Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step120/zero/24.mlp.dense_4h_to_h.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step120/zero/5.mlp.dense_4h_to_h.weight/fp32.pt +3 -0
- ckpts/universal/global_step120/zero/7.mlp.dense_h_to_4h.weight/exp_avg.pt +3 -0
- venv/lib/python3.10/site-packages/sympy/concrete/__init__.py +8 -0
- venv/lib/python3.10/site-packages/sympy/concrete/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/concrete/__pycache__/delta.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/concrete/__pycache__/expr_with_intlimits.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/concrete/__pycache__/expr_with_limits.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/concrete/__pycache__/gosper.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/concrete/__pycache__/guess.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/concrete/__pycache__/products.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/concrete/__pycache__/summations.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/concrete/delta.py +331 -0
- venv/lib/python3.10/site-packages/sympy/concrete/expr_with_intlimits.py +354 -0
- venv/lib/python3.10/site-packages/sympy/concrete/expr_with_limits.py +603 -0
- venv/lib/python3.10/site-packages/sympy/concrete/gosper.py +227 -0
- venv/lib/python3.10/site-packages/sympy/concrete/guess.py +473 -0
- venv/lib/python3.10/site-packages/sympy/concrete/products.py +610 -0
- venv/lib/python3.10/site-packages/sympy/concrete/summations.py +1646 -0
- venv/lib/python3.10/site-packages/sympy/concrete/tests/__init__.py +0 -0
- venv/lib/python3.10/site-packages/sympy/concrete/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/concrete/tests/__pycache__/test_delta.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/concrete/tests/__pycache__/test_gosper.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/concrete/tests/__pycache__/test_guess.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/concrete/tests/__pycache__/test_products.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/concrete/tests/__pycache__/test_sums_products.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/concrete/tests/test_delta.py +499 -0
- venv/lib/python3.10/site-packages/sympy/concrete/tests/test_gosper.py +204 -0
- venv/lib/python3.10/site-packages/sympy/concrete/tests/test_guess.py +82 -0
- venv/lib/python3.10/site-packages/sympy/concrete/tests/test_products.py +410 -0
- venv/lib/python3.10/site-packages/sympy/concrete/tests/test_sums_products.py +1646 -0
- venv/lib/python3.10/site-packages/sympy/matrices/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/matrices/__pycache__/determinant.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/matrices/__pycache__/matrices.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/matrices/__pycache__/repmatrix.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/matrices/benchmarks/__init__.py +0 -0
- venv/lib/python3.10/site-packages/sympy/matrices/benchmarks/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/matrices/benchmarks/__pycache__/bench_matrix.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/matrices/benchmarks/bench_matrix.py +21 -0
- venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_companion.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_diagonal.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_matmul.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_special.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_trace.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/matrices/tests/__init__.py +0 -0
- venv/lib/python3.10/site-packages/sympy/matrices/tests/test_graph.py +108 -0
- venv/lib/python3.10/site-packages/sympy/matrices/tests/test_matrices.py +0 -0
- venv/lib/python3.10/site-packages/sympy/matrices/tests/test_sparsetools.py +132 -0
- venv/lib/python3.10/site-packages/sympy/multipledispatch/__init__.py +11 -0
ckpts/universal/global_step120/zero/24.mlp.dense_4h_to_h.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9a5e66bec4cd39fd11ff0abb189a1c135677584714caf25577412440de9c583d
|
3 |
+
size 33555612
|
ckpts/universal/global_step120/zero/5.mlp.dense_4h_to_h.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:56c00fff2cf4387d9e031b7ed37573bce9e34027296d41e652fbc6b2ad56cee4
|
3 |
+
size 33555533
|
ckpts/universal/global_step120/zero/7.mlp.dense_h_to_4h.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:94e850a68e721f623d9f9eea5fb35c677d26e0318639373bd748828e58951108
|
3 |
+
size 33555612
|
venv/lib/python3.10/site-packages/sympy/concrete/__init__.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .products import product, Product
|
2 |
+
from .summations import summation, Sum
|
3 |
+
|
4 |
+
__all__ = [
|
5 |
+
'product', 'Product',
|
6 |
+
|
7 |
+
'summation', 'Sum',
|
8 |
+
]
|
venv/lib/python3.10/site-packages/sympy/concrete/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (339 Bytes). View file
|
|
venv/lib/python3.10/site-packages/sympy/concrete/__pycache__/delta.cpython-310.pyc
ADDED
Binary file (9.22 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/concrete/__pycache__/expr_with_intlimits.cpython-310.pyc
ADDED
Binary file (11.2 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/concrete/__pycache__/expr_with_limits.cpython-310.pyc
ADDED
Binary file (18.9 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/concrete/__pycache__/gosper.cpython-310.pyc
ADDED
Binary file (5.41 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/concrete/__pycache__/guess.cpython-310.pyc
ADDED
Binary file (17.7 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/concrete/__pycache__/products.cpython-310.pyc
ADDED
Binary file (18 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/concrete/__pycache__/summations.cpython-310.pyc
ADDED
Binary file (42.1 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/concrete/delta.py
ADDED
@@ -0,0 +1,331 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This module implements sums and products containing the Kronecker Delta function.
|
3 |
+
|
4 |
+
References
|
5 |
+
==========
|
6 |
+
|
7 |
+
.. [1] https://mathworld.wolfram.com/KroneckerDelta.html
|
8 |
+
|
9 |
+
"""
|
10 |
+
from .products import product
|
11 |
+
from .summations import Sum, summation
|
12 |
+
from sympy.core import Add, Mul, S, Dummy
|
13 |
+
from sympy.core.cache import cacheit
|
14 |
+
from sympy.core.sorting import default_sort_key
|
15 |
+
from sympy.functions import KroneckerDelta, Piecewise, piecewise_fold
|
16 |
+
from sympy.polys.polytools import factor
|
17 |
+
from sympy.sets.sets import Interval
|
18 |
+
from sympy.solvers.solvers import solve
|
19 |
+
|
20 |
+
|
21 |
+
@cacheit
|
22 |
+
def _expand_delta(expr, index):
|
23 |
+
"""
|
24 |
+
Expand the first Add containing a simple KroneckerDelta.
|
25 |
+
"""
|
26 |
+
if not expr.is_Mul:
|
27 |
+
return expr
|
28 |
+
delta = None
|
29 |
+
func = Add
|
30 |
+
terms = [S.One]
|
31 |
+
for h in expr.args:
|
32 |
+
if delta is None and h.is_Add and _has_simple_delta(h, index):
|
33 |
+
delta = True
|
34 |
+
func = h.func
|
35 |
+
terms = [terms[0]*t for t in h.args]
|
36 |
+
else:
|
37 |
+
terms = [t*h for t in terms]
|
38 |
+
return func(*terms)
|
39 |
+
|
40 |
+
|
41 |
+
@cacheit
|
42 |
+
def _extract_delta(expr, index):
|
43 |
+
"""
|
44 |
+
Extract a simple KroneckerDelta from the expression.
|
45 |
+
|
46 |
+
Explanation
|
47 |
+
===========
|
48 |
+
|
49 |
+
Returns the tuple ``(delta, newexpr)`` where:
|
50 |
+
|
51 |
+
- ``delta`` is a simple KroneckerDelta expression if one was found,
|
52 |
+
or ``None`` if no simple KroneckerDelta expression was found.
|
53 |
+
|
54 |
+
- ``newexpr`` is a Mul containing the remaining terms; ``expr`` is
|
55 |
+
returned unchanged if no simple KroneckerDelta expression was found.
|
56 |
+
|
57 |
+
Examples
|
58 |
+
========
|
59 |
+
|
60 |
+
>>> from sympy import KroneckerDelta
|
61 |
+
>>> from sympy.concrete.delta import _extract_delta
|
62 |
+
>>> from sympy.abc import x, y, i, j, k
|
63 |
+
>>> _extract_delta(4*x*y*KroneckerDelta(i, j), i)
|
64 |
+
(KroneckerDelta(i, j), 4*x*y)
|
65 |
+
>>> _extract_delta(4*x*y*KroneckerDelta(i, j), k)
|
66 |
+
(None, 4*x*y*KroneckerDelta(i, j))
|
67 |
+
|
68 |
+
See Also
|
69 |
+
========
|
70 |
+
|
71 |
+
sympy.functions.special.tensor_functions.KroneckerDelta
|
72 |
+
deltaproduct
|
73 |
+
deltasummation
|
74 |
+
"""
|
75 |
+
if not _has_simple_delta(expr, index):
|
76 |
+
return (None, expr)
|
77 |
+
if isinstance(expr, KroneckerDelta):
|
78 |
+
return (expr, S.One)
|
79 |
+
if not expr.is_Mul:
|
80 |
+
raise ValueError("Incorrect expr")
|
81 |
+
delta = None
|
82 |
+
terms = []
|
83 |
+
|
84 |
+
for arg in expr.args:
|
85 |
+
if delta is None and _is_simple_delta(arg, index):
|
86 |
+
delta = arg
|
87 |
+
else:
|
88 |
+
terms.append(arg)
|
89 |
+
return (delta, expr.func(*terms))
|
90 |
+
|
91 |
+
|
92 |
+
@cacheit
|
93 |
+
def _has_simple_delta(expr, index):
|
94 |
+
"""
|
95 |
+
Returns True if ``expr`` is an expression that contains a KroneckerDelta
|
96 |
+
that is simple in the index ``index``, meaning that this KroneckerDelta
|
97 |
+
is nonzero for a single value of the index ``index``.
|
98 |
+
"""
|
99 |
+
if expr.has(KroneckerDelta):
|
100 |
+
if _is_simple_delta(expr, index):
|
101 |
+
return True
|
102 |
+
if expr.is_Add or expr.is_Mul:
|
103 |
+
for arg in expr.args:
|
104 |
+
if _has_simple_delta(arg, index):
|
105 |
+
return True
|
106 |
+
return False
|
107 |
+
|
108 |
+
|
109 |
+
@cacheit
|
110 |
+
def _is_simple_delta(delta, index):
|
111 |
+
"""
|
112 |
+
Returns True if ``delta`` is a KroneckerDelta and is nonzero for a single
|
113 |
+
value of the index ``index``.
|
114 |
+
"""
|
115 |
+
if isinstance(delta, KroneckerDelta) and delta.has(index):
|
116 |
+
p = (delta.args[0] - delta.args[1]).as_poly(index)
|
117 |
+
if p:
|
118 |
+
return p.degree() == 1
|
119 |
+
return False
|
120 |
+
|
121 |
+
|
122 |
+
@cacheit
|
123 |
+
def _remove_multiple_delta(expr):
|
124 |
+
"""
|
125 |
+
Evaluate products of KroneckerDelta's.
|
126 |
+
"""
|
127 |
+
if expr.is_Add:
|
128 |
+
return expr.func(*list(map(_remove_multiple_delta, expr.args)))
|
129 |
+
if not expr.is_Mul:
|
130 |
+
return expr
|
131 |
+
eqs = []
|
132 |
+
newargs = []
|
133 |
+
for arg in expr.args:
|
134 |
+
if isinstance(arg, KroneckerDelta):
|
135 |
+
eqs.append(arg.args[0] - arg.args[1])
|
136 |
+
else:
|
137 |
+
newargs.append(arg)
|
138 |
+
if not eqs:
|
139 |
+
return expr
|
140 |
+
solns = solve(eqs, dict=True)
|
141 |
+
if len(solns) == 0:
|
142 |
+
return S.Zero
|
143 |
+
elif len(solns) == 1:
|
144 |
+
for key in solns[0].keys():
|
145 |
+
newargs.append(KroneckerDelta(key, solns[0][key]))
|
146 |
+
expr2 = expr.func(*newargs)
|
147 |
+
if expr != expr2:
|
148 |
+
return _remove_multiple_delta(expr2)
|
149 |
+
return expr
|
150 |
+
|
151 |
+
|
152 |
+
@cacheit
|
153 |
+
def _simplify_delta(expr):
|
154 |
+
"""
|
155 |
+
Rewrite a KroneckerDelta's indices in its simplest form.
|
156 |
+
"""
|
157 |
+
if isinstance(expr, KroneckerDelta):
|
158 |
+
try:
|
159 |
+
slns = solve(expr.args[0] - expr.args[1], dict=True)
|
160 |
+
if slns and len(slns) == 1:
|
161 |
+
return Mul(*[KroneckerDelta(*(key, value))
|
162 |
+
for key, value in slns[0].items()])
|
163 |
+
except NotImplementedError:
|
164 |
+
pass
|
165 |
+
return expr
|
166 |
+
|
167 |
+
|
168 |
+
@cacheit
|
169 |
+
def deltaproduct(f, limit):
|
170 |
+
"""
|
171 |
+
Handle products containing a KroneckerDelta.
|
172 |
+
|
173 |
+
See Also
|
174 |
+
========
|
175 |
+
|
176 |
+
deltasummation
|
177 |
+
sympy.functions.special.tensor_functions.KroneckerDelta
|
178 |
+
sympy.concrete.products.product
|
179 |
+
"""
|
180 |
+
if ((limit[2] - limit[1]) < 0) == True:
|
181 |
+
return S.One
|
182 |
+
|
183 |
+
if not f.has(KroneckerDelta):
|
184 |
+
return product(f, limit)
|
185 |
+
|
186 |
+
if f.is_Add:
|
187 |
+
# Identify the term in the Add that has a simple KroneckerDelta
|
188 |
+
delta = None
|
189 |
+
terms = []
|
190 |
+
for arg in sorted(f.args, key=default_sort_key):
|
191 |
+
if delta is None and _has_simple_delta(arg, limit[0]):
|
192 |
+
delta = arg
|
193 |
+
else:
|
194 |
+
terms.append(arg)
|
195 |
+
newexpr = f.func(*terms)
|
196 |
+
k = Dummy("kprime", integer=True)
|
197 |
+
if isinstance(limit[1], int) and isinstance(limit[2], int):
|
198 |
+
result = deltaproduct(newexpr, limit) + sum([
|
199 |
+
deltaproduct(newexpr, (limit[0], limit[1], ik - 1)) *
|
200 |
+
delta.subs(limit[0], ik) *
|
201 |
+
deltaproduct(newexpr, (limit[0], ik + 1, limit[2])) for ik in range(int(limit[1]), int(limit[2] + 1))]
|
202 |
+
)
|
203 |
+
else:
|
204 |
+
result = deltaproduct(newexpr, limit) + deltasummation(
|
205 |
+
deltaproduct(newexpr, (limit[0], limit[1], k - 1)) *
|
206 |
+
delta.subs(limit[0], k) *
|
207 |
+
deltaproduct(newexpr, (limit[0], k + 1, limit[2])),
|
208 |
+
(k, limit[1], limit[2]),
|
209 |
+
no_piecewise=_has_simple_delta(newexpr, limit[0])
|
210 |
+
)
|
211 |
+
return _remove_multiple_delta(result)
|
212 |
+
|
213 |
+
delta, _ = _extract_delta(f, limit[0])
|
214 |
+
|
215 |
+
if not delta:
|
216 |
+
g = _expand_delta(f, limit[0])
|
217 |
+
if f != g:
|
218 |
+
try:
|
219 |
+
return factor(deltaproduct(g, limit))
|
220 |
+
except AssertionError:
|
221 |
+
return deltaproduct(g, limit)
|
222 |
+
return product(f, limit)
|
223 |
+
|
224 |
+
return _remove_multiple_delta(f.subs(limit[0], limit[1])*KroneckerDelta(limit[2], limit[1])) + \
|
225 |
+
S.One*_simplify_delta(KroneckerDelta(limit[2], limit[1] - 1))
|
226 |
+
|
227 |
+
|
228 |
+
@cacheit
|
229 |
+
def deltasummation(f, limit, no_piecewise=False):
|
230 |
+
"""
|
231 |
+
Handle summations containing a KroneckerDelta.
|
232 |
+
|
233 |
+
Explanation
|
234 |
+
===========
|
235 |
+
|
236 |
+
The idea for summation is the following:
|
237 |
+
|
238 |
+
- If we are dealing with a KroneckerDelta expression, i.e. KroneckerDelta(g(x), j),
|
239 |
+
we try to simplify it.
|
240 |
+
|
241 |
+
If we could simplify it, then we sum the resulting expression.
|
242 |
+
We already know we can sum a simplified expression, because only
|
243 |
+
simple KroneckerDelta expressions are involved.
|
244 |
+
|
245 |
+
If we could not simplify it, there are two cases:
|
246 |
+
|
247 |
+
1) The expression is a simple expression: we return the summation,
|
248 |
+
taking care if we are dealing with a Derivative or with a proper
|
249 |
+
KroneckerDelta.
|
250 |
+
|
251 |
+
2) The expression is not simple (i.e. KroneckerDelta(cos(x))): we can do
|
252 |
+
nothing at all.
|
253 |
+
|
254 |
+
- If the expr is a multiplication expr having a KroneckerDelta term:
|
255 |
+
|
256 |
+
First we expand it.
|
257 |
+
|
258 |
+
If the expansion did work, then we try to sum the expansion.
|
259 |
+
|
260 |
+
If not, we try to extract a simple KroneckerDelta term, then we have two
|
261 |
+
cases:
|
262 |
+
|
263 |
+
1) We have a simple KroneckerDelta term, so we return the summation.
|
264 |
+
|
265 |
+
2) We did not have a simple term, but we do have an expression with
|
266 |
+
simplified KroneckerDelta terms, so we sum this expression.
|
267 |
+
|
268 |
+
Examples
|
269 |
+
========
|
270 |
+
|
271 |
+
>>> from sympy import oo, symbols
|
272 |
+
>>> from sympy.abc import k
|
273 |
+
>>> i, j = symbols('i, j', integer=True, finite=True)
|
274 |
+
>>> from sympy.concrete.delta import deltasummation
|
275 |
+
>>> from sympy import KroneckerDelta
|
276 |
+
>>> deltasummation(KroneckerDelta(i, k), (k, -oo, oo))
|
277 |
+
1
|
278 |
+
>>> deltasummation(KroneckerDelta(i, k), (k, 0, oo))
|
279 |
+
Piecewise((1, i >= 0), (0, True))
|
280 |
+
>>> deltasummation(KroneckerDelta(i, k), (k, 1, 3))
|
281 |
+
Piecewise((1, (i >= 1) & (i <= 3)), (0, True))
|
282 |
+
>>> deltasummation(k*KroneckerDelta(i, j)*KroneckerDelta(j, k), (k, -oo, oo))
|
283 |
+
j*KroneckerDelta(i, j)
|
284 |
+
>>> deltasummation(j*KroneckerDelta(i, j), (j, -oo, oo))
|
285 |
+
i
|
286 |
+
>>> deltasummation(i*KroneckerDelta(i, j), (i, -oo, oo))
|
287 |
+
j
|
288 |
+
|
289 |
+
See Also
|
290 |
+
========
|
291 |
+
|
292 |
+
deltaproduct
|
293 |
+
sympy.functions.special.tensor_functions.KroneckerDelta
|
294 |
+
sympy.concrete.sums.summation
|
295 |
+
"""
|
296 |
+
if ((limit[2] - limit[1]) < 0) == True:
|
297 |
+
return S.Zero
|
298 |
+
|
299 |
+
if not f.has(KroneckerDelta):
|
300 |
+
return summation(f, limit)
|
301 |
+
|
302 |
+
x = limit[0]
|
303 |
+
|
304 |
+
g = _expand_delta(f, x)
|
305 |
+
if g.is_Add:
|
306 |
+
return piecewise_fold(
|
307 |
+
g.func(*[deltasummation(h, limit, no_piecewise) for h in g.args]))
|
308 |
+
|
309 |
+
# try to extract a simple KroneckerDelta term
|
310 |
+
delta, expr = _extract_delta(g, x)
|
311 |
+
|
312 |
+
if (delta is not None) and (delta.delta_range is not None):
|
313 |
+
dinf, dsup = delta.delta_range
|
314 |
+
if (limit[1] - dinf <= 0) == True and (limit[2] - dsup >= 0) == True:
|
315 |
+
no_piecewise = True
|
316 |
+
|
317 |
+
if not delta:
|
318 |
+
return summation(f, limit)
|
319 |
+
|
320 |
+
solns = solve(delta.args[0] - delta.args[1], x)
|
321 |
+
if len(solns) == 0:
|
322 |
+
return S.Zero
|
323 |
+
elif len(solns) != 1:
|
324 |
+
return Sum(f, limit)
|
325 |
+
value = solns[0]
|
326 |
+
if no_piecewise:
|
327 |
+
return expr.subs(x, value)
|
328 |
+
return Piecewise(
|
329 |
+
(expr.subs(x, value), Interval(*limit[1:3]).as_relational(value)),
|
330 |
+
(S.Zero, True)
|
331 |
+
)
|
venv/lib/python3.10/site-packages/sympy/concrete/expr_with_intlimits.py
ADDED
@@ -0,0 +1,354 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.concrete.expr_with_limits import ExprWithLimits
|
2 |
+
from sympy.core.singleton import S
|
3 |
+
from sympy.core.relational import Eq
|
4 |
+
|
5 |
+
class ReorderError(NotImplementedError):
|
6 |
+
"""
|
7 |
+
Exception raised when trying to reorder dependent limits.
|
8 |
+
"""
|
9 |
+
def __init__(self, expr, msg):
|
10 |
+
super().__init__(
|
11 |
+
"%s could not be reordered: %s." % (expr, msg))
|
12 |
+
|
13 |
+
class ExprWithIntLimits(ExprWithLimits):
|
14 |
+
"""
|
15 |
+
Superclass for Product and Sum.
|
16 |
+
|
17 |
+
See Also
|
18 |
+
========
|
19 |
+
|
20 |
+
sympy.concrete.expr_with_limits.ExprWithLimits
|
21 |
+
sympy.concrete.products.Product
|
22 |
+
sympy.concrete.summations.Sum
|
23 |
+
"""
|
24 |
+
__slots__ = ()
|
25 |
+
|
26 |
+
def change_index(self, var, trafo, newvar=None):
|
27 |
+
r"""
|
28 |
+
Change index of a Sum or Product.
|
29 |
+
|
30 |
+
Perform a linear transformation `x \mapsto a x + b` on the index variable
|
31 |
+
`x`. For `a` the only values allowed are `\pm 1`. A new variable to be used
|
32 |
+
after the change of index can also be specified.
|
33 |
+
|
34 |
+
Explanation
|
35 |
+
===========
|
36 |
+
|
37 |
+
``change_index(expr, var, trafo, newvar=None)`` where ``var`` specifies the
|
38 |
+
index variable `x` to transform. The transformation ``trafo`` must be linear
|
39 |
+
and given in terms of ``var``. If the optional argument ``newvar`` is
|
40 |
+
provided then ``var`` gets replaced by ``newvar`` in the final expression.
|
41 |
+
|
42 |
+
Examples
|
43 |
+
========
|
44 |
+
|
45 |
+
>>> from sympy import Sum, Product, simplify
|
46 |
+
>>> from sympy.abc import x, y, a, b, c, d, u, v, i, j, k, l
|
47 |
+
|
48 |
+
>>> S = Sum(x, (x, a, b))
|
49 |
+
>>> S.doit()
|
50 |
+
-a**2/2 + a/2 + b**2/2 + b/2
|
51 |
+
|
52 |
+
>>> Sn = S.change_index(x, x + 1, y)
|
53 |
+
>>> Sn
|
54 |
+
Sum(y - 1, (y, a + 1, b + 1))
|
55 |
+
>>> Sn.doit()
|
56 |
+
-a**2/2 + a/2 + b**2/2 + b/2
|
57 |
+
|
58 |
+
>>> Sn = S.change_index(x, -x, y)
|
59 |
+
>>> Sn
|
60 |
+
Sum(-y, (y, -b, -a))
|
61 |
+
>>> Sn.doit()
|
62 |
+
-a**2/2 + a/2 + b**2/2 + b/2
|
63 |
+
|
64 |
+
>>> Sn = S.change_index(x, x+u)
|
65 |
+
>>> Sn
|
66 |
+
Sum(-u + x, (x, a + u, b + u))
|
67 |
+
>>> Sn.doit()
|
68 |
+
-a**2/2 - a*u + a/2 + b**2/2 + b*u + b/2 - u*(-a + b + 1) + u
|
69 |
+
>>> simplify(Sn.doit())
|
70 |
+
-a**2/2 + a/2 + b**2/2 + b/2
|
71 |
+
|
72 |
+
>>> Sn = S.change_index(x, -x - u, y)
|
73 |
+
>>> Sn
|
74 |
+
Sum(-u - y, (y, -b - u, -a - u))
|
75 |
+
>>> Sn.doit()
|
76 |
+
-a**2/2 - a*u + a/2 + b**2/2 + b*u + b/2 - u*(-a + b + 1) + u
|
77 |
+
>>> simplify(Sn.doit())
|
78 |
+
-a**2/2 + a/2 + b**2/2 + b/2
|
79 |
+
|
80 |
+
>>> P = Product(i*j**2, (i, a, b), (j, c, d))
|
81 |
+
>>> P
|
82 |
+
Product(i*j**2, (i, a, b), (j, c, d))
|
83 |
+
>>> P2 = P.change_index(i, i+3, k)
|
84 |
+
>>> P2
|
85 |
+
Product(j**2*(k - 3), (k, a + 3, b + 3), (j, c, d))
|
86 |
+
>>> P3 = P2.change_index(j, -j, l)
|
87 |
+
>>> P3
|
88 |
+
Product(l**2*(k - 3), (k, a + 3, b + 3), (l, -d, -c))
|
89 |
+
|
90 |
+
When dealing with symbols only, we can make a
|
91 |
+
general linear transformation:
|
92 |
+
|
93 |
+
>>> Sn = S.change_index(x, u*x+v, y)
|
94 |
+
>>> Sn
|
95 |
+
Sum((-v + y)/u, (y, b*u + v, a*u + v))
|
96 |
+
>>> Sn.doit()
|
97 |
+
-v*(a*u - b*u + 1)/u + (a**2*u**2/2 + a*u*v + a*u/2 - b**2*u**2/2 - b*u*v + b*u/2 + v)/u
|
98 |
+
>>> simplify(Sn.doit())
|
99 |
+
a**2*u/2 + a/2 - b**2*u/2 + b/2
|
100 |
+
|
101 |
+
However, the last result can be inconsistent with usual
|
102 |
+
summation where the index increment is always 1. This is
|
103 |
+
obvious as we get back the original value only for ``u``
|
104 |
+
equal +1 or -1.
|
105 |
+
|
106 |
+
See Also
|
107 |
+
========
|
108 |
+
|
109 |
+
sympy.concrete.expr_with_intlimits.ExprWithIntLimits.index,
|
110 |
+
reorder_limit,
|
111 |
+
sympy.concrete.expr_with_intlimits.ExprWithIntLimits.reorder,
|
112 |
+
sympy.concrete.summations.Sum.reverse_order,
|
113 |
+
sympy.concrete.products.Product.reverse_order
|
114 |
+
"""
|
115 |
+
if newvar is None:
|
116 |
+
newvar = var
|
117 |
+
|
118 |
+
limits = []
|
119 |
+
for limit in self.limits:
|
120 |
+
if limit[0] == var:
|
121 |
+
p = trafo.as_poly(var)
|
122 |
+
if p.degree() != 1:
|
123 |
+
raise ValueError("Index transformation is not linear")
|
124 |
+
alpha = p.coeff_monomial(var)
|
125 |
+
beta = p.coeff_monomial(S.One)
|
126 |
+
if alpha.is_number:
|
127 |
+
if alpha == S.One:
|
128 |
+
limits.append((newvar, alpha*limit[1] + beta, alpha*limit[2] + beta))
|
129 |
+
elif alpha == S.NegativeOne:
|
130 |
+
limits.append((newvar, alpha*limit[2] + beta, alpha*limit[1] + beta))
|
131 |
+
else:
|
132 |
+
raise ValueError("Linear transformation results in non-linear summation stepsize")
|
133 |
+
else:
|
134 |
+
# Note that the case of alpha being symbolic can give issues if alpha < 0.
|
135 |
+
limits.append((newvar, alpha*limit[2] + beta, alpha*limit[1] + beta))
|
136 |
+
else:
|
137 |
+
limits.append(limit)
|
138 |
+
|
139 |
+
function = self.function.subs(var, (var - beta)/alpha)
|
140 |
+
function = function.subs(var, newvar)
|
141 |
+
|
142 |
+
return self.func(function, *limits)
|
143 |
+
|
144 |
+
|
145 |
+
def index(expr, x):
|
146 |
+
"""
|
147 |
+
Return the index of a dummy variable in the list of limits.
|
148 |
+
|
149 |
+
Explanation
|
150 |
+
===========
|
151 |
+
|
152 |
+
``index(expr, x)`` returns the index of the dummy variable ``x`` in the
|
153 |
+
limits of ``expr``. Note that we start counting with 0 at the inner-most
|
154 |
+
limits tuple.
|
155 |
+
|
156 |
+
Examples
|
157 |
+
========
|
158 |
+
|
159 |
+
>>> from sympy.abc import x, y, a, b, c, d
|
160 |
+
>>> from sympy import Sum, Product
|
161 |
+
>>> Sum(x*y, (x, a, b), (y, c, d)).index(x)
|
162 |
+
0
|
163 |
+
>>> Sum(x*y, (x, a, b), (y, c, d)).index(y)
|
164 |
+
1
|
165 |
+
>>> Product(x*y, (x, a, b), (y, c, d)).index(x)
|
166 |
+
0
|
167 |
+
>>> Product(x*y, (x, a, b), (y, c, d)).index(y)
|
168 |
+
1
|
169 |
+
|
170 |
+
See Also
|
171 |
+
========
|
172 |
+
|
173 |
+
reorder_limit, reorder, sympy.concrete.summations.Sum.reverse_order,
|
174 |
+
sympy.concrete.products.Product.reverse_order
|
175 |
+
"""
|
176 |
+
variables = [limit[0] for limit in expr.limits]
|
177 |
+
|
178 |
+
if variables.count(x) != 1:
|
179 |
+
raise ValueError(expr, "Number of instances of variable not equal to one")
|
180 |
+
else:
|
181 |
+
return variables.index(x)
|
182 |
+
|
183 |
+
def reorder(expr, *arg):
|
184 |
+
"""
|
185 |
+
Reorder limits in a expression containing a Sum or a Product.
|
186 |
+
|
187 |
+
Explanation
|
188 |
+
===========
|
189 |
+
|
190 |
+
``expr.reorder(*arg)`` reorders the limits in the expression ``expr``
|
191 |
+
according to the list of tuples given by ``arg``. These tuples can
|
192 |
+
contain numerical indices or index variable names or involve both.
|
193 |
+
|
194 |
+
Examples
|
195 |
+
========
|
196 |
+
|
197 |
+
>>> from sympy import Sum, Product
|
198 |
+
>>> from sympy.abc import x, y, z, a, b, c, d, e, f
|
199 |
+
|
200 |
+
>>> Sum(x*y, (x, a, b), (y, c, d)).reorder((x, y))
|
201 |
+
Sum(x*y, (y, c, d), (x, a, b))
|
202 |
+
|
203 |
+
>>> Sum(x*y*z, (x, a, b), (y, c, d), (z, e, f)).reorder((x, y), (x, z), (y, z))
|
204 |
+
Sum(x*y*z, (z, e, f), (y, c, d), (x, a, b))
|
205 |
+
|
206 |
+
>>> P = Product(x*y*z, (x, a, b), (y, c, d), (z, e, f))
|
207 |
+
>>> P.reorder((x, y), (x, z), (y, z))
|
208 |
+
Product(x*y*z, (z, e, f), (y, c, d), (x, a, b))
|
209 |
+
|
210 |
+
We can also select the index variables by counting them, starting
|
211 |
+
with the inner-most one:
|
212 |
+
|
213 |
+
>>> Sum(x**2, (x, a, b), (x, c, d)).reorder((0, 1))
|
214 |
+
Sum(x**2, (x, c, d), (x, a, b))
|
215 |
+
|
216 |
+
And of course we can mix both schemes:
|
217 |
+
|
218 |
+
>>> Sum(x*y, (x, a, b), (y, c, d)).reorder((y, x))
|
219 |
+
Sum(x*y, (y, c, d), (x, a, b))
|
220 |
+
>>> Sum(x*y, (x, a, b), (y, c, d)).reorder((y, 0))
|
221 |
+
Sum(x*y, (y, c, d), (x, a, b))
|
222 |
+
|
223 |
+
See Also
|
224 |
+
========
|
225 |
+
|
226 |
+
reorder_limit, index, sympy.concrete.summations.Sum.reverse_order,
|
227 |
+
sympy.concrete.products.Product.reverse_order
|
228 |
+
"""
|
229 |
+
new_expr = expr
|
230 |
+
|
231 |
+
for r in arg:
|
232 |
+
if len(r) != 2:
|
233 |
+
raise ValueError(r, "Invalid number of arguments")
|
234 |
+
|
235 |
+
index1 = r[0]
|
236 |
+
index2 = r[1]
|
237 |
+
|
238 |
+
if not isinstance(r[0], int):
|
239 |
+
index1 = expr.index(r[0])
|
240 |
+
if not isinstance(r[1], int):
|
241 |
+
index2 = expr.index(r[1])
|
242 |
+
|
243 |
+
new_expr = new_expr.reorder_limit(index1, index2)
|
244 |
+
|
245 |
+
return new_expr
|
246 |
+
|
247 |
+
|
248 |
+
def reorder_limit(expr, x, y):
|
249 |
+
"""
|
250 |
+
Interchange two limit tuples of a Sum or Product expression.
|
251 |
+
|
252 |
+
Explanation
|
253 |
+
===========
|
254 |
+
|
255 |
+
``expr.reorder_limit(x, y)`` interchanges two limit tuples. The
|
256 |
+
arguments ``x`` and ``y`` are integers corresponding to the index
|
257 |
+
variables of the two limits which are to be interchanged. The
|
258 |
+
expression ``expr`` has to be either a Sum or a Product.
|
259 |
+
|
260 |
+
Examples
|
261 |
+
========
|
262 |
+
|
263 |
+
>>> from sympy.abc import x, y, z, a, b, c, d, e, f
|
264 |
+
>>> from sympy import Sum, Product
|
265 |
+
|
266 |
+
>>> Sum(x*y*z, (x, a, b), (y, c, d), (z, e, f)).reorder_limit(0, 2)
|
267 |
+
Sum(x*y*z, (z, e, f), (y, c, d), (x, a, b))
|
268 |
+
>>> Sum(x**2, (x, a, b), (x, c, d)).reorder_limit(1, 0)
|
269 |
+
Sum(x**2, (x, c, d), (x, a, b))
|
270 |
+
|
271 |
+
>>> Product(x*y*z, (x, a, b), (y, c, d), (z, e, f)).reorder_limit(0, 2)
|
272 |
+
Product(x*y*z, (z, e, f), (y, c, d), (x, a, b))
|
273 |
+
|
274 |
+
See Also
|
275 |
+
========
|
276 |
+
|
277 |
+
index, reorder, sympy.concrete.summations.Sum.reverse_order,
|
278 |
+
sympy.concrete.products.Product.reverse_order
|
279 |
+
"""
|
280 |
+
var = {limit[0] for limit in expr.limits}
|
281 |
+
limit_x = expr.limits[x]
|
282 |
+
limit_y = expr.limits[y]
|
283 |
+
|
284 |
+
if (len(set(limit_x[1].free_symbols).intersection(var)) == 0 and
|
285 |
+
len(set(limit_x[2].free_symbols).intersection(var)) == 0 and
|
286 |
+
len(set(limit_y[1].free_symbols).intersection(var)) == 0 and
|
287 |
+
len(set(limit_y[2].free_symbols).intersection(var)) == 0):
|
288 |
+
|
289 |
+
limits = []
|
290 |
+
for i, limit in enumerate(expr.limits):
|
291 |
+
if i == x:
|
292 |
+
limits.append(limit_y)
|
293 |
+
elif i == y:
|
294 |
+
limits.append(limit_x)
|
295 |
+
else:
|
296 |
+
limits.append(limit)
|
297 |
+
|
298 |
+
return type(expr)(expr.function, *limits)
|
299 |
+
else:
|
300 |
+
raise ReorderError(expr, "could not interchange the two limits specified")
|
301 |
+
|
302 |
+
@property
|
303 |
+
def has_empty_sequence(self):
|
304 |
+
"""
|
305 |
+
Returns True if the Sum or Product is computed for an empty sequence.
|
306 |
+
|
307 |
+
Examples
|
308 |
+
========
|
309 |
+
|
310 |
+
>>> from sympy import Sum, Product, Symbol
|
311 |
+
>>> m = Symbol('m')
|
312 |
+
>>> Sum(m, (m, 1, 0)).has_empty_sequence
|
313 |
+
True
|
314 |
+
|
315 |
+
>>> Sum(m, (m, 1, 1)).has_empty_sequence
|
316 |
+
False
|
317 |
+
|
318 |
+
>>> M = Symbol('M', integer=True, positive=True)
|
319 |
+
>>> Product(m, (m, 1, M)).has_empty_sequence
|
320 |
+
False
|
321 |
+
|
322 |
+
>>> Product(m, (m, 2, M)).has_empty_sequence
|
323 |
+
|
324 |
+
>>> Product(m, (m, M + 1, M)).has_empty_sequence
|
325 |
+
True
|
326 |
+
|
327 |
+
>>> N = Symbol('N', integer=True, positive=True)
|
328 |
+
>>> Sum(m, (m, N, M)).has_empty_sequence
|
329 |
+
|
330 |
+
>>> N = Symbol('N', integer=True, negative=True)
|
331 |
+
>>> Sum(m, (m, N, M)).has_empty_sequence
|
332 |
+
False
|
333 |
+
|
334 |
+
See Also
|
335 |
+
========
|
336 |
+
|
337 |
+
has_reversed_limits
|
338 |
+
has_finite_limits
|
339 |
+
|
340 |
+
"""
|
341 |
+
ret_None = False
|
342 |
+
for lim in self.limits:
|
343 |
+
dif = lim[1] - lim[2]
|
344 |
+
eq = Eq(dif, 1)
|
345 |
+
if eq == True:
|
346 |
+
return True
|
347 |
+
elif eq == False:
|
348 |
+
continue
|
349 |
+
else:
|
350 |
+
ret_None = True
|
351 |
+
|
352 |
+
if ret_None:
|
353 |
+
return None
|
354 |
+
return False
|
venv/lib/python3.10/site-packages/sympy/concrete/expr_with_limits.py
ADDED
@@ -0,0 +1,603 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.add import Add
|
2 |
+
from sympy.core.containers import Tuple
|
3 |
+
from sympy.core.expr import Expr
|
4 |
+
from sympy.core.function import AppliedUndef, UndefinedFunction
|
5 |
+
from sympy.core.mul import Mul
|
6 |
+
from sympy.core.relational import Equality, Relational
|
7 |
+
from sympy.core.singleton import S
|
8 |
+
from sympy.core.symbol import Symbol, Dummy
|
9 |
+
from sympy.core.sympify import sympify
|
10 |
+
from sympy.functions.elementary.piecewise import (piecewise_fold,
|
11 |
+
Piecewise)
|
12 |
+
from sympy.logic.boolalg import BooleanFunction
|
13 |
+
from sympy.matrices.matrices import MatrixBase
|
14 |
+
from sympy.sets.sets import Interval, Set
|
15 |
+
from sympy.sets.fancysets import Range
|
16 |
+
from sympy.tensor.indexed import Idx
|
17 |
+
from sympy.utilities import flatten
|
18 |
+
from sympy.utilities.iterables import sift, is_sequence
|
19 |
+
from sympy.utilities.exceptions import sympy_deprecation_warning
|
20 |
+
|
21 |
+
|
22 |
+
def _common_new(cls, function, *symbols, discrete, **assumptions):
|
23 |
+
"""Return either a special return value or the tuple,
|
24 |
+
(function, limits, orientation). This code is common to
|
25 |
+
both ExprWithLimits and AddWithLimits."""
