self.args:
|
760 |
+
if a.is_nonnegative:
|
761 |
+
if np:
|
762 |
+
return False
|
763 |
+
nn = 1
|
764 |
+
elif a.is_nonpositive:
|
765 |
+
if nn:
|
766 |
+
return False
|
767 |
+
np = 1
|
768 |
+
else:
|
769 |
+
break
|
770 |
+
else:
|
771 |
+
return True
|
772 |
+
|
773 |
+
def _eval_is_extended_positive(self):
|
774 |
+
if self.is_number:
|
775 |
+
return super()._eval_is_extended_positive()
|
776 |
+
c, a = self.as_coeff_Add()
|
777 |
+
if not c.is_zero:
|
778 |
+
from .exprtools import _monotonic_sign
|
779 |
+
v = _monotonic_sign(a)
|
780 |
+
if v is not None:
|
781 |
+
s = v + c
|
782 |
+
if s != self and s.is_extended_positive and a.is_extended_nonnegative:
|
783 |
+
return True
|
784 |
+
if len(self.free_symbols) == 1:
|
785 |
+
v = _monotonic_sign(self)
|
786 |
+
if v is not None and v != self and v.is_extended_positive:
|
787 |
+
return True
|
788 |
+
pos = nonneg = nonpos = unknown_sign = False
|
789 |
+
saw_INF = set()
|
790 |
+
args = [a for a in self.args if not a.is_zero]
|
791 |
+
if not args:
|
792 |
+
return False
|
793 |
+
for a in args:
|
794 |
+
ispos = a.is_extended_positive
|
795 |
+
infinite = a.is_infinite
|
796 |
+
if infinite:
|
797 |
+
saw_INF.add(fuzzy_or((ispos, a.is_extended_nonnegative)))
|
798 |
+
if True in saw_INF and False in saw_INF:
|
799 |
+
return
|
800 |
+
if ispos:
|
801 |
+
pos = True
|
802 |
+
continue
|
803 |
+
elif a.is_extended_nonnegative:
|
804 |
+
nonneg = True
|
805 |
+
continue
|
806 |
+
elif a.is_extended_nonpositive:
|
807 |
+
nonpos = True
|
808 |
+
continue
|
809 |
+
|
810 |
+
if infinite is None:
|
811 |
+
return
|
812 |
+
unknown_sign = True
|
813 |
+
|
814 |
+
if saw_INF:
|
815 |
+
if len(saw_INF) > 1:
|
816 |
+
return
|
817 |
+
return saw_INF.pop()
|
818 |
+
elif unknown_sign:
|
819 |
+
return
|
820 |
+
elif not nonpos and not nonneg and pos:
|
821 |
+
return True
|
822 |
+
elif not nonpos and pos:
|
823 |
+
return True
|
824 |
+
elif not pos and not nonneg:
|
825 |
+
return False
|
826 |
+
|
827 |
+
def _eval_is_extended_nonnegative(self):
|
828 |
+
if not self.is_number:
|
829 |
+
c, a = self.as_coeff_Add()
|
830 |
+
if not c.is_zero and a.is_extended_nonnegative:
|
831 |
+
from .exprtools import _monotonic_sign
|
832 |
+
v = _monotonic_sign(a)
|
833 |
+
if v is not None:
|
834 |
+
s = v + c
|
835 |
+
if s != self and s.is_extended_nonnegative:
|
836 |
+
return True
|
837 |
+
if len(self.free_symbols) == 1:
|
838 |
+
v = _monotonic_sign(self)
|
839 |
+
if v is not None and v != self and v.is_extended_nonnegative:
|
840 |
+
return True
|
841 |
+
|
842 |
+
def _eval_is_extended_nonpositive(self):
|
843 |
+
if not self.is_number:
|
844 |
+
c, a = self.as_coeff_Add()
|
845 |
+
if not c.is_zero and a.is_extended_nonpositive:
|
846 |
+
from .exprtools import _monotonic_sign
|
847 |
+
v = _monotonic_sign(a)
|
848 |
+
if v is not None:
|
849 |
+
s = v + c
|
850 |
+
if s != self and s.is_extended_nonpositive:
|
851 |
+
return True
|
852 |
+
if len(self.free_symbols) == 1:
|
853 |
+
v = _monotonic_sign(self)
|
854 |
+
if v is not None and v != self and v.is_extended_nonpositive:
|
855 |
+
return True
|
856 |
+
|
857 |
+
def _eval_is_extended_negative(self):
|
858 |
+
if self.is_number:
|
859 |
+
return super()._eval_is_extended_negative()
|
860 |
+
c, a = self.as_coeff_Add()
|
861 |
+
if not c.is_zero:
|
862 |
+
from .exprtools import _monotonic_sign
|
863 |
+
v = _monotonic_sign(a)
|
864 |
+
if v is not None:
|
865 |
+
s = v + c
|
866 |
+
if s != self and s.is_extended_negative and a.is_extended_nonpositive:
|
867 |
+
return True
|
868 |
+
if len(self.free_symbols) == 1:
|
869 |
+
v = _monotonic_sign(self)
|
870 |
+
if v is not None and v != self and v.is_extended_negative:
|
871 |
+
return True
|
872 |
+
neg = nonpos = nonneg = unknown_sign = False
|
873 |
+
saw_INF = set()
|
874 |
+
args = [a for a in self.args if not a.is_zero]
|
875 |
+
if not args:
|
876 |
+
return False
|
877 |
+
for a in args:
|
878 |
+
isneg = a.is_extended_negative
|
879 |
+
infinite = a.is_infinite
|
880 |
+
if infinite:
|
881 |
+
saw_INF.add(fuzzy_or((isneg, a.is_extended_nonpositive)))
|
882 |
+
if True in saw_INF and False in saw_INF:
|
883 |
+
return
|
884 |
+
if isneg:
|
885 |
+
neg = True
|
886 |
+
continue
|
887 |
+
elif a.is_extended_nonpositive:
|
888 |
+
nonpos = True
|
889 |
+
continue
|
890 |
+
elif a.is_extended_nonnegative:
|
891 |
+
nonneg = True
|
892 |
+
continue
|
893 |
+
|
894 |
+
if infinite is None:
|
895 |
+
return
|
896 |
+
unknown_sign = True
|
897 |
+
|
898 |
+
if saw_INF:
|
899 |
+
if len(saw_INF) > 1:
|
900 |
+
return
|
901 |
+
return saw_INF.pop()
|
902 |
+
elif unknown_sign:
|
903 |
+
return
|
904 |
+
elif not nonneg and not nonpos and neg:
|
905 |
+
return True
|
906 |
+
elif not nonneg and neg:
|
907 |
+
return True
|
908 |
+
elif not neg and not nonpos:
|
909 |
+
return False
|
910 |
+
|
911 |
+
def _eval_subs(self, old, new):
|
912 |
+
if not old.is_Add:
|
913 |
+
if old is S.Infinity and -old in self.args:
|
914 |
+
# foo - oo is foo + (-oo) internally
|
915 |
+
return self.xreplace({-old: -new})
|
916 |
+
return None
|
917 |
+
|
918 |
+
coeff_self, terms_self = self.as_coeff_Add()
|
919 |
+
coeff_old, terms_old = old.as_coeff_Add()
|
920 |
+
|
921 |
+
if coeff_self.is_Rational and coeff_old.is_Rational:
|
922 |
+
if terms_self == terms_old: # (2 + a).subs( 3 + a, y) -> -1 + y
|
923 |
+
return self.func(new, coeff_self, -coeff_old)
|
924 |
+
if terms_self == -terms_old: # (2 + a).subs(-3 - a, y) -> -1 - y
|
925 |
+
return self.func(-new, coeff_self, coeff_old)
|
926 |
+
|
927 |
+
if coeff_self.is_Rational and coeff_old.is_Rational \
|
928 |
+
or coeff_self == coeff_old:
|
929 |
+
args_old, args_self = self.func.make_args(
|
930 |
+
terms_old), self.func.make_args(terms_self)
|
931 |
+
if len(args_old) < len(args_self): # (a+b+c).subs(b+c,x) -> a+x
|
932 |
+
self_set = set(args_self)
|
933 |
+
old_set = set(args_old)
|
934 |
+
|
935 |
+
if old_set < self_set:
|
936 |
+
ret_set = self_set - old_set
|
937 |
+
return self.func(new, coeff_self, -coeff_old,
|
938 |
+
*[s._subs(old, new) for s in ret_set])
|
939 |
+
|
940 |
+
args_old = self.func.make_args(
|
941 |
+
-terms_old) # (a+b+c+d).subs(-b-c,x) -> a-x+d
|
942 |
+
old_set = set(args_old)
|
943 |
+
if old_set < self_set:
|
944 |
+
ret_set = self_set - old_set
|
945 |
+
return self.func(-new, coeff_self, coeff_old,
|
946 |
+
*[s._subs(old, new) for s in ret_set])
|
947 |
+
|
948 |
+
def removeO(self):
|
949 |
+
args = [a for a in self.args if not a.is_Order]
|
950 |
+
return self._new_rawargs(*args)
|
951 |
+
|
952 |
+
def getO(self):
|
953 |
+
args = [a for a in self.args if a.is_Order]
|
954 |
+
if args:
|
955 |
+
return self._new_rawargs(*args)
|
956 |
+
|
957 |
+
@cacheit
|
958 |
+
def extract_leading_order(self, symbols, point=None):
|
959 |
+
"""
|
960 |
+
Returns the leading term and its order.
|
961 |
+
|
962 |
+
Examples
|
963 |
+
========
|
964 |
+
|
965 |
+
>>> from sympy.abc import x
|
966 |
+
>>> (x + 1 + 1/x**5).extract_leading_order(x)
|
967 |
+
((x**(-5), O(x**(-5))),)
|
968 |
+
>>> (1 + x).extract_leading_order(x)
|
969 |
+
((1, O(1)),)
|
970 |
+
>>> (x + x**2).extract_leading_order(x)
|
971 |
+
((x, O(x)),)
|
972 |
+
|
973 |
+
"""
|
974 |
+
from sympy.series.order import Order
|
975 |
+
lst = []
|
976 |
+
symbols = list(symbols if is_sequence(symbols) else [symbols])
|
977 |
+
if not point:
|
978 |
+
point = [0]*len(symbols)
|
979 |
+
seq = [(f, Order(f, *zip(symbols, point))) for f in self.args]
|
980 |
+
for ef, of in seq:
|
981 |
+
for e, o in lst:
|
982 |
+
if o.contains(of) and o != of:
|
983 |
+
of = None
|
984 |
+
break
|
985 |
+
if of is None:
|
986 |
+
continue
|
987 |
+
new_lst = [(ef, of)]
|
988 |
+
for e, o in lst:
|
989 |
+
if of.contains(o) and o != of:
|
990 |
+
continue
|
991 |
+
new_lst.append((e, o))
|
992 |
+
lst = new_lst
|
993 |
+
return tuple(lst)
|
994 |
+
|
995 |
+
def as_real_imag(self, deep=True, **hints):
|
996 |
+
"""
|
997 |
+
Return a tuple representing a complex number.
|
998 |
+
|
999 |
+
Examples
|
1000 |
+
========
|
1001 |
+
|
1002 |
+
>>> from sympy import I
|
1003 |
+
>>> (7 + 9*I).as_real_imag()
|
1004 |
+
(7, 9)
|
1005 |
+
>>> ((1 + I)/(1 - I)).as_real_imag()
|
1006 |
+
(0, 1)
|
1007 |
+
>>> ((1 + 2*I)*(1 + 3*I)).as_real_imag()
|
1008 |
+
(-5, 5)
|
1009 |
+
"""
|
1010 |
+
sargs = self.args
|
1011 |
+
re_part, im_part = [], []
|
1012 |
+
for term in sargs:
|
1013 |
+
re, im = term.as_real_imag(deep=deep)
|
1014 |
+
re_part.append(re)
|
1015 |
+
im_part.append(im)
|
1016 |
+
return (self.func(*re_part), self.func(*im_part))
|
1017 |
+
|
1018 |
+
def _eval_as_leading_term(self, x, logx=None, cdir=0):
|
1019 |
+
from sympy.core.symbol import Dummy, Symbol
|
1020 |
+
from sympy.series.order import Order
|
1021 |
+
from sympy.functions.elementary.exponential import log
|
1022 |
+
from sympy.functions.elementary.piecewise import Piecewise, piecewise_fold
|
1023 |
+
from .function import expand_mul
|
1024 |
+
|
1025 |
+
o = self.getO()
|
1026 |
+
if o is None:
|
1027 |
+
o = Order(0)
|
1028 |
+
old = self.removeO()
|
1029 |
+
|
1030 |
+
if old.has(Piecewise):
|
1031 |
+
old = piecewise_fold(old)
|
1032 |
+
|
1033 |
+
# This expansion is the last part of expand_log. expand_log also calls
|
1034 |
+
# expand_mul with factor=True, which would be more expensive
|
1035 |
+
if any(isinstance(a, log) for a in self.args):
|
1036 |
+
logflags = {"deep": True, "log": True, "mul": False, "power_exp": False,
|
1037 |
+
"power_base": False, "multinomial": False, "basic": False, "force": False,
|
1038 |
+
"factor": False}
|
1039 |
+
old = old.expand(**logflags)
|
1040 |
+
expr = expand_mul(old)
|
1041 |
+
|
1042 |
+
if not expr.is_Add:
|
1043 |
+
return expr.as_leading_term(x, logx=logx, cdir=cdir)
|
1044 |
+
|
1045 |
+
infinite = [t for t in expr.args if t.is_infinite]
|
1046 |
+
|
1047 |
+
_logx = Dummy('logx') if logx is None else logx
|
1048 |
+
leading_terms = [t.as_leading_term(x, logx=_logx, cdir=cdir) for t in expr.args]
|
1049 |
+
|
1050 |
+
min, new_expr = Order(0), 0
|
1051 |
+
|
1052 |
+
try:
|
1053 |
+
for term in leading_terms:
|
1054 |
+
order = Order(term, x)
|
1055 |
+
if not min or order not in min:
|
1056 |
+
min = order
|
1057 |
+
new_expr = term
|
1058 |
+
elif min in order:
|
1059 |
+
new_expr += term
|
1060 |
+
|
1061 |
+
except TypeError:
|
1062 |
+
return expr
|
1063 |
+
|
1064 |
+
if logx is None:
|
1065 |
+
new_expr = new_expr.subs(_logx, log(x))
|
1066 |
+
|
1067 |
+
is_zero = new_expr.is_zero
|
1068 |
+
if is_zero is None:
|
1069 |
+
new_expr = new_expr.trigsimp().cancel()
|
1070 |
+
is_zero = new_expr.is_zero
|
1071 |
+
if is_zero is True:
|
1072 |
+
# simple leading term analysis gave us cancelled terms but we have to send
|
1073 |
+
# back a term, so compute the leading term (via series)
|
1074 |
+
try:
|
1075 |
+
n0 = min.getn()
|
1076 |
+
except NotImplementedError:
|
1077 |
+
n0 = S.One
|
1078 |
+
if n0.has(Symbol):
|
1079 |
+
n0 = S.One
|
1080 |
+
res = Order(1)
|
1081 |
+
incr = S.One
|
1082 |
+
while res.is_Order:
|
1083 |
+
res = old._eval_nseries(x, n=n0+incr, logx=logx, cdir=cdir).cancel().powsimp().trigsimp()
|
1084 |
+
incr *= 2
|
1085 |
+
return res.as_leading_term(x, logx=logx, cdir=cdir)
|
1086 |
+
|
1087 |
+
elif new_expr is S.NaN:
|
1088 |
+
return old.func._from_args(infinite) + o
|
1089 |
+
|
1090 |
+
else:
|
1091 |
+
return new_expr
|
1092 |
+
|
1093 |
+
def _eval_adjoint(self):
|
1094 |
+
return self.func(*[t.adjoint() for t in self.args])
|
1095 |
+
|
1096 |
+
def _eval_conjugate(self):
|
1097 |
+
return self.func(*[t.conjugate() for t in self.args])
|
1098 |
+
|
1099 |
+
def _eval_transpose(self):
|
1100 |
+
return self.func(*[t.transpose() for t in self.args])
|
1101 |
+
|
1102 |
+
def primitive(self):
|
1103 |
+
"""
|
1104 |
+
Return ``(R, self/R)`` where ``R``` is the Rational GCD of ``self```.
|
1105 |
+
|
1106 |
+
``R`` is collected only from the leading coefficient of each term.
|
1107 |
+
|
1108 |
+
Examples
|
1109 |
+
========
|
1110 |
+
|
1111 |
+
>>> from sympy.abc import x, y
|
1112 |
+
|
1113 |
+
>>> (2*x + 4*y).primitive()
|
1114 |
+
(2, x + 2*y)
|
1115 |
+
|
1116 |
+
>>> (2*x/3 + 4*y/9).primitive()
|
1117 |
+
(2/9, 3*x + 2*y)
|
1118 |
+
|
1119 |
+
>>> (2*x/3 + 4.2*y).primitive()
|
1120 |
+
(1/3, 2*x + 12.6*y)
|
1121 |
+
|
1122 |
+
No subprocessing of term factors is performed:
|
1123 |
+
|
1124 |
+
>>> ((2 + 2*x)*x + 2).primitive()
|
1125 |
+
(1, x*(2*x + 2) + 2)
|
1126 |
+
|
1127 |
+
Recursive processing can be done with the ``as_content_primitive()``
|
1128 |
+
method:
|
1129 |
+
|
1130 |
+
>>> ((2 + 2*x)*x + 2).as_content_primitive()
|
1131 |
+
(2, x*(x + 1) + 1)
|
1132 |
+
|
1133 |
+
See also: primitive() function in polytools.py
|
1134 |
+
|
1135 |
+
"""
|
1136 |
+
|
1137 |
+
terms = []
|
1138 |
+
inf = False
|
1139 |
+
for a in self.args:
|
1140 |
+
c, m = a.as_coeff_Mul()
|
1141 |
+
if not c.is_Rational:
|
1142 |
+
c = S.One
|
1143 |
+
m = a
|
1144 |
+
inf = inf or m is S.ComplexInfinity
|
1145 |
+
terms.append((c.p, c.q, m))
|
1146 |
+
|
1147 |
+
if not inf:
|
1148 |
+
ngcd = reduce(igcd, [t[0] for t in terms], 0)
|
1149 |
+
dlcm = reduce(ilcm, [t[1] for t in terms], 1)
|
1150 |
+
else:
|
1151 |
+
ngcd = reduce(igcd, [t[0] for t in terms if t[1]], 0)
|
1152 |
+
dlcm = reduce(ilcm, [t[1] for t in terms if t[1]], 1)
|
1153 |
+
|
1154 |
+
if ngcd == dlcm == 1:
|
1155 |
+
return S.One, self
|
1156 |
+
if not inf:
|
1157 |
+
for i, (p, q, term) in enumerate(terms):
|
1158 |
+
terms[i] = _keep_coeff(Rational((p//ngcd)*(dlcm//q)), term)
|
1159 |
+
else:
|
1160 |
+
for i, (p, q, term) in enumerate(terms):
|
1161 |
+
if q:
|
1162 |
+
terms[i] = _keep_coeff(Rational((p//ngcd)*(dlcm//q)), term)
|
1163 |
+
else:
|
1164 |
+
terms[i] = _keep_coeff(Rational(p, q), term)
|
1165 |
+
|
1166 |
+
# we don't need a complete re-flattening since no new terms will join
|
1167 |
+
# so we just use the same sort as is used in Add.flatten. When the
|
1168 |
+
# coefficient changes, the ordering of terms may change, e.g.
|
1169 |
+
# (3*x, 6*y) -> (2*y, x)
|
1170 |
+
#
|
1171 |
+
# We do need to make sure that term[0] stays in position 0, however.
|
1172 |
+
#
|
1173 |
+
if terms[0].is_Number or terms[0] is S.ComplexInfinity:
|
1174 |
+
c = terms.pop(0)
|
1175 |
+
else:
|
1176 |
+
c = None
|
1177 |
+
_addsort(terms)
|
1178 |
+
if c:
|
1179 |
+
terms.insert(0, c)
|
1180 |
+
return Rational(ngcd, dlcm), self._new_rawargs(*terms)
|
1181 |
+
|
1182 |
+
def as_content_primitive(self, radical=False, clear=True):
|
1183 |
+
"""Return the tuple (R, self/R) where R is the positive Rational
|
1184 |
+
extracted from self. If radical is True (default is False) then
|
1185 |
+
common radicals will be removed and included as a factor of the
|
1186 |
+
primitive expression.
|
1187 |
+
|
1188 |
+
Examples
|
1189 |
+
========
|
1190 |
+
|
1191 |
+
>>> from sympy import sqrt
|
1192 |
+
>>> (3 + 3*sqrt(2)).as_content_primitive()
|
1193 |
+
(3, 1 + sqrt(2))
|
1194 |
+
|
1195 |
+
Radical content can also be factored out of the primitive:
|
1196 |
+
|
1197 |
+
>>> (2*sqrt(2) + 4*sqrt(10)).as_content_primitive(radical=True)
|
1198 |
+
(2, sqrt(2)*(1 + 2*sqrt(5)))
|
1199 |
+
|
1200 |
+
See docstring of Expr.as_content_primitive for more examples.
|
1201 |
+
"""
|
1202 |
+
con, prim = self.func(*[_keep_coeff(*a.as_content_primitive(
|
1203 |
+
radical=radical, clear=clear)) for a in self.args]).primitive()
|
1204 |
+
if not clear and not con.is_Integer and prim.is_Add:
|
1205 |
+
con, d = con.as_numer_denom()
|
1206 |
+
_p = prim/d
|
1207 |
+
if any(a.as_coeff_Mul()[0].is_Integer for a in _p.args):
|
1208 |
+
prim = _p
|
1209 |
+
else:
|
1210 |
+
con /= d
|
1211 |
+
if radical and prim.is_Add:
|
1212 |
+
# look for common radicals that can be removed
|
1213 |
+
args = prim.args
|
1214 |
+
rads = []
|
1215 |
+
common_q = None
|
1216 |
+
for m in args:
|
1217 |
+
term_rads = defaultdict(list)
|
1218 |
+
for ai in Mul.make_args(m):
|
1219 |
+
if ai.is_Pow:
|
1220 |
+
b, e = ai.as_base_exp()
|
1221 |
+
if e.is_Rational and b.is_Integer:
|
1222 |
+
term_rads[e.q].append(abs(int(b))**e.p)
|
1223 |
+
if not term_rads:
|
1224 |
+
break
|
1225 |
+
if common_q is None:
|
1226 |
+
common_q = set(term_rads.keys())
|
1227 |
+
else:
|
1228 |
+
common_q = common_q & set(term_rads.keys())
|
1229 |
+
if not common_q:
|
1230 |
+
break
|
1231 |
+
rads.append(term_rads)
|
1232 |
+
else:
|
1233 |
+
# process rads
|
1234 |
+
# keep only those in common_q
|
1235 |
+
for r in rads:
|
1236 |
+
for q in list(r.keys()):
|
1237 |
+
if q not in common_q:
|
1238 |
+
r.pop(q)
|
1239 |
+
for q in r:
|
1240 |
+
r[q] = Mul(*r[q])
|
1241 |
+
# find the gcd of bases for each q
|
1242 |
+
G = []
|
1243 |
+
for q in common_q:
|
1244 |
+
g = reduce(igcd, [r[q] for r in rads], 0)
|
1245 |
+
if g != 1:
|
1246 |
+
G.append(g**Rational(1, q))
|
1247 |
+
if G:
|
1248 |
+
G = Mul(*G)
|
1249 |
+
args = [ai/G for ai in args]
|
1250 |
+
prim = G*prim.func(*args)
|
1251 |
+
|
1252 |
+
return con, prim
|
1253 |
+
|
1254 |
+
@property
|
1255 |
+
def _sorted_args(self):
|
1256 |
+
from .sorting import default_sort_key
|
1257 |
+
return tuple(sorted(self.args, key=default_sort_key))
|
1258 |
+
|
1259 |
+
def _eval_difference_delta(self, n, step):
|
1260 |
+
from sympy.series.limitseq import difference_delta as dd
|
1261 |
+
return self.func(*[dd(a, n, step) for a in self.args])
|
1262 |
+
|
1263 |
+
@property
|
1264 |
+
def _mpc_(self):
|
1265 |
+
"""
|
1266 |
+
Convert self to an mpmath mpc if possible
|
1267 |
+
"""
|
1268 |
+
from .numbers import Float
|
1269 |
+
re_part, rest = self.as_coeff_Add()
|
1270 |
+
im_part, imag_unit = rest.as_coeff_Mul()
|
1271 |
+
if not imag_unit == S.ImaginaryUnit:
|
1272 |
+
# ValueError may seem more reasonable but since it's a @property,
|
1273 |
+
# we need to use AttributeError to keep from confusing things like
|
1274 |
+
# hasattr.
|
1275 |
+
raise AttributeError("Cannot convert Add to mpc. Must be of the form Number + Number*I")
|
1276 |
+
|
1277 |
+
return (Float(re_part)._mpf_, Float(im_part)._mpf_)
|
1278 |
+
|
1279 |
+
def __neg__(self):
|
1280 |
+
if not global_parameters.distribute:
|
1281 |
+
return super().__neg__()
|
1282 |
+
return Mul(S.NegativeOne, self)
|
1283 |
+
|
1284 |
+
add = AssocOpDispatcher('add')
|
1285 |
+
|
1286 |
+
from .mul import Mul, _keep_coeff, _unevaluated_Mul
|
1287 |
+
from .numbers import Rational
|
venv/lib/python3.10/site-packages/sympy/core/alphabets.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
greeks = ('alpha', 'beta', 'gamma', 'delta', 'epsilon', 'zeta',
|
2 |
+
'eta', 'theta', 'iota', 'kappa', 'lambda', 'mu', 'nu',
|
3 |
+
'xi', 'omicron', 'pi', 'rho', 'sigma', 'tau', 'upsilon',
|
4 |
+
'phi', 'chi', 'psi', 'omega')
|
venv/lib/python3.10/site-packages/sympy/core/backend.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
USE_SYMENGINE = os.getenv('USE_SYMENGINE', '0')
|
3 |
+
USE_SYMENGINE = USE_SYMENGINE.lower() in ('1', 't', 'true') # type: ignore
|
4 |
+
|
5 |
+
if USE_SYMENGINE:
|
6 |
+
from symengine import (Symbol, Integer, sympify, S,
|
7 |
+
SympifyError, exp, log, gamma, sqrt, I, E, pi, Matrix,
|
8 |
+
sin, cos, tan, cot, csc, sec, asin, acos, atan, acot, acsc, asec,
|
9 |
+
sinh, cosh, tanh, coth, asinh, acosh, atanh, acoth,
|
10 |
+
lambdify, symarray, diff, zeros, eye, diag, ones,
|
11 |
+
expand, Function, symbols, var, Add, Mul, Derivative,
|
12 |
+
ImmutableMatrix, MatrixBase, Rational, Basic)
|
13 |
+
from symengine.lib.symengine_wrapper import gcd as igcd
|
14 |
+
from symengine import AppliedUndef
|
15 |
+
else:
|
16 |
+
from sympy.core.add import Add
|
17 |
+
from sympy.core.basic import Basic
|
18 |
+
from sympy.core.function import (diff, Function, AppliedUndef,
|
19 |
+
expand, Derivative)
|
20 |
+
from sympy.core.mul import Mul
|
21 |
+
from sympy.core.numbers import igcd, pi, I, Integer, Rational, E
|
22 |
+
from sympy.core.singleton import S
|
23 |
+
from sympy.core.symbol import Symbol, var, symbols
|
24 |
+
from sympy.core.sympify import SympifyError, sympify
|
25 |
+
from sympy.functions.elementary.exponential import log, exp
|
26 |
+
from sympy.functions.elementary.hyperbolic import (coth, sinh,
|
27 |
+
acosh, acoth, tanh, asinh, atanh, cosh)
|
28 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
29 |
+
from sympy.functions.elementary.trigonometric import (csc,
|
30 |
+
asec, cos, atan, sec, acot, asin, tan, sin, cot, acsc, acos)
|
31 |
+
from sympy.functions.special.gamma_functions import gamma
|
32 |
+
from sympy.matrices.dense import (eye, zeros, diag, Matrix,
|
33 |
+
ones, symarray)
|
34 |
+
from sympy.matrices.immutable import ImmutableMatrix
|
35 |
+
from sympy.matrices.matrices import MatrixBase
|
36 |
+
from sympy.utilities.lambdify import lambdify
|
37 |
+
|
38 |
+
|
39 |
+
#
|
40 |
+
# XXX: Handling of immutable and mutable matrices in SymEngine is inconsistent
|
41 |
+
# with SymPy's matrix classes in at least SymEngine version 0.7.0. Until that
|
42 |
+
# is fixed the function below is needed for consistent behaviour when
|
43 |
+
# attempting to simplify a matrix.
|
44 |
+
#
|
45 |
+
# Expected behaviour of a SymPy mutable/immutable matrix .simplify() method:
|
46 |
+
#
|
47 |
+
# Matrix.simplify() : works in place, returns None
|
48 |
+
# ImmutableMatrix.simplify() : returns a simplified copy
|
49 |
+
#
|
50 |
+
# In SymEngine both mutable and immutable matrices simplify in place and return
|
51 |
+
# None. This is inconsistent with the matrix being "immutable" and also the
|
52 |
+
# returned None leads to problems in the mechanics module.
|
53 |
+
#
|
54 |
+
# The simplify function should not be used because simplify(M) sympifies the
|
55 |
+
# matrix M and the SymEngine matrices all sympify to SymPy matrices. If we want
|
56 |
+
# to work with SymEngine matrices then we need to use their .simplify() method
|
57 |
+
# but that method does not work correctly with immutable matrices.
|
58 |
+
#
|
59 |
+
# The _simplify_matrix function can be removed when the SymEngine bug is fixed.
|
60 |
+
# Since this should be a temporary problem we do not make this function part of
|
61 |
+
# the public API.
|
62 |
+
#
|
63 |
+
# SymEngine issue: https://github.com/symengine/symengine.py/issues/363
|
64 |
+
#
|
65 |
+
|
66 |
+
def _simplify_matrix(M):
|
67 |
+
"""Return a simplified copy of the matrix M"""
|
68 |
+
assert isinstance(M, (Matrix, ImmutableMatrix))
|
69 |
+
Mnew = M.as_mutable() # makes a copy if mutable
|
70 |
+
Mnew.simplify()
|
71 |
+
if isinstance(M, ImmutableMatrix):
|
72 |
+
Mnew = Mnew.as_immutable()
|
73 |
+
return Mnew
|
74 |
+
|
75 |
+
|
76 |
+
__all__ = [
|
77 |
+
'Symbol', 'Integer', 'sympify', 'S', 'SympifyError', 'exp', 'log',
|
78 |
+
'gamma', 'sqrt', 'I', 'E', 'pi', 'Matrix', 'sin', 'cos', 'tan', 'cot',
|
79 |
+
'csc', 'sec', 'asin', 'acos', 'atan', 'acot', 'acsc', 'asec', 'sinh',
|
80 |
+
'cosh', 'tanh', 'coth', 'asinh', 'acosh', 'atanh', 'acoth', 'lambdify',
|
81 |
+
'symarray', 'diff', 'zeros', 'eye', 'diag', 'ones', 'expand', 'Function',
|
82 |
+
'symbols', 'var', 'Add', 'Mul', 'Derivative', 'ImmutableMatrix',
|
83 |
+
'MatrixBase', 'Rational', 'Basic', 'igcd', 'AppliedUndef',
|
84 |
+
]
|
venv/lib/python3.10/site-packages/sympy/core/core.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" The core's core. """
|
2 |
+
from __future__ import annotations
|
3 |
+
|
4 |
+
|
5 |
+
# used for canonical ordering of symbolic sequences
|
6 |
+
# via __cmp__ method:
|
7 |
+
# FIXME this is *so* irrelevant and outdated!
|
8 |
+
ordering_of_classes = [
|
9 |
+
# singleton numbers
|
10 |
+
'Zero', 'One', 'Half', 'Infinity', 'NaN', 'NegativeOne', 'NegativeInfinity',
|
11 |
+
# numbers
|
12 |
+
'Integer', 'Rational', 'Float',
|
13 |
+
# singleton symbols
|
14 |
+
'Exp1', 'Pi', 'ImaginaryUnit',
|
15 |
+
# symbols
|
16 |
+
'Symbol', 'Wild', 'Temporary',
|
17 |
+
# arithmetic operations
|
18 |
+
'Pow', 'Mul', 'Add',
|
19 |
+
# function values
|
20 |
+
'Derivative', 'Integral',
|
21 |
+
# defined singleton functions
|
22 |
+
'Abs', 'Sign', 'Sqrt',
|
23 |
+
'Floor', 'Ceiling',
|
24 |
+
'Re', 'Im', 'Arg',
|
25 |
+
'Conjugate',
|
26 |
+
'Exp', 'Log',
|
27 |
+
'Sin', 'Cos', 'Tan', 'Cot', 'ASin', 'ACos', 'ATan', 'ACot',
|
28 |
+
'Sinh', 'Cosh', 'Tanh', 'Coth', 'ASinh', 'ACosh', 'ATanh', 'ACoth',
|
29 |
+
'RisingFactorial', 'FallingFactorial',
|
30 |
+
'factorial', 'binomial',
|
31 |
+
'Gamma', 'LowerGamma', 'UpperGamma', 'PolyGamma',
|
32 |
+
'Erf',
|
33 |
+
# special polynomials
|
34 |
+
'Chebyshev', 'Chebyshev2',
|
35 |
+
# undefined functions
|
36 |
+
'Function', 'WildFunction',
|
37 |
+
# anonymous functions
|
38 |
+
'Lambda',
|
39 |
+
# Landau O symbol
|
40 |
+
'Order',
|
41 |
+
# relational operations
|
42 |
+
'Equality', 'Unequality', 'StrictGreaterThan', 'StrictLessThan',
|
43 |
+
'GreaterThan', 'LessThan',
|
44 |
+
]
|
45 |
+
|
46 |
+
|
47 |
+
class Registry:
|
48 |
+
"""
|
49 |
+
Base class for registry objects.
|
50 |
+
|
51 |
+
Registries map a name to an object using attribute notation. Registry
|
52 |
+
classes behave singletonically: all their instances share the same state,
|
53 |
+
which is stored in the class object.
|
54 |
+
|
55 |
+
All subclasses should set `__slots__ = ()`.
|
56 |
+
"""
|
57 |
+
__slots__ = ()
|
58 |
+
|
59 |
+
def __setattr__(self, name, obj):
|
60 |
+
setattr(self.__class__, name, obj)
|
61 |
+
|
62 |
+
def __delattr__(self, name):
|
63 |
+
delattr(self.__class__, name)
|
venv/lib/python3.10/site-packages/sympy/core/decorators.py
ADDED
@@ -0,0 +1,238 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
SymPy core decorators.
|
3 |
+
|
4 |
+
The purpose of this module is to expose decorators without any other
|
5 |
+
dependencies, so that they can be easily imported anywhere in sympy/core.
|
6 |
+
"""
|
7 |
+
|
8 |
+
from functools import wraps
|
9 |
+
from .sympify import SympifyError, sympify
|
10 |
+
|
11 |
+
|
12 |
+
def _sympifyit(arg, retval=None):
|
13 |
+
"""
|
14 |
+
decorator to smartly _sympify function arguments
|
15 |
+
|
16 |
+
Explanation
|
17 |
+
===========
|
18 |
+
|
19 |
+
@_sympifyit('other', NotImplemented)
|
20 |
+
def add(self, other):
|
21 |
+
...
|
22 |
+
|
23 |
+
In add, other can be thought of as already being a SymPy object.
|
24 |
+
|
25 |
+
If it is not, the code is likely to catch an exception, then other will
|
26 |
+
be explicitly _sympified, and the whole code restarted.
|
27 |
+
|
28 |
+
if _sympify(arg) fails, NotImplemented will be returned
|
29 |
+
|
30 |
+
See also
|
31 |
+
========
|
32 |
+
|
33 |
+
__sympifyit
|
34 |
+
"""
|
35 |
+
def deco(func):
|
36 |
+
return __sympifyit(func, arg, retval)
|
37 |
+
|
38 |
+
return deco
|
39 |
+
|
40 |
+
|
41 |
+
def __sympifyit(func, arg, retval=None):
|
42 |
+
"""Decorator to _sympify `arg` argument for function `func`.
|
43 |
+
|
44 |
+
Do not use directly -- use _sympifyit instead.
|
45 |
+
"""
|
46 |
+
|
47 |
+
# we support f(a,b) only
|
48 |
+
if not func.__code__.co_argcount:
|
49 |
+
raise LookupError("func not found")
|
50 |
+
# only b is _sympified
|
51 |
+
assert func.__code__.co_varnames[1] == arg
|
52 |
+
if retval is None:
|
53 |
+
@wraps(func)
|
54 |
+
def __sympifyit_wrapper(a, b):
|
55 |
+
return func(a, sympify(b, strict=True))
|
56 |
+
|
57 |
+
else:
|
58 |
+
@wraps(func)
|
59 |
+
def __sympifyit_wrapper(a, b):
|
60 |
+
try:
|
61 |
+
# If an external class has _op_priority, it knows how to deal
|
62 |
+
# with SymPy objects. Otherwise, it must be converted.
|
63 |
+
if not hasattr(b, '_op_priority'):
|
64 |
+
b = sympify(b, strict=True)
|
65 |
+
return func(a, b)
|
66 |
+
except SympifyError:
|
67 |
+
return retval
|
68 |
+
|
69 |
+
return __sympifyit_wrapper
|
70 |
+
|
71 |
+
|
72 |
+
def call_highest_priority(method_name):
|
73 |
+
"""A decorator for binary special methods to handle _op_priority.
|
74 |
+
|
75 |
+
Explanation
|
76 |
+
===========
|
77 |
+
|
78 |
+
Binary special methods in Expr and its subclasses use a special attribute
|
79 |
+
'_op_priority' to determine whose special method will be called to
|
80 |
+
handle the operation. In general, the object having the highest value of
|
81 |
+
'_op_priority' will handle the operation. Expr and subclasses that define
|
82 |
+
custom binary special methods (__mul__, etc.) should decorate those
|
83 |
+
methods with this decorator to add the priority logic.
|
84 |
+
|
85 |
+
The ``method_name`` argument is the name of the method of the other class
|
86 |
+
that will be called. Use this decorator in the following manner::
|
87 |
+
|
88 |
+
# Call other.__rmul__ if other._op_priority > self._op_priority
|
89 |
+
@call_highest_priority('__rmul__')
|
90 |
+
def __mul__(self, other):
|
91 |
+
...
|
92 |
+
|
93 |
+
# Call other.__mul__ if other._op_priority > self._op_priority
|
94 |
+
@call_highest_priority('__mul__')
|
95 |
+
def __rmul__(self, other):
|
96 |
+
...
|
97 |
+
"""
|
98 |
+
def priority_decorator(func):
|
99 |
+
@wraps(func)
|
100 |
+
def binary_op_wrapper(self, other):
|
101 |
+
if hasattr(other, '_op_priority'):
|
102 |
+
if other._op_priority > self._op_priority:
|
103 |
+
f = getattr(other, method_name, None)
|
104 |
+
if f is not None:
|
105 |
+
return f(self)
|
106 |
+
return func(self, other)
|
107 |
+
return binary_op_wrapper
|
108 |
+
return priority_decorator
|
109 |
+
|
110 |
+
|
111 |
+
def sympify_method_args(cls):
|
112 |
+
'''Decorator for a class with methods that sympify arguments.
|
113 |
+
|
114 |
+
Explanation
|
115 |
+
===========
|
116 |
+
|
117 |
+
The sympify_method_args decorator is to be used with the sympify_return
|
118 |
+
decorator for automatic sympification of method arguments. This is
|
119 |
+
intended for the common idiom of writing a class like :
|
120 |
+
|
121 |
+
Examples
|
122 |
+
========
|
123 |
+
|
124 |
+
>>> from sympy import Basic, SympifyError, S
|
125 |
+
>>> from sympy.core.sympify import _sympify
|
126 |
+
|
127 |
+
>>> class MyTuple(Basic):
|
128 |
+
... def __add__(self, other):
|
129 |
+
... try:
|
130 |
+
... other = _sympify(other)
|
131 |
+
... except SympifyError:
|
132 |
+
... return NotImplemented
|
133 |
+
... if not isinstance(other, MyTuple):
|
134 |
+
... return NotImplemented
|
135 |
+
... return MyTuple(*(self.args + other.args))
|
136 |
+
|
137 |
+
>>> MyTuple(S(1), S(2)) + MyTuple(S(3), S(4))
|
138 |
+
MyTuple(1, 2, 3, 4)
|
139 |
+
|
140 |
+
In the above it is important that we return NotImplemented when other is
|
141 |
+
not sympifiable and also when the sympified result is not of the expected
|
142 |
+
type. This allows the MyTuple class to be used cooperatively with other
|
143 |
+
classes that overload __add__ and want to do something else in combination
|
144 |
+
with instance of Tuple.
|
145 |
+
|
146 |
+
Using this decorator the above can be written as
|
147 |
+
|
148 |
+
>>> from sympy.core.decorators import sympify_method_args, sympify_return
|
149 |
+
|
150 |
+
>>> @sympify_method_args
|
151 |
+
... class MyTuple(Basic):
|
152 |
+
... @sympify_return([('other', 'MyTuple')], NotImplemented)
|
153 |
+
... def __add__(self, other):
|
154 |
+
... return MyTuple(*(self.args + other.args))
|
155 |
+
|
156 |
+
>>> MyTuple(S(1), S(2)) + MyTuple(S(3), S(4))
|
157 |
+
MyTuple(1, 2, 3, 4)
|
158 |
+
|
159 |
+
The idea here is that the decorators take care of the boiler-plate code
|
160 |
+
for making this happen in each method that potentially needs to accept
|
161 |
+
unsympified arguments. Then the body of e.g. the __add__ method can be
|
162 |
+
written without needing to worry about calling _sympify or checking the
|
163 |
+
type of the resulting object.
|
164 |
+
|
165 |
+
The parameters for sympify_return are a list of tuples of the form
|
166 |
+
(parameter_name, expected_type) and the value to return (e.g.
|
167 |
+
NotImplemented). The expected_type parameter can be a type e.g. Tuple or a
|
168 |
+
string 'Tuple'. Using a string is useful for specifying a Type within its
|
169 |
+
class body (as in the above example).
|
170 |
+
|
171 |
+
Notes: Currently sympify_return only works for methods that take a single
|
172 |
+
argument (not including self). Specifying an expected_type as a string
|
173 |
+
only works for the class in which the method is defined.
|
174 |
+
'''
|
175 |
+
# Extract the wrapped methods from each of the wrapper objects created by
|
176 |
+
# the sympify_return decorator. Doing this here allows us to provide the
|
177 |
+
# cls argument which is used for forward string referencing.
|
178 |
+
for attrname, obj in cls.__dict__.items():
|
179 |
+
if isinstance(obj, _SympifyWrapper):
|
180 |
+
setattr(cls, attrname, obj.make_wrapped(cls))
|
181 |
+
return cls
|
182 |
+
|
183 |
+
|
184 |
+
def sympify_return(*args):
|
185 |
+
'''Function/method decorator to sympify arguments automatically
|
186 |
+
|
187 |
+
See the docstring of sympify_method_args for explanation.
|
188 |
+
'''
|
189 |
+
# Store a wrapper object for the decorated method
|
190 |
+
def wrapper(func):
|
191 |
+
return _SympifyWrapper(func, args)
|
192 |
+
return wrapper
|
193 |
+
|
194 |
+
|
195 |
+
class _SympifyWrapper:
|
196 |
+
'''Internal class used by sympify_return and sympify_method_args'''
|
197 |
+
|
198 |
+
def __init__(self, func, args):
|
199 |
+
self.func = func
|
200 |
+
self.args = args
|
201 |
+
|
202 |
+
def make_wrapped(self, cls):
|
203 |
+
func = self.func
|
204 |
+
parameters, retval = self.args
|
205 |
+
|
206 |
+
# XXX: Handle more than one parameter?
|
207 |
+
[(parameter, expectedcls)] = parameters
|
208 |
+
|
209 |
+
# Handle forward references to the current class using strings
|
210 |
+
if expectedcls == cls.__name__:
|
211 |
+
expectedcls = cls
|
212 |
+
|
213 |
+
# Raise RuntimeError since this is a failure at import time and should
|
214 |
+
# not be recoverable.
|
215 |
+
nargs = func.__code__.co_argcount
|
216 |
+
# we support f(a, b) only
|
217 |
+
if nargs != 2:
|
218 |
+
raise RuntimeError('sympify_return can only be used with 2 argument functions')
|
219 |
+
# only b is _sympified
|
220 |
+
if func.__code__.co_varnames[1] != parameter:
|
221 |
+
raise RuntimeError('parameter name mismatch "%s" in %s' %
|
222 |
+
(parameter, func.__name__))
|
223 |
+
|
224 |
+
@wraps(func)
|
225 |
+
def _func(self, other):
|
226 |
+
# XXX: The check for _op_priority here should be removed. It is
|
227 |
+
# needed to stop mutable matrices from being sympified to
|
228 |
+
# immutable matrices which breaks things in quantum...
|
229 |
+
if not hasattr(other, '_op_priority'):
|
230 |
+
try:
|
231 |
+
other = sympify(other, strict=True)
|
232 |
+
except SympifyError:
|
233 |
+
return retval
|
234 |
+
if not isinstance(other, expectedcls):
|
235 |
+
return retval
|
236 |
+
return func(self, other)
|
237 |
+
|
238 |
+
return _func
|
venv/lib/python3.10/site-packages/sympy/core/evalf.py
ADDED
@@ -0,0 +1,1801 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Adaptive numerical evaluation of SymPy expressions, using mpmath
|
3 |
+
for mathematical functions.
|
4 |
+
"""
|
5 |
+
from __future__ import annotations
|
6 |
+
from typing import Tuple as tTuple, Optional, Union as tUnion, Callable, List, Dict as tDict, Type, TYPE_CHECKING, \
|
7 |
+
Any, overload
|
8 |
+
|
9 |
+
import math
|
10 |
+
|
11 |
+
import mpmath.libmp as libmp
|
12 |
+
from mpmath import (
|
13 |
+
make_mpc, make_mpf, mp, mpc, mpf, nsum, quadts, quadosc, workprec)
|
14 |
+
from mpmath import inf as mpmath_inf
|
15 |
+
from mpmath.libmp import (from_int, from_man_exp, from_rational, fhalf,
|
16 |
+
fnan, finf, fninf, fnone, fone, fzero, mpf_abs, mpf_add,
|
17 |
+
mpf_atan, mpf_atan2, mpf_cmp, mpf_cos, mpf_e, mpf_exp, mpf_log, mpf_lt,
|
18 |
+
mpf_mul, mpf_neg, mpf_pi, mpf_pow, mpf_pow_int, mpf_shift, mpf_sin,
|
19 |
+
mpf_sqrt, normalize, round_nearest, to_int, to_str)
|
20 |
+
from mpmath.libmp import bitcount as mpmath_bitcount
|
21 |
+
from mpmath.libmp.backend import MPZ
|
22 |
+
from mpmath.libmp.libmpc import _infs_nan
|
23 |
+
from mpmath.libmp.libmpf import dps_to_prec, prec_to_dps
|
24 |
+
|
25 |
+
from .sympify import sympify
|
26 |
+
from .singleton import S
|
27 |
+
from sympy.external.gmpy import SYMPY_INTS
|
28 |
+
from sympy.utilities.iterables import is_sequence
|
29 |
+
from sympy.utilities.lambdify import lambdify
|
30 |
+
from sympy.utilities.misc import as_int
|
31 |
+
|
32 |
+
if TYPE_CHECKING:
|
33 |
+
from sympy.core.expr import Expr
|
34 |
+
from sympy.core.add import Add
|
35 |
+
from sympy.core.mul import Mul
|
36 |
+
from sympy.core.power import Pow
|
37 |
+
from sympy.core.symbol import Symbol
|
38 |
+
from sympy.integrals.integrals import Integral
|
39 |
+
from sympy.concrete.summations import Sum
|
40 |
+
from sympy.concrete.products import Product
|
41 |
+
from sympy.functions.elementary.exponential import exp, log
|
42 |
+
from sympy.functions.elementary.complexes import Abs, re, im
|
43 |
+
from sympy.functions.elementary.integers import ceiling, floor
|
44 |
+
from sympy.functions.elementary.trigonometric import atan
|
45 |
+
from .numbers import Float, Rational, Integer, AlgebraicNumber, Number
|
46 |
+
|
47 |
+
LG10 = math.log(10, 2)
|
48 |
+
rnd = round_nearest
|
49 |
+
|
50 |
+
|
51 |
+
def bitcount(n):
|
52 |
+
"""Return smallest integer, b, such that |n|/2**b < 1.
|
53 |
+
"""
|
54 |
+
return mpmath_bitcount(abs(int(n)))
|
55 |
+
|
56 |
+
# Used in a few places as placeholder values to denote exponents and
|
57 |
+
# precision levels, e.g. of exact numbers. Must be careful to avoid
|
58 |
+
# passing these to mpmath functions or returning them in final results.
|
59 |
+
INF = float(mpmath_inf)
|
60 |
+
MINUS_INF = float(-mpmath_inf)
|
61 |
+
|
62 |
+
# ~= 100 digits. Real men set this to INF.
|
63 |
+
DEFAULT_MAXPREC = 333
|
64 |
+
|
65 |
+
|
66 |
+
class PrecisionExhausted(ArithmeticError):
|
67 |
+
pass
|
68 |
+
|
69 |
+
#----------------------------------------------------------------------------#
|
70 |
+
# #
|
71 |
+
# Helper functions for arithmetic and complex parts #
|
72 |
+
# #
|
73 |
+
#----------------------------------------------------------------------------#
|
74 |
+
|
75 |
+
"""
|
76 |
+
An mpf value tuple is a tuple of integers (sign, man, exp, bc)
|
77 |
+
representing a floating-point number: [1, -1][sign]*man*2**exp where
|
78 |
+
sign is 0 or 1 and bc should correspond to the number of bits used to
|
79 |
+
represent the mantissa (man) in binary notation, e.g.
|
80 |
+
"""
|
81 |
+
MPF_TUP = tTuple[int, int, int, int] # mpf value tuple
|
82 |
+
|
83 |
+
"""
|
84 |
+
Explanation
|
85 |
+
===========
|
86 |
+
|
87 |
+
>>> from sympy.core.evalf import bitcount
|
88 |
+
>>> sign, man, exp, bc = 0, 5, 1, 3
|
89 |
+
>>> n = [1, -1][sign]*man*2**exp
|
90 |
+
>>> n, bitcount(man)
|
91 |
+
(10, 3)
|
92 |
+
|
93 |
+
A temporary result is a tuple (re, im, re_acc, im_acc) where
|
94 |
+
re and im are nonzero mpf value tuples representing approximate
|
95 |
+
numbers, or None to denote exact zeros.
|
96 |
+
|
97 |
+
re_acc, im_acc are integers denoting log2(e) where e is the estimated
|
98 |
+
relative accuracy of the respective complex part, but may be anything
|
99 |
+
if the corresponding complex part is None.
|
100 |
+
|
101 |
+
"""
|
102 |
+
TMP_RES = Any # temporary result, should be some variant of
|
103 |
+
# tUnion[tTuple[Optional[MPF_TUP], Optional[MPF_TUP],
|
104 |
+
# Optional[int], Optional[int]],
|
105 |
+
# 'ComplexInfinity']
|
106 |
+
# but mypy reports error because it doesn't know as we know
|
107 |
+
# 1. re and re_acc are either both None or both MPF_TUP
|
108 |
+
# 2. sometimes the result can't be zoo
|
109 |
+
|
110 |
+
# type of the "options" parameter in internal evalf functions
|
111 |
+
OPT_DICT = tDict[str, Any]
|
112 |
+
|
113 |
+
|
114 |
+
def fastlog(x: Optional[MPF_TUP]) -> tUnion[int, Any]:
|
115 |
+
"""Fast approximation of log2(x) for an mpf value tuple x.
|
116 |
+
|
117 |
+
Explanation
|
118 |
+
===========
|
119 |
+
|
120 |
+
Calculated as exponent + width of mantissa. This is an
|
121 |
+
approximation for two reasons: 1) it gives the ceil(log2(abs(x)))
|
122 |
+
value and 2) it is too high by 1 in the case that x is an exact
|
123 |
+
power of 2. Although this is easy to remedy by testing to see if
|
124 |
+
the odd mpf mantissa is 1 (indicating that one was dealing with
|
125 |
+
an exact power of 2) that would decrease the speed and is not
|
126 |
+
necessary as this is only being used as an approximation for the
|
127 |
+
number of bits in x. The correct return value could be written as
|
128 |
+
"x[2] + (x[3] if x[1] != 1 else 0)".
|
129 |
+
Since mpf tuples always have an odd mantissa, no check is done
|
130 |
+
to see if the mantissa is a multiple of 2 (in which case the
|
131 |
+
result would be too large by 1).