|
26 |
+
function = sympify(function)
|
27 |
+
|
28 |
+
if isinstance(function, Equality):
|
29 |
+
# This transforms e.g. Integral(Eq(x, y)) to Eq(Integral(x), Integral(y))
|
30 |
+
# but that is only valid for definite integrals.
|
31 |
+
limits, orientation = _process_limits(*symbols, discrete=discrete)
|
32 |
+
if not (limits and all(len(limit) == 3 for limit in limits)):
|
33 |
+
sympy_deprecation_warning(
|
34 |
+
"""
|
35 |
+
Creating a indefinite integral with an Eq() argument is
|
36 |
+
deprecated.
|
37 |
+
|
38 |
+
This is because indefinite integrals do not preserve equality
|
39 |
+
due to the arbitrary constants. If you want an equality of
|
40 |
+
indefinite integrals, use Eq(Integral(a, x), Integral(b, x))
|
41 |
+
explicitly.
|
42 |
+
""",
|
43 |
+
deprecated_since_version="1.6",
|
44 |
+
active_deprecations_target="deprecated-indefinite-integral-eq",
|
45 |
+
stacklevel=5,
|
46 |
+
)
|
47 |
+
|
48 |
+
lhs = function.lhs
|
49 |
+
rhs = function.rhs
|
50 |
+
return Equality(cls(lhs, *symbols, **assumptions), \
|
51 |
+
cls(rhs, *symbols, **assumptions))
|
52 |
+
|
53 |
+
if function is S.NaN:
|
54 |
+
return S.NaN
|
55 |
+
|
56 |
+
if symbols:
|
57 |
+
limits, orientation = _process_limits(*symbols, discrete=discrete)
|
58 |
+
for i, li in enumerate(limits):
|
59 |
+
if len(li) == 4:
|
60 |
+
function = function.subs(li[0], li[-1])
|
61 |
+
limits[i] = Tuple(*li[:-1])
|
62 |
+
else:
|
63 |
+
# symbol not provided -- we can still try to compute a general form
|
64 |
+
free = function.free_symbols
|
65 |
+
if len(free) != 1:
|
66 |
+
raise ValueError(
|
67 |
+
"specify dummy variables for %s" % function)
|
68 |
+
limits, orientation = [Tuple(s) for s in free], 1
|
69 |
+
|
70 |
+
# denest any nested calls
|
71 |
+
while cls == type(function):
|
72 |
+
limits = list(function.limits) + limits
|
73 |
+
function = function.function
|
74 |
+
|
75 |
+
# Any embedded piecewise functions need to be brought out to the
|
76 |
+
# top level. We only fold Piecewise that contain the integration
|
77 |
+
# variable.
|
78 |
+
reps = {}
|
79 |
+
symbols_of_integration = {i[0] for i in limits}
|
80 |
+
for p in function.atoms(Piecewise):
|
81 |
+
if not p.has(*symbols_of_integration):
|
82 |
+
reps[p] = Dummy()
|
83 |
+
# mask off those that don't
|
84 |
+
function = function.xreplace(reps)
|
85 |
+
# do the fold
|
86 |
+
function = piecewise_fold(function)
|
87 |
+
# remove the masking
|
88 |
+
function = function.xreplace({v: k for k, v in reps.items()})
|
89 |
+
|
90 |
+
return function, limits, orientation
|
91 |
+
|
92 |
+
|
93 |
+
def _process_limits(*symbols, discrete=None):
|
94 |
+
"""Process the list of symbols and convert them to canonical limits,
|
95 |
+
storing them as Tuple(symbol, lower, upper). The orientation of
|
96 |
+
the function is also returned when the upper limit is missing
|
97 |
+
so (x, 1, None) becomes (x, None, 1) and the orientation is changed.
|
98 |
+
In the case that a limit is specified as (symbol, Range), a list of
|
99 |
+
length 4 may be returned if a change of variables is needed; the
|
100 |
+
expression that should replace the symbol in the expression is
|
101 |
+
the fourth element in the list.
|
102 |
+
"""
|
103 |
+
limits = []
|
104 |
+
orientation = 1
|
105 |
+
if discrete is None:
|
106 |
+
err_msg = 'discrete must be True or False'
|
107 |
+
elif discrete:
|
108 |
+
err_msg = 'use Range, not Interval or Relational'
|
109 |
+
else:
|
110 |
+
err_msg = 'use Interval or Relational, not Range'
|
111 |
+
for V in symbols:
|
112 |
+
if isinstance(V, (Relational, BooleanFunction)):
|
113 |
+
if discrete:
|
114 |
+
raise TypeError(err_msg)
|
115 |
+
variable = V.atoms(Symbol).pop()
|
116 |
+
V = (variable, V.as_set())
|
117 |
+
elif isinstance(V, Symbol) or getattr(V, '_diff_wrt', False):
|
118 |
+
if isinstance(V, Idx):
|
119 |
+
if V.lower is None or V.upper is None:
|
120 |
+
limits.append(Tuple(V))
|
121 |
+
else:
|
122 |
+
limits.append(Tuple(V, V.lower, V.upper))
|
123 |
+
else:
|
124 |
+
limits.append(Tuple(V))
|
125 |
+
continue
|
126 |
+
if is_sequence(V) and not isinstance(V, Set):
|
127 |
+
if len(V) == 2 and isinstance(V[1], Set):
|
128 |
+
V = list(V)
|
129 |
+
if isinstance(V[1], Interval): # includes Reals
|
130 |
+
if discrete:
|
131 |
+
raise TypeError(err_msg)
|
132 |
+
V[1:] = V[1].inf, V[1].sup
|
133 |
+
elif isinstance(V[1], Range):
|
134 |
+
if not discrete:
|
135 |
+
raise TypeError(err_msg)
|
136 |
+
lo = V[1].inf
|
137 |
+
hi = V[1].sup
|
138 |
+
dx = abs(V[1].step) # direction doesn't matter
|
139 |
+
if dx == 1:
|
140 |
+
V[1:] = [lo, hi]
|
141 |
+
else:
|
142 |
+
if lo is not S.NegativeInfinity:
|
143 |
+
V = [V[0]] + [0, (hi - lo)//dx, dx*V[0] + lo]
|
144 |
+
else:
|
145 |
+
V = [V[0]] + [0, S.Infinity, -dx*V[0] + hi]
|
146 |
+
else:
|
147 |
+
# more complicated sets would require splitting, e.g.
|
148 |
+
# Union(Interval(1, 3), interval(6,10))
|
149 |
+
raise NotImplementedError(
|
150 |
+
'expecting Range' if discrete else
|
151 |
+
'Relational or single Interval' )
|
152 |
+
V = sympify(flatten(V)) # list of sympified elements/None
|
153 |
+
if isinstance(V[0], (Symbol, Idx)) or getattr(V[0], '_diff_wrt', False):
|
154 |
+
newsymbol = V[0]
|
155 |
+
if len(V) == 3:
|
156 |
+
# general case
|
157 |
+
if V[2] is None and V[1] is not None:
|
158 |
+
orientation *= -1
|
159 |
+
V = [newsymbol] + [i for i in V[1:] if i is not None]
|
160 |
+
|
161 |
+
lenV = len(V)
|
162 |
+
if not isinstance(newsymbol, Idx) or lenV == 3:
|
163 |
+
if lenV == 4:
|
164 |
+
limits.append(Tuple(*V))
|
165 |
+
continue
|
166 |
+
if lenV == 3:
|
167 |
+
if isinstance(newsymbol, Idx):
|
168 |
+
# Idx represents an integer which may have
|
169 |
+
# specified values it can take on; if it is
|
170 |
+
# given such a value, an error is raised here
|
171 |
+
# if the summation would try to give it a larger
|
172 |
+
# or smaller value than permitted. None and Symbolic
|
173 |
+
# values will not raise an error.
|
174 |
+
lo, hi = newsymbol.lower, newsymbol.upper
|
175 |
+
try:
|
176 |
+
if lo is not None and not bool(V[1] >= lo):
|
177 |
+
raise ValueError("Summation will set Idx value too low.")
|
178 |
+
except TypeError:
|
179 |
+
pass
|
180 |
+
try:
|
181 |
+
if hi is not None and not bool(V[2] <= hi):
|
182 |
+
raise ValueError("Summation will set Idx value too high.")
|
183 |
+
except TypeError:
|
184 |
+
pass
|
185 |
+
limits.append(Tuple(*V))
|
186 |
+
continue
|
187 |
+
if lenV == 1 or (lenV == 2 and V[1] is None):
|
188 |
+
limits.append(Tuple(newsymbol))
|
189 |
+
continue
|
190 |
+
elif lenV == 2:
|
191 |
+
limits.append(Tuple(newsymbol, V[1]))
|
192 |
+
continue
|
193 |
+
|
194 |
+
raise ValueError('Invalid limits given: %s' % str(symbols))
|
195 |
+
|
196 |
+
return limits, orientation
|
197 |
+
|
198 |
+
|
199 |
+
class ExprWithLimits(Expr):
|
200 |
+
__slots__ = ('is_commutative',)
|
201 |
+
|
202 |
+
def __new__(cls, function, *symbols, **assumptions):
|
203 |
+
from sympy.concrete.products import Product
|
204 |
+
pre = _common_new(cls, function, *symbols,
|
205 |
+
discrete=issubclass(cls, Product), **assumptions)
|
206 |
+
if isinstance(pre, tuple):
|
207 |
+
function, limits, _ = pre
|
208 |
+
else:
|
209 |
+
return pre
|
210 |
+
|
211 |
+
# limits must have upper and lower bounds; the indefinite form
|
212 |
+
# is not supported. This restriction does not apply to AddWithLimits
|
213 |
+
if any(len(l) != 3 or None in l for l in limits):
|
214 |
+
raise ValueError('ExprWithLimits requires values for lower and upper bounds.')
|
215 |
+
|
216 |
+
obj = Expr.__new__(cls, **assumptions)
|
217 |
+
arglist = [function]
|
218 |
+
arglist.extend(limits)
|
219 |
+
obj._args = tuple(arglist)
|
220 |
+
obj.is_commutative = function.is_commutative # limits already checked
|
221 |
+
|
222 |
+
return obj
|
223 |
+
|
224 |
+
@property
|
225 |
+
def function(self):
|
226 |
+
"""Return the function applied across limits.
|
227 |
+
|
228 |
+
Examples
|
229 |
+
========
|
230 |
+
|
231 |
+
>>> from sympy import Integral
|
232 |
+
>>> from sympy.abc import x
|
233 |
+
>>> Integral(x**2, (x,)).function
|
234 |
+
x**2
|
235 |
+
|
236 |
+
See Also
|
237 |
+
========
|
238 |
+
|
239 |
+
limits, variables, free_symbols
|
240 |
+
"""
|
241 |
+
return self._args[0]
|
242 |
+
|
243 |
+
@property
|
244 |
+
def kind(self):
|
245 |
+
return self.function.kind
|
246 |
+
|
247 |
+
@property
|
248 |
+
def limits(self):
|
249 |
+
"""Return the limits of expression.
|
250 |
+
|
251 |
+
Examples
|
252 |
+
========
|
253 |
+
|
254 |
+
>>> from sympy import Integral
|
255 |
+
>>> from sympy.abc import x, i
|
256 |
+
>>> Integral(x**i, (i, 1, 3)).limits
|
257 |
+
((i, 1, 3),)
|
258 |
+
|
259 |
+
See Also
|
260 |
+
========
|
261 |
+
|
262 |
+
function, variables, free_symbols
|
263 |
+
"""
|
264 |
+
return self._args[1:]
|
265 |
+
|
266 |
+
@property
|
267 |
+
def variables(self):
|
268 |
+
"""Return a list of the limit variables.
|
269 |
+
|
270 |
+
>>> from sympy import Sum
|
271 |
+
>>> from sympy.abc import x, i
|
272 |
+
>>> Sum(x**i, (i, 1, 3)).variables
|
273 |
+
[i]
|
274 |
+
|
275 |
+
See Also
|
276 |
+
========
|
277 |
+
|
278 |
+
function, limits, free_symbols
|
279 |
+
as_dummy : Rename dummy variables
|
280 |
+
sympy.integrals.integrals.Integral.transform : Perform mapping on the dummy variable
|
281 |
+
"""
|
282 |
+
return [l[0] for l in self.limits]
|
283 |
+
|
284 |
+
@property
|
285 |
+
def bound_symbols(self):
|
286 |
+
"""Return only variables that are dummy variables.
|
287 |
+
|
288 |
+
Examples
|
289 |
+
========
|
290 |
+
|
291 |
+
>>> from sympy import Integral
|
292 |
+
>>> from sympy.abc import x, i, j, k
|
293 |
+
>>> Integral(x**i, (i, 1, 3), (j, 2), k).bound_symbols
|
294 |
+
[i, j]
|
295 |
+
|
296 |
+
See Also
|
297 |
+
========
|
298 |
+
|
299 |
+
function, limits, free_symbols
|
300 |
+
as_dummy : Rename dummy variables
|
301 |
+
sympy.integrals.integrals.Integral.transform : Perform mapping on the dummy variable
|
302 |
+
"""
|
303 |
+
return [l[0] for l in self.limits if len(l) != 1]
|
304 |
+
|
305 |
+
@property
|
306 |
+
def free_symbols(self):
|
307 |
+
"""
|
308 |
+
This method returns the symbols in the object, excluding those
|
309 |
+
that take on a specific value (i.e. the dummy symbols).
|
310 |
+
|
311 |
+
Examples
|
312 |
+
========
|
313 |
+
|
314 |
+
>>> from sympy import Sum
|
315 |
+
>>> from sympy.abc import x, y
|
316 |
+
>>> Sum(x, (x, y, 1)).free_symbols
|
317 |
+
{y}
|
318 |
+
"""
|
319 |
+
# don't test for any special values -- nominal free symbols
|
320 |
+
# should be returned, e.g. don't return set() if the
|
321 |
+
# function is zero -- treat it like an unevaluated expression.
|
322 |
+
function, limits = self.function, self.limits
|
323 |
+
# mask off non-symbol integration variables that have
|
324 |
+
# more than themself as a free symbol
|
325 |
+
reps = {i[0]: i[0] if i[0].free_symbols == {i[0]} else Dummy()
|
326 |
+
for i in self.limits}
|
327 |
+
function = function.xreplace(reps)
|
328 |
+
isyms = function.free_symbols
|
329 |
+
for xab in limits:
|
330 |
+
v = reps[xab[0]]
|
331 |
+
if len(xab) == 1:
|
332 |
+
isyms.add(v)
|
333 |
+
continue
|
334 |
+
# take out the target symbol
|
335 |
+
if v in isyms:
|
336 |
+
isyms.remove(v)
|
337 |
+
# add in the new symbols
|
338 |
+
for i in xab[1:]:
|
339 |
+
isyms.update(i.free_symbols)
|
340 |
+
reps = {v: k for k, v in reps.items()}
|
341 |
+
return {reps.get(_, _) for _ in isyms}
|
342 |
+
|
343 |
+
@property
|
344 |
+
def is_number(self):
|
345 |
+
"""Return True if the Sum has no free symbols, else False."""
|
346 |
+
return not self.free_symbols
|
347 |
+
|
348 |
+
def _eval_interval(self, x, a, b):
|
349 |
+
limits = [(i if i[0] != x else (x, a, b)) for i in self.limits]
|
350 |
+
integrand = self.function
|
351 |
+
return self.func(integrand, *limits)
|
352 |
+
|
353 |
+
def _eval_subs(self, old, new):
|
354 |
+
"""
|
355 |
+
Perform substitutions over non-dummy variables
|
356 |
+
of an expression with limits. Also, can be used
|
357 |
+
to specify point-evaluation of an abstract antiderivative.
|
358 |
+
|
359 |
+
Examples
|
360 |
+
========
|
361 |
+
|
362 |
+
>>> from sympy import Sum, oo
|
363 |
+
>>> from sympy.abc import s, n
|
364 |
+
>>> Sum(1/n**s, (n, 1, oo)).subs(s, 2)
|
365 |
+
Sum(n**(-2), (n, 1, oo))
|
366 |
+
|
367 |
+
>>> from sympy import Integral
|
368 |
+
>>> from sympy.abc import x, a
|
369 |
+
>>> Integral(a*x**2, x).subs(x, 4)
|
370 |
+
Integral(a*x**2, (x, 4))
|
371 |
+
|
372 |
+
See Also
|
373 |
+
========
|
374 |
+
|
375 |
+
variables : Lists the integration variables
|
376 |
+
transform : Perform mapping on the dummy variable for integrals
|
377 |
+
change_index : Perform mapping on the sum and product dummy variables
|
378 |
+
|
379 |
+
"""
|
380 |
+
func, limits = self.function, list(self.limits)
|
381 |
+
|
382 |
+
# If one of the expressions we are replacing is used as a func index
|
383 |
+
# one of two things happens.
|
384 |
+
# - the old variable first appears as a free variable
|
385 |
+
# so we perform all free substitutions before it becomes
|
386 |
+
# a func index.
|
387 |
+
# - the old variable first appears as a func index, in
|
388 |
+
# which case we ignore. See change_index.
|
389 |
+
|
390 |
+
# Reorder limits to match standard mathematical practice for scoping
|
391 |
+
limits.reverse()
|
392 |
+
|
393 |
+
if not isinstance(old, Symbol) or \
|
394 |
+
old.free_symbols.intersection(self.free_symbols):
|
395 |
+
sub_into_func = True
|
396 |
+
for i, xab in enumerate(limits):
|
397 |
+
if 1 == len(xab) and old == xab[0]:
|
398 |
+
if new._diff_wrt:
|
399 |
+
xab = (new,)
|
400 |
+
else:
|
401 |
+
xab = (old, old)
|
402 |
+
limits[i] = Tuple(xab[0], *[l._subs(old, new) for l in xab[1:]])
|
403 |
+
if len(xab[0].free_symbols.intersection(old.free_symbols)) != 0:
|
404 |
+
sub_into_func = False
|
405 |
+
break
|
406 |
+
if isinstance(old, (AppliedUndef, UndefinedFunction)):
|
407 |
+
sy2 = set(self.variables).intersection(set(new.atoms(Symbol)))
|
408 |
+
sy1 = set(self.variables).intersection(set(old.args))
|
409 |
+
if not sy2.issubset(sy1):
|
410 |
+
raise ValueError(
|
411 |
+
"substitution cannot create dummy dependencies")
|
412 |
+
sub_into_func = True
|
413 |
+
if sub_into_func:
|
414 |
+
func = func.subs(old, new)
|
415 |
+
else:
|
416 |
+
# old is a Symbol and a dummy variable of some limit
|
417 |
+
for i, xab in enumerate(limits):
|
418 |
+
if len(xab) == 3:
|
419 |
+
limits[i] = Tuple(xab[0], *[l._subs(old, new) for l in xab[1:]])
|
420 |
+
if old == xab[0]:
|
421 |
+
break
|
422 |
+
# simplify redundant limits (x, x) to (x, )
|
423 |
+
for i, xab in enumerate(limits):
|
424 |
+
if len(xab) == 2 and (xab[0] - xab[1]).is_zero:
|
425 |
+
limits[i] = Tuple(xab[0], )
|
426 |
+
|
427 |
+
# Reorder limits back to representation-form
|
428 |
+
limits.reverse()
|
429 |
+
|
430 |
+
return self.func(func, *limits)
|
431 |
+
|
432 |
+
@property
|
433 |
+
def has_finite_limits(self):
|
434 |
+
"""
|
435 |
+
Returns True if the limits are known to be finite, either by the
|
436 |
+
explicit bounds, assumptions on the bounds, or assumptions on the
|
437 |
+
variables. False if known to be infinite, based on the bounds.
|
438 |
+
None if not enough information is available to determine.
|
439 |
+
|
440 |
+
Examples
|
441 |
+
========
|
442 |
+
|
443 |
+
>>> from sympy import Sum, Integral, Product, oo, Symbol
|
444 |
+
>>> x = Symbol('x')
|
445 |
+
>>> Sum(x, (x, 1, 8)).has_finite_limits
|
446 |
+
True
|
447 |
+
|
448 |
+
>>> Integral(x, (x, 1, oo)).has_finite_limits
|
449 |
+
False
|
450 |
+
|
451 |
+
>>> M = Symbol('M')
|
452 |
+
>>> Sum(x, (x, 1, M)).has_finite_limits
|
453 |
+
|
454 |
+
>>> N = Symbol('N', integer=True)
|
455 |
+
>>> Product(x, (x, 1, N)).has_finite_limits
|
456 |
+
True
|
457 |
+
|
458 |
+
See Also
|
459 |
+
========
|
460 |
+
|
461 |
+
has_reversed_limits
|
462 |
+
|
463 |
+
"""
|
464 |
+
|
465 |
+
ret_None = False
|
466 |
+
for lim in self.limits:
|
467 |
+
if len(lim) == 3:
|
468 |
+
if any(l.is_infinite for l in lim[1:]):
|
469 |
+
# Any of the bounds are +/-oo
|
470 |
+
return False
|
471 |
+
elif any(l.is_infinite is None for l in lim[1:]):
|
472 |
+
# Maybe there are assumptions on the variable?
|
473 |
+
if lim[0].is_infinite is None:
|
474 |
+
ret_None = True
|
475 |
+
else:
|
476 |
+
if lim[0].is_infinite is None:
|
477 |
+
ret_None = True
|
478 |
+
|
479 |
+
if ret_None:
|
480 |
+
return None
|
481 |
+
return True
|
482 |
+
|
483 |
+
@property
|
484 |
+
def has_reversed_limits(self):
|
485 |
+
"""
|
486 |
+
Returns True if the limits are known to be in reversed order, either
|
487 |
+
by the explicit bounds, assumptions on the bounds, or assumptions on the
|
488 |
+
variables. False if known to be in normal order, based on the bounds.
|
489 |
+
None if not enough information is available to determine.
|
490 |
+
|
491 |
+
Examples
|
492 |
+
========
|
493 |
+
|
494 |
+
>>> from sympy import Sum, Integral, Product, oo, Symbol
|
495 |
+
>>> x = Symbol('x')
|
496 |
+
>>> Sum(x, (x, 8, 1)).has_reversed_limits
|
497 |
+
True
|
498 |
+
|
499 |
+
>>> Sum(x, (x, 1, oo)).has_reversed_limits
|
500 |
+
False
|
501 |
+
|
502 |
+
>>> M = Symbol('M')
|
503 |
+
>>> Integral(x, (x, 1, M)).has_reversed_limits
|
504 |
+
|
505 |
+
>>> N = Symbol('N', integer=True, positive=True)
|
506 |
+
>>> Sum(x, (x, 1, N)).has_reversed_limits
|
507 |
+
False
|
508 |
+
|
509 |
+
>>> Product(x, (x, 2, N)).has_reversed_limits
|
510 |
+
|
511 |
+
>>> Product(x, (x, 2, N)).subs(N, N + 2).has_reversed_limits
|
512 |
+
False
|
513 |
+
|
514 |
+
See Also
|
515 |
+
========
|
516 |
+
|
517 |
+
sympy.concrete.expr_with_intlimits.ExprWithIntLimits.has_empty_sequence
|
518 |
+
|
519 |
+
"""
|
520 |
+
ret_None = False
|
521 |
+
for lim in self.limits:
|
522 |
+
if len(lim) == 3:
|
523 |
+
var, a, b = lim
|
524 |
+
dif = b - a
|
525 |
+
if dif.is_extended_negative:
|
526 |
+
return True
|
527 |
+
elif dif.is_extended_nonnegative:
|
528 |
+
continue
|
529 |
+
else:
|
530 |
+
ret_None = True
|
531 |
+
else:
|
532 |
+
return None
|
533 |
+
if ret_None:
|
534 |
+
return None
|
535 |
+
return False
|
536 |
+
|
537 |
+
|
538 |
+
class AddWithLimits(ExprWithLimits):
|
539 |
+
r"""Represents unevaluated oriented additions.
|
540 |
+
Parent class for Integral and Sum.
|
541 |
+
"""
|
542 |
+
|
543 |
+
__slots__ = ()
|
544 |
+
|
545 |
+
def __new__(cls, function, *symbols, **assumptions):
|
546 |
+
from sympy.concrete.summations import Sum
|
547 |
+
pre = _common_new(cls, function, *symbols,
|
548 |
+
discrete=issubclass(cls, Sum), **assumptions)
|
549 |
+
if isinstance(pre, tuple):
|
550 |
+
function, limits, orientation = pre
|
551 |
+
else:
|
552 |
+
return pre
|
553 |
+
|
554 |
+
obj = Expr.__new__(cls, **assumptions)
|
555 |
+
arglist = [orientation*function] # orientation not used in ExprWithLimits
|
556 |
+
arglist.extend(limits)
|
557 |
+
obj._args = tuple(arglist)
|
558 |
+
obj.is_commutative = function.is_commutative # limits already checked
|
559 |
+
|
560 |
+
return obj
|
561 |
+
|
562 |
+
def _eval_adjoint(self):
|
563 |
+
if all(x.is_real for x in flatten(self.limits)):
|
564 |
+
return self.func(self.function.adjoint(), *self.limits)
|
565 |
+
return None
|
566 |
+
|
567 |
+
def _eval_conjugate(self):
|
568 |
+
if all(x.is_real for x in flatten(self.limits)):
|
569 |
+
return self.func(self.function.conjugate(), *self.limits)
|
570 |
+
return None
|
571 |
+
|
572 |
+
def _eval_transpose(self):
|
573 |
+
if all(x.is_real for x in flatten(self.limits)):
|
574 |
+
return self.func(self.function.transpose(), *self.limits)
|
575 |
+
return None
|
576 |
+
|
577 |
+
def _eval_factor(self, **hints):
|
578 |
+
if 1 == len(self.limits):
|
579 |
+
summand = self.function.factor(**hints)
|
580 |
+
if summand.is_Mul:
|
581 |
+
out = sift(summand.args, lambda w: w.is_commutative \
|
582 |
+
and not set(self.variables) & w.free_symbols)
|
583 |
+
return Mul(*out[True])*self.func(Mul(*out[False]), \
|
584 |
+
*self.limits)
|
585 |
+
else:
|
586 |
+
summand = self.func(self.function, *self.limits[0:-1]).factor()
|
587 |
+
if not summand.has(self.variables[-1]):
|
588 |
+
return self.func(1, [self.limits[-1]]).doit()*summand
|
589 |
+
elif isinstance(summand, Mul):
|
590 |
+
return self.func(summand, self.limits[-1]).factor()
|
591 |
+
return self
|
592 |
+
|
593 |
+
def _eval_expand_basic(self, **hints):
|
594 |
+
summand = self.function.expand(**hints)
|
595 |
+
force = hints.get('force', False)
|
596 |
+
if (summand.is_Add and (force or summand.is_commutative and
|
597 |
+
self.has_finite_limits is not False)):
|
598 |
+
return Add(*[self.func(i, *self.limits) for i in summand.args])
|
599 |
+
elif isinstance(summand, MatrixBase):
|
600 |
+
return summand.applyfunc(lambda x: self.func(x, *self.limits))
|
601 |
+
elif summand != self.function:
|
602 |
+
return self.func(summand, *self.limits)
|
603 |
+
return self
|
venv/lib/python3.10/site-packages/sympy/concrete/gosper.py
ADDED
@@ -0,0 +1,227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Gosper's algorithm for hypergeometric summation. """
|
2 |
+
|
3 |
+
from sympy.core import S, Dummy, symbols
|
4 |
+
from sympy.polys import Poly, parallel_poly_from_expr, factor
|
5 |
+
from sympy.utilities.iterables import is_sequence
|
6 |
+
|
7 |
+
|
8 |
+
def gosper_normal(f, g, n, polys=True):
|
9 |
+
r"""
|
10 |
+
Compute the Gosper's normal form of ``f`` and ``g``.
|
11 |
+
|
12 |
+
Explanation
|
13 |
+
===========
|
14 |
+
|
15 |
+
Given relatively prime univariate polynomials ``f`` and ``g``,
|
16 |
+
rewrite their quotient to a normal form defined as follows:
|
17 |
+
|
18 |
+
.. math::
|
19 |
+
\frac{f(n)}{g(n)} = Z \cdot \frac{A(n) C(n+1)}{B(n) C(n)}
|
20 |
+
|
21 |
+
where ``Z`` is an arbitrary constant and ``A``, ``B``, ``C`` are
|
22 |
+
monic polynomials in ``n`` with the following properties:
|
23 |
+
|
24 |
+
1. `\gcd(A(n), B(n+h)) = 1 \forall h \in \mathbb{N}`
|
25 |
+
2. `\gcd(B(n), C(n+1)) = 1`
|
26 |
+
3. `\gcd(A(n), C(n)) = 1`
|
27 |
+
|
28 |
+
This normal form, or rational factorization in other words, is a
|
29 |
+
crucial step in Gosper's algorithm and in solving of difference
|
30 |
+
equations. It can be also used to decide if two hypergeometric
|
31 |
+
terms are similar or not.
|
32 |
+
|
33 |
+
This procedure will return a tuple containing elements of this
|
34 |
+
factorization in the form ``(Z*A, B, C)``.
|
35 |
+
|
36 |
+
Examples
|
37 |
+
========
|
38 |
+
|
39 |
+
>>> from sympy.concrete.gosper import gosper_normal
|
40 |
+
>>> from sympy.abc import n
|
41 |
+
|
42 |
+
>>> gosper_normal(4*n+5, 2*(4*n+1)*(2*n+3), n, polys=False)
|
43 |
+
(1/4, n + 3/2, n + 1/4)
|
44 |
+
|
45 |
+
"""
|
46 |
+
(p, q), opt = parallel_poly_from_expr(
|
47 |
+
(f, g), n, field=True, extension=True)
|
48 |
+
|
49 |
+
a, A = p.LC(), p.monic()
|
50 |
+
b, B = q.LC(), q.monic()
|
51 |
+
|
52 |
+
C, Z = A.one, a/b
|
53 |
+
h = Dummy('h')
|
54 |
+
|
55 |
+
D = Poly(n + h, n, h, domain=opt.domain)
|
56 |
+
|
57 |
+
R = A.resultant(B.compose(D))
|
58 |
+
roots = set(R.ground_roots().keys())
|
59 |
+
|
60 |
+
for r in set(roots):
|
61 |
+
if not r.is_Integer or r < 0:
|
62 |
+
roots.remove(r)
|
63 |
+
|
64 |
+
for i in sorted(roots):
|
65 |
+
d = A.gcd(B.shift(+i))
|
66 |
+
|
67 |
+
A = A.quo(d)
|
68 |
+
B = B.quo(d.shift(-i))
|
69 |
+
|
70 |
+
for j in range(1, i + 1):
|
71 |
+
C *= d.shift(-j)
|
72 |
+
|
73 |
+
A = A.mul_ground(Z)
|
74 |
+
|
75 |
+
if not polys:
|
76 |
+
A = A.as_expr()
|
77 |
+
B = B.as_expr()
|
78 |
+
C = C.as_expr()
|
79 |
+
|
80 |
+
return A, B, C
|
81 |
+
|
82 |
+
|
83 |
+
def gosper_term(f, n):
|
84 |
+
r"""
|
85 |
+
Compute Gosper's hypergeometric term for ``f``.
|
86 |
+
|
87 |
+
Explanation
|
88 |
+
===========
|
89 |
+
|
90 |
+
Suppose ``f`` is a hypergeometric term such that:
|
91 |
+
|
92 |
+
.. math::
|
93 |
+
s_n = \sum_{k=0}^{n-1} f_k
|
94 |
+
|
95 |
+
and `f_k` does not depend on `n`. Returns a hypergeometric
|
96 |
+
term `g_n` such that `g_{n+1} - g_n = f_n`.
|
97 |
+
|
98 |
+
Examples
|
99 |
+
========
|
100 |
+
|
101 |
+
>>> from sympy.concrete.gosper import gosper_term
|
102 |
+
>>> from sympy import factorial
|
103 |
+
>>> from sympy.abc import n
|
104 |
+
|
105 |
+
>>> gosper_term((4*n + 1)*factorial(n)/factorial(2*n + 1), n)
|
106 |
+
(-n - 1/2)/(n + 1/4)
|
107 |
+
|
108 |
+
"""
|
109 |
+
from sympy.simplify import hypersimp
|
110 |
+
r = hypersimp(f, n)
|
111 |
+
|
112 |
+
if r is None:
|
113 |
+
return None # 'f' is *not* a hypergeometric term
|
114 |
+
|
115 |
+
p, q = r.as_numer_denom()
|
116 |
+
|
117 |
+
A, B, C = gosper_normal(p, q, n)
|
118 |
+
B = B.shift(-1)
|
119 |
+
|
120 |
+
N = S(A.degree())
|
121 |
+
M = S(B.degree())
|
122 |
+
K = S(C.degree())
|
123 |
+
|
124 |
+
if (N != M) or (A.LC() != B.LC()):
|
125 |
+
D = {K - max(N, M)}
|
126 |
+
elif not N:
|
127 |
+
D = {K - N + 1, S.Zero}
|
128 |
+
else:
|
129 |
+
D = {K - N + 1, (B.nth(N - 1) - A.nth(N - 1))/A.LC()}
|
130 |
+
|
131 |
+
for d in set(D):
|
132 |
+
if not d.is_Integer or d < 0:
|
133 |
+
D.remove(d)
|
134 |
+
|
135 |
+
if not D:
|
136 |
+
return None # 'f(n)' is *not* Gosper-summable
|
137 |
+
|
138 |
+
d = max(D)
|
139 |
+
|
140 |
+
coeffs = symbols('c:%s' % (d + 1), cls=Dummy)
|
141 |
+
domain = A.get_domain().inject(*coeffs)
|
142 |
+
|
143 |
+
x = Poly(coeffs, n, domain=domain)
|
144 |
+
H = A*x.shift(1) - B*x - C
|
145 |
+
|
146 |
+
from sympy.solvers.solvers import solve
|
147 |
+
solution = solve(H.coeffs(), coeffs)
|
148 |
+
|
149 |
+
if solution is None:
|
150 |
+
return None # 'f(n)' is *not* Gosper-summable
|
151 |
+
|
152 |
+
x = x.as_expr().subs(solution)
|
153 |
+
|
154 |
+
for coeff in coeffs:
|
155 |
+
if coeff not in solution:
|
156 |
+
x = x.subs(coeff, 0)
|
157 |
+
|
158 |
+
if x.is_zero:
|
159 |
+
return None # 'f(n)' is *not* Gosper-summable
|
160 |
+
else:
|
161 |
+
return B.as_expr()*x/C.as_expr()
|
162 |
+
|
163 |
+
|
164 |
+
def gosper_sum(f, k):
|
165 |
+
r"""
|
166 |
+
Gosper's hypergeometric summation algorithm.
|
167 |
+
|
168 |
+
Explanation
|
169 |
+
===========
|
170 |
+
|
171 |
+
Given a hypergeometric term ``f`` such that:
|
172 |
+
|
173 |
+
.. math ::
|
174 |
+
s_n = \sum_{k=0}^{n-1} f_k
|
175 |
+
|
176 |
+
and `f(n)` does not depend on `n`, returns `g_{n} - g(0)` where
|
177 |
+
`g_{n+1} - g_n = f_n`, or ``None`` if `s_n` cannot be expressed
|
178 |
+
in closed form as a sum of hypergeometric terms.
|
179 |
+
|
180 |
+
Examples
|
181 |
+
========
|
182 |
+
|
183 |
+
>>> from sympy.concrete.gosper import gosper_sum
|
184 |
+
>>> from sympy import factorial
|
185 |
+
>>> from sympy.abc import n, k
|
186 |
+
|
187 |
+
>>> f = (4*k + 1)*factorial(k)/factorial(2*k + 1)
|
188 |
+
>>> gosper_sum(f, (k, 0, n))
|
189 |
+
(-factorial(n) + 2*factorial(2*n + 1))/factorial(2*n + 1)
|
190 |
+
>>> _.subs(n, 2) == sum(f.subs(k, i) for i in [0, 1, 2])
|
191 |
+
True
|
192 |
+
>>> gosper_sum(f, (k, 3, n))
|
193 |
+
(-60*factorial(n) + factorial(2*n + 1))/(60*factorial(2*n + 1))
|
194 |
+
>>> _.subs(n, 5) == sum(f.subs(k, i) for i in [3, 4, 5])
|
195 |
+
True
|
196 |
+
|
197 |
+
References
|
198 |
+
==========
|
199 |
+
|
200 |
+
.. [1] Marko Petkovsek, Herbert S. Wilf, Doron Zeilberger, A = B,
|
201 |
+
AK Peters, Ltd., Wellesley, MA, USA, 1997, pp. 73--100
|
202 |
+
|
203 |
+
"""
|
204 |
+
indefinite = False
|
205 |
+
|
206 |
+
if is_sequence(k):
|
207 |
+
k, a, b = k
|
208 |
+
else:
|
209 |
+
indefinite = True
|
210 |
+
|
211 |
+
g = gosper_term(f, k)
|
212 |
+
|
213 |
+
if g is None:
|
214 |
+
return None
|
215 |
+
|
216 |
+
if indefinite:
|
217 |
+
result = f*g
|
218 |
+
else:
|
219 |
+
result = (f*(g + 1)).subs(k, b) - (f*g).subs(k, a)
|
220 |
+
|
221 |
+
if result is S.NaN:
|
222 |
+
try:
|
223 |
+
result = (f*(g + 1)).limit(k, b) - (f*g).limit(k, a)
|
224 |
+
except NotImplementedError:
|
225 |
+
result = None
|
226 |
+
|
227 |
+
return factor(result)
|
venv/lib/python3.10/site-packages/sympy/concrete/guess.py
ADDED
@@ -0,0 +1,473 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Various algorithms for helping identifying numbers and sequences."""
|
2 |
+
|
3 |
+
|
4 |
+
from sympy.concrete.products import (Product, product)
|
5 |
+
from sympy.core import Function, S
|
6 |
+
from sympy.core.add import Add
|
7 |
+
from sympy.core.numbers import Integer, Rational
|
8 |
+
from sympy.core.symbol import Symbol, symbols
|
9 |
+
from sympy.core.sympify import sympify
|
10 |
+
from sympy.functions.elementary.exponential import exp
|
11 |
+
from sympy.functions.elementary.integers import floor
|
12 |
+
from sympy.integrals.integrals import integrate
|
13 |
+
from sympy.polys.polyfuncs import rational_interpolate as rinterp
|
14 |
+
from sympy.polys.polytools import lcm
|
15 |
+
from sympy.simplify.radsimp import denom
|
16 |
+
from sympy.utilities import public
|
17 |
+
|
18 |
+
|
19 |
+
@public
|
20 |
+
def find_simple_recurrence_vector(l):
|
21 |
+
"""
|
22 |
+
This function is used internally by other functions from the
|
23 |
+
sympy.concrete.guess module. While most users may want to rather use the
|
24 |
+
function find_simple_recurrence when looking for recurrence relations
|
25 |
+
among rational numbers, the current function may still be useful when
|
26 |
+
some post-processing has to be done.
|
27 |
+
|
28 |
+
Explanation
|
29 |
+
===========
|
30 |
+
|
31 |
+
The function returns a vector of length n when a recurrence relation of
|
32 |
+
order n is detected in the sequence of rational numbers v.
|
33 |
+
|
34 |
+
If the returned vector has a length 1, then the returned value is always
|
35 |
+
the list [0], which means that no relation has been found.
|
36 |
+
|
37 |
+
While the functions is intended to be used with rational numbers, it should
|
38 |
+
work for other kinds of real numbers except for some cases involving
|
39 |
+
quadratic numbers; for that reason it should be used with some caution when
|
40 |
+
the argument is not a list of rational numbers.
|
41 |
+
|
42 |
+
Examples
|
43 |
+
========
|
44 |
+
|
45 |
+
>>> from sympy.concrete.guess import find_simple_recurrence_vector
|
46 |
+
>>> from sympy import fibonacci
|
47 |
+
>>> find_simple_recurrence_vector([fibonacci(k) for k in range(12)])
|
48 |
+
[1, -1, -1]
|
49 |
+
|
50 |
+
See Also
|
51 |
+
========
|
52 |
+
|
53 |
+
See the function sympy.concrete.guess.find_simple_recurrence which is more
|
54 |
+
user-friendly.