|
132 |
+
|
133 |
+
Examples
|
134 |
+
========
|
135 |
+
|
136 |
+
>>> from sympy import log
|
137 |
+
>>> from sympy.core.evalf import fastlog, bitcount
|
138 |
+
>>> s, m, e = 0, 5, 1
|
139 |
+
>>> bc = bitcount(m)
|
140 |
+
>>> n = [1, -1][s]*m*2**e
|
141 |
+
>>> n, (log(n)/log(2)).evalf(2), fastlog((s, m, e, bc))
|
142 |
+
(10, 3.3, 4)
|
143 |
+
"""
|
144 |
+
|
145 |
+
if not x or x == fzero:
|
146 |
+
return MINUS_INF
|
147 |
+
return x[2] + x[3]
|
148 |
+
|
149 |
+
|
150 |
+
def pure_complex(v: 'Expr', or_real=False) -> tuple['Number', 'Number'] | None:
|
151 |
+
"""Return a and b if v matches a + I*b where b is not zero and
|
152 |
+
a and b are Numbers, else None. If `or_real` is True then 0 will
|
153 |
+
be returned for `b` if `v` is a real number.
|
154 |
+
|
155 |
+
Examples
|
156 |
+
========
|
157 |
+
|
158 |
+
>>> from sympy.core.evalf import pure_complex
|
159 |
+
>>> from sympy import sqrt, I, S
|
160 |
+
>>> a, b, surd = S(2), S(3), sqrt(2)
|
161 |
+
>>> pure_complex(a)
|
162 |
+
>>> pure_complex(a, or_real=True)
|
163 |
+
(2, 0)
|
164 |
+
>>> pure_complex(surd)
|
165 |
+
>>> pure_complex(a + b*I)
|
166 |
+
(2, 3)
|
167 |
+
>>> pure_complex(I)
|
168 |
+
(0, 1)
|
169 |
+
"""
|
170 |
+
h, t = v.as_coeff_Add()
|
171 |
+
if t:
|
172 |
+
c, i = t.as_coeff_Mul()
|
173 |
+
if i is S.ImaginaryUnit:
|
174 |
+
return h, c
|
175 |
+
elif or_real:
|
176 |
+
return h, S.Zero
|
177 |
+
return None
|
178 |
+
|
179 |
+
|
180 |
+
# I don't know what this is, see function scaled_zero below
|
181 |
+
SCALED_ZERO_TUP = tTuple[List[int], int, int, int]
|
182 |
+
|
183 |
+
|
184 |
+
@overload
|
185 |
+
def scaled_zero(mag: SCALED_ZERO_TUP, sign=1) -> MPF_TUP:
|
186 |
+
...
|
187 |
+
@overload
|
188 |
+
def scaled_zero(mag: int, sign=1) -> tTuple[SCALED_ZERO_TUP, int]:
|
189 |
+
...
|
190 |
+
def scaled_zero(mag: tUnion[SCALED_ZERO_TUP, int], sign=1) -> \
|
191 |
+
tUnion[MPF_TUP, tTuple[SCALED_ZERO_TUP, int]]:
|
192 |
+
"""Return an mpf representing a power of two with magnitude ``mag``
|
193 |
+
and -1 for precision. Or, if ``mag`` is a scaled_zero tuple, then just
|
194 |
+
remove the sign from within the list that it was initially wrapped
|
195 |
+
in.
|
196 |
+
|
197 |
+
Examples
|
198 |
+
========
|
199 |
+
|
200 |
+
>>> from sympy.core.evalf import scaled_zero
|
201 |
+
>>> from sympy import Float
|
202 |
+
>>> z, p = scaled_zero(100)
|
203 |
+
>>> z, p
|
204 |
+
(([0], 1, 100, 1), -1)
|
205 |
+
>>> ok = scaled_zero(z)
|
206 |
+
>>> ok
|
207 |
+
(0, 1, 100, 1)
|
208 |
+
>>> Float(ok)
|
209 |
+
1.26765060022823e+30
|
210 |
+
>>> Float(ok, p)
|
211 |
+
0.e+30
|
212 |
+
>>> ok, p = scaled_zero(100, -1)
|
213 |
+
>>> Float(scaled_zero(ok), p)
|
214 |
+
-0.e+30
|
215 |
+
"""
|
216 |
+
if isinstance(mag, tuple) and len(mag) == 4 and iszero(mag, scaled=True):
|
217 |
+
return (mag[0][0],) + mag[1:]
|
218 |
+
elif isinstance(mag, SYMPY_INTS):
|
219 |
+
if sign not in [-1, 1]:
|
220 |
+
raise ValueError('sign must be +/-1')
|
221 |
+
rv, p = mpf_shift(fone, mag), -1
|
222 |
+
s = 0 if sign == 1 else 1
|
223 |
+
rv = ([s],) + rv[1:]
|
224 |
+
return rv, p
|
225 |
+
else:
|
226 |
+
raise ValueError('scaled zero expects int or scaled_zero tuple.')
|
227 |
+
|
228 |
+
|
229 |
+
def iszero(mpf: tUnion[MPF_TUP, SCALED_ZERO_TUP, None], scaled=False) -> Optional[bool]:
|
230 |
+
if not scaled:
|
231 |
+
return not mpf or not mpf[1] and not mpf[-1]
|
232 |
+
return mpf and isinstance(mpf[0], list) and mpf[1] == mpf[-1] == 1
|
233 |
+
|
234 |
+
|
235 |
+
def complex_accuracy(result: TMP_RES) -> tUnion[int, Any]:
|
236 |
+
"""
|
237 |
+
Returns relative accuracy of a complex number with given accuracies
|
238 |
+
for the real and imaginary parts. The relative accuracy is defined
|
239 |
+
in the complex norm sense as ||z|+|error|| / |z| where error
|
240 |
+
is equal to (real absolute error) + (imag absolute error)*i.
|
241 |
+
|
242 |
+
The full expression for the (logarithmic) error can be approximated
|
243 |
+
easily by using the max norm to approximate the complex norm.
|
244 |
+
|
245 |
+
In the worst case (re and im equal), this is wrong by a factor
|
246 |
+
sqrt(2), or by log2(sqrt(2)) = 0.5 bit.
|
247 |
+
"""
|
248 |
+
if result is S.ComplexInfinity:
|
249 |
+
return INF
|
250 |
+
re, im, re_acc, im_acc = result
|
251 |
+
if not im:
|
252 |
+
if not re:
|
253 |
+
return INF
|
254 |
+
return re_acc
|
255 |
+
if not re:
|
256 |
+
return im_acc
|
257 |
+
re_size = fastlog(re)
|
258 |
+
im_size = fastlog(im)
|
259 |
+
absolute_error = max(re_size - re_acc, im_size - im_acc)
|
260 |
+
relative_error = absolute_error - max(re_size, im_size)
|
261 |
+
return -relative_error
|
262 |
+
|
263 |
+
|
264 |
+
def get_abs(expr: 'Expr', prec: int, options: OPT_DICT) -> TMP_RES:
|
265 |
+
result = evalf(expr, prec + 2, options)
|
266 |
+
if result is S.ComplexInfinity:
|
267 |
+
return finf, None, prec, None
|
268 |
+
re, im, re_acc, im_acc = result
|
269 |
+
if not re:
|
270 |
+
re, re_acc, im, im_acc = im, im_acc, re, re_acc
|
271 |
+
if im:
|
272 |
+
if expr.is_number:
|
273 |
+
abs_expr, _, acc, _ = evalf(abs(N(expr, prec + 2)),
|
274 |
+
prec + 2, options)
|
275 |
+
return abs_expr, None, acc, None
|
276 |
+
else:
|
277 |
+
if 'subs' in options:
|
278 |
+
return libmp.mpc_abs((re, im), prec), None, re_acc, None
|
279 |
+
return abs(expr), None, prec, None
|
280 |
+
elif re:
|
281 |
+
return mpf_abs(re), None, re_acc, None
|
282 |
+
else:
|
283 |
+
return None, None, None, None
|
284 |
+
|
285 |
+
|
286 |
+
def get_complex_part(expr: 'Expr', no: int, prec: int, options: OPT_DICT) -> TMP_RES:
|
287 |
+
"""no = 0 for real part, no = 1 for imaginary part"""
|
288 |
+
workprec = prec
|
289 |
+
i = 0
|
290 |
+
while 1:
|
291 |
+
res = evalf(expr, workprec, options)
|
292 |
+
if res is S.ComplexInfinity:
|
293 |
+
return fnan, None, prec, None
|
294 |
+
value, accuracy = res[no::2]
|
295 |
+
# XXX is the last one correct? Consider re((1+I)**2).n()
|
296 |
+
if (not value) or accuracy >= prec or -value[2] > prec:
|
297 |
+
return value, None, accuracy, None
|
298 |
+
workprec += max(30, 2**i)
|
299 |
+
i += 1
|
300 |
+
|
301 |
+
|
302 |
+
def evalf_abs(expr: 'Abs', prec: int, options: OPT_DICT) -> TMP_RES:
|
303 |
+
return get_abs(expr.args[0], prec, options)
|
304 |
+
|
305 |
+
|
306 |
+
def evalf_re(expr: 're', prec: int, options: OPT_DICT) -> TMP_RES:
|
307 |
+
return get_complex_part(expr.args[0], 0, prec, options)
|
308 |
+
|
309 |
+
|
310 |
+
def evalf_im(expr: 'im', prec: int, options: OPT_DICT) -> TMP_RES:
|
311 |
+
return get_complex_part(expr.args[0], 1, prec, options)
|
312 |
+
|
313 |
+
|
314 |
+
def finalize_complex(re: MPF_TUP, im: MPF_TUP, prec: int) -> TMP_RES:
|
315 |
+
if re == fzero and im == fzero:
|
316 |
+
raise ValueError("got complex zero with unknown accuracy")
|
317 |
+
elif re == fzero:
|
318 |
+
return None, im, None, prec
|
319 |
+
elif im == fzero:
|
320 |
+
return re, None, prec, None
|
321 |
+
|
322 |
+
size_re = fastlog(re)
|
323 |
+
size_im = fastlog(im)
|
324 |
+
if size_re > size_im:
|
325 |
+
re_acc = prec
|
326 |
+
im_acc = prec + min(-(size_re - size_im), 0)
|
327 |
+
else:
|
328 |
+
im_acc = prec
|
329 |
+
re_acc = prec + min(-(size_im - size_re), 0)
|
330 |
+
return re, im, re_acc, im_acc
|
331 |
+
|
332 |
+
|
333 |
+
def chop_parts(value: TMP_RES, prec: int) -> TMP_RES:
|
334 |
+
"""
|
335 |
+
Chop off tiny real or complex parts.
|
336 |
+
"""
|
337 |
+
if value is S.ComplexInfinity:
|
338 |
+
return value
|
339 |
+
re, im, re_acc, im_acc = value
|
340 |
+
# Method 1: chop based on absolute value
|
341 |
+
if re and re not in _infs_nan and (fastlog(re) < -prec + 4):
|
342 |
+
re, re_acc = None, None
|
343 |
+
if im and im not in _infs_nan and (fastlog(im) < -prec + 4):
|
344 |
+
im, im_acc = None, None
|
345 |
+
# Method 2: chop if inaccurate and relatively small
|
346 |
+
if re and im:
|
347 |
+
delta = fastlog(re) - fastlog(im)
|
348 |
+
if re_acc < 2 and (delta - re_acc <= -prec + 4):
|
349 |
+
re, re_acc = None, None
|
350 |
+
if im_acc < 2 and (delta - im_acc >= prec - 4):
|
351 |
+
im, im_acc = None, None
|
352 |
+
return re, im, re_acc, im_acc
|
353 |
+
|
354 |
+
|
355 |
+
def check_target(expr: 'Expr', result: TMP_RES, prec: int):
|
356 |
+
a = complex_accuracy(result)
|
357 |
+
if a < prec:
|
358 |
+
raise PrecisionExhausted("Failed to distinguish the expression: \n\n%s\n\n"
|
359 |
+
"from zero. Try simplifying the input, using chop=True, or providing "
|
360 |
+
"a higher maxn for evalf" % (expr))
|
361 |
+
|
362 |
+
|
363 |
+
def get_integer_part(expr: 'Expr', no: int, options: OPT_DICT, return_ints=False) -> \
|
364 |
+
tUnion[TMP_RES, tTuple[int, int]]:
|
365 |
+
"""
|
366 |
+
With no = 1, computes ceiling(expr)
|
367 |
+
With no = -1, computes floor(expr)
|
368 |
+
|
369 |
+
Note: this function either gives the exact result or signals failure.
|
370 |
+
"""
|
371 |
+
from sympy.functions.elementary.complexes import re, im
|
372 |
+
# The expression is likely less than 2^30 or so
|
373 |
+
assumed_size = 30
|
374 |
+
result = evalf(expr, assumed_size, options)
|
375 |
+
if result is S.ComplexInfinity:
|
376 |
+
raise ValueError("Cannot get integer part of Complex Infinity")
|
377 |
+
ire, iim, ire_acc, iim_acc = result
|
378 |
+
|
379 |
+
# We now know the size, so we can calculate how much extra precision
|
380 |
+
# (if any) is needed to get within the nearest integer
|
381 |
+
if ire and iim:
|
382 |
+
gap = max(fastlog(ire) - ire_acc, fastlog(iim) - iim_acc)
|
383 |
+
elif ire:
|
384 |
+
gap = fastlog(ire) - ire_acc
|
385 |
+
elif iim:
|
386 |
+
gap = fastlog(iim) - iim_acc
|
387 |
+
else:
|
388 |
+
# ... or maybe the expression was exactly zero
|
389 |
+
if return_ints:
|
390 |
+
return 0, 0
|
391 |
+
else:
|
392 |
+
return None, None, None, None
|
393 |
+
|
394 |
+
margin = 10
|
395 |
+
|
396 |
+
if gap >= -margin:
|
397 |
+
prec = margin + assumed_size + gap
|
398 |
+
ire, iim, ire_acc, iim_acc = evalf(
|
399 |
+
expr, prec, options)
|
400 |
+
else:
|
401 |
+
prec = assumed_size
|
402 |
+
|
403 |
+
# We can now easily find the nearest integer, but to find floor/ceil, we
|
404 |
+
# must also calculate whether the difference to the nearest integer is
|
405 |
+
# positive or negative (which may fail if very close).
|
406 |
+
def calc_part(re_im: 'Expr', nexpr: MPF_TUP):
|
407 |
+
from .add import Add
|
408 |
+
_, _, exponent, _ = nexpr
|
409 |
+
is_int = exponent == 0
|
410 |
+
nint = int(to_int(nexpr, rnd))
|
411 |
+
if is_int:
|
412 |
+
# make sure that we had enough precision to distinguish
|
413 |
+
# between nint and the re or im part (re_im) of expr that
|
414 |
+
# was passed to calc_part
|
415 |
+
ire, iim, ire_acc, iim_acc = evalf(
|
416 |
+
re_im - nint, 10, options) # don't need much precision
|
417 |
+
assert not iim
|
418 |
+
size = -fastlog(ire) + 2 # -ve b/c ire is less than 1
|
419 |
+
if size > prec:
|
420 |
+
ire, iim, ire_acc, iim_acc = evalf(
|
421 |
+
re_im, size, options)
|
422 |
+
assert not iim
|
423 |
+
nexpr = ire
|
424 |
+
nint = int(to_int(nexpr, rnd))
|
425 |
+
_, _, new_exp, _ = ire
|
426 |
+
is_int = new_exp == 0
|
427 |
+
if not is_int:
|
428 |
+
# if there are subs and they all contain integer re/im parts
|
429 |
+
# then we can (hopefully) safely substitute them into the
|
430 |
+
# expression
|
431 |
+
s = options.get('subs', False)
|
432 |
+
if s:
|
433 |
+
doit = True
|
434 |
+
# use strict=False with as_int because we take
|
435 |
+
# 2.0 == 2
|
436 |
+
for v in s.values():
|
437 |
+
try:
|
438 |
+
as_int(v, strict=False)
|
439 |
+
except ValueError:
|
440 |
+
try:
|
441 |
+
[as_int(i, strict=False) for i in v.as_real_imag()]
|
442 |
+
continue
|
443 |
+
except (ValueError, AttributeError):
|
444 |
+
doit = False
|
445 |
+
break
|
446 |
+
if doit:
|
447 |
+
re_im = re_im.subs(s)
|
448 |
+
|
449 |
+
re_im = Add(re_im, -nint, evaluate=False)
|
450 |
+
x, _, x_acc, _ = evalf(re_im, 10, options)
|
451 |
+
try:
|
452 |
+
check_target(re_im, (x, None, x_acc, None), 3)
|
453 |
+
except PrecisionExhausted:
|
454 |
+
if not re_im.equals(0):
|
455 |
+
raise PrecisionExhausted
|
456 |
+
x = fzero
|
457 |
+
nint += int(no*(mpf_cmp(x or fzero, fzero) == no))
|
458 |
+
nint = from_int(nint)
|
459 |
+
return nint, INF
|
460 |
+
|
461 |
+
re_, im_, re_acc, im_acc = None, None, None, None
|
462 |
+
|
463 |
+
if ire:
|
464 |
+
re_, re_acc = calc_part(re(expr, evaluate=False), ire)
|
465 |
+
if iim:
|
466 |
+
im_, im_acc = calc_part(im(expr, evaluate=False), iim)
|
467 |
+
|
468 |
+
if return_ints:
|
469 |
+
return int(to_int(re_ or fzero)), int(to_int(im_ or fzero))
|
470 |
+
return re_, im_, re_acc, im_acc
|
471 |
+
|
472 |
+
|
473 |
+
def evalf_ceiling(expr: 'ceiling', prec: int, options: OPT_DICT) -> TMP_RES:
|
474 |
+
return get_integer_part(expr.args[0], 1, options)
|
475 |
+
|
476 |
+
|
477 |
+
def evalf_floor(expr: 'floor', prec: int, options: OPT_DICT) -> TMP_RES:
|
478 |
+
return get_integer_part(expr.args[0], -1, options)
|
479 |
+
|
480 |
+
|
481 |
+
def evalf_float(expr: 'Float', prec: int, options: OPT_DICT) -> TMP_RES:
|
482 |
+
return expr._mpf_, None, prec, None
|
483 |
+
|
484 |
+
|
485 |
+
def evalf_rational(expr: 'Rational', prec: int, options: OPT_DICT) -> TMP_RES:
|
486 |
+
return from_rational(expr.p, expr.q, prec), None, prec, None
|
487 |
+
|
488 |
+
|
489 |
+
def evalf_integer(expr: 'Integer', prec: int, options: OPT_DICT) -> TMP_RES:
|
490 |
+
return from_int(expr.p, prec), None, prec, None
|
491 |
+
|
492 |
+
#----------------------------------------------------------------------------#
|
493 |
+
# #
|
494 |
+
# Arithmetic operations #
|
495 |
+
# #
|
496 |
+
#----------------------------------------------------------------------------#
|
497 |
+
|
498 |
+
|
499 |
+
def add_terms(terms: list, prec: int, target_prec: int) -> \
|
500 |
+
tTuple[tUnion[MPF_TUP, SCALED_ZERO_TUP, None], Optional[int]]:
|
501 |
+
"""
|
502 |
+
Helper for evalf_add. Adds a list of (mpfval, accuracy) terms.
|
503 |
+
|
504 |
+
Returns
|
505 |
+
=======
|
506 |
+
|
507 |
+
- None, None if there are no non-zero terms;
|
508 |
+
- terms[0] if there is only 1 term;
|
509 |
+
- scaled_zero if the sum of the terms produces a zero by cancellation
|
510 |
+
e.g. mpfs representing 1 and -1 would produce a scaled zero which need
|
511 |
+
special handling since they are not actually zero and they are purposely
|
512 |
+
malformed to ensure that they cannot be used in anything but accuracy
|
513 |
+
calculations;
|
514 |
+
- a tuple that is scaled to target_prec that corresponds to the
|
515 |
+
sum of the terms.
|
516 |
+
|
517 |
+
The returned mpf tuple will be normalized to target_prec; the input
|
518 |
+
prec is used to define the working precision.
|
519 |
+
|
520 |
+
XXX explain why this is needed and why one cannot just loop using mpf_add
|
521 |
+
"""
|
522 |
+
|
523 |
+
terms = [t for t in terms if not iszero(t[0])]
|
524 |
+
if not terms:
|
525 |
+
return None, None
|
526 |
+
elif len(terms) == 1:
|
527 |
+
return terms[0]
|
528 |
+
|
529 |
+
# see if any argument is NaN or oo and thus warrants a special return
|
530 |
+
special = []
|
531 |
+
from .numbers import Float
|
532 |
+
for t in terms:
|
533 |
+
arg = Float._new(t[0], 1)
|
534 |
+
if arg is S.NaN or arg.is_infinite:
|
535 |
+
special.append(arg)
|
536 |
+
if special:
|
537 |
+
from .add import Add
|
538 |
+
rv = evalf(Add(*special), prec + 4, {})
|
539 |
+
return rv[0], rv[2]
|
540 |
+
|
541 |
+
working_prec = 2*prec
|
542 |
+
sum_man, sum_exp = 0, 0
|
543 |
+
absolute_err: List[int] = []
|
544 |
+
|
545 |
+
for x, accuracy in terms:
|
546 |
+
sign, man, exp, bc = x
|
547 |
+
if sign:
|
548 |
+
man = -man
|
549 |
+
absolute_err.append(bc + exp - accuracy)
|
550 |
+
delta = exp - sum_exp
|
551 |
+
if exp >= sum_exp:
|
552 |
+
# x much larger than existing sum?
|
553 |
+
# first: quick test
|
554 |
+
if ((delta > working_prec) and
|
555 |
+
((not sum_man) or
|
556 |
+
delta - bitcount(abs(sum_man)) > working_prec)):
|
557 |
+
sum_man = man
|
558 |
+
sum_exp = exp
|
559 |
+
else:
|
560 |
+
sum_man += (man << delta)
|
561 |
+
else:
|
562 |
+
delta = -delta
|
563 |
+
# x much smaller than existing sum?
|
564 |
+
if delta - bc > working_prec:
|
565 |
+
if not sum_man:
|
566 |
+
sum_man, sum_exp = man, exp
|
567 |
+
else:
|
568 |
+
sum_man = (sum_man << delta) + man
|
569 |
+
sum_exp = exp
|
570 |
+
absolute_error = max(absolute_err)
|
571 |
+
if not sum_man:
|
572 |
+
return scaled_zero(absolute_error)
|
573 |
+
if sum_man < 0:
|
574 |
+
sum_sign = 1
|
575 |
+
sum_man = -sum_man
|
576 |
+
else:
|
577 |
+
sum_sign = 0
|
578 |
+
sum_bc = bitcount(sum_man)
|
579 |
+
sum_accuracy = sum_exp + sum_bc - absolute_error
|
580 |
+
r = normalize(sum_sign, sum_man, sum_exp, sum_bc, target_prec,
|
581 |
+
rnd), sum_accuracy
|
582 |
+
return r
|
583 |
+
|
584 |
+
|
585 |
+
def evalf_add(v: 'Add', prec: int, options: OPT_DICT) -> TMP_RES:
|
586 |
+
res = pure_complex(v)
|
587 |
+
if res:
|
588 |
+
h, c = res
|
589 |
+
re, _, re_acc, _ = evalf(h, prec, options)
|
590 |
+
im, _, im_acc, _ = evalf(c, prec, options)
|
591 |
+
return re, im, re_acc, im_acc
|
592 |
+
|
593 |
+
oldmaxprec = options.get('maxprec', DEFAULT_MAXPREC)
|
594 |
+
|
595 |
+
i = 0
|
596 |
+
target_prec = prec
|
597 |
+
while 1:
|
598 |
+
options['maxprec'] = min(oldmaxprec, 2*prec)
|
599 |
+
|
600 |
+
terms = [evalf(arg, prec + 10, options) for arg in v.args]
|
601 |
+
n = terms.count(S.ComplexInfinity)
|
602 |
+
if n >= 2:
|
603 |
+
return fnan, None, prec, None
|
604 |
+
re, re_acc = add_terms(
|
605 |
+
[a[0::2] for a in terms if isinstance(a, tuple) and a[0]], prec, target_prec)
|
606 |
+
im, im_acc = add_terms(
|
607 |
+
[a[1::2] for a in terms if isinstance(a, tuple) and a[1]], prec, target_prec)
|
608 |
+
if n == 1:
|
609 |
+
if re in (finf, fninf, fnan) or im in (finf, fninf, fnan):
|
610 |
+
return fnan, None, prec, None
|
611 |
+
return S.ComplexInfinity
|
612 |
+
acc = complex_accuracy((re, im, re_acc, im_acc))
|
613 |
+
if acc >= target_prec:
|
614 |
+
if options.get('verbose'):
|
615 |
+
print("ADD: wanted", target_prec, "accurate bits, got", re_acc, im_acc)
|
616 |
+
break
|
617 |
+
else:
|
618 |
+
if (prec - target_prec) > options['maxprec']:
|
619 |
+
break
|
620 |
+
|
621 |
+
prec = prec + max(10 + 2**i, target_prec - acc)
|
622 |
+
i += 1
|
623 |
+
if options.get('verbose'):
|
624 |
+
print("ADD: restarting with prec", prec)
|
625 |
+
|
626 |
+
options['maxprec'] = oldmaxprec
|
627 |
+
if iszero(re, scaled=True):
|
628 |
+
re = scaled_zero(re)
|
629 |
+
if iszero(im, scaled=True):
|
630 |
+
im = scaled_zero(im)
|
631 |
+
return re, im, re_acc, im_acc
|
632 |
+
|
633 |
+
|
634 |
+
def evalf_mul(v: 'Mul', prec: int, options: OPT_DICT) -> TMP_RES:
|
635 |
+
res = pure_complex(v)
|
636 |
+
if res:
|
637 |
+
# the only pure complex that is a mul is h*I
|
638 |
+
_, h = res
|
639 |
+
im, _, im_acc, _ = evalf(h, prec, options)
|
640 |
+
return None, im, None, im_acc
|
641 |
+
args = list(v.args)
|
642 |
+
|
643 |
+
# see if any argument is NaN or oo and thus warrants a special return
|
644 |
+
has_zero = False
|
645 |
+
special = []
|
646 |
+
from .numbers import Float
|
647 |
+
for arg in args:
|
648 |
+
result = evalf(arg, prec, options)
|
649 |
+
if result is S.ComplexInfinity:
|
650 |
+
special.append(result)
|
651 |
+
continue
|
652 |
+
if result[0] is None:
|
653 |
+
if result[1] is None:
|
654 |
+
has_zero = True
|
655 |
+
continue
|
656 |
+
num = Float._new(result[0], 1)
|
657 |
+
if num is S.NaN:
|
658 |
+
return fnan, None, prec, None
|
659 |
+
if num.is_infinite:
|
660 |
+
special.append(num)
|
661 |
+
if special:
|
662 |
+
if has_zero:
|
663 |
+
return fnan, None, prec, None
|
664 |
+
from .mul import Mul
|
665 |
+
return evalf(Mul(*special), prec + 4, {})
|
666 |
+
if has_zero:
|
667 |
+
return None, None, None, None
|
668 |
+
|
669 |
+
# With guard digits, multiplication in the real case does not destroy
|
670 |
+
# accuracy. This is also true in the complex case when considering the
|
671 |
+
# total accuracy; however accuracy for the real or imaginary parts
|
672 |
+
# separately may be lower.
|
673 |
+
acc = prec
|
674 |
+
|
675 |
+
# XXX: big overestimate
|
676 |
+
working_prec = prec + len(args) + 5
|
677 |
+
|
678 |
+
# Empty product is 1
|
679 |
+
start = man, exp, bc = MPZ(1), 0, 1
|
680 |
+
|
681 |
+
# First, we multiply all pure real or pure imaginary numbers.
|
682 |
+
# direction tells us that the result should be multiplied by
|
683 |
+
# I**direction; all other numbers get put into complex_factors
|
684 |
+
# to be multiplied out after the first phase.
|
685 |
+
last = len(args)
|
686 |
+
direction = 0
|
687 |
+
args.append(S.One)
|
688 |
+
complex_factors = []
|
689 |
+
|
690 |
+
for i, arg in enumerate(args):
|
691 |
+
if i != last and pure_complex(arg):
|
692 |
+
args[-1] = (args[-1]*arg).expand()
|
693 |
+
continue
|
694 |
+
elif i == last and arg is S.One:
|
695 |
+
continue
|
696 |
+
re, im, re_acc, im_acc = evalf(arg, working_prec, options)
|
697 |
+
if re and im:
|
698 |
+
complex_factors.append((re, im, re_acc, im_acc))
|
699 |
+
continue
|
700 |
+
elif re:
|
701 |
+
(s, m, e, b), w_acc = re, re_acc
|
702 |
+
elif im:
|
703 |
+
(s, m, e, b), w_acc = im, im_acc
|
704 |
+
direction += 1
|
705 |
+
else:
|
706 |
+
return None, None, None, None
|
707 |
+
direction += 2*s
|
708 |
+
man *= m
|
709 |
+
exp += e
|
710 |
+
bc += b
|
711 |
+
while bc > 3*working_prec:
|
712 |
+
man >>= working_prec
|
713 |
+
exp += working_prec
|
714 |
+
bc -= working_prec
|
715 |
+
acc = min(acc, w_acc)
|
716 |
+
sign = (direction & 2) >> 1
|
717 |
+
if not complex_factors:
|
718 |
+
v = normalize(sign, man, exp, bitcount(man), prec, rnd)
|
719 |
+
# multiply by i
|
720 |
+
if direction & 1:
|
721 |
+
return None, v, None, acc
|
722 |
+
else:
|
723 |
+
return v, None, acc, None
|
724 |
+
else:
|
725 |
+
# initialize with the first term
|
726 |
+
if (man, exp, bc) != start:
|
727 |
+
# there was a real part; give it an imaginary part
|
728 |
+
re, im = (sign, man, exp, bitcount(man)), (0, MPZ(0), 0, 0)
|
729 |
+
i0 = 0
|
730 |
+
else:
|
731 |
+
# there is no real part to start (other than the starting 1)
|
732 |
+
wre, wim, wre_acc, wim_acc = complex_factors[0]
|
733 |
+
acc = min(acc,
|
734 |
+
complex_accuracy((wre, wim, wre_acc, wim_acc)))
|
735 |
+
re = wre
|
736 |
+
im = wim
|
737 |
+
i0 = 1
|
738 |
+
|
739 |
+
for wre, wim, wre_acc, wim_acc in complex_factors[i0:]:
|
740 |
+
# acc is the overall accuracy of the product; we aren't
|
741 |
+
# computing exact accuracies of the product.
|
742 |
+
acc = min(acc,
|
743 |
+
complex_accuracy((wre, wim, wre_acc, wim_acc)))
|
744 |
+
|
745 |
+
use_prec = working_prec
|
746 |
+
A = mpf_mul(re, wre, use_prec)
|
747 |
+
B = mpf_mul(mpf_neg(im), wim, use_prec)
|
748 |
+
C = mpf_mul(re, wim, use_prec)
|
749 |
+
D = mpf_mul(im, wre, use_prec)
|
750 |
+
re = mpf_add(A, B, use_prec)
|
751 |
+
im = mpf_add(C, D, use_prec)
|
752 |
+
if options.get('verbose'):
|
753 |
+
print("MUL: wanted", prec, "accurate bits, got", acc)
|
754 |
+
# multiply by I
|
755 |
+
if direction & 1:
|
756 |
+
re, im = mpf_neg(im), re
|
757 |
+
return re, im, acc, acc
|
758 |
+
|
759 |
+
|
760 |
+
def evalf_pow(v: 'Pow', prec: int, options) -> TMP_RES:
|
761 |
+
|
762 |
+
target_prec = prec
|
763 |
+
base, exp = v.args
|
764 |
+
|
765 |
+
# We handle x**n separately. This has two purposes: 1) it is much
|
766 |
+
# faster, because we avoid calling evalf on the exponent, and 2) it
|
767 |
+
# allows better handling of real/imaginary parts that are exactly zero
|
768 |
+
if exp.is_Integer:
|
769 |
+
p: int = exp.p # type: ignore
|
770 |
+
# Exact
|
771 |
+
if not p:
|
772 |
+
return fone, None, prec, None
|
773 |
+
# Exponentiation by p magnifies relative error by |p|, so the
|
774 |
+
# base must be evaluated with increased precision if p is large
|
775 |
+
prec += int(math.log(abs(p), 2))
|
776 |
+
result = evalf(base, prec + 5, options)
|
777 |
+
if result is S.ComplexInfinity:
|
778 |
+
if p < 0:
|
779 |
+
return None, None, None, None
|
780 |
+
return result
|
781 |
+
re, im, re_acc, im_acc = result
|
782 |
+
# Real to integer power
|
783 |
+
if re and not im:
|
784 |
+
return mpf_pow_int(re, p, target_prec), None, target_prec, None
|
785 |
+
# (x*I)**n = I**n * x**n
|
786 |
+
if im and not re:
|
787 |
+
z = mpf_pow_int(im, p, target_prec)
|
788 |
+
case = p % 4
|
789 |
+
if case == 0:
|
790 |
+
return z, None, target_prec, None
|
791 |
+
if case == 1:
|
792 |
+
return None, z, None, target_prec
|
793 |
+
if case == 2:
|
794 |
+
return mpf_neg(z), None, target_prec, None
|
795 |
+
if case == 3:
|
796 |
+
return None, mpf_neg(z), None, target_prec
|
797 |
+
# Zero raised to an integer power
|
798 |
+
if not re:
|
799 |
+
if p < 0:
|
800 |
+
return S.ComplexInfinity
|
801 |
+
return None, None, None, None
|
802 |
+
# General complex number to arbitrary integer power
|
803 |
+
re, im = libmp.mpc_pow_int((re, im), p, prec)
|
804 |
+
# Assumes full accuracy in input
|
805 |
+
return finalize_complex(re, im, target_prec)
|
806 |
+
|
807 |
+
result = evalf(base, prec + 5, options)
|
808 |
+
if result is S.ComplexInfinity:
|
809 |
+
if exp.is_Rational:
|
810 |
+
if exp < 0:
|
811 |
+
return None, None, None, None
|
812 |
+
return result
|
813 |
+
raise NotImplementedError
|
814 |
+
|
815 |
+
# Pure square root
|
816 |
+
if exp is S.Half:
|
817 |
+
xre, xim, _, _ = result
|
818 |
+
# General complex square root
|
819 |
+
if xim:
|
820 |
+
re, im = libmp.mpc_sqrt((xre or fzero, xim), prec)
|
821 |
+
return finalize_complex(re, im, prec)
|
822 |
+
if not xre:
|
823 |
+
return None, None, None, None
|
824 |
+
# Square root of a negative real number
|
825 |
+
if mpf_lt(xre, fzero):
|
826 |
+
return None, mpf_sqrt(mpf_neg(xre), prec), None, prec
|
827 |
+
# Positive square root
|
828 |
+
return mpf_sqrt(xre, prec), None, prec, None
|
829 |
+
|
830 |
+
# We first evaluate the exponent to find its magnitude
|
831 |
+
# This determines the working precision that must be used
|
832 |
+
prec += 10
|
833 |
+
result = evalf(exp, prec, options)
|
834 |
+
if result is S.ComplexInfinity:
|
835 |
+
return fnan, None, prec, None
|
836 |
+
yre, yim, _, _ = result
|
837 |
+
# Special cases: x**0
|
838 |
+
if not (yre or yim):
|
839 |
+
return fone, None, prec, None
|
840 |
+
|
841 |
+
ysize = fastlog(yre)
|
842 |
+
# Restart if too big
|
843 |
+
# XXX: prec + ysize might exceed maxprec
|
844 |
+
if ysize > 5:
|
845 |
+
prec += ysize
|
846 |
+
yre, yim, _, _ = evalf(exp, prec, options)
|
847 |
+
|
848 |
+
# Pure exponential function; no need to evalf the base
|
849 |
+
if base is S.Exp1:
|
850 |
+
if yim:
|
851 |
+
re, im = libmp.mpc_exp((yre or fzero, yim), prec)
|
852 |
+
return finalize_complex(re, im, target_prec)
|
853 |
+
return mpf_exp(yre, target_prec), None, target_prec, None
|
854 |
+
|
855 |
+
xre, xim, _, _ = evalf(base, prec + 5, options)
|
856 |
+
# 0**y
|
857 |
+
if not (xre or xim):
|
858 |
+
if yim:
|
859 |
+
return fnan, None, prec, None
|
860 |
+
if yre[0] == 1: # y < 0
|
861 |
+
return S.ComplexInfinity
|
862 |
+
return None, None, None, None
|
863 |
+
|
864 |
+
# (real ** complex) or (complex ** complex)
|
865 |
+
if yim:
|
866 |
+
re, im = libmp.mpc_pow(
|
867 |
+
(xre or fzero, xim or fzero), (yre or fzero, yim),
|
868 |
+
target_prec)
|
869 |
+
return finalize_complex(re, im, target_prec)
|
870 |
+
# complex ** real
|
871 |
+
if xim:
|
872 |
+
re, im = libmp.mpc_pow_mpf((xre or fzero, xim), yre, target_prec)
|
873 |
+
return finalize_complex(re, im, target_prec)
|
874 |
+
# negative ** real
|
875 |
+
elif mpf_lt(xre, fzero):
|
876 |
+
re, im = libmp.mpc_pow_mpf((xre, fzero), yre, target_prec)
|
877 |
+
return finalize_complex(re, im, target_prec)
|
878 |
+
# positive ** real
|
879 |
+
else:
|
880 |
+
return mpf_pow(xre, yre, target_prec), None, target_prec, None
|
881 |
+
|
882 |
+
|
883 |
+
#----------------------------------------------------------------------------#
|
884 |
+
# #
|
885 |
+
# Special functions #
|
886 |
+
# #
|
887 |
+
#----------------------------------------------------------------------------#
|
888 |
+
|
889 |
+
|
890 |
+
def evalf_exp(expr: 'exp', prec: int, options: OPT_DICT) -> TMP_RES:
|
891 |
+
from .power import Pow
|
892 |
+
return evalf_pow(Pow(S.Exp1, expr.exp, evaluate=False), prec, options)
|
893 |
+
|
894 |
+
|
895 |
+
def evalf_trig(v: 'Expr', prec: int, options: OPT_DICT) -> TMP_RES:
|
896 |
+
"""
|
897 |
+
This function handles sin and cos of complex arguments.
|
898 |
+
|
899 |
+
TODO: should also handle tan of complex arguments.
|
900 |
+
"""
|
901 |
+
from sympy.functions.elementary.trigonometric import cos, sin
|
902 |
+
if isinstance(v, cos):
|
903 |
+
func = mpf_cos
|
904 |
+
elif isinstance(v, sin):
|
905 |
+
func = mpf_sin
|
906 |
+
else:
|
907 |
+
raise NotImplementedError
|
908 |
+
arg = v.args[0]
|
909 |
+
# 20 extra bits is possibly overkill. It does make the need
|
910 |
+
# to restart very unlikely
|
911 |
+
xprec = prec + 20
|
912 |
+
re, im, re_acc, im_acc = evalf(arg, xprec, options)
|
913 |
+
if im:
|
914 |
+
if 'subs' in options:
|
915 |
+
v = v.subs(options['subs'])
|
916 |
+
return evalf(v._eval_evalf(prec), prec, options)
|
917 |
+
if not re:
|
918 |
+
if isinstance(v, cos):
|
919 |
+
return fone, None, prec, None
|
920 |
+
elif isinstance(v, sin):
|
921 |
+
return None, None, None, None
|
922 |
+
else:
|
923 |
+
raise NotImplementedError
|
924 |
+
# For trigonometric functions, we are interested in the
|
925 |
+
# fixed-point (absolute) accuracy of the argument.
|
926 |
+
xsize = fastlog(re)
|
927 |
+
# Magnitude <= 1.0. OK to compute directly, because there is no
|
928 |
+
# danger of hitting the first root of cos (with sin, magnitude
|
929 |
+
# <= 2.0 would actually be ok)
|
930 |
+
if xsize < 1:
|
931 |
+
return func(re, prec, rnd), None, prec, None
|
932 |
+
# Very large
|
933 |
+
if xsize >= 10:
|
934 |
+
xprec = prec + xsize
|
935 |
+
re, im, re_acc, im_acc = evalf(arg, xprec, options)
|
936 |
+
# Need to repeat in case the argument is very close to a
|
937 |
+
# multiple of pi (or pi/2), hitting close to a root
|
938 |
+
while 1:
|
939 |
+
y = func(re, prec, rnd)
|
940 |
+
ysize = fastlog(y)
|
941 |
+
gap = -ysize
|
942 |
+
accuracy = (xprec - xsize) - gap
|
943 |
+
if accuracy < prec:
|
944 |
+
if options.get('verbose'):
|
945 |
+
print("SIN/COS", accuracy, "wanted", prec, "gap", gap)
|
946 |
+
print(to_str(y, 10))
|
947 |
+
if xprec > options.get('maxprec', DEFAULT_MAXPREC):
|
948 |
+
return y, None, accuracy, None
|
949 |
+
xprec += gap
|
950 |
+
re, im, re_acc, im_acc = evalf(arg, xprec, options)
|
951 |
+
continue
|
952 |
+
else:
|
953 |
+
return y, None, prec, None
|
954 |
+
|
955 |
+
|
956 |
+
def evalf_log(expr: 'log', prec: int, options: OPT_DICT) -> TMP_RES:
|
957 |
+
if len(expr.args)>1:
|
958 |
+
expr = expr.doit()
|
959 |
+
return evalf(expr, prec, options)
|
960 |
+
arg = expr.args[0]
|
961 |
+
workprec = prec + 10
|
962 |
+
result = evalf(arg, workprec, options)
|
963 |
+
if result is S.ComplexInfinity:
|
964 |
+
return result
|
965 |
+
xre, xim, xacc, _ = result
|
966 |
+
|
967 |
+
# evalf can return NoneTypes if chop=True
|
968 |
+
# issue 18516, 19623
|
969 |
+
if xre is xim is None:
|
970 |
+
# Dear reviewer, I do not know what -inf is;
|
971 |
+
# it looks to be (1, 0, -789, -3)
|
972 |
+
# but I'm not sure in general,
|
973 |
+
# so we just let mpmath figure
|
974 |
+
# it out by taking log of 0 directly.
|
975 |
+
# It would be better to return -inf instead.
|
976 |
+
xre = fzero
|
977 |
+
|
978 |
+
if xim:
|
979 |
+
from sympy.functions.elementary.complexes import Abs
|
980 |
+
from sympy.functions.elementary.exponential import log
|
981 |
+
|
982 |
+
# XXX: use get_abs etc instead
|
983 |
+
re = evalf_log(
|
984 |
+
log(Abs(arg, evaluate=False), evaluate=False), prec, options)
|
985 |
+
im = mpf_atan2(xim, xre or fzero, prec)
|
986 |
+
return re[0], im, re[2], prec
|
987 |
+
|
988 |
+
imaginary_term = (mpf_cmp(xre, fzero) < 0)
|
989 |
+
|
990 |
+
re = mpf_log(mpf_abs(xre), prec, rnd)
|
991 |
+
size = fastlog(re)
|
992 |
+
if prec - size > workprec and re != fzero:
|
993 |
+
from .add import Add
|
994 |
+
# We actually need to compute 1+x accurately, not x
|
995 |
+
add = Add(S.NegativeOne, arg, evaluate=False)
|
996 |
+
xre, xim, _, _ = evalf_add(add, prec, options)
|
997 |
+
prec2 = workprec - fastlog(xre)
|
998 |
+
# xre is now x - 1 so we add 1 back here to calculate x
|
999 |
+
re = mpf_log(mpf_abs(mpf_add(xre, fone, prec2)), prec, rnd)
|
1000 |
+
|
1001 |
+
re_acc = prec
|
1002 |
+
|
1003 |
+
if imaginary_term:
|
1004 |
+
return re, mpf_pi(prec), re_acc, prec
|
1005 |
+
else:
|
1006 |
+
return re, None, re_acc, None
|
1007 |
+
|
1008 |
+
|
1009 |
+
def evalf_atan(v: 'atan', prec: int, options: OPT_DICT) -> TMP_RES:
|
1010 |
+
arg = v.args[0]
|
1011 |
+
xre, xim, reacc, imacc = evalf(arg, prec + 5, options)
|
1012 |
+
if xre is xim is None:
|
1013 |
+
return (None,)*4
|
1014 |
+
if xim:
|
1015 |
+
raise NotImplementedError
|
1016 |
+
return mpf_atan(xre, prec, rnd), None, prec, None
|
1017 |
+
|
1018 |
+
|
1019 |
+
def evalf_subs(prec: int, subs: dict) -> dict:
|
1020 |
+
""" Change all Float entries in `subs` to have precision prec. """
|
1021 |
+
newsubs = {}
|
1022 |
+
for a, b in subs.items():
|
1023 |
+
b = S(b)
|
1024 |
+
if b.is_Float:
|
1025 |
+
b = b._eval_evalf(prec)
|
1026 |
+
newsubs[a] = b
|
1027 |
+
return newsubs
|
1028 |
+
|
1029 |
+
|
1030 |
+
def evalf_piecewise(expr: 'Expr', prec: int, options: OPT_DICT) -> TMP_RES:
|
1031 |
+
from .numbers import Float, Integer
|
1032 |
+
if 'subs' in options:
|
1033 |
+
expr = expr.subs(evalf_subs(prec, options['subs']))
|
1034 |
+
newopts = options.copy()
|
1035 |
+
del newopts['subs']
|
1036 |
+
if hasattr(expr, 'func'):
|
1037 |
+
return evalf(expr, prec, newopts)
|
1038 |
+
if isinstance(expr, float):
|
1039 |
+
return evalf(Float(expr), prec, newopts)
|
1040 |
+
if isinstance(expr, int):
|
1041 |
+
return evalf(Integer(expr), prec, newopts)
|
1042 |
+
|
1043 |
+
# We still have undefined symbols
|
1044 |
+
raise NotImplementedError
|
1045 |
+
|
1046 |
+
|
1047 |
+
def evalf_alg_num(a: 'AlgebraicNumber', prec: int, options: OPT_DICT) -> TMP_RES:
|
1048 |
+
return evalf(a.to_root(), prec, options)
|
1049 |
+
|
1050 |
+
#----------------------------------------------------------------------------#
|
1051 |
+
# #
|
1052 |
+
# High-level operations #
|
1053 |
+
# #
|
1054 |
+
#----------------------------------------------------------------------------#
|
1055 |
+
|
1056 |
+
|
1057 |
+
def as_mpmath(x: Any, prec: int, options: OPT_DICT) -> tUnion[mpc, mpf]:
|
1058 |
+
from .numbers import Infinity, NegativeInfinity, Zero
|
1059 |
+
x = sympify(x)
|
1060 |
+
if isinstance(x, Zero) or x == 0.0:
|
1061 |
+
return mpf(0)
|
1062 |
+
if isinstance(x, Infinity):
|
1063 |
+
return mpf('inf')
|
1064 |
+
if isinstance(x, NegativeInfinity):
|
1065 |
+
return mpf('-inf')
|
1066 |
+
# XXX
|
1067 |
+
result = evalf(x, prec, options)
|
1068 |
+
return quad_to_mpmath(result)
|
1069 |
+
|
1070 |
+
|
1071 |
+
def do_integral(expr: 'Integral', prec: int, options: OPT_DICT) -> TMP_RES:
|
1072 |
+
func = expr.args[0]
|
1073 |
+
x, xlow, xhigh = expr.args[1]
|
1074 |
+
if xlow == xhigh:
|
1075 |
+
xlow = xhigh = 0
|
1076 |
+
elif x not in func.free_symbols:
|
1077 |
+
# only the difference in limits matters in this case
|
1078 |
+
# so if there is a symbol in common that will cancel
|
1079 |
+
# out when taking the difference, then use that
|
1080 |
+
# difference
|
1081 |
+
if xhigh.free_symbols & xlow.free_symbols:
|
1082 |
+
diff = xhigh - xlow
|
1083 |
+
if diff.is_number:
|
1084 |
+
xlow, xhigh = 0, diff
|
1085 |
+
|
1086 |
+
oldmaxprec = options.get('maxprec', DEFAULT_MAXPREC)
|
1087 |
+
options['maxprec'] = min(oldmaxprec, 2*prec)
|
1088 |
+
|
1089 |
+
with workprec(prec + 5):
|
1090 |
+
xlow = as_mpmath(xlow, prec + 15, options)
|
1091 |
+
xhigh = as_mpmath(xhigh, prec + 15, options)
|
1092 |
+
|
1093 |
+
# Integration is like summation, and we can phone home from
|
1094 |
+
# the integrand function to update accuracy summation style
|
1095 |
+
# Note that this accuracy is inaccurate, since it fails
|
1096 |
+
# to account for the variable quadrature weights,
|
1097 |
+
# but it is better than nothing
|
1098 |
+
|
1099 |
+
from sympy.functions.elementary.trigonometric import cos, sin
|
1100 |
+
from .symbol import Wild
|
1101 |
+
|
1102 |
+
have_part = [False, False]
|
1103 |
+
max_real_term: tUnion[float, int] = MINUS_INF
|
1104 |
+
max_imag_term: tUnion[float, int] = MINUS_INF
|
1105 |
+
|
1106 |
+
def f(t: 'Expr') -> tUnion[mpc, mpf]:
|
1107 |
+
nonlocal max_real_term, max_imag_term
|
1108 |
+
re, im, re_acc, im_acc = evalf(func, mp.prec, {'subs': {x: t}})
|
1109 |
+
|
1110 |
+
have_part[0] = re or have_part[0]
|
1111 |
+
have_part[1] = im or have_part[1]
|
1112 |
+
|
1113 |
+
max_real_term = max(max_real_term, fastlog(re))
|
1114 |
+
max_imag_term = max(max_imag_term, fastlog(im))
|
1115 |
+
|
1116 |
+
if im:
|
1117 |
+
return mpc(re or fzero, im)
|
1118 |
+
return mpf(re or fzero)
|
1119 |
+
|
1120 |
+
if options.get('quad') == 'osc':
|
1121 |
+
A = Wild('A', exclude=[x])
|
1122 |
+
B = Wild('B', exclude=[x])
|
1123 |
+
D = Wild('D')
|
1124 |
+
m = func.match(cos(A*x + B)*D)
|
1125 |
+
if not m:
|
1126 |
+
m = func.match(sin(A*x + B)*D)
|
1127 |
+
if not m:
|
1128 |
+
raise ValueError("An integrand of the form sin(A*x+B)*f(x) "
|
1129 |
+
"or cos(A*x+B)*f(x) is required for oscillatory quadrature")
|
1130 |
+
period = as_mpmath(2*S.Pi/m[A], prec + 15, options)
|
1131 |
+
result = quadosc(f, [xlow, xhigh], period=period)
|
1132 |
+
# XXX: quadosc does not do error detection yet
|
1133 |
+
quadrature_error = MINUS_INF
|
1134 |
+
else:
|
1135 |
+
result, quadrature_err = quadts(f, [xlow, xhigh], error=1)
|
1136 |
+
quadrature_error = fastlog(quadrature_err._mpf_)
|
1137 |
+
|
1138 |
+
options['maxprec'] = oldmaxprec
|
1139 |
+
|
1140 |
+
if have_part[0]:
|
1141 |
+
re: Optional[MPF_TUP] = result.real._mpf_
|
1142 |
+
re_acc: Optional[int]
|
1143 |
+
if re == fzero:
|
1144 |
+
re_s, re_acc = scaled_zero(int(-max(prec, max_real_term, quadrature_error)))
|
1145 |
+
re = scaled_zero(re_s) # handled ok in evalf_integral
|
1146 |
+
else:
|
1147 |
+
re_acc = int(-max(max_real_term - fastlog(re) - prec, quadrature_error))
|
1148 |
+
else:
|
1149 |
+
re, re_acc = None, None
|
1150 |
+
|
1151 |
+
if have_part[1]:
|
1152 |
+
im: Optional[MPF_TUP] = result.imag._mpf_
|
1153 |
+
im_acc: Optional[int]
|
1154 |
+
if im == fzero:
|
1155 |
+
im_s, im_acc = scaled_zero(int(-max(prec, max_imag_term, quadrature_error)))
|
1156 |
+
im = scaled_zero(im_s) # handled ok in evalf_integral
|
1157 |
+
else:
|
1158 |
+
im_acc = int(-max(max_imag_term - fastlog(im) - prec, quadrature_error))
|
1159 |
+
else:
|
1160 |
+
im, im_acc = None, None
|
1161 |
+
|
1162 |
+
result = re, im, re_acc, im_acc
|
1163 |
+
return result
|
1164 |
+
|
1165 |
+
|
1166 |
+
def evalf_integral(expr: 'Integral', prec: int, options: OPT_DICT) -> TMP_RES:
|
1167 |
+
limits = expr.limits
|
1168 |
+
if len(limits) != 1 or len(limits[0]) != 3:
|
1169 |
+
raise NotImplementedError
|
1170 |
+
workprec = prec
|
1171 |
+
i = 0
|
1172 |
+
maxprec = options.get('maxprec', INF)
|
1173 |
+
while 1:
|
1174 |
+
result = do_integral(expr, workprec, options)
|
1175 |
+
accuracy = complex_accuracy(result)
|
1176 |
+
if accuracy >= prec: # achieved desired precision
|
1177 |
+
break
|
1178 |
+
if workprec >= maxprec: # can't increase accuracy any more
|
1179 |
+
break
|
1180 |
+
if accuracy == -1:
|
1181 |
+
# maybe the answer really is zero and maybe we just haven't increased
|
1182 |
+
# the precision enough. So increase by doubling to not take too long
|
1183 |
+
# to get to maxprec.
|
1184 |
+
workprec *= 2
|
1185 |
+
else:
|
1186 |
+
workprec += max(prec, 2**i)
|
1187 |
+
workprec = min(workprec, maxprec)
|
1188 |
+
i += 1
|
1189 |
+
return result
|
1190 |
+
|
1191 |
+
|
1192 |
+
def check_convergence(numer: 'Expr', denom: 'Expr', n: 'Symbol') -> tTuple[int, Any, Any]:
|
1193 |
+
"""
|
1194 |
+
Returns
|
1195 |
+
=======
|
1196 |
+
|
1197 |
+
(h, g, p) where
|
1198 |
+
-- h is:
|
1199 |
+
> 0 for convergence of rate 1/factorial(n)**h
|
1200 |
+
< 0 for divergence of rate factorial(n)**(-h)
|
1201 |
+
= 0 for geometric or polynomial convergence or divergence
|
1202 |
+
|
1203 |
+
-- abs(g) is:
|
1204 |
+
> 1 for geometric convergence of rate 1/h**n
|
1205 |
+
< 1 for geometric divergence of rate h**n
|
1206 |
+
= 1 for polynomial convergence or divergence
|
1207 |
+
|
1208 |
+
(g < 0 indicates an alternating series)
|
1209 |
+
|
1210 |
+
-- p is:
|
1211 |
+
> 1 for polynomial convergence of rate 1/n**h
|
1212 |
+
<= 1 for polynomial divergence of rate n**(-h)
|
1213 |
+
|
1214 |
+
"""
|
1215 |
+
from sympy.polys.polytools import Poly
|
1216 |
+
npol = Poly(numer, n)
|
1217 |
+
dpol = Poly(denom, n)
|
1218 |
+
p = npol.degree()
|
1219 |
+
q = dpol.degree()
|
1220 |
+
rate = q - p
|
1221 |
+
if rate:
|
1222 |
+
return rate, None, None
|
1223 |
+
constant = dpol.LC() / npol.LC()
|
1224 |
+
from .numbers import equal_valued
|
1225 |
+
if not equal_valued(abs(constant), 1):
|
1226 |
+
return rate, constant, None
|
1227 |
+
if npol.degree() == dpol.degree() == 0:
|
1228 |
+
return rate, constant, 0
|
1229 |
+
pc = npol.all_coeffs()[1]
|
1230 |
+
qc = dpol.all_coeffs()[1]
|
1231 |
+
return rate, constant, (qc - pc)/dpol.LC()
|
1232 |
+
|
1233 |
+
|
1234 |
+
def hypsum(expr: 'Expr', n: 'Symbol', start: int, prec: int) -> mpf:
|
1235 |
+
"""
|
1236 |
+
Sum a rapidly convergent infinite hypergeometric series with
|
1237 |
+
given general term, e.g. e = hypsum(1/factorial(n), n). The
|
1238 |
+
quotient between successive terms must be a quotient of integer
|
1239 |
+
polynomials.