|
55 |
+
|
56 |
+
"""
|
57 |
+
q1 = [0]
|
58 |
+
q2 = [1]
|
59 |
+
b, z = 0, len(l) >> 1
|
60 |
+
while len(q2) <= z:
|
61 |
+
while l[b]==0:
|
62 |
+
b += 1
|
63 |
+
if b == len(l):
|
64 |
+
c = 1
|
65 |
+
for x in q2:
|
66 |
+
c = lcm(c, denom(x))
|
67 |
+
if q2[0]*c < 0: c = -c
|
68 |
+
for k in range(len(q2)):
|
69 |
+
q2[k] = int(q2[k]*c)
|
70 |
+
return q2
|
71 |
+
a = S.One/l[b]
|
72 |
+
m = [a]
|
73 |
+
for k in range(b+1, len(l)):
|
74 |
+
m.append(-sum(l[j+1]*m[b-j-1] for j in range(b, k))*a)
|
75 |
+
l, m = m, [0] * max(len(q2), b+len(q1))
|
76 |
+
for k, q in enumerate(q2):
|
77 |
+
m[k] = a*q
|
78 |
+
for k, q in enumerate(q1):
|
79 |
+
m[k+b] += q
|
80 |
+
while m[-1]==0: m.pop() # because trailing zeros can occur
|
81 |
+
q1, q2, b = q2, m, 1
|
82 |
+
return [0]
|
83 |
+
|
84 |
+
@public
|
85 |
+
def find_simple_recurrence(v, A=Function('a'), N=Symbol('n')):
|
86 |
+
"""
|
87 |
+
Detects and returns a recurrence relation from a sequence of several integer
|
88 |
+
(or rational) terms. The name of the function in the returned expression is
|
89 |
+
'a' by default; the main variable is 'n' by default. The smallest index in
|
90 |
+
the returned expression is always n (and never n-1, n-2, etc.).
|
91 |
+
|
92 |
+
Examples
|
93 |
+
========
|
94 |
+
|
95 |
+
>>> from sympy.concrete.guess import find_simple_recurrence
|
96 |
+
>>> from sympy import fibonacci
|
97 |
+
>>> find_simple_recurrence([fibonacci(k) for k in range(12)])
|
98 |
+
-a(n) - a(n + 1) + a(n + 2)
|
99 |
+
|
100 |
+
>>> from sympy import Function, Symbol
|
101 |
+
>>> a = [1, 1, 1]
|
102 |
+
>>> for k in range(15): a.append(5*a[-1]-3*a[-2]+8*a[-3])
|
103 |
+
>>> find_simple_recurrence(a, A=Function('f'), N=Symbol('i'))
|
104 |
+
-8*f(i) + 3*f(i + 1) - 5*f(i + 2) + f(i + 3)
|
105 |
+
|
106 |
+
"""
|
107 |
+
p = find_simple_recurrence_vector(v)
|
108 |
+
n = len(p)
|
109 |
+
if n <= 1: return S.Zero
|
110 |
+
|
111 |
+
return Add(*[A(N+n-1-k)*p[k] for k in range(n)])
|
112 |
+
|
113 |
+
|
114 |
+
@public
|
115 |
+
def rationalize(x, maxcoeff=10000):
|
116 |
+
"""
|
117 |
+
Helps identifying a rational number from a float (or mpmath.mpf) value by
|
118 |
+
using a continued fraction. The algorithm stops as soon as a large partial
|
119 |
+
quotient is detected (greater than 10000 by default).
|
120 |
+
|
121 |
+
Examples
|
122 |
+
========
|
123 |
+
|
124 |
+
>>> from sympy.concrete.guess import rationalize
|
125 |
+
>>> from mpmath import cos, pi
|
126 |
+
>>> rationalize(cos(pi/3))
|
127 |
+
1/2
|
128 |
+
|
129 |
+
>>> from mpmath import mpf
|
130 |
+
>>> rationalize(mpf("0.333333333333333"))
|
131 |
+
1/3
|
132 |
+
|
133 |
+
While the function is rather intended to help 'identifying' rational
|
134 |
+
values, it may be used in some cases for approximating real numbers.
|
135 |
+
(Though other functions may be more relevant in that case.)
|
136 |
+
|
137 |
+
>>> rationalize(pi, maxcoeff = 250)
|
138 |
+
355/113
|
139 |
+
|
140 |
+
See Also
|
141 |
+
========
|
142 |
+
|
143 |
+
Several other methods can approximate a real number as a rational, like:
|
144 |
+
|
145 |
+
* fractions.Fraction.from_decimal
|
146 |
+
* fractions.Fraction.from_float
|
147 |
+
* mpmath.identify
|
148 |
+
* mpmath.pslq by using the following syntax: mpmath.pslq([x, 1])
|
149 |
+
* mpmath.findpoly by using the following syntax: mpmath.findpoly(x, 1)
|
150 |
+
* sympy.simplify.nsimplify (which is a more general function)
|
151 |
+
|
152 |
+
The main difference between the current function and all these variants is
|
153 |
+
that control focuses on magnitude of partial quotients here rather than on
|
154 |
+
global precision of the approximation. If the real is "known to be" a
|
155 |
+
rational number, the current function should be able to detect it correctly
|
156 |
+
with the default settings even when denominator is great (unless its
|
157 |
+
expansion contains unusually big partial quotients) which may occur
|
158 |
+
when studying sequences of increasing numbers. If the user cares more
|
159 |
+
on getting simple fractions, other methods may be more convenient.
|
160 |
+
|
161 |
+
"""
|
162 |
+
p0, p1 = 0, 1
|
163 |
+
q0, q1 = 1, 0
|
164 |
+
a = floor(x)
|
165 |
+
while a < maxcoeff or q1==0:
|
166 |
+
p = a*p1 + p0
|
167 |
+
q = a*q1 + q0
|
168 |
+
p0, p1 = p1, p
|
169 |
+
q0, q1 = q1, q
|
170 |
+
if x==a: break
|
171 |
+
x = 1/(x-a)
|
172 |
+
a = floor(x)
|
173 |
+
return sympify(p) / q
|
174 |
+
|
175 |
+
|
176 |
+
@public
|
177 |
+
def guess_generating_function_rational(v, X=Symbol('x')):
|
178 |
+
"""
|
179 |
+
Tries to "guess" a rational generating function for a sequence of rational
|
180 |
+
numbers v.
|
181 |
+
|
182 |
+
Examples
|
183 |
+
========
|
184 |
+
|
185 |
+
>>> from sympy.concrete.guess import guess_generating_function_rational
|
186 |
+
>>> from sympy import fibonacci
|
187 |
+
>>> l = [fibonacci(k) for k in range(5,15)]
|
188 |
+
>>> guess_generating_function_rational(l)
|
189 |
+
(3*x + 5)/(-x**2 - x + 1)
|
190 |
+
|
191 |
+
See Also
|
192 |
+
========
|
193 |
+
|
194 |
+
sympy.series.approximants
|
195 |
+
mpmath.pade
|
196 |
+
|
197 |
+
"""
|
198 |
+
# a) compute the denominator as q
|
199 |
+
q = find_simple_recurrence_vector(v)
|
200 |
+
n = len(q)
|
201 |
+
if n <= 1: return None
|
202 |
+
# b) compute the numerator as p
|
203 |
+
p = [sum(v[i-k]*q[k] for k in range(min(i+1, n)))
|
204 |
+
for i in range(len(v)>>1)]
|
205 |
+
return (sum(p[k]*X**k for k in range(len(p)))
|
206 |
+
/ sum(q[k]*X**k for k in range(n)))
|
207 |
+
|
208 |
+
|
209 |
+
@public
|
210 |
+
def guess_generating_function(v, X=Symbol('x'), types=['all'], maxsqrtn=2):
|
211 |
+
"""
|
212 |
+
Tries to "guess" a generating function for a sequence of rational numbers v.
|
213 |
+
Only a few patterns are implemented yet.
|
214 |
+
|
215 |
+
Explanation
|
216 |
+
===========
|
217 |
+
|
218 |
+
The function returns a dictionary where keys are the name of a given type of
|
219 |
+
generating function. Six types are currently implemented:
|
220 |
+
|
221 |
+
type | formal definition
|
222 |
+
-------+----------------------------------------------------------------
|
223 |
+
ogf | f(x) = Sum( a_k * x^k , k: 0..infinity )
|
224 |
+
egf | f(x) = Sum( a_k * x^k / k! , k: 0..infinity )
|
225 |
+
lgf | f(x) = Sum( (-1)^(k+1) a_k * x^k / k , k: 1..infinity )
|
226 |
+
| (with initial index being hold as 1 rather than 0)
|
227 |
+
hlgf | f(x) = Sum( a_k * x^k / k , k: 1..infinity )
|
228 |
+
| (with initial index being hold as 1 rather than 0)
|
229 |
+
lgdogf | f(x) = derivate( log(Sum( a_k * x^k, k: 0..infinity )), x)
|
230 |
+
lgdegf | f(x) = derivate( log(Sum( a_k * x^k / k!, k: 0..infinity )), x)
|
231 |
+
|
232 |
+
In order to spare time, the user can select only some types of generating
|
233 |
+
functions (default being ['all']). While forgetting to use a list in the
|
234 |
+
case of a single type may seem to work most of the time as in: types='ogf'
|
235 |
+
this (convenient) syntax may lead to unexpected extra results in some cases.
|
236 |
+
|
237 |
+
Discarding a type when calling the function does not mean that the type will
|
238 |
+
not be present in the returned dictionary; it only means that no extra
|
239 |
+
computation will be performed for that type, but the function may still add
|
240 |
+
it in the result when it can be easily converted from another type.
|
241 |
+
|
242 |
+
Two generating functions (lgdogf and lgdegf) are not even computed if the
|
243 |
+
initial term of the sequence is 0; it may be useful in that case to try
|
244 |
+
again after having removed the leading zeros.
|
245 |
+
|
246 |
+
Examples
|
247 |
+
========
|
248 |
+
|
249 |
+
>>> from sympy.concrete.guess import guess_generating_function as ggf
|
250 |
+
>>> ggf([k+1 for k in range(12)], types=['ogf', 'lgf', 'hlgf'])
|
251 |
+
{'hlgf': 1/(1 - x), 'lgf': 1/(x + 1), 'ogf': 1/(x**2 - 2*x + 1)}
|
252 |
+
|
253 |
+
>>> from sympy import sympify
|
254 |
+
>>> l = sympify("[3/2, 11/2, 0, -121/2, -363/2, 121]")
|
255 |
+
>>> ggf(l)
|
256 |
+
{'ogf': (x + 3/2)/(11*x**2 - 3*x + 1)}
|
257 |
+
|
258 |
+
>>> from sympy import fibonacci
|
259 |
+
>>> ggf([fibonacci(k) for k in range(5, 15)], types=['ogf'])
|
260 |
+
{'ogf': (3*x + 5)/(-x**2 - x + 1)}
|
261 |
+
|
262 |
+
>>> from sympy import factorial
|
263 |
+
>>> ggf([factorial(k) for k in range(12)], types=['ogf', 'egf', 'lgf'])
|
264 |
+
{'egf': 1/(1 - x)}
|
265 |
+
|
266 |
+
>>> ggf([k+1 for k in range(12)], types=['egf'])
|
267 |
+
{'egf': (x + 1)*exp(x), 'lgdegf': (x + 2)/(x + 1)}
|
268 |
+
|
269 |
+
N-th root of a rational function can also be detected (below is an example
|
270 |
+
coming from the sequence A108626 from https://oeis.org).
|
271 |
+
The greatest n-th root to be tested is specified as maxsqrtn (default 2).
|
272 |
+
|
273 |
+
>>> ggf([1, 2, 5, 14, 41, 124, 383, 1200, 3799, 12122, 38919])['ogf']
|
274 |
+
sqrt(1/(x**4 + 2*x**2 - 4*x + 1))
|
275 |
+
|
276 |
+
References
|
277 |
+
==========
|
278 |
+
|
279 |
+
.. [1] "Concrete Mathematics", R.L. Graham, D.E. Knuth, O. Patashnik
|
280 |
+
.. [2] https://oeis.org/wiki/Generating_functions
|
281 |
+
|
282 |
+
"""
|
283 |
+
# List of all types of all g.f. known by the algorithm
|
284 |
+
if 'all' in types:
|
285 |
+
types = ('ogf', 'egf', 'lgf', 'hlgf', 'lgdogf', 'lgdegf')
|
286 |
+
|
287 |
+
result = {}
|
288 |
+
|
289 |
+
# Ordinary Generating Function (ogf)
|
290 |
+
if 'ogf' in types:
|
291 |
+
# Perform some convolutions of the sequence with itself
|
292 |
+
t = [1] + [0]*(len(v) - 1)
|
293 |
+
for d in range(max(1, maxsqrtn)):
|
294 |
+
t = [sum(t[n-i]*v[i] for i in range(n+1)) for n in range(len(v))]
|
295 |
+
g = guess_generating_function_rational(t, X=X)
|
296 |
+
if g:
|
297 |
+
result['ogf'] = g**Rational(1, d+1)
|
298 |
+
break
|
299 |
+
|
300 |
+
# Exponential Generating Function (egf)
|
301 |
+
if 'egf' in types:
|
302 |
+
# Transform sequence (division by factorial)
|
303 |
+
w, f = [], S.One
|
304 |
+
for i, k in enumerate(v):
|
305 |
+
f *= i if i else 1
|
306 |
+
w.append(k/f)
|
307 |
+
# Perform some convolutions of the sequence with itself
|
308 |
+
t = [1] + [0]*(len(w) - 1)
|
309 |
+
for d in range(max(1, maxsqrtn)):
|
310 |
+
t = [sum(t[n-i]*w[i] for i in range(n+1)) for n in range(len(w))]
|
311 |
+
g = guess_generating_function_rational(t, X=X)
|
312 |
+
if g:
|
313 |
+
result['egf'] = g**Rational(1, d+1)
|
314 |
+
break
|
315 |
+
|
316 |
+
# Logarithmic Generating Function (lgf)
|
317 |
+
if 'lgf' in types:
|
318 |
+
# Transform sequence (multiplication by (-1)^(n+1) / n)
|
319 |
+
w, f = [], S.NegativeOne
|
320 |
+
for i, k in enumerate(v):
|
321 |
+
f = -f
|
322 |
+
w.append(f*k/Integer(i+1))
|
323 |
+
# Perform some convolutions of the sequence with itself
|
324 |
+
t = [1] + [0]*(len(w) - 1)
|
325 |
+
for d in range(max(1, maxsqrtn)):
|
326 |
+
t = [sum(t[n-i]*w[i] for i in range(n+1)) for n in range(len(w))]
|
327 |
+
g = guess_generating_function_rational(t, X=X)
|
328 |
+
if g:
|
329 |
+
result['lgf'] = g**Rational(1, d+1)
|
330 |
+
break
|
331 |
+
|
332 |
+
# Hyperbolic logarithmic Generating Function (hlgf)
|
333 |
+
if 'hlgf' in types:
|
334 |
+
# Transform sequence (division by n+1)
|
335 |
+
w = []
|
336 |
+
for i, k in enumerate(v):
|
337 |
+
w.append(k/Integer(i+1))
|
338 |
+
# Perform some convolutions of the sequence with itself
|
339 |
+
t = [1] + [0]*(len(w) - 1)
|
340 |
+
for d in range(max(1, maxsqrtn)):
|
341 |
+
t = [sum(t[n-i]*w[i] for i in range(n+1)) for n in range(len(w))]
|
342 |
+
g = guess_generating_function_rational(t, X=X)
|
343 |
+
if g:
|
344 |
+
result['hlgf'] = g**Rational(1, d+1)
|
345 |
+
break
|
346 |
+
|
347 |
+
# Logarithmic derivative of ordinary generating Function (lgdogf)
|
348 |
+
if v[0] != 0 and ('lgdogf' in types
|
349 |
+
or ('ogf' in types and 'ogf' not in result)):
|
350 |
+
# Transform sequence by computing f'(x)/f(x)
|
351 |
+
# because log(f(x)) = integrate( f'(x)/f(x) )
|
352 |
+
a, w = sympify(v[0]), []
|
353 |
+
for n in range(len(v)-1):
|
354 |
+
w.append(
|
355 |
+
(v[n+1]*(n+1) - sum(w[-i-1]*v[i+1] for i in range(n)))/a)
|
356 |
+
# Perform some convolutions of the sequence with itself
|
357 |
+
t = [1] + [0]*(len(w) - 1)
|
358 |
+
for d in range(max(1, maxsqrtn)):
|
359 |
+
t = [sum(t[n-i]*w[i] for i in range(n+1)) for n in range(len(w))]
|
360 |
+
g = guess_generating_function_rational(t, X=X)
|
361 |
+
if g:
|
362 |
+
result['lgdogf'] = g**Rational(1, d+1)
|
363 |
+
if 'ogf' not in result:
|
364 |
+
result['ogf'] = exp(integrate(result['lgdogf'], X))
|
365 |
+
break
|
366 |
+
|
367 |
+
# Logarithmic derivative of exponential generating Function (lgdegf)
|
368 |
+
if v[0] != 0 and ('lgdegf' in types
|
369 |
+
or ('egf' in types and 'egf' not in result)):
|
370 |
+
# Transform sequence / step 1 (division by factorial)
|
371 |
+
z, f = [], S.One
|
372 |
+
for i, k in enumerate(v):
|
373 |
+
f *= i if i else 1
|
374 |
+
z.append(k/f)
|
375 |
+
# Transform sequence / step 2 by computing f'(x)/f(x)
|
376 |
+
# because log(f(x)) = integrate( f'(x)/f(x) )
|
377 |
+
a, w = z[0], []
|
378 |
+
for n in range(len(z)-1):
|
379 |
+
w.append(
|
380 |
+
(z[n+1]*(n+1) - sum(w[-i-1]*z[i+1] for i in range(n)))/a)
|
381 |
+
# Perform some convolutions of the sequence with itself
|
382 |
+
t = [1] + [0]*(len(w) - 1)
|
383 |
+
for d in range(max(1, maxsqrtn)):
|
384 |
+
t = [sum(t[n-i]*w[i] for i in range(n+1)) for n in range(len(w))]
|
385 |
+
g = guess_generating_function_rational(t, X=X)
|
386 |
+
if g:
|
387 |
+
result['lgdegf'] = g**Rational(1, d+1)
|
388 |
+
if 'egf' not in result:
|
389 |
+
result['egf'] = exp(integrate(result['lgdegf'], X))
|
390 |
+
break
|
391 |
+
|
392 |
+
return result
|
393 |
+
|
394 |
+
|
395 |
+
@public
|
396 |
+
def guess(l, all=False, evaluate=True, niter=2, variables=None):
|
397 |
+
"""
|
398 |
+
This function is adapted from the Rate.m package for Mathematica
|
399 |
+
written by Christian Krattenthaler.
|
400 |
+
It tries to guess a formula from a given sequence of rational numbers.
|
401 |
+
|
402 |
+
Explanation
|
403 |
+
===========
|
404 |
+
|
405 |
+
In order to speed up the process, the 'all' variable is set to False by
|
406 |
+
default, stopping the computation as some results are returned during an
|
407 |
+
iteration; the variable can be set to True if more iterations are needed
|
408 |
+
(other formulas may be found; however they may be equivalent to the first
|
409 |
+
ones).
|
410 |
+
|
411 |
+
Another option is the 'evaluate' variable (default is True); setting it
|
412 |
+
to False will leave the involved products unevaluated.
|
413 |
+
|
414 |
+
By default, the number of iterations is set to 2 but a greater value (up
|
415 |
+
to len(l)-1) can be specified with the optional 'niter' variable.
|
416 |
+
More and more convoluted results are found when the order of the
|
417 |
+
iteration gets higher:
|
418 |
+
|
419 |
+
* first iteration returns polynomial or rational functions;
|
420 |
+
* second iteration returns products of rising factorials and their
|
421 |
+
inverses;
|
422 |
+
* third iteration returns products of products of rising factorials
|
423 |
+
and their inverses;
|
424 |
+
* etc.
|
425 |
+
|
426 |
+
The returned formulas contain symbols i0, i1, i2, ... where the main
|
427 |
+
variables is i0 (and auxiliary variables are i1, i2, ...). A list of
|
428 |
+
other symbols can be provided in the 'variables' option; the length of
|
429 |
+
the least should be the value of 'niter' (more is acceptable but only
|
430 |
+
the first symbols will be used); in this case, the main variable will be
|
431 |
+
the first symbol in the list.
|
432 |
+
|
433 |
+
Examples
|
434 |
+
========
|
435 |
+
|
436 |
+
>>> from sympy.concrete.guess import guess
|
437 |
+
>>> guess([1,2,6,24,120], evaluate=False)
|
438 |
+
[Product(i1 + 1, (i1, 1, i0 - 1))]
|
439 |
+
|
440 |
+
>>> from sympy import symbols
|
441 |
+
>>> r = guess([1,2,7,42,429,7436,218348,10850216], niter=4)
|
442 |
+
>>> i0 = symbols("i0")
|
443 |
+
>>> [r[0].subs(i0,n).doit() for n in range(1,10)]
|
444 |
+
[1, 2, 7, 42, 429, 7436, 218348, 10850216, 911835460]
|
445 |
+
"""
|
446 |
+
if any(a==0 for a in l[:-1]):
|
447 |
+
return []
|
448 |
+
N = len(l)
|
449 |
+
niter = min(N-1, niter)
|
450 |
+
myprod = product if evaluate else Product
|
451 |
+
g = []
|
452 |
+
res = []
|
453 |
+
if variables is None:
|
454 |
+
symb = symbols('i:'+str(niter))
|
455 |
+
else:
|
456 |
+
symb = variables
|
457 |
+
for k, s in enumerate(symb):
|
458 |
+
g.append(l)
|
459 |
+
n, r = len(l), []
|
460 |
+
for i in range(n-2-1, -1, -1):
|
461 |
+
ri = rinterp(enumerate(g[k][:-1], start=1), i, X=s)
|
462 |
+
if ((denom(ri).subs({s:n}) != 0)
|
463 |
+
and (ri.subs({s:n}) - g[k][-1] == 0)
|
464 |
+
and ri not in r):
|
465 |
+
r.append(ri)
|
466 |
+
if r:
|
467 |
+
for i in range(k-1, -1, -1):
|
468 |
+
r = [g[i][0]
|
469 |
+
* myprod(v, (symb[i+1], 1, symb[i]-1)) for v in r]
|
470 |
+
if not all: return r
|
471 |
+
res += r
|
472 |
+
l = [Rational(l[i+1], l[i]) for i in range(N-k-1)]
|
473 |
+
return res
|
venv/lib/python3.10/site-packages/sympy/concrete/products.py
ADDED
@@ -0,0 +1,610 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Tuple as tTuple
|
2 |
+
|
3 |
+
from .expr_with_intlimits import ExprWithIntLimits
|
4 |
+
from .summations import Sum, summation, _dummy_with_inherited_properties_concrete
|
5 |
+
from sympy.core.expr import Expr
|
6 |
+
from sympy.core.exprtools import factor_terms
|
7 |
+
from sympy.core.function import Derivative
|
8 |
+
from sympy.core.mul import Mul
|
9 |
+
from sympy.core.singleton import S
|
10 |
+
from sympy.core.symbol import Dummy, Symbol
|
11 |
+
from sympy.functions.combinatorial.factorials import RisingFactorial
|
12 |
+
from sympy.functions.elementary.exponential import exp, log
|
13 |
+
from sympy.functions.special.tensor_functions import KroneckerDelta
|
14 |
+
from sympy.polys import quo, roots
|
15 |
+
|
16 |
+
|
17 |
+
class Product(ExprWithIntLimits):
|
18 |
+
r"""
|
19 |
+
Represents unevaluated products.
|
20 |
+
|
21 |
+
Explanation
|
22 |
+
===========
|
23 |
+
|
24 |
+
``Product`` represents a finite or infinite product, with the first
|
25 |
+
argument being the general form of terms in the series, and the second
|
26 |
+
argument being ``(dummy_variable, start, end)``, with ``dummy_variable``
|
27 |
+
taking all integer values from ``start`` through ``end``. In accordance
|
28 |
+
with long-standing mathematical convention, the end term is included in
|
29 |
+
the product.
|
30 |
+
|
31 |
+
Finite products
|
32 |
+
===============
|
33 |
+
|
34 |
+
For finite products (and products with symbolic limits assumed to be finite)
|
35 |
+
we follow the analogue of the summation convention described by Karr [1],
|
36 |
+
especially definition 3 of section 1.4. The product:
|
37 |
+
|
38 |
+
.. math::
|
39 |
+
|
40 |
+
\prod_{m \leq i < n} f(i)
|
41 |
+
|
42 |
+
has *the obvious meaning* for `m < n`, namely:
|
43 |
+
|
44 |
+
.. math::
|
45 |
+
|
46 |
+
\prod_{m \leq i < n} f(i) = f(m) f(m+1) \cdot \ldots \cdot f(n-2) f(n-1)
|
47 |
+
|
48 |
+
with the upper limit value `f(n)` excluded. The product over an empty set is
|
49 |
+
one if and only if `m = n`:
|
50 |
+
|
51 |
+
.. math::
|
52 |
+
|
53 |
+
\prod_{m \leq i < n} f(i) = 1 \quad \mathrm{for} \quad m = n
|
54 |
+
|
55 |
+
Finally, for all other products over empty sets we assume the following
|
56 |
+
definition:
|
57 |
+
|
58 |
+
.. math::
|
59 |
+
|
60 |
+
\prod_{m \leq i < n} f(i) = \frac{1}{\prod_{n \leq i < m} f(i)} \quad \mathrm{for} \quad m > n
|
61 |
+
|
62 |
+
It is important to note that above we define all products with the upper
|
63 |
+
limit being exclusive. This is in contrast to the usual mathematical notation,
|
64 |
+
but does not affect the product convention. Indeed we have:
|
65 |
+
|
66 |
+
.. math::
|
67 |
+
|
68 |
+
\prod_{m \leq i < n} f(i) = \prod_{i = m}^{n - 1} f(i)
|
69 |
+
|
70 |
+
where the difference in notation is intentional to emphasize the meaning,
|
71 |
+
with limits typeset on the top being inclusive.
|
72 |
+
|
73 |
+
Examples
|
74 |
+
========
|
75 |
+
|
76 |
+
>>> from sympy.abc import a, b, i, k, m, n, x
|
77 |
+
>>> from sympy import Product, oo
|
78 |
+
>>> Product(k, (k, 1, m))
|
79 |
+
Product(k, (k, 1, m))
|
80 |
+
>>> Product(k, (k, 1, m)).doit()
|
81 |
+
factorial(m)
|
82 |
+
>>> Product(k**2,(k, 1, m))
|
83 |
+
Product(k**2, (k, 1, m))
|
84 |
+
>>> Product(k**2,(k, 1, m)).doit()
|
85 |
+
factorial(m)**2
|
86 |
+
|
87 |
+
Wallis' product for pi:
|
88 |
+
|
89 |
+
>>> W = Product(2*i/(2*i-1) * 2*i/(2*i+1), (i, 1, oo))
|
90 |
+
>>> W
|
91 |
+
Product(4*i**2/((2*i - 1)*(2*i + 1)), (i, 1, oo))
|
92 |
+
|
93 |
+
Direct computation currently fails:
|
94 |
+
|
95 |
+
>>> W.doit()
|
96 |
+
Product(4*i**2/((2*i - 1)*(2*i + 1)), (i, 1, oo))
|
97 |
+
|
98 |
+
But we can approach the infinite product by a limit of finite products:
|
99 |
+
|
100 |
+
>>> from sympy import limit
|
101 |
+
>>> W2 = Product(2*i/(2*i-1)*2*i/(2*i+1), (i, 1, n))
|
102 |
+
>>> W2
|
103 |
+
Product(4*i**2/((2*i - 1)*(2*i + 1)), (i, 1, n))
|
104 |
+
>>> W2e = W2.doit()
|
105 |
+
>>> W2e
|
106 |
+
4**n*factorial(n)**2/(2**(2*n)*RisingFactorial(1/2, n)*RisingFactorial(3/2, n))
|
107 |
+
>>> limit(W2e, n, oo)
|
108 |
+
pi/2
|
109 |
+
|
110 |
+
By the same formula we can compute sin(pi/2):
|
111 |
+
|
112 |
+
>>> from sympy import combsimp, pi, gamma, simplify
|
113 |
+
>>> P = pi * x * Product(1 - x**2/k**2, (k, 1, n))
|
114 |
+
>>> P = P.subs(x, pi/2)
|
115 |
+
>>> P
|
116 |
+
pi**2*Product(1 - pi**2/(4*k**2), (k, 1, n))/2
|
117 |
+
>>> Pe = P.doit()
|
118 |
+
>>> Pe
|
119 |
+
pi**2*RisingFactorial(1 - pi/2, n)*RisingFactorial(1 + pi/2, n)/(2*factorial(n)**2)
|
120 |
+
>>> limit(Pe, n, oo).gammasimp()
|
121 |
+
sin(pi**2/2)
|
122 |
+
>>> Pe.rewrite(gamma)
|
123 |
+
(-1)**n*pi**2*gamma(pi/2)*gamma(n + 1 + pi/2)/(2*gamma(1 + pi/2)*gamma(-n + pi/2)*gamma(n + 1)**2)
|
124 |
+
|
125 |
+
Products with the lower limit being larger than the upper one:
|
126 |
+
|
127 |
+
>>> Product(1/i, (i, 6, 1)).doit()
|
128 |
+
120
|
129 |
+
>>> Product(i, (i, 2, 5)).doit()
|
130 |
+
120
|
131 |
+
|
132 |
+
The empty product:
|
133 |
+
|
134 |
+
>>> Product(i, (i, n, n-1)).doit()
|
135 |
+
1
|
136 |
+
|
137 |
+
An example showing that the symbolic result of a product is still
|
138 |
+
valid for seemingly nonsensical values of the limits. Then the Karr
|
139 |
+
convention allows us to give a perfectly valid interpretation to
|
140 |
+
those products by interchanging the limits according to the above rules:
|
141 |
+
|
142 |
+
>>> P = Product(2, (i, 10, n)).doit()
|
143 |
+
>>> P
|
144 |
+
2**(n - 9)
|
145 |
+
>>> P.subs(n, 5)
|
146 |
+
1/16
|
147 |
+
>>> Product(2, (i, 10, 5)).doit()
|
148 |
+
1/16
|
149 |
+
>>> 1/Product(2, (i, 6, 9)).doit()
|
150 |
+
1/16
|
151 |
+
|
152 |
+
An explicit example of the Karr summation convention applied to products:
|
153 |
+
|
154 |
+
>>> P1 = Product(x, (i, a, b)).doit()
|
155 |
+
>>> P1
|
156 |
+
x**(-a + b + 1)
|
157 |
+
>>> P2 = Product(x, (i, b+1, a-1)).doit()
|
158 |
+
>>> P2
|
159 |
+
x**(a - b - 1)
|
160 |
+
>>> simplify(P1 * P2)
|
161 |
+
1
|
162 |
+
|
163 |
+
And another one:
|
164 |
+
|
165 |
+
>>> P1 = Product(i, (i, b, a)).doit()
|
166 |
+
>>> P1
|
167 |
+
RisingFactorial(b, a - b + 1)
|
168 |
+
>>> P2 = Product(i, (i, a+1, b-1)).doit()
|
169 |
+
>>> P2
|
170 |
+
RisingFactorial(a + 1, -a + b - 1)
|
171 |
+
>>> P1 * P2
|
172 |
+
RisingFactorial(b, a - b + 1)*RisingFactorial(a + 1, -a + b - 1)
|
173 |
+
>>> combsimp(P1 * P2)
|
174 |
+
1
|
175 |
+
|
176 |
+
See Also
|
177 |
+
========
|
178 |
+
|
179 |
+
Sum, summation
|
180 |
+
product
|
181 |
+
|
182 |
+
References
|
183 |
+
==========
|
184 |
+
|
185 |
+
.. [1] Michael Karr, "Summation in Finite Terms", Journal of the ACM,
|
186 |
+
Volume 28 Issue 2, April 1981, Pages 305-350
|
187 |
+
https://dl.acm.org/doi/10.1145/322248.322255
|
188 |
+
.. [2] https://en.wikipedia.org/wiki/Multiplication#Capital_Pi_notation
|
189 |
+
.. [3] https://en.wikipedia.org/wiki/Empty_product
|
190 |
+
"""
|
191 |
+
|
192 |
+
__slots__ = ()
|
193 |
+
|
194 |
+
limits: tTuple[tTuple[Symbol, Expr, Expr]]
|
195 |
+
|
196 |
+
def __new__(cls, function, *symbols, **assumptions):
|
197 |
+
obj = ExprWithIntLimits.__new__(cls, function, *symbols, **assumptions)
|
198 |
+
return obj
|
199 |
+
|
200 |
+
def _eval_rewrite_as_Sum(self, *args, **kwargs):
|
201 |
+
return exp(Sum(log(self.function), *self.limits))
|
202 |
+
|
203 |
+
@property
|
204 |
+
def term(self):
|
205 |
+
return self._args[0]
|
206 |
+
function = term
|
207 |
+
|
208 |
+
def _eval_is_zero(self):
|
209 |
+
if self.has_empty_sequence:
|
210 |
+
return False
|
211 |
+
|
212 |
+
z = self.term.is_zero
|
213 |
+
if z is True:
|
214 |
+
return True
|
215 |
+
if self.has_finite_limits:
|
216 |
+
# A Product is zero only if its term is zero assuming finite limits.
|
217 |
+
return z
|
218 |
+
|
219 |
+
def _eval_is_extended_real(self):
|
220 |
+
if self.has_empty_sequence:
|
221 |
+
return True
|
222 |
+
|
223 |
+
return self.function.is_extended_real
|
224 |
+
|
225 |
+
def _eval_is_positive(self):
|
226 |
+
if self.has_empty_sequence:
|
227 |
+
return True
|
228 |
+
if self.function.is_positive and self.has_finite_limits:
|
229 |
+
return True
|
230 |
+
|
231 |
+
def _eval_is_nonnegative(self):
|
232 |
+
if self.has_empty_sequence:
|
233 |
+
return True
|
234 |
+
if self.function.is_nonnegative and self.has_finite_limits:
|
235 |
+
return True
|
236 |
+
|
237 |
+
def _eval_is_extended_nonnegative(self):
|
238 |
+
if self.has_empty_sequence:
|
239 |
+
return True
|
240 |
+
if self.function.is_extended_nonnegative:
|
241 |
+
return True
|
242 |
+
|
243 |
+
def _eval_is_extended_nonpositive(self):
|
244 |
+
if self.has_empty_sequence:
|
245 |
+
return True
|
246 |
+
|
247 |
+
def _eval_is_finite(self):
|
248 |
+
if self.has_finite_limits and self.function.is_finite:
|
249 |
+
return True
|
250 |
+
|
251 |
+
def doit(self, **hints):
|
252 |
+
# first make sure any definite limits have product
|
253 |
+
# variables with matching assumptions
|
254 |
+
reps = {}
|
255 |
+
for xab in self.limits:
|
256 |
+
d = _dummy_with_inherited_properties_concrete(xab)
|
257 |
+
if d:
|
258 |
+
reps[xab[0]] = d
|
259 |
+
if reps:
|
260 |
+
undo = {v: k for k, v in reps.items()}
|
261 |
+
did = self.xreplace(reps).doit(**hints)
|
262 |
+
if isinstance(did, tuple): # when separate=True
|
263 |
+
did = tuple([i.xreplace(undo) for i in did])
|
264 |
+
else:
|
265 |
+
did = did.xreplace(undo)
|
266 |
+
return did
|
267 |
+
|
268 |
+
from sympy.simplify.powsimp import powsimp
|
269 |
+
f = self.function
|
270 |
+
for index, limit in enumerate(self.limits):
|
271 |
+
i, a, b = limit
|
272 |
+
dif = b - a
|
273 |
+
if dif.is_integer and dif.is_negative:
|
274 |
+
a, b = b + 1, a - 1
|
275 |
+
f = 1 / f
|
276 |
+
|
277 |
+
g = self._eval_product(f, (i, a, b))
|
278 |
+
if g in (None, S.NaN):
|
279 |
+
return self.func(powsimp(f), *self.limits[index:])
|
280 |
+
else:
|
281 |
+
f = g
|
282 |
+
|
283 |
+
if hints.get('deep', True):
|
284 |
+
return f.doit(**hints)
|
285 |
+
else:
|
286 |
+
return powsimp(f)
|
287 |
+
|
288 |
+
def _eval_adjoint(self):
|
289 |
+
if self.is_commutative:
|
290 |
+
return self.func(self.function.adjoint(), *self.limits)
|
291 |
+
return None
|
292 |
+
|
293 |
+
def _eval_conjugate(self):
|
294 |
+
return self.func(self.function.conjugate(), *self.limits)
|
295 |
+
|
296 |
+
def _eval_product(self, term, limits):
|
297 |
+
|
298 |
+
(k, a, n) = limits
|
299 |
+
|
300 |
+
if k not in term.free_symbols:
|
301 |
+
if (term - 1).is_zero:
|
302 |
+
return S.One
|
303 |
+
return term**(n - a + 1)
|
304 |
+
|
305 |
+
if a == n:
|
306 |
+
return term.subs(k, a)
|
307 |
+
|
308 |
+
from .delta import deltaproduct, _has_simple_delta
|
309 |
+
if term.has(KroneckerDelta) and _has_simple_delta(term, limits[0]):
|
310 |
+
return deltaproduct(term, limits)
|
311 |
+
|
312 |
+
dif = n - a
|
313 |
+
definite = dif.is_Integer
|
314 |
+
if definite and (dif < 100):
|
315 |
+
return self._eval_product_direct(term, limits)
|
316 |
+
|
317 |
+
elif term.is_polynomial(k):
|
318 |
+
poly = term.as_poly(k)
|
319 |
+
|
320 |
+
A = B = Q = S.One
|
321 |
+
|
322 |
+
all_roots = roots(poly)
|
323 |
+
|
324 |
+
M = 0
|
325 |
+
for r, m in all_roots.items():
|
326 |
+
M += m
|
327 |
+
A *= RisingFactorial(a - r, n - a + 1)**m
|
328 |
+
Q *= (n - r)**m
|
329 |
+
|
330 |
+
if M < poly.degree():
|
331 |
+
arg = quo(poly, Q.as_poly(k))
|
332 |
+
B = self.func(arg, (k, a, n)).doit()
|
333 |
+
|
334 |
+
return poly.LC()**(n - a + 1) * A * B
|
335 |
+
|
336 |
+
elif term.is_Add:
|
337 |
+
factored = factor_terms(term, fraction=True)
|
338 |
+
if factored.is_Mul:
|
339 |
+
return self._eval_product(factored, (k, a, n))
|
340 |
+
|
341 |
+
elif term.is_Mul:
|
342 |
+
# Factor in part without the summation variable and part with
|
343 |
+
without_k, with_k = term.as_coeff_mul(k)
|
344 |
+
|
345 |
+
if len(with_k) >= 2:
|
346 |
+
# More than one term including k, so still a multiplication
|
347 |
+
exclude, include = [], []
|
348 |
+
for t in with_k:
|
349 |
+
p = self._eval_product(t, (k, a, n))
|
350 |
+
|
351 |
+
if p is not None:
|
352 |
+
exclude.append(p)
|
353 |
+
else:
|
354 |
+
include.append(t)
|
355 |
+
|
356 |
+
if not exclude:
|
357 |
+
return None
|
358 |
+
else:
|
359 |
+
arg = term._new_rawargs(*include)
|
360 |
+
A = Mul(*exclude)
|
361 |
+
B = self.func(arg, (k, a, n)).doit()
|
362 |
+
return without_k**(n - a + 1)*A * B
|
363 |
+
else:
|
364 |
+
# Just a single term
|
365 |
+
p = self._eval_product(with_k[0], (k, a, n))
|
366 |
+
if p is None:
|
367 |
+
p = self.func(with_k[0], (k, a, n)).doit()
|
368 |
+
return without_k**(n - a + 1)*p
|
369 |
+
|
370 |
+
|
371 |
+
elif term.is_Pow:
|
372 |
+
if not term.base.has(k):
|
373 |
+
s = summation(term.exp, (k, a, n))
|
374 |
+
|
375 |
+
return term.base**s
|
376 |
+
elif not term.exp.has(k):
|
377 |
+
p = self._eval_product(term.base, (k, a, n))
|
378 |
+
|
379 |
+
if p is not None:
|
380 |
+
return p**term.exp
|
381 |
+
|
382 |
+
elif isinstance(term, Product):
|
383 |
+
evaluated = term.doit()
|
384 |
+
f = self._eval_product(evaluated, limits)
|
385 |
+
if f is None:
|
386 |
+
return self.func(evaluated, limits)
|
387 |
+
else:
|
388 |
+
return f
|
389 |
+
|
390 |
+
if definite:
|
391 |
+
return self._eval_product_direct(term, limits)
|
392 |
+
|
393 |
+
def _eval_simplify(self, **kwargs):
|
394 |
+
from sympy.simplify.simplify import product_simplify
|
395 |
+
rv = product_simplify(self, **kwargs)
|
396 |
+
return rv.doit() if kwargs['doit'] else rv
|
397 |
+
|
398 |
+
def _eval_transpose(self):
|
399 |
+
if self.is_commutative:
|
400 |
+
return self.func(self.function.transpose(), *self.limits)
|
401 |
+
return None
|
402 |
+
|
403 |
+
def _eval_product_direct(self, term, limits):
|
404 |
+
(k, a, n) = limits
|
405 |
+
return Mul(*[term.subs(k, a + i) for i in range(n - a + 1)])
|
406 |
+
|
407 |
+
def _eval_derivative(self, x):
|
408 |
+
if isinstance(x, Symbol) and x not in self.free_symbols:
|
409 |
+
return S.Zero
|
410 |
+
f, limits = self.function, list(self.limits)
|
411 |
+
limit = limits.pop(-1)
|
412 |
+
if limits:
|
413 |
+
f = self.func(f, *limits)
|
414 |
+
i, a, b = limit
|
415 |
+
if x in a.free_symbols or x in b.free_symbols:
|
416 |
+
return None
|
417 |
+
h = Dummy()
|
418 |
+
rv = Sum( Product(f, (i, a, h - 1)) * Product(f, (i, h + 1, b)) * Derivative(f, x, evaluate=True).subs(i, h), (h, a, b))
|
419 |
+
return rv
|
420 |
+
|
421 |
+
def is_convergent(self):
|
422 |
+
r"""
|
423 |
+
See docs of :obj:`.Sum.is_convergent()` for explanation of convergence
|
424 |
+
in SymPy.