|
1240 |
+
"""
|
1241 |
+
from .numbers import Float, equal_valued
|
1242 |
+
from sympy.simplify.simplify import hypersimp
|
1243 |
+
|
1244 |
+
if prec == float('inf'):
|
1245 |
+
raise NotImplementedError('does not support inf prec')
|
1246 |
+
|
1247 |
+
if start:
|
1248 |
+
expr = expr.subs(n, n + start)
|
1249 |
+
hs = hypersimp(expr, n)
|
1250 |
+
if hs is None:
|
1251 |
+
raise NotImplementedError("a hypergeometric series is required")
|
1252 |
+
num, den = hs.as_numer_denom()
|
1253 |
+
|
1254 |
+
func1 = lambdify(n, num)
|
1255 |
+
func2 = lambdify(n, den)
|
1256 |
+
|
1257 |
+
h, g, p = check_convergence(num, den, n)
|
1258 |
+
|
1259 |
+
if h < 0:
|
1260 |
+
raise ValueError("Sum diverges like (n!)^%i" % (-h))
|
1261 |
+
|
1262 |
+
term = expr.subs(n, 0)
|
1263 |
+
if not term.is_Rational:
|
1264 |
+
raise NotImplementedError("Non rational term functionality is not implemented.")
|
1265 |
+
|
1266 |
+
# Direct summation if geometric or faster
|
1267 |
+
if h > 0 or (h == 0 and abs(g) > 1):
|
1268 |
+
term = (MPZ(term.p) << prec) // term.q
|
1269 |
+
s = term
|
1270 |
+
k = 1
|
1271 |
+
while abs(term) > 5:
|
1272 |
+
term *= MPZ(func1(k - 1))
|
1273 |
+
term //= MPZ(func2(k - 1))
|
1274 |
+
s += term
|
1275 |
+
k += 1
|
1276 |
+
return from_man_exp(s, -prec)
|
1277 |
+
else:
|
1278 |
+
alt = g < 0
|
1279 |
+
if abs(g) < 1:
|
1280 |
+
raise ValueError("Sum diverges like (%i)^n" % abs(1/g))
|
1281 |
+
if p < 1 or (equal_valued(p, 1) and not alt):
|
1282 |
+
raise ValueError("Sum diverges like n^%i" % (-p))
|
1283 |
+
# We have polynomial convergence: use Richardson extrapolation
|
1284 |
+
vold = None
|
1285 |
+
ndig = prec_to_dps(prec)
|
1286 |
+
while True:
|
1287 |
+
# Need to use at least quad precision because a lot of cancellation
|
1288 |
+
# might occur in the extrapolation process; we check the answer to
|
1289 |
+
# make sure that the desired precision has been reached, too.
|
1290 |
+
prec2 = 4*prec
|
1291 |
+
term0 = (MPZ(term.p) << prec2) // term.q
|
1292 |
+
|
1293 |
+
def summand(k, _term=[term0]):
|
1294 |
+
if k:
|
1295 |
+
k = int(k)
|
1296 |
+
_term[0] *= MPZ(func1(k - 1))
|
1297 |
+
_term[0] //= MPZ(func2(k - 1))
|
1298 |
+
return make_mpf(from_man_exp(_term[0], -prec2))
|
1299 |
+
|
1300 |
+
with workprec(prec):
|
1301 |
+
v = nsum(summand, [0, mpmath_inf], method='richardson')
|
1302 |
+
vf = Float(v, ndig)
|
1303 |
+
if vold is not None and vold == vf:
|
1304 |
+
break
|
1305 |
+
prec += prec # double precision each time
|
1306 |
+
vold = vf
|
1307 |
+
|
1308 |
+
return v._mpf_
|
1309 |
+
|
1310 |
+
|
1311 |
+
def evalf_prod(expr: 'Product', prec: int, options: OPT_DICT) -> TMP_RES:
|
1312 |
+
if all((l[1] - l[2]).is_Integer for l in expr.limits):
|
1313 |
+
result = evalf(expr.doit(), prec=prec, options=options)
|
1314 |
+
else:
|
1315 |
+
from sympy.concrete.summations import Sum
|
1316 |
+
result = evalf(expr.rewrite(Sum), prec=prec, options=options)
|
1317 |
+
return result
|
1318 |
+
|
1319 |
+
|
1320 |
+
def evalf_sum(expr: 'Sum', prec: int, options: OPT_DICT) -> TMP_RES:
|
1321 |
+
from .numbers import Float
|
1322 |
+
if 'subs' in options:
|
1323 |
+
expr = expr.subs(options['subs'])
|
1324 |
+
func = expr.function
|
1325 |
+
limits = expr.limits
|
1326 |
+
if len(limits) != 1 or len(limits[0]) != 3:
|
1327 |
+
raise NotImplementedError
|
1328 |
+
if func.is_zero:
|
1329 |
+
return None, None, prec, None
|
1330 |
+
prec2 = prec + 10
|
1331 |
+
try:
|
1332 |
+
n, a, b = limits[0]
|
1333 |
+
if b is not S.Infinity or a is S.NegativeInfinity or a != int(a):
|
1334 |
+
raise NotImplementedError
|
1335 |
+
# Use fast hypergeometric summation if possible
|
1336 |
+
v = hypsum(func, n, int(a), prec2)
|
1337 |
+
delta = prec - fastlog(v)
|
1338 |
+
if fastlog(v) < -10:
|
1339 |
+
v = hypsum(func, n, int(a), delta)
|
1340 |
+
return v, None, min(prec, delta), None
|
1341 |
+
except NotImplementedError:
|
1342 |
+
# Euler-Maclaurin summation for general series
|
1343 |
+
eps = Float(2.0)**(-prec)
|
1344 |
+
for i in range(1, 5):
|
1345 |
+
m = n = 2**i * prec
|
1346 |
+
s, err = expr.euler_maclaurin(m=m, n=n, eps=eps,
|
1347 |
+
eval_integral=False)
|
1348 |
+
err = err.evalf()
|
1349 |
+
if err is S.NaN:
|
1350 |
+
raise NotImplementedError
|
1351 |
+
if err <= eps:
|
1352 |
+
break
|
1353 |
+
err = fastlog(evalf(abs(err), 20, options)[0])
|
1354 |
+
re, im, re_acc, im_acc = evalf(s, prec2, options)
|
1355 |
+
if re_acc is None:
|
1356 |
+
re_acc = -err
|
1357 |
+
if im_acc is None:
|
1358 |
+
im_acc = -err
|
1359 |
+
return re, im, re_acc, im_acc
|
1360 |
+
|
1361 |
+
|
1362 |
+
#----------------------------------------------------------------------------#
|
1363 |
+
# #
|
1364 |
+
# Symbolic interface #
|
1365 |
+
# #
|
1366 |
+
#----------------------------------------------------------------------------#
|
1367 |
+
|
1368 |
+
def evalf_symbol(x: 'Expr', prec: int, options: OPT_DICT) -> TMP_RES:
|
1369 |
+
val = options['subs'][x]
|
1370 |
+
if isinstance(val, mpf):
|
1371 |
+
if not val:
|
1372 |
+
return None, None, None, None
|
1373 |
+
return val._mpf_, None, prec, None
|
1374 |
+
else:
|
1375 |
+
if '_cache' not in options:
|
1376 |
+
options['_cache'] = {}
|
1377 |
+
cache = options['_cache']
|
1378 |
+
cached, cached_prec = cache.get(x, (None, MINUS_INF))
|
1379 |
+
if cached_prec >= prec:
|
1380 |
+
return cached
|
1381 |
+
v = evalf(sympify(val), prec, options)
|
1382 |
+
cache[x] = (v, prec)
|
1383 |
+
return v
|
1384 |
+
|
1385 |
+
|
1386 |
+
evalf_table: tDict[Type['Expr'], Callable[['Expr', int, OPT_DICT], TMP_RES]] = {}
|
1387 |
+
|
1388 |
+
|
1389 |
+
def _create_evalf_table():
|
1390 |
+
global evalf_table
|
1391 |
+
from sympy.concrete.products import Product
|
1392 |
+
from sympy.concrete.summations import Sum
|
1393 |
+
from .add import Add
|
1394 |
+
from .mul import Mul
|
1395 |
+
from .numbers import Exp1, Float, Half, ImaginaryUnit, Integer, NaN, NegativeOne, One, Pi, Rational, \
|
1396 |
+
Zero, ComplexInfinity, AlgebraicNumber
|
1397 |
+
from .power import Pow
|
1398 |
+
from .symbol import Dummy, Symbol
|
1399 |
+
from sympy.functions.elementary.complexes import Abs, im, re
|
1400 |
+
from sympy.functions.elementary.exponential import exp, log
|
1401 |
+
from sympy.functions.elementary.integers import ceiling, floor
|
1402 |
+
from sympy.functions.elementary.piecewise import Piecewise
|
1403 |
+
from sympy.functions.elementary.trigonometric import atan, cos, sin
|
1404 |
+
from sympy.integrals.integrals import Integral
|
1405 |
+
evalf_table = {
|
1406 |
+
Symbol: evalf_symbol,
|
1407 |
+
Dummy: evalf_symbol,
|
1408 |
+
Float: evalf_float,
|
1409 |
+
Rational: evalf_rational,
|
1410 |
+
Integer: evalf_integer,
|
1411 |
+
Zero: lambda x, prec, options: (None, None, prec, None),
|
1412 |
+
One: lambda x, prec, options: (fone, None, prec, None),
|
1413 |
+
Half: lambda x, prec, options: (fhalf, None, prec, None),
|
1414 |
+
Pi: lambda x, prec, options: (mpf_pi(prec), None, prec, None),
|
1415 |
+
Exp1: lambda x, prec, options: (mpf_e(prec), None, prec, None),
|
1416 |
+
ImaginaryUnit: lambda x, prec, options: (None, fone, None, prec),
|
1417 |
+
NegativeOne: lambda x, prec, options: (fnone, None, prec, None),
|
1418 |
+
ComplexInfinity: lambda x, prec, options: S.ComplexInfinity,
|
1419 |
+
NaN: lambda x, prec, options: (fnan, None, prec, None),
|
1420 |
+
|
1421 |
+
exp: evalf_exp,
|
1422 |
+
|
1423 |
+
cos: evalf_trig,
|
1424 |
+
sin: evalf_trig,
|
1425 |
+
|
1426 |
+
Add: evalf_add,
|
1427 |
+
Mul: evalf_mul,
|
1428 |
+
Pow: evalf_pow,
|
1429 |
+
|
1430 |
+
log: evalf_log,
|
1431 |
+
atan: evalf_atan,
|
1432 |
+
Abs: evalf_abs,
|
1433 |
+
|
1434 |
+
re: evalf_re,
|
1435 |
+
im: evalf_im,
|
1436 |
+
floor: evalf_floor,
|
1437 |
+
ceiling: evalf_ceiling,
|
1438 |
+
|
1439 |
+
Integral: evalf_integral,
|
1440 |
+
Sum: evalf_sum,
|
1441 |
+
Product: evalf_prod,
|
1442 |
+
Piecewise: evalf_piecewise,
|
1443 |
+
|
1444 |
+
AlgebraicNumber: evalf_alg_num,
|
1445 |
+
}
|
1446 |
+
|
1447 |
+
|
1448 |
+
def evalf(x: 'Expr', prec: int, options: OPT_DICT) -> TMP_RES:
|
1449 |
+
"""
|
1450 |
+
Evaluate the ``Expr`` instance, ``x``
|
1451 |
+
to a binary precision of ``prec``. This
|
1452 |
+
function is supposed to be used internally.
|
1453 |
+
|
1454 |
+
Parameters
|
1455 |
+
==========
|
1456 |
+
|
1457 |
+
x : Expr
|
1458 |
+
The formula to evaluate to a float.
|
1459 |
+
prec : int
|
1460 |
+
The binary precision that the output should have.
|
1461 |
+
options : dict
|
1462 |
+
A dictionary with the same entries as
|
1463 |
+
``EvalfMixin.evalf`` and in addition,
|
1464 |
+
``maxprec`` which is the maximum working precision.
|
1465 |
+
|
1466 |
+
Returns
|
1467 |
+
=======
|
1468 |
+
|
1469 |
+
An optional tuple, ``(re, im, re_acc, im_acc)``
|
1470 |
+
which are the real, imaginary, real accuracy
|
1471 |
+
and imaginary accuracy respectively. ``re`` is
|
1472 |
+
an mpf value tuple and so is ``im``. ``re_acc``
|
1473 |
+
and ``im_acc`` are ints.
|
1474 |
+
|
1475 |
+
NB: all these return values can be ``None``.
|
1476 |
+
If all values are ``None``, then that represents 0.
|
1477 |
+
Note that 0 is also represented as ``fzero = (0, 0, 0, 0)``.
|
1478 |
+
"""
|
1479 |
+
from sympy.functions.elementary.complexes import re as re_, im as im_
|
1480 |
+
try:
|
1481 |
+
rf = evalf_table[type(x)]
|
1482 |
+
r = rf(x, prec, options)
|
1483 |
+
except KeyError:
|
1484 |
+
# Fall back to ordinary evalf if possible
|
1485 |
+
if 'subs' in options:
|
1486 |
+
x = x.subs(evalf_subs(prec, options['subs']))
|
1487 |
+
xe = x._eval_evalf(prec)
|
1488 |
+
if xe is None:
|
1489 |
+
raise NotImplementedError
|
1490 |
+
as_real_imag = getattr(xe, "as_real_imag", None)
|
1491 |
+
if as_real_imag is None:
|
1492 |
+
raise NotImplementedError # e.g. FiniteSet(-1.0, 1.0).evalf()
|
1493 |
+
re, im = as_real_imag()
|
1494 |
+
if re.has(re_) or im.has(im_):
|
1495 |
+
raise NotImplementedError
|
1496 |
+
if re == 0.0:
|
1497 |
+
re = None
|
1498 |
+
reprec = None
|
1499 |
+
elif re.is_number:
|
1500 |
+
re = re._to_mpmath(prec, allow_ints=False)._mpf_
|
1501 |
+
reprec = prec
|
1502 |
+
else:
|
1503 |
+
raise NotImplementedError
|
1504 |
+
if im == 0.0:
|
1505 |
+
im = None
|
1506 |
+
imprec = None
|
1507 |
+
elif im.is_number:
|
1508 |
+
im = im._to_mpmath(prec, allow_ints=False)._mpf_
|
1509 |
+
imprec = prec
|
1510 |
+
else:
|
1511 |
+
raise NotImplementedError
|
1512 |
+
r = re, im, reprec, imprec
|
1513 |
+
|
1514 |
+
if options.get("verbose"):
|
1515 |
+
print("### input", x)
|
1516 |
+
print("### output", to_str(r[0] or fzero, 50) if isinstance(r, tuple) else r)
|
1517 |
+
print("### raw", r) # r[0], r[2]
|
1518 |
+
print()
|
1519 |
+
chop = options.get('chop', False)
|
1520 |
+
if chop:
|
1521 |
+
if chop is True:
|
1522 |
+
chop_prec = prec
|
1523 |
+
else:
|
1524 |
+
# convert (approximately) from given tolerance;
|
1525 |
+
# the formula here will will make 1e-i rounds to 0 for
|
1526 |
+
# i in the range +/-27 while 2e-i will not be chopped
|
1527 |
+
chop_prec = int(round(-3.321*math.log10(chop) + 2.5))
|
1528 |
+
if chop_prec == 3:
|
1529 |
+
chop_prec -= 1
|
1530 |
+
r = chop_parts(r, chop_prec)
|
1531 |
+
if options.get("strict"):
|
1532 |
+
check_target(x, r, prec)
|
1533 |
+
return r
|
1534 |
+
|
1535 |
+
|
1536 |
+
def quad_to_mpmath(q, ctx=None):
|
1537 |
+
"""Turn the quad returned by ``evalf`` into an ``mpf`` or ``mpc``. """
|
1538 |
+
mpc = make_mpc if ctx is None else ctx.make_mpc
|
1539 |
+
mpf = make_mpf if ctx is None else ctx.make_mpf
|
1540 |
+
if q is S.ComplexInfinity:
|
1541 |
+
raise NotImplementedError
|
1542 |
+
re, im, _, _ = q
|
1543 |
+
if im:
|
1544 |
+
if not re:
|
1545 |
+
re = fzero
|
1546 |
+
return mpc((re, im))
|
1547 |
+
elif re:
|
1548 |
+
return mpf(re)
|
1549 |
+
else:
|
1550 |
+
return mpf(fzero)
|
1551 |
+
|
1552 |
+
|
1553 |
+
class EvalfMixin:
|
1554 |
+
"""Mixin class adding evalf capability."""
|
1555 |
+
|
1556 |
+
__slots__ = () # type: tTuple[str, ...]
|
1557 |
+
|
1558 |
+
def evalf(self, n=15, subs=None, maxn=100, chop=False, strict=False, quad=None, verbose=False):
|
1559 |
+
"""
|
1560 |
+
Evaluate the given formula to an accuracy of *n* digits.
|
1561 |
+
|
1562 |
+
Parameters
|
1563 |
+
==========
|
1564 |
+
|
1565 |
+
subs : dict, optional
|
1566 |
+
Substitute numerical values for symbols, e.g.
|
1567 |
+
``subs={x:3, y:1+pi}``. The substitutions must be given as a
|
1568 |
+
dictionary.
|
1569 |
+
|
1570 |
+
maxn : int, optional
|
1571 |
+
Allow a maximum temporary working precision of maxn digits.
|
1572 |
+
|
1573 |
+
chop : bool or number, optional
|
1574 |
+
Specifies how to replace tiny real or imaginary parts in
|
1575 |
+
subresults by exact zeros.
|
1576 |
+
|
1577 |
+
When ``True`` the chop value defaults to standard precision.
|
1578 |
+
|
1579 |
+
Otherwise the chop value is used to determine the
|
1580 |
+
magnitude of "small" for purposes of chopping.
|
1581 |
+
|
1582 |
+
>>> from sympy import N
|
1583 |
+
>>> x = 1e-4
|
1584 |
+
>>> N(x, chop=True)
|
1585 |
+
0.000100000000000000
|
1586 |
+
>>> N(x, chop=1e-5)
|
1587 |
+
0.000100000000000000
|
1588 |
+
>>> N(x, chop=1e-4)
|
1589 |
+
0
|
1590 |
+
|
1591 |
+
strict : bool, optional
|
1592 |
+
Raise ``PrecisionExhausted`` if any subresult fails to
|
1593 |
+
evaluate to full accuracy, given the available maxprec.
|
1594 |
+
|
1595 |
+
quad : str, optional
|
1596 |
+
Choose algorithm for numerical quadrature. By default,
|
1597 |
+
tanh-sinh quadrature is used. For oscillatory
|
1598 |
+
integrals on an infinite interval, try ``quad='osc'``.
|
1599 |
+
|
1600 |
+
verbose : bool, optional
|
1601 |
+
Print debug information.
|
1602 |
+
|
1603 |
+
Notes
|
1604 |
+
=====
|
1605 |
+
|
1606 |
+
When Floats are naively substituted into an expression,
|
1607 |
+
precision errors may adversely affect the result. For example,
|
1608 |
+
adding 1e16 (a Float) to 1 will truncate to 1e16; if 1e16 is
|
1609 |
+
then subtracted, the result will be 0.
|
1610 |
+
That is exactly what happens in the following:
|
1611 |
+
|
1612 |
+
>>> from sympy.abc import x, y, z
|
1613 |
+
>>> values = {x: 1e16, y: 1, z: 1e16}
|
1614 |
+
>>> (x + y - z).subs(values)
|
1615 |
+
0
|
1616 |
+
|
1617 |
+
Using the subs argument for evalf is the accurate way to
|
1618 |
+
evaluate such an expression:
|
1619 |
+
|
1620 |
+
>>> (x + y - z).evalf(subs=values)
|
1621 |
+
1.00000000000000
|
1622 |
+
"""
|
1623 |
+
from .numbers import Float, Number
|
1624 |
+
n = n if n is not None else 15
|
1625 |
+
|
1626 |
+
if subs and is_sequence(subs):
|
1627 |
+
raise TypeError('subs must be given as a dictionary')
|
1628 |
+
|
1629 |
+
# for sake of sage that doesn't like evalf(1)
|
1630 |
+
if n == 1 and isinstance(self, Number):
|
1631 |
+
from .expr import _mag
|
1632 |
+
rv = self.evalf(2, subs, maxn, chop, strict, quad, verbose)
|
1633 |
+
m = _mag(rv)
|
1634 |
+
rv = rv.round(1 - m)
|
1635 |
+
return rv
|
1636 |
+
|
1637 |
+
if not evalf_table:
|
1638 |
+
_create_evalf_table()
|
1639 |
+
prec = dps_to_prec(n)
|
1640 |
+
options = {'maxprec': max(prec, int(maxn*LG10)), 'chop': chop,
|
1641 |
+
'strict': strict, 'verbose': verbose}
|
1642 |
+
if subs is not None:
|
1643 |
+
options['subs'] = subs
|
1644 |
+
if quad is not None:
|
1645 |
+
options['quad'] = quad
|
1646 |
+
try:
|
1647 |
+
result = evalf(self, prec + 4, options)
|
1648 |
+
except NotImplementedError:
|
1649 |
+
# Fall back to the ordinary evalf
|
1650 |
+
if hasattr(self, 'subs') and subs is not None: # issue 20291
|
1651 |
+
v = self.subs(subs)._eval_evalf(prec)
|
1652 |
+
else:
|
1653 |
+
v = self._eval_evalf(prec)
|
1654 |
+
if v is None:
|
1655 |
+
return self
|
1656 |
+
elif not v.is_number:
|
1657 |
+
return v
|
1658 |
+
try:
|
1659 |
+
# If the result is numerical, normalize it
|
1660 |
+
result = evalf(v, prec, options)
|
1661 |
+
except NotImplementedError:
|
1662 |
+
# Probably contains symbols or unknown functions
|
1663 |
+
return v
|
1664 |
+
if result is S.ComplexInfinity:
|
1665 |
+
return result
|
1666 |
+
re, im, re_acc, im_acc = result
|
1667 |
+
if re is S.NaN or im is S.NaN:
|
1668 |
+
return S.NaN
|
1669 |
+
if re:
|
1670 |
+
p = max(min(prec, re_acc), 1)
|
1671 |
+
re = Float._new(re, p)
|
1672 |
+
else:
|
1673 |
+
re = S.Zero
|
1674 |
+
if im:
|
1675 |
+
p = max(min(prec, im_acc), 1)
|
1676 |
+
im = Float._new(im, p)
|
1677 |
+
return re + im*S.ImaginaryUnit
|
1678 |
+
else:
|
1679 |
+
return re
|
1680 |
+
|
1681 |
+
n = evalf
|
1682 |
+
|
1683 |
+
def _evalf(self, prec):
|
1684 |
+
"""Helper for evalf. Does the same thing but takes binary precision"""
|
1685 |
+
r = self._eval_evalf(prec)
|
1686 |
+
if r is None:
|
1687 |
+
r = self
|
1688 |
+
return r
|
1689 |
+
|
1690 |
+
def _eval_evalf(self, prec):
|
1691 |
+
return
|
1692 |
+
|
1693 |
+
def _to_mpmath(self, prec, allow_ints=True):
|
1694 |
+
# mpmath functions accept ints as input
|
1695 |
+
errmsg = "cannot convert to mpmath number"
|
1696 |
+
if allow_ints and self.is_Integer:
|
1697 |
+
return self.p
|
1698 |
+
if hasattr(self, '_as_mpf_val'):
|
1699 |
+
return make_mpf(self._as_mpf_val(prec))
|
1700 |
+
try:
|
1701 |
+
result = evalf(self, prec, {})
|
1702 |
+
return quad_to_mpmath(result)
|
1703 |
+
except NotImplementedError:
|
1704 |
+
v = self._eval_evalf(prec)
|
1705 |
+
if v is None:
|
1706 |
+
raise ValueError(errmsg)
|
1707 |
+
if v.is_Float:
|
1708 |
+
return make_mpf(v._mpf_)
|
1709 |
+
# Number + Number*I is also fine
|
1710 |
+
re, im = v.as_real_imag()
|
1711 |
+
if allow_ints and re.is_Integer:
|
1712 |
+
re = from_int(re.p)
|
1713 |
+
elif re.is_Float:
|
1714 |
+
re = re._mpf_
|
1715 |
+
else:
|
1716 |
+
raise ValueError(errmsg)
|
1717 |
+
if allow_ints and im.is_Integer:
|
1718 |
+
im = from_int(im.p)
|
1719 |
+
elif im.is_Float:
|
1720 |
+
im = im._mpf_
|
1721 |
+
else:
|
1722 |
+
raise ValueError(errmsg)
|
1723 |
+
return make_mpc((re, im))
|
1724 |
+
|
1725 |
+
|
1726 |
+
def N(x, n=15, **options):
|
1727 |
+
r"""
|
1728 |
+
Calls x.evalf(n, \*\*options).
|
1729 |
+
|
1730 |
+
Explanations
|
1731 |
+
============
|
1732 |
+
|
1733 |
+
Both .n() and N() are equivalent to .evalf(); use the one that you like better.
|
1734 |
+
See also the docstring of .evalf() for information on the options.
|
1735 |
+
|
1736 |
+
Examples
|
1737 |
+
========
|
1738 |
+
|
1739 |
+
>>> from sympy import Sum, oo, N
|
1740 |
+
>>> from sympy.abc import k
|
1741 |
+
>>> Sum(1/k**k, (k, 1, oo))
|
1742 |
+
Sum(k**(-k), (k, 1, oo))
|
1743 |
+
>>> N(_, 4)
|
1744 |
+
1.291
|
1745 |
+
|
1746 |
+
"""
|
1747 |
+
# by using rational=True, any evaluation of a string
|
1748 |
+
# will be done using exact values for the Floats
|
1749 |
+
return sympify(x, rational=True).evalf(n, **options)
|
1750 |
+
|
1751 |
+
|
1752 |
+
def _evalf_with_bounded_error(x: 'Expr', eps: 'Optional[Expr]' = None,
|
1753 |
+
m: int = 0,
|
1754 |
+
options: Optional[OPT_DICT] = None) -> TMP_RES:
|
1755 |
+
"""
|
1756 |
+
Evaluate *x* to within a bounded absolute error.
|
1757 |
+
|
1758 |
+
Parameters
|
1759 |
+
==========
|
1760 |
+
|
1761 |
+
x : Expr
|
1762 |
+
The quantity to be evaluated.
|
1763 |
+
eps : Expr, None, optional (default=None)
|
1764 |
+
Positive real upper bound on the acceptable error.
|
1765 |
+
m : int, optional (default=0)
|
1766 |
+
If *eps* is None, then use 2**(-m) as the upper bound on the error.
|
1767 |
+
options: OPT_DICT
|
1768 |
+
As in the ``evalf`` function.
|
1769 |
+
|
1770 |
+
Returns
|
1771 |
+
=======
|
1772 |
+
|
1773 |
+
A tuple ``(re, im, re_acc, im_acc)``, as returned by ``evalf``.
|
1774 |
+
|
1775 |
+
See Also
|
1776 |
+
========
|
1777 |
+
|
1778 |
+
evalf
|
1779 |
+
|
1780 |
+
"""
|
1781 |
+
if eps is not None:
|
1782 |
+
if not (eps.is_Rational or eps.is_Float) or not eps > 0:
|
1783 |
+
raise ValueError("eps must be positive")
|
1784 |
+
r, _, _, _ = evalf(1/eps, 1, {})
|
1785 |
+
m = fastlog(r)
|
1786 |
+
|
1787 |
+
c, d, _, _ = evalf(x, 1, {})
|
1788 |
+
# Note: If x = a + b*I, then |a| <= 2|c| and |b| <= 2|d|, with equality
|
1789 |
+
# only in the zero case.
|
1790 |
+
# If a is non-zero, then |c| = 2**nc for some integer nc, and c has
|
1791 |
+
# bitcount 1. Therefore 2**fastlog(c) = 2**(nc+1) = 2|c| is an upper bound
|
1792 |
+
# on |a|. Likewise for b and d.
|
1793 |
+
nr, ni = fastlog(c), fastlog(d)
|
1794 |
+
n = max(nr, ni) + 1
|
1795 |
+
# If x is 0, then n is MINUS_INF, and p will be 1. Otherwise,
|
1796 |
+
# n - 1 bits get us past the integer parts of a and b, and +1 accounts for
|
1797 |
+
# the factor of <= sqrt(2) that is |x|/max(|a|, |b|).
|
1798 |
+
p = max(1, m + n + 1)
|
1799 |
+
|
1800 |
+
options = options or {}
|
1801 |
+
return evalf(x, p, options)
|
venv/lib/python3.10/site-packages/sympy/core/mod.py
ADDED
@@ -0,0 +1,238 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .add import Add
|
2 |
+
from .exprtools import gcd_terms
|
3 |
+
from .function import Function
|
4 |
+
from .kind import NumberKind
|
5 |
+
from .logic import fuzzy_and, fuzzy_not
|
6 |
+
from .mul import Mul
|
7 |
+
from .numbers import equal_valued
|
8 |
+
from .singleton import S
|
9 |
+
|
10 |
+
|
11 |
+
class Mod(Function):
|
12 |
+
"""Represents a modulo operation on symbolic expressions.
|
13 |
+
|
14 |
+
Parameters
|
15 |
+
==========
|
16 |
+
|
17 |
+
p : Expr
|
18 |
+
Dividend.
|
19 |
+
|
20 |
+
q : Expr
|
21 |
+
Divisor.
|
22 |
+
|
23 |
+
Notes
|
24 |
+
=====
|
25 |
+
|
26 |
+
The convention used is the same as Python's: the remainder always has the
|
27 |
+
same sign as the divisor.
|
28 |
+
|
29 |
+
Examples
|
30 |
+
========
|
31 |
+
|
32 |
+
>>> from sympy.abc import x, y
|
33 |
+
>>> x**2 % y
|
34 |
+
Mod(x**2, y)
|
35 |
+
>>> _.subs({x: 5, y: 6})
|
36 |
+
1
|
37 |
+
|
38 |
+
"""
|
39 |
+
|
40 |
+
kind = NumberKind
|
41 |
+
|
42 |
+
@classmethod
|
43 |
+
def eval(cls, p, q):
|
44 |
+
def number_eval(p, q):
|
45 |
+
"""Try to return p % q if both are numbers or +/-p is known
|
46 |
+
to be less than or equal q.
|
47 |
+
"""
|
48 |
+
|
49 |
+
if q.is_zero:
|
50 |
+
raise ZeroDivisionError("Modulo by zero")
|
51 |
+
if p is S.NaN or q is S.NaN or p.is_finite is False or q.is_finite is False:
|
52 |
+
return S.NaN
|
53 |
+
if p is S.Zero or p in (q, -q) or (p.is_integer and q == 1):
|
54 |
+
return S.Zero
|
55 |
+
|
56 |
+
if q.is_Number:
|
57 |
+
if p.is_Number:
|
58 |
+
return p%q
|
59 |
+
if q == 2:
|
60 |
+
if p.is_even:
|
61 |
+
return S.Zero
|
62 |
+
elif p.is_odd:
|
63 |
+
return S.One
|
64 |
+
|
65 |
+
if hasattr(p, '_eval_Mod'):
|
66 |
+
rv = getattr(p, '_eval_Mod')(q)
|
67 |
+
if rv is not None:
|
68 |
+
return rv
|
69 |
+
|
70 |
+
# by ratio
|
71 |
+
r = p/q
|
72 |
+
if r.is_integer:
|
73 |
+
return S.Zero
|
74 |
+
try:
|
75 |
+
d = int(r)
|
76 |
+
except TypeError:
|
77 |
+
pass
|
78 |
+
else:
|
79 |
+
if isinstance(d, int):
|
80 |
+
rv = p - d*q
|
81 |
+
if (rv*q < 0) == True:
|
82 |
+
rv += q
|
83 |
+
return rv
|
84 |
+
|
85 |
+
# by difference
|
86 |
+
# -2|q| < p < 2|q|
|
87 |
+
d = abs(p)
|
88 |
+
for _ in range(2):
|
89 |
+
d -= abs(q)
|
90 |
+
if d.is_negative:
|
91 |
+
if q.is_positive:
|
92 |
+
if p.is_positive:
|
93 |
+
return d + q
|
94 |
+
elif p.is_negative:
|
95 |
+
return -d
|
96 |
+
elif q.is_negative:
|
97 |
+
if p.is_positive:
|
98 |
+
return d
|
99 |
+
elif p.is_negative:
|
100 |
+
return -d + q
|
101 |
+
break
|
102 |
+
|
103 |
+
rv = number_eval(p, q)
|
104 |
+
if rv is not None:
|
105 |
+
return rv
|
106 |
+
|
107 |
+
# denest
|
108 |
+
if isinstance(p, cls):
|
109 |
+
qinner = p.args[1]
|
110 |
+
if qinner % q == 0:
|
111 |
+
return cls(p.args[0], q)
|
112 |
+
elif (qinner*(q - qinner)).is_nonnegative:
|
113 |
+
# |qinner| < |q| and have same sign
|
114 |
+
return p
|
115 |
+
elif isinstance(-p, cls):
|
116 |
+
qinner = (-p).args[1]
|
117 |
+
if qinner % q == 0:
|
118 |
+
return cls(-(-p).args[0], q)
|
119 |
+
elif (qinner*(q + qinner)).is_nonpositive:
|
120 |
+
# |qinner| < |q| and have different sign
|
121 |
+
return p
|
122 |
+
elif isinstance(p, Add):
|
123 |
+
# separating into modulus and non modulus
|
124 |
+
both_l = non_mod_l, mod_l = [], []
|
125 |
+
for arg in p.args:
|
126 |
+
both_l[isinstance(arg, cls)].append(arg)
|
127 |
+
# if q same for all
|
128 |
+
if mod_l and all(inner.args[1] == q for inner in mod_l):
|
129 |
+
net = Add(*non_mod_l) + Add(*[i.args[0] for i in mod_l])
|
130 |
+
return cls(net, q)
|
131 |
+
|
132 |
+
elif isinstance(p, Mul):
|
133 |
+
# separating into modulus and non modulus
|
134 |
+
both_l = non_mod_l, mod_l = [], []
|
135 |
+
for arg in p.args:
|
136 |
+
both_l[isinstance(arg, cls)].append(arg)
|
137 |
+
|
138 |
+
if mod_l and all(inner.args[1] == q for inner in mod_l) and all(t.is_integer for t in p.args) and q.is_integer:
|
139 |
+
# finding distributive term
|
140 |
+
non_mod_l = [cls(x, q) for x in non_mod_l]
|
141 |
+
mod = []
|
142 |
+
non_mod = []
|
143 |
+
for j in non_mod_l:
|
144 |
+
if isinstance(j, cls):
|
145 |
+
mod.append(j.args[0])
|
146 |
+
else:
|
147 |
+
non_mod.append(j)
|
148 |
+
prod_mod = Mul(*mod)
|
149 |
+
prod_non_mod = Mul(*non_mod)
|
150 |
+
prod_mod1 = Mul(*[i.args[0] for i in mod_l])
|
151 |
+
net = prod_mod1*prod_mod
|
152 |
+
return prod_non_mod*cls(net, q)
|
153 |
+
|
154 |
+
if q.is_Integer and q is not S.One:
|
155 |
+
non_mod_l = [i % q if i.is_Integer and (i % q is not S.Zero) else i for
|
156 |
+
i in non_mod_l]
|
157 |
+
|
158 |
+
p = Mul(*(non_mod_l + mod_l))
|
159 |
+
|
160 |
+
# XXX other possibilities?
|
161 |
+
|
162 |
+
from sympy.polys.polyerrors import PolynomialError
|
163 |
+
from sympy.polys.polytools import gcd
|
164 |
+
|
165 |
+
# extract gcd; any further simplification should be done by the user
|
166 |
+
try:
|
167 |
+
G = gcd(p, q)
|
168 |
+
if not equal_valued(G, 1):
|
169 |
+
p, q = [gcd_terms(i/G, clear=False, fraction=False)
|
170 |
+
for i in (p, q)]
|
171 |
+
except PolynomialError: # issue 21373
|
172 |
+
G = S.One
|
173 |
+
pwas, qwas = p, q
|
174 |
+
|
175 |
+
# simplify terms
|
176 |
+
# (x + y + 2) % x -> Mod(y + 2, x)
|
177 |
+
if p.is_Add:
|
178 |
+
args = []
|
179 |
+
for i in p.args:
|
180 |
+
a = cls(i, q)
|
181 |
+
if a.count(cls) > i.count(cls):
|
182 |
+
args.append(i)
|
183 |
+
else:
|
184 |
+
args.append(a)
|
185 |
+
if args != list(p.args):
|
186 |
+
p = Add(*args)
|
187 |
+
|
188 |
+
else:
|
189 |
+
# handle coefficients if they are not Rational
|
190 |
+
# since those are not handled by factor_terms
|
191 |
+
# e.g. Mod(.6*x, .3*y) -> 0.3*Mod(2*x, y)
|
192 |
+
cp, p = p.as_coeff_Mul()
|
193 |
+
cq, q = q.as_coeff_Mul()
|
194 |
+
ok = False
|
195 |
+
if not cp.is_Rational or not cq.is_Rational:
|
196 |
+
r = cp % cq
|
197 |
+
if equal_valued(r, 0):
|
198 |
+
G *= cq
|
199 |
+
p *= int(cp/cq)
|
200 |
+
ok = True
|
201 |
+
if not ok:
|
202 |
+
p = cp*p
|
203 |
+
q = cq*q
|
204 |
+
|
205 |
+
# simple -1 extraction
|
206 |
+
if p.could_extract_minus_sign() and q.could_extract_minus_sign():
|
207 |
+
G, p, q = [-i for i in (G, p, q)]
|
208 |
+
|
209 |
+
# check again to see if p and q can now be handled as numbers
|
210 |
+
rv = number_eval(p, q)
|
211 |
+
if rv is not None:
|
212 |
+
return rv*G
|
213 |
+
|
214 |
+
# put 1.0 from G on inside
|
215 |
+
if G.is_Float and equal_valued(G, 1):
|
216 |
+
p *= G
|
217 |
+
return cls(p, q, evaluate=False)
|
218 |
+
elif G.is_Mul and G.args[0].is_Float and equal_valued(G.args[0], 1):
|
219 |
+
p = G.args[0]*p
|
220 |
+
G = Mul._from_args(G.args[1:])
|
221 |
+
return G*cls(p, q, evaluate=(p, q) != (pwas, qwas))
|
222 |
+
|
223 |
+
def _eval_is_integer(self):
|
224 |
+
p, q = self.args
|
225 |
+
if fuzzy_and([p.is_integer, q.is_integer, fuzzy_not(q.is_zero)]):
|
226 |
+
return True
|
227 |
+
|
228 |
+
def _eval_is_nonnegative(self):
|
229 |
+
if self.args[1].is_positive:
|
230 |
+
return True
|
231 |
+
|
232 |
+
def _eval_is_nonpositive(self):
|
233 |
+
if self.args[1].is_negative:
|
234 |
+
return True
|
235 |
+
|
236 |
+
def _eval_rewrite_as_floor(self, a, b, **kwargs):
|
237 |
+
from sympy.functions.elementary.integers import floor
|
238 |
+
return a - b*floor(a/b)
|
venv/lib/python3.10/site-packages/sympy/core/parameters.py
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Thread-safe global parameters"""
|
2 |
+
|
3 |
+
from .cache import clear_cache
|
4 |
+
from contextlib import contextmanager
|
5 |
+
from threading import local
|
6 |
+
|
7 |
+
class _global_parameters(local):
|
8 |
+
"""
|
9 |
+
Thread-local global parameters.
|
10 |
+
|
11 |
+
Explanation
|
12 |
+
===========
|
13 |
+
|
14 |
+
This class generates thread-local container for SymPy's global parameters.
|
15 |
+
Every global parameters must be passed as keyword argument when generating
|
16 |
+
its instance.
|
17 |
+
A variable, `global_parameters` is provided as default instance for this class.
|
18 |
+
|
19 |
+
WARNING! Although the global parameters are thread-local, SymPy's cache is not
|
20 |
+
by now.
|
21 |
+
This may lead to undesired result in multi-threading operations.
|
22 |
+
|
23 |
+
Examples
|
24 |
+
========
|
25 |
+
|
26 |
+
>>> from sympy.abc import x
|
27 |
+
>>> from sympy.core.cache import clear_cache
|
28 |
+
>>> from sympy.core.parameters import global_parameters as gp
|
29 |
+
|
30 |
+
>>> gp.evaluate
|
31 |
+
True
|
32 |
+
>>> x+x
|
33 |
+
2*x
|
34 |
+
|
35 |
+
>>> log = []
|
36 |
+
>>> def f():
|
37 |
+
... clear_cache()
|
38 |
+
... gp.evaluate = False
|
39 |
+
... log.append(x+x)
|
40 |
+
... clear_cache()
|
41 |
+
>>> import threading
|
42 |
+
>>> thread = threading.Thread(target=f)
|
43 |
+
>>> thread.start()
|
44 |
+
>>> thread.join()
|
45 |
+
|
46 |
+
>>> print(log)
|
47 |
+
[x + x]
|
48 |
+
|
49 |
+
>>> gp.evaluate
|
50 |
+
True
|
51 |
+
>>> x+x
|
52 |
+
2*x
|
53 |
+
|
54 |
+
References
|
55 |
+
==========
|
56 |
+
|
57 |
+
.. [1] https://docs.python.org/3/library/threading.html
|
58 |
+
|
59 |
+
"""
|
60 |
+
def __init__(self, **kwargs):
|
61 |
+
self.__dict__.update(kwargs)
|
62 |
+
|
63 |
+
def __setattr__(self, name, value):
|
64 |
+
if getattr(self, name) != value:
|
65 |
+
clear_cache()
|
66 |
+
return super().__setattr__(name, value)
|
67 |
+
|
68 |
+
global_parameters = _global_parameters(evaluate=True, distribute=True, exp_is_pow=False)
|
69 |
+
|
70 |
+
@contextmanager
|
71 |
+
def evaluate(x):
|
72 |
+
""" Control automatic evaluation
|
73 |
+
|
74 |
+
Explanation
|
75 |
+
===========
|
76 |
+
|
77 |
+
This context manager controls whether or not all SymPy functions evaluate
|
78 |
+
by default.
|
79 |
+
|
80 |
+
Note that much of SymPy expects evaluated expressions. This functionality
|
81 |
+
is experimental and is unlikely to function as intended on large
|
82 |
+
expressions.
|
83 |
+
|
84 |
+
Examples
|
85 |
+
========
|
86 |
+
|
87 |
+
>>> from sympy import evaluate
|
88 |
+
>>> from sympy.abc import x
|
89 |
+
>>> print(x + x)
|
90 |
+
2*x
|
91 |
+
>>> with evaluate(False):
|
92 |
+
... print(x + x)
|
93 |
+
x + x
|
94 |
+
"""
|
95 |
+
|
96 |
+
old = global_parameters.evaluate
|
97 |
+
|
98 |
+
try:
|
99 |
+
global_parameters.evaluate = x
|
100 |
+
yield
|
101 |
+
finally:
|
102 |
+
global_parameters.evaluate = old
|
103 |
+
|
104 |
+
|
105 |
+
@contextmanager
|
106 |
+
def distribute(x):
|
107 |
+
""" Control automatic distribution of Number over Add
|
108 |
+
|
109 |
+
Explanation
|
110 |
+
===========
|
111 |
+
|
112 |
+
This context manager controls whether or not Mul distribute Number over
|
113 |
+
Add. Plan is to avoid distributing Number over Add in all of sympy. Once
|
114 |
+
that is done, this contextmanager will be removed.
|
115 |
+
|
116 |
+
Examples
|
117 |
+
========
|
118 |
+
|
119 |
+
>>> from sympy.abc import x
|
120 |
+
>>> from sympy.core.parameters import distribute
|
121 |
+
>>> print(2*(x + 1))
|
122 |
+
2*x + 2
|
123 |
+
>>> with distribute(False):
|
124 |
+
... print(2*(x + 1))
|
125 |
+
2*(x + 1)
|
126 |
+
"""
|
127 |
+
|
128 |
+
old = global_parameters.distribute
|
129 |
+
|
130 |
+
try:
|
131 |
+
global_parameters.distribute = x
|
132 |
+
yield
|
133 |
+
finally:
|
134 |
+
global_parameters.distribute = old
|
135 |
+
|
136 |
+
|
137 |
+
@contextmanager
|
138 |
+
def _exp_is_pow(x):
|
139 |
+
"""
|
140 |
+
Control whether `e^x` should be represented as ``exp(x)`` or a ``Pow(E, x)``.
|
141 |
+
|
142 |
+
Examples
|
143 |
+
========
|
144 |
+
|
145 |
+
>>> from sympy import exp
|
146 |
+
>>> from sympy.abc import x
|
147 |
+
>>> from sympy.core.parameters import _exp_is_pow
|
148 |
+
>>> with _exp_is_pow(True): print(type(exp(x)))
|
149 |
+
<class 'sympy.core.power.Pow'>
|
150 |
+
>>> with _exp_is_pow(False): print(type(exp(x)))
|
151 |
+
exp
|
152 |
+
"""
|
153 |
+
old = global_parameters.exp_is_pow
|
154 |
+
|
155 |
+
clear_cache()
|
156 |
+
try:
|
157 |
+
global_parameters.exp_is_pow = x
|
158 |
+
yield
|
159 |
+
finally:
|
160 |
+
clear_cache()
|
161 |
+
global_parameters.exp_is_pow = old
|
venv/lib/python3.10/site-packages/sympy/core/power.py
ADDED
@@ -0,0 +1,2004 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
from typing import Callable
|
3 |
+
from math import log as _log, sqrt as _sqrt
|
4 |
+
from itertools import product
|
5 |
+
|
6 |
+
from .sympify import _sympify
|
7 |
+
from .cache import cacheit
|
8 |
+
from .singleton import S
|
9 |
+
from .expr import Expr
|
10 |
+
from .evalf import PrecisionExhausted
|
11 |
+
from .function import (expand_complex, expand_multinomial,
|
12 |
+
expand_mul, _mexpand, PoleError)
|
13 |
+
from .logic import fuzzy_bool, fuzzy_not, fuzzy_and, fuzzy_or
|
14 |
+
from .parameters import global_parameters
|
15 |
+
from .relational import is_gt, is_lt
|
16 |
+
from .kind import NumberKind, UndefinedKind
|
17 |
+
from sympy.external.gmpy import HAS_GMPY, gmpy
|
18 |
+
from sympy.utilities.iterables import sift
|
19 |
+
from sympy.utilities.exceptions import sympy_deprecation_warning
|
20 |
+
from sympy.utilities.misc import as_int
|
21 |
+
from sympy.multipledispatch import Dispatcher
|
22 |
+
|
23 |
+
from mpmath.libmp import sqrtrem as mpmath_sqrtrem
|
24 |
+
|
25 |
+
|
26 |
+
|
27 |
+
def isqrt(n):
|
28 |
+
"""Return the largest integer less than or equal to sqrt(n)."""
|
29 |
+
if n < 0:
|
30 |
+
raise ValueError("n must be nonnegative")
|
31 |
+
n = int(n)
|
32 |
+
|
33 |
+
# Fast path: with IEEE 754 binary64 floats and a correctly-rounded
|
34 |
+
# math.sqrt, int(math.sqrt(n)) works for any integer n satisfying 0 <= n <
|
35 |
+
# 4503599761588224 = 2**52 + 2**27. But Python doesn't guarantee either
|
36 |
+
# IEEE 754 format floats *or* correct rounding of math.sqrt, so check the
|
37 |
+
# answer and fall back to the slow method if necessary.
|
38 |
+
if n < 4503599761588224:
|
39 |
+
s = int(_sqrt(n))
|
40 |
+
if 0 <= n - s*s <= 2*s:
|
41 |
+
return s
|
42 |
+
|
43 |
+
return integer_nthroot(n, 2)[0]
|
44 |
+
|
45 |
+
|
46 |
+
def integer_nthroot(y, n):
|
47 |
+
"""
|
48 |
+
Return a tuple containing x = floor(y**(1/n))
|
49 |
+
and a boolean indicating whether the result is exact (that is,
|
50 |
+
whether x**n == y).
|
51 |
+
|
52 |
+
Examples
|
53 |
+
========
|
54 |
+
|
55 |
+
>>> from sympy import integer_nthroot
|
56 |
+
>>> integer_nthroot(16, 2)
|
57 |
+
(4, True)
|
58 |
+
>>> integer_nthroot(26, 2)
|
59 |
+
(5, False)
|
60 |
+
|
61 |
+
To simply determine if a number is a perfect square, the is_square
|
62 |
+
function should be used:
|
63 |
+
|
64 |
+
>>> from sympy.ntheory.primetest import is_square
|
65 |
+
>>> is_square(26)
|
66 |
+
False
|
67 |
+
|
68 |
+
See Also
|
69 |
+
========
|
70 |
+
sympy.ntheory.primetest.is_square
|
71 |
+
integer_log
|
72 |
+
"""
|
73 |
+
y, n = as_int(y), as_int(n)
|
74 |
+
if y < 0:
|
75 |
+
raise ValueError("y must be nonnegative")
|
76 |
+
if n < 1:
|
77 |
+
raise ValueError("n must be positive")
|
78 |
+
if HAS_GMPY and n < 2**63:
|
79 |
+
# Currently it works only for n < 2**63, else it produces TypeError
|
80 |
+
# sympy issue: https://github.com/sympy/sympy/issues/18374
|
81 |
+
# gmpy2 issue: https://github.com/aleaxit/gmpy/issues/257
|
82 |
+
if HAS_GMPY >= 2:
|
83 |
+
x, t = gmpy.iroot(y, n)
|
84 |
+
else:
|
85 |
+
x, t = gmpy.root(y, n)
|
86 |
+
return as_int(x), bool(t)
|
87 |
+
return _integer_nthroot_python(y, n)
|
88 |
+
|
89 |
+
def _integer_nthroot_python(y, n):
|
90 |
+
if y in (0, 1):
|
91 |
+
return y, True
|
92 |
+
if n == 1:
|
93 |
+
return y, True
|
94 |
+
if n == 2:
|
95 |
+
x, rem = mpmath_sqrtrem(y)
|
96 |
+
return int(x), not rem
|
97 |
+
if n >= y.bit_length():
|
98 |
+
return 1, False
|
99 |
+
# Get initial estimate for Newton's method. Care must be taken to
|
100 |
+
# avoid overflow
|
101 |
+
try:
|
102 |
+
guess = int(y**(1./n) + 0.5)
|
103 |
+
except OverflowError:
|
104 |
+
exp = _log(y, 2)/n
|
105 |
+
if exp > 53:
|
106 |
+
shift = int(exp - 53)
|
107 |
+
guess = int(2.0**(exp - shift) + 1) << shift
|
108 |
+
else:
|
109 |
+
guess = int(2.0**exp)
|
110 |
+
if guess > 2**50:
|
111 |
+
# Newton iteration
|
112 |
+
xprev, x = -1, guess
|
113 |
+
while 1:
|
114 |
+
t = x**(n - 1)
|
115 |
+
xprev, x = x, ((n - 1)*x + y//t)//n
|
116 |
+
if abs(x - xprev) < 2:
|
117 |
+
break
|
118 |
+
else:
|
119 |
+
x = guess
|
120 |
+
# Compensate
|
121 |
+
t = x**n
|
122 |
+
while t < y:
|
123 |
+
x += 1
|
124 |
+
t = x**n
|
125 |
+
while t > y:
|
126 |
+
x -= 1
|
127 |
+
t = x**n
|
128 |
+
return int(x), t == y # int converts long to int if possible
|
129 |
+
|
130 |
+
|
131 |
+
def integer_log(y, x):
|
132 |
+
r"""
|
133 |
+
Returns ``(e, bool)`` where e is the largest nonnegative integer
|
134 |
+
such that :math:`|y| \geq |x^e|` and ``bool`` is True if $y = x^e$.
|
135 |
+
|
136 |
+
Examples
|
137 |
+
========
|
138 |
+
|
139 |
+
>>> from sympy import integer_log
|
140 |
+
>>> integer_log(125, 5)
|
141 |
+
(3, True)
|
142 |
+
>>> integer_log(17, 9)
|
143 |
+
(1, False)
|
144 |
+
>>> integer_log(4, -2)
|
145 |
+
(2, True)
|
146 |
+
>>> integer_log(-125,-5)
|
147 |
+
(3, True)
|
148 |
+
|
149 |
+
See Also
|
150 |
+
========
|
151 |
+
integer_nthroot
|
152 |
+
sympy.ntheory.primetest.is_square
|
153 |
+
sympy.ntheory.factor_.multiplicity
|
154 |
+
sympy.ntheory.factor_.perfect_power
|
155 |
+
"""
|
156 |
+
if x == 1:
|
157 |
+
raise ValueError('x cannot take value as 1')
|
158 |
+
if y == 0:
|
159 |
+
raise ValueError('y cannot take value as 0')
|
160 |
+
|
161 |
+
if x in (-2, 2):
|
162 |
+
x = int(x)
|
163 |
+
y = as_int(y)
|
164 |
+
e = y.bit_length() - 1
|
165 |
+
return e, x**e == y
|
166 |
+
if x < 0:
|
167 |
+
n, b = integer_log(y if y > 0 else -y, -x)
|
168 |
+
return n, b and bool(n % 2 if y < 0 else not n % 2)
|
169 |
+
|
170 |
+
x = as_int(x)
|
171 |
+
y = as_int(y)
|
172 |
+
r = e = 0
|
173 |
+
while y >= x:
|
174 |
+
d = x
|
175 |
+
m = 1
|
176 |
+
while y >= d:
|
177 |
+
y, rem = divmod(y, d)
|
178 |
+
r = r or rem
|
179 |
+
e += m
|
180 |
+
if y > d:
|
181 |
+
d *= d
|
182 |
+
m *= 2
|
183 |
+
return e, r == 0 and y == 1
|
184 |
+
|
185 |
+
|
186 |
+
class Pow(Expr):
|
187 |
+
"""
|
188 |
+
Defines the expression x**y as "x raised to a power y"
|
189 |
+
|
190 |
+
.. deprecated:: 1.7
|
191 |
+
|
192 |
+
Using arguments that aren't subclasses of :class:`~.Expr` in core
|
193 |
+
operators (:class:`~.Mul`, :class:`~.Add`, and :class:`~.Pow`) is
|
194 |
+
deprecated. See :ref:`non-expr-args-deprecated` for details.
|
195 |
+
|
196 |
+
Singleton definitions involving (0, 1, -1, oo, -oo, I, -I):
|
197 |
+
|
198 |
+
+--------------+---------+-----------------------------------------------+
|
199 |
+
| expr | value | reason |
|
200 |
+
+==============+=========+===============================================+
|
201 |
+
| z**0 | 1 | Although arguments over 0**0 exist, see [2]. |
|
202 |
+
+--------------+---------+-----------------------------------------------+
|
203 |
+
| z**1 | z | |
|
204 |
+
+--------------+---------+-----------------------------------------------+
|
205 |
+
| (-oo)**(-1) | 0 | |
|
206 |
+
+--------------+---------+-----------------------------------------------+
|
207 |
+
| (-1)**-1 | -1 | |
|
208 |
+
+--------------+---------+-----------------------------------------------+
|
209 |
+
| S.Zero**-1 | zoo | This is not strictly true, as 0**-1 may be |
|
210 |
+
| | | undefined, but is convenient in some contexts |
|
211 |
+
| | | where the base is assumed to be positive. |
|
212 |
+
+--------------+---------+-----------------------------------------------+
|
213 |
+
| 1**-1 | 1 | |
|
214 |
+
+--------------+---------+-----------------------------------------------+
|
215 |
+
| oo**-1 | 0 | |
|
216 |
+
+--------------+---------+-----------------------------------------------+
|
217 |
+
| 0**oo | 0 | Because for all complex numbers z near |
|
218 |
+
| | | 0, z**oo -> 0. |
|
219 |
+
+--------------+---------+-----------------------------------------------+
|
220 |
+
| 0**-oo | zoo | This is not strictly true, as 0**oo may be |
|
221 |
+
| | | oscillating between positive and negative |
|
222 |
+
| | | values or rotating in the complex plane. |
|
223 |
+
| | | It is convenient, however, when the base |
|
224 |
+
| | | is positive. |
|
225 |
+
+--------------+---------+-----------------------------------------------+
|
226 |
+
| 1**oo | nan | Because there are various cases where |
|
227 |
+
| 1**-oo | | lim(x(t),t)=1, lim(y(t),t)=oo (or -oo), |
|
228 |
+
| | | but lim( x(t)**y(t), t) != 1. See [3]. |
|
229 |
+
+--------------+---------+-----------------------------------------------+
|
230 |
+
| b**zoo | nan | Because b**z has no limit as z -> zoo |
|
231 |
+
+--------------+---------+-----------------------------------------------+
|
232 |
+
| (-1)**oo | nan | Because of oscillations in the limit. |
|
233 |
+
| (-1)**(-oo) | | |
|
234 |
+
+--------------+---------+-----------------------------------------------+
|
235 |
+
| oo**oo | oo | |
|
236 |
+
+--------------+---------+-----------------------------------------------+
|
237 |
+
| oo**-oo | 0 | |
|
238 |
+
+--------------+---------+-----------------------------------------------+
|
239 |
+
| (-oo)**oo | nan | |
|
240 |
+
| (-oo)**-oo | | |
|
241 |
+
+--------------+---------+-----------------------------------------------+
|
242 |
+
| oo**I | nan | oo**e could probably be best thought of as |
|
243 |
+
| (-oo)**I | | the limit of x**e for real x as x tends to |
|
244 |
+
| | | oo. If e is I, then the limit does not exist |
|
245 |
+
| | | and nan is used to indicate that. |
|
246 |
+
+--------------+---------+-----------------------------------------------+
|
247 |
+
| oo**(1+I) | zoo | If the real part of e is positive, then the |
|
248 |
+
| (-oo)**(1+I) | | limit of abs(x**e) is oo. So the limit value |
|
249 |
+
| | | is zoo. |
|
250 |
+
+--------------+---------+-----------------------------------------------+
|
251 |
+
| oo**(-1+I) | 0 | If the real part of e is negative, then the |
|
252 |
+
| -oo**(-1+I) | | limit is 0. |
|
253 |
+
+--------------+---------+-----------------------------------------------+
|
254 |
+
|
255 |
+
Because symbolic computations are more flexible than floating point
|
256 |
+
calculations and we prefer to never return an incorrect answer,
|
257 |
+
we choose not to conform to all IEEE 754 conventions. This helps
|
258 |
+
us avoid extra test-case code in the calculation of limits.
|
259 |
+
|
260 |
+
See Also
|
261 |
+
========
|
262 |
+
|
263 |
+
sympy.core.numbers.Infinity
|
264 |
+
sympy.core.numbers.NegativeInfinity
|
265 |
+
sympy.core.numbers.NaN
|
266 |
+
|
267 |
+
References
|
268 |
+
==========
|
269 |
+
|
270 |
+
.. [1] https://en.wikipedia.org/wiki/Exponentiation
|
271 |
+
.. [2] https://en.wikipedia.org/wiki/Zero_to_the_power_of_zero
|
272 |
+
.. [3] https://en.wikipedia.org/wiki/Indeterminate_forms
|
273 |
+
|
274 |
+
"""
|
275 |
+
is_Pow = True
|
276 |
+
|
277 |
+
__slots__ = ('is_commutative',)
|
278 |
+
|
279 |
+
args: tuple[Expr, Expr]
|
280 |
+
_args: tuple[Expr, Expr]
|
281 |
+
|
282 |
+
@cacheit
|
283 |
+
def __new__(cls, b, e, evaluate=None):
|
284 |
+
if evaluate is None:
|
285 |
+
evaluate = global_parameters.evaluate
|
286 |
+
|
287 |
+
b = _sympify(b)
|
288 |
+
e = _sympify(e)
|
289 |
+
|
290 |
+
# XXX: This can be removed when non-Expr args are disallowed rather
|
291 |
+
# than deprecated.
|
292 |
+
from .relational import Relational
|
293 |
+
if isinstance(b, Relational) or isinstance(e, Relational):
|
294 |
+
raise TypeError('Relational cannot be used in Pow')
|
295 |
+
|
296 |
+
# XXX: This should raise TypeError once deprecation period is over:
|
297 |
+
for arg in [b, e]:
|
298 |
+
if not isinstance(arg, Expr):
|
299 |
+
sympy_deprecation_warning(
|
300 |
+
f"""
|
301 |
+
Using non-Expr arguments in Pow is deprecated (in this case, one of the
|
302 |
+
arguments is of type {type(arg).__name__!r}).
|
303 |
+
|
304 |
+
If you really did intend to construct a power with this base, use the **
|
305 |
+
operator instead.""",
|
306 |
+
deprecated_since_version="1.7",
|
307 |
+
active_deprecations_target="non-expr-args-deprecated",
|
308 |
+
stacklevel=4,
|
309 |
+
)
|
310 |
+
|
311 |
+
if evaluate:
|
312 |
+
if e is S.ComplexInfinity:
|
313 |
+
return S.NaN
|
314 |
+
if e is S.Infinity:
|
315 |
+
if is_gt(b, S.One):
|
316 |
+
return S.Infinity
|
317 |
+
if is_gt(b, S.NegativeOne) and is_lt(b, S.One):
|
318 |
+
return S.Zero
|
319 |
+
if is_lt(b, S.NegativeOne):
|
320 |
+
if b.is_finite:
|
321 |
+
return S.ComplexInfinity
|
322 |
+
if b.is_finite is False:
|
323 |
+
return S.NaN
|
324 |
+
if e is S.Zero:
|
325 |
+
return S.One
|
326 |
+
elif e is S.One:
|
327 |
+
return b
|
328 |
+
elif e == -1 and not b:
|
329 |
+
return S.ComplexInfinity
|
330 |
+
elif e.__class__.__name__ == "AccumulationBounds":
|
331 |
+
if b == S.Exp1:
|
332 |
+
from sympy.calculus.accumulationbounds import AccumBounds
|
333 |
+
return AccumBounds(Pow(b, e.min), Pow(b, e.max))
|
334 |
+
# autosimplification if base is a number and exp odd/even
|
335 |
+
# if base is Number then the base will end up positive; we
|
336 |
+
# do not do this with arbitrary expressions since symbolic
|
337 |
+
# cancellation might occur as in (x - 1)/(1 - x) -> -1. If
|
338 |
+
# we returned Piecewise((-1, Ne(x, 1))) for such cases then
|
339 |
+
# we could do this...but we don't
|
340 |
+
elif (e.is_Symbol and e.is_integer or e.is_Integer
|
341 |
+
) and (b.is_number and b.is_Mul or b.is_Number
|
342 |
+
) and b.could_extract_minus_sign():
|
343 |
+
if e.is_even:
|
344 |
+
b = -b
|
345 |
+
elif e.is_odd:
|
346 |
+
return -Pow(-b, e)
|
347 |
+
if S.NaN in (b, e): # XXX S.NaN**x -> S.NaN under assumption that x != 0
|
348 |
+
return S.NaN
|
349 |
+
elif b is S.One:
|
350 |
+
if abs(e).is_infinite:
|
351 |
+
return S.NaN
|
352 |
+
return S.One
|
353 |
+
else:
|
354 |
+
# recognize base as E
|
355 |
+
from sympy.functions.elementary.exponential import exp_polar
|
356 |
+
if not e.is_Atom and b is not S.Exp1 and not isinstance(b, exp_polar):
|
357 |
+
from .exprtools import factor_terms
|
358 |
+
from sympy.functions.elementary.exponential import log
|
359 |
+
from sympy.simplify.radsimp import fraction
|
360 |
+
c, ex = factor_terms(e, sign=False).as_coeff_Mul()
|
361 |
+
num, den = fraction(ex)
|
362 |
+
if isinstance(den, log) and den.args[0] == b:
|
363 |
+
return S.Exp1**(c*num)
|
364 |
+
elif den.is_Add:
|
365 |
+
from sympy.functions.elementary.complexes import sign, im
|
366 |
+
s = sign(im(b))
|
367 |
+
if s.is_Number and s and den == \
|
368 |
+
log(-factor_terms(b, sign=False)) + s*S.ImaginaryUnit*S.Pi:
|
369 |
+
return S.Exp1**(c*num)
|
370 |
+
|
371 |
+
obj = b._eval_power(e)
|
372 |
+
if obj is not None:
|
373 |
+
return obj
|
374 |
+
obj = Expr.__new__(cls, b, e)
|
375 |
+
obj = cls._exec_constructor_postprocessors(obj)
|
376 |
+
if not isinstance(obj, Pow):
|
377 |
+
return obj
|
378 |
+
obj.is_commutative = (b.is_commutative and e.is_commutative)
|
379 |
+
return obj
|
380 |
+
|
381 |
+
def inverse(self, argindex=1):
|
382 |
+
if self.base == S.Exp1:
|
383 |
+
from sympy.functions.elementary.exponential import log
|
384 |
+
return log
|
385 |
+
return None
|
386 |
+
|
387 |
+
@property
|
388 |
+
def base(self) -> Expr:
|
389 |
+
return self._args[0]
|
390 |
+
|
391 |
+
@property
|
392 |
+
def exp(self) -> Expr:
|
393 |
+
return self._args[1]
|
394 |
+
|
395 |
+
@property
|
396 |
+
def kind(self):
|
397 |
+
if self.exp.kind is NumberKind:
|
398 |
+
return self.base.kind
|
399 |
+
else:
|
400 |
+
return UndefinedKind
|
401 |
+
|
402 |
+
@classmethod
|
403 |
+
def class_key(cls):
|
404 |
+
return 3, 2, cls.__name__
|
405 |
+
|
406 |
+
def _eval_refine(self, assumptions):
|
407 |
+
from sympy.assumptions.ask import ask, Q
|
408 |
+
b, e = self.as_base_exp()
|
409 |
+
if ask(Q.integer(e), assumptions) and b.could_extract_minus_sign():
|
410 |
+
if ask(Q.even(e), assumptions):
|
411 |
+
return Pow(-b, e)
|
412 |
+
elif ask(Q.odd(e), assumptions):
|
413 |
+
return -Pow(-b, e)
|
414 |
+
|
415 |
+
def _eval_power(self, other):
|
416 |
+
b, e = self.as_base_exp()
|
417 |
+
if b is S.NaN:
|
418 |
+
return (b**e)**other # let __new__ handle it
|
419 |
+
|
420 |
+
s = None
|
421 |
+
if other.is_integer:
|
422 |
+
s = 1
|
423 |
+
elif b.is_polar: # e.g. exp_polar, besselj, var('p', polar=True)...
|
424 |
+
s = 1
|
425 |
+
elif e.is_extended_real is not None:
|
426 |
+
from sympy.functions.elementary.complexes import arg, im, re, sign
|
427 |
+
from sympy.functions.elementary.exponential import exp, log
|
428 |
+
from sympy.functions.elementary.integers import floor
|
429 |
+
# helper functions ===========================
|
430 |
+
def _half(e):
|
431 |
+
"""Return True if the exponent has a literal 2 as the
|
432 |
+
denominator, else None."""
|
433 |
+
if getattr(e, 'q', None) == 2:
|
434 |
+
return True
|
435 |
+
n, d = e.as_numer_denom()
|
436 |
+
if n.is_integer and d == 2:
|
437 |
+
return True
|
438 |
+
def _n2(e):
|
439 |
+
"""Return ``e`` evaluated to a Number with 2 significant
|
440 |
+
digits, else None."""
|
441 |
+
try:
|
442 |
+
rv = e.evalf(2, strict=True)
|
443 |
+
if rv.is_Number:
|
444 |
+
return rv
|
445 |
+
except PrecisionExhausted:
|
446 |
+
pass
|
447 |
+
# ===================================================
|
448 |
+
if e.is_extended_real:
|
449 |
+
# we need _half(other) with constant floor or
|
450 |
+
# floor(S.Half - e*arg(b)/2/pi) == 0
|
451 |
+
|
452 |
+
|
453 |
+
# handle -1 as special case
|
454 |
+
if e == -1:
|
455 |
+
# floor arg. is 1/2 + arg(b)/2/pi
|
456 |
+
if _half(other):
|
457 |
+
if b.is_negative is True:
|
458 |
+
return S.NegativeOne**other*Pow(-b, e*other)
|
459 |
+
elif b.is_negative is False: # XXX ok if im(b) != 0?
|
460 |
+
return Pow(b, -other)
|
461 |
+
elif e.is_even:
|
462 |
+
if b.is_extended_real:
|
463 |
+
b = abs(b)
|
464 |
+
if b.is_imaginary:
|
465 |
+
b = abs(im(b))*S.ImaginaryUnit
|
466 |
+
|
467 |
+
if (abs(e) < 1) == True or e == 1:
|
468 |
+
s = 1 # floor = 0
|
469 |
+
elif b.is_extended_nonnegative:
|
470 |
+
s = 1 # floor = 0
|
471 |
+
elif re(b).is_extended_nonnegative and (abs(e) < 2) == True:
|
472 |
+
s = 1 # floor = 0
|
473 |
+
elif _half(other):
|
474 |
+
s = exp(2*S.Pi*S.ImaginaryUnit*other*floor(
|
475 |
+
S.Half - e*arg(b)/(2*S.Pi)))
|
476 |
+
if s.is_extended_real and _n2(sign(s) - s) == 0:
|
477 |
+
s = sign(s)
|
478 |
+
else:
|
479 |
+
s = None
|
480 |
+
else:
|
481 |
+
# e.is_extended_real is False requires:
|
482 |
+
# _half(other) with constant floor or
|
483 |
+
# floor(S.Half - im(e*log(b))/2/pi) == 0
|
484 |
+
try:
|
485 |
+
s = exp(2*S.ImaginaryUnit*S.Pi*other*
|
486 |
+
floor(S.Half - im(e*log(b))/2/S.Pi))
|
487 |
+
# be careful to test that s is -1 or 1 b/c sign(I) == I:
|
488 |
+
# so check that s is real
|
489 |
+
if s.is_extended_real and _n2(sign(s) - s) == 0:
|
490 |
+
s = sign(s)
|
491 |
+
else:
|
492 |
+
s = None
|
493 |
+
except PrecisionExhausted:
|
494 |
+
s = None
|
495 |
+
|
496 |
+
if s is not None:
|
497 |
+
return s*Pow(b, e*other)
|
498 |
+
|
499 |
+
def _eval_Mod(self, q):
|
500 |
+
r"""A dispatched function to compute `b^e \bmod q`, dispatched
|
501 |
+
by ``Mod``.
|
502 |
+
|
503 |
+
Notes
|
504 |
+
=====
|
505 |
+
|
506 |
+
Algorithms:
|
507 |
+
|
508 |
+
1. For unevaluated integer power, use built-in ``pow`` function
|
509 |
+
with 3 arguments, if powers are not too large wrt base.
|
510 |
+
|
511 |
+
2. For very large powers, use totient reduction if $e \ge \log(m)$.
|
512 |
+
Bound on m, is for safe factorization memory wise i.e. $m^{1/4}$.
|
513 |
+
For pollard-rho to be faster than built-in pow $\log(e) > m^{1/4}$
|
514 |
+
check is added.
|
515 |
+
|
516 |
+
3. For any unevaluated power found in `b` or `e`, the step 2
|
517 |
+
will be recursed down to the base and the exponent
|
518 |
+
such that the $b \bmod q$ becomes the new base and
|
519 |
+
$\phi(q) + e \bmod \phi(q)$ becomes the new exponent, and then
|
520 |
+
the computation for the reduced expression can be done.
|
521 |
+
"""
|
522 |
+
|
523 |
+
base, exp = self.base, self.exp
|
524 |
+
|
525 |
+
if exp.is_integer and exp.is_positive:
|
526 |
+
if q.is_integer and base % q == 0:
|
527 |
+
return S.Zero
|
528 |
+
|
529 |
+
from sympy.ntheory.factor_ import totient
|
530 |
+
|
531 |
+
if base.is_Integer and exp.is_Integer and q.is_Integer:
|
532 |
+
b, e, m = int(base), int(exp), int(q)
|
533 |
+
mb = m.bit_length()
|
534 |
+
if mb <= 80 and e >= mb and e.bit_length()**4 >= m:
|
535 |
+
phi = int(totient(m))
|
536 |
+
return Integer(pow(b, phi + e%phi, m))
|
537 |
+
return Integer(pow(b, e, m))
|
538 |
+
|
539 |
+
from .mod import Mod
|
540 |
+
|
541 |
+
if isinstance(base, Pow) and base.is_integer and base.is_number:
|
542 |
+
base = Mod(base, q)
|
543 |
+
return Mod(Pow(base, exp, evaluate=False), q)
|
544 |
+
|
545 |
+
if isinstance(exp, Pow) and exp.is_integer and exp.is_number:
|
546 |
+
bit_length = int(q).bit_length()
|
547 |
+
# XXX Mod-Pow actually attempts to do a hanging evaluation
|
548 |
+
# if this dispatched function returns None.
|
549 |
+
# May need some fixes in the dispatcher itself.
|
550 |
+
if bit_length <= 80:
|
551 |
+
phi = totient(q)
|
552 |
+
exp = phi + Mod(exp, phi)
|
553 |
+
return Mod(Pow(base, exp, evaluate=False), q)
|
554 |
+
|
555 |
+
def _eval_is_even(self):
|
556 |
+
if self.exp.is_integer and self.exp.is_positive:
|
557 |
+
return self.base.is_even
|
558 |
+
|
559 |
+
def _eval_is_negative(self):
|
560 |
+
ext_neg = Pow._eval_is_extended_negative(self)
|
561 |
+
if ext_neg is True:
|
562 |
+
return self.is_finite
|
563 |
+
return ext_neg
|
564 |
+
|
565 |
+
def _eval_is_extended_positive(self):
|
566 |
+
if self.base == self.exp:
|
567 |
+
if self.base.is_extended_nonnegative:
|
568 |
+
return True
|
569 |
+
elif self.base.is_positive:
|
570 |
+
if self.exp.is_real:
|
571 |
+
return True
|
572 |
+
elif self.base.is_extended_negative:
|
573 |
+
if self.exp.is_even:
|
574 |
+
return True
|
575 |
+
if self.exp.is_odd:
|
576 |
+
return False
|
577 |
+
elif self.base.is_zero:
|
578 |
+
if self.exp.is_extended_real:
|
579 |
+
return self.exp.is_zero
|
580 |
+
elif self.base.is_extended_nonpositive:
|
581 |
+
if self.exp.is_odd:
|
582 |
+
return False
|
583 |
+
elif self.base.is_imaginary:
|
584 |
+
if self.exp.is_integer:
|
585 |
+
m = self.exp % 4
|
586 |
+
if m.is_zero:
|
587 |
+
return True
|
588 |
+
if m.is_integer and m.is_zero is False:
|
589 |
+
return False
|
590 |
+
if self.exp.is_imaginary:
|
591 |
+
from sympy.functions.elementary.exponential import log
|
592 |
+
return log(self.base).is_imaginary
|
593 |
+
|
594 |
+
def _eval_is_extended_negative(self):
|
595 |
+
if self.exp is S.Half:
|
596 |
+
if self.base.is_complex or self.base.is_extended_real:
|
597 |
+
return False
|
598 |
+
if self.base.is_extended_negative:
|
599 |
+
if self.exp.is_odd and self.base.is_finite:
|
600 |
+
return True
|
601 |
+
if self.exp.is_even:
|
602 |
+
return False
|
603 |
+
elif self.base.is_extended_positive:
|
604 |
+
if self.exp.is_extended_real:
|
605 |
+
return False
|
606 |
+
elif self.base.is_zero:
|
607 |
+
if self.exp.is_extended_real:
|
608 |
+
return False
|
609 |
+
elif self.base.is_extended_nonnegative:
|
610 |
+
if self.exp.is_extended_nonnegative:
|
611 |
+
return False
|
612 |
+
elif self.base.is_extended_nonpositive:
|
613 |
+
if self.exp.is_even:
|
614 |
+
return False
|
615 |
+
elif self.base.is_extended_real:
|
616 |
+
if self.exp.is_even:
|
617 |
+
return False
|
618 |
+
|
619 |
+
def _eval_is_zero(self):
|
620 |
+
if self.base.is_zero:
|
621 |
+
if self.exp.is_extended_positive:
|
622 |
+
return True
|
623 |
+
elif self.exp.is_extended_nonpositive:
|
624 |
+
return False
|
625 |
+
elif self.base == S.Exp1:
|
626 |
+
return self.exp is S.NegativeInfinity
|
627 |
+
elif self.base.is_zero is False:
|
628 |
+
if self.base.is_finite and self.exp.is_finite:
|
629 |
+
return False
|
630 |
+
elif self.exp.is_negative:
|
631 |
+
return self.base.is_infinite
|
632 |
+
elif self.exp.is_nonnegative:
|
633 |
+
return False
|
634 |
+
elif self.exp.is_infinite and self.exp.is_extended_real:
|
635 |
+
if (1 - abs(self.base)).is_extended_positive:
|
636 |
+
return self.exp.is_extended_positive
|
637 |
+
elif (1 - abs(self.base)).is_extended_negative:
|
638 |
+
return self.exp.is_extended_negative
|
639 |
+
elif self.base.is_finite and self.exp.is_negative:
|
640 |
+
# when self.base.is_zero is None
|
641 |
+
return False
|
642 |
+
|
643 |
+
def _eval_is_integer(self):
|
644 |
+
b, e = self.args
|
645 |
+
if b.is_rational:
|
646 |
+
if b.is_integer is False and e.is_positive:
|
647 |
+
return False # rat**nonneg
|
648 |
+
if b.is_integer and e.is_integer:
|
649 |
+
if b is S.NegativeOne:
|
650 |
+
return True
|
651 |
+
if e.is_nonnegative or e.is_positive:
|
652 |
+
return True
|
653 |
+
if b.is_integer and e.is_negative and (e.is_finite or e.is_integer):
|
654 |
+
if fuzzy_not((b - 1).is_zero) and fuzzy_not((b + 1).is_zero):
|
655 |
+
return False
|
656 |
+
if b.is_Number and e.is_Number:
|
657 |
+
check = self.func(*self.args)
|
658 |
+
return check.is_Integer
|
659 |
+
if e.is_negative and b.is_positive and (b - 1).is_positive:
|
660 |
+
return False
|
661 |
+
if e.is_negative and b.is_negative and (b + 1).is_negative:
|
662 |
+
return False
|
663 |
+
|
664 |
+
def _eval_is_extended_real(self):
|
665 |
+
if self.base is S.Exp1:
|
666 |
+
if self.exp.is_extended_real:
|
667 |
+
return True
|
668 |
+
elif self.exp.is_imaginary:
|
669 |
+
return (2*S.ImaginaryUnit*self.exp/S.Pi).is_even
|
670 |
+
|
671 |
+
from sympy.functions.elementary.exponential import log, exp
|
672 |
+
real_b = self.base.is_extended_real
|
673 |
+
if real_b is None:
|
674 |
+
if self.base.func == exp and self.base.exp.is_imaginary:
|
675 |
+
return self.exp.is_imaginary
|
676 |
+
if self.base.func == Pow and self.base.base is S.Exp1 and self.base.exp.is_imaginary:
|
677 |
+
return self.exp.is_imaginary
|
678 |
+
return
|
679 |
+
real_e = self.exp.is_extended_real
|
680 |
+
if real_e is None:
|
681 |
+
return
|
682 |
+
if real_b and real_e:
|
683 |
+
if self.base.is_extended_positive:
|
684 |
+
return True
|
685 |
+
elif self.base.is_extended_nonnegative and self.exp.is_extended_nonnegative:
|
686 |
+
return True
|
687 |
+
elif self.exp.is_integer and self.base.is_extended_nonzero:
|
688 |
+
return True
|
689 |
+
elif self.exp.is_integer and self.exp.is_nonnegative:
|
690 |
+
return True
|
691 |
+
elif self.base.is_extended_negative:
|
692 |
+
if self.exp.is_Rational:
|
693 |
+
return False
|
694 |
+
if real_e and self.exp.is_extended_negative and self.base.is_zero is False:
|
695 |
+
return Pow(self.base, -self.exp).is_extended_real
|
696 |
+
im_b = self.base.is_imaginary
|
697 |
+
im_e = self.exp.is_imaginary
|
698 |
+
if im_b:
|
699 |
+
if self.exp.is_integer:
|
700 |
+
if self.exp.is_even:
|
701 |
+
return True
|
702 |
+
elif self.exp.is_odd:
|
703 |
+
return False
|
704 |
+
elif im_e and log(self.base).is_imaginary:
|
705 |
+
return True
|
706 |
+
elif self.exp.is_Add:
|
707 |
+
c, a = self.exp.as_coeff_Add()
|
708 |
+
if c and c.is_Integer:
|
709 |
+
return Mul(
|
710 |
+
self.base**c, self.base**a, evaluate=False).is_extended_real
|
711 |
+
elif self.base in (-S.ImaginaryUnit, S.ImaginaryUnit):
|
712 |
+
if (self.exp/2).is_integer is False:
|
713 |
+
return False
|
714 |
+
if real_b and im_e:
|
715 |
+
if self.base is S.NegativeOne:
|
716 |
+
return True
|
717 |
+
c = self.exp.coeff(S.ImaginaryUnit)
|
718 |
+
if c:
|
719 |
+
if self.base.is_rational and c.is_rational:
|
720 |
+
if self.base.is_nonzero and (self.base - 1).is_nonzero and c.is_nonzero:
|
721 |
+
return False
|
722 |
+
ok = (c*log(self.base)/S.Pi).is_integer
|
723 |
+
if ok is not None:
|
724 |
+
return ok
|
725 |
+
|
726 |
+
if real_b is False and real_e: # we already know it's not imag
|
727 |
+
from sympy.functions.elementary.complexes import arg
|
728 |
+
i = arg(self.base)*self.exp/S.Pi
|
729 |
+
if i.is_complex: # finite
|
730 |
+
return i.is_integer
|
731 |
+
|
732 |
+
def _eval_is_complex(self):
|
733 |
+
|
734 |
+
if self.base == S.Exp1:
|
735 |
+
return fuzzy_or([self.exp.is_complex, self.exp.is_extended_negative])
|
736 |
+
|
737 |
+
if all(a.is_complex for a in self.args) and self._eval_is_finite():
|
738 |
+
return True
|
739 |
+
|
740 |
+
def _eval_is_imaginary(self):
|
741 |
+
if self.base.is_commutative is False:
|
742 |
+
return False
|
743 |
+
|
744 |
+
if self.base.is_imaginary:
|
745 |
+
if self.exp.is_integer:
|
746 |
+
odd = self.exp.is_odd
|
747 |
+
if odd is not None:
|
748 |
+
return odd
|
749 |
+
return
|
750 |
+
|
751 |
+
if self.base == S.Exp1:
|
752 |
+
f = 2 * self.exp / (S.Pi*S.ImaginaryUnit)
|
753 |
+
# exp(pi*integer) = 1 or -1, so not imaginary
|
754 |
+
if f.is_even:
|
755 |
+
return False
|
756 |
+
# exp(pi*integer + pi/2) = I or -I, so it is imaginary
|
757 |
+
if f.is_odd:
|
758 |
+
return True
|
759 |
+
return None
|
760 |
+
|
761 |
+
if self.exp.is_imaginary:
|
762 |
+
from sympy.functions.elementary.exponential import log
|
763 |
+
imlog = log(self.base).is_imaginary
|
764 |
+
if imlog is not None:
|
765 |
+
return False # I**i -> real; (2*I)**i -> complex ==> not imaginary
|
766 |
+
|
767 |
+
if self.base.is_extended_real and self.exp.is_extended_real:
|
768 |
+
if self.base.is_positive:
|
769 |
+
return False
|
770 |
+
else:
|
771 |
+
rat = self.exp.is_rational
|
772 |
+
if not rat:
|
773 |
+
return rat
|
774 |
+
if self.exp.is_integer:
|
775 |
+
return False
|
776 |
+
else:
|
777 |
+
half = (2*self.exp).is_integer
|
778 |
+
if half:
|
779 |
+
return self.base.is_negative
|
780 |
+
return half
|
781 |
+
|
782 |
+
if self.base.is_extended_real is False: # we already know it's not imag
|
783 |
+
from sympy.functions.elementary.complexes import arg
|
784 |
+
i = arg(self.base)*self.exp/S.Pi
|
785 |
+
isodd = (2*i).is_odd
|
786 |
+
if isodd is not None:
|
787 |
+
return isodd
|
788 |
+
|
789 |
+
def _eval_is_odd(self):
|
790 |
+
if self.exp.is_integer:
|
791 |
+
if self.exp.is_positive:
|
792 |
+
return self.base.is_odd
|
793 |
+
elif self.exp.is_nonnegative and self.base.is_odd:
|
794 |
+
return True
|
795 |
+
elif self.base is S.NegativeOne:
|
796 |
+
return True
|
797 |
+
|
798 |
+
def _eval_is_finite(self):
|
799 |
+
if self.exp.is_negative:
|
800 |
+
if self.base.is_zero:
|
801 |
+
return False
|
802 |
+
if self.base.is_infinite or self.base.is_nonzero:
|
803 |
+
return True
|
804 |
+
c1 = self.base.is_finite
|
805 |
+
if c1 is None:
|
806 |
+
return
|
807 |
+
c2 = self.exp.is_finite
|
808 |
+
if c2 is None:
|
809 |
+
return
|
810 |
+
if c1 and c2:
|
811 |
+
if self.exp.is_nonnegative or fuzzy_not(self.base.is_zero):
|
812 |
+
return True
|
813 |
+
|
814 |
+
def _eval_is_prime(self):
|
815 |
+
'''
|
816 |
+
An integer raised to the n(>=2)-th power cannot be a prime.
|
817 |
+
'''
|
818 |
+
if self.base.is_integer and self.exp.is_integer and (self.exp - 1).is_positive:
|
819 |
+
return False
|
820 |
+
|
821 |
+
def _eval_is_composite(self):
|
822 |
+
"""
|
823 |
+
A power is composite if both base and exponent are greater than 1
|
824 |
+
"""
|
825 |
+
if (self.base.is_integer and self.exp.is_integer and
|
826 |
+
((self.base - 1).is_positive and (self.exp - 1).is_positive or
|
827 |
+
(self.base + 1).is_negative and self.exp.is_positive and self.exp.is_even)):
|
828 |
+
return True
|
829 |
+
|
830 |
+
def _eval_is_polar(self):
|
831 |
+
return self.base.is_polar
|
832 |
+
|
833 |
+
def _eval_subs(self, old, new):
|
834 |
+
from sympy.calculus.accumulationbounds import AccumBounds
|
835 |
+
|
836 |
+
if isinstance(self.exp, AccumBounds):
|
837 |
+
b = self.base.subs(old, new)
|
838 |
+
e = self.exp.subs(old, new)
|
839 |
+
if isinstance(e, AccumBounds):
|
840 |
+
return e.__rpow__(b)
|
841 |
+
return self.func(b, e)
|
842 |
+
|
843 |
+
from sympy.functions.elementary.exponential import exp, log
|
844 |
+
|
845 |
+
def _check(ct1, ct2, old):
|
846 |
+
"""Return (bool, pow, remainder_pow) where, if bool is True, then the
|
847 |
+
exponent of Pow `old` will combine with `pow` so the substitution
|
848 |
+
is valid, otherwise bool will be False.
|
849 |
+
|
850 |
+
For noncommutative objects, `pow` will be an integer, and a factor
|
851 |
+
`Pow(old.base, remainder_pow)` needs to be included. If there is
|
852 |
+
no such factor, None is returned. For commutative objects,
|
853 |
+
remainder_pow is always None.
|
854 |
+
|
855 |
+
cti are the coefficient and terms of an exponent of self or old
|
856 |
+
In this _eval_subs routine a change like (b**(2*x)).subs(b**x, y)
|
857 |
+
will give y**2 since (b**x)**2 == b**(2*x); if that equality does
|
858 |
+
not hold then the substitution should not occur so `bool` will be
|
859 |
+
False.
|
860 |
+
|
861 |
+
"""
|
862 |
+
coeff1, terms1 = ct1
|
863 |
+
coeff2, terms2 = ct2
|
864 |
+
if terms1 == terms2:
|
865 |
+
if old.is_commutative:
|
866 |
+
# Allow fractional powers for commutative objects
|
867 |
+
pow = coeff1/coeff2
|
868 |
+
try:
|
869 |
+
as_int(pow, strict=False)
|
870 |
+
combines = True
|
871 |
+
except ValueError:
|
872 |
+
b, e = old.as_base_exp()
|
873 |
+
# These conditions ensure that (b**e)**f == b**(e*f) for any f
|
874 |
+
combines = b.is_positive and e.is_real or b.is_nonnegative and e.is_nonnegative
|
875 |
+
|
876 |
+
return combines, pow, None
|
877 |
+
else:
|
878 |
+
# With noncommutative symbols, substitute only integer powers
|
879 |
+
if not isinstance(terms1, tuple):
|
880 |
+
terms1 = (terms1,)
|
881 |
+
if not all(term.is_integer for term in terms1):
|
882 |
+
return False, None, None
|
883 |
+
|
884 |
+
try:
|
885 |
+
# Round pow toward zero
|
886 |
+
pow, remainder = divmod(as_int(coeff1), as_int(coeff2))
|
887 |
+
if pow < 0 and remainder != 0:
|
888 |
+
pow += 1
|
889 |
+
remainder -= as_int(coeff2)
|
890 |
+
|
891 |
+
if remainder == 0:
|
892 |
+
remainder_pow = None
|
893 |
+
else:
|
894 |
+
remainder_pow = Mul(remainder, *terms1)
|
895 |
+
|
896 |
+
return True, pow, remainder_pow
|
897 |
+
except ValueError:
|
898 |
+
# Can't substitute
|
899 |
+
pass
|
900 |
+
|
901 |
+
return False, None, None
|
902 |
+
|
903 |
+
if old == self.base or (old == exp and self.base == S.Exp1):
|
904 |
+
if new.is_Function and isinstance(new, Callable):
|
905 |
+
return new(self.exp._subs(old, new))
|
906 |
+
else:
|
907 |
+
return new**self.exp._subs(old, new)
|
908 |
+
|
909 |
+
# issue 10829: (4**x - 3*y + 2).subs(2**x, y) -> y**2 - 3*y + 2
|
910 |
+
if isinstance(old, self.func) and self.exp == old.exp:
|
911 |
+
l = log(self.base, old.base)
|
912 |
+
if l.is_Number:
|
913 |
+
return Pow(new, l)
|
914 |
+
|
915 |
+
if isinstance(old, self.func) and self.base == old.base:
|
916 |
+
if self.exp.is_Add is False:
|
917 |
+
ct1 = self.exp.as_independent(Symbol, as_Add=False)
|
918 |
+
ct2 = old.exp.as_independent(Symbol, as_Add=False)
|
919 |
+
ok, pow, remainder_pow = _check(ct1, ct2, old)
|
920 |
+
if ok:
|
921 |
+
# issue 5180: (x**(6*y)).subs(x**(3*y),z)->z**2
|
922 |
+
result = self.func(new, pow)
|
923 |
+
if remainder_pow is not None:
|
924 |
+
result = Mul(result, Pow(old.base, remainder_pow))
|
925 |
+
return result
|
926 |
+
else: # b**(6*x + a).subs(b**(3*x), y) -> y**2 * b**a
|
927 |
+
# exp(exp(x) + exp(x**2)).subs(exp(exp(x)), w) -> w * exp(exp(x**2))
|
928 |
+
oarg = old.exp
|
929 |
+
new_l = []
|
930 |
+
o_al = []
|
931 |
+
ct2 = oarg.as_coeff_mul()
|
932 |
+
for a in self.exp.args:
|
933 |
+
newa = a._subs(old, new)
|
934 |
+
ct1 = newa.as_coeff_mul()
|
935 |
+
ok, pow, remainder_pow = _check(ct1, ct2, old)
|
936 |
+
if ok:
|
937 |
+
new_l.append(new**pow)
|
938 |
+
if remainder_pow is not None:
|
939 |
+
o_al.append(remainder_pow)
|
940 |
+
continue
|
941 |
+
elif not old.is_commutative and not newa.is_integer:
|
942 |
+
# If any term in the exponent is non-integer,
|
943 |
+
# we do not do any substitutions in the noncommutative case
|
944 |
+
return
|
945 |
+
o_al.append(newa)
|
946 |
+
if new_l:
|
947 |
+
expo = Add(*o_al)
|
948 |
+
new_l.append(Pow(self.base, expo, evaluate=False) if expo != 1 else self.base)
|
949 |
+
return Mul(*new_l)
|
950 |
+
|
951 |
+
if (isinstance(old, exp) or (old.is_Pow and old.base is S.Exp1)) and self.exp.is_extended_real and self.base.is_positive:
|
952 |
+
ct1 = old.exp.as_independent(Symbol, as_Add=False)
|
953 |
+
ct2 = (self.exp*log(self.base)).as_independent(
|
954 |
+
Symbol, as_Add=False)
|
955 |
+
ok, pow, remainder_pow = _check(ct1, ct2, old)
|
956 |
+
if ok:
|
957 |
+
result = self.func(new, pow) # (2**x).subs(exp(x*log(2)), z) -> z
|
958 |
+
if remainder_pow is not None:
|
959 |
+
result = Mul(result, Pow(old.base, remainder_pow))
|
960 |
+
return result
|
961 |
+
|
962 |
+
def as_base_exp(self):
|
963 |
+
"""Return base and exp of self.
|
964 |
+
|
965 |
+
Explanation
|
966 |
+
===========
|
967 |
+
|
968 |
+
If base a Rational less than 1, then return 1/Rational, -exp.
|
969 |
+
If this extra processing is not needed, the base and exp
|
970 |
+
properties will give the raw arguments.
|
971 |
+
|
972 |
+
Examples
|
973 |
+
========
|
974 |
+
|
975 |
+
>>> from sympy import Pow, S
|
976 |
+
>>> p = Pow(S.Half, 2, evaluate=False)
|
977 |
+
>>> p.as_base_exp()
|
978 |
+
(2, -2)
|
979 |
+
>>> p.args
|
980 |
+
(1/2, 2)
|
981 |
+
>>> p.base, p.exp
|
982 |
+
(1/2, 2)
|
983 |
+
|
984 |
+
"""
|
985 |
+
|
986 |
+
b, e = self.args
|
987 |
+
if b.is_Rational and b.p < b.q and b.p > 0:
|
988 |
+
return 1/b, -e
|
989 |
+
return b, e
|
990 |
+
|
991 |
+
def _eval_adjoint(self):
|
992 |
+
from sympy.functions.elementary.complexes import adjoint
|
993 |
+
i, p = self.exp.is_integer, self.base.is_positive
|
994 |
+
if i:
|
995 |
+
return adjoint(self.base)**self.exp
|
996 |
+
if p:
|
997 |
+
return self.base**adjoint(self.exp)
|
998 |
+
if i is False and p is False:
|
999 |
+
expanded = expand_complex(self)
|
1000 |
+
if expanded != self:
|
1001 |
+
return adjoint(expanded)
|
1002 |
+
|
1003 |
+
def _eval_conjugate(self):
|
1004 |
+
from sympy.functions.elementary.complexes import conjugate as c
|
1005 |
+
i, p = self.exp.is_integer, self.base.is_positive
|
1006 |
+
if i:
|
1007 |
+
return c(self.base)**self.exp
|
1008 |
+
if p:
|
1009 |
+
return self.base**c(self.exp)
|
1010 |
+
if i is False and p is False:
|
1011 |
+
expanded = expand_complex(self)
|
1012 |
+
if expanded != self:
|
1013 |
+
return c(expanded)
|
1014 |
+
if self.is_extended_real:
|
1015 |
+
return self
|
1016 |
+
|
1017 |
+
def _eval_transpose(self):
|
1018 |
+
from sympy.functions.elementary.complexes import transpose
|
1019 |
+
if self.base == S.Exp1:
|
1020 |
+
return self.func(S.Exp1, self.exp.transpose())
|
1021 |
+
i, p = self.exp.is_integer, (self.base.is_complex or self.base.is_infinite)
|
1022 |
+
if p:
|
1023 |
+
return self.base**self.exp
|
1024 |
+
if i:
|
1025 |
+
return transpose(self.base)**self.exp
|
1026 |
+
if i is False and p is False:
|
1027 |
+
expanded = expand_complex(self)
|
1028 |
+
if expanded != self:
|
1029 |
+
return transpose(expanded)
|
1030 |
+
|
1031 |
+
def _eval_expand_power_exp(self, **hints):
|
1032 |
+
"""a**(n + m) -> a**n*a**m"""
|
1033 |
+
b = self.base
|
1034 |
+
e = self.exp
|
1035 |
+
if b == S.Exp1:
|
1036 |
+
from sympy.concrete.summations import Sum
|
1037 |
+
if isinstance(e, Sum) and e.is_commutative:
|
1038 |
+
from sympy.concrete.products import Product
|
1039 |
+
return Product(self.func(b, e.function), *e.limits)
|
1040 |
+
if e.is_Add and (hints.get('force', False) or
|
1041 |
+
b.is_zero is False or e._all_nonneg_or_nonppos()):
|
1042 |
+
if e.is_commutative:
|
1043 |
+
return Mul(*[self.func(b, x) for x in e.args])
|
1044 |
+
if b.is_commutative:
|
1045 |
+
c, nc = sift(e.args, lambda x: x.is_commutative, binary=True)
|
1046 |
+
if c:
|
1047 |
+
return Mul(*[self.func(b, x) for x in c]
|
1048 |
+
)*b**Add._from_args(nc)
|
1049 |
+
return self
|
1050 |
+
|
1051 |
+
def _eval_expand_power_base(self, **hints):
|
1052 |
+
"""(a*b)**n -> a**n * b**n"""
|
1053 |
+
force = hints.get('force', False)
|
1054 |
+
|
1055 |
+
b = self.base
|
1056 |
+
e = self.exp
|
1057 |
+
if not b.is_Mul:
|
1058 |
+
return self
|
1059 |
+
|
1060 |
+
cargs, nc = b.args_cnc(split_1=False)
|
1061 |
+
|
1062 |
+
# expand each term - this is top-level-only
|
1063 |
+
# expansion but we have to watch out for things
|
1064 |
+
# that don't have an _eval_expand method
|
1065 |
+
if nc:
|
1066 |
+
nc = [i._eval_expand_power_base(**hints)
|
1067 |
+
if hasattr(i, '_eval_expand_power_base') else i
|
1068 |
+
for i in nc]
|
1069 |
+
|
1070 |
+
if e.is_Integer:
|
1071 |
+
if e.is_positive:
|
1072 |
+
rv = Mul(*nc*e)
|
1073 |
+
else:
|
1074 |
+
rv = Mul(*[i**-1 for i in nc[::-1]]*-e)
|
1075 |
+
if cargs:
|
1076 |
+
rv *= Mul(*cargs)**e
|
1077 |
+
return rv
|
1078 |
+
|
1079 |
+
if not cargs:
|
1080 |
+
return self.func(Mul(*nc), e, evaluate=False)
|
1081 |
+
|
1082 |
+
nc = [Mul(*nc)]
|
1083 |
+
|
1084 |
+
# sift the commutative bases
|
1085 |
+
other, maybe_real = sift(cargs, lambda x: x.is_extended_real is False,
|
1086 |
+
binary=True)
|
1087 |
+
def pred(x):
|
1088 |
+
if x is S.ImaginaryUnit:
|
1089 |
+
return S.ImaginaryUnit
|
1090 |
+
polar = x.is_polar
|
1091 |
+
if polar:
|
1092 |
+
return True
|
1093 |
+
if polar is None:
|
1094 |
+
return fuzzy_bool(x.is_extended_nonnegative)
|
1095 |
+
sifted = sift(maybe_real, pred)
|
1096 |
+
nonneg = sifted[True]
|
1097 |
+
other += sifted[None]
|
1098 |
+
neg = sifted[False]
|
1099 |
+
imag = sifted[S.ImaginaryUnit]
|
1100 |
+
if imag:
|
1101 |
+
I = S.ImaginaryUnit
|
1102 |
+
i = len(imag) % 4
|
1103 |
+
if i == 0:
|
1104 |
+
pass
|
1105 |
+
elif i == 1:
|
1106 |
+
other.append(I)
|
1107 |
+
elif i == 2:
|
1108 |
+
if neg:
|
1109 |
+
nonn = -neg.pop()
|
1110 |
+
if nonn is not S.One:
|
1111 |
+
nonneg.append(nonn)
|
1112 |
+
else:
|
1113 |
+
neg.append(S.NegativeOne)
|
1114 |
+
else:
|
1115 |
+
if neg:
|
1116 |
+
nonn = -neg.pop()
|
1117 |
+
if nonn is not S.One:
|
1118 |
+
nonneg.append(nonn)
|
1119 |
+
else:
|
1120 |
+
neg.append(S.NegativeOne)
|
1121 |
+
other.append(I)
|
1122 |
+
del imag
|
1123 |
+
|
1124 |
+
# bring out the bases that can be separated from the base
|
1125 |
+
|
1126 |
+
if force or e.is_integer:
|
1127 |
+
# treat all commutatives the same and put nc in other
|
1128 |
+
cargs = nonneg + neg + other
|
1129 |
+
other = nc
|
1130 |
+
else:
|
1131 |
+
# this is just like what is happening automatically, except
|
1132 |
+
# that now we are doing it for an arbitrary exponent for which
|
1133 |
+
# no automatic expansion is done
|
1134 |
+
|
1135 |
+
assert not e.is_Integer
|
1136 |
+
|
1137 |
+
# handle negatives by making them all positive and putting
|
1138 |
+
# the residual -1 in other
|
1139 |
+
if len(neg) > 1:
|
1140 |
+
o = S.One
|
1141 |
+
if not other and neg[0].is_Number:
|
1142 |
+
o *= neg.pop(0)
|
1143 |
+
if len(neg) % 2:
|
1144 |
+
o = -o
|
1145 |
+
for n in neg:
|
1146 |
+
nonneg.append(-n)
|
1147 |
+
if o is not S.One:
|
1148 |
+
other.append(o)
|
1149 |
+
elif neg and other:
|
1150 |
+
if neg[0].is_Number and neg[0] is not S.NegativeOne:
|
1151 |
+
other.append(S.NegativeOne)
|
1152 |
+
nonneg.append(-neg[0])
|
1153 |
+
else:
|
1154 |
+
other.extend(neg)
|
1155 |
+
else:
|
1156 |
+
other.extend(neg)
|
1157 |
+
del neg
|
1158 |
+
|
1159 |
+
cargs = nonneg
|
1160 |
+
other += nc
|
1161 |
+
|
1162 |
+
rv = S.One
|
1163 |
+
if cargs:
|
1164 |
+
if e.is_Rational:
|
1165 |
+
npow, cargs = sift(cargs, lambda x: x.is_Pow and
|
1166 |
+
x.exp.is_Rational and x.base.is_number,
|
1167 |
+
binary=True)
|
1168 |
+
rv = Mul(*[self.func(b.func(*b.args), e) for b in npow])
|
1169 |
+
rv *= Mul(*[self.func(b, e, evaluate=False) for b in cargs])
|
1170 |
+
if other:
|
1171 |
+
rv *= self.func(Mul(*other), e, evaluate=False)
|
1172 |
+
return rv
|
1173 |
+
|
1174 |
+
def _eval_expand_multinomial(self, **hints):
|
1175 |
+
"""(a + b + ..)**n -> a**n + n*a**(n-1)*b + .., n is nonzero integer"""
|
1176 |
+
|
1177 |
+
base, exp = self.args
|
1178 |
+
result = self
|
1179 |
+
|
1180 |
+
if exp.is_Rational and exp.p > 0 and base.is_Add:
|
1181 |
+
if not exp.is_Integer:
|
1182 |
+
n = Integer(exp.p // exp.q)
|
1183 |
+
|
1184 |
+
if not n:
|
1185 |
+
return result
|
1186 |
+
else:
|
1187 |
+
radical, result = self.func(base, exp - n), []
|
1188 |
+
|
1189 |
+
expanded_base_n = self.func(base, n)
|
1190 |
+
if expanded_base_n.is_Pow:
|
1191 |
+
expanded_base_n = \
|
1192 |
+
expanded_base_n._eval_expand_multinomial()
|
1193 |
+
for term in Add.make_args(expanded_base_n):
|
1194 |
+
result.append(term*radical)
|
1195 |
+
|
1196 |
+
return Add(*result)
|
1197 |
+
|
1198 |
+
n = int(exp)
|
1199 |
+
|
1200 |
+
if base.is_commutative:
|
1201 |
+
order_terms, other_terms = [], []
|
1202 |
+
|
1203 |
+
for b in base.args:
|
1204 |
+
if b.is_Order:
|
1205 |
+
order_terms.append(b)
|
1206 |
+
else:
|
1207 |
+
other_terms.append(b)
|
1208 |
+
|
1209 |
+
if order_terms:
|
1210 |
+
# (f(x) + O(x^n))^m -> f(x)^m + m*f(x)^{m-1} *O(x^n)
|
1211 |
+
f = Add(*other_terms)
|
1212 |
+
o = Add(*order_terms)
|
1213 |
+
|
1214 |
+
if n == 2:
|
1215 |
+
return expand_multinomial(f**n, deep=False) + n*f*o
|
1216 |
+
else:
|
1217 |
+
g = expand_multinomial(f**(n - 1), deep=False)
|
1218 |
+
return expand_mul(f*g, deep=False) + n*g*o
|
1219 |
+
|
1220 |
+
if base.is_number:
|
1221 |
+
# Efficiently expand expressions of the form (a + b*I)**n
|
1222 |
+
# where 'a' and 'b' are real numbers and 'n' is integer.
|
1223 |
+
a, b = base.as_real_imag()
|
1224 |
+
|
1225 |
+
if a.is_Rational and b.is_Rational:
|
1226 |
+
if not a.is_Integer:
|
1227 |
+
if not b.is_Integer:
|
1228 |
+
k = self.func(a.q * b.q, n)
|
1229 |
+
a, b = a.p*b.q, a.q*b.p
|
1230 |
+
else:
|
1231 |
+
k = self.func(a.q, n)
|
1232 |
+
a, b = a.p, a.q*b
|
1233 |
+
elif not b.is_Integer:
|
1234 |
+
k = self.func(b.q, n)
|
1235 |
+
a, b = a*b.q, b.p
|
1236 |
+
else:
|
1237 |
+
k = 1
|
1238 |
+
|
1239 |
+
a, b, c, d = int(a), int(b), 1, 0
|
1240 |
+
|
1241 |
+
while n:
|
1242 |
+
if n & 1:
|
1243 |
+
c, d = a*c - b*d, b*c + a*d
|
1244 |
+
n -= 1
|
1245 |
+
a, b = a*a - b*b, 2*a*b
|
1246 |
+
n //= 2
|
1247 |
+
|
1248 |
+
I = S.ImaginaryUnit
|
1249 |
+
|
1250 |
+
if k == 1:
|
1251 |
+
return c + I*d
|
1252 |
+
else:
|
1253 |
+
return Integer(c)/k + I*d/k
|
1254 |
+
|
1255 |
+
p = other_terms
|
1256 |
+
# (x + y)**3 -> x**3 + 3*x**2*y + 3*x*y**2 + y**3
|
1257 |
+
# in this particular example:
|
1258 |
+
# p = [x,y]; n = 3
|
1259 |
+
# so now it's easy to get the correct result -- we get the
|
1260 |
+
# coefficients first:
|
1261 |
+
from sympy.ntheory.multinomial import multinomial_coefficients
|
1262 |
+
from sympy.polys.polyutils import basic_from_dict
|
1263 |
+
expansion_dict = multinomial_coefficients(len(p), n)
|
1264 |
+
# in our example: {(3, 0): 1, (1, 2): 3, (0, 3): 1, (2, 1): 3}
|
1265 |
+
# and now construct the expression.
|
1266 |
+
return basic_from_dict(expansion_dict, *p)
|
1267 |
+
else:
|
1268 |
+
if n == 2:
|
1269 |
+
return Add(*[f*g for f in base.args for g in base.args])
|
1270 |
+
else:
|
1271 |
+
multi = (base**(n - 1))._eval_expand_multinomial()
|
1272 |
+
if multi.is_Add:
|
1273 |
+
return Add(*[f*g for f in base.args
|
1274 |
+
for g in multi.args])
|
1275 |
+
else:
|
1276 |
+
# XXX can this ever happen if base was an Add?
|
1277 |
+
return Add(*[f*multi for f in base.args])
|
1278 |
+
elif (exp.is_Rational and exp.p < 0 and base.is_Add and
|
1279 |
+
abs(exp.p) > exp.q):
|
1280 |
+
return 1 / self.func(base, -exp)._eval_expand_multinomial()
|
1281 |
+
elif exp.is_Add and base.is_Number and (hints.get('force', False) or
|
1282 |
+
base.is_zero is False or exp._all_nonneg_or_nonppos()):
|
1283 |
+
# a + b a b
|
1284 |
+
# n --> n n, where n, a, b are Numbers
|
1285 |
+
# XXX should be in expand_power_exp?
|
1286 |
+
coeff, tail = [], []
|
1287 |
+
for term in exp.args:
|
1288 |
+
if term.is_Number:
|
1289 |
+
coeff.append(self.func(base, term))
|
1290 |
+
else:
|
1291 |
+
tail.append(term)
|
1292 |
+
return Mul(*(coeff + [self.func(base, Add._from_args(tail))]))
|
1293 |
+
else:
|
1294 |
+
return result
|
1295 |
+
|
1296 |
+
def as_real_imag(self, deep=True, **hints):
|
1297 |
+
if self.exp.is_Integer:
|
1298 |
+
from sympy.polys.polytools import poly
|
1299 |
+
|
1300 |
+
exp = self.exp
|
1301 |
+
re_e, im_e = self.base.as_real_imag(deep=deep)
|
1302 |
+
if not im_e:
|
1303 |
+
return self, S.Zero
|
1304 |
+
a, b = symbols('a b', cls=Dummy)
|
1305 |
+
if exp >= 0:
|
1306 |
+
if re_e.is_Number and im_e.is_Number:
|
1307 |
+
# We can be more efficient in this case
|
1308 |
+
expr = expand_multinomial(self.base**exp)
|
1309 |
+
if expr != self:
|
1310 |
+
return expr.as_real_imag()
|
1311 |
+
|
1312 |
+
expr = poly(
|
1313 |
+
(a + b)**exp) # a = re, b = im; expr = (a + b*I)**exp
|
1314 |
+
else:
|
1315 |
+
mag = re_e**2 + im_e**2
|
1316 |
+
re_e, im_e = re_e/mag, -im_e/mag
|
1317 |
+
if re_e.is_Number and im_e.is_Number:
|
1318 |
+
# We can be more efficient in this case
|
1319 |
+
expr = expand_multinomial((re_e + im_e*S.ImaginaryUnit)**-exp)
|
1320 |
+
if expr != self:
|
1321 |
+
return expr.as_real_imag()
|
1322 |
+
|
1323 |
+
expr = poly((a + b)**-exp)
|
1324 |
+
|
1325 |
+
# Terms with even b powers will be real
|
1326 |
+
r = [i for i in expr.terms() if not i[0][1] % 2]
|
1327 |
+
re_part = Add(*[cc*a**aa*b**bb for (aa, bb), cc in r])
|
1328 |
+
# Terms with odd b powers will be imaginary
|
1329 |
+
r = [i for i in expr.terms() if i[0][1] % 4 == 1]
|
1330 |
+
im_part1 = Add(*[cc*a**aa*b**bb for (aa, bb), cc in r])
|
1331 |
+
r = [i for i in expr.terms() if i[0][1] % 4 == 3]
|
1332 |
+
im_part3 = Add(*[cc*a**aa*b**bb for (aa, bb), cc in r])
|
1333 |
+
|
1334 |
+
return (re_part.subs({a: re_e, b: S.ImaginaryUnit*im_e}),
|
1335 |
+
im_part1.subs({a: re_e, b: im_e}) + im_part3.subs({a: re_e, b: -im_e}))
|
1336 |
+
|
1337 |
+
from sympy.functions.elementary.trigonometric import atan2, cos, sin
|
1338 |
+
|
1339 |
+
if self.exp.is_Rational:
|
1340 |
+
re_e, im_e = self.base.as_real_imag(deep=deep)
|
1341 |
+
|
1342 |
+
if im_e.is_zero and self.exp is S.Half:
|
1343 |
+
if re_e.is_extended_nonnegative:
|
1344 |
+
return self, S.Zero
|
1345 |
+
if re_e.is_extended_nonpositive:
|
1346 |
+
return S.Zero, (-self.base)**self.exp
|
1347 |
+
|
1348 |
+
# XXX: This is not totally correct since for x**(p/q) with
|
1349 |
+
# x being imaginary there are actually q roots, but
|
1350 |
+
# only a single one is returned from here.
|
1351 |
+
r = self.func(self.func(re_e, 2) + self.func(im_e, 2), S.Half)
|
1352 |
+
|
1353 |
+
t = atan2(im_e, re_e)
|
1354 |
+
|
1355 |
+
rp, tp = self.func(r, self.exp), t*self.exp
|
1356 |
+
|
1357 |
+
return rp*cos(tp), rp*sin(tp)
|
1358 |
+
elif self.base is S.Exp1:
|
1359 |
+
from sympy.functions.elementary.exponential import exp
|
1360 |
+
re_e, im_e = self.exp.as_real_imag()
|
1361 |
+
if deep:
|
1362 |
+
re_e = re_e.expand(deep, **hints)
|
1363 |
+
im_e = im_e.expand(deep, **hints)
|
1364 |
+
c, s = cos(im_e), sin(im_e)
|
1365 |
+
return exp(re_e)*c, exp(re_e)*s
|
1366 |
+
else:
|
1367 |
+
from sympy.functions.elementary.complexes import im, re
|
1368 |
+
if deep:
|
1369 |
+
hints['complex'] = False
|
1370 |
+
|
1371 |
+
expanded = self.expand(deep, **hints)
|
1372 |
+
if hints.get('ignore') == expanded:
|
1373 |
+
return None
|
1374 |
+
else:
|
1375 |
+
return (re(expanded), im(expanded))
|
1376 |
+
else:
|
1377 |
+
return re(self), im(self)
|
1378 |
+
|
1379 |
+
def _eval_derivative(self, s):
|
1380 |
+
from sympy.functions.elementary.exponential import log
|
1381 |
+
dbase = self.base.diff(s)
|
1382 |
+
dexp = self.exp.diff(s)
|
1383 |
+
return self * (dexp * log(self.base) + dbase * self.exp/self.base)
|
1384 |
+
|
1385 |
+
def _eval_evalf(self, prec):
|
1386 |
+
base, exp = self.as_base_exp()
|
1387 |
+
if base == S.Exp1:
|
1388 |
+
# Use mpmath function associated to class "exp":
|
1389 |
+
from sympy.functions.elementary.exponential import exp as exp_function
|
1390 |
+
return exp_function(self.exp, evaluate=False)._eval_evalf(prec)
|
1391 |
+
base = base._evalf(prec)
|
1392 |
+
if not exp.is_Integer:
|
1393 |
+
exp = exp._evalf(prec)
|
1394 |
+
if exp.is_negative and base.is_number and base.is_extended_real is False:
|
1395 |
+
base = base.conjugate() / (base * base.conjugate())._evalf(prec)
|
1396 |
+
exp = -exp
|
1397 |
+
return self.func(base, exp).expand()
|
1398 |
+
return self.func(base, exp)
|
1399 |
+
|
1400 |
+
def _eval_is_polynomial(self, syms):
|
1401 |
+
if self.exp.has(*syms):
|
1402 |
+
return False
|
1403 |
+
|
1404 |
+
if self.base.has(*syms):
|
1405 |
+
return bool(self.base._eval_is_polynomial(syms) and
|
1406 |
+
self.exp.is_Integer and (self.exp >= 0))
|
1407 |
+
else:
|
1408 |
+
return True
|
1409 |
+
|
1410 |
+
def _eval_is_rational(self):
|
1411 |
+
# The evaluation of self.func below can be very expensive in the case
|
1412 |
+
# of integer**integer if the exponent is large. We should try to exit
|
1413 |
+
# before that if possible:
|
1414 |
+
if (self.exp.is_integer and self.base.is_rational
|
1415 |
+
and fuzzy_not(fuzzy_and([self.exp.is_negative, self.base.is_zero]))):
|
1416 |
+
return True
|
1417 |
+
p = self.func(*self.as_base_exp()) # in case it's unevaluated
|
1418 |
+
if not p.is_Pow:
|
1419 |
+
return p.is_rational
|
1420 |
+
b, e = p.as_base_exp()
|
1421 |
+
if e.is_Rational and b.is_Rational:
|
1422 |
+
# we didn't check that e is not an Integer
|
1423 |
+
# because Rational**Integer autosimplifies
|
1424 |
+
return False
|
1425 |
+
if e.is_integer:
|
1426 |
+
if b.is_rational:
|
1427 |
+
if fuzzy_not(b.is_zero) or e.is_nonnegative:
|
1428 |
+
return True
|
1429 |
+
if b == e: # always rational, even for 0**0
|
1430 |
+
return True
|
1431 |
+
elif b.is_irrational:
|
1432 |
+
return e.is_zero
|
1433 |
+
if b is S.Exp1:
|
1434 |
+
if e.is_rational and e.is_nonzero:
|
1435 |
+
return False
|
1436 |
+
|
1437 |
+
def _eval_is_algebraic(self):
|
1438 |
+
def _is_one(expr):
|
1439 |
+
try:
|
1440 |
+
return (expr - 1).is_zero
|
1441 |
+
except ValueError:
|
1442 |
+
# when the operation is not allowed
|
1443 |
+
return False
|
1444 |
+
|
1445 |
+
if self.base.is_zero or _is_one(self.base):
|
1446 |
+
return True
|
1447 |
+
elif self.base is S.Exp1:
|
1448 |
+
s = self.func(*self.args)
|
1449 |
+
if s.func == self.func:
|
1450 |
+
if self.exp.is_nonzero:
|
1451 |
+
if self.exp.is_algebraic:
|
1452 |
+
return False
|
1453 |
+
elif (self.exp/S.Pi).is_rational:
|
1454 |
+
return False
|
1455 |
+
elif (self.exp/(S.ImaginaryUnit*S.Pi)).is_rational:
|
1456 |
+
return True
|
1457 |
+
else:
|
1458 |
+
return s.is_algebraic
|
1459 |
+
elif self.exp.is_rational:
|
1460 |
+
if self.base.is_algebraic is False:
|
1461 |
+
return self.exp.is_zero
|
1462 |
+
if self.base.is_zero is False:
|
1463 |
+
if self.exp.is_nonzero:
|
1464 |
+
return self.base.is_algebraic
|
1465 |
+
elif self.base.is_algebraic:
|
1466 |
+
return True
|
1467 |
+
if self.exp.is_positive:
|
1468 |
+
return self.base.is_algebraic
|
1469 |
+
elif self.base.is_algebraic and self.exp.is_algebraic:
|
1470 |
+
if ((fuzzy_not(self.base.is_zero)
|
1471 |
+
and fuzzy_not(_is_one(self.base)))
|
1472 |
+
or self.base.is_integer is False
|
1473 |
+
or self.base.is_irrational):
|
1474 |
+
return self.exp.is_rational
|
1475 |
+
|
1476 |
+
def _eval_is_rational_function(self, syms):
|
1477 |
+
if self.exp.has(*syms):
|
1478 |
+
return False
|
1479 |
+
|
1480 |
+
if self.base.has(*syms):
|
1481 |
+
return self.base._eval_is_rational_function(syms) and \
|
1482 |
+
self.exp.is_Integer
|
1483 |
+
else:
|
1484 |
+
return True
|
1485 |
+
|
1486 |
+
def _eval_is_meromorphic(self, x, a):
|
1487 |
+
# f**g is meromorphic if g is an integer and f is meromorphic.
|
1488 |
+
# E**(log(f)*g) is meromorphic if log(f)*g is meromorphic
|
1489 |
+
# and finite.
|
1490 |
+
base_merom = self.base._eval_is_meromorphic(x, a)
|
1491 |
+
exp_integer = self.exp.is_Integer
|
1492 |
+
if exp_integer:
|
1493 |
+
return base_merom
|
1494 |
+
|
1495 |
+
exp_merom = self.exp._eval_is_meromorphic(x, a)
|
1496 |
+
if base_merom is False:
|
1497 |
+
# f**g = E**(log(f)*g) may be meromorphic if the
|
1498 |
+
# singularities of log(f) and g cancel each other,
|
1499 |
+
# for example, if g = 1/log(f). Hence,
|
1500 |
+
return False if exp_merom else None
|
1501 |
+
elif base_merom is None:
|
1502 |
+
return None
|
1503 |
+
|
1504 |
+
b = self.base.subs(x, a)
|
1505 |
+
# b is extended complex as base is meromorphic.
|
1506 |
+
# log(base) is finite and meromorphic when b != 0, zoo.
|
1507 |
+
b_zero = b.is_zero
|
1508 |
+
if b_zero:
|
1509 |
+
log_defined = False
|
1510 |
+
else:
|
1511 |
+
log_defined = fuzzy_and((b.is_finite, fuzzy_not(b_zero)))
|
1512 |
+
|
1513 |
+
if log_defined is False: # zero or pole of base
|
1514 |
+
return exp_integer # False or None
|
1515 |
+
elif log_defined is None:
|
1516 |
+
return None
|
1517 |
+
|
1518 |
+
if not exp_merom:
|
1519 |
+
return exp_merom # False or None
|
1520 |
+
|
1521 |
+
return self.exp.subs(x, a).is_finite
|
1522 |
+
|
1523 |
+
def _eval_is_algebraic_expr(self, syms):
|
1524 |
+
if self.exp.has(*syms):
|
1525 |
+
return False
|
1526 |
+
|
1527 |
+
if self.base.has(*syms):
|
1528 |
+
return self.base._eval_is_algebraic_expr(syms) and \
|
1529 |
+
self.exp.is_Rational
|
1530 |
+
else:
|
1531 |
+
return True
|
1532 |
+
|
1533 |
+
def _eval_rewrite_as_exp(self, base, expo, **kwargs):
|
1534 |
+
from sympy.functions.elementary.exponential import exp, log
|
1535 |
+
|
1536 |
+
if base.is_zero or base.has(exp) or expo.has(exp):
|
1537 |
+
return base**expo
|
1538 |
+
|
1539 |
+
if base.has(Symbol):
|
1540 |
+
# delay evaluation if expo is non symbolic
|
1541 |
+
# (as exp(x*log(5)) automatically reduces to x**5)
|
1542 |
+
if global_parameters.exp_is_pow:
|
1543 |
+
return Pow(S.Exp1, log(base)*expo, evaluate=expo.has(Symbol))
|
1544 |
+
else:
|
1545 |
+
return exp(log(base)*expo, evaluate=expo.has(Symbol))
|
1546 |
+
|
1547 |
+
else:
|
1548 |
+
from sympy.functions.elementary.complexes import arg, Abs
|
1549 |
+
return exp((log(Abs(base)) + S.ImaginaryUnit*arg(base))*expo)
|
1550 |
+
|
1551 |
+
def as_numer_denom(self):
|
1552 |
+
if not self.is_commutative:
|
1553 |
+
return self, S.One
|
1554 |
+
base, exp = self.as_base_exp()
|
1555 |
+
n, d = base.as_numer_denom()
|
1556 |
+
# this should be the same as ExpBase.as_numer_denom wrt
|
1557 |
+
# exponent handling
|
1558 |
+
neg_exp = exp.is_negative
|
1559 |
+
if exp.is_Mul and not neg_exp and not exp.is_positive:
|
1560 |
+
neg_exp = exp.could_extract_minus_sign()
|
1561 |
+
int_exp = exp.is_integer
|
1562 |
+
# the denominator cannot be separated from the numerator if
|
1563 |
+
# its sign is unknown unless the exponent is an integer, e.g.
|
1564 |
+
# sqrt(a/b) != sqrt(a)/sqrt(b) when a=1 and b=-1. But if the
|
1565 |
+
# denominator is negative the numerator and denominator can
|
1566 |
+
# be negated and the denominator (now positive) separated.
|
1567 |
+
if not (d.is_extended_real or int_exp):
|
1568 |
+
n = base
|
1569 |
+
d = S.One
|
1570 |
+
dnonpos = d.is_nonpositive
|
1571 |
+
if dnonpos:
|
1572 |
+
n, d = -n, -d
|
1573 |
+
elif dnonpos is None and not int_exp:
|
1574 |
+
n = base
|
1575 |
+
d = S.One
|
1576 |
+
if neg_exp:
|
1577 |
+
n, d = d, n
|
1578 |
+
exp = -exp
|
1579 |
+
if exp.is_infinite:
|
1580 |
+
if n is S.One and d is not S.One:
|
1581 |
+
return n, self.func(d, exp)
|
1582 |
+
if n is not S.One and d is S.One:
|
1583 |
+
return self.func(n, exp), d
|
1584 |
+
return self.func(n, exp), self.func(d, exp)
|
1585 |
+
|
1586 |
+
def matches(self, expr, repl_dict=None, old=False):
|
1587 |
+
expr = _sympify(expr)
|
1588 |
+
if repl_dict is None:
|
1589 |
+
repl_dict = {}
|
1590 |
+
|
1591 |
+
# special case, pattern = 1 and expr.exp can match to 0
|
1592 |
+
if expr is S.One:
|
1593 |
+
d = self.exp.matches(S.Zero, repl_dict)
|
1594 |
+
if d is not None:
|
1595 |
+
return d
|
1596 |
+
|
1597 |
+
# make sure the expression to be matched is an Expr
|
1598 |
+
if not isinstance(expr, Expr):
|
1599 |
+
return None
|
1600 |
+
|
1601 |
+
b, e = expr.as_base_exp()
|
1602 |
+
|
1603 |
+
# special case number
|
1604 |
+
sb, se = self.as_base_exp()
|
1605 |
+
if sb.is_Symbol and se.is_Integer and expr:
|
1606 |
+
if e.is_rational:
|
1607 |
+
return sb.matches(b**(e/se), repl_dict)
|
1608 |
+
return sb.matches(expr**(1/se), repl_dict)
|
1609 |
+
|
1610 |
+
d = repl_dict.copy()
|
1611 |
+
d = self.base.matches(b, d)
|
1612 |
+
if d is None:
|
1613 |
+
return None
|
1614 |
+
|
1615 |
+
d = self.exp.xreplace(d).matches(e, d)
|
1616 |
+
if d is None:
|
1617 |
+
return Expr.matches(self, expr, repl_dict)
|
1618 |
+
return d
|
1619 |
+
|
1620 |
+
def _eval_nseries(self, x, n, logx, cdir=0):
|
1621 |
+
# NOTE! This function is an important part of the gruntz algorithm
|
1622 |
+
# for computing limits. It has to return a generalized power
|
1623 |
+
# series with coefficients in C(log, log(x)). In more detail:
|
1624 |
+
# It has to return an expression
|
1625 |
+
# c_0*x**e_0 + c_1*x**e_1 + ... (finitely many terms)
|
1626 |
+
# where e_i are numbers (not necessarily integers) and c_i are
|
1627 |
+
# expressions involving only numbers, the log function, and log(x).
|
1628 |
+
# The series expansion of b**e is computed as follows:
|
1629 |
+
# 1) We express b as f*(1 + g) where f is the leading term of b.
|
1630 |
+
# g has order O(x**d) where d is strictly positive.
|
1631 |
+
# 2) Then b**e = (f**e)*((1 + g)**e).
|
1632 |
+
# (1 + g)**e is computed using binomial series.
|
1633 |
+
from sympy.functions.elementary.exponential import exp, log
|
1634 |
+
from sympy.series.limits import limit
|
1635 |
+
from sympy.series.order import Order
|
1636 |
+
from sympy.core.sympify import sympify
|
1637 |
+
if self.base is S.Exp1:
|
1638 |
+
e_series = self.exp.nseries(x, n=n, logx=logx)
|
1639 |
+
if e_series.is_Order:
|
1640 |
+
return 1 + e_series
|
1641 |
+
e0 = limit(e_series.removeO(), x, 0)
|
1642 |
+
if e0 is S.NegativeInfinity:
|
1643 |
+
return Order(x**n, x)
|
1644 |
+
if e0 is S.Infinity:
|
1645 |
+
return self
|
1646 |
+
t = e_series - e0
|
1647 |
+
exp_series = term = exp(e0)
|
1648 |
+
# series of exp(e0 + t) in t
|
1649 |
+
for i in range(1, n):
|
1650 |
+
term *= t/i
|
1651 |
+
term = term.nseries(x, n=n, logx=logx)
|
1652 |
+
exp_series += term
|
1653 |
+
exp_series += Order(t**n, x)
|
1654 |
+
from sympy.simplify.powsimp import powsimp
|
1655 |
+
return powsimp(exp_series, deep=True, combine='exp')
|
1656 |
+
from sympy.simplify.powsimp import powdenest
|
1657 |
+
from .numbers import _illegal
|
1658 |
+
self = powdenest(self, force=True).trigsimp()
|
1659 |
+
b, e = self.as_base_exp()
|
1660 |
+
|
1661 |
+
if e.has(*_illegal):
|
1662 |
+
raise PoleError()
|
1663 |
+
|
1664 |
+
if e.has(x):
|
1665 |
+
return exp(e*log(b))._eval_nseries(x, n=n, logx=logx, cdir=cdir)
|
1666 |
+
|
1667 |
+
if logx is not None and b.has(log):
|
1668 |
+
from .symbol import Wild
|
1669 |
+
c, ex = symbols('c, ex', cls=Wild, exclude=[x])
|
1670 |
+
b = b.replace(log(c*x**ex), log(c) + ex*logx)
|
1671 |
+
self = b**e
|
1672 |
+
|
1673 |
+
b = b.removeO()
|
1674 |
+
try:
|
1675 |
+
from sympy.functions.special.gamma_functions import polygamma
|
1676 |
+
if b.has(polygamma, S.EulerGamma) and logx is not None:
|
1677 |
+
raise ValueError()
|
1678 |
+
_, m = b.leadterm(x)
|
1679 |
+
except (ValueError, NotImplementedError, PoleError):
|
1680 |
+
b = b._eval_nseries(x, n=max(2, n), logx=logx, cdir=cdir).removeO()
|
1681 |
+
if b.has(S.NaN, S.ComplexInfinity):
|
1682 |
+
raise NotImplementedError()
|
1683 |
+
_, m = b.leadterm(x)
|
1684 |
+
|
1685 |
+
if e.has(log):
|
1686 |
+
from sympy.simplify.simplify import logcombine
|
1687 |
+
e = logcombine(e).cancel()
|
1688 |
+
|
1689 |
+
if not (m.is_zero or e.is_number and e.is_real):
|
1690 |
+
if self == self._eval_as_leading_term(x, logx=logx, cdir=cdir):
|
1691 |
+
res = exp(e*log(b))._eval_nseries(x, n=n, logx=logx, cdir=cdir)
|
1692 |
+
if res == exp(e*log(b)):
|
1693 |
+
return self
|
1694 |
+
return res
|
1695 |
+
|
1696 |
+
f = b.as_leading_term(x, logx=logx)
|
1697 |
+
g = (b/f - S.One).cancel(expand=False)
|
1698 |
+
if not m.is_number:
|
1699 |
+
raise NotImplementedError()
|
1700 |
+
maxpow = n - m*e
|
1701 |
+
if maxpow.has(Symbol):
|
1702 |
+
maxpow = sympify(n)
|
1703 |
+
|
1704 |
+
if maxpow.is_negative:
|
1705 |
+
return Order(x**(m*e), x)
|
1706 |
+
|
1707 |
+
if g.is_zero:
|
1708 |
+
r = f**e
|
1709 |
+
if r != self:
|
1710 |
+
r += Order(x**n, x)
|
1711 |
+
return r
|
1712 |
+
|
1713 |
+
def coeff_exp(term, x):
|
1714 |
+
coeff, exp = S.One, S.Zero
|
1715 |
+
for factor in Mul.make_args(term):
|
1716 |
+
if factor.has(x):
|
1717 |
+
base, exp = factor.as_base_exp()
|
1718 |
+
if base != x:
|
1719 |
+
try:
|
1720 |
+
return term.leadterm(x)
|
1721 |
+
except ValueError:
|
1722 |
+
return term, S.Zero
|
1723 |
+
else:
|
1724 |
+
coeff *= factor
|
1725 |
+
return coeff, exp
|
1726 |
+
|
1727 |
+
def mul(d1, d2):
|
1728 |
+
res = {}
|
1729 |
+
for e1, e2 in product(d1, d2):
|
1730 |
+
ex = e1 + e2
|
1731 |
+
if ex < maxpow:
|
1732 |
+
res[ex] = res.get(ex, S.Zero) + d1[e1]*d2[e2]
|
1733 |
+
return res
|
1734 |
+
|
1735 |
+
try:
|
1736 |
+
c, d = g.leadterm(x, logx=logx)
|
1737 |
+
except (ValueError, NotImplementedError):
|
1738 |
+
if limit(g/x**maxpow, x, 0) == 0:
|
1739 |
+
# g has higher order zero
|
1740 |
+
return f**e + e*f**e*g # first term of binomial series
|
1741 |
+
else:
|
1742 |
+
raise NotImplementedError()
|
1743 |
+
if c.is_Float and d == S.Zero:
|
1744 |
+
# Convert floats like 0.5 to exact SymPy numbers like S.Half, to
|
1745 |
+
# prevent rounding errors which can induce wrong values of d leading
|
1746 |
+
# to a NotImplementedError being returned from the block below.
|
1747 |
+
from sympy.simplify.simplify import nsimplify
|
1748 |
+
_, d = nsimplify(g).leadterm(x, logx=logx)
|
1749 |
+
if not d.is_positive:
|
1750 |
+
g = g.simplify()
|
1751 |
+
if g.is_zero:
|
1752 |
+
return f**e
|
1753 |
+
_, d = g.leadterm(x, logx=logx)
|
1754 |
+
if not d.is_positive:
|
1755 |
+
g = ((b - f)/f).expand()
|
1756 |
+
_, d = g.leadterm(x, logx=logx)
|
1757 |
+
if not d.is_positive:
|
1758 |
+
raise NotImplementedError()
|
1759 |
+
|
1760 |
+
from sympy.functions.elementary.integers import ceiling
|
1761 |
+
gpoly = g._eval_nseries(x, n=ceiling(maxpow), logx=logx, cdir=cdir).removeO()
|
1762 |
+
gterms = {}
|
1763 |
+
|
1764 |
+
for term in Add.make_args(gpoly):
|
1765 |
+
co1, e1 = coeff_exp(term, x)
|
1766 |
+
gterms[e1] = gterms.get(e1, S.Zero) + co1
|
1767 |
+
|
1768 |
+
k = S.One
|
1769 |
+
terms = {S.Zero: S.One}
|
1770 |
+
tk = gterms
|
1771 |
+
|
1772 |
+
from sympy.functions.combinatorial.factorials import factorial, ff
|
1773 |
+
|
1774 |
+
while (k*d - maxpow).is_negative:
|
1775 |
+
coeff = ff(e, k)/factorial(k)
|
1776 |
+
for ex in tk:
|
1777 |
+
terms[ex] = terms.get(ex, S.Zero) + coeff*tk[ex]
|
1778 |
+
tk = mul(tk, gterms)
|
1779 |
+
k += S.One
|
1780 |
+
|
1781 |
+
from sympy.functions.elementary.complexes import im
|
1782 |
+
|
1783 |
+
if not e.is_integer and m.is_zero and f.is_negative:
|
1784 |
+
ndir = (b - f).dir(x, cdir)
|
1785 |
+
if im(ndir).is_negative:
|
1786 |
+
inco, inex = coeff_exp(f**e*(-1)**(-2*e), x)
|
1787 |
+
elif im(ndir).is_zero:
|
1788 |
+
inco, inex = coeff_exp(exp(e*log(b)).as_leading_term(x, logx=logx, cdir=cdir), x)
|
1789 |
+
else:
|
1790 |
+
inco, inex = coeff_exp(f**e, x)
|
1791 |
+
else:
|
1792 |
+
inco, inex = coeff_exp(f**e, x)
|
1793 |
+
res = S.Zero
|
1794 |
+
|
1795 |
+
for e1 in terms:
|
1796 |
+
ex = e1 + inex
|
1797 |
+
res += terms[e1]*inco*x**(ex)
|
1798 |
+
|
1799 |
+
if not (e.is_integer and e.is_positive and (e*d - n).is_nonpositive and
|
1800 |
+
res == _mexpand(self)):
|
1801 |
+
try:
|
1802 |
+
res += Order(x**n, x)
|
1803 |
+
except NotImplementedError:
|
1804 |
+
return exp(e*log(b))._eval_nseries(x, n=n, logx=logx, cdir=cdir)
|
1805 |
+
return res
|
1806 |
+
|
1807 |
+
def _eval_as_leading_term(self, x, logx=None, cdir=0):
|
1808 |
+
from sympy.functions.elementary.exponential import exp, log
|
1809 |
+
e = self.exp
|
1810 |
+
b = self.base
|
1811 |
+
if self.base is S.Exp1:
|
1812 |
+
arg = e.as_leading_term(x, logx=logx)
|
1813 |
+
arg0 = arg.subs(x, 0)
|
1814 |
+
if arg0 is S.NaN:
|
1815 |
+
arg0 = arg.limit(x, 0)
|
1816 |
+
if arg0.is_infinite is False:
|
1817 |
+
return S.Exp1**arg0
|
1818 |
+
raise PoleError("Cannot expand %s around 0" % (self))
|
1819 |
+
elif e.has(x):
|
1820 |
+
lt = exp(e * log(b))
|
1821 |
+
return lt.as_leading_term(x, logx=logx, cdir=cdir)
|
1822 |
+
else:
|
1823 |
+
from sympy.functions.elementary.complexes import im
|
1824 |
+
try:
|
1825 |
+
f = b.as_leading_term(x, logx=logx, cdir=cdir)
|
1826 |
+
except PoleError:
|
1827 |
+
return self
|
1828 |
+
if not e.is_integer and f.is_negative and not f.has(x):
|
1829 |
+
ndir = (b - f).dir(x, cdir)
|
1830 |
+
if im(ndir).is_negative:
|
1831 |
+
# Normally, f**e would evaluate to exp(e*log(f)) but on branch cuts
|
1832 |
+
# an other value is expected through the following computation
|
1833 |
+
# exp(e*(log(f) - 2*pi*I)) == f**e*exp(-2*e*pi*I) == f**e*(-1)**(-2*e).
|
1834 |
+
return self.func(f, e) * (-1)**(-2*e)
|
1835 |
+
elif im(ndir).is_zero:
|
1836 |
+
log_leadterm = log(b)._eval_as_leading_term(x, logx=logx, cdir=cdir)
|
1837 |
+
if log_leadterm.is_infinite is False:
|
1838 |
+
return exp(e*log_leadterm)
|
1839 |
+
return self.func(f, e)
|
1840 |
+
|
1841 |
+
@cacheit
|
1842 |
+
def _taylor_term(self, n, x, *previous_terms): # of (1 + x)**e
|
1843 |
+
from sympy.functions.combinatorial.factorials import binomial
|
1844 |
+
return binomial(self.exp, n) * self.func(x, n)
|
1845 |
+
|
1846 |
+
def taylor_term(self, n, x, *previous_terms):
|
1847 |
+
if self.base is not S.Exp1:
|
1848 |
+
return super().taylor_term(n, x, *previous_terms)
|
1849 |
+
if n < 0:
|
1850 |
+
return S.Zero
|
1851 |
+
if n == 0:
|
1852 |
+
return S.One
|
1853 |
+
from .sympify import sympify
|
1854 |
+
x = sympify(x)
|
1855 |
+
if previous_terms:
|
1856 |
+
p = previous_terms[-1]
|
1857 |
+
if p is not None:
|
1858 |
+
return p * x / n
|
1859 |
+
from sympy.functions.combinatorial.factorials import factorial
|
1860 |
+
return x**n/factorial(n)
|
1861 |
+
|
1862 |
+
def _eval_rewrite_as_sin(self, base, exp):
|
1863 |
+
if self.base is S.Exp1:
|
1864 |
+
from sympy.functions.elementary.trigonometric import sin
|
1865 |
+
return sin(S.ImaginaryUnit*self.exp + S.Pi/2) - S.ImaginaryUnit*sin(S.ImaginaryUnit*self.exp)
|
1866 |
+
|
1867 |
+
def _eval_rewrite_as_cos(self, base, exp):
|
1868 |
+
if self.base is S.Exp1:
|
1869 |
+
from sympy.functions.elementary.trigonometric import cos
|
1870 |
+
return cos(S.ImaginaryUnit*self.exp) + S.ImaginaryUnit*cos(S.ImaginaryUnit*self.exp + S.Pi/2)
|
1871 |
+
|
1872 |
+
def _eval_rewrite_as_tanh(self, base, exp):
|
1873 |
+
if self.base is S.Exp1:
|
1874 |
+
from sympy.functions.elementary.hyperbolic import tanh
|
1875 |
+
return (1 + tanh(self.exp/2))/(1 - tanh(self.exp/2))
|
1876 |
+
|
1877 |
+
def _eval_rewrite_as_sqrt(self, base, exp, **kwargs):
|
1878 |
+
from sympy.functions.elementary.trigonometric import sin, cos
|
1879 |
+
if base is not S.Exp1:
|
1880 |
+
return None
|
1881 |
+
if exp.is_Mul:
|
1882 |
+
coeff = exp.coeff(S.Pi * S.ImaginaryUnit)
|
1883 |
+
if coeff and coeff.is_number:
|
1884 |
+
cosine, sine = cos(S.Pi*coeff), sin(S.Pi*coeff)
|
1885 |
+
if not isinstance(cosine, cos) and not isinstance (sine, sin):
|
1886 |
+
return cosine + S.ImaginaryUnit*sine
|
1887 |
+
|
1888 |
+
def as_content_primitive(self, radical=False, clear=True):
|
1889 |
+
"""Return the tuple (R, self/R) where R is the positive Rational
|
1890 |
+
extracted from self.
|
1891 |
+
|
1892 |
+
Examples
|
1893 |
+
========
|
1894 |
+
|
1895 |
+
>>> from sympy import sqrt
|
1896 |
+
>>> sqrt(4 + 4*sqrt(2)).as_content_primitive()
|
1897 |
+
(2, sqrt(1 + sqrt(2)))
|
1898 |
+
>>> sqrt(3 + 3*sqrt(2)).as_content_primitive()
|
1899 |
+
(1, sqrt(3)*sqrt(1 + sqrt(2)))
|
1900 |
+
|
1901 |
+
>>> from sympy import expand_power_base, powsimp, Mul
|
1902 |
+
>>> from sympy.abc import x, y
|
1903 |
+
|
1904 |
+
>>> ((2*x + 2)**2).as_content_primitive()
|
1905 |
+
(4, (x + 1)**2)
|
1906 |
+
>>> (4**((1 + y)/2)).as_content_primitive()
|
1907 |
+
(2, 4**(y/2))
|
1908 |
+
>>> (3**((1 + y)/2)).as_content_primitive()
|
1909 |
+
(1, 3**((y + 1)/2))
|
1910 |
+
>>> (3**((5 + y)/2)).as_content_primitive()
|
1911 |
+
(9, 3**((y + 1)/2))
|
1912 |
+
>>> eq = 3**(2 + 2*x)
|
1913 |
+
>>> powsimp(eq) == eq
|
1914 |
+
True
|
1915 |
+
>>> eq.as_content_primitive()
|
1916 |
+
(9, 3**(2*x))
|
1917 |
+
>>> powsimp(Mul(*_))
|
1918 |
+
3**(2*x + 2)
|
1919 |
+
|
1920 |
+
>>> eq = (2 + 2*x)**y
|
1921 |
+
>>> s = expand_power_base(eq); s.is_Mul, s
|
1922 |
+
(False, (2*x + 2)**y)
|
1923 |
+
>>> eq.as_content_primitive()
|
1924 |
+
(1, (2*(x + 1))**y)
|
1925 |
+
>>> s = expand_power_base(_[1]); s.is_Mul, s
|
1926 |
+
(True, 2**y*(x + 1)**y)
|
1927 |
+
|
1928 |
+
See docstring of Expr.as_content_primitive for more examples.
|
1929 |
+
"""
|
1930 |
+
|
1931 |
+
b, e = self.as_base_exp()
|
1932 |
+
b = _keep_coeff(*b.as_content_primitive(radical=radical, clear=clear))
|
1933 |
+
ce, pe = e.as_content_primitive(radical=radical, clear=clear)
|
1934 |
+
if b.is_Rational:
|
1935 |
+
#e
|
1936 |
+
#= ce*pe
|
1937 |
+
#= ce*(h + t)
|
1938 |
+
#= ce*h + ce*t
|
1939 |
+
#=> self
|
1940 |
+
#= b**(ce*h)*b**(ce*t)
|
1941 |
+
#= b**(cehp/cehq)*b**(ce*t)
|
1942 |
+
#= b**(iceh + r/cehq)*b**(ce*t)
|
1943 |
+
#= b**(iceh)*b**(r/cehq)*b**(ce*t)
|
1944 |
+
#= b**(iceh)*b**(ce*t + r/cehq)
|
1945 |
+
h, t = pe.as_coeff_Add()
|
1946 |
+
if h.is_Rational and b != S.Zero:
|
1947 |
+
ceh = ce*h
|
1948 |
+
c = self.func(b, ceh)
|
1949 |
+
r = S.Zero
|
1950 |
+
if not c.is_Rational:
|
1951 |
+
iceh, r = divmod(ceh.p, ceh.q)
|
1952 |
+
c = self.func(b, iceh)
|
1953 |
+
return c, self.func(b, _keep_coeff(ce, t + r/ce/ceh.q))
|
1954 |
+
e = _keep_coeff(ce, pe)
|
1955 |
+
# b**e = (h*t)**e = h**e*t**e = c*m*t**e
|
1956 |
+
if e.is_Rational and b.is_Mul:
|
1957 |
+
h, t = b.as_content_primitive(radical=radical, clear=clear) # h is positive
|
1958 |
+
c, m = self.func(h, e).as_coeff_Mul() # so c is positive
|
1959 |
+
m, me = m.as_base_exp()
|
1960 |
+
if m is S.One or me == e: # probably always true
|
1961 |
+
# return the following, not return c, m*Pow(t, e)
|
1962 |
+
# which would change Pow into Mul; we let SymPy
|
1963 |
+
# decide what to do by using the unevaluated Mul, e.g
|
1964 |
+
# should it stay as sqrt(2 + 2*sqrt(5)) or become
|
1965 |
+
# sqrt(2)*sqrt(1 + sqrt(5))
|
1966 |
+
return c, self.func(_keep_coeff(m, t), e)
|
1967 |
+
return S.One, self.func(b, e)
|
1968 |
+
|
1969 |
+
def is_constant(self, *wrt, **flags):
|
1970 |
+
expr = self
|
1971 |
+
if flags.get('simplify', True):
|
1972 |
+
expr = expr.simplify()
|
1973 |
+
b, e = expr.as_base_exp()
|
1974 |
+
bz = b.equals(0)
|
1975 |
+
if bz: # recalculate with assumptions in case it's unevaluated
|
1976 |
+
new = b**e
|
1977 |
+
if new != expr:
|
1978 |
+
return new.is_constant()
|
1979 |
+
econ = e.is_constant(*wrt)
|
1980 |
+
bcon = b.is_constant(*wrt)
|
1981 |
+
if bcon:
|
1982 |
+
if econ:
|
1983 |
+
return True
|
1984 |
+
bz = b.equals(0)
|
1985 |
+
if bz is False:
|
1986 |
+
return False
|
1987 |
+
elif bcon is None:
|
1988 |
+
return None
|
1989 |
+
|
1990 |
+
return e.equals(0)
|
1991 |
+
|
1992 |
+
def _eval_difference_delta(self, n, step):
|
1993 |
+
b, e = self.args
|
1994 |
+
if e.has(n) and not b.has(n):
|
1995 |
+
new_e = e.subs(n, n + step)
|
1996 |
+
return (b**(new_e - e) - 1) * self
|
1997 |
+
|
1998 |
+
power = Dispatcher('power')
|
1999 |
+
power.add((object, object), Pow)
|
2000 |
+
|
2001 |
+
from .add import Add
|
2002 |
+
from .numbers import Integer
|
2003 |
+
from .mul import Mul, _keep_coeff
|
2004 |
+
from .symbol import Symbol, Dummy, symbols
|
venv/lib/python3.10/site-packages/sympy/core/relational.py
ADDED
@@ -0,0 +1,1587 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
from .basic import Atom, Basic
|
4 |
+
from .sorting import ordered
|
5 |
+
from .evalf import EvalfMixin
|
6 |
+
from .function import AppliedUndef
|
7 |
+
from .singleton import S
|
8 |
+
from .sympify import _sympify, SympifyError
|
9 |
+
from .parameters import global_parameters
|
10 |
+
from .logic import fuzzy_bool, fuzzy_xor, fuzzy_and, fuzzy_not
|
11 |
+
from sympy.logic.boolalg import Boolean, BooleanAtom
|
12 |
+
from sympy.utilities.iterables import sift
|
13 |
+
from sympy.utilities.misc import filldedent
|
14 |
+
|
15 |
+
__all__ = (
|
16 |
+
'Rel', 'Eq', 'Ne', 'Lt', 'Le', 'Gt', 'Ge',
|
17 |
+
'Relational', 'Equality', 'Unequality', 'StrictLessThan', 'LessThan',
|
18 |
+
'StrictGreaterThan', 'GreaterThan',
|
19 |
+
)
|
20 |
+
|
21 |
+
from .expr import Expr
|
22 |
+
from sympy.multipledispatch import dispatch
|
23 |
+
from .containers import Tuple
|
24 |
+
from .symbol import Symbol
|
25 |
+
|
26 |
+
|
27 |
+
def _nontrivBool(side):
|
28 |
+
return isinstance(side, Boolean) and \
|
29 |
+
not isinstance(side, Atom)
|
30 |
+
|
31 |
+
|
32 |
+
# Note, see issue 4986. Ideally, we wouldn't want to subclass both Boolean
|
33 |
+
# and Expr.
|
34 |
+
# from .. import Expr
|
35 |
+
|
36 |
+
|
37 |
+
def _canonical(cond):
|
38 |
+
# return a condition in which all relationals are canonical
|
39 |
+
reps = {r: r.canonical for r in cond.atoms(Relational)}
|
40 |
+
return cond.xreplace(reps)
|
41 |
+
# XXX: AttributeError was being caught here but it wasn't triggered by any of
|
42 |
+
# the tests so I've removed it...
|
43 |
+
|
44 |
+
|
45 |
+
def _canonical_coeff(rel):
|
46 |
+
# return -2*x + 1 < 0 as x > 1/2
|
47 |
+
# XXX make this part of Relational.canonical?
|
48 |
+
rel = rel.canonical
|
49 |
+
if not rel.is_Relational or rel.rhs.is_Boolean:
|
50 |
+
return rel # Eq(x, True)
|
51 |
+
b, l = rel.lhs.as_coeff_Add(rational=True)
|
52 |
+
m, lhs = l.as_coeff_Mul(rational=True)
|
53 |
+
rhs = (rel.rhs - b)/m
|
54 |
+
if m < 0:
|
55 |
+
return rel.reversed.func(lhs, rhs)
|
56 |
+
return rel.func(lhs, rhs)
|
57 |
+
|
58 |
+
|
59 |
+
class Relational(Boolean, EvalfMixin):
|
60 |
+
"""Base class for all relation types.
|
61 |
+
|
62 |
+
Explanation
|
63 |
+
===========
|
64 |
+
|
65 |
+
Subclasses of Relational should generally be instantiated directly, but
|
66 |
+
Relational can be instantiated with a valid ``rop`` value to dispatch to
|
67 |
+
the appropriate subclass.
|
68 |
+
|
69 |
+
Parameters
|
70 |
+
==========
|
71 |
+
|
72 |
+
rop : str or None
|
73 |
+
Indicates what subclass to instantiate. Valid values can be found
|
74 |
+
in the keys of Relational.ValidRelationOperator.
|
75 |
+
|
76 |
+
Examples
|
77 |
+
========
|
78 |
+
|
79 |
+
>>> from sympy import Rel
|
80 |
+
>>> from sympy.abc import x, y
|
81 |
+
>>> Rel(y, x + x**2, '==')
|
82 |
+
Eq(y, x**2 + x)
|
83 |
+
|
84 |
+
A relation's type can be defined upon creation using ``rop``.
|
85 |
+
The relation type of an existing expression can be obtained
|
86 |
+
using its ``rel_op`` property.
|
87 |
+
Here is a table of all the relation types, along with their
|
88 |
+
``rop`` and ``rel_op`` values:
|
89 |
+
|
90 |
+
+---------------------+----------------------------+------------+
|
91 |
+
|Relation |``rop`` |``rel_op`` |
|
92 |
+
+=====================+============================+============+
|
93 |
+
|``Equality`` |``==`` or ``eq`` or ``None``|``==`` |
|
94 |
+
+---------------------+----------------------------+------------+
|
95 |
+
|``Unequality`` |``!=`` or ``ne`` |``!=`` |
|
96 |
+
+---------------------+----------------------------+------------+
|
97 |
+
|``GreaterThan`` |``>=`` or ``ge`` |``>=`` |
|
98 |
+
+---------------------+----------------------------+------------+
|
99 |
+
|``LessThan`` |``<=`` or ``le`` |``<=`` |
|
100 |
+
+---------------------+----------------------------+------------+
|
101 |
+
|``StrictGreaterThan``|``>`` or ``gt`` |``>`` |
|
102 |
+
+---------------------+----------------------------+------------+
|
103 |
+
|``StrictLessThan`` |``<`` or ``lt`` |``<`` |
|
104 |
+
+---------------------+----------------------------+------------+
|
105 |
+
|
106 |
+
For example, setting ``rop`` to ``==`` produces an
|
107 |
+
``Equality`` relation, ``Eq()``.
|
108 |
+
So does setting ``rop`` to ``eq``, or leaving ``rop`` unspecified.
|
109 |
+
That is, the first three ``Rel()`` below all produce the same result.
|
110 |
+
Using a ``rop`` from a different row in the table produces a
|
111 |
+
different relation type.
|
112 |
+
For example, the fourth ``Rel()`` below using ``lt`` for ``rop``
|
113 |
+
produces a ``StrictLessThan`` inequality:
|
114 |
+
|
115 |
+
>>> from sympy import Rel
|
116 |
+
>>> from sympy.abc import x, y
|
117 |
+
>>> Rel(y, x + x**2, '==')
|
118 |
+
Eq(y, x**2 + x)
|
119 |
+
>>> Rel(y, x + x**2, 'eq')
|
120 |
+
Eq(y, x**2 + x)
|
121 |
+
>>> Rel(y, x + x**2)
|
122 |
+
Eq(y, x**2 + x)
|
123 |
+
>>> Rel(y, x + x**2, 'lt')
|
124 |
+
y < x**2 + x
|
125 |
+
|
126 |
+
To obtain the relation type of an existing expression,
|
127 |
+
get its ``rel_op`` property.
|
128 |
+
For example, ``rel_op`` is ``==`` for the ``Equality`` relation above,
|
129 |
+
and ``<`` for the strict less than inequality above:
|
130 |
+
|
131 |
+
>>> from sympy import Rel
|
132 |
+
>>> from sympy.abc import x, y
|
133 |
+
>>> my_equality = Rel(y, x + x**2, '==')
|
134 |
+
>>> my_equality.rel_op
|
135 |
+
'=='
|
136 |
+
>>> my_inequality = Rel(y, x + x**2, 'lt')
|
137 |
+
>>> my_inequality.rel_op
|
138 |
+
'<'
|
139 |
+
|
140 |
+
"""
|
141 |
+
__slots__ = ()
|
142 |
+
|
143 |
+
ValidRelationOperator: dict[str | None, type[Relational]] = {}
|
144 |
+
|
145 |
+
is_Relational = True
|
146 |
+
|
147 |
+
# ValidRelationOperator - Defined below, because the necessary classes
|
148 |
+
# have not yet been defined
|
149 |
+
|
150 |
+
def __new__(cls, lhs, rhs, rop=None, **assumptions):
|
151 |
+
# If called by a subclass, do nothing special and pass on to Basic.
|
152 |
+
if cls is not Relational:
|
153 |
+
return Basic.__new__(cls, lhs, rhs, **assumptions)
|
154 |
+
|
155 |
+
# XXX: Why do this? There should be a separate function to make a
|
156 |
+
# particular subclass of Relational from a string.
|
157 |
+
#
|
158 |
+
# If called directly with an operator, look up the subclass
|
159 |
+
# corresponding to that operator and delegate to it
|
160 |
+
cls = cls.ValidRelationOperator.get(rop, None)
|
161 |
+
if cls is None:
|
162 |
+
raise ValueError("Invalid relational operator symbol: %r" % rop)
|
163 |
+
|
164 |
+
if not issubclass(cls, (Eq, Ne)):
|
165 |
+
# validate that Booleans are not being used in a relational
|
166 |
+
# other than Eq/Ne;
|
167 |
+
# Note: Symbol is a subclass of Boolean but is considered
|
168 |
+
# acceptable here.
|
169 |
+
if any(map(_nontrivBool, (lhs, rhs))):
|
170 |
+
raise TypeError(filldedent('''
|
171 |
+
A Boolean argument can only be used in
|
172 |
+
Eq and Ne; all other relationals expect
|
173 |
+
real expressions.