|
425 |
+
|
426 |
+
Explanation
|
427 |
+
===========
|
428 |
+
|
429 |
+
The infinite product:
|
430 |
+
|
431 |
+
.. math::
|
432 |
+
|
433 |
+
\prod_{1 \leq i < \infty} f(i)
|
434 |
+
|
435 |
+
is defined by the sequence of partial products:
|
436 |
+
|
437 |
+
.. math::
|
438 |
+
|
439 |
+
\prod_{i=1}^{n} f(i) = f(1) f(2) \cdots f(n)
|
440 |
+
|
441 |
+
as n increases without bound. The product converges to a non-zero
|
442 |
+
value if and only if the sum:
|
443 |
+
|
444 |
+
.. math::
|
445 |
+
|
446 |
+
\sum_{1 \leq i < \infty} \log{f(n)}
|
447 |
+
|
448 |
+
converges.
|
449 |
+
|
450 |
+
Examples
|
451 |
+
========
|
452 |
+
|
453 |
+
>>> from sympy import Product, Symbol, cos, pi, exp, oo
|
454 |
+
>>> n = Symbol('n', integer=True)
|
455 |
+
>>> Product(n/(n + 1), (n, 1, oo)).is_convergent()
|
456 |
+
False
|
457 |
+
>>> Product(1/n**2, (n, 1, oo)).is_convergent()
|
458 |
+
False
|
459 |
+
>>> Product(cos(pi/n), (n, 1, oo)).is_convergent()
|
460 |
+
True
|
461 |
+
>>> Product(exp(-n**2), (n, 1, oo)).is_convergent()
|
462 |
+
False
|
463 |
+
|
464 |
+
References
|
465 |
+
==========
|
466 |
+
|
467 |
+
.. [1] https://en.wikipedia.org/wiki/Infinite_product
|
468 |
+
"""
|
469 |
+
sequence_term = self.function
|
470 |
+
log_sum = log(sequence_term)
|
471 |
+
lim = self.limits
|
472 |
+
try:
|
473 |
+
is_conv = Sum(log_sum, *lim).is_convergent()
|
474 |
+
except NotImplementedError:
|
475 |
+
if Sum(sequence_term - 1, *lim).is_absolutely_convergent() is S.true:
|
476 |
+
return S.true
|
477 |
+
raise NotImplementedError("The algorithm to find the product convergence of %s "
|
478 |
+
"is not yet implemented" % (sequence_term))
|
479 |
+
return is_conv
|
480 |
+
|
481 |
+
def reverse_order(expr, *indices):
|
482 |
+
"""
|
483 |
+
Reverse the order of a limit in a Product.
|
484 |
+
|
485 |
+
Explanation
|
486 |
+
===========
|
487 |
+
|
488 |
+
``reverse_order(expr, *indices)`` reverses some limits in the expression
|
489 |
+
``expr`` which can be either a ``Sum`` or a ``Product``. The selectors in
|
490 |
+
the argument ``indices`` specify some indices whose limits get reversed.
|
491 |
+
These selectors are either variable names or numerical indices counted
|
492 |
+
starting from the inner-most limit tuple.
|
493 |
+
|
494 |
+
Examples
|
495 |
+
========
|
496 |
+
|
497 |
+
>>> from sympy import gamma, Product, simplify, Sum
|
498 |
+
>>> from sympy.abc import x, y, a, b, c, d
|
499 |
+
>>> P = Product(x, (x, a, b))
|
500 |
+
>>> Pr = P.reverse_order(x)
|
501 |
+
>>> Pr
|
502 |
+
Product(1/x, (x, b + 1, a - 1))
|
503 |
+
>>> Pr = Pr.doit()
|
504 |
+
>>> Pr
|
505 |
+
1/RisingFactorial(b + 1, a - b - 1)
|
506 |
+
>>> simplify(Pr.rewrite(gamma))
|
507 |
+
Piecewise((gamma(b + 1)/gamma(a), b > -1), ((-1)**(-a + b + 1)*gamma(1 - a)/gamma(-b), True))
|
508 |
+
>>> P = P.doit()
|
509 |
+
>>> P
|
510 |
+
RisingFactorial(a, -a + b + 1)
|
511 |
+
>>> simplify(P.rewrite(gamma))
|
512 |
+
Piecewise((gamma(b + 1)/gamma(a), a > 0), ((-1)**(-a + b + 1)*gamma(1 - a)/gamma(-b), True))
|
513 |
+
|
514 |
+
While one should prefer variable names when specifying which limits
|
515 |
+
to reverse, the index counting notation comes in handy in case there
|
516 |
+
are several symbols with the same name.
|
517 |
+
|
518 |
+
>>> S = Sum(x*y, (x, a, b), (y, c, d))
|
519 |
+
>>> S
|
520 |
+
Sum(x*y, (x, a, b), (y, c, d))
|
521 |
+
>>> S0 = S.reverse_order(0)
|
522 |
+
>>> S0
|
523 |
+
Sum(-x*y, (x, b + 1, a - 1), (y, c, d))
|
524 |
+
>>> S1 = S0.reverse_order(1)
|
525 |
+
>>> S1
|
526 |
+
Sum(x*y, (x, b + 1, a - 1), (y, d + 1, c - 1))
|
527 |
+
|
528 |
+
Of course we can mix both notations:
|
529 |
+
|
530 |
+
>>> Sum(x*y, (x, a, b), (y, 2, 5)).reverse_order(x, 1)
|
531 |
+
Sum(x*y, (x, b + 1, a - 1), (y, 6, 1))
|
532 |
+
>>> Sum(x*y, (x, a, b), (y, 2, 5)).reverse_order(y, x)
|
533 |
+
Sum(x*y, (x, b + 1, a - 1), (y, 6, 1))
|
534 |
+
|
535 |
+
See Also
|
536 |
+
========
|
537 |
+
|
538 |
+
sympy.concrete.expr_with_intlimits.ExprWithIntLimits.index,
|
539 |
+
reorder_limit,
|
540 |
+
sympy.concrete.expr_with_intlimits.ExprWithIntLimits.reorder
|
541 |
+
|
542 |
+
References
|
543 |
+
==========
|
544 |
+
|
545 |
+
.. [1] Michael Karr, "Summation in Finite Terms", Journal of the ACM,
|
546 |
+
Volume 28 Issue 2, April 1981, Pages 305-350
|
547 |
+
https://dl.acm.org/doi/10.1145/322248.322255
|
548 |
+
|
549 |
+
"""
|
550 |
+
l_indices = list(indices)
|
551 |
+
|
552 |
+
for i, indx in enumerate(l_indices):
|
553 |
+
if not isinstance(indx, int):
|
554 |
+
l_indices[i] = expr.index(indx)
|
555 |
+
|
556 |
+
e = 1
|
557 |
+
limits = []
|
558 |
+
for i, limit in enumerate(expr.limits):
|
559 |
+
l = limit
|
560 |
+
if i in l_indices:
|
561 |
+
e = -e
|
562 |
+
l = (limit[0], limit[2] + 1, limit[1] - 1)
|
563 |
+
limits.append(l)
|
564 |
+
|
565 |
+
return Product(expr.function ** e, *limits)
|
566 |
+
|
567 |
+
|
568 |
+
def product(*args, **kwargs):
|
569 |
+
r"""
|
570 |
+
Compute the product.
|
571 |
+
|
572 |
+
Explanation
|
573 |
+
===========
|
574 |
+
|
575 |
+
The notation for symbols is similar to the notation used in Sum or
|
576 |
+
Integral. product(f, (i, a, b)) computes the product of f with
|
577 |
+
respect to i from a to b, i.e.,
|
578 |
+
|
579 |
+
::
|
580 |
+
|
581 |
+
b
|
582 |
+
_____
|
583 |
+
product(f(n), (i, a, b)) = | | f(n)
|
584 |
+
| |
|
585 |
+
i = a
|
586 |
+
|
587 |
+
If it cannot compute the product, it returns an unevaluated Product object.
|
588 |
+
Repeated products can be computed by introducing additional symbols tuples::
|
589 |
+
|
590 |
+
Examples
|
591 |
+
========
|
592 |
+
|
593 |
+
>>> from sympy import product, symbols
|
594 |
+
>>> i, n, m, k = symbols('i n m k', integer=True)
|
595 |
+
|
596 |
+
>>> product(i, (i, 1, k))
|
597 |
+
factorial(k)
|
598 |
+
>>> product(m, (i, 1, k))
|
599 |
+
m**k
|
600 |
+
>>> product(i, (i, 1, k), (k, 1, n))
|
601 |
+
Product(factorial(k), (k, 1, n))
|
602 |
+
|
603 |
+
"""
|
604 |
+
|
605 |
+
prod = Product(*args, **kwargs)
|
606 |
+
|
607 |
+
if isinstance(prod, Product):
|
608 |
+
return prod.doit(deep=False)
|
609 |
+
else:
|
610 |
+
return prod
|
venv/lib/python3.10/site-packages/sympy/concrete/summations.py
ADDED
@@ -0,0 +1,1646 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Tuple as tTuple
|
2 |
+
|
3 |
+
from sympy.calculus.singularities import is_decreasing
|
4 |
+
from sympy.calculus.accumulationbounds import AccumulationBounds
|
5 |
+
from .expr_with_intlimits import ExprWithIntLimits
|
6 |
+
from .expr_with_limits import AddWithLimits
|
7 |
+
from .gosper import gosper_sum
|
8 |
+
from sympy.core.expr import Expr
|
9 |
+
from sympy.core.add import Add
|
10 |
+
from sympy.core.containers import Tuple
|
11 |
+
from sympy.core.function import Derivative, expand
|
12 |
+
from sympy.core.mul import Mul
|
13 |
+
from sympy.core.numbers import Float, _illegal
|
14 |
+
from sympy.core.relational import Eq
|
15 |
+
from sympy.core.singleton import S
|
16 |
+
from sympy.core.sorting import ordered
|
17 |
+
from sympy.core.symbol import Dummy, Wild, Symbol, symbols
|
18 |
+
from sympy.functions.combinatorial.factorials import factorial
|
19 |
+
from sympy.functions.combinatorial.numbers import bernoulli, harmonic
|
20 |
+
from sympy.functions.elementary.exponential import exp, log
|
21 |
+
from sympy.functions.elementary.piecewise import Piecewise
|
22 |
+
from sympy.functions.elementary.trigonometric import cot, csc
|
23 |
+
from sympy.functions.special.hyper import hyper
|
24 |
+
from sympy.functions.special.tensor_functions import KroneckerDelta
|
25 |
+
from sympy.functions.special.zeta_functions import zeta
|
26 |
+
from sympy.integrals.integrals import Integral
|
27 |
+
from sympy.logic.boolalg import And
|
28 |
+
from sympy.polys.partfrac import apart
|
29 |
+
from sympy.polys.polyerrors import PolynomialError, PolificationFailed
|
30 |
+
from sympy.polys.polytools import parallel_poly_from_expr, Poly, factor
|
31 |
+
from sympy.polys.rationaltools import together
|
32 |
+
from sympy.series.limitseq import limit_seq
|
33 |
+
from sympy.series.order import O
|
34 |
+
from sympy.series.residues import residue
|
35 |
+
from sympy.sets.sets import FiniteSet, Interval
|
36 |
+
from sympy.utilities.iterables import sift
|
37 |
+
import itertools
|
38 |
+
|
39 |
+
|
40 |
+
class Sum(AddWithLimits, ExprWithIntLimits):
|
41 |
+
r"""
|
42 |
+
Represents unevaluated summation.
|
43 |
+
|
44 |
+
Explanation
|
45 |
+
===========
|
46 |
+
|
47 |
+
``Sum`` represents a finite or infinite series, with the first argument
|
48 |
+
being the general form of terms in the series, and the second argument
|
49 |
+
being ``(dummy_variable, start, end)``, with ``dummy_variable`` taking
|
50 |
+
all integer values from ``start`` through ``end``. In accordance with
|
51 |
+
long-standing mathematical convention, the end term is included in the
|
52 |
+
summation.
|
53 |
+
|
54 |
+
Finite sums
|
55 |
+
===========
|
56 |
+
|
57 |
+
For finite sums (and sums with symbolic limits assumed to be finite) we
|
58 |
+
follow the summation convention described by Karr [1], especially
|
59 |
+
definition 3 of section 1.4. The sum:
|
60 |
+
|
61 |
+
.. math::
|
62 |
+
|
63 |
+
\sum_{m \leq i < n} f(i)
|
64 |
+
|
65 |
+
has *the obvious meaning* for `m < n`, namely:
|
66 |
+
|
67 |
+
.. math::
|
68 |
+
|
69 |
+
\sum_{m \leq i < n} f(i) = f(m) + f(m+1) + \ldots + f(n-2) + f(n-1)
|
70 |
+
|
71 |
+
with the upper limit value `f(n)` excluded. The sum over an empty set is
|
72 |
+
zero if and only if `m = n`:
|
73 |
+
|
74 |
+
.. math::
|
75 |
+
|
76 |
+
\sum_{m \leq i < n} f(i) = 0 \quad \mathrm{for} \quad m = n
|
77 |
+
|
78 |
+
Finally, for all other sums over empty sets we assume the following
|
79 |
+
definition:
|
80 |
+
|
81 |
+
.. math::
|
82 |
+
|
83 |
+
\sum_{m \leq i < n} f(i) = - \sum_{n \leq i < m} f(i) \quad \mathrm{for} \quad m > n
|
84 |
+
|
85 |
+
It is important to note that Karr defines all sums with the upper
|
86 |
+
limit being exclusive. This is in contrast to the usual mathematical notation,
|
87 |
+
but does not affect the summation convention. Indeed we have:
|
88 |
+
|
89 |
+
.. math::
|
90 |
+
|
91 |
+
\sum_{m \leq i < n} f(i) = \sum_{i = m}^{n - 1} f(i)
|
92 |
+
|
93 |
+
where the difference in notation is intentional to emphasize the meaning,
|
94 |
+
with limits typeset on the top being inclusive.
|
95 |
+
|
96 |
+
Examples
|
97 |
+
========
|
98 |
+
|
99 |
+
>>> from sympy.abc import i, k, m, n, x
|
100 |
+
>>> from sympy import Sum, factorial, oo, IndexedBase, Function
|
101 |
+
>>> Sum(k, (k, 1, m))
|
102 |
+
Sum(k, (k, 1, m))
|
103 |
+
>>> Sum(k, (k, 1, m)).doit()
|
104 |
+
m**2/2 + m/2
|
105 |
+
>>> Sum(k**2, (k, 1, m))
|
106 |
+
Sum(k**2, (k, 1, m))
|
107 |
+
>>> Sum(k**2, (k, 1, m)).doit()
|
108 |
+
m**3/3 + m**2/2 + m/6
|
109 |
+
>>> Sum(x**k, (k, 0, oo))
|
110 |
+
Sum(x**k, (k, 0, oo))
|
111 |
+
>>> Sum(x**k, (k, 0, oo)).doit()
|
112 |
+
Piecewise((1/(1 - x), Abs(x) < 1), (Sum(x**k, (k, 0, oo)), True))
|
113 |
+
>>> Sum(x**k/factorial(k), (k, 0, oo)).doit()
|
114 |
+
exp(x)
|
115 |
+
|
116 |
+
Here are examples to do summation with symbolic indices. You
|
117 |
+
can use either Function of IndexedBase classes:
|
118 |
+
|
119 |
+
>>> f = Function('f')
|
120 |
+
>>> Sum(f(n), (n, 0, 3)).doit()
|
121 |
+
f(0) + f(1) + f(2) + f(3)
|
122 |
+
>>> Sum(f(n), (n, 0, oo)).doit()
|
123 |
+
Sum(f(n), (n, 0, oo))
|
124 |
+
>>> f = IndexedBase('f')
|
125 |
+
>>> Sum(f[n]**2, (n, 0, 3)).doit()
|
126 |
+
f[0]**2 + f[1]**2 + f[2]**2 + f[3]**2
|
127 |
+
|
128 |
+
An example showing that the symbolic result of a summation is still
|
129 |
+
valid for seemingly nonsensical values of the limits. Then the Karr
|
130 |
+
convention allows us to give a perfectly valid interpretation to
|
131 |
+
those sums by interchanging the limits according to the above rules:
|
132 |
+
|
133 |
+
>>> S = Sum(i, (i, 1, n)).doit()
|
134 |
+
>>> S
|
135 |
+
n**2/2 + n/2
|
136 |
+
>>> S.subs(n, -4)
|
137 |
+
6
|
138 |
+
>>> Sum(i, (i, 1, -4)).doit()
|
139 |
+
6
|
140 |
+
>>> Sum(-i, (i, -3, 0)).doit()
|
141 |
+
6
|
142 |
+
|
143 |
+
An explicit example of the Karr summation convention:
|
144 |
+
|
145 |
+
>>> S1 = Sum(i**2, (i, m, m+n-1)).doit()
|
146 |
+
>>> S1
|
147 |
+
m**2*n + m*n**2 - m*n + n**3/3 - n**2/2 + n/6
|
148 |
+
>>> S2 = Sum(i**2, (i, m+n, m-1)).doit()
|
149 |
+
>>> S2
|
150 |
+
-m**2*n - m*n**2 + m*n - n**3/3 + n**2/2 - n/6
|
151 |
+
>>> S1 + S2
|
152 |
+
0
|
153 |
+
>>> S3 = Sum(i, (i, m, m-1)).doit()
|
154 |
+
>>> S3
|
155 |
+
0
|
156 |
+
|
157 |
+
See Also
|
158 |
+
========
|
159 |
+
|
160 |
+
summation
|
161 |
+
Product, sympy.concrete.products.product
|
162 |
+
|
163 |
+
References
|
164 |
+
==========
|
165 |
+
|
166 |
+
.. [1] Michael Karr, "Summation in Finite Terms", Journal of the ACM,
|
167 |
+
Volume 28 Issue 2, April 1981, Pages 305-350
|
168 |
+
https://dl.acm.org/doi/10.1145/322248.322255
|
169 |
+
.. [2] https://en.wikipedia.org/wiki/Summation#Capital-sigma_notation
|
170 |
+
.. [3] https://en.wikipedia.org/wiki/Empty_sum
|
171 |
+
"""
|
172 |
+
|
173 |
+
__slots__ = ()
|
174 |
+
|
175 |
+
limits: tTuple[tTuple[Symbol, Expr, Expr]]
|
176 |
+
|
177 |
+
def __new__(cls, function, *symbols, **assumptions):
|
178 |
+
obj = AddWithLimits.__new__(cls, function, *symbols, **assumptions)
|
179 |
+
if not hasattr(obj, 'limits'):
|
180 |
+
return obj
|
181 |
+
if any(len(l) != 3 or None in l for l in obj.limits):
|
182 |
+
raise ValueError('Sum requires values for lower and upper bounds.')
|
183 |
+
|
184 |
+
return obj
|
185 |
+
|
186 |
+
def _eval_is_zero(self):
|
187 |
+
# a Sum is only zero if its function is zero or if all terms
|
188 |
+
# cancel out. This only answers whether the summand is zero; if
|
189 |
+
# not then None is returned since we don't analyze whether all
|
190 |
+
# terms cancel out.
|
191 |
+
if self.function.is_zero or self.has_empty_sequence:
|
192 |
+
return True
|
193 |
+
|
194 |
+
def _eval_is_extended_real(self):
|
195 |
+
if self.has_empty_sequence:
|
196 |
+
return True
|
197 |
+
return self.function.is_extended_real
|
198 |
+
|
199 |
+
def _eval_is_positive(self):
|
200 |
+
if self.has_finite_limits and self.has_reversed_limits is False:
|
201 |
+
return self.function.is_positive
|
202 |
+
|
203 |
+
def _eval_is_negative(self):
|
204 |
+
if self.has_finite_limits and self.has_reversed_limits is False:
|
205 |
+
return self.function.is_negative
|
206 |
+
|
207 |
+
def _eval_is_finite(self):
|
208 |
+
if self.has_finite_limits and self.function.is_finite:
|
209 |
+
return True
|
210 |
+
|
211 |
+
def doit(self, **hints):
|
212 |
+
if hints.get('deep', True):
|
213 |
+
f = self.function.doit(**hints)
|
214 |
+
else:
|
215 |
+
f = self.function
|
216 |
+
|
217 |
+
# first make sure any definite limits have summation
|
218 |
+
# variables with matching assumptions
|
219 |
+
reps = {}
|
220 |
+
for xab in self.limits:
|
221 |
+
d = _dummy_with_inherited_properties_concrete(xab)
|
222 |
+
if d:
|
223 |
+
reps[xab[0]] = d
|
224 |
+
if reps:
|
225 |
+
undo = {v: k for k, v in reps.items()}
|
226 |
+
did = self.xreplace(reps).doit(**hints)
|
227 |
+
if isinstance(did, tuple): # when separate=True
|
228 |
+
did = tuple([i.xreplace(undo) for i in did])
|
229 |
+
elif did is not None:
|
230 |
+
did = did.xreplace(undo)
|
231 |
+
else:
|
232 |
+
did = self
|
233 |
+
return did
|
234 |
+
|
235 |
+
|
236 |
+
if self.function.is_Matrix:
|
237 |
+
expanded = self.expand()
|
238 |
+
if self != expanded:
|
239 |
+
return expanded.doit()
|
240 |
+
return _eval_matrix_sum(self)
|
241 |
+
|
242 |
+
for n, limit in enumerate(self.limits):
|
243 |
+
i, a, b = limit
|
244 |
+
dif = b - a
|
245 |
+
if dif == -1:
|
246 |
+
# Any summation over an empty set is zero
|
247 |
+
return S.Zero
|
248 |
+
if dif.is_integer and dif.is_negative:
|
249 |
+
a, b = b + 1, a - 1
|
250 |
+
f = -f
|
251 |
+
|
252 |
+
newf = eval_sum(f, (i, a, b))
|
253 |
+
if newf is None:
|
254 |
+
if f == self.function:
|
255 |
+
zeta_function = self.eval_zeta_function(f, (i, a, b))
|
256 |
+
if zeta_function is not None:
|
257 |
+
return zeta_function
|
258 |
+
return self
|
259 |
+
else:
|
260 |
+
return self.func(f, *self.limits[n:])
|
261 |
+
f = newf
|
262 |
+
|
263 |
+
if hints.get('deep', True):
|
264 |
+
# eval_sum could return partially unevaluated
|
265 |
+
# result with Piecewise. In this case we won't
|
266 |
+
# doit() recursively.
|
267 |
+
if not isinstance(f, Piecewise):
|
268 |
+
return f.doit(**hints)
|
269 |
+
|
270 |
+
return f
|
271 |
+
|
272 |
+
def eval_zeta_function(self, f, limits):
|
273 |
+
"""
|
274 |
+
Check whether the function matches with the zeta function.
|
275 |
+
|
276 |
+
If it matches, then return a `Piecewise` expression because
|
277 |
+
zeta function does not converge unless `s > 1` and `q > 0`
|
278 |
+
"""
|
279 |
+
i, a, b = limits
|
280 |
+
w, y, z = Wild('w', exclude=[i]), Wild('y', exclude=[i]), Wild('z', exclude=[i])
|
281 |
+
result = f.match((w * i + y) ** (-z))
|
282 |
+
if result is not None and b is S.Infinity:
|
283 |
+
coeff = 1 / result[w] ** result[z]
|
284 |
+
s = result[z]
|
285 |
+
q = result[y] / result[w] + a
|
286 |
+
return Piecewise((coeff * zeta(s, q), And(q > 0, s > 1)), (self, True))
|
287 |
+
|
288 |
+
def _eval_derivative(self, x):
|
289 |
+
"""
|
290 |
+
Differentiate wrt x as long as x is not in the free symbols of any of
|
291 |
+
the upper or lower limits.
|
292 |
+
|
293 |
+
Explanation
|
294 |
+
===========
|
295 |
+
|
296 |
+
Sum(a*b*x, (x, 1, a)) can be differentiated wrt x or b but not `a`
|
297 |
+
since the value of the sum is discontinuous in `a`. In a case
|
298 |
+
involving a limit variable, the unevaluated derivative is returned.
|
299 |
+
"""
|
300 |
+
|
301 |
+
# diff already confirmed that x is in the free symbols of self, but we
|
302 |
+
# don't want to differentiate wrt any free symbol in the upper or lower
|
303 |
+
# limits
|
304 |
+
# XXX remove this test for free_symbols when the default _eval_derivative is in
|
305 |
+
if isinstance(x, Symbol) and x not in self.free_symbols:
|
306 |
+
return S.Zero
|
307 |
+
|
308 |
+
# get limits and the function
|
309 |
+
f, limits = self.function, list(self.limits)
|
310 |
+
|
311 |
+
limit = limits.pop(-1)
|
312 |
+
|
313 |
+
if limits: # f is the argument to a Sum
|
314 |
+
f = self.func(f, *limits)
|
315 |
+
|
316 |
+
_, a, b = limit
|
317 |
+
if x in a.free_symbols or x in b.free_symbols:
|
318 |
+
return None
|
319 |
+
df = Derivative(f, x, evaluate=True)
|
320 |
+
rv = self.func(df, limit)
|
321 |
+
return rv
|
322 |
+
|
323 |
+
def _eval_difference_delta(self, n, step):
|
324 |
+
k, _, upper = self.args[-1]
|
325 |
+
new_upper = upper.subs(n, n + step)
|
326 |
+
|
327 |
+
if len(self.args) == 2:
|
328 |
+
f = self.args[0]
|
329 |
+
else:
|
330 |
+
f = self.func(*self.args[:-1])
|
331 |
+
|
332 |
+
return Sum(f, (k, upper + 1, new_upper)).doit()
|
333 |
+
|
334 |
+
def _eval_simplify(self, **kwargs):
|
335 |
+
|
336 |
+
function = self.function
|
337 |
+
|
338 |
+
if kwargs.get('deep', True):
|
339 |
+
function = function.simplify(**kwargs)
|
340 |
+
|
341 |
+
# split the function into adds
|
342 |
+
terms = Add.make_args(expand(function))
|
343 |
+
s_t = [] # Sum Terms
|
344 |
+
o_t = [] # Other Terms
|
345 |
+
|
346 |
+
for term in terms:
|
347 |
+
if term.has(Sum):
|
348 |
+
# if there is an embedded sum here
|
349 |
+
# it is of the form x * (Sum(whatever))
|
350 |
+
# hence we make a Mul out of it, and simplify all interior sum terms
|
351 |
+
subterms = Mul.make_args(expand(term))
|
352 |
+
out_terms = []
|
353 |
+
for subterm in subterms:
|
354 |
+
# go through each term
|
355 |
+
if isinstance(subterm, Sum):
|
356 |
+
# if it's a sum, simplify it
|
357 |
+
out_terms.append(subterm._eval_simplify(**kwargs))
|
358 |
+
else:
|
359 |
+
# otherwise, add it as is
|
360 |
+
out_terms.append(subterm)
|
361 |
+
|
362 |
+
# turn it back into a Mul
|
363 |
+
s_t.append(Mul(*out_terms))
|
364 |
+
else:
|
365 |
+
o_t.append(term)
|
366 |
+
|
367 |
+
# next try to combine any interior sums for further simplification
|
368 |
+
from sympy.simplify.simplify import factor_sum, sum_combine
|
369 |
+
result = Add(sum_combine(s_t), *o_t)
|
370 |
+
|
371 |
+
return factor_sum(result, limits=self.limits)
|
372 |
+
|
373 |
+
def is_convergent(self):
|
374 |
+
r"""
|
375 |
+
Checks for the convergence of a Sum.
|
376 |
+
|
377 |
+
Explanation
|
378 |
+
===========
|
379 |
+
|
380 |
+
We divide the study of convergence of infinite sums and products in
|
381 |
+
two parts.
|
382 |
+
|
383 |
+
First Part:
|
384 |
+
One part is the question whether all the terms are well defined, i.e.,
|
385 |
+
they are finite in a sum and also non-zero in a product. Zero
|
386 |
+
is the analogy of (minus) infinity in products as
|
387 |
+
:math:`e^{-\infty} = 0`.
|
388 |
+
|
389 |
+
Second Part:
|
390 |
+
The second part is the question of convergence after infinities,
|
391 |
+
and zeros in products, have been omitted assuming that their number
|
392 |
+
is finite. This means that we only consider the tail of the sum or
|
393 |
+
product, starting from some point after which all terms are well
|
394 |
+
defined.
|
395 |
+
|
396 |
+
For example, in a sum of the form:
|
397 |
+
|
398 |
+
.. math::
|
399 |
+
|
400 |
+
\sum_{1 \leq i < \infty} \frac{1}{n^2 + an + b}
|
401 |
+
|
402 |
+
where a and b are numbers. The routine will return true, even if there
|
403 |
+
are infinities in the term sequence (at most two). An analogous
|
404 |
+
product would be:
|
405 |
+
|
406 |
+
.. math::
|
407 |
+
|
408 |
+
\prod_{1 \leq i < \infty} e^{\frac{1}{n^2 + an + b}}
|
409 |
+
|
410 |
+
This is how convergence is interpreted. It is concerned with what
|
411 |
+
happens at the limit. Finding the bad terms is another independent
|
412 |
+
matter.
|
413 |
+
|
414 |
+
Note: It is responsibility of user to see that the sum or product
|
415 |
+
is well defined.
|
416 |
+
|
417 |
+
There are various tests employed to check the convergence like
|
418 |
+
divergence test, root test, integral test, alternating series test,
|
419 |
+
comparison tests, Dirichlet tests. It returns true if Sum is convergent
|
420 |
+
and false if divergent and NotImplementedError if it cannot be checked.
|
421 |
+
|
422 |
+
References
|
423 |
+
==========
|
424 |
+
|
425 |
+
.. [1] https://en.wikipedia.org/wiki/Convergence_tests
|
426 |
+
|
427 |
+
Examples
|
428 |
+
========
|
429 |
+
|
430 |
+
>>> from sympy import factorial, S, Sum, Symbol, oo
|
431 |
+
>>> n = Symbol('n', integer=True)
|
432 |
+
>>> Sum(n/(n - 1), (n, 4, 7)).is_convergent()
|
433 |
+
True
|
434 |
+
>>> Sum(n/(2*n + 1), (n, 1, oo)).is_convergent()
|
435 |
+
False
|
436 |
+
>>> Sum(factorial(n)/5**n, (n, 1, oo)).is_convergent()
|
437 |
+
False
|
438 |
+
>>> Sum(1/n**(S(6)/5), (n, 1, oo)).is_convergent()
|
439 |
+
True
|
440 |
+
|
441 |
+
See Also
|
442 |
+
========
|
443 |
+
|
444 |
+
Sum.is_absolutely_convergent
|
445 |
+
sympy.concrete.products.Product.is_convergent
|
446 |
+
"""
|
447 |
+
p, q, r = symbols('p q r', cls=Wild)
|
448 |
+
|
449 |
+
sym = self.limits[0][0]
|
450 |
+
lower_limit = self.limits[0][1]
|
451 |
+
upper_limit = self.limits[0][2]
|
452 |
+
sequence_term = self.function.simplify()
|
453 |
+
|
454 |
+
if len(sequence_term.free_symbols) > 1:
|
455 |
+
raise NotImplementedError("convergence checking for more than one symbol "
|
456 |
+
"containing series is not handled")
|
457 |
+
|
458 |
+
if lower_limit.is_finite and upper_limit.is_finite:
|
459 |
+
return S.true
|
460 |
+
|
461 |
+
# transform sym -> -sym and swap the upper_limit = S.Infinity
|
462 |
+
# and lower_limit = - upper_limit
|
463 |
+
if lower_limit is S.NegativeInfinity:
|
464 |
+
if upper_limit is S.Infinity:
|
465 |
+
return Sum(sequence_term, (sym, 0, S.Infinity)).is_convergent() and \
|
466 |
+
Sum(sequence_term, (sym, S.NegativeInfinity, 0)).is_convergent()
|
467 |
+
from sympy.simplify.simplify import simplify
|
468 |
+
sequence_term = simplify(sequence_term.xreplace({sym: -sym}))
|
469 |
+
lower_limit = -upper_limit
|
470 |
+
upper_limit = S.Infinity
|
471 |
+
|
472 |
+
sym_ = Dummy(sym.name, integer=True, positive=True)
|
473 |
+
sequence_term = sequence_term.xreplace({sym: sym_})
|
474 |
+
sym = sym_
|
475 |
+
|
476 |
+
interval = Interval(lower_limit, upper_limit)
|
477 |
+
|
478 |
+
# Piecewise function handle
|
479 |
+
if sequence_term.is_Piecewise:
|
480 |
+
for func, cond in sequence_term.args:
|
481 |
+
# see if it represents something going to oo
|
482 |
+
if cond == True or cond.as_set().sup is S.Infinity:
|
483 |
+
s = Sum(func, (sym, lower_limit, upper_limit))
|
484 |
+
return s.is_convergent()
|
485 |
+
return S.true
|
486 |
+
|
487 |
+
### -------- Divergence test ----------- ###
|
488 |
+
try:
|
489 |
+
lim_val = limit_seq(sequence_term, sym)
|
490 |
+
if lim_val is not None and lim_val.is_zero is False:
|
491 |
+
return S.false
|
492 |
+
except NotImplementedError:
|
493 |
+
pass
|
494 |
+
|
495 |
+
try:
|
496 |
+
lim_val_abs = limit_seq(abs(sequence_term), sym)
|
497 |
+
if lim_val_abs is not None and lim_val_abs.is_zero is False:
|
498 |
+
return S.false
|
499 |
+
except NotImplementedError:
|
500 |
+
pass
|
501 |
+
|
502 |
+
order = O(sequence_term, (sym, S.Infinity))
|
503 |
+
|
504 |
+
### --------- p-series test (1/n**p) ---------- ###
|
505 |
+
p_series_test = order.expr.match(sym**p)
|
506 |
+
if p_series_test is not None:
|
507 |
+
if p_series_test[p] < -1:
|
508 |
+
return S.true
|
509 |
+
if p_series_test[p] >= -1:
|
510 |
+
return S.false
|
511 |
+
|
512 |
+
### ------------- comparison test ------------- ###
|
513 |
+
# 1/(n**p*log(n)**q*log(log(n))**r) comparison
|
514 |
+
n_log_test = (order.expr.match(1/(sym**p*log(1/sym)**q*log(-log(1/sym))**r)) or
|
515 |
+
order.expr.match(1/(sym**p*(-log(1/sym))**q*log(-log(1/sym))**r)))
|
516 |
+
if n_log_test is not None:
|
517 |
+
if (n_log_test[p] > 1 or
|
518 |
+
(n_log_test[p] == 1 and n_log_test[q] > 1) or
|
519 |
+
(n_log_test[p] == n_log_test[q] == 1 and n_log_test[r] > 1)):
|
520 |
+
return S.true
|
521 |
+
return S.false
|
522 |
+
|
523 |
+
### ------------- Limit comparison test -----------###
|
524 |
+
# (1/n) comparison
|
525 |
+
try:
|
526 |
+
lim_comp = limit_seq(sym*sequence_term, sym)
|
527 |
+
if lim_comp is not None and lim_comp.is_number and lim_comp > 0:
|
528 |
+
return S.false
|
529 |
+
except NotImplementedError:
|
530 |
+
pass
|
531 |
+
|
532 |
+
### ----------- ratio test ---------------- ###
|
533 |
+
next_sequence_term = sequence_term.xreplace({sym: sym + 1})
|
534 |
+
from sympy.simplify.combsimp import combsimp
|
535 |
+
from sympy.simplify.powsimp import powsimp
|
536 |
+
ratio = combsimp(powsimp(next_sequence_term/sequence_term))
|
537 |
+
try:
|
538 |
+
lim_ratio = limit_seq(ratio, sym)
|
539 |
+
if lim_ratio is not None and lim_ratio.is_number:
|
540 |
+
if abs(lim_ratio) > 1:
|
541 |
+
return S.false
|
542 |
+
if abs(lim_ratio) < 1:
|
543 |
+
return S.true
|
544 |
+
except NotImplementedError:
|
545 |
+
lim_ratio = None
|
546 |
+
|
547 |
+
### ---------- Raabe's test -------------- ###
|
548 |
+
if lim_ratio == 1: # ratio test inconclusive
|
549 |
+
test_val = sym*(sequence_term/
|
550 |
+
sequence_term.subs(sym, sym + 1) - 1)
|
551 |
+
test_val = test_val.gammasimp()
|
552 |
+
try:
|
553 |
+
lim_val = limit_seq(test_val, sym)
|
554 |
+
if lim_val is not None and lim_val.is_number:
|
555 |
+
if lim_val > 1:
|
556 |
+
return S.true
|
557 |
+
if lim_val < 1:
|
558 |
+
return S.false
|
559 |
+
except NotImplementedError:
|
560 |
+
pass
|
561 |
+
|
562 |
+
### ----------- root test ---------------- ###
|
563 |
+
# lim = Limit(abs(sequence_term)**(1/sym), sym, S.Infinity)
|
564 |
+
try:
|
565 |
+
lim_evaluated = limit_seq(abs(sequence_term)**(1/sym), sym)
|
566 |
+
if lim_evaluated is not None and lim_evaluated.is_number:
|
567 |
+
if lim_evaluated < 1:
|
568 |
+
return S.true
|
569 |
+
if lim_evaluated > 1:
|
570 |
+
return S.false
|
571 |
+
except NotImplementedError:
|
572 |
+
pass
|
573 |
+
|
574 |
+
### ------------- alternating series test ----------- ###
|
575 |
+
dict_val = sequence_term.match(S.NegativeOne**(sym + p)*q)
|
576 |
+
if not dict_val[p].has(sym) and is_decreasing(dict_val[q], interval):
|
577 |
+
return S.true
|
578 |
+
|
579 |
+
### ------------- integral test -------------- ###
|
580 |
+
check_interval = None
|
581 |
+
from sympy.solvers.solveset import solveset
|
582 |
+
maxima = solveset(sequence_term.diff(sym), sym, interval)
|
583 |
+
if not maxima:
|
584 |
+
check_interval = interval
|
585 |
+
elif isinstance(maxima, FiniteSet) and maxima.sup.is_number:
|
586 |
+
check_interval = Interval(maxima.sup, interval.sup)
|
587 |
+
if (check_interval is not None and
|
588 |
+
(is_decreasing(sequence_term, check_interval) or
|
589 |
+
is_decreasing(-sequence_term, check_interval))):
|
590 |
+
integral_val = Integral(
|
591 |
+
sequence_term, (sym, lower_limit, upper_limit))
|
592 |
+
try:
|
593 |
+
integral_val_evaluated = integral_val.doit()
|
594 |
+
if integral_val_evaluated.is_number:
|
595 |
+
return S(integral_val_evaluated.is_finite)
|
596 |
+
except NotImplementedError:
|
597 |
+
pass
|
598 |
+
|
599 |
+
### ----- Dirichlet and bounded times convergent tests ----- ###
|
600 |
+
# TODO
|
601 |
+
#
|
602 |
+
# Dirichlet_test
|
603 |
+
# https://en.wikipedia.org/wiki/Dirichlet%27s_test
|
604 |
+
#
|
605 |
+
# Bounded times convergent test
|
606 |
+
# It is based on comparison theorems for series.
|
607 |
+
# In particular, if the general term of a series can
|
608 |
+
# be written as a product of two terms a_n and b_n
|
609 |
+
# and if a_n is bounded and if Sum(b_n) is absolutely
|
610 |
+
# convergent, then the original series Sum(a_n * b_n)
|
611 |
+
# is absolutely convergent and so convergent.
|
612 |
+
#
|
613 |
+
# The following code can grows like 2**n where n is the
|
614 |
+
# number of args in order.expr
|
615 |
+
# Possibly combined with the potentially slow checks
|
616 |
+
# inside the loop, could make this test extremely slow
|
617 |
+
# for larger summation expressions.
|
618 |
+
|
619 |
+
if order.expr.is_Mul:
|
620 |
+
args = order.expr.args
|
621 |
+
argset = set(args)
|
622 |
+
|
623 |
+
### -------------- Dirichlet tests -------------- ###
|
624 |
+
m = Dummy('m', integer=True)
|
625 |
+
def _dirichlet_test(g_n):
|
626 |
+
try:
|
627 |
+
ing_val = limit_seq(Sum(g_n, (sym, interval.inf, m)).doit(), m)
|
628 |
+
if ing_val is not None and ing_val.is_finite:
|
629 |
+
return S.true
|
630 |
+
except NotImplementedError:
|
631 |
+
pass
|
632 |
+
|
633 |
+
### -------- bounded times convergent test ---------###
|
634 |
+
def _bounded_convergent_test(g1_n, g2_n):
|
635 |
+
try:
|
636 |
+
lim_val = limit_seq(g1_n, sym)
|
637 |
+
if lim_val is not None and (lim_val.is_finite or (
|
638 |
+
isinstance(lim_val, AccumulationBounds)
|
639 |
+
and (lim_val.max - lim_val.min).is_finite)):
|
640 |
+
if Sum(g2_n, (sym, lower_limit, upper_limit)).is_absolutely_convergent():
|
641 |
+
return S.true
|
642 |
+
except NotImplementedError:
|
643 |
+
pass
|
644 |
+
|
645 |
+
for n in range(1, len(argset)):
|
646 |
+
for a_tuple in itertools.combinations(args, n):
|
647 |
+
b_set = argset - set(a_tuple)
|
648 |
+
a_n = Mul(*a_tuple)
|
649 |
+
b_n = Mul(*b_set)
|
650 |
+
|
651 |
+
if is_decreasing(a_n, interval):
|
652 |
+
dirich = _dirichlet_test(b_n)
|
653 |
+
if dirich is not None:
|
654 |
+
return dirich
|
655 |
+
|
656 |
+
bc_test = _bounded_convergent_test(a_n, b_n)
|
657 |
+
if bc_test is not None:
|
658 |
+
return bc_test
|
659 |
+
|
660 |
+
_sym = self.limits[0][0]
|
661 |
+
sequence_term = sequence_term.xreplace({sym: _sym})
|
662 |
+
raise NotImplementedError("The algorithm to find the Sum convergence of %s "
|
663 |
+
"is not yet implemented" % (sequence_term))
|
664 |
+
|
665 |
+
def is_absolutely_convergent(self):
|
666 |
+
"""
|
667 |
+
Checks for the absolute convergence of an infinite series.