|
174 |
+
'''))
|
175 |
+
|
176 |
+
return cls(lhs, rhs, **assumptions)
|
177 |
+
|
178 |
+
@property
|
179 |
+
def lhs(self):
|
180 |
+
"""The left-hand side of the relation."""
|
181 |
+
return self._args[0]
|
182 |
+
|
183 |
+
@property
|
184 |
+
def rhs(self):
|
185 |
+
"""The right-hand side of the relation."""
|
186 |
+
return self._args[1]
|
187 |
+
|
188 |
+
@property
|
189 |
+
def reversed(self):
|
190 |
+
"""Return the relationship with sides reversed.
|
191 |
+
|
192 |
+
Examples
|
193 |
+
========
|
194 |
+
|
195 |
+
>>> from sympy import Eq
|
196 |
+
>>> from sympy.abc import x
|
197 |
+
>>> Eq(x, 1)
|
198 |
+
Eq(x, 1)
|
199 |
+
>>> _.reversed
|
200 |
+
Eq(1, x)
|
201 |
+
>>> x < 1
|
202 |
+
x < 1
|
203 |
+
>>> _.reversed
|
204 |
+
1 > x
|
205 |
+
"""
|
206 |
+
ops = {Eq: Eq, Gt: Lt, Ge: Le, Lt: Gt, Le: Ge, Ne: Ne}
|
207 |
+
a, b = self.args
|
208 |
+
return Relational.__new__(ops.get(self.func, self.func), b, a)
|
209 |
+
|
210 |
+
@property
|
211 |
+
def reversedsign(self):
|
212 |
+
"""Return the relationship with signs reversed.
|
213 |
+
|
214 |
+
Examples
|
215 |
+
========
|
216 |
+
|
217 |
+
>>> from sympy import Eq
|
218 |
+
>>> from sympy.abc import x
|
219 |
+
>>> Eq(x, 1)
|
220 |
+
Eq(x, 1)
|
221 |
+
>>> _.reversedsign
|
222 |
+
Eq(-x, -1)
|
223 |
+
>>> x < 1
|
224 |
+
x < 1
|
225 |
+
>>> _.reversedsign
|
226 |
+
-x > -1
|
227 |
+
"""
|
228 |
+
a, b = self.args
|
229 |
+
if not (isinstance(a, BooleanAtom) or isinstance(b, BooleanAtom)):
|
230 |
+
ops = {Eq: Eq, Gt: Lt, Ge: Le, Lt: Gt, Le: Ge, Ne: Ne}
|
231 |
+
return Relational.__new__(ops.get(self.func, self.func), -a, -b)
|
232 |
+
else:
|
233 |
+
return self
|
234 |
+
|
235 |
+
@property
|
236 |
+
def negated(self):
|
237 |
+
"""Return the negated relationship.
|
238 |
+
|
239 |
+
Examples
|
240 |
+
========
|
241 |
+
|
242 |
+
>>> from sympy import Eq
|
243 |
+
>>> from sympy.abc import x
|
244 |
+
>>> Eq(x, 1)
|
245 |
+
Eq(x, 1)
|
246 |
+
>>> _.negated
|
247 |
+
Ne(x, 1)
|
248 |
+
>>> x < 1
|
249 |
+
x < 1
|
250 |
+
>>> _.negated
|
251 |
+
x >= 1
|
252 |
+
|
253 |
+
Notes
|
254 |
+
=====
|
255 |
+
|
256 |
+
This works more or less identical to ``~``/``Not``. The difference is
|
257 |
+
that ``negated`` returns the relationship even if ``evaluate=False``.
|
258 |
+
Hence, this is useful in code when checking for e.g. negated relations
|
259 |
+
to existing ones as it will not be affected by the `evaluate` flag.
|
260 |
+
|
261 |
+
"""
|
262 |
+
ops = {Eq: Ne, Ge: Lt, Gt: Le, Le: Gt, Lt: Ge, Ne: Eq}
|
263 |
+
# If there ever will be new Relational subclasses, the following line
|
264 |
+
# will work until it is properly sorted out
|
265 |
+
# return ops.get(self.func, lambda a, b, evaluate=False: ~(self.func(a,
|
266 |
+
# b, evaluate=evaluate)))(*self.args, evaluate=False)
|
267 |
+
return Relational.__new__(ops.get(self.func), *self.args)
|
268 |
+
|
269 |
+
@property
|
270 |
+
def weak(self):
|
271 |
+
"""return the non-strict version of the inequality or self
|
272 |
+
|
273 |
+
EXAMPLES
|
274 |
+
========
|
275 |
+
|
276 |
+
>>> from sympy.abc import x
|
277 |
+
>>> (x < 1).weak
|
278 |
+
x <= 1
|
279 |
+
>>> _.weak
|
280 |
+
x <= 1
|
281 |
+
"""
|
282 |
+
return self
|
283 |
+
|
284 |
+
@property
|
285 |
+
def strict(self):
|
286 |
+
"""return the strict version of the inequality or self
|
287 |
+
|
288 |
+
EXAMPLES
|
289 |
+
========
|
290 |
+
|
291 |
+
>>> from sympy.abc import x
|
292 |
+
>>> (x <= 1).strict
|
293 |
+
x < 1
|
294 |
+
>>> _.strict
|
295 |
+
x < 1
|
296 |
+
"""
|
297 |
+
return self
|
298 |
+
|
299 |
+
def _eval_evalf(self, prec):
|
300 |
+
return self.func(*[s._evalf(prec) for s in self.args])
|
301 |
+
|
302 |
+
@property
|
303 |
+
def canonical(self):
|
304 |
+
"""Return a canonical form of the relational by putting a
|
305 |
+
number on the rhs, canonically removing a sign or else
|
306 |
+
ordering the args canonically. No other simplification is
|
307 |
+
attempted.
|
308 |
+
|
309 |
+
Examples
|
310 |
+
========
|
311 |
+
|
312 |
+
>>> from sympy.abc import x, y
|
313 |
+
>>> x < 2
|
314 |
+
x < 2
|
315 |
+
>>> _.reversed.canonical
|
316 |
+
x < 2
|
317 |
+
>>> (-y < x).canonical
|
318 |
+
x > -y
|
319 |
+
>>> (-y > x).canonical
|
320 |
+
x < -y
|
321 |
+
>>> (-y < -x).canonical
|
322 |
+
x < y
|
323 |
+
|
324 |
+
The canonicalization is recursively applied:
|
325 |
+
|
326 |
+
>>> from sympy import Eq
|
327 |
+
>>> Eq(x < y, y > x).canonical
|
328 |
+
True
|
329 |
+
"""
|
330 |
+
args = tuple([i.canonical if isinstance(i, Relational) else i for i in self.args])
|
331 |
+
if args != self.args:
|
332 |
+
r = self.func(*args)
|
333 |
+
if not isinstance(r, Relational):
|
334 |
+
return r
|
335 |
+
else:
|
336 |
+
r = self
|
337 |
+
if r.rhs.is_number:
|
338 |
+
if r.rhs.is_Number and r.lhs.is_Number and r.lhs > r.rhs:
|
339 |
+
r = r.reversed
|
340 |
+
elif r.lhs.is_number:
|
341 |
+
r = r.reversed
|
342 |
+
elif tuple(ordered(args)) != args:
|
343 |
+
r = r.reversed
|
344 |
+
|
345 |
+
LHS_CEMS = getattr(r.lhs, 'could_extract_minus_sign', None)
|
346 |
+
RHS_CEMS = getattr(r.rhs, 'could_extract_minus_sign', None)
|
347 |
+
|
348 |
+
if isinstance(r.lhs, BooleanAtom) or isinstance(r.rhs, BooleanAtom):
|
349 |
+
return r
|
350 |
+
|
351 |
+
# Check if first value has negative sign
|
352 |
+
if LHS_CEMS and LHS_CEMS():
|
353 |
+
return r.reversedsign
|
354 |
+
elif not r.rhs.is_number and RHS_CEMS and RHS_CEMS():
|
355 |
+
# Right hand side has a minus, but not lhs.
|
356 |
+
# How does the expression with reversed signs behave?
|
357 |
+
# This is so that expressions of the type
|
358 |
+
# Eq(x, -y) and Eq(-x, y)
|
359 |
+
# have the same canonical representation
|
360 |
+
expr1, _ = ordered([r.lhs, -r.rhs])
|
361 |
+
if expr1 != r.lhs:
|
362 |
+
return r.reversed.reversedsign
|
363 |
+
|
364 |
+
return r
|
365 |
+
|
366 |
+
def equals(self, other, failing_expression=False):
|
367 |
+
"""Return True if the sides of the relationship are mathematically
|
368 |
+
identical and the type of relationship is the same.
|
369 |
+
If failing_expression is True, return the expression whose truth value
|
370 |
+
was unknown."""
|
371 |
+
if isinstance(other, Relational):
|
372 |
+
if other in (self, self.reversed):
|
373 |
+
return True
|
374 |
+
a, b = self, other
|
375 |
+
if a.func in (Eq, Ne) or b.func in (Eq, Ne):
|
376 |
+
if a.func != b.func:
|
377 |
+
return False
|
378 |
+
left, right = [i.equals(j,
|
379 |
+
failing_expression=failing_expression)
|
380 |
+
for i, j in zip(a.args, b.args)]
|
381 |
+
if left is True:
|
382 |
+
return right
|
383 |
+
if right is True:
|
384 |
+
return left
|
385 |
+
lr, rl = [i.equals(j, failing_expression=failing_expression)
|
386 |
+
for i, j in zip(a.args, b.reversed.args)]
|
387 |
+
if lr is True:
|
388 |
+
return rl
|
389 |
+
if rl is True:
|
390 |
+
return lr
|
391 |
+
e = (left, right, lr, rl)
|
392 |
+
if all(i is False for i in e):
|
393 |
+
return False
|
394 |
+
for i in e:
|
395 |
+
if i not in (True, False):
|
396 |
+
return i
|
397 |
+
else:
|
398 |
+
if b.func != a.func:
|
399 |
+
b = b.reversed
|
400 |
+
if a.func != b.func:
|
401 |
+
return False
|
402 |
+
left = a.lhs.equals(b.lhs,
|
403 |
+
failing_expression=failing_expression)
|
404 |
+
if left is False:
|
405 |
+
return False
|
406 |
+
right = a.rhs.equals(b.rhs,
|
407 |
+
failing_expression=failing_expression)
|
408 |
+
if right is False:
|
409 |
+
return False
|
410 |
+
if left is True:
|
411 |
+
return right
|
412 |
+
return left
|
413 |
+
|
414 |
+
def _eval_simplify(self, **kwargs):
|
415 |
+
from .add import Add
|
416 |
+
from .expr import Expr
|
417 |
+
r = self
|
418 |
+
r = r.func(*[i.simplify(**kwargs) for i in r.args])
|
419 |
+
if r.is_Relational:
|
420 |
+
if not isinstance(r.lhs, Expr) or not isinstance(r.rhs, Expr):
|
421 |
+
return r
|
422 |
+
dif = r.lhs - r.rhs
|
423 |
+
# replace dif with a valid Number that will
|
424 |
+
# allow a definitive comparison with 0
|
425 |
+
v = None
|
426 |
+
if dif.is_comparable:
|
427 |
+
v = dif.n(2)
|
428 |
+
elif dif.equals(0): # XXX this is expensive
|
429 |
+
v = S.Zero
|
430 |
+
if v is not None:
|
431 |
+
r = r.func._eval_relation(v, S.Zero)
|
432 |
+
r = r.canonical
|
433 |
+
# If there is only one symbol in the expression,
|
434 |
+
# try to write it on a simplified form
|
435 |
+
free = list(filter(lambda x: x.is_real is not False, r.free_symbols))
|
436 |
+
if len(free) == 1:
|
437 |
+
try:
|
438 |
+
from sympy.solvers.solveset import linear_coeffs
|
439 |
+
x = free.pop()
|
440 |
+
dif = r.lhs - r.rhs
|
441 |
+
m, b = linear_coeffs(dif, x)
|
442 |
+
if m.is_zero is False:
|
443 |
+
if m.is_negative:
|
444 |
+
# Dividing with a negative number, so change order of arguments
|
445 |
+
# canonical will put the symbol back on the lhs later
|
446 |
+
r = r.func(-b / m, x)
|
447 |
+
else:
|
448 |
+
r = r.func(x, -b / m)
|
449 |
+
else:
|
450 |
+
r = r.func(b, S.Zero)
|
451 |
+
except ValueError:
|
452 |
+
# maybe not a linear function, try polynomial
|
453 |
+
from sympy.polys.polyerrors import PolynomialError
|
454 |
+
from sympy.polys.polytools import gcd, Poly, poly
|
455 |
+
try:
|
456 |
+
p = poly(dif, x)
|
457 |
+
c = p.all_coeffs()
|
458 |
+
constant = c[-1]
|
459 |
+
c[-1] = 0
|
460 |
+
scale = gcd(c)
|
461 |
+
c = [ctmp / scale for ctmp in c]
|
462 |
+
r = r.func(Poly.from_list(c, x).as_expr(), -constant / scale)
|
463 |
+
except PolynomialError:
|
464 |
+
pass
|
465 |
+
elif len(free) >= 2:
|
466 |
+
try:
|
467 |
+
from sympy.solvers.solveset import linear_coeffs
|
468 |
+
from sympy.polys.polytools import gcd
|
469 |
+
free = list(ordered(free))
|
470 |
+
dif = r.lhs - r.rhs
|
471 |
+
m = linear_coeffs(dif, *free)
|
472 |
+
constant = m[-1]
|
473 |
+
del m[-1]
|
474 |
+
scale = gcd(m)
|
475 |
+
m = [mtmp / scale for mtmp in m]
|
476 |
+
nzm = list(filter(lambda f: f[0] != 0, list(zip(m, free))))
|
477 |
+
if scale.is_zero is False:
|
478 |
+
if constant != 0:
|
479 |
+
# lhs: expression, rhs: constant
|
480 |
+
newexpr = Add(*[i * j for i, j in nzm])
|
481 |
+
r = r.func(newexpr, -constant / scale)
|
482 |
+
else:
|
483 |
+
# keep first term on lhs
|
484 |
+
lhsterm = nzm[0][0] * nzm[0][1]
|
485 |
+
del nzm[0]
|
486 |
+
newexpr = Add(*[i * j for i, j in nzm])
|
487 |
+
r = r.func(lhsterm, -newexpr)
|
488 |
+
|
489 |
+
else:
|
490 |
+
r = r.func(constant, S.Zero)
|
491 |
+
except ValueError:
|
492 |
+
pass
|
493 |
+
# Did we get a simplified result?
|
494 |
+
r = r.canonical
|
495 |
+
measure = kwargs['measure']
|
496 |
+
if measure(r) < kwargs['ratio'] * measure(self):
|
497 |
+
return r
|
498 |
+
else:
|
499 |
+
return self
|
500 |
+
|
501 |
+
def _eval_trigsimp(self, **opts):
|
502 |
+
from sympy.simplify.trigsimp import trigsimp
|
503 |
+
return self.func(trigsimp(self.lhs, **opts), trigsimp(self.rhs, **opts))
|
504 |
+
|
505 |
+
def expand(self, **kwargs):
|
506 |
+
args = (arg.expand(**kwargs) for arg in self.args)
|
507 |
+
return self.func(*args)
|
508 |
+
|
509 |
+
def __bool__(self):
|
510 |
+
raise TypeError("cannot determine truth value of Relational")
|
511 |
+
|
512 |
+
def _eval_as_set(self):
|
513 |
+
# self is univariate and periodicity(self, x) in (0, None)
|
514 |
+
from sympy.solvers.inequalities import solve_univariate_inequality
|
515 |
+
from sympy.sets.conditionset import ConditionSet
|
516 |
+
syms = self.free_symbols
|
517 |
+
assert len(syms) == 1
|
518 |
+
x = syms.pop()
|
519 |
+
try:
|
520 |
+
xset = solve_univariate_inequality(self, x, relational=False)
|
521 |
+
except NotImplementedError:
|
522 |
+
# solve_univariate_inequality raises NotImplementedError for
|
523 |
+
# unsolvable equations/inequalities.
|
524 |
+
xset = ConditionSet(x, self, S.Reals)
|
525 |
+
return xset
|
526 |
+
|
527 |
+
@property
|
528 |
+
def binary_symbols(self):
|
529 |
+
# override where necessary
|
530 |
+
return set()
|
531 |
+
|
532 |
+
|
533 |
+
Rel = Relational
|
534 |
+
|
535 |
+
|
536 |
+
class Equality(Relational):
|
537 |
+
"""
|
538 |
+
An equal relation between two objects.
|
539 |
+
|
540 |
+
Explanation
|
541 |
+
===========
|
542 |
+
|
543 |
+
Represents that two objects are equal. If they can be easily shown
|
544 |
+
to be definitively equal (or unequal), this will reduce to True (or
|
545 |
+
False). Otherwise, the relation is maintained as an unevaluated
|
546 |
+
Equality object. Use the ``simplify`` function on this object for
|
547 |
+
more nontrivial evaluation of the equality relation.
|
548 |
+
|
549 |
+
As usual, the keyword argument ``evaluate=False`` can be used to
|
550 |
+
prevent any evaluation.
|
551 |
+
|
552 |
+
Examples
|
553 |
+
========
|
554 |
+
|
555 |
+
>>> from sympy import Eq, simplify, exp, cos
|
556 |
+
>>> from sympy.abc import x, y
|
557 |
+
>>> Eq(y, x + x**2)
|
558 |
+
Eq(y, x**2 + x)
|
559 |
+
>>> Eq(2, 5)
|
560 |
+
False
|
561 |
+
>>> Eq(2, 5, evaluate=False)
|
562 |
+
Eq(2, 5)
|
563 |
+
>>> _.doit()
|
564 |
+
False
|
565 |
+
>>> Eq(exp(x), exp(x).rewrite(cos))
|
566 |
+
Eq(exp(x), sinh(x) + cosh(x))
|
567 |
+
>>> simplify(_)
|
568 |
+
True
|
569 |
+
|
570 |
+
See Also
|
571 |
+
========
|
572 |
+
|
573 |
+
sympy.logic.boolalg.Equivalent : for representing equality between two
|
574 |
+
boolean expressions
|
575 |
+
|
576 |
+
Notes
|
577 |
+
=====
|
578 |
+
|
579 |
+
Python treats 1 and True (and 0 and False) as being equal; SymPy
|
580 |
+
does not. And integer will always compare as unequal to a Boolean:
|
581 |
+
|
582 |
+
>>> Eq(True, 1), True == 1
|
583 |
+
(False, True)
|
584 |
+
|
585 |
+
This class is not the same as the == operator. The == operator tests
|
586 |
+
for exact structural equality between two expressions; this class
|
587 |
+
compares expressions mathematically.
|
588 |
+
|
589 |
+
If either object defines an ``_eval_Eq`` method, it can be used in place of
|
590 |
+
the default algorithm. If ``lhs._eval_Eq(rhs)`` or ``rhs._eval_Eq(lhs)``
|
591 |
+
returns anything other than None, that return value will be substituted for
|
592 |
+
the Equality. If None is returned by ``_eval_Eq``, an Equality object will
|
593 |
+
be created as usual.
|
594 |
+
|
595 |
+
Since this object is already an expression, it does not respond to
|
596 |
+
the method ``as_expr`` if one tries to create `x - y` from ``Eq(x, y)``.
|
597 |
+
This can be done with the ``rewrite(Add)`` method.
|
598 |
+
|
599 |
+
.. deprecated:: 1.5
|
600 |
+
|
601 |
+
``Eq(expr)`` with a single argument is a shorthand for ``Eq(expr, 0)``,
|
602 |
+
but this behavior is deprecated and will be removed in a future version
|
603 |
+
of SymPy.
|
604 |
+
|
605 |
+
"""
|
606 |
+
rel_op = '=='
|
607 |
+
|
608 |
+
__slots__ = ()
|
609 |
+
|
610 |
+
is_Equality = True
|
611 |
+
|
612 |
+
def __new__(cls, lhs, rhs, **options):
|
613 |
+
evaluate = options.pop('evaluate', global_parameters.evaluate)
|
614 |
+
lhs = _sympify(lhs)
|
615 |
+
rhs = _sympify(rhs)
|
616 |
+
if evaluate:
|
617 |
+
val = is_eq(lhs, rhs)
|
618 |
+
if val is None:
|
619 |
+
return cls(lhs, rhs, evaluate=False)
|
620 |
+
else:
|
621 |
+
return _sympify(val)
|
622 |
+
|
623 |
+
return Relational.__new__(cls, lhs, rhs)
|
624 |
+
|
625 |
+
@classmethod
|
626 |
+
def _eval_relation(cls, lhs, rhs):
|
627 |
+
return _sympify(lhs == rhs)
|
628 |
+
|
629 |
+
def _eval_rewrite_as_Add(self, *args, **kwargs):
|
630 |
+
"""
|
631 |
+
return Eq(L, R) as L - R. To control the evaluation of
|
632 |
+
the result set pass `evaluate=True` to give L - R;
|
633 |
+
if `evaluate=None` then terms in L and R will not cancel
|
634 |
+
but they will be listed in canonical order; otherwise
|
635 |
+
non-canonical args will be returned. If one side is 0, the
|
636 |
+
non-zero side will be returned.
|
637 |
+
|
638 |
+
Examples
|
639 |
+
========
|
640 |
+
|
641 |
+
>>> from sympy import Eq, Add
|
642 |
+
>>> from sympy.abc import b, x
|
643 |
+
>>> eq = Eq(x + b, x - b)
|
644 |
+
>>> eq.rewrite(Add)
|
645 |
+
2*b
|
646 |
+
>>> eq.rewrite(Add, evaluate=None).args
|
647 |
+
(b, b, x, -x)
|
648 |
+
>>> eq.rewrite(Add, evaluate=False).args
|
649 |
+
(b, x, b, -x)
|
650 |
+
"""
|
651 |
+
from .add import _unevaluated_Add, Add
|
652 |
+
L, R = args
|
653 |
+
if L == 0:
|
654 |
+
return R
|
655 |
+
if R == 0:
|
656 |
+
return L
|
657 |
+
evaluate = kwargs.get('evaluate', True)
|
658 |
+
if evaluate:
|
659 |
+
# allow cancellation of args
|
660 |
+
return L - R
|
661 |
+
args = Add.make_args(L) + Add.make_args(-R)
|
662 |
+
if evaluate is None:
|
663 |
+
# no cancellation, but canonical
|
664 |
+
return _unevaluated_Add(*args)
|
665 |
+
# no cancellation, not canonical
|
666 |
+
return Add._from_args(args)
|
667 |
+
|
668 |
+
@property
|
669 |
+
def binary_symbols(self):
|
670 |
+
if S.true in self.args or S.false in self.args:
|
671 |
+
if self.lhs.is_Symbol:
|
672 |
+
return {self.lhs}
|
673 |
+
elif self.rhs.is_Symbol:
|
674 |
+
return {self.rhs}
|
675 |
+
return set()
|
676 |
+
|
677 |
+
def _eval_simplify(self, **kwargs):
|
678 |
+
# standard simplify
|
679 |
+
e = super()._eval_simplify(**kwargs)
|
680 |
+
if not isinstance(e, Equality):
|
681 |
+
return e
|
682 |
+
from .expr import Expr
|
683 |
+
if not isinstance(e.lhs, Expr) or not isinstance(e.rhs, Expr):
|
684 |
+
return e
|
685 |
+
free = self.free_symbols
|
686 |
+
if len(free) == 1:
|
687 |
+
try:
|
688 |
+
from .add import Add
|
689 |
+
from sympy.solvers.solveset import linear_coeffs
|
690 |
+
x = free.pop()
|
691 |
+
m, b = linear_coeffs(
|
692 |
+
e.rewrite(Add, evaluate=False), x)
|
693 |
+
if m.is_zero is False:
|
694 |
+
enew = e.func(x, -b / m)
|
695 |
+
else:
|
696 |
+
enew = e.func(m * x, -b)
|
697 |
+
measure = kwargs['measure']
|
698 |
+
if measure(enew) <= kwargs['ratio'] * measure(e):
|
699 |
+
e = enew
|
700 |
+
except ValueError:
|
701 |
+
pass
|
702 |
+
return e.canonical
|
703 |
+
|
704 |
+
def integrate(self, *args, **kwargs):
|
705 |
+
"""See the integrate function in sympy.integrals"""
|
706 |
+
from sympy.integrals.integrals import integrate
|
707 |
+
return integrate(self, *args, **kwargs)
|
708 |
+
|
709 |
+
def as_poly(self, *gens, **kwargs):
|
710 |
+
'''Returns lhs-rhs as a Poly
|
711 |
+
|
712 |
+
Examples
|
713 |
+
========
|
714 |
+
|
715 |
+
>>> from sympy import Eq
|
716 |
+
>>> from sympy.abc import x
|
717 |
+
>>> Eq(x**2, 1).as_poly(x)
|
718 |
+
Poly(x**2 - 1, x, domain='ZZ')
|
719 |
+
'''
|
720 |
+
return (self.lhs - self.rhs).as_poly(*gens, **kwargs)
|
721 |
+
|
722 |
+
|
723 |
+
Eq = Equality
|
724 |
+
|
725 |
+
|
726 |
+
class Unequality(Relational):
|
727 |
+
"""An unequal relation between two objects.
|
728 |
+
|
729 |
+
Explanation
|
730 |
+
===========
|
731 |
+
|
732 |
+
Represents that two objects are not equal. If they can be shown to be
|
733 |
+
definitively equal, this will reduce to False; if definitively unequal,
|
734 |
+
this will reduce to True. Otherwise, the relation is maintained as an
|
735 |
+
Unequality object.
|
736 |
+
|
737 |
+
Examples
|
738 |
+
========
|
739 |
+
|
740 |
+
>>> from sympy import Ne
|
741 |
+
>>> from sympy.abc import x, y
|
742 |
+
>>> Ne(y, x+x**2)
|
743 |
+
Ne(y, x**2 + x)
|
744 |
+
|
745 |
+
See Also
|
746 |
+
========
|
747 |
+
Equality
|
748 |
+
|
749 |
+
Notes
|
750 |
+
=====
|
751 |
+
This class is not the same as the != operator. The != operator tests
|
752 |
+
for exact structural equality between two expressions; this class
|
753 |
+
compares expressions mathematically.
|
754 |
+
|
755 |
+
This class is effectively the inverse of Equality. As such, it uses the
|
756 |
+
same algorithms, including any available `_eval_Eq` methods.
|
757 |
+
|
758 |
+
"""
|
759 |
+
rel_op = '!='
|
760 |
+
|
761 |
+
__slots__ = ()
|
762 |
+
|
763 |
+
def __new__(cls, lhs, rhs, **options):
|
764 |
+
lhs = _sympify(lhs)
|
765 |
+
rhs = _sympify(rhs)
|
766 |
+
evaluate = options.pop('evaluate', global_parameters.evaluate)
|
767 |
+
if evaluate:
|
768 |
+
val = is_neq(lhs, rhs)
|
769 |
+
if val is None:
|
770 |
+
return cls(lhs, rhs, evaluate=False)
|
771 |
+
else:
|
772 |
+
return _sympify(val)
|
773 |
+
|
774 |
+
return Relational.__new__(cls, lhs, rhs, **options)
|
775 |
+
|
776 |
+
@classmethod
|
777 |
+
def _eval_relation(cls, lhs, rhs):
|
778 |
+
return _sympify(lhs != rhs)
|
779 |
+
|
780 |
+
@property
|
781 |
+
def binary_symbols(self):
|
782 |
+
if S.true in self.args or S.false in self.args:
|
783 |
+
if self.lhs.is_Symbol:
|
784 |
+
return {self.lhs}
|
785 |
+
elif self.rhs.is_Symbol:
|
786 |
+
return {self.rhs}
|
787 |
+
return set()
|
788 |
+
|
789 |
+
def _eval_simplify(self, **kwargs):
|
790 |
+
# simplify as an equality
|
791 |
+
eq = Equality(*self.args)._eval_simplify(**kwargs)
|
792 |
+
if isinstance(eq, Equality):
|
793 |
+
# send back Ne with the new args
|
794 |
+
return self.func(*eq.args)
|
795 |
+
return eq.negated # result of Ne is the negated Eq
|
796 |
+
|
797 |
+
|
798 |
+
Ne = Unequality
|
799 |
+
|
800 |
+
|
801 |
+
class _Inequality(Relational):
|
802 |
+
"""Internal base class for all *Than types.
|
803 |
+
|
804 |
+
Each subclass must implement _eval_relation to provide the method for
|
805 |
+
comparing two real numbers.
|
806 |
+
|
807 |
+
"""
|
808 |
+
__slots__ = ()
|
809 |
+
|
810 |
+
def __new__(cls, lhs, rhs, **options):
|
811 |
+
|
812 |
+
try:
|
813 |
+
lhs = _sympify(lhs)
|
814 |
+
rhs = _sympify(rhs)
|
815 |
+
except SympifyError:
|
816 |
+
return NotImplemented
|
817 |
+
|
818 |
+
evaluate = options.pop('evaluate', global_parameters.evaluate)
|
819 |
+
if evaluate:
|
820 |
+
for me in (lhs, rhs):
|
821 |
+
if me.is_extended_real is False:
|
822 |
+
raise TypeError("Invalid comparison of non-real %s" % me)
|
823 |
+
if me is S.NaN:
|
824 |
+
raise TypeError("Invalid NaN comparison")
|
825 |
+
# First we invoke the appropriate inequality method of `lhs`
|
826 |
+
# (e.g., `lhs.__lt__`). That method will try to reduce to
|
827 |
+
# boolean or raise an exception. It may keep calling
|
828 |
+
# superclasses until it reaches `Expr` (e.g., `Expr.__lt__`).
|
829 |
+
# In some cases, `Expr` will just invoke us again (if neither it
|
830 |
+
# nor a subclass was able to reduce to boolean or raise an
|
831 |
+
# exception). In that case, it must call us with
|
832 |
+
# `evaluate=False` to prevent infinite recursion.
|
833 |
+
return cls._eval_relation(lhs, rhs, **options)
|
834 |
+
|
835 |
+
# make a "non-evaluated" Expr for the inequality
|
836 |
+
return Relational.__new__(cls, lhs, rhs, **options)
|
837 |
+
|
838 |
+
@classmethod
|
839 |
+
def _eval_relation(cls, lhs, rhs, **options):
|
840 |
+
val = cls._eval_fuzzy_relation(lhs, rhs)
|
841 |
+
if val is None:
|
842 |
+
return cls(lhs, rhs, evaluate=False)
|
843 |
+
else:
|
844 |
+
return _sympify(val)
|
845 |
+
|
846 |
+
|
847 |
+
class _Greater(_Inequality):
|
848 |
+
"""Not intended for general use
|
849 |
+
|
850 |
+
_Greater is only used so that GreaterThan and StrictGreaterThan may
|
851 |
+
subclass it for the .gts and .lts properties.
|
852 |
+
|
853 |
+
"""
|
854 |
+
__slots__ = ()
|
855 |
+
|
856 |
+
@property
|
857 |
+
def gts(self):
|
858 |
+
return self._args[0]
|
859 |
+
|
860 |
+
@property
|
861 |
+
def lts(self):
|
862 |
+
return self._args[1]
|
863 |
+
|
864 |
+
|
865 |
+
class _Less(_Inequality):
|
866 |
+
"""Not intended for general use.
|
867 |
+
|
868 |
+
_Less is only used so that LessThan and StrictLessThan may subclass it for
|
869 |
+
the .gts and .lts properties.
|
870 |
+
|
871 |
+
"""
|
872 |
+
__slots__ = ()
|
873 |
+
|
874 |
+
@property
|
875 |
+
def gts(self):
|
876 |
+
return self._args[1]
|
877 |
+
|
878 |
+
@property
|
879 |
+
def lts(self):
|
880 |
+
return self._args[0]
|
881 |
+
|
882 |
+
|
883 |
+
class GreaterThan(_Greater):
|
884 |
+
r"""Class representations of inequalities.
|
885 |
+
|
886 |
+
Explanation
|
887 |
+
===========
|
888 |
+
|
889 |
+
The ``*Than`` classes represent inequal relationships, where the left-hand
|
890 |
+
side is generally bigger or smaller than the right-hand side. For example,
|
891 |
+
the GreaterThan class represents an inequal relationship where the
|
892 |
+
left-hand side is at least as big as the right side, if not bigger. In
|
893 |
+
mathematical notation:
|
894 |
+
|
895 |
+
lhs $\ge$ rhs
|
896 |
+
|
897 |
+
In total, there are four ``*Than`` classes, to represent the four
|
898 |
+
inequalities:
|
899 |
+
|
900 |
+
+-----------------+--------+
|
901 |
+
|Class Name | Symbol |
|
902 |
+
+=================+========+
|
903 |
+
|GreaterThan | ``>=`` |
|
904 |
+
+-----------------+--------+
|
905 |
+
|LessThan | ``<=`` |
|
906 |
+
+-----------------+--------+
|
907 |
+
|StrictGreaterThan| ``>`` |
|
908 |
+
+-----------------+--------+
|
909 |
+
|StrictLessThan | ``<`` |
|
910 |
+
+-----------------+--------+
|
911 |
+
|
912 |
+
All classes take two arguments, lhs and rhs.
|
913 |
+
|
914 |
+
+----------------------------+-----------------+
|
915 |
+
|Signature Example | Math Equivalent |
|
916 |
+
+============================+=================+
|
917 |
+
|GreaterThan(lhs, rhs) | lhs $\ge$ rhs |
|
918 |
+
+----------------------------+-----------------+
|
919 |
+
|LessThan(lhs, rhs) | lhs $\le$ rhs |
|
920 |
+
+----------------------------+-----------------+
|
921 |
+
|StrictGreaterThan(lhs, rhs) | lhs $>$ rhs |
|
922 |
+
+----------------------------+-----------------+
|
923 |
+
|StrictLessThan(lhs, rhs) | lhs $<$ rhs |
|
924 |
+
+----------------------------+-----------------+
|
925 |
+
|
926 |
+
In addition to the normal .lhs and .rhs of Relations, ``*Than`` inequality
|
927 |
+
objects also have the .lts and .gts properties, which represent the "less
|
928 |
+
than side" and "greater than side" of the operator. Use of .lts and .gts
|
929 |
+
in an algorithm rather than .lhs and .rhs as an assumption of inequality
|
930 |
+
direction will make more explicit the intent of a certain section of code,
|
931 |
+
and will make it similarly more robust to client code changes:
|
932 |
+
|
933 |
+
>>> from sympy import GreaterThan, StrictGreaterThan
|
934 |
+
>>> from sympy import LessThan, StrictLessThan
|
935 |
+
>>> from sympy import And, Ge, Gt, Le, Lt, Rel, S
|
936 |
+
>>> from sympy.abc import x, y, z
|
937 |
+
>>> from sympy.core.relational import Relational
|
938 |
+
|
939 |
+
>>> e = GreaterThan(x, 1)
|
940 |
+
>>> e
|
941 |
+
x >= 1
|
942 |
+
>>> '%s >= %s is the same as %s <= %s' % (e.gts, e.lts, e.lts, e.gts)
|
943 |
+
'x >= 1 is the same as 1 <= x'
|
944 |
+
|
945 |
+
Examples
|
946 |
+
========
|
947 |
+
|
948 |
+
One generally does not instantiate these classes directly, but uses various
|
949 |
+
convenience methods:
|
950 |
+
|
951 |
+
>>> for f in [Ge, Gt, Le, Lt]: # convenience wrappers
|
952 |
+
... print(f(x, 2))
|
953 |
+
x >= 2
|
954 |
+
x > 2
|
955 |
+
x <= 2
|
956 |
+
x < 2
|
957 |
+
|
958 |
+
Another option is to use the Python inequality operators (``>=``, ``>``,
|
959 |
+
``<=``, ``<``) directly. Their main advantage over the ``Ge``, ``Gt``,
|
960 |
+
``Le``, and ``Lt`` counterparts, is that one can write a more
|
961 |
+
"mathematical looking" statement rather than littering the math with
|
962 |
+
oddball function calls. However there are certain (minor) caveats of
|
963 |
+
which to be aware (search for 'gotcha', below).
|
964 |
+
|
965 |
+
>>> x >= 2
|
966 |
+
x >= 2
|
967 |
+
>>> _ == Ge(x, 2)
|
968 |
+
True
|
969 |
+
|
970 |
+
However, it is also perfectly valid to instantiate a ``*Than`` class less
|
971 |
+
succinctly and less conveniently:
|
972 |
+
|
973 |
+
>>> Rel(x, 1, ">")
|
974 |
+
x > 1
|
975 |
+
>>> Relational(x, 1, ">")
|
976 |
+
x > 1
|
977 |
+
|
978 |
+
>>> StrictGreaterThan(x, 1)
|
979 |
+
x > 1
|
980 |
+
>>> GreaterThan(x, 1)
|
981 |
+
x >= 1
|
982 |
+
>>> LessThan(x, 1)
|
983 |
+
x <= 1
|
984 |
+
>>> StrictLessThan(x, 1)
|
985 |
+
x < 1
|
986 |
+
|
987 |
+
Notes
|
988 |
+
=====
|
989 |
+
|
990 |
+
There are a couple of "gotchas" to be aware of when using Python's
|
991 |
+
operators.
|
992 |
+
|
993 |
+
The first is that what your write is not always what you get:
|
994 |
+
|
995 |
+
>>> 1 < x
|
996 |
+
x > 1
|
997 |
+
|
998 |
+
Due to the order that Python parses a statement, it may
|
999 |
+
not immediately find two objects comparable. When ``1 < x``
|
1000 |
+
is evaluated, Python recognizes that the number 1 is a native
|
1001 |
+
number and that x is *not*. Because a native Python number does
|
1002 |
+
not know how to compare itself with a SymPy object
|
1003 |
+
Python will try the reflective operation, ``x > 1`` and that is the
|
1004 |
+
form that gets evaluated, hence returned.
|
1005 |
+
|
1006 |
+
If the order of the statement is important (for visual output to
|
1007 |
+
the console, perhaps), one can work around this annoyance in a
|
1008 |
+
couple ways:
|
1009 |
+
|
1010 |
+
(1) "sympify" the literal before comparison
|
1011 |
+
|
1012 |
+
>>> S(1) < x
|
1013 |
+
1 < x
|
1014 |
+
|
1015 |
+
(2) use one of the wrappers or less succinct methods described
|
1016 |
+
above
|
1017 |
+
|
1018 |
+
>>> Lt(1, x)
|
1019 |
+
1 < x
|
1020 |
+
>>> Relational(1, x, "<")
|
1021 |
+
1 < x
|
1022 |
+
|
1023 |
+
The second gotcha involves writing equality tests between relationals
|
1024 |
+
when one or both sides of the test involve a literal relational:
|
1025 |
+
|
1026 |
+
>>> e = x < 1; e
|
1027 |
+
x < 1
|
1028 |
+
>>> e == e # neither side is a literal
|
1029 |
+
True
|
1030 |
+
>>> e == x < 1 # expecting True, too
|
1031 |
+
False
|
1032 |
+
>>> e != x < 1 # expecting False
|
1033 |
+
x < 1
|
1034 |
+
>>> x < 1 != x < 1 # expecting False or the same thing as before
|
1035 |
+
Traceback (most recent call last):
|
1036 |
+
...
|
1037 |
+
TypeError: cannot determine truth value of Relational
|
1038 |
+
|
1039 |
+
The solution for this case is to wrap literal relationals in
|
1040 |
+
parentheses:
|
1041 |
+
|
1042 |
+
>>> e == (x < 1)
|
1043 |
+
True
|
1044 |
+
>>> e != (x < 1)
|
1045 |
+
False
|
1046 |
+
>>> (x < 1) != (x < 1)
|
1047 |
+
False
|
1048 |
+
|
1049 |
+
The third gotcha involves chained inequalities not involving
|
1050 |
+
``==`` or ``!=``. Occasionally, one may be tempted to write:
|
1051 |
+
|
1052 |
+
>>> e = x < y < z
|
1053 |
+
Traceback (most recent call last):
|
1054 |
+
...
|
1055 |
+
TypeError: symbolic boolean expression has no truth value.
|
1056 |
+
|
1057 |
+
Due to an implementation detail or decision of Python [1]_,
|
1058 |
+
there is no way for SymPy to create a chained inequality with
|
1059 |
+
that syntax so one must use And:
|
1060 |
+
|
1061 |
+
>>> e = And(x < y, y < z)
|
1062 |
+
>>> type( e )
|
1063 |
+
And
|
1064 |
+
>>> e
|
1065 |
+
(x < y) & (y < z)
|
1066 |
+
|
1067 |
+
Although this can also be done with the '&' operator, it cannot
|
1068 |
+
be done with the 'and' operarator:
|
1069 |
+
|
1070 |
+
>>> (x < y) & (y < z)
|
1071 |
+
(x < y) & (y < z)
|
1072 |
+
>>> (x < y) and (y < z)
|
1073 |
+
Traceback (most recent call last):
|
1074 |
+
...
|
1075 |
+
TypeError: cannot determine truth value of Relational
|
1076 |
+
|
1077 |
+
.. [1] This implementation detail is that Python provides no reliable
|
1078 |
+
method to determine that a chained inequality is being built.
|
1079 |
+
Chained comparison operators are evaluated pairwise, using "and"
|
1080 |
+
logic (see
|
1081 |
+
https://docs.python.org/3/reference/expressions.html#not-in). This
|
1082 |
+
is done in an efficient way, so that each object being compared
|
1083 |
+
is only evaluated once and the comparison can short-circuit. For
|
1084 |
+
example, ``1 > 2 > 3`` is evaluated by Python as ``(1 > 2) and (2
|
1085 |
+
> 3)``. The ``and`` operator coerces each side into a bool,
|
1086 |
+
returning the object itself when it short-circuits. The bool of
|
1087 |
+
the --Than operators will raise TypeError on purpose, because
|
1088 |
+
SymPy cannot determine the mathematical ordering of symbolic
|
1089 |
+
expressions. Thus, if we were to compute ``x > y > z``, with
|
1090 |
+
``x``, ``y``, and ``z`` being Symbols, Python converts the
|
1091 |
+
statement (roughly) into these steps:
|
1092 |
+
|
1093 |
+
(1) x > y > z
|
1094 |
+
(2) (x > y) and (y > z)
|
1095 |
+
(3) (GreaterThanObject) and (y > z)
|
1096 |
+
(4) (GreaterThanObject.__bool__()) and (y > z)
|
1097 |
+
(5) TypeError
|
1098 |
+
|
1099 |
+
Because of the ``and`` added at step 2, the statement gets turned into a
|
1100 |
+
weak ternary statement, and the first object's ``__bool__`` method will
|
1101 |
+
raise TypeError. Thus, creating a chained inequality is not possible.
|
1102 |
+
|
1103 |
+
In Python, there is no way to override the ``and`` operator, or to
|
1104 |
+
control how it short circuits, so it is impossible to make something
|
1105 |
+
like ``x > y > z`` work. There was a PEP to change this,
|
1106 |
+
:pep:`335`, but it was officially closed in March, 2012.
|
1107 |
+
|
1108 |
+
"""
|
1109 |
+
__slots__ = ()
|
1110 |
+
|
1111 |
+
rel_op = '>='
|
1112 |
+
|
1113 |
+
@classmethod
|
1114 |
+
def _eval_fuzzy_relation(cls, lhs, rhs):
|
1115 |
+
return is_ge(lhs, rhs)
|
1116 |
+
|
1117 |
+
@property
|
1118 |
+
def strict(self):
|
1119 |
+
return Gt(*self.args)
|
1120 |
+
|
1121 |
+
Ge = GreaterThan
|
1122 |
+
|
1123 |
+
|
1124 |
+
class LessThan(_Less):
|
1125 |
+
__doc__ = GreaterThan.__doc__
|
1126 |
+
__slots__ = ()
|
1127 |
+
|
1128 |
+
rel_op = '<='
|
1129 |
+
|
1130 |
+
@classmethod
|
1131 |
+
def _eval_fuzzy_relation(cls, lhs, rhs):
|
1132 |
+
return is_le(lhs, rhs)
|
1133 |
+
|
1134 |
+
@property
|
1135 |
+
def strict(self):
|
1136 |
+
return Lt(*self.args)
|
1137 |
+
|
1138 |
+
Le = LessThan
|
1139 |
+
|
1140 |
+
|
1141 |
+
class StrictGreaterThan(_Greater):
|
1142 |
+
__doc__ = GreaterThan.__doc__
|
1143 |
+
__slots__ = ()
|
1144 |
+
|
1145 |
+
rel_op = '>'
|
1146 |
+
|
1147 |
+
@classmethod
|
1148 |
+
def _eval_fuzzy_relation(cls, lhs, rhs):
|
1149 |
+
return is_gt(lhs, rhs)
|
1150 |
+
|
1151 |
+
@property
|
1152 |
+
def weak(self):
|
1153 |
+
return Ge(*self.args)
|
1154 |
+
|
1155 |
+
|
1156 |
+
Gt = StrictGreaterThan
|
1157 |
+
|
1158 |
+
|
1159 |
+
class StrictLessThan(_Less):
|
1160 |
+
__doc__ = GreaterThan.__doc__
|
1161 |
+
__slots__ = ()
|
1162 |
+
|
1163 |
+
rel_op = '<'
|
1164 |
+
|
1165 |
+
@classmethod
|
1166 |
+
def _eval_fuzzy_relation(cls, lhs, rhs):
|
1167 |
+
return is_lt(lhs, rhs)
|
1168 |
+
|
1169 |
+
@property
|
1170 |
+
def weak(self):
|
1171 |
+
return Le(*self.args)
|
1172 |
+
|
1173 |
+
Lt = StrictLessThan
|
1174 |
+
|
1175 |
+
# A class-specific (not object-specific) data item used for a minor speedup.
|
1176 |
+
# It is defined here, rather than directly in the class, because the classes
|
1177 |
+
# that it references have not been defined until now (e.g. StrictLessThan).
|
1178 |
+
Relational.ValidRelationOperator = {
|
1179 |
+
None: Equality,
|
1180 |
+
'==': Equality,
|
1181 |
+
'eq': Equality,
|
1182 |
+
'!=': Unequality,
|
1183 |
+
'<>': Unequality,
|
1184 |
+
'ne': Unequality,
|
1185 |
+
'>=': GreaterThan,
|
1186 |
+
'ge': GreaterThan,
|
1187 |
+
'<=': LessThan,
|
1188 |
+
'le': LessThan,
|
1189 |
+
'>': StrictGreaterThan,
|
1190 |
+
'gt': StrictGreaterThan,
|
1191 |
+
'<': StrictLessThan,
|
1192 |
+
'lt': StrictLessThan,
|
1193 |
+
}
|
1194 |
+
|
1195 |
+
|
1196 |
+
def _n2(a, b):
|
1197 |
+
"""Return (a - b).evalf(2) if a and b are comparable, else None.
|
1198 |
+
This should only be used when a and b are already sympified.
|
1199 |
+
"""
|
1200 |
+
# /!\ it is very important (see issue 8245) not to
|
1201 |
+
# use a re-evaluated number in the calculation of dif
|
1202 |
+
if a.is_comparable and b.is_comparable:
|
1203 |
+
dif = (a - b).evalf(2)
|
1204 |
+
if dif.is_comparable:
|
1205 |
+
return dif
|
1206 |
+
|
1207 |
+
|
1208 |
+
@dispatch(Expr, Expr)
|
1209 |
+
def _eval_is_ge(lhs, rhs):
|
1210 |
+
return None
|
1211 |
+
|
1212 |
+
|
1213 |
+
@dispatch(Basic, Basic)
|
1214 |
+
def _eval_is_eq(lhs, rhs):
|
1215 |
+
return None
|
1216 |
+
|
1217 |
+
|
1218 |
+
@dispatch(Tuple, Expr) # type: ignore
|
1219 |
+
def _eval_is_eq(lhs, rhs): # noqa:F811
|
1220 |
+
return False
|
1221 |
+
|
1222 |
+
|
1223 |
+
@dispatch(Tuple, AppliedUndef) # type: ignore
|
1224 |
+
def _eval_is_eq(lhs, rhs): # noqa:F811
|
1225 |
+
return None
|
1226 |
+
|
1227 |
+
|
1228 |
+
@dispatch(Tuple, Symbol) # type: ignore
|
1229 |
+
def _eval_is_eq(lhs, rhs): # noqa:F811
|
1230 |
+
return None
|
1231 |
+
|
1232 |
+
|
1233 |
+
@dispatch(Tuple, Tuple) # type: ignore
|
1234 |
+
def _eval_is_eq(lhs, rhs): # noqa:F811
|
1235 |
+
if len(lhs) != len(rhs):
|
1236 |
+
return False
|
1237 |
+
|
1238 |
+
return fuzzy_and(fuzzy_bool(is_eq(s, o)) for s, o in zip(lhs, rhs))
|
1239 |
+
|
1240 |
+
|
1241 |
+
def is_lt(lhs, rhs, assumptions=None):
|
1242 |
+
"""Fuzzy bool for lhs is strictly less than rhs.
|
1243 |
+
|
1244 |
+
See the docstring for :func:`~.is_ge` for more.
|
1245 |
+
"""
|
1246 |
+
return fuzzy_not(is_ge(lhs, rhs, assumptions))
|
1247 |
+
|
1248 |
+
|
1249 |
+
def is_gt(lhs, rhs, assumptions=None):
|
1250 |
+
"""Fuzzy bool for lhs is strictly greater than rhs.
|
1251 |
+
|
1252 |
+
See the docstring for :func:`~.is_ge` for more.
|
1253 |
+
"""
|
1254 |
+
return fuzzy_not(is_le(lhs, rhs, assumptions))
|
1255 |
+
|
1256 |
+
|
1257 |
+
def is_le(lhs, rhs, assumptions=None):
|
1258 |
+
"""Fuzzy bool for lhs is less than or equal to rhs.
|
1259 |
+
|
1260 |
+
See the docstring for :func:`~.is_ge` for more.
|
1261 |
+
"""
|
1262 |
+
return is_ge(rhs, lhs, assumptions)
|
1263 |
+
|
1264 |
+
|
1265 |
+
def is_ge(lhs, rhs, assumptions=None):
|
1266 |
+
"""
|
1267 |
+
Fuzzy bool for *lhs* is greater than or equal to *rhs*.
|
1268 |
+
|
1269 |
+
Parameters
|
1270 |
+
==========
|
1271 |
+
|
1272 |
+
lhs : Expr
|
1273 |
+
The left-hand side of the expression, must be sympified,
|
1274 |
+
and an instance of expression. Throws an exception if
|
1275 |
+
lhs is not an instance of expression.
|
1276 |
+
|
1277 |
+
rhs : Expr
|
1278 |
+
The right-hand side of the expression, must be sympified
|
1279 |
+
and an instance of expression. Throws an exception if
|
1280 |
+
lhs is not an instance of expression.
|
1281 |
+
|
1282 |
+
assumptions: Boolean, optional
|
1283 |
+
Assumptions taken to evaluate the inequality.
|
1284 |
+
|
1285 |
+
Returns
|
1286 |
+
=======
|
1287 |
+
|
1288 |
+
``True`` if *lhs* is greater than or equal to *rhs*, ``False`` if *lhs*
|
1289 |
+
is less than *rhs*, and ``None`` if the comparison between *lhs* and
|
1290 |
+
*rhs* is indeterminate.
|
1291 |
+
|
1292 |
+
Explanation
|
1293 |
+
===========
|
1294 |
+
|
1295 |
+
This function is intended to give a relatively fast determination and
|
1296 |
+
deliberately does not attempt slow calculations that might help in
|
1297 |
+
obtaining a determination of True or False in more difficult cases.
|
1298 |
+
|
1299 |
+
The four comparison functions ``is_le``, ``is_lt``, ``is_ge``, and ``is_gt`` are
|
1300 |
+
each implemented in terms of ``is_ge`` in the following way:
|
1301 |
+
|
1302 |
+
is_ge(x, y) := is_ge(x, y)
|
1303 |
+
is_le(x, y) := is_ge(y, x)
|
1304 |
+
is_lt(x, y) := fuzzy_not(is_ge(x, y))
|
1305 |
+
is_gt(x, y) := fuzzy_not(is_ge(y, x))
|
1306 |
+
|
1307 |
+
Therefore, supporting new type with this function will ensure behavior for
|
1308 |
+
other three functions as well.
|
1309 |
+
|
1310 |
+
To maintain these equivalences in fuzzy logic it is important that in cases where
|
1311 |
+
either x or y is non-real all comparisons will give None.
|
1312 |
+
|
1313 |
+
Examples
|
1314 |
+
========
|
1315 |
+
|
1316 |
+
>>> from sympy import S, Q
|
1317 |
+
>>> from sympy.core.relational import is_ge, is_le, is_gt, is_lt
|
1318 |
+
>>> from sympy.abc import x
|
1319 |
+
>>> is_ge(S(2), S(0))
|
1320 |
+
True
|
1321 |
+
>>> is_ge(S(0), S(2))
|
1322 |
+
False
|
1323 |
+
>>> is_le(S(0), S(2))
|
1324 |
+
True
|
1325 |
+
>>> is_gt(S(0), S(2))
|
1326 |
+
False
|
1327 |
+
>>> is_lt(S(2), S(0))
|
1328 |
+
False
|
1329 |
+
|
1330 |
+
Assumptions can be passed to evaluate the quality which is otherwise
|
1331 |
+
indeterminate.
|
1332 |
+
|
1333 |
+
>>> print(is_ge(x, S(0)))
|
1334 |
+
None
|
1335 |
+
>>> is_ge(x, S(0), assumptions=Q.positive(x))
|
1336 |
+
True
|
1337 |
+
|
1338 |
+
New types can be supported by dispatching to ``_eval_is_ge``.
|
1339 |
+
|
1340 |
+
>>> from sympy import Expr, sympify
|
1341 |
+
>>> from sympy.multipledispatch import dispatch
|
1342 |
+
>>> class MyExpr(Expr):
|
1343 |
+
... def __new__(cls, arg):
|
1344 |
+
... return super().__new__(cls, sympify(arg))
|
1345 |
+
... @property
|
1346 |
+
... def value(self):
|
1347 |
+
... return self.args[0]
|
1348 |
+
>>> @dispatch(MyExpr, MyExpr)
|
1349 |
+
... def _eval_is_ge(a, b):
|
1350 |
+
... return is_ge(a.value, b.value)
|
1351 |
+
>>> a = MyExpr(1)
|
1352 |
+
>>> b = MyExpr(2)
|
1353 |
+
>>> is_ge(b, a)
|
1354 |
+
True
|
1355 |
+
>>> is_le(a, b)
|
1356 |
+
True
|
1357 |
+
"""
|
1358 |
+
from sympy.assumptions.wrapper import AssumptionsWrapper, is_extended_nonnegative
|
1359 |
+
|
1360 |
+
if not (isinstance(lhs, Expr) and isinstance(rhs, Expr)):
|
1361 |
+
raise TypeError("Can only compare inequalities with Expr")
|
1362 |
+
|
1363 |
+
retval = _eval_is_ge(lhs, rhs)
|
1364 |
+
|
1365 |
+
if retval is not None:
|
1366 |
+
return retval
|
1367 |
+
else:
|
1368 |
+
n2 = _n2(lhs, rhs)
|
1369 |
+
if n2 is not None:
|
1370 |
+
# use float comparison for infinity.
|
1371 |
+
# otherwise get stuck in infinite recursion
|
1372 |
+
if n2 in (S.Infinity, S.NegativeInfinity):
|
1373 |
+
n2 = float(n2)
|
1374 |
+
return n2 >= 0
|
1375 |
+
|
1376 |
+
_lhs = AssumptionsWrapper(lhs, assumptions)
|
1377 |
+
_rhs = AssumptionsWrapper(rhs, assumptions)
|
1378 |
+
if _lhs.is_extended_real and _rhs.is_extended_real:
|
1379 |
+
if (_lhs.is_infinite and _lhs.is_extended_positive) or (_rhs.is_infinite and _rhs.is_extended_negative):
|
1380 |
+
return True
|
1381 |
+
diff = lhs - rhs
|
1382 |
+
if diff is not S.NaN:
|
1383 |
+
rv = is_extended_nonnegative(diff, assumptions)
|
1384 |
+
if rv is not None:
|
1385 |
+
return rv
|
1386 |
+
|
1387 |
+
|
1388 |
+
def is_neq(lhs, rhs, assumptions=None):
|
1389 |
+
"""Fuzzy bool for lhs does not equal rhs.
|
1390 |
+
|
1391 |
+
See the docstring for :func:`~.is_eq` for more.
|
1392 |
+
"""
|
1393 |
+
return fuzzy_not(is_eq(lhs, rhs, assumptions))
|
1394 |
+
|
1395 |
+
|
1396 |
+
def is_eq(lhs, rhs, assumptions=None):
|
1397 |
+
"""
|
1398 |
+
Fuzzy bool representing mathematical equality between *lhs* and *rhs*.
|
1399 |
+
|
1400 |
+
Parameters
|
1401 |
+
==========
|
1402 |
+
|
1403 |
+
lhs : Expr
|
1404 |
+
The left-hand side of the expression, must be sympified.
|
1405 |
+
|
1406 |
+
rhs : Expr
|
1407 |
+
The right-hand side of the expression, must be sympified.
|
1408 |
+
|
1409 |
+
assumptions: Boolean, optional
|
1410 |
+
Assumptions taken to evaluate the equality.
|
1411 |
+
|
1412 |
+
Returns
|
1413 |
+
=======
|
1414 |
+
|
1415 |
+
``True`` if *lhs* is equal to *rhs*, ``False`` is *lhs* is not equal to *rhs*,
|
1416 |
+
and ``None`` if the comparison between *lhs* and *rhs* is indeterminate.
|
1417 |
+
|
1418 |
+
Explanation
|
1419 |
+
===========
|
1420 |
+
|
1421 |
+
This function is intended to give a relatively fast determination and
|
1422 |
+
deliberately does not attempt slow calculations that might help in
|
1423 |
+
obtaining a determination of True or False in more difficult cases.
|
1424 |
+
|
1425 |
+
:func:`~.is_neq` calls this function to return its value, so supporting
|
1426 |
+
new type with this function will ensure correct behavior for ``is_neq``
|
1427 |
+
as well.
|
1428 |
+
|
1429 |
+
Examples
|
1430 |
+
========
|
1431 |
+
|
1432 |
+
>>> from sympy import Q, S
|
1433 |
+
>>> from sympy.core.relational import is_eq, is_neq
|
1434 |
+
>>> from sympy.abc import x
|
1435 |
+
>>> is_eq(S(0), S(0))
|
1436 |
+
True
|
1437 |
+
>>> is_neq(S(0), S(0))
|
1438 |
+
False
|
1439 |
+
>>> is_eq(S(0), S(2))
|
1440 |
+
False
|
1441 |
+
>>> is_neq(S(0), S(2))
|
1442 |
+
True
|
1443 |
+
|
1444 |
+
Assumptions can be passed to evaluate the equality which is otherwise
|
1445 |
+
indeterminate.
|
1446 |
+
|
1447 |
+
>>> print(is_eq(x, S(0)))
|
1448 |
+
None
|
1449 |
+
>>> is_eq(x, S(0), assumptions=Q.zero(x))
|
1450 |
+
True
|
1451 |
+
|
1452 |
+
New types can be supported by dispatching to ``_eval_is_eq``.
|
1453 |
+
|
1454 |
+
>>> from sympy import Basic, sympify
|
1455 |
+
>>> from sympy.multipledispatch import dispatch
|
1456 |
+
>>> class MyBasic(Basic):
|
1457 |
+
... def __new__(cls, arg):
|
1458 |
+
... return Basic.__new__(cls, sympify(arg))
|
1459 |
+
... @property
|
1460 |
+
... def value(self):
|
1461 |
+
... return self.args[0]
|
1462 |
+
...
|
1463 |
+
>>> @dispatch(MyBasic, MyBasic)
|
1464 |
+
... def _eval_is_eq(a, b):
|
1465 |
+
... return is_eq(a.value, b.value)
|
1466 |
+
...
|
1467 |
+
>>> a = MyBasic(1)
|
1468 |
+
>>> b = MyBasic(1)
|
1469 |
+
>>> is_eq(a, b)
|
1470 |
+
True
|
1471 |
+
>>> is_neq(a, b)
|
1472 |
+
False
|
1473 |
+
|
1474 |
+
"""
|
1475 |
+
# here, _eval_Eq is only called for backwards compatibility
|
1476 |
+
# new code should use is_eq with multiple dispatch as
|
1477 |
+
# outlined in the docstring
|
1478 |
+
for side1, side2 in (lhs, rhs), (rhs, lhs):
|
1479 |
+
eval_func = getattr(side1, '_eval_Eq', None)
|
1480 |
+
if eval_func is not None:
|
1481 |
+
retval = eval_func(side2)
|
1482 |
+
if retval is not None:
|
1483 |
+
return retval
|
1484 |
+
|
1485 |
+
retval = _eval_is_eq(lhs, rhs)
|
1486 |
+
if retval is not None:
|
1487 |
+
return retval
|
1488 |
+
|
1489 |
+
if dispatch(type(lhs), type(rhs)) != dispatch(type(rhs), type(lhs)):
|
1490 |
+
retval = _eval_is_eq(rhs, lhs)
|
1491 |
+
if retval is not None:
|
1492 |
+
return retval
|
1493 |
+
|
1494 |
+
# retval is still None, so go through the equality logic
|
1495 |
+
# If expressions have the same structure, they must be equal.
|
1496 |
+
if lhs == rhs:
|
1497 |
+
return True # e.g. True == True
|
1498 |
+
elif all(isinstance(i, BooleanAtom) for i in (rhs, lhs)):
|
1499 |
+
return False # True != False
|
1500 |
+
elif not (lhs.is_Symbol or rhs.is_Symbol) and (
|
1501 |
+
isinstance(lhs, Boolean) !=
|
1502 |
+
isinstance(rhs, Boolean)):
|
1503 |
+
return False # only Booleans can equal Booleans
|
1504 |
+
|
1505 |
+
from sympy.assumptions.wrapper import (AssumptionsWrapper,
|
1506 |
+
is_infinite, is_extended_real)
|
1507 |
+
from .add import Add
|
1508 |
+
|
1509 |
+
_lhs = AssumptionsWrapper(lhs, assumptions)
|
1510 |
+
_rhs = AssumptionsWrapper(rhs, assumptions)
|
1511 |
+
|
1512 |
+
if _lhs.is_infinite or _rhs.is_infinite:
|
1513 |
+
if fuzzy_xor([_lhs.is_infinite, _rhs.is_infinite]):
|
1514 |
+
return False
|
1515 |
+
if fuzzy_xor([_lhs.is_extended_real, _rhs.is_extended_real]):
|
1516 |
+
return False
|
1517 |
+
if fuzzy_and([_lhs.is_extended_real, _rhs.is_extended_real]):
|
1518 |
+
return fuzzy_xor([_lhs.is_extended_positive, fuzzy_not(_rhs.is_extended_positive)])
|
1519 |
+
|
1520 |
+
# Try to split real/imaginary parts and equate them
|
1521 |
+
I = S.ImaginaryUnit
|
1522 |
+
|
1523 |
+
def split_real_imag(expr):
|
1524 |
+
real_imag = lambda t: (
|
1525 |
+
'real' if is_extended_real(t, assumptions) else
|
1526 |
+
'imag' if is_extended_real(I*t, assumptions) else None)
|
1527 |
+
return sift(Add.make_args(expr), real_imag)
|
1528 |
+
|
1529 |
+
lhs_ri = split_real_imag(lhs)
|
1530 |
+
if not lhs_ri[None]:
|
1531 |
+
rhs_ri = split_real_imag(rhs)
|
1532 |
+
if not rhs_ri[None]:
|
1533 |
+
eq_real = is_eq(Add(*lhs_ri['real']), Add(*rhs_ri['real']), assumptions)
|
1534 |
+
eq_imag = is_eq(I * Add(*lhs_ri['imag']), I * Add(*rhs_ri['imag']), assumptions)
|
1535 |
+
return fuzzy_and(map(fuzzy_bool, [eq_real, eq_imag]))
|
1536 |
+
|
1537 |
+
from sympy.functions.elementary.complexes import arg
|
1538 |
+
# Compare e.g. zoo with 1+I*oo by comparing args
|
1539 |
+
arglhs = arg(lhs)
|
1540 |
+
argrhs = arg(rhs)
|
1541 |
+
# Guard against Eq(nan, nan) -> False
|
1542 |
+
if not (arglhs == S.NaN and argrhs == S.NaN):
|
1543 |
+
return fuzzy_bool(is_eq(arglhs, argrhs, assumptions))
|
1544 |
+
|
1545 |
+
if all(isinstance(i, Expr) for i in (lhs, rhs)):
|
1546 |
+
# see if the difference evaluates
|
1547 |
+
dif = lhs - rhs
|
1548 |
+
_dif = AssumptionsWrapper(dif, assumptions)
|
1549 |
+
z = _dif.is_zero
|
1550 |
+
if z is not None:
|
1551 |
+
if z is False and _dif.is_commutative: # issue 10728
|
1552 |
+
return False
|
1553 |
+
if z:
|
1554 |
+
return True
|
1555 |
+
|
1556 |
+
n2 = _n2(lhs, rhs)
|
1557 |
+
if n2 is not None:
|
1558 |
+
return _sympify(n2 == 0)
|
1559 |
+
|
1560 |
+
# see if the ratio evaluates
|
1561 |
+
n, d = dif.as_numer_denom()
|
1562 |
+
rv = None
|
1563 |
+
_n = AssumptionsWrapper(n, assumptions)
|
1564 |
+
_d = AssumptionsWrapper(d, assumptions)
|
1565 |
+
if _n.is_zero:
|
1566 |
+
rv = _d.is_nonzero
|
1567 |
+
elif _n.is_finite:
|
1568 |
+
if _d.is_infinite:
|
1569 |
+
rv = True
|
1570 |
+
elif _n.is_zero is False:
|
1571 |
+
rv = _d.is_infinite
|
1572 |
+
if rv is None:
|
1573 |
+
# if the condition that makes the denominator
|
1574 |
+
# infinite does not make the original expression
|
1575 |
+
# True then False can be returned
|
1576 |
+
from sympy.simplify.simplify import clear_coefficients
|
1577 |
+
l, r = clear_coefficients(d, S.Infinity)
|
1578 |
+
args = [_.subs(l, r) for _ in (lhs, rhs)]
|
1579 |
+
if args != [lhs, rhs]:
|
1580 |
+
rv = fuzzy_bool(is_eq(*args, assumptions))
|
1581 |
+
if rv is True:
|
1582 |
+
rv = None
|
1583 |
+
elif any(is_infinite(a, assumptions) for a in Add.make_args(n)):
|
1584 |
+
# (inf or nan)/x != 0
|
1585 |
+
rv = False
|
1586 |
+
if rv is not None:
|
1587 |
+
return rv
|
venv/lib/python3.10/site-packages/sympy/core/sorting.py
ADDED
@@ -0,0 +1,309 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import defaultdict
|
2 |
+
|
3 |
+
from .sympify import sympify, SympifyError
|
4 |
+
from sympy.utilities.iterables import iterable, uniq
|
5 |
+
|
6 |
+
|
7 |
+
__all__ = ['default_sort_key', 'ordered']
|
8 |
+
|
9 |
+
|
10 |
+
def default_sort_key(item, order=None):
|
11 |
+
"""Return a key that can be used for sorting.
|
12 |
+
|
13 |
+
The key has the structure:
|
14 |
+
|
15 |
+
(class_key, (len(args), args), exponent.sort_key(), coefficient)
|
16 |
+
|
17 |
+
This key is supplied by the sort_key routine of Basic objects when
|
18 |
+
``item`` is a Basic object or an object (other than a string) that
|
19 |
+
sympifies to a Basic object. Otherwise, this function produces the
|
20 |
+
key.
|
21 |
+
|
22 |
+
The ``order`` argument is passed along to the sort_key routine and is
|
23 |
+
used to determine how the terms *within* an expression are ordered.
|
24 |
+
(See examples below) ``order`` options are: 'lex', 'grlex', 'grevlex',
|
25 |
+
and reversed values of the same (e.g. 'rev-lex'). The default order
|
26 |
+
value is None (which translates to 'lex').
|
27 |
+
|
28 |
+
Examples
|
29 |
+
========
|
30 |
+
|
31 |
+
>>> from sympy import S, I, default_sort_key, sin, cos, sqrt
|
32 |
+
>>> from sympy.core.function import UndefinedFunction
|
33 |
+
>>> from sympy.abc import x
|
34 |
+
|
35 |
+
The following are equivalent ways of getting the key for an object:
|
36 |
+
|
37 |
+
>>> x.sort_key() == default_sort_key(x)
|
38 |
+
True
|
39 |
+
|
40 |
+
Here are some examples of the key that is produced:
|
41 |
+
|
42 |
+
>>> default_sort_key(UndefinedFunction('f'))
|
43 |
+
((0, 0, 'UndefinedFunction'), (1, ('f',)), ((1, 0, 'Number'),
|
44 |
+
(0, ()), (), 1), 1)
|
45 |
+
>>> default_sort_key('1')
|
46 |
+
((0, 0, 'str'), (1, ('1',)), ((1, 0, 'Number'), (0, ()), (), 1), 1)
|
47 |
+
>>> default_sort_key(S.One)
|
48 |
+
((1, 0, 'Number'), (0, ()), (), 1)
|
49 |
+
>>> default_sort_key(2)
|
50 |
+
((1, 0, 'Number'), (0, ()), (), 2)
|
51 |
+
|
52 |
+
While sort_key is a method only defined for SymPy objects,
|
53 |
+
default_sort_key will accept anything as an argument so it is
|
54 |
+
more robust as a sorting key. For the following, using key=
|
55 |
+
lambda i: i.sort_key() would fail because 2 does not have a sort_key
|
56 |
+
method; that's why default_sort_key is used. Note, that it also
|
57 |
+
handles sympification of non-string items likes ints:
|
58 |
+
|
59 |
+
>>> a = [2, I, -I]
|
60 |
+
>>> sorted(a, key=default_sort_key)
|
61 |
+
[2, -I, I]
|
62 |
+
|
63 |
+
The returned key can be used anywhere that a key can be specified for
|
64 |
+
a function, e.g. sort, min, max, etc...:
|
65 |
+
|
66 |
+
>>> a.sort(key=default_sort_key); a[0]
|
67 |
+
2
|
68 |
+
>>> min(a, key=default_sort_key)
|
69 |
+
2
|
70 |
+
|
71 |
+
Notes
|
72 |
+
=====
|
73 |
+
|
74 |
+
The key returned is useful for getting items into a canonical order
|
75 |
+
that will be the same across platforms. It is not directly useful for
|
76 |
+
sorting lists of expressions:
|
77 |
+
|
78 |
+
>>> a, b = x, 1/x
|
79 |
+
|
80 |
+
Since ``a`` has only 1 term, its value of sort_key is unaffected by
|
81 |
+
``order``:
|
82 |
+
|
83 |
+
>>> a.sort_key() == a.sort_key('rev-lex')
|
84 |
+
True
|
85 |
+
|
86 |
+
If ``a`` and ``b`` are combined then the key will differ because there
|
87 |
+
are terms that can be ordered:
|
88 |
+
|
89 |
+
>>> eq = a + b
|
90 |
+
>>> eq.sort_key() == eq.sort_key('rev-lex')
|
91 |
+
False
|
92 |
+
>>> eq.as_ordered_terms()
|
93 |
+
[x, 1/x]
|
94 |
+
>>> eq.as_ordered_terms('rev-lex')
|
95 |
+
[1/x, x]
|
96 |
+
|
97 |
+
But since the keys for each of these terms are independent of ``order``'s
|
98 |
+
value, they do not sort differently when they appear separately in a list:
|
99 |
+
|
100 |
+
>>> sorted(eq.args, key=default_sort_key)
|
101 |
+
[1/x, x]
|
102 |
+
>>> sorted(eq.args, key=lambda i: default_sort_key(i, order='rev-lex'))
|
103 |
+
[1/x, x]
|
104 |
+
|
105 |
+
The order of terms obtained when using these keys is the order that would
|
106 |
+
be obtained if those terms were *factors* in a product.
|
107 |
+
|
108 |
+
Although it is useful for quickly putting expressions in canonical order,
|
109 |
+
it does not sort expressions based on their complexity defined by the
|
110 |
+
number of operations, power of variables and others:
|
111 |
+
|
112 |
+
>>> sorted([sin(x)*cos(x), sin(x)], key=default_sort_key)
|
113 |
+
[sin(x)*cos(x), sin(x)]
|
114 |
+
>>> sorted([x, x**2, sqrt(x), x**3], key=default_sort_key)
|
115 |
+
[sqrt(x), x, x**2, x**3]
|
116 |
+
|
117 |
+
See Also
|
118 |
+
========
|
119 |
+
|
120 |
+
ordered, sympy.core.expr.Expr.as_ordered_factors, sympy.core.expr.Expr.as_ordered_terms
|
121 |
+
|
122 |
+
"""
|
123 |
+
from .basic import Basic
|
124 |
+
from .singleton import S
|
125 |
+
|
126 |
+
if isinstance(item, Basic):
|
127 |
+
return item.sort_key(order=order)
|
128 |
+
|
129 |
+
if iterable(item, exclude=str):
|
130 |
+
if isinstance(item, dict):
|
131 |
+
args = item.items()
|
132 |
+
unordered = True
|
133 |
+
elif isinstance(item, set):
|
134 |
+
args = item
|
135 |
+
unordered = True
|
136 |
+
else:
|
137 |
+
# e.g. tuple, list
|
138 |
+
args = list(item)
|
139 |
+
unordered = False
|
140 |
+
|
141 |
+
args = [default_sort_key(arg, order=order) for arg in args]
|
142 |
+
|
143 |
+
if unordered:
|
144 |
+
# e.g. dict, set
|
145 |
+
args = sorted(args)
|
146 |
+
|
147 |
+
cls_index, args = 10, (len(args), tuple(args))
|
148 |
+
else:
|
149 |
+
if not isinstance(item, str):
|
150 |
+
try:
|
151 |
+
item = sympify(item, strict=True)
|
152 |
+
except SympifyError:
|
153 |
+
# e.g. lambda x: x
|
154 |
+
pass
|
155 |
+
else:
|
156 |
+
if isinstance(item, Basic):
|
157 |
+
# e.g int -> Integer
|
158 |
+
return default_sort_key(item)
|
159 |
+
# e.g. UndefinedFunction
|
160 |
+
|
161 |
+
# e.g. str
|
162 |
+
cls_index, args = 0, (1, (str(item),))
|
163 |
+
|
164 |
+
return (cls_index, 0, item.__class__.__name__
|
165 |
+
), args, S.One.sort_key(), S.One
|
166 |
+
|
167 |
+
|
168 |
+
def _node_count(e):
|
169 |
+
# this not only counts nodes, it affirms that the
|
170 |
+
# args are Basic (i.e. have an args property). If
|
171 |
+
# some object has a non-Basic arg, it needs to be
|
172 |
+
# fixed since it is intended that all Basic args
|
173 |
+
# are of Basic type (though this is not easy to enforce).
|
174 |
+
if e.is_Float:
|
175 |
+
return 0.5
|
176 |
+
return 1 + sum(map(_node_count, e.args))
|
177 |
+
|
178 |
+
|
179 |
+
def _nodes(e):
|
180 |
+
"""
|
181 |
+
A helper for ordered() which returns the node count of ``e`` which
|
182 |
+
for Basic objects is the number of Basic nodes in the expression tree
|
183 |
+
but for other objects is 1 (unless the object is an iterable or dict
|
184 |
+
for which the sum of nodes is returned).
|
185 |
+
"""
|
186 |
+
from .basic import Basic
|
187 |
+
from .function import Derivative
|
188 |
+
|
189 |
+
if isinstance(e, Basic):
|
190 |
+
if isinstance(e, Derivative):
|
191 |
+
return _nodes(e.expr) + sum(i[1] if i[1].is_Number else
|
192 |
+
_nodes(i[1]) for i in e.variable_count)
|
193 |
+
return _node_count(e)
|
194 |
+
elif iterable(e):
|
195 |
+
return 1 + sum(_nodes(ei) for ei in e)
|
196 |
+
elif isinstance(e, dict):
|
197 |
+
return 1 + sum(_nodes(k) + _nodes(v) for k, v in e.items())
|
198 |
+
else:
|
199 |
+
return 1
|
200 |
+
|
201 |
+
|
202 |
+
def ordered(seq, keys=None, default=True, warn=False):
|
203 |
+
"""Return an iterator of the seq where keys are used to break ties in
|
204 |
+
a conservative fashion: if, after applying a key, there are no ties
|
205 |
+
then no other keys will be computed.
|
206 |
+
|
207 |
+
Two default keys will be applied if 1) keys are not provided or 2) the
|
208 |
+
given keys do not resolve all ties (but only if ``default`` is True). The
|
209 |
+
two keys are ``_nodes`` (which places smaller expressions before large) and
|
210 |
+
``default_sort_key`` which (if the ``sort_key`` for an object is defined
|
211 |
+
properly) should resolve any ties.
|
212 |
+
|
213 |
+
If ``warn`` is True then an error will be raised if there were no
|
214 |
+
keys remaining to break ties. This can be used if it was expected that
|
215 |
+
there should be no ties between items that are not identical.
|
216 |
+
|
217 |
+
Examples
|
218 |
+
========
|
219 |
+
|
220 |
+
>>> from sympy import ordered, count_ops
|
221 |
+
>>> from sympy.abc import x, y
|
222 |
+
|
223 |
+
The count_ops is not sufficient to break ties in this list and the first
|
224 |
+
two items appear in their original order (i.e. the sorting is stable):
|
225 |
+
|
226 |
+
>>> list(ordered([y + 2, x + 2, x**2 + y + 3],
|
227 |
+
... count_ops, default=False, warn=False))
|
228 |
+
...
|
229 |
+
[y + 2, x + 2, x**2 + y + 3]
|
230 |
+
|
231 |
+
The default_sort_key allows the tie to be broken:
|
232 |
+
|
233 |
+
>>> list(ordered([y + 2, x + 2, x**2 + y + 3]))
|
234 |
+
...
|
235 |
+
[x + 2, y + 2, x**2 + y + 3]
|
236 |
+
|
237 |
+
Here, sequences are sorted by length, then sum:
|
238 |
+
|
239 |
+
>>> seq, keys = [[[1, 2, 1], [0, 3, 1], [1, 1, 3], [2], [1]], [
|
240 |
+
... lambda x: len(x),
|
241 |
+
... lambda x: sum(x)]]
|
242 |
+
...
|
243 |
+
>>> list(ordered(seq, keys, default=False, warn=False))
|
244 |
+
[[1], [2], [1, 2, 1], [0, 3, 1], [1, 1, 3]]
|
245 |
+
|
246 |
+
If ``warn`` is True, an error will be raised if there were not
|
247 |
+
enough keys to break ties:
|
248 |
+
|
249 |
+
>>> list(ordered(seq, keys, default=False, warn=True))
|
250 |
+
Traceback (most recent call last):
|
251 |
+
...
|
252 |
+
ValueError: not enough keys to break ties
|
253 |
+
|
254 |
+
|
255 |
+
Notes
|
256 |
+
=====
|
257 |
+
|
258 |
+
The decorated sort is one of the fastest ways to sort a sequence for
|
259 |
+
which special item comparison is desired: the sequence is decorated,
|
260 |
+
sorted on the basis of the decoration (e.g. making all letters lower
|
261 |
+
case) and then undecorated. If one wants to break ties for items that
|
262 |
+
have the same decorated value, a second key can be used. But if the
|
263 |
+
second key is expensive to compute then it is inefficient to decorate
|
264 |
+
all items with both keys: only those items having identical first key
|
265 |
+
values need to be decorated. This function applies keys successively
|
266 |
+
only when needed to break ties. By yielding an iterator, use of the
|
267 |
+
tie-breaker is delayed as long as possible.
|
268 |
+
|
269 |
+
This function is best used in cases when use of the first key is
|
270 |
+
expected to be a good hashing function; if there are no unique hashes
|
271 |
+
from application of a key, then that key should not have been used. The
|
272 |
+
exception, however, is that even if there are many collisions, if the
|
273 |
+
first group is small and one does not need to process all items in the
|
274 |
+
list then time will not be wasted sorting what one was not interested
|
275 |
+
in. For example, if one were looking for the minimum in a list and
|
276 |
+
there were several criteria used to define the sort order, then this
|
277 |
+
function would be good at returning that quickly if the first group
|
278 |
+
of candidates is small relative to the number of items being processed.
|
279 |
+
|
280 |
+
"""
|
281 |
+
|
282 |
+
d = defaultdict(list)
|
283 |
+
if keys:
|
284 |
+
if isinstance(keys, (list, tuple)):
|
285 |
+
keys = list(keys)
|
286 |
+
f = keys.pop(0)
|
287 |
+
else:
|
288 |
+
f = keys
|
289 |
+
keys = []
|
290 |
+
for a in seq:
|
291 |
+
d[f(a)].append(a)
|
292 |
+
else:
|
293 |
+
if not default:
|
294 |
+
raise ValueError('if default=False then keys must be provided')
|
295 |
+
d[None].extend(seq)
|
296 |
+
|
297 |
+
for k, value in sorted(d.items()):
|
298 |
+
if len(value) > 1:
|
299 |
+
if keys:
|
300 |
+
value = ordered(value, keys, default, warn)
|
301 |
+
elif default:
|
302 |
+
value = ordered(value, (_nodes, default_sort_key,),
|
303 |
+
default=False, warn=warn)
|
304 |
+
elif warn:
|
305 |
+
u = list(uniq(value))
|
306 |
+
if len(u) > 1:
|
307 |
+
raise ValueError(
|
308 |
+
'not enough keys to break ties: %s' % u)
|
309 |
+
yield from value
|
venv/lib/python3.10/site-packages/sympy/core/trace.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.utilities.exceptions import sympy_deprecation_warning
|
2 |
+
|
3 |
+
sympy_deprecation_warning(
|
4 |
+
"""
|
5 |
+
sympy.core.trace is deprecated. Use sympy.physics.quantum.trace
|
6 |
+
instead.
|
7 |
+
""",
|
8 |
+
deprecated_since_version="1.10",
|
9 |
+
active_deprecations_target="sympy-core-trace-deprecated",
|
10 |
+
)
|
11 |
+
|
12 |
+
from sympy.physics.quantum.trace import Tr # noqa:F401
|
venv/lib/python3.10/site-packages/sympy/solvers/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.94 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/solvers/__pycache__/bivariate.cpython-310.pyc
ADDED
Binary file (13.9 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/solvers/__pycache__/decompogen.cpython-310.pyc
ADDED
Binary file (3.5 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/solvers/__pycache__/deutils.cpython-310.pyc
ADDED
Binary file (8.06 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/solvers/__pycache__/inequalities.cpython-310.pyc
ADDED
Binary file (23.9 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/solvers/__pycache__/pde.cpython-310.pyc
ADDED
Binary file (29.8 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/solvers/__pycache__/polysys.cpython-310.pyc
ADDED
Binary file (12.8 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/solvers/__pycache__/recurr.cpython-310.pyc
ADDED
Binary file (22.9 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/solvers/__pycache__/solvers.cpython-310.pyc
ADDED
Binary file (98.6 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/solvers/__pycache__/solveset.cpython-310.pyc
ADDED
Binary file (105 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/solvers/benchmarks/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/sympy/solvers/benchmarks/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (192 Bytes). View file
|
|
venv/lib/python3.10/site-packages/sympy/solvers/benchmarks/__pycache__/bench_solvers.cpython-310.pyc
ADDED
Binary file (732 Bytes). View file
|
|
venv/lib/python3.10/site-packages/sympy/solvers/benchmarks/bench_solvers.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.symbol import Symbol
|
2 |
+
from sympy.matrices.dense import (eye, zeros)
|
3 |
+
from sympy.solvers.solvers import solve_linear_system
|
4 |
+
|
5 |
+
N = 8
|
6 |
+
M = zeros(N, N + 1)
|
7 |
+
M[:, :N] = eye(N)
|
8 |
+
S = [Symbol('A%i' % i) for i in range(N)]
|
9 |
+
|
10 |
+
|
11 |
+
def timeit_linsolve_trivial():
|
12 |
+
solve_linear_system(M, *S)
|
venv/lib/python3.10/site-packages/sympy/solvers/diophantine/__init__.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .diophantine import diophantine, classify_diop, diop_solve
|
2 |
+
|
3 |
+
__all__ = [
|
4 |
+
'diophantine', 'classify_diop', 'diop_solve'
|
5 |
+
]
|
venv/lib/python3.10/site-packages/sympy/solvers/diophantine/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (291 Bytes). View file
|
|
venv/lib/python3.10/site-packages/sympy/solvers/diophantine/__pycache__/diophantine.cpython-310.pyc
ADDED
Binary file (103 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/solvers/diophantine/diophantine.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
venv/lib/python3.10/site-packages/sympy/solvers/diophantine/tests/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/sympy/solvers/diophantine/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (199 Bytes). View file
|
|
venv/lib/python3.10/site-packages/sympy/solvers/diophantine/tests/__pycache__/test_diophantine.cpython-310.pyc
ADDED
Binary file (46 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/solvers/diophantine/tests/test_diophantine.py
ADDED
@@ -0,0 +1,1037 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.add import Add
|
2 |
+
from sympy.core.mul import Mul
|
3 |
+
from sympy.core.numbers import (Rational, oo, pi)
|
4 |
+
from sympy.core.relational import Eq
|
5 |
+
from sympy.core.singleton import S
|
6 |
+
from sympy.core.symbol import symbols
|
7 |
+
from sympy.matrices.dense import Matrix
|
8 |
+
from sympy.ntheory.factor_ import factorint
|
9 |
+
from sympy.simplify.powsimp import powsimp
|
10 |
+
from sympy.core.function import _mexpand
|
11 |
+
from sympy.core.sorting import default_sort_key, ordered
|
12 |
+
from sympy.functions.elementary.trigonometric import sin
|
13 |
+
from sympy.solvers.diophantine import diophantine
|
14 |
+
from sympy.solvers.diophantine.diophantine import (diop_DN,
|
15 |
+
diop_solve, diop_ternary_quadratic_normal,
|
16 |
+
diop_general_pythagorean, diop_ternary_quadratic, diop_linear,
|
17 |
+
diop_quadratic, diop_general_sum_of_squares, diop_general_sum_of_even_powers,
|
18 |
+
descent, diop_bf_DN, divisible, equivalent, find_DN, ldescent, length,
|
19 |
+
reconstruct, partition, power_representation,
|
20 |
+
prime_as_sum_of_two_squares, square_factor, sum_of_four_squares,
|
21 |
+
sum_of_three_squares, transformation_to_DN, transformation_to_normal,
|
22 |
+
classify_diop, base_solution_linear, cornacchia, sqf_normal, gaussian_reduce, holzer,
|
23 |
+
check_param, parametrize_ternary_quadratic, sum_of_powers, sum_of_squares,
|
24 |
+
_diop_ternary_quadratic_normal, _nint_or_floor,
|
25 |
+
_odd, _even, _remove_gcd, _can_do_sum_of_squares, DiophantineSolutionSet, GeneralPythagorean,
|
26 |
+
BinaryQuadratic)
|
27 |
+
|
28 |
+
from sympy.testing.pytest import slow, raises, XFAIL
|
29 |
+
from sympy.utilities.iterables import (
|
30 |
+
signed_permutations)
|
31 |
+
|
32 |
+
a, b, c, d, p, q, x, y, z, w, t, u, v, X, Y, Z = symbols(
|
33 |
+
"a, b, c, d, p, q, x, y, z, w, t, u, v, X, Y, Z", integer=True)
|
34 |
+
t_0, t_1, t_2, t_3, t_4, t_5, t_6 = symbols("t_:7", integer=True)
|
35 |
+
m1, m2, m3 = symbols('m1:4', integer=True)
|
36 |
+
n1 = symbols('n1', integer=True)
|
37 |
+
|
38 |
+
|
39 |
+
def diop_simplify(eq):
|
40 |
+
return _mexpand(powsimp(_mexpand(eq)))
|
41 |
+
|
42 |
+
|
43 |
+
def test_input_format():
|
44 |
+
raises(TypeError, lambda: diophantine(sin(x)))
|
45 |
+
raises(TypeError, lambda: diophantine(x/pi - 3))
|
46 |
+
|
47 |
+
|
48 |
+
def test_nosols():
|
49 |
+
# diophantine should sympify eq so that these are equivalent
|
50 |
+
assert diophantine(3) == set()
|
51 |
+
assert diophantine(S(3)) == set()
|
52 |
+
|
53 |
+
|
54 |
+
def test_univariate():
|
55 |
+
assert diop_solve((x - 1)*(x - 2)**2) == {(1,), (2,)}
|
56 |
+
assert diop_solve((x - 1)*(x - 2)) == {(1,), (2,)}
|
57 |
+
|
58 |
+
|
59 |
+
def test_classify_diop():
|
60 |
+
raises(TypeError, lambda: classify_diop(x**2/3 - 1))
|
61 |
+
raises(ValueError, lambda: classify_diop(1))
|
62 |
+
raises(NotImplementedError, lambda: classify_diop(w*x*y*z - 1))
|
63 |
+
raises(NotImplementedError, lambda: classify_diop(x**3 + y**3 + z**4 - 90))
|
64 |
+
assert classify_diop(14*x**2 + 15*x - 42) == (
|
65 |
+
[x], {1: -42, x: 15, x**2: 14}, 'univariate')
|
66 |
+
assert classify_diop(x*y + z) == (
|
67 |
+
[x, y, z], {x*y: 1, z: 1}, 'inhomogeneous_ternary_quadratic')
|
68 |
+
assert classify_diop(x*y + z + w + x**2) == (
|
69 |
+
[w, x, y, z], {x*y: 1, w: 1, x**2: 1, z: 1}, 'inhomogeneous_general_quadratic')
|
70 |
+
assert classify_diop(x*y + x*z + x**2 + 1) == (
|
71 |
+
[x, y, z], {x*y: 1, x*z: 1, x**2: 1, 1: 1}, 'inhomogeneous_general_quadratic')
|
72 |
+
assert classify_diop(x*y + z + w + 42) == (
|
73 |
+
[w, x, y, z], {x*y: 1, w: 1, 1: 42, z: 1}, 'inhomogeneous_general_quadratic')
|
74 |
+
assert classify_diop(x*y + z*w) == (
|
75 |
+
[w, x, y, z], {x*y: 1, w*z: 1}, 'homogeneous_general_quadratic')
|
76 |
+
assert classify_diop(x*y**2 + 1) == (
|
77 |
+
[x, y], {x*y**2: 1, 1: 1}, 'cubic_thue')
|
78 |
+
assert classify_diop(x**4 + y**4 + z**4 - (1 + 16 + 81)) == (
|
79 |
+
[x, y, z], {1: -98, x**4: 1, z**4: 1, y**4: 1}, 'general_sum_of_even_powers')
|
80 |
+
assert classify_diop(x**2 + y**2 + z**2) == (
|
81 |
+
[x, y, z], {x**2: 1, y**2: 1, z**2: 1}, 'homogeneous_ternary_quadratic_normal')
|
82 |
+
|
83 |
+
|
84 |
+
def test_linear():
|
85 |
+
assert diop_solve(x) == (0,)
|
86 |
+
assert diop_solve(1*x) == (0,)
|
87 |
+
assert diop_solve(3*x) == (0,)
|
88 |
+
assert diop_solve(x + 1) == (-1,)
|
89 |
+
assert diop_solve(2*x + 1) == (None,)
|
90 |
+
assert diop_solve(2*x + 4) == (-2,)
|
91 |
+
assert diop_solve(y + x) == (t_0, -t_0)
|
92 |
+
assert diop_solve(y + x + 0) == (t_0, -t_0)
|
93 |
+
assert diop_solve(y + x - 0) == (t_0, -t_0)
|
94 |
+
assert diop_solve(0*x - y - 5) == (-5,)
|
95 |
+
assert diop_solve(3*y + 2*x - 5) == (3*t_0 - 5, -2*t_0 + 5)
|
96 |
+
assert diop_solve(2*x - 3*y - 5) == (3*t_0 - 5, 2*t_0 - 5)
|
97 |
+
assert diop_solve(-2*x - 3*y - 5) == (3*t_0 + 5, -2*t_0 - 5)
|
98 |
+
assert diop_solve(7*x + 5*y) == (5*t_0, -7*t_0)
|
99 |
+
assert diop_solve(2*x + 4*y) == (2*t_0, -t_0)
|
100 |
+
assert diop_solve(4*x + 6*y - 4) == (3*t_0 - 2, -2*t_0 + 2)
|
101 |
+
assert diop_solve(4*x + 6*y - 3) == (None, None)
|
102 |
+
assert diop_solve(0*x + 3*y - 4*z + 5) == (4*t_0 + 5, 3*t_0 + 5)
|
103 |
+
assert diop_solve(4*x + 3*y - 4*z + 5) == (t_0, 8*t_0 + 4*t_1 + 5, 7*t_0 + 3*t_1 + 5)
|
104 |
+
assert diop_solve(4*x + 3*y - 4*z + 5, None) == (0, 5, 5)
|
105 |
+
assert diop_solve(4*x + 2*y + 8*z - 5) == (None, None, None)
|
106 |
+
assert diop_solve(5*x + 7*y - 2*z - 6) == (t_0, -3*t_0 + 2*t_1 + 6, -8*t_0 + 7*t_1 + 18)
|
107 |
+
assert diop_solve(3*x - 6*y + 12*z - 9) == (2*t_0 + 3, t_0 + 2*t_1, t_1)
|
108 |
+
assert diop_solve(6*w + 9*x + 20*y - z) == (t_0, t_1, t_1 + t_2, 6*t_0 + 29*t_1 + 20*t_2)
|
109 |
+
|
110 |
+
# to ignore constant factors, use diophantine
|
111 |
+
raises(TypeError, lambda: diop_solve(x/2))
|
112 |
+
|
113 |
+
|
114 |
+
def test_quadratic_simple_hyperbolic_case():
|
115 |
+
# Simple Hyperbolic case: A = C = 0 and B != 0
|
116 |
+
assert diop_solve(3*x*y + 34*x - 12*y + 1) == \
|
117 |
+
{(-133, -11), (5, -57)}
|
118 |
+
assert diop_solve(6*x*y + 2*x + 3*y + 1) == set()
|
119 |
+
assert diop_solve(-13*x*y + 2*x - 4*y - 54) == {(27, 0)}
|
120 |
+
assert diop_solve(-27*x*y - 30*x - 12*y - 54) == {(-14, -1)}
|
121 |
+
assert diop_solve(2*x*y + 5*x + 56*y + 7) == {(-161, -3), (-47, -6), (-35, -12),
|
122 |
+
(-29, -69), (-27, 64), (-21, 7),
|
123 |
+
(-9, 1), (105, -2)}
|
124 |
+
assert diop_solve(6*x*y + 9*x + 2*y + 3) == set()
|
125 |
+
assert diop_solve(x*y + x + y + 1) == {(-1, t), (t, -1)}
|
126 |
+
assert diophantine(48*x*y)
|
127 |
+
|
128 |
+
|
129 |
+
def test_quadratic_elliptical_case():
|
130 |
+
# Elliptical case: B**2 - 4AC < 0
|
131 |
+
|
132 |
+
assert diop_solve(42*x**2 + 8*x*y + 15*y**2 + 23*x + 17*y - 4915) == {(-11, -1)}
|
133 |
+
assert diop_solve(4*x**2 + 3*y**2 + 5*x - 11*y + 12) == set()
|
134 |
+
assert diop_solve(x**2 + y**2 + 2*x + 2*y + 2) == {(-1, -1)}
|
135 |
+
assert diop_solve(15*x**2 - 9*x*y + 14*y**2 - 23*x - 14*y - 4950) == {(-15, 6)}
|
136 |
+
assert diop_solve(10*x**2 + 12*x*y + 12*y**2 - 34) == \
|
137 |
+
{(-1, -1), (-1, 2), (1, -2), (1, 1)}
|
138 |
+
|
139 |
+
|
140 |
+
def test_quadratic_parabolic_case():
|
141 |
+
# Parabolic case: B**2 - 4AC = 0
|
142 |
+
assert check_solutions(8*x**2 - 24*x*y + 18*y**2 + 5*x + 7*y + 16)
|
143 |
+
assert check_solutions(8*x**2 - 24*x*y + 18*y**2 + 6*x + 12*y - 6)
|
144 |
+
assert check_solutions(8*x**2 + 24*x*y + 18*y**2 + 4*x + 6*y - 7)
|
145 |
+
assert check_solutions(-4*x**2 + 4*x*y - y**2 + 2*x - 3)
|
146 |
+
assert check_solutions(x**2 + 2*x*y + y**2 + 2*x + 2*y + 1)
|
147 |
+
assert check_solutions(x**2 - 2*x*y + y**2 + 2*x + 2*y + 1)
|
148 |
+
assert check_solutions(y**2 - 41*x + 40)
|
149 |
+
|
150 |
+
|
151 |
+
def test_quadratic_perfect_square():
|
152 |
+
# B**2 - 4*A*C > 0
|
153 |
+
# B**2 - 4*A*C is a perfect square
|
154 |
+
assert check_solutions(48*x*y)
|
155 |
+
assert check_solutions(4*x**2 - 5*x*y + y**2 + 2)
|
156 |
+
assert check_solutions(-2*x**2 - 3*x*y + 2*y**2 -2*x - 17*y + 25)
|
157 |
+
assert check_solutions(12*x**2 + 13*x*y + 3*y**2 - 2*x + 3*y - 12)
|
158 |
+
assert check_solutions(8*x**2 + 10*x*y + 2*y**2 - 32*x - 13*y - 23)
|
159 |
+
assert check_solutions(4*x**2 - 4*x*y - 3*y- 8*x - 3)
|
160 |
+
assert check_solutions(- 4*x*y - 4*y**2 - 3*y- 5*x - 10)
|
161 |
+
assert check_solutions(x**2 - y**2 - 2*x - 2*y)
|
162 |
+
assert check_solutions(x**2 - 9*y**2 - 2*x - 6*y)
|
163 |
+
assert check_solutions(4*x**2 - 9*y**2 - 4*x - 12*y - 3)
|
164 |
+
|
165 |
+
|
166 |
+
def test_quadratic_non_perfect_square():
|
167 |
+
# B**2 - 4*A*C is not a perfect square
|
168 |
+
# Used check_solutions() since the solutions are complex expressions involving
|
169 |
+
# square roots and exponents
|
170 |
+
assert check_solutions(x**2 - 2*x - 5*y**2)
|
171 |
+
assert check_solutions(3*x**2 - 2*y**2 - 2*x - 2*y)
|
172 |
+
assert check_solutions(x**2 - x*y - y**2 - 3*y)
|
173 |
+
assert check_solutions(x**2 - 9*y**2 - 2*x - 6*y)
|
174 |
+
assert BinaryQuadratic(x**2 + y**2 + 2*x + 2*y + 2).solve() == {(-1, -1)}
|
175 |
+
|
176 |
+
|
177 |
+
def test_issue_9106():
|
178 |
+
eq = -48 - 2*x*(3*x - 1) + y*(3*y - 1)
|
179 |
+
v = (x, y)
|
180 |
+
for sol in diophantine(eq):
|
181 |
+
assert not diop_simplify(eq.xreplace(dict(zip(v, sol))))
|
182 |
+
|
183 |
+
|
184 |
+
def test_issue_18138():
|
185 |
+
eq = x**2 - x - y**2
|
186 |
+
v = (x, y)
|
187 |
+
for sol in diophantine(eq):
|
188 |
+
assert not diop_simplify(eq.xreplace(dict(zip(v, sol))))
|
189 |
+
|
190 |
+
|
191 |
+
@slow
|
192 |
+
def test_quadratic_non_perfect_slow():
|
193 |
+
assert check_solutions(8*x**2 + 10*x*y - 2*y**2 - 32*x - 13*y - 23)
|
194 |
+
# This leads to very large numbers.
|
195 |
+
# assert check_solutions(5*x**2 - 13*x*y + y**2 - 4*x - 4*y - 15)
|
196 |
+
assert check_solutions(-3*x**2 - 2*x*y + 7*y**2 - 5*x - 7)
|
197 |
+
assert check_solutions(-4 - x + 4*x**2 - y - 3*x*y - 4*y**2)
|
198 |
+
assert check_solutions(1 + 2*x + 2*x**2 + 2*y + x*y - 2*y**2)
|
199 |
+
|
200 |
+
|
201 |
+
def test_DN():
|
202 |
+
# Most of the test cases were adapted from,
|
203 |
+
# Solving the generalized Pell equation x**2 - D*y**2 = N, John P. Robertson, July 31, 2004.
|
204 |
+
# https://web.archive.org/web/20160323033128/http://www.jpr2718.org/pell.pdf
|
205 |
+
# others are verified using Wolfram Alpha.
|
206 |
+
|
207 |
+
# Covers cases where D <= 0 or D > 0 and D is a square or N = 0
|
208 |
+
# Solutions are straightforward in these cases.
|
209 |
+
assert diop_DN(3, 0) == [(0, 0)]
|
210 |
+
assert diop_DN(-17, -5) == []
|
211 |
+
assert diop_DN(-19, 23) == [(2, 1)]
|
212 |
+
assert diop_DN(-13, 17) == [(2, 1)]
|
213 |
+
assert diop_DN(-15, 13) == []
|
214 |
+
assert diop_DN(0, 5) == []
|
215 |
+
assert diop_DN(0, 9) == [(3, t)]
|
216 |
+
assert diop_DN(9, 0) == [(3*t, t)]
|
217 |
+
assert diop_DN(16, 24) == []
|
218 |
+
assert diop_DN(9, 180) == [(18, 4)]
|
219 |
+
assert diop_DN(9, -180) == [(12, 6)]
|
220 |
+
assert diop_DN(7, 0) == [(0, 0)]
|
221 |
+
|
222 |
+
# When equation is x**2 + y**2 = N
|
223 |
+
# Solutions are interchangeable
|
224 |
+
assert diop_DN(-1, 5) == [(2, 1), (1, 2)]
|
225 |
+
assert diop_DN(-1, 169) == [(12, 5), (5, 12), (13, 0), (0, 13)]
|
226 |
+
|
227 |
+
# D > 0 and D is not a square
|
228 |
+
|
229 |
+
# N = 1
|
230 |
+
assert diop_DN(13, 1) == [(649, 180)]
|
231 |
+
assert diop_DN(980, 1) == [(51841, 1656)]
|
232 |
+
assert diop_DN(981, 1) == [(158070671986249, 5046808151700)]
|
233 |
+
assert diop_DN(986, 1) == [(49299, 1570)]
|
234 |
+
assert diop_DN(991, 1) == [(379516400906811930638014896080, 12055735790331359447442538767)]
|
235 |
+
assert diop_DN(17, 1) == [(33, 8)]
|
236 |
+
assert diop_DN(19, 1) == [(170, 39)]
|
237 |
+
|
238 |
+
# N = -1
|
239 |
+
assert diop_DN(13, -1) == [(18, 5)]
|
240 |
+
assert diop_DN(991, -1) == []
|
241 |
+
assert diop_DN(41, -1) == [(32, 5)]
|
242 |
+
assert diop_DN(290, -1) == [(17, 1)]
|
243 |
+
assert diop_DN(21257, -1) == [(13913102721304, 95427381109)]
|
244 |
+
assert diop_DN(32, -1) == []
|
245 |
+
|
246 |
+
# |N| > 1
|
247 |
+
# Some tests were created using calculator at
|
248 |
+
# http://www.numbertheory.org/php/patz.html
|
249 |
+
|
250 |
+
assert diop_DN(13, -4) == [(3, 1), (393, 109), (36, 10)]
|
251 |
+
# Source I referred returned (3, 1), (393, 109) and (-3, 1) as fundamental solutions
|
252 |
+
# So (-3, 1) and (393, 109) should be in the same equivalent class
|
253 |
+
assert equivalent(-3, 1, 393, 109, 13, -4) == True
|
254 |
+
|
255 |
+
assert diop_DN(13, 27) == [(220, 61), (40, 11), (768, 213), (12, 3)]
|
256 |
+
assert set(diop_DN(157, 12)) == {(13, 1), (10663, 851), (579160, 46222),
|
257 |
+
(483790960, 38610722), (26277068347, 2097138361),
|
258 |
+
(21950079635497, 1751807067011)}
|
259 |
+
assert diop_DN(13, 25) == [(3245, 900)]
|
260 |
+
assert diop_DN(192, 18) == []
|
261 |
+
assert diop_DN(23, 13) == [(-6, 1), (6, 1)]
|
262 |
+
assert diop_DN(167, 2) == [(13, 1)]
|
263 |
+
assert diop_DN(167, -2) == []
|
264 |
+
|
265 |
+
assert diop_DN(123, -2) == [(11, 1)]
|
266 |
+
# One calculator returned [(11, 1), (-11, 1)] but both of these are in
|
267 |
+
# the same equivalence class
|
268 |
+
assert equivalent(11, 1, -11, 1, 123, -2)
|
269 |
+
|
270 |
+
assert diop_DN(123, -23) == [(-10, 1), (10, 1)]
|
271 |
+
|
272 |
+
assert diop_DN(0, 0, t) == [(0, t)]
|
273 |
+
assert diop_DN(0, -1, t) == []
|
274 |
+
|
275 |
+
|
276 |
+
def test_bf_pell():
|
277 |
+
assert diop_bf_DN(13, -4) == [(3, 1), (-3, 1), (36, 10)]
|
278 |
+
assert diop_bf_DN(13, 27) == [(12, 3), (-12, 3), (40, 11), (-40, 11)]
|
279 |
+
assert diop_bf_DN(167, -2) == []
|
280 |
+
assert diop_bf_DN(1729, 1) == [(44611924489705, 1072885712316)]
|
281 |
+
assert diop_bf_DN(89, -8) == [(9, 1), (-9, 1)]
|
282 |
+
assert diop_bf_DN(21257, -1) == [(13913102721304, 95427381109)]
|
283 |
+
assert diop_bf_DN(340, -4) == [(756, 41)]
|
284 |
+
assert diop_bf_DN(-1, 0, t) == [(0, 0)]
|
285 |
+
assert diop_bf_DN(0, 0, t) == [(0, t)]
|
286 |
+
assert diop_bf_DN(4, 0, t) == [(2*t, t), (-2*t, t)]
|
287 |
+
assert diop_bf_DN(3, 0, t) == [(0, 0)]
|
288 |
+
assert diop_bf_DN(1, -2, t) == []
|
289 |
+
|
290 |
+
|
291 |
+
def test_length():
|
292 |
+
assert length(2, 1, 0) == 1
|
293 |
+
assert length(-2, 4, 5) == 3
|
294 |
+
assert length(-5, 4, 17) == 4
|
295 |
+
assert length(0, 4, 13) == 6
|
296 |
+
assert length(7, 13, 11) == 23
|
297 |
+
assert length(1, 6, 4) == 2
|
298 |
+
|
299 |
+
|
300 |
+
def is_pell_transformation_ok(eq):
|
301 |
+
"""
|
302 |
+
Test whether X*Y, X, or Y terms are present in the equation
|
303 |
+
after transforming the equation using the transformation returned
|
304 |
+
by transformation_to_pell(). If they are not present we are good.