|
668 |
+
|
669 |
+
Same as checking convergence of absolute value of sequence_term of
|
670 |
+
an infinite series.
|
671 |
+
|
672 |
+
References
|
673 |
+
==========
|
674 |
+
|
675 |
+
.. [1] https://en.wikipedia.org/wiki/Absolute_convergence
|
676 |
+
|
677 |
+
Examples
|
678 |
+
========
|
679 |
+
|
680 |
+
>>> from sympy import Sum, Symbol, oo
|
681 |
+
>>> n = Symbol('n', integer=True)
|
682 |
+
>>> Sum((-1)**n, (n, 1, oo)).is_absolutely_convergent()
|
683 |
+
False
|
684 |
+
>>> Sum((-1)**n/n**2, (n, 1, oo)).is_absolutely_convergent()
|
685 |
+
True
|
686 |
+
|
687 |
+
See Also
|
688 |
+
========
|
689 |
+
|
690 |
+
Sum.is_convergent
|
691 |
+
"""
|
692 |
+
return Sum(abs(self.function), self.limits).is_convergent()
|
693 |
+
|
694 |
+
def euler_maclaurin(self, m=0, n=0, eps=0, eval_integral=True):
|
695 |
+
"""
|
696 |
+
Return an Euler-Maclaurin approximation of self, where m is the
|
697 |
+
number of leading terms to sum directly and n is the number of
|
698 |
+
terms in the tail.
|
699 |
+
|
700 |
+
With m = n = 0, this is simply the corresponding integral
|
701 |
+
plus a first-order endpoint correction.
|
702 |
+
|
703 |
+
Returns (s, e) where s is the Euler-Maclaurin approximation
|
704 |
+
and e is the estimated error (taken to be the magnitude of
|
705 |
+
the first omitted term in the tail):
|
706 |
+
|
707 |
+
>>> from sympy.abc import k, a, b
|
708 |
+
>>> from sympy import Sum
|
709 |
+
>>> Sum(1/k, (k, 2, 5)).doit().evalf()
|
710 |
+
1.28333333333333
|
711 |
+
>>> s, e = Sum(1/k, (k, 2, 5)).euler_maclaurin()
|
712 |
+
>>> s
|
713 |
+
-log(2) + 7/20 + log(5)
|
714 |
+
>>> from sympy import sstr
|
715 |
+
>>> print(sstr((s.evalf(), e.evalf()), full_prec=True))
|
716 |
+
(1.26629073187415, 0.0175000000000000)
|
717 |
+
|
718 |
+
The endpoints may be symbolic:
|
719 |
+
|
720 |
+
>>> s, e = Sum(1/k, (k, a, b)).euler_maclaurin()
|
721 |
+
>>> s
|
722 |
+
-log(a) + log(b) + 1/(2*b) + 1/(2*a)
|
723 |
+
>>> e
|
724 |
+
Abs(1/(12*b**2) - 1/(12*a**2))
|
725 |
+
|
726 |
+
If the function is a polynomial of degree at most 2n+1, the
|
727 |
+
Euler-Maclaurin formula becomes exact (and e = 0 is returned):
|
728 |
+
|
729 |
+
>>> Sum(k, (k, 2, b)).euler_maclaurin()
|
730 |
+
(b**2/2 + b/2 - 1, 0)
|
731 |
+
>>> Sum(k, (k, 2, b)).doit()
|
732 |
+
b**2/2 + b/2 - 1
|
733 |
+
|
734 |
+
With a nonzero eps specified, the summation is ended
|
735 |
+
as soon as the remainder term is less than the epsilon.
|
736 |
+
"""
|
737 |
+
m = int(m)
|
738 |
+
n = int(n)
|
739 |
+
f = self.function
|
740 |
+
if len(self.limits) != 1:
|
741 |
+
raise ValueError("More than 1 limit")
|
742 |
+
i, a, b = self.limits[0]
|
743 |
+
if (a > b) == True:
|
744 |
+
if a - b == 1:
|
745 |
+
return S.Zero, S.Zero
|
746 |
+
a, b = b + 1, a - 1
|
747 |
+
f = -f
|
748 |
+
s = S.Zero
|
749 |
+
if m:
|
750 |
+
if b.is_Integer and a.is_Integer:
|
751 |
+
m = min(m, b - a + 1)
|
752 |
+
if not eps or f.is_polynomial(i):
|
753 |
+
s = Add(*[f.subs(i, a + k) for k in range(m)])
|
754 |
+
else:
|
755 |
+
term = f.subs(i, a)
|
756 |
+
if term:
|
757 |
+
test = abs(term.evalf(3)) < eps
|
758 |
+
if test == True:
|
759 |
+
return s, abs(term)
|
760 |
+
elif not (test == False):
|
761 |
+
# a symbolic Relational class, can't go further
|
762 |
+
return term, S.Zero
|
763 |
+
s = term
|
764 |
+
for k in range(1, m):
|
765 |
+
term = f.subs(i, a + k)
|
766 |
+
if abs(term.evalf(3)) < eps and term != 0:
|
767 |
+
return s, abs(term)
|
768 |
+
s += term
|
769 |
+
if b - a + 1 == m:
|
770 |
+
return s, S.Zero
|
771 |
+
a += m
|
772 |
+
x = Dummy('x')
|
773 |
+
I = Integral(f.subs(i, x), (x, a, b))
|
774 |
+
if eval_integral:
|
775 |
+
I = I.doit()
|
776 |
+
s += I
|
777 |
+
|
778 |
+
def fpoint(expr):
|
779 |
+
if b is S.Infinity:
|
780 |
+
return expr.subs(i, a), 0
|
781 |
+
return expr.subs(i, a), expr.subs(i, b)
|
782 |
+
fa, fb = fpoint(f)
|
783 |
+
iterm = (fa + fb)/2
|
784 |
+
g = f.diff(i)
|
785 |
+
for k in range(1, n + 2):
|
786 |
+
ga, gb = fpoint(g)
|
787 |
+
term = bernoulli(2*k)/factorial(2*k)*(gb - ga)
|
788 |
+
if k > n:
|
789 |
+
break
|
790 |
+
if eps and term:
|
791 |
+
term_evalf = term.evalf(3)
|
792 |
+
if term_evalf is S.NaN:
|
793 |
+
return S.NaN, S.NaN
|
794 |
+
if abs(term_evalf) < eps:
|
795 |
+
break
|
796 |
+
s += term
|
797 |
+
g = g.diff(i, 2, simplify=False)
|
798 |
+
return s + iterm, abs(term)
|
799 |
+
|
800 |
+
|
801 |
+
def reverse_order(self, *indices):
|
802 |
+
"""
|
803 |
+
Reverse the order of a limit in a Sum.
|
804 |
+
|
805 |
+
Explanation
|
806 |
+
===========
|
807 |
+
|
808 |
+
``reverse_order(self, *indices)`` reverses some limits in the expression
|
809 |
+
``self`` which can be either a ``Sum`` or a ``Product``. The selectors in
|
810 |
+
the argument ``indices`` specify some indices whose limits get reversed.
|
811 |
+
These selectors are either variable names or numerical indices counted
|
812 |
+
starting from the inner-most limit tuple.
|
813 |
+
|
814 |
+
Examples
|
815 |
+
========
|
816 |
+
|
817 |
+
>>> from sympy import Sum
|
818 |
+
>>> from sympy.abc import x, y, a, b, c, d
|
819 |
+
|
820 |
+
>>> Sum(x, (x, 0, 3)).reverse_order(x)
|
821 |
+
Sum(-x, (x, 4, -1))
|
822 |
+
>>> Sum(x*y, (x, 1, 5), (y, 0, 6)).reverse_order(x, y)
|
823 |
+
Sum(x*y, (x, 6, 0), (y, 7, -1))
|
824 |
+
>>> Sum(x, (x, a, b)).reverse_order(x)
|
825 |
+
Sum(-x, (x, b + 1, a - 1))
|
826 |
+
>>> Sum(x, (x, a, b)).reverse_order(0)
|
827 |
+
Sum(-x, (x, b + 1, a - 1))
|
828 |
+
|
829 |
+
While one should prefer variable names when specifying which limits
|
830 |
+
to reverse, the index counting notation comes in handy in case there
|
831 |
+
are several symbols with the same name.
|
832 |
+
|
833 |
+
>>> S = Sum(x**2, (x, a, b), (x, c, d))
|
834 |
+
>>> S
|
835 |
+
Sum(x**2, (x, a, b), (x, c, d))
|
836 |
+
>>> S0 = S.reverse_order(0)
|
837 |
+
>>> S0
|
838 |
+
Sum(-x**2, (x, b + 1, a - 1), (x, c, d))
|
839 |
+
>>> S1 = S0.reverse_order(1)
|
840 |
+
>>> S1
|
841 |
+
Sum(x**2, (x, b + 1, a - 1), (x, d + 1, c - 1))
|
842 |
+
|
843 |
+
Of course we can mix both notations:
|
844 |
+
|
845 |
+
>>> Sum(x*y, (x, a, b), (y, 2, 5)).reverse_order(x, 1)
|
846 |
+
Sum(x*y, (x, b + 1, a - 1), (y, 6, 1))
|
847 |
+
>>> Sum(x*y, (x, a, b), (y, 2, 5)).reverse_order(y, x)
|
848 |
+
Sum(x*y, (x, b + 1, a - 1), (y, 6, 1))
|
849 |
+
|
850 |
+
See Also
|
851 |
+
========
|
852 |
+
|
853 |
+
sympy.concrete.expr_with_intlimits.ExprWithIntLimits.index, reorder_limit,
|
854 |
+
sympy.concrete.expr_with_intlimits.ExprWithIntLimits.reorder
|
855 |
+
|
856 |
+
References
|
857 |
+
==========
|
858 |
+
|
859 |
+
.. [1] Michael Karr, "Summation in Finite Terms", Journal of the ACM,
|
860 |
+
Volume 28 Issue 2, April 1981, Pages 305-350
|
861 |
+
https://dl.acm.org/doi/10.1145/322248.322255
|
862 |
+
"""
|
863 |
+
l_indices = list(indices)
|
864 |
+
|
865 |
+
for i, indx in enumerate(l_indices):
|
866 |
+
if not isinstance(indx, int):
|
867 |
+
l_indices[i] = self.index(indx)
|
868 |
+
|
869 |
+
e = 1
|
870 |
+
limits = []
|
871 |
+
for i, limit in enumerate(self.limits):
|
872 |
+
l = limit
|
873 |
+
if i in l_indices:
|
874 |
+
e = -e
|
875 |
+
l = (limit[0], limit[2] + 1, limit[1] - 1)
|
876 |
+
limits.append(l)
|
877 |
+
|
878 |
+
return Sum(e * self.function, *limits)
|
879 |
+
|
880 |
+
def _eval_rewrite_as_Product(self, *args, **kwargs):
|
881 |
+
from sympy.concrete.products import Product
|
882 |
+
if self.function.is_extended_real:
|
883 |
+
return log(Product(exp(self.function), *self.limits))
|
884 |
+
|
885 |
+
|
886 |
+
def summation(f, *symbols, **kwargs):
|
887 |
+
r"""
|
888 |
+
Compute the summation of f with respect to symbols.
|
889 |
+
|
890 |
+
Explanation
|
891 |
+
===========
|
892 |
+
|
893 |
+
The notation for symbols is similar to the notation used in Integral.
|
894 |
+
summation(f, (i, a, b)) computes the sum of f with respect to i from a to b,
|
895 |
+
i.e.,
|
896 |
+
|
897 |
+
::
|
898 |
+
|
899 |
+
b
|
900 |
+
____
|
901 |
+
\ `
|
902 |
+
summation(f, (i, a, b)) = ) f
|
903 |
+
/___,
|
904 |
+
i = a
|
905 |
+
|
906 |
+
If it cannot compute the sum, it returns an unevaluated Sum object.
|
907 |
+
Repeated sums can be computed by introducing additional symbols tuples::
|
908 |
+
|
909 |
+
Examples
|
910 |
+
========
|
911 |
+
|
912 |
+
>>> from sympy import summation, oo, symbols, log
|
913 |
+
>>> i, n, m = symbols('i n m', integer=True)
|
914 |
+
|
915 |
+
>>> summation(2*i - 1, (i, 1, n))
|
916 |
+
n**2
|
917 |
+
>>> summation(1/2**i, (i, 0, oo))
|
918 |
+
2
|
919 |
+
>>> summation(1/log(n)**n, (n, 2, oo))
|
920 |
+
Sum(log(n)**(-n), (n, 2, oo))
|
921 |
+
>>> summation(i, (i, 0, n), (n, 0, m))
|
922 |
+
m**3/6 + m**2/2 + m/3
|
923 |
+
|
924 |
+
>>> from sympy.abc import x
|
925 |
+
>>> from sympy import factorial
|
926 |
+
>>> summation(x**n/factorial(n), (n, 0, oo))
|
927 |
+
exp(x)
|
928 |
+
|
929 |
+
See Also
|
930 |
+
========
|
931 |
+
|
932 |
+
Sum
|
933 |
+
Product, sympy.concrete.products.product
|
934 |
+
|
935 |
+
"""
|
936 |
+
return Sum(f, *symbols, **kwargs).doit(deep=False)
|
937 |
+
|
938 |
+
|
939 |
+
def telescopic_direct(L, R, n, limits):
|
940 |
+
"""
|
941 |
+
Returns the direct summation of the terms of a telescopic sum
|
942 |
+
|
943 |
+
Explanation
|
944 |
+
===========
|
945 |
+
|
946 |
+
L is the term with lower index
|
947 |
+
R is the term with higher index
|
948 |
+
n difference between the indexes of L and R
|
949 |
+
|
950 |
+
Examples
|
951 |
+
========
|
952 |
+
|
953 |
+
>>> from sympy.concrete.summations import telescopic_direct
|
954 |
+
>>> from sympy.abc import k, a, b
|
955 |
+
>>> telescopic_direct(1/k, -1/(k+2), 2, (k, a, b))
|
956 |
+
-1/(b + 2) - 1/(b + 1) + 1/(a + 1) + 1/a
|
957 |
+
|
958 |
+
"""
|
959 |
+
(i, a, b) = limits
|
960 |
+
return Add(*[L.subs(i, a + m) + R.subs(i, b - m) for m in range(n)])
|
961 |
+
|
962 |
+
|
963 |
+
def telescopic(L, R, limits):
|
964 |
+
'''
|
965 |
+
Tries to perform the summation using the telescopic property.
|
966 |
+
|
967 |
+
Return None if not possible.
|
968 |
+
'''
|
969 |
+
(i, a, b) = limits
|
970 |
+
if L.is_Add or R.is_Add:
|
971 |
+
return None
|
972 |
+
|
973 |
+
# We want to solve(L.subs(i, i + m) + R, m)
|
974 |
+
# First we try a simple match since this does things that
|
975 |
+
# solve doesn't do, e.g. solve(cos(k+m)-cos(k), m) gives
|
976 |
+
# a more complicated solution than m == 0.
|
977 |
+
|
978 |
+
k = Wild("k")
|
979 |
+
sol = (-R).match(L.subs(i, i + k))
|
980 |
+
s = None
|
981 |
+
if sol and k in sol:
|
982 |
+
s = sol[k]
|
983 |
+
if not (s.is_Integer and L.subs(i, i + s) + R == 0):
|
984 |
+
# invalid match or match didn't work
|
985 |
+
s = None
|
986 |
+
|
987 |
+
# But there are things that match doesn't do that solve
|
988 |
+
# can do, e.g. determine that 1/(x + m) = 1/(1 - x) when m = 1
|
989 |
+
|
990 |
+
if s is None:
|
991 |
+
m = Dummy('m')
|
992 |
+
try:
|
993 |
+
from sympy.solvers.solvers import solve
|
994 |
+
sol = solve(L.subs(i, i + m) + R, m) or []
|
995 |
+
except NotImplementedError:
|
996 |
+
return None
|
997 |
+
sol = [si for si in sol if si.is_Integer and
|
998 |
+
(L.subs(i, i + si) + R).expand().is_zero]
|
999 |
+
if len(sol) != 1:
|
1000 |
+
return None
|
1001 |
+
s = sol[0]
|
1002 |
+
|
1003 |
+
if s < 0:
|
1004 |
+
return telescopic_direct(R, L, abs(s), (i, a, b))
|
1005 |
+
elif s > 0:
|
1006 |
+
return telescopic_direct(L, R, s, (i, a, b))
|
1007 |
+
|
1008 |
+
|
1009 |
+
def eval_sum(f, limits):
|
1010 |
+
(i, a, b) = limits
|
1011 |
+
if f.is_zero:
|
1012 |
+
return S.Zero
|
1013 |
+
if i not in f.free_symbols:
|
1014 |
+
return f*(b - a + 1)
|
1015 |
+
if a == b:
|
1016 |
+
return f.subs(i, a)
|
1017 |
+
if isinstance(f, Piecewise):
|
1018 |
+
if not any(i in arg.args[1].free_symbols for arg in f.args):
|
1019 |
+
# Piecewise conditions do not depend on the dummy summation variable,
|
1020 |
+
# therefore we can fold: Sum(Piecewise((e, c), ...), limits)
|
1021 |
+
# --> Piecewise((Sum(e, limits), c), ...)
|
1022 |
+
newargs = []
|
1023 |
+
for arg in f.args:
|
1024 |
+
newexpr = eval_sum(arg.expr, limits)
|
1025 |
+
if newexpr is None:
|
1026 |
+
return None
|
1027 |
+
newargs.append((newexpr, arg.cond))
|
1028 |
+
return f.func(*newargs)
|
1029 |
+
|
1030 |
+
if f.has(KroneckerDelta):
|
1031 |
+
from .delta import deltasummation, _has_simple_delta
|
1032 |
+
f = f.replace(
|
1033 |
+
lambda x: isinstance(x, Sum),
|
1034 |
+
lambda x: x.factor()
|
1035 |
+
)
|
1036 |
+
if _has_simple_delta(f, limits[0]):
|
1037 |
+
return deltasummation(f, limits)
|
1038 |
+
|
1039 |
+
dif = b - a
|
1040 |
+
definite = dif.is_Integer
|
1041 |
+
# Doing it directly may be faster if there are very few terms.
|
1042 |
+
if definite and (dif < 100):
|
1043 |
+
return eval_sum_direct(f, (i, a, b))
|
1044 |
+
if isinstance(f, Piecewise):
|
1045 |
+
return None
|
1046 |
+
# Try to do it symbolically. Even when the number of terms is
|
1047 |
+
# known, this can save time when b-a is big.
|
1048 |
+
value = eval_sum_symbolic(f.expand(), (i, a, b))
|
1049 |
+
if value is not None:
|
1050 |
+
return value
|
1051 |
+
# Do it directly
|
1052 |
+
if definite:
|
1053 |
+
return eval_sum_direct(f, (i, a, b))
|
1054 |
+
|
1055 |
+
|
1056 |
+
def eval_sum_direct(expr, limits):
|
1057 |
+
"""
|
1058 |
+
Evaluate expression directly, but perform some simple checks first
|
1059 |
+
to possibly result in a smaller expression and faster execution.
|
1060 |
+
"""
|
1061 |
+
(i, a, b) = limits
|
1062 |
+
|
1063 |
+
dif = b - a
|
1064 |
+
# Linearity
|
1065 |
+
if expr.is_Mul:
|
1066 |
+
# Try factor out everything not including i
|
1067 |
+
without_i, with_i = expr.as_independent(i)
|
1068 |
+
if without_i != 1:
|
1069 |
+
s = eval_sum_direct(with_i, (i, a, b))
|
1070 |
+
if s:
|
1071 |
+
r = without_i*s
|
1072 |
+
if r is not S.NaN:
|
1073 |
+
return r
|
1074 |
+
else:
|
1075 |
+
# Try term by term
|
1076 |
+
L, R = expr.as_two_terms()
|
1077 |
+
|
1078 |
+
if not L.has(i):
|
1079 |
+
sR = eval_sum_direct(R, (i, a, b))
|
1080 |
+
if sR:
|
1081 |
+
return L*sR
|
1082 |
+
|
1083 |
+
if not R.has(i):
|
1084 |
+
sL = eval_sum_direct(L, (i, a, b))
|
1085 |
+
if sL:
|
1086 |
+
return sL*R
|
1087 |
+
|
1088 |
+
# do this whether its an Add or Mul
|
1089 |
+
# e.g. apart(1/(25*i**2 + 45*i + 14)) and
|
1090 |
+
# apart(1/((5*i + 2)*(5*i + 7))) ->
|
1091 |
+
# -1/(5*(5*i + 7)) + 1/(5*(5*i + 2))
|
1092 |
+
try:
|
1093 |
+
expr = apart(expr, i) # see if it becomes an Add
|
1094 |
+
except PolynomialError:
|
1095 |
+
pass
|
1096 |
+
|
1097 |
+
if expr.is_Add:
|
1098 |
+
# Try factor out everything not including i
|
1099 |
+
without_i, with_i = expr.as_independent(i)
|
1100 |
+
if without_i != 0:
|
1101 |
+
s = eval_sum_direct(with_i, (i, a, b))
|
1102 |
+
if s:
|
1103 |
+
r = without_i*(dif + 1) + s
|
1104 |
+
if r is not S.NaN:
|
1105 |
+
return r
|
1106 |
+
else:
|
1107 |
+
# Try term by term
|
1108 |
+
L, R = expr.as_two_terms()
|
1109 |
+
lsum = eval_sum_direct(L, (i, a, b))
|
1110 |
+
rsum = eval_sum_direct(R, (i, a, b))
|
1111 |
+
|
1112 |
+
if None not in (lsum, rsum):
|
1113 |
+
r = lsum + rsum
|
1114 |
+
if r is not S.NaN:
|
1115 |
+
return r
|
1116 |
+
|
1117 |
+
return Add(*[expr.subs(i, a + j) for j in range(dif + 1)])
|
1118 |
+
|
1119 |
+
|
1120 |
+
def eval_sum_symbolic(f, limits):
|
1121 |
+
f_orig = f
|
1122 |
+
(i, a, b) = limits
|
1123 |
+
if not f.has(i):
|
1124 |
+
return f*(b - a + 1)
|
1125 |
+
|
1126 |
+
# Linearity
|
1127 |
+
if f.is_Mul:
|
1128 |
+
# Try factor out everything not including i
|
1129 |
+
without_i, with_i = f.as_independent(i)
|
1130 |
+
if without_i != 1:
|
1131 |
+
s = eval_sum_symbolic(with_i, (i, a, b))
|
1132 |
+
if s:
|
1133 |
+
r = without_i*s
|
1134 |
+
if r is not S.NaN:
|
1135 |
+
return r
|
1136 |
+
else:
|
1137 |
+
# Try term by term
|
1138 |
+
L, R = f.as_two_terms()
|
1139 |
+
|
1140 |
+
if not L.has(i):
|
1141 |
+
sR = eval_sum_symbolic(R, (i, a, b))
|
1142 |
+
if sR:
|
1143 |
+
return L*sR
|
1144 |
+
|
1145 |
+
if not R.has(i):
|
1146 |
+
sL = eval_sum_symbolic(L, (i, a, b))
|
1147 |
+
if sL:
|
1148 |
+
return sL*R
|
1149 |
+
|
1150 |
+
# do this whether its an Add or Mul
|
1151 |
+
# e.g. apart(1/(25*i**2 + 45*i + 14)) and
|
1152 |
+
# apart(1/((5*i + 2)*(5*i + 7))) ->
|
1153 |
+
# -1/(5*(5*i + 7)) + 1/(5*(5*i + 2))
|
1154 |
+
try:
|
1155 |
+
f = apart(f, i)
|
1156 |
+
except PolynomialError:
|
1157 |
+
pass
|
1158 |
+
|
1159 |
+
if f.is_Add:
|
1160 |
+
L, R = f.as_two_terms()
|
1161 |
+
lrsum = telescopic(L, R, (i, a, b))
|
1162 |
+
|
1163 |
+
if lrsum:
|
1164 |
+
return lrsum
|
1165 |
+
|
1166 |
+
# Try factor out everything not including i
|
1167 |
+
without_i, with_i = f.as_independent(i)
|
1168 |
+
if without_i != 0:
|
1169 |
+
s = eval_sum_symbolic(with_i, (i, a, b))
|
1170 |
+
if s:
|
1171 |
+
r = without_i*(b - a + 1) + s
|
1172 |
+
if r is not S.NaN:
|
1173 |
+
return r
|
1174 |
+
else:
|
1175 |
+
# Try term by term
|
1176 |
+
lsum = eval_sum_symbolic(L, (i, a, b))
|
1177 |
+
rsum = eval_sum_symbolic(R, (i, a, b))
|
1178 |
+
|
1179 |
+
if None not in (lsum, rsum):
|
1180 |
+
r = lsum + rsum
|
1181 |
+
if r is not S.NaN:
|
1182 |
+
return r
|
1183 |
+
|
1184 |
+
|
1185 |
+
# Polynomial terms with Faulhaber's formula
|
1186 |
+
n = Wild('n')
|
1187 |
+
result = f.match(i**n)
|
1188 |
+
|
1189 |
+
if result is not None:
|
1190 |
+
n = result[n]
|
1191 |
+
|
1192 |
+
if n.is_Integer:
|
1193 |
+
if n >= 0:
|
1194 |
+
if (b is S.Infinity and a is not S.NegativeInfinity) or \
|
1195 |
+
(a is S.NegativeInfinity and b is not S.Infinity):
|
1196 |
+
return S.Infinity
|
1197 |
+
return ((bernoulli(n + 1, b + 1) - bernoulli(n + 1, a))/(n + 1)).expand()
|
1198 |
+
elif a.is_Integer and a >= 1:
|
1199 |
+
if n == -1:
|
1200 |
+
return harmonic(b) - harmonic(a - 1)
|
1201 |
+
else:
|
1202 |
+
return harmonic(b, abs(n)) - harmonic(a - 1, abs(n))
|
1203 |
+
|
1204 |
+
if not (a.has(S.Infinity, S.NegativeInfinity) or
|
1205 |
+
b.has(S.Infinity, S.NegativeInfinity)):
|
1206 |
+
# Geometric terms
|
1207 |
+
c1 = Wild('c1', exclude=[i])
|
1208 |
+
c2 = Wild('c2', exclude=[i])
|
1209 |
+
c3 = Wild('c3', exclude=[i])
|
1210 |
+
wexp = Wild('wexp')
|
1211 |
+
|
1212 |
+
# Here we first attempt powsimp on f for easier matching with the
|
1213 |
+
# exponential pattern, and attempt expansion on the exponent for easier
|
1214 |
+
# matching with the linear pattern.
|
1215 |
+
e = f.powsimp().match(c1 ** wexp)
|
1216 |
+
if e is not None:
|
1217 |
+
e_exp = e.pop(wexp).expand().match(c2*i + c3)
|
1218 |
+
if e_exp is not None:
|
1219 |
+
e.update(e_exp)
|
1220 |
+
|
1221 |
+
p = (c1**c3).subs(e)
|
1222 |
+
q = (c1**c2).subs(e)
|
1223 |
+
r = p*(q**a - q**(b + 1))/(1 - q)
|
1224 |
+
l = p*(b - a + 1)
|
1225 |
+
return Piecewise((l, Eq(q, S.One)), (r, True))
|
1226 |
+
|
1227 |
+
r = gosper_sum(f, (i, a, b))
|
1228 |
+
|
1229 |
+
if isinstance(r, (Mul,Add)):
|
1230 |
+
from sympy.simplify.radsimp import denom
|
1231 |
+
from sympy.solvers.solvers import solve
|
1232 |
+
non_limit = r.free_symbols - Tuple(*limits[1:]).free_symbols
|
1233 |
+
den = denom(together(r))
|
1234 |
+
den_sym = non_limit & den.free_symbols
|
1235 |
+
args = []
|
1236 |
+
for v in ordered(den_sym):
|
1237 |
+
try:
|
1238 |
+
s = solve(den, v)
|
1239 |
+
m = Eq(v, s[0]) if s else S.false
|
1240 |
+
if m != False:
|
1241 |
+
args.append((Sum(f_orig.subs(*m.args), limits).doit(), m))
|
1242 |
+
break
|
1243 |
+
except NotImplementedError:
|
1244 |
+
continue
|
1245 |
+
|
1246 |
+
args.append((r, True))
|
1247 |
+
return Piecewise(*args)
|
1248 |
+
|
1249 |
+
if r not in (None, S.NaN):
|
1250 |
+
return r
|
1251 |
+
|
1252 |
+
h = eval_sum_hyper(f_orig, (i, a, b))
|
1253 |
+
if h is not None:
|
1254 |
+
return h
|
1255 |
+
|
1256 |
+
r = eval_sum_residue(f_orig, (i, a, b))
|
1257 |
+
if r is not None:
|
1258 |
+
return r
|
1259 |
+
|
1260 |
+
factored = f_orig.factor()
|
1261 |
+
if factored != f_orig:
|
1262 |
+
return eval_sum_symbolic(factored, (i, a, b))
|
1263 |
+
|
1264 |
+
|
1265 |
+
def _eval_sum_hyper(f, i, a):
|
1266 |
+
""" Returns (res, cond). Sums from a to oo. """
|
1267 |
+
if a != 0:
|
1268 |
+
return _eval_sum_hyper(f.subs(i, i + a), i, 0)
|
1269 |
+
|
1270 |
+
if f.subs(i, 0) == 0:
|
1271 |
+
from sympy.simplify.simplify import simplify
|
1272 |
+
if simplify(f.subs(i, Dummy('i', integer=True, positive=True))) == 0:
|
1273 |
+
return S.Zero, True
|
1274 |
+
return _eval_sum_hyper(f.subs(i, i + 1), i, 0)
|
1275 |
+
|
1276 |
+
from sympy.simplify.simplify import hypersimp
|
1277 |
+
hs = hypersimp(f, i)
|
1278 |
+
if hs is None:
|
1279 |
+
return None
|
1280 |
+
|
1281 |
+
if isinstance(hs, Float):
|
1282 |
+
from sympy.simplify.simplify import nsimplify
|
1283 |
+
hs = nsimplify(hs)
|
1284 |
+
|
1285 |
+
from sympy.simplify.combsimp import combsimp
|
1286 |
+
from sympy.simplify.hyperexpand import hyperexpand
|
1287 |
+
from sympy.simplify.radsimp import fraction
|
1288 |
+
numer, denom = fraction(factor(hs))
|
1289 |
+
top, topl = numer.as_coeff_mul(i)
|
1290 |
+
bot, botl = denom.as_coeff_mul(i)
|
1291 |
+
ab = [top, bot]
|
1292 |
+
factors = [topl, botl]
|
1293 |
+
params = [[], []]
|
1294 |
+
for k in range(2):
|
1295 |
+
for fac in factors[k]:
|
1296 |
+
mul = 1
|
1297 |
+
if fac.is_Pow:
|
1298 |
+
mul = fac.exp
|
1299 |
+
fac = fac.base
|
1300 |
+
if not mul.is_Integer:
|
1301 |
+
return None
|
1302 |
+
p = Poly(fac, i)
|
1303 |
+
if p.degree() != 1:
|
1304 |
+
return None
|
1305 |
+
m, n = p.all_coeffs()
|
1306 |
+
ab[k] *= m**mul
|
1307 |
+
params[k] += [n/m]*mul
|
1308 |
+
|
1309 |
+
# Add "1" to numerator parameters, to account for implicit n! in
|
1310 |
+
# hypergeometric series.
|
1311 |
+
ap = params[0] + [1]
|
1312 |
+
bq = params[1]
|
1313 |
+
x = ab[0]/ab[1]
|
1314 |
+
h = hyper(ap, bq, x)
|
1315 |
+
f = combsimp(f)
|
1316 |
+
return f.subs(i, 0)*hyperexpand(h), h.convergence_statement
|
1317 |
+
|
1318 |
+
|
1319 |
+
def eval_sum_hyper(f, i_a_b):
|
1320 |
+
i, a, b = i_a_b
|
1321 |
+
|
1322 |
+
if f.is_hypergeometric(i) is False:
|
1323 |
+
return
|
1324 |
+
|
1325 |
+
if (b - a).is_Integer:
|
1326 |
+
# We are never going to do better than doing the sum in the obvious way
|
1327 |
+
return None
|
1328 |
+
|
1329 |
+
old_sum = Sum(f, (i, a, b))
|
1330 |
+
|
1331 |
+
if b != S.Infinity:
|
1332 |
+
if a is S.NegativeInfinity:
|
1333 |
+
res = _eval_sum_hyper(f.subs(i, -i), i, -b)
|
1334 |
+
if res is not None:
|
1335 |
+
return Piecewise(res, (old_sum, True))
|
1336 |
+
else:
|
1337 |
+
n_illegal = lambda x: sum(x.count(_) for _ in _illegal)
|
1338 |
+
had = n_illegal(f)
|
1339 |
+
# check that no extra illegals are introduced
|
1340 |
+
res1 = _eval_sum_hyper(f, i, a)
|
1341 |
+
if res1 is None or n_illegal(res1) > had:
|
1342 |
+
return
|
1343 |
+
res2 = _eval_sum_hyper(f, i, b + 1)
|
1344 |
+
if res2 is None or n_illegal(res2) > had:
|
1345 |
+
return
|
1346 |
+
(res1, cond1), (res2, cond2) = res1, res2
|
1347 |
+
cond = And(cond1, cond2)
|
1348 |
+
if cond == False:
|
1349 |
+
return None
|
1350 |
+
return Piecewise((res1 - res2, cond), (old_sum, True))
|
1351 |
+
|
1352 |
+
if a is S.NegativeInfinity:
|
1353 |
+
res1 = _eval_sum_hyper(f.subs(i, -i), i, 1)
|
1354 |
+
res2 = _eval_sum_hyper(f, i, 0)
|
1355 |
+
if res1 is None or res2 is None:
|
1356 |
+
return None
|
1357 |
+
res1, cond1 = res1
|
1358 |
+
res2, cond2 = res2
|
1359 |
+
cond = And(cond1, cond2)
|
1360 |
+
if cond == False or cond.as_set() == S.EmptySet:
|
1361 |
+
return None
|
1362 |
+
return Piecewise((res1 + res2, cond), (old_sum, True))
|
1363 |
+
|
1364 |
+
# Now b == oo, a != -oo
|
1365 |
+
res = _eval_sum_hyper(f, i, a)
|
1366 |
+
if res is not None:
|
1367 |
+
r, c = res
|
1368 |
+
if c == False:
|
1369 |
+
if r.is_number:
|
1370 |
+
f = f.subs(i, Dummy('i', integer=True, positive=True) + a)
|
1371 |
+
if f.is_positive or f.is_zero:
|
1372 |
+
return S.Infinity
|
1373 |
+
elif f.is_negative:
|
1374 |
+
return S.NegativeInfinity
|
1375 |
+
return None
|
1376 |
+
return Piecewise(res, (old_sum, True))
|
1377 |
+
|
1378 |
+
|
1379 |
+
def eval_sum_residue(f, i_a_b):
|
1380 |
+
r"""Compute the infinite summation with residues
|
1381 |
+
|
1382 |
+
Notes
|
1383 |
+
=====
|
1384 |
+
|
1385 |
+
If $f(n), g(n)$ are polynomials with $\deg(g(n)) - \deg(f(n)) \ge 2$,
|
1386 |
+
some infinite summations can be computed by the following residue
|
1387 |
+
evaluations.