|
305 |
+
Moreover, coefficient of X**2 should be a divisor of coefficient of
|
306 |
+
Y**2 and the constant term.
|
307 |
+
"""
|
308 |
+
A, B = transformation_to_DN(eq)
|
309 |
+
u = (A*Matrix([X, Y]) + B)[0]
|
310 |
+
v = (A*Matrix([X, Y]) + B)[1]
|
311 |
+
simplified = diop_simplify(eq.subs(zip((x, y), (u, v))))
|
312 |
+
|
313 |
+
coeff = dict([reversed(t.as_independent(*[X, Y])) for t in simplified.args])
|
314 |
+
|
315 |
+
for term in [X*Y, X, Y]:
|
316 |
+
if term in coeff.keys():
|
317 |
+
return False
|
318 |
+
|
319 |
+
for term in [X**2, Y**2, 1]:
|
320 |
+
if term not in coeff.keys():
|
321 |
+
coeff[term] = 0
|
322 |
+
|
323 |
+
if coeff[X**2] != 0:
|
324 |
+
return divisible(coeff[Y**2], coeff[X**2]) and \
|
325 |
+
divisible(coeff[1], coeff[X**2])
|
326 |
+
|
327 |
+
return True
|
328 |
+
|
329 |
+
|
330 |
+
def test_transformation_to_pell():
|
331 |
+
assert is_pell_transformation_ok(-13*x**2 - 7*x*y + y**2 + 2*x - 2*y - 14)
|
332 |
+
assert is_pell_transformation_ok(-17*x**2 + 19*x*y - 7*y**2 - 5*x - 13*y - 23)
|
333 |
+
assert is_pell_transformation_ok(x**2 - y**2 + 17)
|
334 |
+
assert is_pell_transformation_ok(-x**2 + 7*y**2 - 23)
|
335 |
+
assert is_pell_transformation_ok(25*x**2 - 45*x*y + 5*y**2 - 5*x - 10*y + 5)
|
336 |
+
assert is_pell_transformation_ok(190*x**2 + 30*x*y + y**2 - 3*y - 170*x - 130)
|
337 |
+
assert is_pell_transformation_ok(x**2 - 2*x*y -190*y**2 - 7*y - 23*x - 89)
|
338 |
+
assert is_pell_transformation_ok(15*x**2 - 9*x*y + 14*y**2 - 23*x - 14*y - 4950)
|
339 |
+
|
340 |
+
|
341 |
+
def test_find_DN():
|
342 |
+
assert find_DN(x**2 - 2*x - y**2) == (1, 1)
|
343 |
+
assert find_DN(x**2 - 3*y**2 - 5) == (3, 5)
|
344 |
+
assert find_DN(x**2 - 2*x*y - 4*y**2 - 7) == (5, 7)
|
345 |
+
assert find_DN(4*x**2 - 8*x*y - y**2 - 9) == (20, 36)
|
346 |
+
assert find_DN(7*x**2 - 2*x*y - y**2 - 12) == (8, 84)
|
347 |
+
assert find_DN(-3*x**2 + 4*x*y -y**2) == (1, 0)
|
348 |
+
assert find_DN(-13*x**2 - 7*x*y + y**2 + 2*x - 2*y -14) == (101, -7825480)
|
349 |
+
|
350 |
+
|
351 |
+
def test_ldescent():
|
352 |
+
# Equations which have solutions
|
353 |
+
u = ([(13, 23), (3, -11), (41, -113), (4, -7), (-7, 4), (91, -3), (1, 1), (1, -1),
|
354 |
+
(4, 32), (17, 13), (123689, 1), (19, -570)])
|
355 |
+
for a, b in u:
|
356 |
+
w, x, y = ldescent(a, b)
|
357 |
+
assert a*x**2 + b*y**2 == w**2
|
358 |
+
assert ldescent(-1, -1) is None
|
359 |
+
|
360 |
+
|
361 |
+
def test_diop_ternary_quadratic_normal():
|
362 |
+
assert check_solutions(234*x**2 - 65601*y**2 - z**2)
|
363 |
+
assert check_solutions(23*x**2 + 616*y**2 - z**2)
|
364 |
+
assert check_solutions(5*x**2 + 4*y**2 - z**2)
|
365 |
+
assert check_solutions(3*x**2 + 6*y**2 - 3*z**2)
|
366 |
+
assert check_solutions(x**2 + 3*y**2 - z**2)
|
367 |
+
assert check_solutions(4*x**2 + 5*y**2 - z**2)
|
368 |
+
assert check_solutions(x**2 + y**2 - z**2)
|
369 |
+
assert check_solutions(16*x**2 + y**2 - 25*z**2)
|
370 |
+
assert check_solutions(6*x**2 - y**2 + 10*z**2)
|
371 |
+
assert check_solutions(213*x**2 + 12*y**2 - 9*z**2)
|
372 |
+
assert check_solutions(34*x**2 - 3*y**2 - 301*z**2)
|
373 |
+
assert check_solutions(124*x**2 - 30*y**2 - 7729*z**2)
|
374 |
+
|
375 |
+
|
376 |
+
def is_normal_transformation_ok(eq):
|
377 |
+
A = transformation_to_normal(eq)
|
378 |
+
X, Y, Z = A*Matrix([x, y, z])
|
379 |
+
simplified = diop_simplify(eq.subs(zip((x, y, z), (X, Y, Z))))
|
380 |
+
|
381 |
+
coeff = dict([reversed(t.as_independent(*[X, Y, Z])) for t in simplified.args])
|
382 |
+
for term in [X*Y, Y*Z, X*Z]:
|
383 |
+
if term in coeff.keys():
|
384 |
+
return False
|
385 |
+
|
386 |
+
return True
|
387 |
+
|
388 |
+
|
389 |
+
def test_transformation_to_normal():
|
390 |
+
assert is_normal_transformation_ok(x**2 + 3*y**2 + z**2 - 13*x*y - 16*y*z + 12*x*z)
|
391 |
+
assert is_normal_transformation_ok(x**2 + 3*y**2 - 100*z**2)
|
392 |
+
assert is_normal_transformation_ok(x**2 + 23*y*z)
|
393 |
+
assert is_normal_transformation_ok(3*y**2 - 100*z**2 - 12*x*y)
|
394 |
+
assert is_normal_transformation_ok(x**2 + 23*x*y - 34*y*z + 12*x*z)
|
395 |
+
assert is_normal_transformation_ok(z**2 + 34*x*y - 23*y*z + x*z)
|
396 |
+
assert is_normal_transformation_ok(x**2 + y**2 + z**2 - x*y - y*z - x*z)
|
397 |
+
assert is_normal_transformation_ok(x**2 + 2*y*z + 3*z**2)
|
398 |
+
assert is_normal_transformation_ok(x*y + 2*x*z + 3*y*z)
|
399 |
+
assert is_normal_transformation_ok(2*x*z + 3*y*z)
|
400 |
+
|
401 |
+
|
402 |
+
def test_diop_ternary_quadratic():
|
403 |
+
assert check_solutions(2*x**2 + z**2 + y**2 - 4*x*y)
|
404 |
+
assert check_solutions(x**2 - y**2 - z**2 - x*y - y*z)
|
405 |
+
assert check_solutions(3*x**2 - x*y - y*z - x*z)
|
406 |
+
assert check_solutions(x**2 - y*z - x*z)
|
407 |
+
assert check_solutions(5*x**2 - 3*x*y - x*z)
|
408 |
+
assert check_solutions(4*x**2 - 5*y**2 - x*z)
|
409 |
+
assert check_solutions(3*x**2 + 2*y**2 - z**2 - 2*x*y + 5*y*z - 7*y*z)
|
410 |
+
assert check_solutions(8*x**2 - 12*y*z)
|
411 |
+
assert check_solutions(45*x**2 - 7*y**2 - 8*x*y - z**2)
|
412 |
+
assert check_solutions(x**2 - 49*y**2 - z**2 + 13*z*y -8*x*y)
|
413 |
+
assert check_solutions(90*x**2 + 3*y**2 + 5*x*y + 2*z*y + 5*x*z)
|
414 |
+
assert check_solutions(x**2 + 3*y**2 + z**2 - x*y - 17*y*z)
|
415 |
+
assert check_solutions(x**2 + 3*y**2 + z**2 - x*y - 16*y*z + 12*x*z)
|
416 |
+
assert check_solutions(x**2 + 3*y**2 + z**2 - 13*x*y - 16*y*z + 12*x*z)
|
417 |
+
assert check_solutions(x*y - 7*y*z + 13*x*z)
|
418 |
+
|
419 |
+
assert diop_ternary_quadratic_normal(x**2 + y**2 + z**2) == (None, None, None)
|
420 |
+
assert diop_ternary_quadratic_normal(x**2 + y**2) is None
|
421 |
+
raises(ValueError, lambda:
|
422 |
+
_diop_ternary_quadratic_normal((x, y, z),
|
423 |
+
{x*y: 1, x**2: 2, y**2: 3, z**2: 0}))
|
424 |
+
eq = -2*x*y - 6*x*z + 7*y**2 - 3*y*z + 4*z**2
|
425 |
+
assert diop_ternary_quadratic(eq) == (7, 2, 0)
|
426 |
+
assert diop_ternary_quadratic_normal(4*x**2 + 5*y**2 - z**2) == \
|
427 |
+
(1, 0, 2)
|
428 |
+
assert diop_ternary_quadratic(x*y + 2*y*z) == \
|
429 |
+
(-2, 0, n1)
|
430 |
+
eq = -5*x*y - 8*x*z - 3*y*z + 8*z**2
|
431 |
+
assert parametrize_ternary_quadratic(eq) == \
|
432 |
+
(8*p**2 - 3*p*q, -8*p*q + 8*q**2, 5*p*q)
|
433 |
+
# this cannot be tested with diophantine because it will
|
434 |
+
# factor into a product
|
435 |
+
assert diop_solve(x*y + 2*y*z) == (-2*p*q, -n1*p**2 + p**2, p*q)
|
436 |
+
|
437 |
+
|
438 |
+
def test_square_factor():
|
439 |
+
assert square_factor(1) == square_factor(-1) == 1
|
440 |
+
assert square_factor(0) == 1
|
441 |
+
assert square_factor(5) == square_factor(-5) == 1
|
442 |
+
assert square_factor(4) == square_factor(-4) == 2
|
443 |
+
assert square_factor(12) == square_factor(-12) == 2
|
444 |
+
assert square_factor(6) == 1
|
445 |
+
assert square_factor(18) == 3
|
446 |
+
assert square_factor(52) == 2
|
447 |
+
assert square_factor(49) == 7
|
448 |
+
assert square_factor(392) == 14
|
449 |
+
assert square_factor(factorint(-12)) == 2
|
450 |
+
|
451 |
+
|
452 |
+
def test_parametrize_ternary_quadratic():
|
453 |
+
assert check_solutions(x**2 + y**2 - z**2)
|
454 |
+
assert check_solutions(x**2 + 2*x*y + z**2)
|
455 |
+
assert check_solutions(234*x**2 - 65601*y**2 - z**2)
|
456 |
+
assert check_solutions(3*x**2 + 2*y**2 - z**2 - 2*x*y + 5*y*z - 7*y*z)
|
457 |
+
assert check_solutions(x**2 - y**2 - z**2)
|
458 |
+
assert check_solutions(x**2 - 49*y**2 - z**2 + 13*z*y - 8*x*y)
|
459 |
+
assert check_solutions(8*x*y + z**2)
|
460 |
+
assert check_solutions(124*x**2 - 30*y**2 - 7729*z**2)
|
461 |
+
assert check_solutions(236*x**2 - 225*y**2 - 11*x*y - 13*y*z - 17*x*z)
|
462 |
+
assert check_solutions(90*x**2 + 3*y**2 + 5*x*y + 2*z*y + 5*x*z)
|
463 |
+
assert check_solutions(124*x**2 - 30*y**2 - 7729*z**2)
|
464 |
+
|
465 |
+
|
466 |
+
def test_no_square_ternary_quadratic():
|
467 |
+
assert check_solutions(2*x*y + y*z - 3*x*z)
|
468 |
+
assert check_solutions(189*x*y - 345*y*z - 12*x*z)
|
469 |
+
assert check_solutions(23*x*y + 34*y*z)
|
470 |
+
assert check_solutions(x*y + y*z + z*x)
|
471 |
+
assert check_solutions(23*x*y + 23*y*z + 23*x*z)
|
472 |
+
|
473 |
+
|
474 |
+
def test_descent():
|
475 |
+
|
476 |
+
u = ([(13, 23), (3, -11), (41, -113), (91, -3), (1, 1), (1, -1), (17, 13), (123689, 1), (19, -570)])
|
477 |
+
for a, b in u:
|
478 |
+
w, x, y = descent(a, b)
|
479 |
+
assert a*x**2 + b*y**2 == w**2
|
480 |
+
# the docstring warns against bad input, so these are expected results
|
481 |
+
# - can't both be negative
|
482 |
+
raises(TypeError, lambda: descent(-1, -3))
|
483 |
+
# A can't be zero unless B != 1
|
484 |
+
raises(ZeroDivisionError, lambda: descent(0, 3))
|
485 |
+
# supposed to be square-free
|
486 |
+
raises(TypeError, lambda: descent(4, 3))
|
487 |
+
|
488 |
+
|
489 |
+
def test_diophantine():
|
490 |
+
assert check_solutions((x - y)*(y - z)*(z - x))
|
491 |
+
assert check_solutions((x - y)*(x**2 + y**2 - z**2))
|
492 |
+
assert check_solutions((x - 3*y + 7*z)*(x**2 + y**2 - z**2))
|
493 |
+
assert check_solutions(x**2 - 3*y**2 - 1)
|
494 |
+
assert check_solutions(y**2 + 7*x*y)
|
495 |
+
assert check_solutions(x**2 - 3*x*y + y**2)
|
496 |
+
assert check_solutions(z*(x**2 - y**2 - 15))
|
497 |
+
assert check_solutions(x*(2*y - 2*z + 5))
|
498 |
+
assert check_solutions((x**2 - 3*y**2 - 1)*(x**2 - y**2 - 15))
|
499 |
+
assert check_solutions((x**2 - 3*y**2 - 1)*(y - 7*z))
|
500 |
+
assert check_solutions((x**2 + y**2 - z**2)*(x - 7*y - 3*z + 4*w))
|
501 |
+
# Following test case caused problems in parametric representation
|
502 |
+
# But this can be solved by factoring out y.
|
503 |
+
# No need to use methods for ternary quadratic equations.
|
504 |
+
assert check_solutions(y**2 - 7*x*y + 4*y*z)
|
505 |
+
assert check_solutions(x**2 - 2*x + 1)
|
506 |
+
|
507 |
+
assert diophantine(x - y) == diophantine(Eq(x, y))
|
508 |
+
# 18196
|
509 |
+
eq = x**4 + y**4 - 97
|
510 |
+
assert diophantine(eq, permute=True) == diophantine(-eq, permute=True)
|
511 |
+
assert diophantine(3*x*pi - 2*y*pi) == {(2*t_0, 3*t_0)}
|
512 |
+
eq = x**2 + y**2 + z**2 - 14
|
513 |
+
base_sol = {(1, 2, 3)}
|
514 |
+
assert diophantine(eq) == base_sol
|
515 |
+
complete_soln = set(signed_permutations(base_sol.pop()))
|
516 |
+
assert diophantine(eq, permute=True) == complete_soln
|
517 |
+
|
518 |
+
assert diophantine(x**2 + x*Rational(15, 14) - 3) == set()
|
519 |
+
# test issue 11049
|
520 |
+
eq = 92*x**2 - 99*y**2 - z**2
|
521 |
+
coeff = eq.as_coefficients_dict()
|
522 |
+
assert _diop_ternary_quadratic_normal((x, y, z), coeff) == \
|
523 |
+
{(9, 7, 51)}
|
524 |
+
assert diophantine(eq) == {(
|
525 |
+
891*p**2 + 9*q**2, -693*p**2 - 102*p*q + 7*q**2,
|
526 |
+
5049*p**2 - 1386*p*q - 51*q**2)}
|
527 |
+
eq = 2*x**2 + 2*y**2 - z**2
|
528 |
+
coeff = eq.as_coefficients_dict()
|
529 |
+
assert _diop_ternary_quadratic_normal((x, y, z), coeff) == \
|
530 |
+
{(1, 1, 2)}
|
531 |
+
assert diophantine(eq) == {(
|
532 |
+
2*p**2 - q**2, -2*p**2 + 4*p*q - q**2,
|
533 |
+
4*p**2 - 4*p*q + 2*q**2)}
|
534 |
+
eq = 411*x**2+57*y**2-221*z**2
|
535 |
+
coeff = eq.as_coefficients_dict()
|
536 |
+
assert _diop_ternary_quadratic_normal((x, y, z), coeff) == \
|
537 |
+
{(2021, 2645, 3066)}
|
538 |
+
assert diophantine(eq) == \
|
539 |
+
{(115197*p**2 - 446641*q**2, -150765*p**2 + 1355172*p*q -
|
540 |
+
584545*q**2, 174762*p**2 - 301530*p*q + 677586*q**2)}
|
541 |
+
eq = 573*x**2+267*y**2-984*z**2
|
542 |
+
coeff = eq.as_coefficients_dict()
|
543 |
+
assert _diop_ternary_quadratic_normal((x, y, z), coeff) == \
|
544 |
+
{(49, 233, 127)}
|
545 |
+
assert diophantine(eq) == \
|
546 |
+
{(4361*p**2 - 16072*q**2, -20737*p**2 + 83312*p*q - 76424*q**2,
|
547 |
+
11303*p**2 - 41474*p*q + 41656*q**2)}
|
548 |
+
# this produces factors during reconstruction
|
549 |
+
eq = x**2 + 3*y**2 - 12*z**2
|
550 |
+
coeff = eq.as_coefficients_dict()
|
551 |
+
assert _diop_ternary_quadratic_normal((x, y, z), coeff) == \
|
552 |
+
{(0, 2, 1)}
|
553 |
+
assert diophantine(eq) == \
|
554 |
+
{(24*p*q, 2*p**2 - 24*q**2, p**2 + 12*q**2)}
|
555 |
+
# solvers have not been written for every type
|
556 |
+
raises(NotImplementedError, lambda: diophantine(x*y**2 + 1))
|
557 |
+
|
558 |
+
# rational expressions
|
559 |
+
assert diophantine(1/x) == set()
|
560 |
+
assert diophantine(1/x + 1/y - S.Half) == {(6, 3), (-2, 1), (4, 4), (1, -2), (3, 6)}
|
561 |
+
assert diophantine(x**2 + y**2 +3*x- 5, permute=True) == \
|
562 |
+
{(-1, 1), (-4, -1), (1, -1), (1, 1), (-4, 1), (-1, -1), (4, 1), (4, -1)}
|
563 |
+
|
564 |
+
|
565 |
+
#test issue 18186
|
566 |
+
assert diophantine(y**4 + x**4 - 2**4 - 3**4, syms=(x, y), permute=True) == \
|
567 |
+
{(-3, -2), (-3, 2), (-2, -3), (-2, 3), (2, -3), (2, 3), (3, -2), (3, 2)}
|
568 |
+
assert diophantine(y**4 + x**4 - 2**4 - 3**4, syms=(y, x), permute=True) == \
|
569 |
+
{(-3, -2), (-3, 2), (-2, -3), (-2, 3), (2, -3), (2, 3), (3, -2), (3, 2)}
|
570 |
+
|
571 |
+
# issue 18122
|
572 |
+
assert check_solutions(x**2-y)
|
573 |
+
assert check_solutions(y**2-x)
|
574 |
+
assert diophantine((x**2-y), t) == {(t, t**2)}
|
575 |
+
assert diophantine((y**2-x), t) == {(t**2, -t)}
|
576 |
+
|
577 |
+
|
578 |
+
def test_general_pythagorean():
|
579 |
+
from sympy.abc import a, b, c, d, e
|
580 |
+
|
581 |
+
assert check_solutions(a**2 + b**2 + c**2 - d**2)
|
582 |
+
assert check_solutions(a**2 + 4*b**2 + 4*c**2 - d**2)
|
583 |
+
assert check_solutions(9*a**2 + 4*b**2 + 4*c**2 - d**2)
|
584 |
+
assert check_solutions(9*a**2 + 4*b**2 - 25*d**2 + 4*c**2 )
|
585 |
+
assert check_solutions(9*a**2 - 16*d**2 + 4*b**2 + 4*c**2)
|
586 |
+
assert check_solutions(-e**2 + 9*a**2 + 4*b**2 + 4*c**2 + 25*d**2)
|
587 |
+
assert check_solutions(16*a**2 - b**2 + 9*c**2 + d**2 + 25*e**2)
|
588 |
+
|
589 |
+
assert GeneralPythagorean(a**2 + b**2 + c**2 - d**2).solve(parameters=[x, y, z]) == \
|
590 |
+
{(x**2 + y**2 - z**2, 2*x*z, 2*y*z, x**2 + y**2 + z**2)}
|
591 |
+
|
592 |
+
|
593 |
+
def test_diop_general_sum_of_squares_quick():
|
594 |
+
for i in range(3, 10):
|
595 |
+
assert check_solutions(sum(i**2 for i in symbols(':%i' % i)) - i)
|
596 |
+
|
597 |
+
assert diop_general_sum_of_squares(x**2 + y**2 - 2) is None
|
598 |
+
assert diop_general_sum_of_squares(x**2 + y**2 + z**2 + 2) == set()
|
599 |
+
eq = x**2 + y**2 + z**2 - (1 + 4 + 9)
|
600 |
+
assert diop_general_sum_of_squares(eq) == \
|
601 |
+
{(1, 2, 3)}
|
602 |
+
eq = u**2 + v**2 + x**2 + y**2 + z**2 - 1313
|
603 |
+
assert len(diop_general_sum_of_squares(eq, 3)) == 3
|
604 |
+
# issue 11016
|
605 |
+
var = symbols(':5') + (symbols('6', negative=True),)
|
606 |
+
eq = Add(*[i**2 for i in var]) - 112
|
607 |
+
|
608 |
+
base_soln = {(0, 1, 1, 5, 6, -7), (1, 1, 1, 3, 6, -8), (2, 3, 3, 4, 5, -7), (0, 1, 1, 1, 3, -10),
|
609 |
+
(0, 0, 4, 4, 4, -8), (1, 2, 3, 3, 5, -8), (0, 1, 2, 3, 7, -7), (2, 2, 4, 4, 6, -6),
|
610 |
+
(1, 1, 3, 4, 6, -7), (0, 2, 3, 3, 3, -9), (0, 0, 2, 2, 2, -10), (1, 1, 2, 3, 4, -9),
|
611 |
+
(0, 1, 1, 2, 5, -9), (0, 0, 2, 6, 6, -6), (1, 3, 4, 5, 5, -6), (0, 2, 2, 2, 6, -8),
|
612 |
+
(0, 3, 3, 3, 6, -7), (0, 2, 3, 5, 5, -7), (0, 1, 5, 5, 5, -6)}
|
613 |
+
assert diophantine(eq) == base_soln
|
614 |
+
assert len(diophantine(eq, permute=True)) == 196800
|
615 |
+
|
616 |
+
# handle negated squares with signsimp
|
617 |
+
assert diophantine(12 - x**2 - y**2 - z**2) == {(2, 2, 2)}
|
618 |
+
# diophantine handles simplification, so classify_diop should
|
619 |
+
# not have to look for additional patterns that are removed
|
620 |
+
# by diophantine
|
621 |
+
eq = a**2 + b**2 + c**2 + d**2 - 4
|
622 |
+
raises(NotImplementedError, lambda: classify_diop(-eq))
|
623 |
+
|
624 |
+
|
625 |
+
def test_issue_23807():
|
626 |
+
# fixes recursion error
|
627 |
+
eq = x**2 + y**2 + z**2 - 1000000
|
628 |
+
base_soln = {(0, 0, 1000), (0, 352, 936), (480, 600, 640), (24, 640, 768), (192, 640, 744),
|
629 |
+
(192, 480, 856), (168, 224, 960), (0, 600, 800), (280, 576, 768), (152, 480, 864),
|
630 |
+
(0, 280, 960), (352, 360, 864), (424, 480, 768), (360, 480, 800), (224, 600, 768),
|
631 |
+
(96, 360, 928), (168, 576, 800), (96, 480, 872)}
|
632 |
+
|
633 |
+
assert diophantine(eq) == base_soln
|
634 |
+
|
635 |
+
|
636 |
+
def test_diop_partition():
|
637 |
+
for n in [8, 10]:
|
638 |
+
for k in range(1, 8):
|
639 |
+
for p in partition(n, k):
|
640 |
+
assert len(p) == k
|
641 |
+
assert list(partition(3, 5)) == []
|
642 |
+
assert [list(p) for p in partition(3, 5, 1)] == [
|
643 |
+
[0, 0, 0, 0, 3], [0, 0, 0, 1, 2], [0, 0, 1, 1, 1]]
|
644 |
+
assert list(partition(0)) == [()]
|
645 |
+
assert list(partition(1, 0)) == [()]
|
646 |
+
assert [list(i) for i in partition(3)] == [[1, 1, 1], [1, 2], [3]]
|
647 |
+
|
648 |
+
|
649 |
+
def test_prime_as_sum_of_two_squares():
|
650 |
+
for i in [5, 13, 17, 29, 37, 41, 2341, 3557, 34841, 64601]:
|
651 |
+
a, b = prime_as_sum_of_two_squares(i)
|
652 |
+
assert a**2 + b**2 == i
|
653 |
+
assert prime_as_sum_of_two_squares(7) is None
|
654 |
+
ans = prime_as_sum_of_two_squares(800029)
|
655 |
+
assert ans == (450, 773) and type(ans[0]) is int
|
656 |
+
|
657 |
+
|
658 |
+
def test_sum_of_three_squares():
|
659 |
+
for i in [0, 1, 2, 34, 123, 34304595905, 34304595905394941, 343045959052344,
|
660 |
+
800, 801, 802, 803, 804, 805, 806]:
|
661 |
+
a, b, c = sum_of_three_squares(i)
|
662 |
+
assert a**2 + b**2 + c**2 == i
|
663 |
+
|
664 |
+
assert sum_of_three_squares(7) is None
|
665 |
+
assert sum_of_three_squares((4**5)*15) is None
|
666 |
+
assert sum_of_three_squares(25) == (5, 0, 0)
|
667 |
+
assert sum_of_three_squares(4) == (0, 0, 2)
|
668 |
+
|
669 |
+
|
670 |
+
def test_sum_of_four_squares():
|
671 |
+
from sympy.core.random import randint
|
672 |
+
|
673 |
+
# this should never fail
|
674 |
+
n = randint(1, 100000000000000)
|
675 |
+
assert sum(i**2 for i in sum_of_four_squares(n)) == n
|
676 |
+
|
677 |
+
assert sum_of_four_squares(0) == (0, 0, 0, 0)
|
678 |
+
assert sum_of_four_squares(14) == (0, 1, 2, 3)
|
679 |
+
assert sum_of_four_squares(15) == (1, 1, 2, 3)
|
680 |
+
assert sum_of_four_squares(18) == (1, 2, 2, 3)
|
681 |
+
assert sum_of_four_squares(19) == (0, 1, 3, 3)
|
682 |
+
assert sum_of_four_squares(48) == (0, 4, 4, 4)
|
683 |
+
|
684 |
+
|
685 |
+
def test_power_representation():
|
686 |
+
tests = [(1729, 3, 2), (234, 2, 4), (2, 1, 2), (3, 1, 3), (5, 2, 2), (12352, 2, 4),
|
687 |
+
(32760, 2, 3)]
|
688 |
+
|
689 |
+
for test in tests:
|
690 |
+
n, p, k = test
|
691 |
+
f = power_representation(n, p, k)
|
692 |
+
|
693 |
+
while True:
|
694 |
+
try:
|
695 |
+
l = next(f)
|
696 |
+
assert len(l) == k
|
697 |
+
|
698 |
+
chk_sum = 0
|
699 |
+
for l_i in l:
|
700 |
+
chk_sum = chk_sum + l_i**p
|
701 |
+
assert chk_sum == n
|
702 |
+
|
703 |
+
except StopIteration:
|
704 |
+
break
|
705 |
+
|
706 |
+
assert list(power_representation(20, 2, 4, True)) == \
|
707 |
+
[(1, 1, 3, 3), (0, 0, 2, 4)]
|
708 |
+
raises(ValueError, lambda: list(power_representation(1.2, 2, 2)))
|
709 |
+
raises(ValueError, lambda: list(power_representation(2, 0, 2)))
|
710 |
+
raises(ValueError, lambda: list(power_representation(2, 2, 0)))
|
711 |
+
assert list(power_representation(-1, 2, 2)) == []
|
712 |
+
assert list(power_representation(1, 1, 1)) == [(1,)]
|
713 |
+
assert list(power_representation(3, 2, 1)) == []
|
714 |
+
assert list(power_representation(4, 2, 1)) == [(2,)]
|
715 |
+
assert list(power_representation(3**4, 4, 6, zeros=True)) == \
|
716 |
+
[(1, 2, 2, 2, 2, 2), (0, 0, 0, 0, 0, 3)]
|
717 |
+
assert list(power_representation(3**4, 4, 5, zeros=False)) == []
|
718 |
+
assert list(power_representation(-2, 3, 2)) == [(-1, -1)]
|
719 |
+
assert list(power_representation(-2, 4, 2)) == []
|
720 |
+
assert list(power_representation(0, 3, 2, True)) == [(0, 0)]
|
721 |
+
assert list(power_representation(0, 3, 2, False)) == []
|
722 |
+
# when we are dealing with squares, do feasibility checks
|
723 |
+
assert len(list(power_representation(4**10*(8*10 + 7), 2, 3))) == 0
|
724 |
+
# there will be a recursion error if these aren't recognized
|
725 |
+
big = 2**30
|
726 |
+
for i in [13, 10, 7, 5, 4, 2, 1]:
|
727 |
+
assert list(sum_of_powers(big, 2, big - i)) == []
|
728 |
+
|
729 |
+
|
730 |
+
def test_assumptions():
|
731 |
+
"""
|
732 |
+
Test whether diophantine respects the assumptions.
|
733 |
+
"""
|
734 |
+
#Test case taken from the below so question regarding assumptions in diophantine module
|
735 |
+
#https://stackoverflow.com/questions/23301941/how-can-i-declare-natural-symbols-with-sympy
|
736 |
+
m, n = symbols('m n', integer=True, positive=True)
|
737 |
+
diof = diophantine(n**2 + m*n - 500)
|
738 |
+
assert diof == {(5, 20), (40, 10), (95, 5), (121, 4), (248, 2), (499, 1)}
|
739 |
+
|
740 |
+
a, b = symbols('a b', integer=True, positive=False)
|
741 |
+
diof = diophantine(a*b + 2*a + 3*b - 6)
|
742 |
+
assert diof == {(-15, -3), (-9, -4), (-7, -5), (-6, -6), (-5, -8), (-4, -14)}
|
743 |
+
|
744 |
+
|
745 |
+
def check_solutions(eq):
|
746 |
+
"""
|
747 |
+
Determines whether solutions returned by diophantine() satisfy the original
|
748 |
+
equation. Hope to generalize this so we can remove functions like check_ternay_quadratic,
|
749 |
+
check_solutions_normal, check_solutions()
|
750 |
+
"""
|
751 |
+
s = diophantine(eq)
|
752 |
+
|
753 |
+
factors = Mul.make_args(eq)
|
754 |
+
|
755 |
+
var = list(eq.free_symbols)
|
756 |
+
var.sort(key=default_sort_key)
|
757 |
+
|
758 |
+
while s:
|
759 |
+
solution = s.pop()
|
760 |
+
for f in factors:
|
761 |
+
if diop_simplify(f.subs(zip(var, solution))) == 0:
|
762 |
+
break
|
763 |
+
else:
|
764 |
+
return False
|
765 |
+
return True
|
766 |
+
|
767 |
+
|
768 |
+
def test_diopcoverage():
|
769 |
+
eq = (2*x + y + 1)**2
|
770 |
+
assert diop_solve(eq) == {(t_0, -2*t_0 - 1)}
|
771 |
+
eq = 2*x**2 + 6*x*y + 12*x + 4*y**2 + 18*y + 18
|
772 |
+
assert diop_solve(eq) == {(t, -t - 3), (2*t - 3, -t)}
|
773 |
+
assert diop_quadratic(x + y**2 - 3) == {(-t**2 + 3, -t)}
|
774 |
+
|
775 |
+
assert diop_linear(x + y - 3) == (t_0, 3 - t_0)
|
776 |
+
|
777 |
+
assert base_solution_linear(0, 1, 2, t=None) == (0, 0)
|
778 |
+
ans = (3*t - 1, -2*t + 1)
|
779 |
+
assert base_solution_linear(4, 8, 12, t) == ans
|
780 |
+
assert base_solution_linear(4, 8, 12, t=None) == tuple(_.subs(t, 0) for _ in ans)
|
781 |
+
|
782 |
+
assert cornacchia(1, 1, 20) is None
|
783 |
+
assert cornacchia(1, 1, 5) == {(2, 1)}
|
784 |
+
assert cornacchia(1, 2, 17) == {(3, 2)}
|
785 |
+
|
786 |
+
raises(ValueError, lambda: reconstruct(4, 20, 1))
|
787 |
+
|
788 |
+
assert gaussian_reduce(4, 1, 3) == (1, 1)
|
789 |
+
eq = -w**2 - x**2 - y**2 + z**2
|
790 |
+
|
791 |
+
assert diop_general_pythagorean(eq) == \
|
792 |
+
diop_general_pythagorean(-eq) == \
|
793 |
+
(m1**2 + m2**2 - m3**2, 2*m1*m3,
|
794 |
+
2*m2*m3, m1**2 + m2**2 + m3**2)
|
795 |
+
|
796 |
+
assert len(check_param(S(3) + x/3, S(4) + x/2, S(2), [x])) == 0
|
797 |
+
assert len(check_param(Rational(3, 2), S(4) + x, S(2), [x])) == 0
|
798 |
+
assert len(check_param(S(4) + x, Rational(3, 2), S(2), [x])) == 0
|
799 |
+
|
800 |
+
assert _nint_or_floor(16, 10) == 2
|
801 |
+
assert _odd(1) == (not _even(1)) == True
|
802 |
+
assert _odd(0) == (not _even(0)) == False
|
803 |
+
assert _remove_gcd(2, 4, 6) == (1, 2, 3)
|
804 |
+
raises(TypeError, lambda: _remove_gcd((2, 4, 6)))
|
805 |
+
assert sqf_normal(2*3**2*5, 2*5*11, 2*7**2*11) == \
|
806 |
+
(11, 1, 5)
|
807 |
+
|
808 |
+
# it's ok if these pass some day when the solvers are implemented
|
809 |
+
raises(NotImplementedError, lambda: diophantine(x**2 + y**2 + x*y + 2*y*z - 12))
|
810 |
+
raises(NotImplementedError, lambda: diophantine(x**3 + y**2))
|
811 |
+
assert diop_quadratic(x**2 + y**2 - 1**2 - 3**4) == \
|
812 |
+
{(-9, -1), (-9, 1), (-1, -9), (-1, 9), (1, -9), (1, 9), (9, -1), (9, 1)}
|
813 |
+
|
814 |
+
|
815 |
+
def test_holzer():
|
816 |
+
# if the input is good, don't let it diverge in holzer()
|
817 |
+
# (but see test_fail_holzer below)
|
818 |
+
assert holzer(2, 7, 13, 4, 79, 23) == (2, 7, 13)
|
819 |
+
|
820 |
+
# None in uv condition met; solution is not Holzer reduced
|
821 |
+
# so this will hopefully change but is here for coverage
|
822 |
+
assert holzer(2, 6, 2, 1, 1, 10) == (2, 6, 2)
|
823 |
+
|
824 |
+
raises(ValueError, lambda: holzer(2, 7, 14, 4, 79, 23))
|
825 |
+
|
826 |
+
|
827 |
+
@XFAIL
|
828 |
+
def test_fail_holzer():
|
829 |
+
eq = lambda x, y, z: a*x**2 + b*y**2 - c*z**2
|
830 |
+
a, b, c = 4, 79, 23
|
831 |
+
x, y, z = xyz = 26, 1, 11
|
832 |
+
X, Y, Z = ans = 2, 7, 13
|
833 |
+
assert eq(*xyz) == 0
|
834 |
+
assert eq(*ans) == 0
|
835 |
+
assert max(a*x**2, b*y**2, c*z**2) <= a*b*c
|
836 |
+
assert max(a*X**2, b*Y**2, c*Z**2) <= a*b*c
|
837 |
+
h = holzer(x, y, z, a, b, c)
|
838 |
+
assert h == ans # it would be nice to get the smaller soln
|
839 |
+
|
840 |
+
|
841 |
+
def test_issue_9539():
|
842 |
+
assert diophantine(6*w + 9*y + 20*x - z) == \
|
843 |
+
{(t_0, t_1, t_1 + t_2, 6*t_0 + 29*t_1 + 9*t_2)}
|
844 |
+
|
845 |
+
|
846 |
+
def test_issue_8943():
|
847 |
+
assert diophantine(
|
848 |
+
3*(x**2 + y**2 + z**2) - 14*(x*y + y*z + z*x)) == \
|
849 |
+
{(0, 0, 0)}
|
850 |
+
|
851 |
+
|
852 |
+
def test_diop_sum_of_even_powers():
|
853 |
+
eq = x**4 + y**4 + z**4 - 2673
|
854 |
+
assert diop_solve(eq) == {(3, 6, 6), (2, 4, 7)}
|
855 |
+
assert diop_general_sum_of_even_powers(eq, 2) == {(3, 6, 6), (2, 4, 7)}
|
856 |
+
raises(NotImplementedError, lambda: diop_general_sum_of_even_powers(-eq, 2))
|
857 |
+
neg = symbols('neg', negative=True)
|
858 |
+
eq = x**4 + y**4 + neg**4 - 2673
|
859 |
+
assert diop_general_sum_of_even_powers(eq) == {(-3, 6, 6)}
|
860 |
+
assert diophantine(x**4 + y**4 + 2) == set()
|
861 |
+
assert diop_general_sum_of_even_powers(x**4 + y**4 - 2, limit=0) == set()
|
862 |
+
|
863 |
+
|
864 |
+
def test_sum_of_squares_powers():
|
865 |
+
tru = {(0, 0, 1, 1, 11), (0, 0, 5, 7, 7), (0, 1, 3, 7, 8), (0, 1, 4, 5, 9), (0, 3, 4, 7, 7), (0, 3, 5, 5, 8),
|
866 |
+
(1, 1, 2, 6, 9), (1, 1, 6, 6, 7), (1, 2, 3, 3, 10), (1, 3, 4, 4, 9), (1, 5, 5, 6, 6), (2, 2, 3, 5, 9),
|
867 |
+
(2, 3, 5, 6, 7), (3, 3, 4, 5, 8)}
|
868 |
+
eq = u**2 + v**2 + x**2 + y**2 + z**2 - 123
|
869 |
+
ans = diop_general_sum_of_squares(eq, oo) # allow oo to be used
|
870 |
+
assert len(ans) == 14
|
871 |
+
assert ans == tru
|
872 |
+
|
873 |
+
raises(ValueError, lambda: list(sum_of_squares(10, -1)))
|
874 |
+
assert list(sum_of_squares(-10, 2)) == []
|
875 |
+
assert list(sum_of_squares(2, 3)) == []
|
876 |
+
assert list(sum_of_squares(0, 3, True)) == [(0, 0, 0)]
|
877 |
+
assert list(sum_of_squares(0, 3)) == []
|
878 |
+
assert list(sum_of_squares(4, 1)) == [(2,)]
|
879 |
+
assert list(sum_of_squares(5, 1)) == []
|
880 |
+
assert list(sum_of_squares(50, 2)) == [(5, 5), (1, 7)]
|
881 |
+
assert list(sum_of_squares(11, 5, True)) == [
|
882 |
+
(1, 1, 1, 2, 2), (0, 0, 1, 1, 3)]
|
883 |
+
assert list(sum_of_squares(8, 8)) == [(1, 1, 1, 1, 1, 1, 1, 1)]
|
884 |
+
|
885 |
+
assert [len(list(sum_of_squares(i, 5, True))) for i in range(30)] == [
|
886 |
+
1, 1, 1, 1, 2,
|
887 |
+
2, 1, 1, 2, 2,
|
888 |
+
2, 2, 2, 3, 2,
|
889 |
+
1, 3, 3, 3, 3,
|
890 |
+
4, 3, 3, 2, 2,
|
891 |
+
4, 4, 4, 4, 5]
|
892 |
+
assert [len(list(sum_of_squares(i, 5))) for i in range(30)] == [
|
893 |
+
0, 0, 0, 0, 0,
|
894 |
+
1, 0, 0, 1, 0,
|
895 |
+
0, 1, 0, 1, 1,
|
896 |
+
0, 1, 1, 0, 1,
|
897 |
+
2, 1, 1, 1, 1,
|
898 |
+
1, 1, 1, 1, 3]
|
899 |
+
for i in range(30):
|
900 |
+
s1 = set(sum_of_squares(i, 5, True))
|
901 |
+
assert not s1 or all(sum(j**2 for j in t) == i for t in s1)
|
902 |
+
s2 = set(sum_of_squares(i, 5))
|
903 |
+
assert all(sum(j**2 for j in t) == i for t in s2)
|
904 |
+
|
905 |
+
raises(ValueError, lambda: list(sum_of_powers(2, -1, 1)))
|
906 |
+
raises(ValueError, lambda: list(sum_of_powers(2, 1, -1)))
|
907 |
+
assert list(sum_of_powers(-2, 3, 2)) == [(-1, -1)]
|
908 |
+
assert list(sum_of_powers(-2, 4, 2)) == []
|
909 |
+
assert list(sum_of_powers(2, 1, 1)) == [(2,)]
|
910 |
+
assert list(sum_of_powers(2, 1, 3, True)) == [(0, 0, 2), (0, 1, 1)]
|
911 |
+
assert list(sum_of_powers(5, 1, 2, True)) == [(0, 5), (1, 4), (2, 3)]
|
912 |
+
assert list(sum_of_powers(6, 2, 2)) == []
|
913 |
+
assert list(sum_of_powers(3**5, 3, 1)) == []
|
914 |
+
assert list(sum_of_powers(3**6, 3, 1)) == [(9,)] and (9**3 == 3**6)
|
915 |
+
assert list(sum_of_powers(2**1000, 5, 2)) == []
|
916 |
+
|
917 |
+
|
918 |
+
def test__can_do_sum_of_squares():
|
919 |
+
assert _can_do_sum_of_squares(3, -1) is False
|
920 |
+
assert _can_do_sum_of_squares(-3, 1) is False
|
921 |
+
assert _can_do_sum_of_squares(0, 1)
|
922 |
+
assert _can_do_sum_of_squares(4, 1)
|
923 |
+
assert _can_do_sum_of_squares(1, 2)
|
924 |
+
assert _can_do_sum_of_squares(2, 2)
|
925 |
+
assert _can_do_sum_of_squares(3, 2) is False
|
926 |
+
|
927 |
+
|
928 |
+
def test_diophantine_permute_sign():
|
929 |
+
from sympy.abc import a, b, c, d, e
|
930 |
+
eq = a**4 + b**4 - (2**4 + 3**4)
|
931 |
+
base_sol = {(2, 3)}
|
932 |
+
assert diophantine(eq) == base_sol
|
933 |
+
complete_soln = set(signed_permutations(base_sol.pop()))
|
934 |
+
assert diophantine(eq, permute=True) == complete_soln
|
935 |
+
|
936 |
+
eq = a**2 + b**2 + c**2 + d**2 + e**2 - 234
|
937 |
+
assert len(diophantine(eq)) == 35
|
938 |
+
assert len(diophantine(eq, permute=True)) == 62000
|
939 |
+
soln = {(-1, -1), (-1, 2), (1, -2), (1, 1)}
|
940 |
+
assert diophantine(10*x**2 + 12*x*y + 12*y**2 - 34, permute=True) == soln
|
941 |
+
|
942 |
+
|
943 |
+
@XFAIL
|
944 |
+
def test_not_implemented():
|
945 |
+
eq = x**2 + y**4 - 1**2 - 3**4
|
946 |
+
assert diophantine(eq, syms=[x, y]) == {(9, 1), (1, 3)}
|
947 |
+
|
948 |
+
|
949 |
+
def test_issue_9538():
|
950 |
+
eq = x - 3*y + 2
|
951 |
+
assert diophantine(eq, syms=[y,x]) == {(t_0, 3*t_0 - 2)}
|
952 |
+
raises(TypeError, lambda: diophantine(eq, syms={y, x}))
|
953 |
+
|
954 |
+
|
955 |
+
def test_ternary_quadratic():
|
956 |
+
# solution with 3 parameters
|
957 |
+
s = diophantine(2*x**2 + y**2 - 2*z**2)
|
958 |
+
p, q, r = ordered(S(s).free_symbols)
|
959 |
+
assert s == {(
|
960 |
+
p**2 - 2*q**2,
|
961 |
+
-2*p**2 + 4*p*q - 4*p*r - 4*q**2,
|
962 |
+
p**2 - 4*p*q + 2*q**2 - 4*q*r)}
|
963 |
+
# solution with Mul in solution
|
964 |
+
s = diophantine(x**2 + 2*y**2 - 2*z**2)
|
965 |
+
assert s == {(4*p*q, p**2 - 2*q**2, p**2 + 2*q**2)}
|
966 |
+
# solution with no Mul in solution
|
967 |
+
s = diophantine(2*x**2 + 2*y**2 - z**2)
|
968 |
+
assert s == {(2*p**2 - q**2, -2*p**2 + 4*p*q - q**2,
|
969 |
+
4*p**2 - 4*p*q + 2*q**2)}
|
970 |
+
# reduced form when parametrized
|
971 |
+
s = diophantine(3*x**2 + 72*y**2 - 27*z**2)
|
972 |
+
assert s == {(24*p**2 - 9*q**2, 6*p*q, 8*p**2 + 3*q**2)}
|
973 |
+
assert parametrize_ternary_quadratic(
|
974 |
+
3*x**2 + 2*y**2 - z**2 - 2*x*y + 5*y*z - 7*y*z) == (
|
975 |
+
2*p**2 - 2*p*q - q**2, 2*p**2 + 2*p*q - q**2, 2*p**2 -
|
976 |
+
2*p*q + 3*q**2)
|
977 |
+
assert parametrize_ternary_quadratic(
|
978 |
+
124*x**2 - 30*y**2 - 7729*z**2) == (
|
979 |
+
-1410*p**2 - 363263*q**2, 2700*p**2 + 30916*p*q -
|
980 |
+
695610*q**2, -60*p**2 + 5400*p*q + 15458*q**2)
|
981 |
+
|
982 |
+
|
983 |
+
def test_diophantine_solution_set():
|
984 |
+
s1 = DiophantineSolutionSet([], [])
|
985 |
+
assert set(s1) == set()
|
986 |
+
assert s1.symbols == ()
|
987 |
+
assert s1.parameters == ()
|
988 |
+
raises(ValueError, lambda: s1.add((x,)))
|
989 |
+
assert list(s1.dict_iterator()) == []
|
990 |
+
|
991 |
+
s2 = DiophantineSolutionSet([x, y], [t, u])
|
992 |
+
assert s2.symbols == (x, y)
|
993 |
+
assert s2.parameters == (t, u)
|
994 |
+
raises(ValueError, lambda: s2.add((1,)))
|
995 |
+
s2.add((3, 4))
|
996 |
+
assert set(s2) == {(3, 4)}
|
997 |
+
s2.update((3, 4), (-1, u))
|
998 |
+
assert set(s2) == {(3, 4), (-1, u)}
|
999 |
+
raises(ValueError, lambda: s1.update(s2))
|
1000 |
+
assert list(s2.dict_iterator()) == [{x: -1, y: u}, {x: 3, y: 4}]
|
1001 |
+
|
1002 |
+
s3 = DiophantineSolutionSet([x, y, z], [t, u])
|
1003 |
+
assert len(s3.parameters) == 2
|
1004 |
+
s3.add((t**2 + u, t - u, 1))
|
1005 |
+
assert set(s3) == {(t**2 + u, t - u, 1)}
|
1006 |
+
assert s3.subs(t, 2) == {(u + 4, 2 - u, 1)}
|
1007 |
+
assert s3(2) == {(u + 4, 2 - u, 1)}
|
1008 |
+
assert s3.subs({t: 7, u: 8}) == {(57, -1, 1)}
|
1009 |
+
assert s3(7, 8) == {(57, -1, 1)}
|
1010 |
+
assert s3.subs({t: 5}) == {(u + 25, 5 - u, 1)}
|
1011 |
+
assert s3(5) == {(u + 25, 5 - u, 1)}
|
1012 |
+
assert s3.subs(u, -3) == {(t**2 - 3, t + 3, 1)}
|
1013 |
+
assert s3(None, -3) == {(t**2 - 3, t + 3, 1)}
|
1014 |
+
assert s3.subs({t: 2, u: 8}) == {(12, -6, 1)}
|
1015 |
+
assert s3(2, 8) == {(12, -6, 1)}
|
1016 |
+
assert s3.subs({t: 5, u: -3}) == {(22, 8, 1)}
|
1017 |
+
assert s3(5, -3) == {(22, 8, 1)}
|
1018 |
+
raises(ValueError, lambda: s3.subs(x=1))
|
1019 |
+
raises(ValueError, lambda: s3.subs(1, 2, 3))
|
1020 |
+
raises(ValueError, lambda: s3.add(()))
|
1021 |
+
raises(ValueError, lambda: s3.add((1, 2, 3, 4)))
|
1022 |
+
raises(ValueError, lambda: s3.add((1, 2)))
|
1023 |
+
raises(ValueError, lambda: s3(1, 2, 3))
|
1024 |
+
raises(TypeError, lambda: s3(t=1))
|
1025 |
+
|
1026 |
+
s4 = DiophantineSolutionSet([x, y], [t, u])
|
1027 |
+
s4.add((t, 11*t))
|
1028 |
+
s4.add((-t, 22*t))
|
1029 |
+
assert s4(0, 0) == {(0, 0)}
|
1030 |
+
|
1031 |
+
|
1032 |
+
def test_quadratic_parameter_passing():
|
1033 |
+
eq = -33*x*y + 3*y**2
|
1034 |
+
solution = BinaryQuadratic(eq).solve(parameters=[t, u])
|
1035 |
+
# test that parameters are passed all the way to the final solution
|
1036 |
+
assert solution == {(t, 11*t), (-t, 22*t)}
|
1037 |
+
assert solution(0, 0) == {(0, 0)}
|
venv/lib/python3.10/site-packages/sympy/solvers/ode/__init__.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .ode import (allhints, checkinfsol, classify_ode,
|
2 |
+
constantsimp, dsolve, homogeneous_order)
|
3 |
+
|
4 |
+
from .lie_group import infinitesimals
|
5 |
+
|
6 |
+
from .subscheck import checkodesol
|
7 |
+
|
8 |
+
from .systems import (canonical_odes, linear_ode_to_matrix,
|
9 |
+
linodesolve)
|
10 |
+
|
11 |
+
|
12 |
+
__all__ = [
|
13 |
+
'allhints', 'checkinfsol', 'checkodesol', 'classify_ode', 'constantsimp',
|
14 |
+
'dsolve', 'homogeneous_order', 'infinitesimals', 'canonical_odes', 'linear_ode_to_matrix',
|
15 |
+
'linodesolve'
|
16 |
+
]
|
venv/lib/python3.10/site-packages/sympy/solvers/ode/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (602 Bytes). View file
|
|
venv/lib/python3.10/site-packages/sympy/solvers/ode/__pycache__/hypergeometric.cpython-310.pyc
ADDED
Binary file (7.07 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/solvers/ode/__pycache__/lie_group.cpython-310.pyc
ADDED
Binary file (30.8 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/solvers/ode/__pycache__/nonhomogeneous.cpython-310.pyc
ADDED
Binary file (14.8 kB). View file
|
|