|
1388 |
+
|
1389 |
+
.. math::
|
1390 |
+
\sum_{n=-\infty, g(n) \ne 0}^{\infty} \frac{f(n)}{g(n)} =
|
1391 |
+
-\pi \sum_{\alpha|g(\alpha)=0}
|
1392 |
+
\text{Res}(\cot(\pi x) \frac{f(x)}{g(x)}, \alpha)
|
1393 |
+
|
1394 |
+
.. math::
|
1395 |
+
\sum_{n=-\infty, g(n) \ne 0}^{\infty} (-1)^n \frac{f(n)}{g(n)} =
|
1396 |
+
-\pi \sum_{\alpha|g(\alpha)=0}
|
1397 |
+
\text{Res}(\csc(\pi x) \frac{f(x)}{g(x)}, \alpha)
|
1398 |
+
|
1399 |
+
Examples
|
1400 |
+
========
|
1401 |
+
|
1402 |
+
>>> from sympy import Sum, oo, Symbol
|
1403 |
+
>>> x = Symbol('x')
|
1404 |
+
|
1405 |
+
Doubly infinite series of rational functions.
|
1406 |
+
|
1407 |
+
>>> Sum(1 / (x**2 + 1), (x, -oo, oo)).doit()
|
1408 |
+
pi/tanh(pi)
|
1409 |
+
|
1410 |
+
Doubly infinite alternating series of rational functions.
|
1411 |
+
|
1412 |
+
>>> Sum((-1)**x / (x**2 + 1), (x, -oo, oo)).doit()
|
1413 |
+
pi/sinh(pi)
|
1414 |
+
|
1415 |
+
Infinite series of even rational functions.
|
1416 |
+
|
1417 |
+
>>> Sum(1 / (x**2 + 1), (x, 0, oo)).doit()
|
1418 |
+
1/2 + pi/(2*tanh(pi))
|
1419 |
+
|
1420 |
+
Infinite series of alternating even rational functions.
|
1421 |
+
|
1422 |
+
>>> Sum((-1)**x / (x**2 + 1), (x, 0, oo)).doit()
|
1423 |
+
pi/(2*sinh(pi)) + 1/2
|
1424 |
+
|
1425 |
+
This also have heuristics to transform arbitrarily shifted summand or
|
1426 |
+
arbitrarily shifted summation range to the canonical problem the
|
1427 |
+
formula can handle.
|
1428 |
+
|
1429 |
+
>>> Sum(1 / (x**2 + 2*x + 2), (x, -1, oo)).doit()
|
1430 |
+
1/2 + pi/(2*tanh(pi))
|
1431 |
+
>>> Sum(1 / (x**2 + 4*x + 5), (x, -2, oo)).doit()
|
1432 |
+
1/2 + pi/(2*tanh(pi))
|
1433 |
+
>>> Sum(1 / (x**2 + 1), (x, 1, oo)).doit()
|
1434 |
+
-1/2 + pi/(2*tanh(pi))
|
1435 |
+
>>> Sum(1 / (x**2 + 1), (x, 2, oo)).doit()
|
1436 |
+
-1 + pi/(2*tanh(pi))
|
1437 |
+
|
1438 |
+
References
|
1439 |
+
==========
|
1440 |
+
|
1441 |
+
.. [#] http://www.supermath.info/InfiniteSeriesandtheResidueTheorem.pdf
|
1442 |
+
|
1443 |
+
.. [#] Asmar N.H., Grafakos L. (2018) Residue Theory.
|
1444 |
+
In: Complex Analysis with Applications.
|
1445 |
+
Undergraduate Texts in Mathematics. Springer, Cham.
|
1446 |
+
https://doi.org/10.1007/978-3-319-94063-2_5
|
1447 |
+
"""
|
1448 |
+
i, a, b = i_a_b
|
1449 |
+
|
1450 |
+
def is_even_function(numer, denom):
|
1451 |
+
"""Test if the rational function is an even function"""
|
1452 |
+
numer_even = all(i % 2 == 0 for (i,) in numer.monoms())
|
1453 |
+
denom_even = all(i % 2 == 0 for (i,) in denom.monoms())
|
1454 |
+
numer_odd = all(i % 2 == 1 for (i,) in numer.monoms())
|
1455 |
+
denom_odd = all(i % 2 == 1 for (i,) in denom.monoms())
|
1456 |
+
return (numer_even and denom_even) or (numer_odd and denom_odd)
|
1457 |
+
|
1458 |
+
def match_rational(f, i):
|
1459 |
+
numer, denom = f.as_numer_denom()
|
1460 |
+
try:
|
1461 |
+
(numer, denom), opt = parallel_poly_from_expr((numer, denom), i)
|
1462 |
+
except (PolificationFailed, PolynomialError):
|
1463 |
+
return None
|
1464 |
+
return numer, denom
|
1465 |
+
|
1466 |
+
def get_poles(denom):
|
1467 |
+
roots = denom.sqf_part().all_roots()
|
1468 |
+
roots = sift(roots, lambda x: x.is_integer)
|
1469 |
+
if None in roots:
|
1470 |
+
return None
|
1471 |
+
int_roots, nonint_roots = roots[True], roots[False]
|
1472 |
+
return int_roots, nonint_roots
|
1473 |
+
|
1474 |
+
def get_shift(denom):
|
1475 |
+
n = denom.degree(i)
|
1476 |
+
a = denom.coeff_monomial(i**n)
|
1477 |
+
b = denom.coeff_monomial(i**(n-1))
|
1478 |
+
shift = - b / a / n
|
1479 |
+
return shift
|
1480 |
+
|
1481 |
+
#Need a dummy symbol with no assumptions set for get_residue_factor
|
1482 |
+
z = Dummy('z')
|
1483 |
+
|
1484 |
+
def get_residue_factor(numer, denom, alternating):
|
1485 |
+
residue_factor = (numer.as_expr() / denom.as_expr()).subs(i, z)
|
1486 |
+
if not alternating:
|
1487 |
+
residue_factor *= cot(S.Pi * z)
|
1488 |
+
else:
|
1489 |
+
residue_factor *= csc(S.Pi * z)
|
1490 |
+
return residue_factor
|
1491 |
+
|
1492 |
+
# We don't know how to deal with symbolic constants in summand
|
1493 |
+
if f.free_symbols - {i}:
|
1494 |
+
return None
|
1495 |
+
|
1496 |
+
if not (a.is_Integer or a in (S.Infinity, S.NegativeInfinity)):
|
1497 |
+
return None
|
1498 |
+
if not (b.is_Integer or b in (S.Infinity, S.NegativeInfinity)):
|
1499 |
+
return None
|
1500 |
+
|
1501 |
+
# Quick exit heuristic for the sums which doesn't have infinite range
|
1502 |
+
if a != S.NegativeInfinity and b != S.Infinity:
|
1503 |
+
return None
|
1504 |
+
|
1505 |
+
match = match_rational(f, i)
|
1506 |
+
if match:
|
1507 |
+
alternating = False
|
1508 |
+
numer, denom = match
|
1509 |
+
else:
|
1510 |
+
match = match_rational(f / S.NegativeOne**i, i)
|
1511 |
+
if match:
|
1512 |
+
alternating = True
|
1513 |
+
numer, denom = match
|
1514 |
+
else:
|
1515 |
+
return None
|
1516 |
+
|
1517 |
+
if denom.degree(i) - numer.degree(i) < 2:
|
1518 |
+
return None
|
1519 |
+
|
1520 |
+
if (a, b) == (S.NegativeInfinity, S.Infinity):
|
1521 |
+
poles = get_poles(denom)
|
1522 |
+
if poles is None:
|
1523 |
+
return None
|
1524 |
+
int_roots, nonint_roots = poles
|
1525 |
+
|
1526 |
+
if int_roots:
|
1527 |
+
return None
|
1528 |
+
|
1529 |
+
residue_factor = get_residue_factor(numer, denom, alternating)
|
1530 |
+
residues = [residue(residue_factor, z, root) for root in nonint_roots]
|
1531 |
+
return -S.Pi * sum(residues)
|
1532 |
+
|
1533 |
+
if not (a.is_finite and b is S.Infinity):
|
1534 |
+
return None
|
1535 |
+
|
1536 |
+
if not is_even_function(numer, denom):
|
1537 |
+
# Try shifting summation and check if the summand can be made
|
1538 |
+
# and even function from the origin.
|
1539 |
+
# Sum(f(n), (n, a, b)) => Sum(f(n + s), (n, a - s, b - s))
|
1540 |
+
shift = get_shift(denom)
|
1541 |
+
|
1542 |
+
if not shift.is_Integer:
|
1543 |
+
return None
|
1544 |
+
if shift == 0:
|
1545 |
+
return None
|
1546 |
+
|
1547 |
+
numer = numer.shift(shift)
|
1548 |
+
denom = denom.shift(shift)
|
1549 |
+
|
1550 |
+
if not is_even_function(numer, denom):
|
1551 |
+
return None
|
1552 |
+
|
1553 |
+
if alternating:
|
1554 |
+
f = S.NegativeOne**i * (S.NegativeOne**shift * numer.as_expr() / denom.as_expr())
|
1555 |
+
else:
|
1556 |
+
f = numer.as_expr() / denom.as_expr()
|
1557 |
+
return eval_sum_residue(f, (i, a-shift, b-shift))
|
1558 |
+
|
1559 |
+
poles = get_poles(denom)
|
1560 |
+
if poles is None:
|
1561 |
+
return None
|
1562 |
+
int_roots, nonint_roots = poles
|
1563 |
+
|
1564 |
+
if int_roots:
|
1565 |
+
int_roots = [int(root) for root in int_roots]
|
1566 |
+
int_roots_max = max(int_roots)
|
1567 |
+
int_roots_min = min(int_roots)
|
1568 |
+
# Integer valued poles must be next to each other
|
1569 |
+
# and also symmetric from origin (Because the function is even)
|
1570 |
+
if not len(int_roots) == int_roots_max - int_roots_min + 1:
|
1571 |
+
return None
|
1572 |
+
|
1573 |
+
# Check whether the summation indices contain poles
|
1574 |
+
if a <= max(int_roots):
|
1575 |
+
return None
|
1576 |
+
|
1577 |
+
residue_factor = get_residue_factor(numer, denom, alternating)
|
1578 |
+
residues = [residue(residue_factor, z, root) for root in int_roots + nonint_roots]
|
1579 |
+
full_sum = -S.Pi * sum(residues)
|
1580 |
+
|
1581 |
+
if not int_roots:
|
1582 |
+
# Compute Sum(f, (i, 0, oo)) by adding a extraneous evaluation
|
1583 |
+
# at the origin.
|
1584 |
+
half_sum = (full_sum + f.xreplace({i: 0})) / 2
|
1585 |
+
|
1586 |
+
# Add and subtract extraneous evaluations
|
1587 |
+
extraneous_neg = [f.xreplace({i: i0}) for i0 in range(int(a), 0)]
|
1588 |
+
extraneous_pos = [f.xreplace({i: i0}) for i0 in range(0, int(a))]
|
1589 |
+
result = half_sum + sum(extraneous_neg) - sum(extraneous_pos)
|
1590 |
+
|
1591 |
+
return result
|
1592 |
+
|
1593 |
+
# Compute Sum(f, (i, min(poles) + 1, oo))
|
1594 |
+
half_sum = full_sum / 2
|
1595 |
+
|
1596 |
+
# Subtract extraneous evaluations
|
1597 |
+
extraneous = [f.xreplace({i: i0}) for i0 in range(max(int_roots) + 1, int(a))]
|
1598 |
+
result = half_sum - sum(extraneous)
|
1599 |
+
|
1600 |
+
return result
|
1601 |
+
|
1602 |
+
|
1603 |
+
def _eval_matrix_sum(expression):
|
1604 |
+
f = expression.function
|
1605 |
+
for n, limit in enumerate(expression.limits):
|
1606 |
+
i, a, b = limit
|
1607 |
+
dif = b - a
|
1608 |
+
if dif.is_Integer:
|
1609 |
+
if (dif < 0) == True:
|
1610 |
+
a, b = b + 1, a - 1
|
1611 |
+
f = -f
|
1612 |
+
|
1613 |
+
newf = eval_sum_direct(f, (i, a, b))
|
1614 |
+
if newf is not None:
|
1615 |
+
return newf.doit()
|
1616 |
+
|
1617 |
+
|
1618 |
+
def _dummy_with_inherited_properties_concrete(limits):
|
1619 |
+
"""
|
1620 |
+
Return a Dummy symbol that inherits as many assumptions as possible
|
1621 |
+
from the provided symbol and limits.
|
1622 |
+
|
1623 |
+
If the symbol already has all True assumption shared by the limits
|
1624 |
+
then return None.
|
1625 |
+
"""
|
1626 |
+
x, a, b = limits
|
1627 |
+
l = [a, b]
|
1628 |
+
|
1629 |
+
assumptions_to_consider = ['extended_nonnegative', 'nonnegative',
|
1630 |
+
'extended_nonpositive', 'nonpositive',
|
1631 |
+
'extended_positive', 'positive',
|
1632 |
+
'extended_negative', 'negative',
|
1633 |
+
'integer', 'rational', 'finite',
|
1634 |
+
'zero', 'real', 'extended_real']
|
1635 |
+
|
1636 |
+
assumptions_to_keep = {}
|
1637 |
+
assumptions_to_add = {}
|
1638 |
+
for assum in assumptions_to_consider:
|
1639 |
+
assum_true = x._assumptions.get(assum, None)
|
1640 |
+
if assum_true:
|
1641 |
+
assumptions_to_keep[assum] = True
|
1642 |
+
elif all(getattr(i, 'is_' + assum) for i in l):
|
1643 |
+
assumptions_to_add[assum] = True
|
1644 |
+
if assumptions_to_add:
|
1645 |
+
assumptions_to_keep.update(assumptions_to_add)
|
1646 |
+
return Dummy('d', **assumptions_to_keep)
|
venv/lib/python3.10/site-packages/sympy/concrete/tests/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/sympy/concrete/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (188 Bytes). View file
|
|
venv/lib/python3.10/site-packages/sympy/concrete/tests/__pycache__/test_delta.cpython-310.pyc
ADDED
Binary file (22.4 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/concrete/tests/__pycache__/test_gosper.cpython-310.pyc
ADDED
Binary file (8.37 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/concrete/tests/__pycache__/test_guess.cpython-310.pyc
ADDED
Binary file (4.56 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/concrete/tests/__pycache__/test_products.cpython-310.pyc
ADDED
Binary file (13.2 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/concrete/tests/__pycache__/test_sums_products.cpython-310.pyc
ADDED
Binary file (62.1 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/concrete/tests/test_delta.py
ADDED
@@ -0,0 +1,499 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.concrete import Sum
|
2 |
+
from sympy.concrete.delta import deltaproduct as dp, deltasummation as ds, _extract_delta
|
3 |
+
from sympy.core import Eq, S, symbols, oo
|
4 |
+
from sympy.functions import KroneckerDelta as KD, Piecewise, piecewise_fold
|
5 |
+
from sympy.logic import And
|
6 |
+
from sympy.testing.pytest import raises
|
7 |
+
|
8 |
+
i, j, k, l, m = symbols("i j k l m", integer=True, finite=True)
|
9 |
+
x, y = symbols("x y", commutative=False)
|
10 |
+
|
11 |
+
|
12 |
+
def test_deltaproduct_trivial():
|
13 |
+
assert dp(x, (j, 1, 0)) == 1
|
14 |
+
assert dp(x, (j, 1, 3)) == x**3
|
15 |
+
assert dp(x + y, (j, 1, 3)) == (x + y)**3
|
16 |
+
assert dp(x*y, (j, 1, 3)) == (x*y)**3
|
17 |
+
assert dp(KD(i, j), (k, 1, 3)) == KD(i, j)
|
18 |
+
assert dp(x*KD(i, j), (k, 1, 3)) == x**3*KD(i, j)
|
19 |
+
assert dp(x*y*KD(i, j), (k, 1, 3)) == (x*y)**3*KD(i, j)
|
20 |
+
|
21 |
+
|
22 |
+
def test_deltaproduct_basic():
|
23 |
+
assert dp(KD(i, j), (j, 1, 3)) == 0
|
24 |
+
assert dp(KD(i, j), (j, 1, 1)) == KD(i, 1)
|
25 |
+
assert dp(KD(i, j), (j, 2, 2)) == KD(i, 2)
|
26 |
+
assert dp(KD(i, j), (j, 3, 3)) == KD(i, 3)
|
27 |
+
assert dp(KD(i, j), (j, 1, k)) == KD(i, 1)*KD(k, 1) + KD(k, 0)
|
28 |
+
assert dp(KD(i, j), (j, k, 3)) == KD(i, 3)*KD(k, 3) + KD(k, 4)
|
29 |
+
assert dp(KD(i, j), (j, k, l)) == KD(i, l)*KD(k, l) + KD(k, l + 1)
|
30 |
+
|
31 |
+
|
32 |
+
def test_deltaproduct_mul_x_kd():
|
33 |
+
assert dp(x*KD(i, j), (j, 1, 3)) == 0
|
34 |
+
assert dp(x*KD(i, j), (j, 1, 1)) == x*KD(i, 1)
|
35 |
+
assert dp(x*KD(i, j), (j, 2, 2)) == x*KD(i, 2)
|
36 |
+
assert dp(x*KD(i, j), (j, 3, 3)) == x*KD(i, 3)
|
37 |
+
assert dp(x*KD(i, j), (j, 1, k)) == x*KD(i, 1)*KD(k, 1) + KD(k, 0)
|
38 |
+
assert dp(x*KD(i, j), (j, k, 3)) == x*KD(i, 3)*KD(k, 3) + KD(k, 4)
|
39 |
+
assert dp(x*KD(i, j), (j, k, l)) == x*KD(i, l)*KD(k, l) + KD(k, l + 1)
|
40 |
+
|
41 |
+
|
42 |
+
def test_deltaproduct_mul_add_x_y_kd():
|
43 |
+
assert dp((x + y)*KD(i, j), (j, 1, 3)) == 0
|
44 |
+
assert dp((x + y)*KD(i, j), (j, 1, 1)) == (x + y)*KD(i, 1)
|
45 |
+
assert dp((x + y)*KD(i, j), (j, 2, 2)) == (x + y)*KD(i, 2)
|
46 |
+
assert dp((x + y)*KD(i, j), (j, 3, 3)) == (x + y)*KD(i, 3)
|
47 |
+
assert dp((x + y)*KD(i, j), (j, 1, k)) == \
|
48 |
+
(x + y)*KD(i, 1)*KD(k, 1) + KD(k, 0)
|
49 |
+
assert dp((x + y)*KD(i, j), (j, k, 3)) == \
|
50 |
+
(x + y)*KD(i, 3)*KD(k, 3) + KD(k, 4)
|
51 |
+
assert dp((x + y)*KD(i, j), (j, k, l)) == \
|
52 |
+
(x + y)*KD(i, l)*KD(k, l) + KD(k, l + 1)
|
53 |
+
|
54 |
+
|
55 |
+
def test_deltaproduct_add_kd_kd():
|
56 |
+
assert dp(KD(i, k) + KD(j, k), (k, 1, 3)) == 0
|
57 |
+
assert dp(KD(i, k) + KD(j, k), (k, 1, 1)) == KD(i, 1) + KD(j, 1)
|
58 |
+
assert dp(KD(i, k) + KD(j, k), (k, 2, 2)) == KD(i, 2) + KD(j, 2)
|
59 |
+
assert dp(KD(i, k) + KD(j, k), (k, 3, 3)) == KD(i, 3) + KD(j, 3)
|
60 |
+
assert dp(KD(i, k) + KD(j, k), (k, 1, l)) == KD(l, 0) + \
|
61 |
+
KD(i, 1)*KD(l, 1) + KD(j, 1)*KD(l, 1) + \
|
62 |
+
KD(i, 1)*KD(j, 2)*KD(l, 2) + KD(j, 1)*KD(i, 2)*KD(l, 2)
|
63 |
+
assert dp(KD(i, k) + KD(j, k), (k, l, 3)) == KD(l, 4) + \
|
64 |
+
KD(i, 3)*KD(l, 3) + KD(j, 3)*KD(l, 3) + \
|
65 |
+
KD(i, 2)*KD(j, 3)*KD(l, 2) + KD(i, 3)*KD(j, 2)*KD(l, 2)
|
66 |
+
assert dp(KD(i, k) + KD(j, k), (k, l, m)) == KD(l, m + 1) + \
|
67 |
+
KD(i, m)*KD(l, m) + KD(j, m)*KD(l, m) + \
|
68 |
+
KD(i, m)*KD(j, m - 1)*KD(l, m - 1) + KD(i, m - 1)*KD(j, m)*KD(l, m - 1)
|
69 |
+
|
70 |
+
|
71 |
+
def test_deltaproduct_mul_x_add_kd_kd():
|
72 |
+
assert dp(x*(KD(i, k) + KD(j, k)), (k, 1, 3)) == 0
|
73 |
+
assert dp(x*(KD(i, k) + KD(j, k)), (k, 1, 1)) == x*(KD(i, 1) + KD(j, 1))
|
74 |
+
assert dp(x*(KD(i, k) + KD(j, k)), (k, 2, 2)) == x*(KD(i, 2) + KD(j, 2))
|
75 |
+
assert dp(x*(KD(i, k) + KD(j, k)), (k, 3, 3)) == x*(KD(i, 3) + KD(j, 3))
|
76 |
+
assert dp(x*(KD(i, k) + KD(j, k)), (k, 1, l)) == KD(l, 0) + \
|
77 |
+
x*KD(i, 1)*KD(l, 1) + x*KD(j, 1)*KD(l, 1) + \
|
78 |
+
x**2*KD(i, 1)*KD(j, 2)*KD(l, 2) + x**2*KD(j, 1)*KD(i, 2)*KD(l, 2)
|
79 |
+
assert dp(x*(KD(i, k) + KD(j, k)), (k, l, 3)) == KD(l, 4) + \
|
80 |
+
x*KD(i, 3)*KD(l, 3) + x*KD(j, 3)*KD(l, 3) + \
|
81 |
+
x**2*KD(i, 2)*KD(j, 3)*KD(l, 2) + x**2*KD(i, 3)*KD(j, 2)*KD(l, 2)
|
82 |
+
assert dp(x*(KD(i, k) + KD(j, k)), (k, l, m)) == KD(l, m + 1) + \
|
83 |
+
x*KD(i, m)*KD(l, m) + x*KD(j, m)*KD(l, m) + \
|
84 |
+
x**2*KD(i, m - 1)*KD(j, m)*KD(l, m - 1) + \
|
85 |
+
x**2*KD(i, m)*KD(j, m - 1)*KD(l, m - 1)
|
86 |
+
|
87 |
+
|
88 |
+
def test_deltaproduct_mul_add_x_y_add_kd_kd():
|
89 |
+
assert dp((x + y)*(KD(i, k) + KD(j, k)), (k, 1, 3)) == 0
|
90 |
+
assert dp((x + y)*(KD(i, k) + KD(j, k)), (k, 1, 1)) == \
|
91 |
+
(x + y)*(KD(i, 1) + KD(j, 1))
|
92 |
+
assert dp((x + y)*(KD(i, k) + KD(j, k)), (k, 2, 2)) == \
|
93 |
+
(x + y)*(KD(i, 2) + KD(j, 2))
|
94 |
+
assert dp((x + y)*(KD(i, k) + KD(j, k)), (k, 3, 3)) == \
|
95 |
+
(x + y)*(KD(i, 3) + KD(j, 3))
|
96 |
+
assert dp((x + y)*(KD(i, k) + KD(j, k)), (k, 1, l)) == KD(l, 0) + \
|
97 |
+
(x + y)*KD(i, 1)*KD(l, 1) + (x + y)*KD(j, 1)*KD(l, 1) + \
|
98 |
+
(x + y)**2*KD(i, 1)*KD(j, 2)*KD(l, 2) + \
|
99 |
+
(x + y)**2*KD(j, 1)*KD(i, 2)*KD(l, 2)
|
100 |
+
assert dp((x + y)*(KD(i, k) + KD(j, k)), (k, l, 3)) == KD(l, 4) + \
|
101 |
+
(x + y)*KD(i, 3)*KD(l, 3) + (x + y)*KD(j, 3)*KD(l, 3) + \
|
102 |
+
(x + y)**2*KD(i, 2)*KD(j, 3)*KD(l, 2) + \
|
103 |
+
(x + y)**2*KD(i, 3)*KD(j, 2)*KD(l, 2)
|
104 |
+
assert dp((x + y)*(KD(i, k) + KD(j, k)), (k, l, m)) == KD(l, m + 1) + \
|
105 |
+
(x + y)*KD(i, m)*KD(l, m) + (x + y)*KD(j, m)*KD(l, m) + \
|
106 |
+
(x + y)**2*KD(i, m - 1)*KD(j, m)*KD(l, m - 1) + \
|
107 |
+
(x + y)**2*KD(i, m)*KD(j, m - 1)*KD(l, m - 1)
|
108 |
+
|
109 |
+
|
110 |
+
def test_deltaproduct_add_mul_x_y_mul_x_kd():
|
111 |
+
assert dp(x*y + x*KD(i, j), (j, 1, 3)) == (x*y)**3 + \
|
112 |
+
x*(x*y)**2*KD(i, 1) + (x*y)*x*(x*y)*KD(i, 2) + (x*y)**2*x*KD(i, 3)
|
113 |
+
assert dp(x*y + x*KD(i, j), (j, 1, 1)) == x*y + x*KD(i, 1)
|
114 |
+
assert dp(x*y + x*KD(i, j), (j, 2, 2)) == x*y + x*KD(i, 2)
|
115 |
+
assert dp(x*y + x*KD(i, j), (j, 3, 3)) == x*y + x*KD(i, 3)
|
116 |
+
assert dp(x*y + x*KD(i, j), (j, 1, k)) == \
|
117 |
+
(x*y)**k + Piecewise(
|
118 |
+
((x*y)**(i - 1)*x*(x*y)**(k - i), And(1 <= i, i <= k)),
|
119 |
+
(0, True)
|
120 |
+
)
|
121 |
+
assert dp(x*y + x*KD(i, j), (j, k, 3)) == \
|
122 |
+
(x*y)**(-k + 4) + Piecewise(
|
123 |
+
((x*y)**(i - k)*x*(x*y)**(3 - i), And(k <= i, i <= 3)),
|
124 |
+
(0, True)
|
125 |
+
)
|
126 |
+
assert dp(x*y + x*KD(i, j), (j, k, l)) == \
|
127 |
+
(x*y)**(-k + l + 1) + Piecewise(
|
128 |
+
((x*y)**(i - k)*x*(x*y)**(l - i), And(k <= i, i <= l)),
|
129 |
+
(0, True)
|
130 |
+
)
|
131 |
+
|
132 |
+
|
133 |
+
def test_deltaproduct_mul_x_add_y_kd():
|
134 |
+
assert dp(x*(y + KD(i, j)), (j, 1, 3)) == (x*y)**3 + \
|
135 |
+
x*(x*y)**2*KD(i, 1) + (x*y)*x*(x*y)*KD(i, 2) + (x*y)**2*x*KD(i, 3)
|
136 |
+
assert dp(x*(y + KD(i, j)), (j, 1, 1)) == x*(y + KD(i, 1))
|
137 |
+
assert dp(x*(y + KD(i, j)), (j, 2, 2)) == x*(y + KD(i, 2))
|
138 |
+
assert dp(x*(y + KD(i, j)), (j, 3, 3)) == x*(y + KD(i, 3))
|
139 |
+
assert dp(x*(y + KD(i, j)), (j, 1, k)) == \
|
140 |
+
(x*y)**k + Piecewise(
|
141 |
+
((x*y)**(i - 1)*x*(x*y)**(k - i), And(1 <= i, i <= k)),
|
142 |
+
(0, True)
|
143 |
+
).expand()
|
144 |
+
assert dp(x*(y + KD(i, j)), (j, k, 3)) == \
|
145 |
+
((x*y)**(-k + 4) + Piecewise(
|
146 |
+
((x*y)**(i - k)*x*(x*y)**(3 - i), And(k <= i, i <= 3)),
|
147 |
+
(0, True)
|
148 |
+
)).expand()
|
149 |
+
assert dp(x*(y + KD(i, j)), (j, k, l)) == \
|
150 |
+
((x*y)**(-k + l + 1) + Piecewise(
|
151 |
+
((x*y)**(i - k)*x*(x*y)**(l - i), And(k <= i, i <= l)),
|
152 |
+
(0, True)
|
153 |
+
)).expand()
|
154 |
+
|
155 |
+
|
156 |
+
def test_deltaproduct_mul_x_add_y_twokd():
|
157 |
+
assert dp(x*(y + 2*KD(i, j)), (j, 1, 3)) == (x*y)**3 + \
|
158 |
+
2*x*(x*y)**2*KD(i, 1) + 2*x*y*x*x*y*KD(i, 2) + 2*(x*y)**2*x*KD(i, 3)
|
159 |
+
assert dp(x*(y + 2*KD(i, j)), (j, 1, 1)) == x*(y + 2*KD(i, 1))
|
160 |
+
assert dp(x*(y + 2*KD(i, j)), (j, 2, 2)) == x*(y + 2*KD(i, 2))
|
161 |
+
assert dp(x*(y + 2*KD(i, j)), (j, 3, 3)) == x*(y + 2*KD(i, 3))
|
162 |
+
assert dp(x*(y + 2*KD(i, j)), (j, 1, k)) == \
|
163 |
+
(x*y)**k + Piecewise(
|
164 |
+
(2*(x*y)**(i - 1)*x*(x*y)**(k - i), And(1 <= i, i <= k)),
|
165 |
+
(0, True)
|
166 |
+
).expand()
|
167 |
+
assert dp(x*(y + 2*KD(i, j)), (j, k, 3)) == \
|
168 |
+
((x*y)**(-k + 4) + Piecewise(
|
169 |
+
(2*(x*y)**(i - k)*x*(x*y)**(3 - i), And(k <= i, i <= 3)),
|
170 |
+
(0, True)
|
171 |
+
)).expand()
|
172 |
+
assert dp(x*(y + 2*KD(i, j)), (j, k, l)) == \
|
173 |
+
((x*y)**(-k + l + 1) + Piecewise(
|
174 |
+
(2*(x*y)**(i - k)*x*(x*y)**(l - i), And(k <= i, i <= l)),
|
175 |
+
(0, True)
|
176 |
+
)).expand()
|
177 |
+
|
178 |
+
|
179 |
+
def test_deltaproduct_mul_add_x_y_add_y_kd():
|
180 |
+
assert dp((x + y)*(y + KD(i, j)), (j, 1, 3)) == ((x + y)*y)**3 + \
|
181 |
+
(x + y)*((x + y)*y)**2*KD(i, 1) + \
|
182 |
+
(x + y)*y*(x + y)**2*y*KD(i, 2) + \
|
183 |
+
((x + y)*y)**2*(x + y)*KD(i, 3)
|
184 |
+
assert dp((x + y)*(y + KD(i, j)), (j, 1, 1)) == (x + y)*(y + KD(i, 1))
|
185 |
+
assert dp((x + y)*(y + KD(i, j)), (j, 2, 2)) == (x + y)*(y + KD(i, 2))
|
186 |
+
assert dp((x + y)*(y + KD(i, j)), (j, 3, 3)) == (x + y)*(y + KD(i, 3))
|
187 |
+
assert dp((x + y)*(y + KD(i, j)), (j, 1, k)) == \
|
188 |
+
((x + y)*y)**k + Piecewise(
|
189 |
+
(((x + y)*y)**(-1)*((x + y)*y)**i*(x + y)*((x + y)*y
|
190 |
+
)**k*((x + y)*y)**(-i), (i >= 1) & (i <= k)), (0, True))
|
191 |
+
assert dp((x + y)*(y + KD(i, j)), (j, k, 3)) == (
|
192 |
+
(x + y)*y)**4*((x + y)*y)**(-k) + Piecewise((((x + y)*y)**i*(
|
193 |
+
(x + y)*y)**(-k)*(x + y)*((x + y)*y)**3*((x + y)*y)**(-i),
|
194 |
+
(i >= k) & (i <= 3)), (0, True))
|
195 |
+
assert dp((x + y)*(y + KD(i, j)), (j, k, l)) == \
|
196 |
+
(x + y)*y*((x + y)*y)**l*((x + y)*y)**(-k) + Piecewise(
|
197 |
+
(((x + y)*y)**i*((x + y)*y)**(-k)*(x + y)*((x + y)*y
|
198 |
+
)**l*((x + y)*y)**(-i), (i >= k) & (i <= l)), (0, True))
|
199 |
+
|
200 |
+
|
201 |
+
def test_deltaproduct_mul_add_x_kd_add_y_kd():
|
202 |
+
assert dp((x + KD(i, k))*(y + KD(i, j)), (j, 1, 3)) == \
|
203 |
+
KD(i, 1)*(KD(i, k) + x)*((KD(i, k) + x)*y)**2 + \
|
204 |
+
KD(i, 2)*(KD(i, k) + x)*y*(KD(i, k) + x)**2*y + \
|
205 |
+
KD(i, 3)*((KD(i, k) + x)*y)**2*(KD(i, k) + x) + \
|
206 |
+
((KD(i, k) + x)*y)**3
|
207 |
+
assert dp((x + KD(i, k))*(y + KD(i, j)), (j, 1, 1)) == \
|
208 |
+
(x + KD(i, k))*(y + KD(i, 1))
|
209 |
+
assert dp((x + KD(i, k))*(y + KD(i, j)), (j, 2, 2)) == \
|
210 |
+
(x + KD(i, k))*(y + KD(i, 2))
|
211 |
+
assert dp((x + KD(i, k))*(y + KD(i, j)), (j, 3, 3)) == \
|
212 |
+
(x + KD(i, k))*(y + KD(i, 3))
|
213 |
+
assert dp((x + KD(i, k))*(y + KD(i, j)), (j, 1, k)) == \
|
214 |
+
((KD(i, k) + x)*y)**k + Piecewise(
|
215 |
+
(((KD(i, k) + x)*y)**(-1)*((KD(i, k) + x)*y)**i*(KD(i, k) + x
|
216 |
+
)*((KD(i, k) + x)*y)**k*((KD(i, k) + x)*y)**(-i), (i >= 1
|
217 |
+
) & (i <= k)), (0, True))
|
218 |
+
assert dp((x + KD(i, k))*(y + KD(i, j)), (j, k, 3)) == (
|
219 |
+
(KD(i, k) + x)*y)**4*((KD(i, k) + x)*y)**(-k) + Piecewise(
|
220 |
+
(((KD(i, k) + x)*y)**i*((KD(i, k) + x)*y)**(-k)*(KD(i, k)
|
221 |
+
+ x)*((KD(i, k) + x)*y)**3*((KD(i, k) + x)*y)**(-i),
|
222 |
+
(i >= k) & (i <= 3)), (0, True))
|
223 |
+
assert dp((x + KD(i, k))*(y + KD(i, j)), (j, k, l)) == (
|
224 |
+
KD(i, k) + x)*y*((KD(i, k) + x)*y)**l*((KD(i, k) + x)*y
|
225 |
+
)**(-k) + Piecewise((((KD(i, k) + x)*y)**i*((KD(i, k) + x
|
226 |
+
)*y)**(-k)*(KD(i, k) + x)*((KD(i, k) + x)*y)**l*((KD(i, k) + x
|
227 |
+
)*y)**(-i), (i >= k) & (i <= l)), (0, True))
|
228 |
+
|
229 |
+
|
230 |
+
def test_deltasummation_trivial():
|
231 |
+
assert ds(x, (j, 1, 0)) == 0
|
232 |
+
assert ds(x, (j, 1, 3)) == 3*x
|
233 |
+
assert ds(x + y, (j, 1, 3)) == 3*(x + y)
|
234 |
+
assert ds(x*y, (j, 1, 3)) == 3*x*y
|
235 |
+
assert ds(KD(i, j), (k, 1, 3)) == 3*KD(i, j)
|
236 |
+
assert ds(x*KD(i, j), (k, 1, 3)) == 3*x*KD(i, j)
|
237 |
+
assert ds(x*y*KD(i, j), (k, 1, 3)) == 3*x*y*KD(i, j)
|
238 |
+
|
239 |
+
|
240 |
+
def test_deltasummation_basic_numerical():
|
241 |
+
n = symbols('n', integer=True, nonzero=True)
|
242 |
+
assert ds(KD(n, 0), (n, 1, 3)) == 0
|
243 |
+
|
244 |
+
# return unevaluated, until it gets implemented
|
245 |
+
assert ds(KD(i**2, j**2), (j, -oo, oo)) == \
|
246 |
+
Sum(KD(i**2, j**2), (j, -oo, oo))
|
247 |
+
|
248 |
+
assert Piecewise((KD(i, k), And(1 <= i, i <= 3)), (0, True)) == \
|
249 |
+
ds(KD(i, j)*KD(j, k), (j, 1, 3)) == \
|
250 |
+
ds(KD(j, k)*KD(i, j), (j, 1, 3))
|
251 |
+
|
252 |
+
assert ds(KD(i, k), (k, -oo, oo)) == 1
|
253 |
+
assert ds(KD(i, k), (k, 0, oo)) == Piecewise((1, S.Zero <= i), (0, True))
|
254 |
+
assert ds(KD(i, k), (k, 1, 3)) == \
|
255 |
+
Piecewise((1, And(1 <= i, i <= 3)), (0, True))
|
256 |
+
assert ds(k*KD(i, j)*KD(j, k), (k, -oo, oo)) == j*KD(i, j)
|
257 |
+
assert ds(j*KD(i, j), (j, -oo, oo)) == i
|
258 |
+
assert ds(i*KD(i, j), (i, -oo, oo)) == j
|
259 |
+
assert ds(x, (i, 1, 3)) == 3*x
|
260 |
+
assert ds((i + j)*KD(i, j), (j, -oo, oo)) == 2*i
|
261 |
+
|
262 |
+
|
263 |
+
def test_deltasummation_basic_symbolic():
|
264 |
+
assert ds(KD(i, j), (j, 1, 3)) == \
|
265 |
+
Piecewise((1, And(1 <= i, i <= 3)), (0, True))
|
266 |
+
assert ds(KD(i, j), (j, 1, 1)) == Piecewise((1, Eq(i, 1)), (0, True))
|
267 |
+
assert ds(KD(i, j), (j, 2, 2)) == Piecewise((1, Eq(i, 2)), (0, True))
|
268 |
+
assert ds(KD(i, j), (j, 3, 3)) == Piecewise((1, Eq(i, 3)), (0, True))
|
269 |
+
assert ds(KD(i, j), (j, 1, k)) == \
|
270 |
+
Piecewise((1, And(1 <= i, i <= k)), (0, True))
|
271 |
+
assert ds(KD(i, j), (j, k, 3)) == \
|
272 |
+
Piecewise((1, And(k <= i, i <= 3)), (0, True))
|
273 |
+
assert ds(KD(i, j), (j, k, l)) == \
|
274 |
+
Piecewise((1, And(k <= i, i <= l)), (0, True))
|
275 |
+
|
276 |
+
|
277 |
+
def test_deltasummation_mul_x_kd():
|
278 |
+
assert ds(x*KD(i, j), (j, 1, 3)) == \
|
279 |
+
Piecewise((x, And(1 <= i, i <= 3)), (0, True))
|
280 |
+
assert ds(x*KD(i, j), (j, 1, 1)) == Piecewise((x, Eq(i, 1)), (0, True))
|
281 |
+
assert ds(x*KD(i, j), (j, 2, 2)) == Piecewise((x, Eq(i, 2)), (0, True))
|
282 |
+
assert ds(x*KD(i, j), (j, 3, 3)) == Piecewise((x, Eq(i, 3)), (0, True))
|
283 |
+
assert ds(x*KD(i, j), (j, 1, k)) == \
|
284 |
+
Piecewise((x, And(1 <= i, i <= k)), (0, True))
|
285 |
+
assert ds(x*KD(i, j), (j, k, 3)) == \
|
286 |
+
Piecewise((x, And(k <= i, i <= 3)), (0, True))
|
287 |
+
assert ds(x*KD(i, j), (j, k, l)) == \
|
288 |
+
Piecewise((x, And(k <= i, i <= l)), (0, True))
|
289 |
+
|
290 |
+
|
291 |
+
def test_deltasummation_mul_add_x_y_kd():
|
292 |
+
assert ds((x + y)*KD(i, j), (j, 1, 3)) == \
|
293 |
+
Piecewise((x + y, And(1 <= i, i <= 3)), (0, True))
|
294 |
+
assert ds((x + y)*KD(i, j), (j, 1, 1)) == \
|
295 |
+
Piecewise((x + y, Eq(i, 1)), (0, True))
|
296 |
+
assert ds((x + y)*KD(i, j), (j, 2, 2)) == \
|
297 |
+
Piecewise((x + y, Eq(i, 2)), (0, True))
|
298 |
+
assert ds((x + y)*KD(i, j), (j, 3, 3)) == \
|
299 |
+
Piecewise((x + y, Eq(i, 3)), (0, True))
|
300 |
+
assert ds((x + y)*KD(i, j), (j, 1, k)) == \
|
301 |
+
Piecewise((x + y, And(1 <= i, i <= k)), (0, True))
|
302 |
+
assert ds((x + y)*KD(i, j), (j, k, 3)) == \
|
303 |
+
Piecewise((x + y, And(k <= i, i <= 3)), (0, True))
|
304 |
+
assert ds((x + y)*KD(i, j), (j, k, l)) == \
|
305 |
+
Piecewise((x + y, And(k <= i, i <= l)), (0, True))
|
306 |
+
|
307 |
+
|
308 |
+
def test_deltasummation_add_kd_kd():
|
309 |
+
assert ds(KD(i, k) + KD(j, k), (k, 1, 3)) == piecewise_fold(
|
310 |
+
Piecewise((1, And(1 <= i, i <= 3)), (0, True)) +
|
311 |
+
Piecewise((1, And(1 <= j, j <= 3)), (0, True)))
|
312 |
+
assert ds(KD(i, k) + KD(j, k), (k, 1, 1)) == piecewise_fold(
|
313 |
+
Piecewise((1, Eq(i, 1)), (0, True)) +
|
314 |
+
Piecewise((1, Eq(j, 1)), (0, True)))
|
315 |
+
assert ds(KD(i, k) + KD(j, k), (k, 2, 2)) == piecewise_fold(
|
316 |
+
Piecewise((1, Eq(i, 2)), (0, True)) +
|
317 |
+
Piecewise((1, Eq(j, 2)), (0, True)))
|
318 |
+
assert ds(KD(i, k) + KD(j, k), (k, 3, 3)) == piecewise_fold(
|
319 |
+
Piecewise((1, Eq(i, 3)), (0, True)) +
|
320 |
+
Piecewise((1, Eq(j, 3)), (0, True)))
|
321 |
+
assert ds(KD(i, k) + KD(j, k), (k, 1, l)) == piecewise_fold(
|
322 |
+
Piecewise((1, And(1 <= i, i <= l)), (0, True)) +
|
323 |
+
Piecewise((1, And(1 <= j, j <= l)), (0, True)))
|
324 |
+
assert ds(KD(i, k) + KD(j, k), (k, l, 3)) == piecewise_fold(
|
325 |
+
Piecewise((1, And(l <= i, i <= 3)), (0, True)) +
|
326 |
+
Piecewise((1, And(l <= j, j <= 3)), (0, True)))
|
327 |
+
assert ds(KD(i, k) + KD(j, k), (k, l, m)) == piecewise_fold(
|
328 |
+
Piecewise((1, And(l <= i, i <= m)), (0, True)) +
|
329 |
+
Piecewise((1, And(l <= j, j <= m)), (0, True)))
|
330 |
+
|
331 |
+
|
332 |
+
def test_deltasummation_add_mul_x_kd_kd():
|
333 |
+
assert ds(x*KD(i, k) + KD(j, k), (k, 1, 3)) == piecewise_fold(
|
334 |
+
Piecewise((x, And(1 <= i, i <= 3)), (0, True)) +
|
335 |
+
Piecewise((1, And(1 <= j, j <= 3)), (0, True)))
|
336 |
+
assert ds(x*KD(i, k) + KD(j, k), (k, 1, 1)) == piecewise_fold(
|
337 |
+
Piecewise((x, Eq(i, 1)), (0, True)) +
|
338 |
+
Piecewise((1, Eq(j, 1)), (0, True)))
|
339 |
+
assert ds(x*KD(i, k) + KD(j, k), (k, 2, 2)) == piecewise_fold(
|
340 |
+
Piecewise((x, Eq(i, 2)), (0, True)) +
|
341 |
+
Piecewise((1, Eq(j, 2)), (0, True)))
|
342 |
+
assert ds(x*KD(i, k) + KD(j, k), (k, 3, 3)) == piecewise_fold(
|
343 |
+
Piecewise((x, Eq(i, 3)), (0, True)) +
|
344 |
+
Piecewise((1, Eq(j, 3)), (0, True)))
|
345 |
+
assert ds(x*KD(i, k) + KD(j, k), (k, 1, l)) == piecewise_fold(
|
346 |
+
Piecewise((x, And(1 <= i, i <= l)), (0, True)) +
|
347 |
+
Piecewise((1, And(1 <= j, j <= l)), (0, True)))
|
348 |
+
assert ds(x*KD(i, k) + KD(j, k), (k, l, 3)) == piecewise_fold(
|
349 |
+
Piecewise((x, And(l <= i, i <= 3)), (0, True)) +
|
350 |
+
Piecewise((1, And(l <= j, j <= 3)), (0, True)))
|
351 |
+
assert ds(x*KD(i, k) + KD(j, k), (k, l, m)) == piecewise_fold(
|
352 |
+
Piecewise((x, And(l <= i, i <= m)), (0, True)) +
|
353 |
+
Piecewise((1, And(l <= j, j <= m)), (0, True)))
|
354 |
+
|
355 |
+
|
356 |
+
def test_deltasummation_mul_x_add_kd_kd():
|
357 |
+
assert ds(x*(KD(i, k) + KD(j, k)), (k, 1, 3)) == piecewise_fold(
|
358 |
+
Piecewise((x, And(1 <= i, i <= 3)), (0, True)) +
|
359 |
+
Piecewise((x, And(1 <= j, j <= 3)), (0, True)))
|
360 |
+
assert ds(x*(KD(i, k) + KD(j, k)), (k, 1, 1)) == piecewise_fold(
|
361 |
+
Piecewise((x, Eq(i, 1)), (0, True)) +
|
362 |
+
Piecewise((x, Eq(j, 1)), (0, True)))
|
363 |
+
assert ds(x*(KD(i, k) + KD(j, k)), (k, 2, 2)) == piecewise_fold(
|
364 |
+
Piecewise((x, Eq(i, 2)), (0, True)) +
|
365 |
+
Piecewise((x, Eq(j, 2)), (0, True)))
|
366 |
+
assert ds(x*(KD(i, k) + KD(j, k)), (k, 3, 3)) == piecewise_fold(
|
367 |
+
Piecewise((x, Eq(i, 3)), (0, True)) +
|
368 |
+
Piecewise((x, Eq(j, 3)), (0, True)))
|
369 |
+
assert ds(x*(KD(i, k) + KD(j, k)), (k, 1, l)) == piecewise_fold(
|
370 |
+
Piecewise((x, And(1 <= i, i <= l)), (0, True)) +
|
371 |
+
Piecewise((x, And(1 <= j, j <= l)), (0, True)))
|
372 |
+
assert ds(x*(KD(i, k) + KD(j, k)), (k, l, 3)) == piecewise_fold(
|
373 |
+
Piecewise((x, And(l <= i, i <= 3)), (0, True)) +
|
374 |
+
Piecewise((x, And(l <= j, j <= 3)), (0, True)))
|
375 |
+
assert ds(x*(KD(i, k) + KD(j, k)), (k, l, m)) == piecewise_fold(
|
376 |
+
Piecewise((x, And(l <= i, i <= m)), (0, True)) +
|
377 |
+
Piecewise((x, And(l <= j, j <= m)), (0, True)))
|
378 |
+
|
379 |
+
|
380 |
+
def test_deltasummation_mul_add_x_y_add_kd_kd():
|
381 |
+
assert ds((x + y)*(KD(i, k) + KD(j, k)), (k, 1, 3)) == piecewise_fold(
|
382 |
+
Piecewise((x + y, And(1 <= i, i <= 3)), (0, True)) +
|
383 |
+
Piecewise((x + y, And(1 <= j, j <= 3)), (0, True)))
|
384 |
+
assert ds((x + y)*(KD(i, k) + KD(j, k)), (k, 1, 1)) == piecewise_fold(
|
385 |
+
Piecewise((x + y, Eq(i, 1)), (0, True)) +
|
386 |
+
Piecewise((x + y, Eq(j, 1)), (0, True)))
|
387 |
+
assert ds((x + y)*(KD(i, k) + KD(j, k)), (k, 2, 2)) == piecewise_fold(
|
388 |
+
Piecewise((x + y, Eq(i, 2)), (0, True)) +
|
389 |
+
Piecewise((x + y, Eq(j, 2)), (0, True)))
|
390 |
+
assert ds((x + y)*(KD(i, k) + KD(j, k)), (k, 3, 3)) == piecewise_fold(
|
391 |
+
Piecewise((x + y, Eq(i, 3)), (0, True)) +
|
392 |
+
Piecewise((x + y, Eq(j, 3)), (0, True)))
|
393 |
+
assert ds((x + y)*(KD(i, k) + KD(j, k)), (k, 1, l)) == piecewise_fold(
|
394 |
+
Piecewise((x + y, And(1 <= i, i <= l)), (0, True)) +
|
395 |
+
Piecewise((x + y, And(1 <= j, j <= l)), (0, True)))
|
396 |
+
assert ds((x + y)*(KD(i, k) + KD(j, k)), (k, l, 3)) == piecewise_fold(
|
397 |
+
Piecewise((x + y, And(l <= i, i <= 3)), (0, True)) +
|
398 |
+
Piecewise((x + y, And(l <= j, j <= 3)), (0, True)))
|
399 |
+
assert ds((x + y)*(KD(i, k) + KD(j, k)), (k, l, m)) == piecewise_fold(
|
400 |
+
Piecewise((x + y, And(l <= i, i <= m)), (0, True)) +
|
401 |
+
Piecewise((x + y, And(l <= j, j <= m)), (0, True)))
|
402 |
+
|
403 |
+
|
404 |
+
def test_deltasummation_add_mul_x_y_mul_x_kd():
|
405 |
+
assert ds(x*y + x*KD(i, j), (j, 1, 3)) == \
|
406 |
+
Piecewise((3*x*y + x, And(1 <= i, i <= 3)), (3*x*y, True))
|
407 |
+
assert ds(x*y + x*KD(i, j), (j, 1, 1)) == \
|
408 |
+
Piecewise((x*y + x, Eq(i, 1)), (x*y, True))
|
409 |
+
assert ds(x*y + x*KD(i, j), (j, 2, 2)) == \
|
410 |
+
Piecewise((x*y + x, Eq(i, 2)), (x*y, True))
|
411 |
+
assert ds(x*y + x*KD(i, j), (j, 3, 3)) == \
|
412 |
+
Piecewise((x*y + x, Eq(i, 3)), (x*y, True))
|
413 |
+
assert ds(x*y + x*KD(i, j), (j, 1, k)) == \
|
414 |
+
Piecewise((k*x*y + x, And(1 <= i, i <= k)), (k*x*y, True))
|
415 |
+
assert ds(x*y + x*KD(i, j), (j, k, 3)) == \
|
416 |
+
Piecewise(((4 - k)*x*y + x, And(k <= i, i <= 3)), ((4 - k)*x*y, True))
|
417 |
+
assert ds(x*y + x*KD(i, j), (j, k, l)) == Piecewise(
|
418 |
+
((l - k + 1)*x*y + x, And(k <= i, i <= l)), ((l - k + 1)*x*y, True))
|
419 |
+
|
420 |
+
|
421 |
+
def test_deltasummation_mul_x_add_y_kd():
|
422 |
+
assert ds(x*(y + KD(i, j)), (j, 1, 3)) == \
|
423 |
+
Piecewise((3*x*y + x, And(1 <= i, i <= 3)), (3*x*y, True))
|
424 |
+
assert ds(x*(y + KD(i, j)), (j, 1, 1)) == \
|
425 |
+
Piecewise((x*y + x, Eq(i, 1)), (x*y, True))
|
426 |
+
assert ds(x*(y + KD(i, j)), (j, 2, 2)) == \
|
427 |
+
Piecewise((x*y + x, Eq(i, 2)), (x*y, True))
|
428 |
+
assert ds(x*(y + KD(i, j)), (j, 3, 3)) == \
|
429 |
+
Piecewise((x*y + x, Eq(i, 3)), (x*y, True))
|
430 |
+
assert ds(x*(y + KD(i, j)), (j, 1, k)) == \
|
431 |
+
Piecewise((k*x*y + x, And(1 <= i, i <= k)), (k*x*y, True))
|
432 |
+
assert ds(x*(y + KD(i, j)), (j, k, 3)) == \
|
433 |
+
Piecewise(((4 - k)*x*y + x, And(k <= i, i <= 3)), ((4 - k)*x*y, True))
|
434 |
+
assert ds(x*(y + KD(i, j)), (j, k, l)) == Piecewise(
|
435 |
+
((l - k + 1)*x*y + x, And(k <= i, i <= l)), ((l - k + 1)*x*y, True))
|
436 |
+
|
437 |
+
|
438 |
+
def test_deltasummation_mul_x_add_y_twokd():
|
439 |
+
assert ds(x*(y + 2*KD(i, j)), (j, 1, 3)) == \
|
440 |
+
Piecewise((3*x*y + 2*x, And(1 <= i, i <= 3)), (3*x*y, True))
|
441 |
+
assert ds(x*(y + 2*KD(i, j)), (j, 1, 1)) == \
|
442 |
+
Piecewise((x*y + 2*x, Eq(i, 1)), (x*y, True))
|
443 |
+
assert ds(x*(y + 2*KD(i, j)), (j, 2, 2)) == \
|
444 |
+
Piecewise((x*y + 2*x, Eq(i, 2)), (x*y, True))
|
445 |
+
assert ds(x*(y + 2*KD(i, j)), (j, 3, 3)) == \
|
446 |
+
Piecewise((x*y + 2*x, Eq(i, 3)), (x*y, True))
|
447 |
+
assert ds(x*(y + 2*KD(i, j)), (j, 1, k)) == \
|
448 |
+
Piecewise((k*x*y + 2*x, And(1 <= i, i <= k)), (k*x*y, True))
|
449 |
+
assert ds(x*(y + 2*KD(i, j)), (j, k, 3)) == Piecewise(
|
450 |
+
((4 - k)*x*y + 2*x, And(k <= i, i <= 3)), ((4 - k)*x*y, True))
|
451 |
+
assert ds(x*(y + 2*KD(i, j)), (j, k, l)) == Piecewise(
|
452 |
+
((l - k + 1)*x*y + 2*x, And(k <= i, i <= l)), ((l - k + 1)*x*y, True))
|
453 |
+
|
454 |
+
|
455 |
+
def test_deltasummation_mul_add_x_y_add_y_kd():
|
456 |
+
assert ds((x + y)*(y + KD(i, j)), (j, 1, 3)) == Piecewise(
|
457 |
+
(3*(x + y)*y + x + y, And(1 <= i, i <= 3)), (3*(x + y)*y, True))
|
458 |
+
assert ds((x + y)*(y + KD(i, j)), (j, 1, 1)) == \
|
459 |
+
Piecewise(((x + y)*y + x + y, Eq(i, 1)), ((x + y)*y, True))
|
460 |
+
assert ds((x + y)*(y + KD(i, j)), (j, 2, 2)) == \
|
461 |
+
Piecewise(((x + y)*y + x + y, Eq(i, 2)), ((x + y)*y, True))
|
462 |
+
assert ds((x + y)*(y + KD(i, j)), (j, 3, 3)) == \
|
463 |
+
Piecewise(((x + y)*y + x + y, Eq(i, 3)), ((x + y)*y, True))
|
464 |
+
assert ds((x + y)*(y + KD(i, j)), (j, 1, k)) == Piecewise(
|
465 |
+
(k*(x + y)*y + x + y, And(1 <= i, i <= k)), (k*(x + y)*y, True))
|
466 |
+
assert ds((x + y)*(y + KD(i, j)), (j, k, 3)) == Piecewise(
|
467 |
+
((4 - k)*(x + y)*y + x + y, And(k <= i, i <= 3)),
|
468 |
+
((4 - k)*(x + y)*y, True))
|
469 |
+
assert ds((x + y)*(y + KD(i, j)), (j, k, l)) == Piecewise(
|
470 |
+
((l - k + 1)*(x + y)*y + x + y, And(k <= i, i <= l)),
|
471 |
+
((l - k + 1)*(x + y)*y, True))
|
472 |
+
|
473 |
+
|
474 |
+
def test_deltasummation_mul_add_x_kd_add_y_kd():
|
475 |
+
assert ds((x + KD(i, k))*(y + KD(i, j)), (j, 1, 3)) == piecewise_fold(
|
476 |
+
Piecewise((KD(i, k) + x, And(1 <= i, i <= 3)), (0, True)) +
|
477 |
+
3*(KD(i, k) + x)*y)
|
478 |
+
assert ds((x + KD(i, k))*(y + KD(i, j)), (j, 1, 1)) == piecewise_fold(
|
479 |
+
Piecewise((KD(i, k) + x, Eq(i, 1)), (0, True)) +
|
480 |
+
(KD(i, k) + x)*y)
|
481 |
+
assert ds((x + KD(i, k))*(y + KD(i, j)), (j, 2, 2)) == piecewise_fold(
|
482 |
+
Piecewise((KD(i, k) + x, Eq(i, 2)), (0, True)) +
|
483 |
+
(KD(i, k) + x)*y)
|
484 |
+
assert ds((x + KD(i, k))*(y + KD(i, j)), (j, 3, 3)) == piecewise_fold(
|
485 |
+
Piecewise((KD(i, k) + x, Eq(i, 3)), (0, True)) +
|
486 |
+
(KD(i, k) + x)*y)
|
487 |
+
assert ds((x + KD(i, k))*(y + KD(i, j)), (j, 1, k)) == piecewise_fold(
|
488 |
+
Piecewise((KD(i, k) + x, And(1 <= i, i <= k)), (0, True)) +
|
489 |
+
k*(KD(i, k) + x)*y)
|
490 |
+
assert ds((x + KD(i, k))*(y + KD(i, j)), (j, k, 3)) == piecewise_fold(
|
491 |
+
Piecewise((KD(i, k) + x, And(k <= i, i <= 3)), (0, True)) +
|
492 |
+
(4 - k)*(KD(i, k) + x)*y)
|
493 |
+
assert ds((x + KD(i, k))*(y + KD(i, j)), (j, k, l)) == piecewise_fold(
|
494 |
+
Piecewise((KD(i, k) + x, And(k <= i, i <= l)), (0, True)) +
|
495 |
+
(l - k + 1)*(KD(i, k) + x)*y)
|
496 |
+
|
497 |
+
|
498 |
+
def test_extract_delta():
|
499 |
+
raises(ValueError, lambda: _extract_delta(KD(i, j) + KD(k, l), i))
|
venv/lib/python3.10/site-packages/sympy/concrete/tests/test_gosper.py
ADDED
@@ -0,0 +1,204 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Tests for Gosper's algorithm for hypergeometric summation. """
|
2 |
+
|
3 |
+
from sympy.core.numbers import (Rational, pi)
|
4 |
+
from sympy.core.singleton import S
|
5 |
+
from sympy.core.symbol import Symbol
|
6 |
+
from sympy.functions.combinatorial.factorials import (binomial, factorial)
|
7 |
+
from sympy.functions.elementary.exponential import (exp, log)
|
8 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
9 |
+
from sympy.functions.special.gamma_functions import gamma
|
10 |
+
from sympy.polys.polytools import Poly
|
11 |
+
from sympy.simplify.simplify import simplify
|
12 |
+
from sympy.concrete.gosper import gosper_normal, gosper_sum, gosper_term
|
13 |
+
from sympy.abc import a, b, j, k, m, n, r, x
|
14 |
+
|
15 |
+
|
16 |
+
def test_gosper_normal():
|
17 |
+
eq = 4*n + 5, 2*(4*n + 1)*(2*n + 3), n
|
18 |
+
assert gosper_normal(*eq) == \
|
19 |
+
(Poly(Rational(1, 4), n), Poly(n + Rational(3, 2)), Poly(n + Rational(1, 4)))
|
20 |
+
assert gosper_normal(*eq, polys=False) == \
|
21 |
+
(Rational(1, 4), n + Rational(3, 2), n + Rational(1, 4))
|
22 |
+
|
23 |
+
|
24 |
+
def test_gosper_term():
|
25 |
+
assert gosper_term((4*k + 1)*factorial(
|
26 |
+
k)/factorial(2*k + 1), k) == (-k - S.Half)/(k + Rational(1, 4))
|
27 |
+
|
28 |
+
|
29 |
+
def test_gosper_sum():
|
30 |
+
assert gosper_sum(1, (k, 0, n)) == 1 + n
|
31 |
+
assert gosper_sum(k, (k, 0, n)) == n*(1 + n)/2
|
32 |
+
assert gosper_sum(k**2, (k, 0, n)) == n*(1 + n)*(1 + 2*n)/6
|
33 |
+
assert gosper_sum(k**3, (k, 0, n)) == n**2*(1 + n)**2/4
|
34 |
+
|
35 |
+
assert gosper_sum(2**k, (k, 0, n)) == 2*2**n - 1
|
36 |
+
|
37 |
+
assert gosper_sum(factorial(k), (k, 0, n)) is None
|
38 |
+
assert gosper_sum(binomial(n, k), (k, 0, n)) is None
|
39 |
+
|
40 |
+
assert gosper_sum(factorial(k)/k**2, (k, 0, n)) is None
|
41 |
+
assert gosper_sum((k - 3)*factorial(k), (k, 0, n)) is None
|
42 |
+
|
43 |
+
assert gosper_sum(k*factorial(k), k) == factorial(k)
|
44 |
+
assert gosper_sum(
|
45 |
+
k*factorial(k), (k, 0, n)) == n*factorial(n) + factorial(n) - 1
|
46 |
+
|
47 |
+
assert gosper_sum((-1)**k*binomial(n, k), (k, 0, n)) == 0
|
48 |
+
assert gosper_sum((
|
49 |
+
-1)**k*binomial(n, k), (k, 0, m)) == -(-1)**m*(m - n)*binomial(n, m)/n
|
50 |
+
|
51 |
+
assert gosper_sum((4*k + 1)*factorial(k)/factorial(2*k + 1), (k, 0, n)) == \
|
52 |
+
(2*factorial(2*n + 1) - factorial(n))/factorial(2*n + 1)
|
53 |
+
|
54 |
+
# issue 6033:
|
55 |
+
assert gosper_sum(
|
56 |
+
n*(n + a + b)*a**n*b**n/(factorial(n + a)*factorial(n + b)), \
|
57 |
+
(n, 0, m)).simplify() == -exp(m*log(a) + m*log(b))*gamma(a + 1) \
|
58 |
+
*gamma(b + 1)/(gamma(a)*gamma(b)*gamma(a + m + 1)*gamma(b + m + 1)) \
|
59 |
+
+ 1/(gamma(a)*gamma(b))
|
60 |
+
|
61 |
+
|
62 |
+
def test_gosper_sum_indefinite():
|
63 |
+
assert gosper_sum(k, k) == k*(k - 1)/2
|
64 |
+
assert gosper_sum(k**2, k) == k*(k - 1)*(2*k - 1)/6
|
65 |
+
|
66 |
+
assert gosper_sum(1/(k*(k + 1)), k) == -1/k
|
67 |
+
assert gosper_sum(-(27*k**4 + 158*k**3 + 430*k**2 + 678*k + 445)*gamma(2*k
|
68 |
+
+ 4)/(3*(3*k + 7)*gamma(3*k + 6)), k) == \
|
69 |
+
(3*k + 5)*(k**2 + 2*k + 5)*gamma(2*k + 4)/gamma(3*k + 6)
|
70 |
+
|
71 |
+
|
72 |
+
def test_gosper_sum_parametric():
|
73 |
+
assert gosper_sum(binomial(S.Half, m - j + 1)*binomial(S.Half, m + j), (j, 1, n)) == \
|
74 |
+
n*(1 + m - n)*(-1 + 2*m + 2*n)*binomial(S.Half, 1 + m - n)* \
|
75 |
+
binomial(S.Half, m + n)/(m*(1 + 2*m))
|
76 |
+
|
77 |
+
|
78 |
+
def test_gosper_sum_algebraic():
|
79 |
+
assert gosper_sum(
|
80 |
+
n**2 + sqrt(2), (n, 0, m)) == (m + 1)*(2*m**2 + m + 6*sqrt(2))/6
|
81 |
+
|
82 |
+
|
83 |
+
def test_gosper_sum_iterated():
|
84 |
+
f1 = binomial(2*k, k)/4**k
|
85 |
+
f2 = (1 + 2*n)*binomial(2*n, n)/4**n
|
86 |
+
f3 = (1 + 2*n)*(3 + 2*n)*binomial(2*n, n)/(3*4**n)
|
87 |
+
f4 = (1 + 2*n)*(3 + 2*n)*(5 + 2*n)*binomial(2*n, n)/(15*4**n)
|
88 |
+
f5 = (1 + 2*n)*(3 + 2*n)*(5 + 2*n)*(7 + 2*n)*binomial(2*n, n)/(105*4**n)
|
89 |
+
|
90 |
+
assert gosper_sum(f1, (k, 0, n)) == f2
|
91 |
+
assert gosper_sum(f2, (n, 0, n)) == f3
|
92 |
+
assert gosper_sum(f3, (n, 0, n)) == f4
|
93 |
+
assert gosper_sum(f4, (n, 0, n)) == f5
|
94 |
+
|
95 |
+
# the AeqB tests test expressions given in
|
96 |
+
# www.math.upenn.edu/~wilf/AeqB.pdf
|
97 |
+
|
98 |
+
|
99 |
+
def test_gosper_sum_AeqB_part1():
|
100 |
+
f1a = n**4
|
101 |
+
f1b = n**3*2**n
|
102 |
+
f1c = 1/(n**2 + sqrt(5)*n - 1)
|
103 |
+
f1d = n**4*4**n/binomial(2*n, n)
|
104 |
+
f1e = factorial(3*n)/(factorial(n)*factorial(n + 1)*factorial(n + 2)*27**n)
|
105 |
+
f1f = binomial(2*n, n)**2/((n + 1)*4**(2*n))
|
106 |
+
f1g = (4*n - 1)*binomial(2*n, n)**2/((2*n - 1)**2*4**(2*n))
|
107 |
+
f1h = n*factorial(n - S.Half)**2/factorial(n + 1)**2
|
108 |
+
|
109 |
+
g1a = m*(m + 1)*(2*m + 1)*(3*m**2 + 3*m - 1)/30
|
110 |
+
g1b = 26 + 2**(m + 1)*(m**3 - 3*m**2 + 9*m - 13)
|
111 |
+
g1c = (m + 1)*(m*(m**2 - 7*m + 3)*sqrt(5) - (
|
112 |
+
3*m**3 - 7*m**2 + 19*m - 6))/(2*m**3*sqrt(5) + m**4 + 5*m**2 - 1)/6
|
113 |
+
g1d = Rational(-2, 231) + 2*4**m*(m + 1)*(63*m**4 + 112*m**3 + 18*m**2 -
|
114 |
+
22*m + 3)/(693*binomial(2*m, m))
|
115 |
+
g1e = Rational(-9, 2) + (81*m**2 + 261*m + 200)*factorial(
|
116 |
+
3*m + 2)/(40*27**m*factorial(m)*factorial(m + 1)*factorial(m + 2))
|
117 |
+
g1f = (2*m + 1)**2*binomial(2*m, m)**2/(4**(2*m)*(m + 1))
|
118 |
+
g1g = -binomial(2*m, m)**2/4**(2*m)
|
119 |
+
g1h = 4*pi -(2*m + 1)**2*(3*m + 4)*factorial(m - S.Half)**2/factorial(m + 1)**2
|
120 |
+
|
121 |
+
g = gosper_sum(f1a, (n, 0, m))
|
122 |
+
assert g is not None and simplify(g - g1a) == 0
|
123 |
+
g = gosper_sum(f1b, (n, 0, m))
|
124 |
+
assert g is not None and simplify(g - g1b) == 0
|
125 |
+
g = gosper_sum(f1c, (n, 0, m))
|
126 |
+
assert g is not None and simplify(g - g1c) == 0
|
127 |
+
g = gosper_sum(f1d, (n, 0, m))
|
128 |
+
assert g is not None and simplify(g - g1d) == 0
|
129 |
+
g = gosper_sum(f1e, (n, 0, m))
|
130 |
+
assert g is not None and simplify(g - g1e) == 0
|
131 |
+
g = gosper_sum(f1f, (n, 0, m))
|
132 |
+
assert g is not None and simplify(g - g1f) == 0
|
133 |
+
g = gosper_sum(f1g, (n, 0, m))
|
134 |
+
assert g is not None and simplify(g - g1g) == 0
|
135 |
+
g = gosper_sum(f1h, (n, 0, m))
|
136 |
+
# need to call rewrite(gamma) here because we have terms involving
|
137 |
+
# factorial(1/2)
|
138 |
+
assert g is not None and simplify(g - g1h).rewrite(gamma) == 0
|
139 |
+
|
140 |
+
|
141 |
+
def test_gosper_sum_AeqB_part2():
|
142 |
+
f2a = n**2*a**n
|
143 |
+
f2b = (n - r/2)*binomial(r, n)
|
144 |
+
f2c = factorial(n - 1)**2/(factorial(n - x)*factorial(n + x))
|
145 |
+
|
146 |
+
g2a = -a*(a + 1)/(a - 1)**3 + a**(
|
147 |
+
m + 1)*(a**2*m**2 - 2*a*m**2 + m**2 - 2*a*m + 2*m + a + 1)/(a - 1)**3
|
148 |
+
g2b = (m - r)*binomial(r, m)/2
|
149 |
+
ff = factorial(1 - x)*factorial(1 + x)
|
150 |
+
g2c = 1/ff*(
|
151 |
+
1 - 1/x**2) + factorial(m)**2/(x**2*factorial(m - x)*factorial(m + x))
|
152 |
+
|
153 |
+
g = gosper_sum(f2a, (n, 0, m))
|
154 |
+
assert g is not None and simplify(g - g2a) == 0
|
155 |
+
g = gosper_sum(f2b, (n, 0, m))
|
156 |
+
assert g is not None and simplify(g - g2b) == 0
|
157 |
+
g = gosper_sum(f2c, (n, 1, m))
|
158 |
+
assert g is not None and simplify(g - g2c) == 0
|
159 |
+
|
160 |
+
|
161 |
+
def test_gosper_nan():
|
162 |
+
a = Symbol('a', positive=True)
|
163 |
+
b = Symbol('b', positive=True)
|
164 |
+
n = Symbol('n', integer=True)
|
165 |
+
m = Symbol('m', integer=True)
|
166 |
+
f2d = n*(n + a + b)*a**n*b**n/(factorial(n + a)*factorial(n + b))
|
167 |
+
g2d = 1/(factorial(a - 1)*factorial(
|
168 |
+
b - 1)) - a**(m + 1)*b**(m + 1)/(factorial(a + m)*factorial(b + m))
|
169 |
+
g = gosper_sum(f2d, (n, 0, m))
|
170 |
+
assert simplify(g - g2d) == 0
|
171 |
+
|
172 |
+
|
173 |
+
def test_gosper_sum_AeqB_part3():
|
174 |
+
f3a = 1/n**4
|
175 |
+
f3b = (6*n + 3)/(4*n**4 + 8*n**3 + 8*n**2 + 4*n + 3)
|
176 |
+
f3c = 2**n*(n**2 - 2*n - 1)/(n**2*(n + 1)**2)
|
177 |
+
f3d = n**2*4**n/((n + 1)*(n + 2))
|
178 |
+
f3e = 2**n/(n + 1)
|
179 |
+
f3f = 4*(n - 1)*(n**2 - 2*n - 1)/(n**2*(n + 1)**2*(n - 2)**2*(n - 3)**2)
|
180 |
+
f3g = (n**4 - 14*n**2 - 24*n - 9)*2**n/(n**2*(n + 1)**2*(n + 2)**2*
|
181 |
+
(n + 3)**2)
|
182 |
+
|
183 |
+
# g3a -> no closed form
|
184 |
+
g3b = m*(m + 2)/(2*m**2 + 4*m + 3)
|
185 |
+
g3c = 2**m/m**2 - 2
|
186 |
+
g3d = Rational(2, 3) + 4**(m + 1)*(m - 1)/(m + 2)/3
|
187 |
+
# g3e -> no closed form
|
188 |
+
g3f = -(Rational(-1, 16) + 1/((m - 2)**2*(m + 1)**2)) # the AeqB key is wrong
|
189 |
+
g3g = Rational(-2, 9) + 2**(m + 1)/((m + 1)**2*(m + 3)**2)
|
190 |
+
|
191 |
+
g = gosper_sum(f3a, (n, 1, m))
|
192 |
+
assert g is None
|
193 |
+
g = gosper_sum(f3b, (n, 1, m))
|
194 |
+
assert g is not None and simplify(g - g3b) == 0
|
195 |
+
g = gosper_sum(f3c, (n, 1, m - 1))
|
196 |
+
assert g is not None and simplify(g - g3c) == 0
|
197 |
+
g = gosper_sum(f3d, (n, 1, m))
|
198 |
+
assert g is not None and simplify(g - g3d) == 0
|
199 |
+
g = gosper_sum(f3e, (n, 0, m - 1))
|
200 |
+
assert g is None
|
201 |
+
g = gosper_sum(f3f, (n, 4, m))
|
202 |
+
assert g is not None and simplify(g - g3f) == 0
|
203 |
+
g = gosper_sum(f3g, (n, 1, m))
|
204 |
+
assert g is not None and simplify(g - g3g) == 0
|
venv/lib/python3.10/site-packages/sympy/concrete/tests/test_guess.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.concrete.guess import (
|
2 |
+
find_simple_recurrence_vector,
|
3 |
+
find_simple_recurrence,
|
4 |
+
rationalize,
|
5 |
+
guess_generating_function_rational,
|
6 |
+
guess_generating_function,
|
7 |
+
guess
|
8 |
+
)
|
9 |
+
from sympy.concrete.products import Product
|
10 |
+
from sympy.core.function import Function
|
11 |
+
from sympy.core.numbers import Rational
|
12 |
+
from sympy.core.singleton import S
|
13 |
+
from sympy.core.symbol import (Symbol, symbols)
|
14 |
+
from sympy.core.sympify import sympify
|
15 |
+
from sympy.functions.combinatorial.factorials import (RisingFactorial, factorial)
|
16 |
+
from sympy.functions.combinatorial.numbers import fibonacci
|
17 |
+
from sympy.functions.elementary.exponential import exp
|
18 |
+
|
19 |
+
|
20 |
+
def test_find_simple_recurrence_vector():
|
21 |
+
assert find_simple_recurrence_vector(
|
22 |
+
[fibonacci(k) for k in range(12)]) == [1, -1, -1]
|
23 |
+
|
24 |
+
|
25 |
+
def test_find_simple_recurrence():
|
26 |
+
a = Function('a')
|
27 |
+
n = Symbol('n')
|
28 |
+
assert find_simple_recurrence([fibonacci(k) for k in range(12)]) == (
|
29 |
+
-a(n) - a(n + 1) + a(n + 2))
|
30 |
+
|
31 |
+
f = Function('a')
|
32 |
+
i = Symbol('n')
|
33 |
+
a = [1, 1, 1]
|
34 |
+
for k in range(15): a.append(5*a[-1]-3*a[-2]+8*a[-3])
|
35 |
+
assert find_simple_recurrence(a, A=f, N=i) == (
|
36 |
+
-8*f(i) + 3*f(i + 1) - 5*f(i + 2) + f(i + 3))
|
37 |
+
assert find_simple_recurrence([0, 2, 15, 74, 12, 3, 0,
|
38 |
+
1, 2, 85, 4, 5, 63]) == 0
|
39 |
+
|
40 |
+
|
41 |
+
def test_rationalize():
|
42 |
+
from mpmath import cos, pi, mpf
|
43 |
+
assert rationalize(cos(pi/3)) == S.Half
|
44 |
+
assert rationalize(mpf("0.333333333333333")) == Rational(1, 3)
|
45 |
+
assert rationalize(mpf("-0.333333333333333")) == Rational(-1, 3)
|
46 |
+
assert rationalize(pi, maxcoeff = 250) == Rational(355, 113)
|
47 |
+
|
48 |
+
|
49 |
+
def test_guess_generating_function_rational():
|
50 |
+
x = Symbol('x')
|
51 |
+
assert guess_generating_function_rational([fibonacci(k)
|
52 |
+
for k in range(5, 15)]) == ((3*x + 5)/(-x**2 - x + 1))
|
53 |
+
|
54 |
+
|
55 |
+
def test_guess_generating_function():
|
56 |
+
x = Symbol('x')
|
57 |
+
assert guess_generating_function([fibonacci(k)
|
58 |
+
for k in range(5, 15)])['ogf'] == ((3*x + 5)/(-x**2 - x + 1))
|
59 |
+
assert guess_generating_function(
|
60 |
+
[1, 2, 5, 14, 41, 124, 383, 1200, 3799, 12122, 38919])['ogf'] == (
|
61 |
+
(1/(x**4 + 2*x**2 - 4*x + 1))**S.Half)
|
62 |
+
assert guess_generating_function(sympify(
|
63 |
+
"[3/2, 11/2, 0, -121/2, -363/2, 121, 4719/2, 11495/2, -8712, -178717/2]")
|
64 |
+
)['ogf'] == (x + Rational(3, 2))/(11*x**2 - 3*x + 1)
|
65 |
+
assert guess_generating_function([factorial(k) for k in range(12)],
|
66 |
+
types=['egf'])['egf'] == 1/(-x + 1)
|
67 |
+
assert guess_generating_function([k+1 for k in range(12)],
|
68 |
+
types=['egf']) == {'egf': (x + 1)*exp(x), 'lgdegf': (x + 2)/(x + 1)}
|
69 |
+
|
70 |
+
|
71 |
+
def test_guess():
|
72 |
+
i0, i1 = symbols('i0 i1')
|
73 |
+
assert guess([1, 2, 6, 24, 120], evaluate=False) == [Product(i1 + 1, (i1, 1, i0 - 1))]
|
74 |
+
assert guess([1, 2, 6, 24, 120]) == [RisingFactorial(2, i0 - 1)]
|
75 |
+
assert guess([1, 2, 7, 42, 429, 7436, 218348, 10850216], niter=4) == [
|
76 |
+
2**(i0 - 1)*(Rational(27, 16))**(i0**2/2 - 3*i0/2 +
|
77 |
+
1)*Product(RisingFactorial(Rational(5, 3), i1 - 1)*RisingFactorial(Rational(7, 3), i1
|
78 |
+
- 1)/(RisingFactorial(Rational(3, 2), i1 - 1)*RisingFactorial(Rational(5, 2), i1 -
|
79 |
+
1)), (i1, 1, i0 - 1))]
|
80 |
+
assert guess([1, 0, 2]) == []
|
81 |
+
x, y = symbols('x y')
|
82 |
+
assert guess([1, 2, 6, 24, 120], variables=[x, y]) == [RisingFactorial(2, x - 1)]
|
venv/lib/python3.10/site-packages/sympy/concrete/tests/test_products.py
ADDED
@@ -0,0 +1,410 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.concrete.products import (Product, product)
|
2 |
+
from sympy.concrete.summations import Sum
|
3 |
+
from sympy.core.function import (Derivative, Function, diff)
|
4 |
+
from sympy.core.numbers import (Rational, oo, pi)
|
5 |
+
from sympy.core.singleton import S
|
6 |
+
from sympy.core.symbol import (Dummy, Symbol, symbols)
|
7 |
+
from sympy.functions.combinatorial.factorials import (rf, factorial)
|
8 |
+
from sympy.functions.elementary.exponential import (exp, log)
|
9 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
10 |
+
from sympy.functions.elementary.trigonometric import (cos, sin)
|
11 |
+
from sympy.functions.special.tensor_functions import KroneckerDelta
|
12 |
+
from sympy.simplify.combsimp import combsimp
|
13 |
+
from sympy.simplify.simplify import simplify
|
14 |
+
from sympy.testing.pytest import raises
|
15 |
+
|
16 |
+
a, k, n, m, x = symbols('a,k,n,m,x', integer=True)
|
17 |
+
f = Function('f')
|
18 |
+
|
19 |
+
|
20 |
+
def test_karr_convention():
|
21 |
+
# Test the Karr product convention that we want to hold.
|
22 |
+
# See his paper "Summation in Finite Terms" for a detailed
|
23 |
+
# reasoning why we really want exactly this definition.
|
24 |
+
# The convention is described for sums on page 309 and
|
25 |
+
# essentially in section 1.4, definition 3. For products
|
26 |
+
# we can find in analogy:
|
27 |
+
#
|
28 |
+
# \prod_{m <= i < n} f(i) 'has the obvious meaning' for m < n
|
29 |
+
# \prod_{m <= i < n} f(i) = 0 for m = n
|
30 |
+
# \prod_{m <= i < n} f(i) = 1 / \prod_{n <= i < m} f(i) for m > n
|
31 |
+
#
|
32 |
+
# It is important to note that he defines all products with
|
33 |
+
# the upper limit being *exclusive*.
|
34 |
+
# In contrast, SymPy and the usual mathematical notation has:
|
35 |
+
#
|
36 |
+
# prod_{i = a}^b f(i) = f(a) * f(a+1) * ... * f(b-1) * f(b)
|
37 |
+
#
|
38 |
+
# with the upper limit *inclusive*. So translating between
|
39 |
+
# the two we find that:
|
40 |
+
#
|
41 |
+
# \prod_{m <= i < n} f(i) = \prod_{i = m}^{n-1} f(i)
|
42 |
+
#
|
43 |
+
# where we intentionally used two different ways to typeset the
|
44 |
+
# products and its limits.
|
45 |
+
|
46 |
+
i = Symbol("i", integer=True)
|
47 |
+
k = Symbol("k", integer=True)
|
48 |
+
j = Symbol("j", integer=True, positive=True)
|
49 |
+
|
50 |
+
# A simple example with a concrete factors and symbolic limits.
|
51 |
+
|
52 |
+
# The normal product: m = k and n = k + j and therefore m < n:
|
53 |
+
m = k
|
54 |
+
n = k + j
|
55 |
+
|
56 |
+
a = m
|
57 |
+
b = n - 1
|
58 |
+
S1 = Product(i**2, (i, a, b)).doit()
|
59 |
+
|
60 |
+
# The reversed product: m = k + j and n = k and therefore m > n:
|
61 |
+
m = k + j
|
62 |
+
n = k
|
63 |
+
|
64 |
+
a = m
|
65 |
+
b = n - 1
|
66 |
+
S2 = Product(i**2, (i, a, b)).doit()
|
67 |
+
|
68 |
+
assert S1 * S2 == 1
|
69 |
+
|
70 |
+
# Test the empty product: m = k and n = k and therefore m = n:
|
71 |
+
m = k
|
72 |
+
n = k
|
73 |
+
|
74 |
+
a = m
|
75 |
+
b = n - 1
|
76 |
+
Sz = Product(i**2, (i, a, b)).doit()
|
77 |
+
|
78 |
+
assert Sz == 1
|
79 |
+
|
80 |
+
# Another example this time with an unspecified factor and
|
81 |
+
# numeric limits. (We can not do both tests in the same example.)
|
82 |
+
f = Function("f")
|
83 |
+
|
84 |
+
# The normal product with m < n:
|
85 |
+
m = 2
|
86 |
+
n = 11
|
87 |
+
|
88 |
+
a = m
|
89 |
+
b = n - 1
|
90 |
+
S1 = Product(f(i), (i, a, b)).doit()
|
91 |
+
|
92 |
+
# The reversed product with m > n:
|
93 |
+
m = 11
|
94 |
+
n = 2
|
95 |
+
|
96 |
+
a = m
|
97 |
+
b = n - 1
|
98 |
+
S2 = Product(f(i), (i, a, b)).doit()
|
99 |
+
|
100 |
+
assert simplify(S1 * S2) == 1
|
101 |
+
|
102 |
+
# Test the empty product with m = n:
|
103 |
+
m = 5
|
104 |
+
n = 5
|
105 |
+
|
106 |
+
a = m
|
107 |
+
b = n - 1
|
108 |
+
Sz = Product(f(i), (i, a, b)).doit()
|
109 |
+
|
110 |
+
assert Sz == 1
|
111 |
+
|
112 |
+
|
113 |
+
def test_karr_proposition_2a():
|
114 |
+
# Test Karr, page 309, proposition 2, part a
|
115 |
+
i, u, v = symbols('i u v', integer=True)
|
116 |
+
|
117 |
+
def test_the_product(m, n):
|
118 |
+
# g
|
119 |
+
g = i**3 + 2*i**2 - 3*i
|
120 |
+
# f = Delta g
|
121 |
+
f = simplify(g.subs(i, i+1) / g)
|
122 |
+
# The product
|
123 |
+
a = m
|
124 |
+
b = n - 1
|
125 |
+
P = Product(f, (i, a, b)).doit()
|
126 |
+
# Test if Product_{m <= i < n} f(i) = g(n) / g(m)
|
127 |
+
assert combsimp(P / (g.subs(i, n) / g.subs(i, m))) == 1
|
128 |
+
|
129 |
+
# m < n
|
130 |
+
test_the_product(u, u + v)
|
131 |
+
# m = n
|
132 |
+
test_the_product(u, u)
|
133 |
+
# m > n
|
134 |
+
test_the_product(u + v, u)
|
135 |
+
|
136 |
+
|
137 |
+
def test_karr_proposition_2b():
|
138 |
+
# Test Karr, page 309, proposition 2, part b
|
139 |
+
i, u, v, w = symbols('i u v w', integer=True)
|
140 |
+
|
141 |
+
def test_the_product(l, n, m):
|
142 |
+
# Productmand
|
143 |
+
s = i**3
|
144 |
+
# First product
|
145 |
+
a = l
|
146 |
+
b = n - 1
|
147 |
+
S1 = Product(s, (i, a, b)).doit()
|
148 |
+
# Second product
|
149 |
+
a = l
|
150 |
+
b = m - 1
|
151 |
+
S2 = Product(s, (i, a, b)).doit()
|
152 |
+
# Third product
|
153 |
+
a = m
|
154 |
+
b = n - 1
|
155 |
+
S3 = Product(s, (i, a, b)).doit()
|
156 |
+
# Test if S1 = S2 * S3 as required
|
157 |
+
assert combsimp(S1 / (S2 * S3)) == 1
|
158 |
+
|
159 |
+
# l < m < n
|
160 |
+
test_the_product(u, u + v, u + v + w)
|
161 |
+
# l < m = n
|
162 |
+
test_the_product(u, u + v, u + v)
|
163 |
+
# l < m > n
|
164 |
+
test_the_product(u, u + v + w, v)
|
165 |
+
# l = m < n
|
166 |
+
test_the_product(u, u, u + v)
|
167 |
+
# l = m = n
|
168 |
+
test_the_product(u, u, u)
|
169 |
+
# l = m > n
|
170 |
+
test_the_product(u + v, u + v, u)
|
171 |
+
# l > m < n
|
172 |
+
test_the_product(u + v, u, u + w)
|
173 |
+
# l > m = n
|
174 |
+
test_the_product(u + v, u, u)
|
175 |
+
# l > m > n
|
176 |
+
test_the_product(u + v + w, u + v, u)
|
177 |
+
|
178 |
+
|
179 |
+
def test_simple_products():
|
180 |
+
assert product(2, (k, a, n)) == 2**(n - a + 1)
|
181 |
+
assert product(k, (k, 1, n)) == factorial(n)
|
182 |
+
assert product(k**3, (k, 1, n)) == factorial(n)**3
|
183 |
+
|
184 |
+
assert product(k + 1, (k, 0, n - 1)) == factorial(n)
|
185 |
+
assert product(k + 1, (k, a, n - 1)) == rf(1 + a, n - a)
|
186 |
+
|
187 |
+
assert product(cos(k), (k, 0, 5)) == cos(1)*cos(2)*cos(3)*cos(4)*cos(5)
|
188 |
+
assert product(cos(k), (k, 3, 5)) == cos(3)*cos(4)*cos(5)
|
189 |
+
assert product(cos(k), (k, 1, Rational(5, 2))) != cos(1)*cos(2)
|
190 |
+
|
191 |
+
assert isinstance(product(k**k, (k, 1, n)), Product)
|
192 |
+
|
193 |
+
assert Product(x**k, (k, 1, n)).variables == [k]
|
194 |
+
|
195 |
+
raises(ValueError, lambda: Product(n))
|
196 |
+
raises(ValueError, lambda: Product(n, k))
|
197 |
+
raises(ValueError, lambda: Product(n, k, 1))
|
198 |
+
raises(ValueError, lambda: Product(n, k, 1, 10))
|
199 |
+
raises(ValueError, lambda: Product(n, (k, 1)))
|
200 |
+
|
201 |
+
assert product(1, (n, 1, oo)) == 1 # issue 8301
|
202 |
+
assert product(2, (n, 1, oo)) is oo
|
203 |
+
assert product(-1, (n, 1, oo)).func is Product
|
204 |
+
|
205 |
+
|
206 |
+
def test_multiple_products():
|
207 |
+
assert product(x, (n, 1, k), (k, 1, m)) == x**(m**2/2 + m/2)
|
208 |
+
assert product(f(n), (
|
209 |
+
n, 1, m), (m, 1, k)) == Product(f(n), (n, 1, m), (m, 1, k)).doit()
|
210 |
+
assert Product(f(n), (m, 1, k), (n, 1, k)).doit() == \
|
211 |
+
Product(Product(f(n), (m, 1, k)), (n, 1, k)).doit() == \
|
212 |
+
product(f(n), (m, 1, k), (n, 1, k)) == \
|
213 |
+
product(product(f(n), (m, 1, k)), (n, 1, k)) == \
|
214 |
+
Product(f(n)**k, (n, 1, k))
|
215 |
+
assert Product(
|
216 |
+
x, (x, 1, k), (k, 1, n)).doit() == Product(factorial(k), (k, 1, n))
|
217 |
+
|
218 |
+
assert Product(x**k, (n, 1, k), (k, 1, m)).variables == [n, k]
|
219 |
+
|
220 |
+
|
221 |
+
def test_rational_products():
|
222 |
+
assert product(1 + 1/k, (k, 1, n)) == rf(2, n)/factorial(n)
|
223 |
+
|
224 |
+
|
225 |
+
def test_special_products():
|
226 |
+
# Wallis product
|
227 |
+
assert product((4*k)**2 / (4*k**2 - 1), (k, 1, n)) == \
|
228 |
+
4**n*factorial(n)**2/rf(S.Half, n)/rf(Rational(3, 2), n)
|
229 |
+
|
230 |
+
# Euler's product formula for sin
|
231 |
+
assert product(1 + a/k**2, (k, 1, n)) == \
|
232 |
+
rf(1 - sqrt(-a), n)*rf(1 + sqrt(-a), n)/factorial(n)**2
|
233 |
+
|
234 |
+
|
235 |
+
def test__eval_product():
|
236 |
+
from sympy.abc import i, n
|
237 |
+
# issue 4809
|
238 |
+
a = Function('a')
|
239 |
+
assert product(2*a(i), (i, 1, n)) == 2**n * Product(a(i), (i, 1, n))
|
240 |
+
# issue 4810
|
241 |
+
assert product(2**i, (i, 1, n)) == 2**(n*(n + 1)/2)
|
242 |
+
k, m = symbols('k m', integer=True)
|
243 |
+
assert product(2**i, (i, k, m)) == 2**(-k**2/2 + k/2 + m**2/2 + m/2)
|
244 |
+
n = Symbol('n', negative=True, integer=True)
|
245 |
+
p = Symbol('p', positive=True, integer=True)
|
246 |
+
assert product(2**i, (i, n, p)) == 2**(-n**2/2 + n/2 + p**2/2 + p/2)
|
247 |
+
assert product(2**i, (i, p, n)) == 2**(n**2/2 + n/2 - p**2/2 + p/2)
|
248 |
+
|
249 |
+
|
250 |
+
def test_product_pow():
|
251 |
+
# issue 4817
|
252 |
+
assert product(2**f(k), (k, 1, n)) == 2**Sum(f(k), (k, 1, n))
|
253 |
+
assert product(2**(2*f(k)), (k, 1, n)) == 2**Sum(2*f(k), (k, 1, n))
|
254 |
+
|
255 |
+
|
256 |
+
def test_infinite_product():
|
257 |
+
# issue 5737
|
258 |
+
assert isinstance(Product(2**(1/factorial(n)), (n, 0, oo)), Product)
|
259 |
+
|
260 |
+
|
261 |
+
def test_conjugate_transpose():
|
262 |
+
p = Product(x**k, (k, 1, 3))
|
263 |
+
assert p.adjoint().doit() == p.doit().adjoint()
|
264 |
+
assert p.conjugate().doit() == p.doit().conjugate()
|
265 |
+
assert p.transpose().doit() == p.doit().transpose()
|
266 |
+
|
267 |
+
A, B = symbols("A B", commutative=False)
|
268 |
+
p = Product(A*B**k, (k, 1, 3))
|
269 |
+
assert p.adjoint().doit() == p.doit().adjoint()
|
270 |
+
assert p.conjugate().doit() == p.doit().conjugate()
|
271 |
+
assert p.transpose().doit() == p.doit().transpose()
|
272 |
+
|
273 |
+
p = Product(B**k*A, (k, 1, 3))
|
274 |
+
assert p.adjoint().doit() == p.doit().adjoint()
|
275 |
+
assert p.conjugate().doit() == p.doit().conjugate()
|
276 |
+
assert p.transpose().doit() == p.doit().transpose()
|
277 |
+
|
278 |
+
|
279 |
+
def test_simplify_prod():
|
280 |
+
y, t, b, c, v, d = symbols('y, t, b, c, v, d', integer = True)
|
281 |
+
|
282 |
+
_simplify = lambda e: simplify(e, doit=False)
|
283 |
+
assert _simplify(Product(x*y, (x, n, m), (y, a, k)) * \
|
284 |
+
Product(y, (x, n, m), (y, a, k))) == \
|
285 |
+
Product(x*y**2, (x, n, m), (y, a, k))
|
286 |
+
assert _simplify(3 * y* Product(x, (x, n, m)) * Product(x, (x, m + 1, a))) \
|
287 |
+
== 3 * y * Product(x, (x, n, a))
|
288 |
+
assert _simplify(Product(x, (x, k + 1, a)) * Product(x, (x, n, k))) == \
|
289 |
+
Product(x, (x, n, a))
|
290 |
+
assert _simplify(Product(x, (x, k + 1, a)) * Product(x + 1, (x, n, k))) == \
|
291 |
+
Product(x, (x, k + 1, a)) * Product(x + 1, (x, n, k))
|
292 |
+
assert _simplify(Product(x, (t, a, b)) * Product(y, (t, a, b)) * \
|
293 |
+
Product(x, (t, b+1, c))) == Product(x*y, (t, a, b)) * \
|
294 |
+
Product(x, (t, b+1, c))
|
295 |
+
assert _simplify(Product(x, (t, a, b)) * Product(x, (t, b+1, c)) * \
|
296 |
+
Product(y, (t, a, b))) == Product(x*y, (t, a, b)) * \
|
297 |
+
Product(x, (t, b+1, c))
|
298 |
+
assert _simplify(Product(sin(t)**2 + cos(t)**2 + 1, (t, a, b))) == \
|
299 |
+
Product(2, (t, a, b))
|
300 |
+
assert _simplify(Product(sin(t)**2 + cos(t)**2 - 1, (t, a, b))) == \
|
301 |
+
Product(0, (t, a, b))
|
302 |
+
assert _simplify(Product(v*Product(sin(t)**2 + cos(t)**2, (t, a, b)),
|
303 |
+
(v, c, d))) == Product(v*Product(1, (t, a, b)), (v, c, d))
|
304 |
+
|
305 |
+
|
306 |
+
def test_change_index():
|
307 |
+
b, y, c, d, z = symbols('b, y, c, d, z', integer = True)
|
308 |
+
|
309 |
+
assert Product(x, (x, a, b)).change_index(x, x + 1, y) == \
|
310 |
+
Product(y - 1, (y, a + 1, b + 1))
|
311 |
+
assert Product(x**2, (x, a, b)).change_index(x, x - 1) == \
|
312 |
+
Product((x + 1)**2, (x, a - 1, b - 1))
|
313 |
+
assert Product(x**2, (x, a, b)).change_index(x, -x, y) == \
|
314 |
+
Product((-y)**2, (y, -b, -a))
|
315 |
+
assert Product(x, (x, a, b)).change_index(x, -x - 1) == \
|
316 |
+
Product(-x - 1, (x, - b - 1, -a - 1))
|
317 |
+
assert Product(x*y, (x, a, b), (y, c, d)).change_index(x, x - 1, z) == \
|
318 |
+
Product((z + 1)*y, (z, a - 1, b - 1), (y, c, d))
|
319 |
+
|
320 |
+
|
321 |
+
def test_reorder():
|
322 |
+
b, y, c, d, z = symbols('b, y, c, d, z', integer = True)
|
323 |
+
|
324 |
+
assert Product(x*y, (x, a, b), (y, c, d)).reorder((0, 1)) == \
|
325 |
+
Product(x*y, (y, c, d), (x, a, b))
|
326 |
+
assert Product(x, (x, a, b), (x, c, d)).reorder((0, 1)) == \
|
327 |
+
Product(x, (x, c, d), (x, a, b))
|
328 |
+
assert Product(x*y + z, (x, a, b), (z, m, n), (y, c, d)).reorder(\
|
329 |
+
(2, 0), (0, 1)) == Product(x*y + z, (z, m, n), (y, c, d), (x, a, b))
|
330 |
+
assert Product(x*y*z, (x, a, b), (y, c, d), (z, m, n)).reorder(\
|
331 |
+
(0, 1), (1, 2), (0, 2)) == \
|
332 |
+
Product(x*y*z, (x, a, b), (z, m, n), (y, c, d))
|
333 |
+
assert Product(x*y*z, (x, a, b), (y, c, d), (z, m, n)).reorder(\
|
334 |
+
(x, y), (y, z), (x, z)) == \
|
335 |
+
Product(x*y*z, (x, a, b), (z, m, n), (y, c, d))
|
336 |
+
assert Product(x*y, (x, a, b), (y, c, d)).reorder((x, 1)) == \
|
337 |
+
Product(x*y, (y, c, d), (x, a, b))
|
338 |
+
assert Product(x*y, (x, a, b), (y, c, d)).reorder((y, x)) == \
|
339 |
+
Product(x*y, (y, c, d), (x, a, b))
|
340 |
+
|
341 |
+
|
342 |
+
def test_Product_is_convergent():
|
343 |
+
assert Product(1/n**2, (n, 1, oo)).is_convergent() is S.false
|
344 |
+
assert Product(exp(1/n**2), (n, 1, oo)).is_convergent() is S.true
|
345 |
+
assert Product(1/n, (n, 1, oo)).is_convergent() is S.false
|
346 |
+
assert Product(1 + 1/n, (n, 1, oo)).is_convergent() is S.false
|
347 |
+
assert Product(1 + 1/n**2, (n, 1, oo)).is_convergent() is S.true
|
348 |
+
|
349 |
+
|
350 |
+
def test_reverse_order():
|
351 |
+
x, y, a, b, c, d= symbols('x, y, a, b, c, d', integer = True)
|
352 |
+
|
353 |
+
assert Product(x, (x, 0, 3)).reverse_order(0) == Product(1/x, (x, 4, -1))
|
354 |
+
assert Product(x*y, (x, 1, 5), (y, 0, 6)).reverse_order(0, 1) == \
|
355 |
+
Product(x*y, (x, 6, 0), (y, 7, -1))
|
356 |
+
assert Product(x, (x, 1, 2)).reverse_order(0) == Product(1/x, (x, 3, 0))
|
357 |
+
assert Product(x, (x, 1, 3)).reverse_order(0) == Product(1/x, (x, 4, 0))
|
358 |
+
assert Product(x, (x, 1, a)).reverse_order(0) == Product(1/x, (x, a + 1, 0))
|
359 |
+
assert Product(x, (x, a, 5)).reverse_order(0) == Product(1/x, (x, 6, a - 1))
|
360 |
+
assert Product(x, (x, a + 1, a + 5)).reverse_order(0) == \
|
361 |
+
Product(1/x, (x, a + 6, a))
|
362 |
+
assert Product(x, (x, a + 1, a + 2)).reverse_order(0) == \
|
363 |
+
Product(1/x, (x, a + 3, a))
|
364 |
+
assert Product(x, (x, a + 1, a + 1)).reverse_order(0) == \
|
365 |
+
Product(1/x, (x, a + 2, a))
|
366 |
+
assert Product(x, (x, a, b)).reverse_order(0) == Product(1/x, (x, b + 1, a - 1))
|
367 |
+
assert Product(x, (x, a, b)).reverse_order(x) == Product(1/x, (x, b + 1, a - 1))
|
368 |
+
assert Product(x*y, (x, a, b), (y, 2, 5)).reverse_order(x, 1) == \
|
369 |
+
Product(x*y, (x, b + 1, a - 1), (y, 6, 1))
|
370 |
+
assert Product(x*y, (x, a, b), (y, 2, 5)).reverse_order(y, x) == \
|
371 |
+
Product(x*y, (x, b + 1, a - 1), (y, 6, 1))
|
372 |
+
|
373 |
+
|
374 |
+
def test_issue_9983():
|
375 |
+
n = Symbol('n', integer=True, positive=True)
|
376 |
+
p = Product(1 + 1/n**Rational(2, 3), (n, 1, oo))
|
377 |
+
assert p.is_convergent() is S.false
|
378 |
+
assert product(1 + 1/n**Rational(2, 3), (n, 1, oo)) == p.doit()
|
379 |
+
|
380 |
+
|
381 |
+
def test_issue_13546():
|
382 |
+
n = Symbol('n')
|
383 |
+
k = Symbol('k')
|
384 |
+
p = Product(n + 1 / 2**k, (k, 0, n-1)).doit()
|
385 |
+
assert p.subs(n, 2).doit() == Rational(15, 2)
|
386 |
+
|
387 |
+
|
388 |
+
def test_issue_14036():
|
389 |
+
a, n = symbols('a n')
|
390 |
+
assert product(1 - a**2 / (n*pi)**2, [n, 1, oo]) != 0
|
391 |
+
|
392 |
+
|
393 |
+
def test_rewrite_Sum():
|
394 |
+
assert Product(1 - S.Half**2/k**2, (k, 1, oo)).rewrite(Sum) == \
|
395 |
+
exp(Sum(log(1 - 1/(4*k**2)), (k, 1, oo)))
|
396 |
+
|
397 |
+
|
398 |
+
def test_KroneckerDelta_Product():
|
399 |
+
y = Symbol('y')
|
400 |
+
assert Product(x*KroneckerDelta(x, y), (x, 0, 1)).doit() == 0
|
401 |
+
|
402 |
+
|
403 |
+
def test_issue_20848():
|
404 |
+
_i = Dummy('i')
|
405 |
+
t, y, z = symbols('t y z')
|
406 |
+
assert diff(Product(x, (y, 1, z)), x).as_dummy() == Sum(Product(x, (y, 1, _i - 1))*Product(x, (y, _i + 1, z)), (_i, 1, z)).as_dummy()
|
407 |
+
assert diff(Product(x, (y, 1, z)), x).doit() == x**(z - 1)*z
|
408 |
+
assert diff(Product(x, (y, x, z)), x) == Derivative(Product(x, (y, x, z)), x)
|
409 |
+
assert diff(Product(t, (x, 1, z)), x) == S(0)
|
410 |
+
assert Product(sin(n*x), (n, -1, 1)).diff(x).doit() == S(0)
|
venv/lib/python3.10/site-packages/sympy/concrete/tests/test_sums_products.py
ADDED
@@ -0,0 +1,1646 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from math import prod
|
2 |
+
|
3 |
+
from sympy.concrete.expr_with_intlimits import ReorderError
|
4 |
+
from sympy.concrete.products import (Product, product)
|
5 |
+
from sympy.concrete.summations import (Sum, summation, telescopic,
|
6 |
+
eval_sum_residue, _dummy_with_inherited_properties_concrete)
|
7 |
+
from sympy.core.function import (Derivative, Function)
|
8 |
+
from sympy.core import (Catalan, EulerGamma)
|
9 |
+
from sympy.core.facts import InconsistentAssumptions
|
10 |
+
from sympy.core.mod import Mod
|
11 |
+
from sympy.core.numbers import (E, I, Rational, nan, oo, pi)
|
12 |
+
from sympy.core.relational import Eq
|
13 |
+
from sympy.core.numbers import Float
|
14 |
+
from sympy.core.singleton import S
|
15 |
+
from sympy.core.symbol import (Dummy, Symbol, symbols)
|
16 |
+
from sympy.core.sympify import sympify
|
17 |
+
from sympy.functions.combinatorial.factorials import (rf, binomial, factorial)
|
18 |
+
from sympy.functions.combinatorial.numbers import harmonic
|
19 |
+
from sympy.functions.elementary.complexes import Abs
|
20 |
+
from sympy.functions.elementary.exponential import (exp, log)
|
21 |
+
from sympy.functions.elementary.hyperbolic import (sinh, tanh)
|
22 |
+
from sympy.functions.elementary.integers import floor
|
23 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
24 |
+
from sympy.functions.elementary.piecewise import Piecewise
|
25 |
+
from sympy.functions.elementary.trigonometric import (cos, sin)
|
26 |
+
from sympy.functions.special.gamma_functions import (gamma, lowergamma)
|
27 |
+
from sympy.functions.special.tensor_functions import KroneckerDelta
|
28 |
+
from sympy.functions.special.zeta_functions import zeta
|
29 |
+
from sympy.integrals.integrals import Integral
|
30 |
+
from sympy.logic.boolalg import And, Or
|
31 |
+
from sympy.matrices.expressions.matexpr import MatrixSymbol
|
32 |
+
from sympy.matrices.expressions.special import Identity
|
33 |
+
from sympy.matrices import (Matrix, SparseMatrix,
|
34 |
+
ImmutableDenseMatrix, ImmutableSparseMatrix, diag)
|
35 |
+
from sympy.sets.fancysets import Range
|
36 |
+
from sympy.sets.sets import Interval
|
37 |
+
from sympy.simplify.combsimp import combsimp
|
38 |
+
from sympy.simplify.simplify import simplify
|
39 |
+
from sympy.tensor.indexed import (Idx, Indexed, IndexedBase)
|
40 |
+
from sympy.testing.pytest import XFAIL, raises, slow
|
41 |
+
from sympy.abc import a, b, c, d, k, m, x, y, z
|
42 |
+
|
43 |
+
n = Symbol('n', integer=True)
|
44 |
+
f, g = symbols('f g', cls=Function)
|
45 |
+
|
46 |
+
def test_karr_convention():
|
47 |
+
# Test the Karr summation convention that we want to hold.
|
48 |
+
# See his paper "Summation in Finite Terms" for a detailed
|
49 |
+
# reasoning why we really want exactly this definition.
|
50 |
+
# The convention is described on page 309 and essentially
|
51 |
+
# in section 1.4, definition 3:
|
52 |
+
#
|
53 |
+
# \sum_{m <= i < n} f(i) 'has the obvious meaning' for m < n
|
54 |
+
# \sum_{m <= i < n} f(i) = 0 for m = n
|
55 |
+
# \sum_{m <= i < n} f(i) = - \sum_{n <= i < m} f(i) for m > n
|
56 |
+
#
|
57 |
+
# It is important to note that he defines all sums with
|
58 |
+
# the upper limit being *exclusive*.
|
59 |
+
# In contrast, SymPy and the usual mathematical notation has:
|
60 |
+
#
|
61 |
+
# sum_{i = a}^b f(i) = f(a) + f(a+1) + ... + f(b-1) + f(b)
|
62 |
+
#
|
63 |
+
# with the upper limit *inclusive*. So translating between
|
64 |
+
# the two we find that:
|
65 |
+
#
|
66 |
+
# \sum_{m <= i < n} f(i) = \sum_{i = m}^{n-1} f(i)
|
67 |
+
#
|
68 |
+
# where we intentionally used two different ways to typeset the
|
69 |
+
# sum and its limits.
|
70 |
+
|
71 |
+
i = Symbol("i", integer=True)
|
72 |
+
k = Symbol("k", integer=True)
|
73 |
+
j = Symbol("j", integer=True)
|
74 |
+
|
75 |
+
# A simple example with a concrete summand and symbolic limits.
|
76 |
+
|
77 |
+
# The normal sum: m = k and n = k + j and therefore m < n:
|
78 |
+
m = k
|
79 |
+
n = k + j
|
80 |
+
|
81 |
+
a = m
|
82 |
+
b = n - 1
|
83 |
+
S1 = Sum(i**2, (i, a, b)).doit()
|
84 |
+
|
85 |
+
# The reversed sum: m = k + j and n = k and therefore m > n:
|
86 |
+
m = k + j
|
87 |
+
n = k
|
88 |
+
|
89 |
+
a = m
|
90 |
+
b = n - 1
|
91 |
+
S2 = Sum(i**2, (i, a, b)).doit()
|
92 |
+
|
93 |
+
assert simplify(S1 + S2) == 0
|
94 |
+
|
95 |
+
# Test the empty sum: m = k and n = k and therefore m = n:
|
96 |
+
m = k
|
97 |
+
n = k
|
98 |
+
|
99 |
+
a = m
|
100 |
+
b = n - 1
|
101 |
+
Sz = Sum(i**2, (i, a, b)).doit()
|
102 |
+
|
103 |
+
assert Sz == 0
|
104 |
+
|
105 |
+
# Another example this time with an unspecified summand and
|
106 |
+
# numeric limits. (We can not do both tests in the same example.)
|
107 |
+
|
108 |
+
# The normal sum with m < n:
|
109 |
+
m = 2
|
110 |
+
n = 11
|
111 |
+
|
112 |
+
a = m
|
113 |
+
b = n - 1
|
114 |
+
S1 = Sum(f(i), (i, a, b)).doit()
|
115 |
+
|
116 |
+
# The reversed sum with m > n:
|
117 |
+
m = 11
|
118 |
+
n = 2
|
119 |
+
|
120 |
+
a = m
|
121 |
+
b = n - 1
|
122 |
+
S2 = Sum(f(i), (i, a, b)).doit()
|
123 |
+
|
124 |
+
assert simplify(S1 + S2) == 0
|
125 |
+
|
126 |
+
# Test the empty sum with m = n:
|
127 |
+
m = 5
|
128 |
+
n = 5
|
129 |
+
|
130 |
+
a = m
|
131 |
+
b = n - 1
|
132 |
+
Sz = Sum(f(i), (i, a, b)).doit()
|
133 |
+
|
134 |
+
assert Sz == 0
|
135 |
+
|
136 |
+
e = Piecewise((exp(-i), Mod(i, 2) > 0), (0, True))
|
137 |
+
s = Sum(e, (i, 0, 11))
|
138 |
+
assert s.n(3) == s.doit().n(3)
|
139 |
+
|
140 |
+
|
141 |
+
def test_karr_proposition_2a():
|
142 |
+
# Test Karr, page 309, proposition 2, part a
|
143 |
+
i = Symbol("i", integer=True)
|
144 |
+
u = Symbol("u", integer=True)
|
145 |
+
v = Symbol("v", integer=True)
|
146 |
+
|
147 |
+
def test_the_sum(m, n):
|
148 |
+
# g
|
149 |
+
g = i**3 + 2*i**2 - 3*i
|
150 |
+
# f = Delta g
|
151 |
+
f = simplify(g.subs(i, i+1) - g)
|
152 |
+
# The sum
|
153 |
+
a = m
|
154 |
+
b = n - 1
|
155 |
+
S = Sum(f, (i, a, b)).doit()
|
156 |
+
# Test if Sum_{m <= i < n} f(i) = g(n) - g(m)
|
157 |
+
assert simplify(S - (g.subs(i, n) - g.subs(i, m))) == 0
|
158 |
+
|
159 |
+
# m < n
|
160 |
+
test_the_sum(u, u+v)
|
161 |
+
# m = n
|
162 |
+
test_the_sum(u, u )
|
163 |
+
# m > n
|
164 |
+
test_the_sum(u+v, u )
|
165 |
+
|
166 |
+
|
167 |
+
def test_karr_proposition_2b():
|
168 |
+
# Test Karr, page 309, proposition 2, part b
|
169 |
+
i = Symbol("i", integer=True)
|
170 |
+
u = Symbol("u", integer=True)
|
171 |
+
v = Symbol("v", integer=True)
|
172 |
+
w = Symbol("w", integer=True)
|
173 |
+
|
174 |
+
def test_the_sum(l, n, m):
|
175 |
+
# Summand
|
176 |
+
s = i**3
|
177 |
+
# First sum
|
178 |
+
a = l
|
179 |
+
b = n - 1
|
180 |
+
S1 = Sum(s, (i, a, b)).doit()
|
181 |
+
# Second sum
|
182 |
+
a = l
|
183 |
+
b = m - 1
|
184 |
+
S2 = Sum(s, (i, a, b)).doit()
|
185 |
+
# Third sum
|
186 |
+
a = m
|
187 |
+
b = n - 1
|
188 |
+
S3 = Sum(s, (i, a, b)).doit()
|
189 |
+
# Test if S1 = S2 + S3 as required
|
190 |
+
assert S1 - (S2 + S3) == 0
|
191 |
+
|
192 |
+
# l < m < n
|
193 |
+
test_the_sum(u, u+v, u+v+w)
|
194 |
+
# l < m = n
|
195 |
+
test_the_sum(u, u+v, u+v )
|
196 |
+
# l < m > n
|
197 |
+
test_the_sum(u, u+v+w, v )
|
198 |
+
# l = m < n
|
199 |
+
test_the_sum(u, u, u+v )
|
200 |
+
# l = m = n
|
201 |
+
test_the_sum(u, u, u )
|
202 |
+
# l = m > n
|
203 |
+
test_the_sum(u+v, u+v, u )
|
204 |
+
# l > m < n
|
205 |
+
test_the_sum(u+v, u, u+w )
|
206 |
+
# l > m = n
|
207 |
+
test_the_sum(u+v, u, u )
|
208 |
+
# l > m > n
|
209 |
+
test_the_sum(u+v+w, u+v, u )
|
210 |
+
|
211 |
+
|
212 |
+
def test_arithmetic_sums():
|
213 |
+
assert summation(1, (n, a, b)) == b - a + 1
|
214 |
+
assert Sum(S.NaN, (n, a, b)) is S.NaN
|
215 |
+
assert Sum(x, (n, a, a)).doit() == x
|
216 |
+
assert Sum(x, (x, a, a)).doit() == a
|
217 |
+
assert Sum(x, (n, 1, a)).doit() == a*x
|
218 |
+
assert Sum(x, (x, Range(1, 11))).doit() == 55
|
219 |
+
assert Sum(x, (x, Range(1, 11, 2))).doit() == 25
|
220 |
+
assert Sum(x, (x, Range(1, 10, 2))) == Sum(x, (x, Range(9, 0, -2)))
|
221 |
+
lo, hi = 1, 2
|
222 |
+
s1 = Sum(n, (n, lo, hi))
|
223 |
+
s2 = Sum(n, (n, hi, lo))
|
224 |
+
assert s1 != s2
|
225 |
+
assert s1.doit() == 3 and s2.doit() == 0
|
226 |
+
lo, hi = x, x + 1
|
227 |
+
s1 = Sum(n, (n, lo, hi))
|
228 |
+
s2 = Sum(n, (n, hi, lo))
|
229 |
+
assert s1 != s2
|
230 |
+
assert s1.doit() == 2*x + 1 and s2.doit() == 0
|
231 |
+
assert Sum(Integral(x, (x, 1, y)) + x, (x, 1, 2)).doit() == \
|
232 |
+
y**2 + 2
|
233 |
+
assert summation(1, (n, 1, 10)) == 10
|
234 |
+
assert summation(2*n, (n, 0, 10**10)) == 100000000010000000000
|
235 |
+
assert summation(4*n*m, (n, a, 1), (m, 1, d)).expand() == \
|
236 |
+
2*d + 2*d**2 + a*d + a*d**2 - d*a**2 - a**2*d**2
|
237 |
+
assert summation(cos(n), (n, -2, 1)) == cos(-2) + cos(-1) + cos(0) + cos(1)
|
238 |
+
assert summation(cos(n), (n, x, x + 2)) == cos(x) + cos(x + 1) + cos(x + 2)
|
239 |
+
assert isinstance(summation(cos(n), (n, x, x + S.Half)), Sum)
|
240 |
+
assert summation(k, (k, 0, oo)) is oo
|
241 |
+
assert summation(k, (k, Range(1, 11))) == 55
|
242 |
+
|
243 |
+
|
244 |
+
def test_polynomial_sums():
|
245 |
+
assert summation(n**2, (n, 3, 8)) == 199
|
246 |
+
assert summation(n, (n, a, b)) == \
|
247 |
+
((a + b)*(b - a + 1)/2).expand()
|
248 |
+
assert summation(n**2, (n, 1, b)) == \
|
249 |
+
((2*b**3 + 3*b**2 + b)/6).expand()
|
250 |
+
assert summation(n**3, (n, 1, b)) == \
|
251 |
+
((b**4 + 2*b**3 + b**2)/4).expand()
|
252 |
+
assert summation(n**6, (n, 1, b)) == \
|
253 |
+
((6*b**7 + 21*b**6 + 21*b**5 - 7*b**3 + b)/42).expand()
|
254 |
+
|
255 |
+
|
256 |
+
def test_geometric_sums():
|
257 |
+
assert summation(pi**n, (n, 0, b)) == (1 - pi**(b + 1)) / (1 - pi)
|
258 |
+
assert summation(2 * 3**n, (n, 0, b)) == 3**(b + 1) - 1
|
259 |
+
assert summation(S.Half**n, (n, 1, oo)) == 1
|
260 |
+
assert summation(2**n, (n, 0, b)) == 2**(b + 1) - 1
|
261 |
+
assert summation(2**n, (n, 1, oo)) is oo
|
262 |
+
assert summation(2**(-n), (n, 1, oo)) == 1
|
263 |
+
assert summation(3**(-n), (n, 4, oo)) == Rational(1, 54)
|
264 |
+
assert summation(2**(-4*n + 3), (n, 1, oo)) == Rational(8, 15)
|
265 |
+
assert summation(2**(n + 1), (n, 1, b)).expand() == 4*(2**b - 1)
|
266 |
+
|
267 |
+
# issue 6664:
|
268 |
+
assert summation(x**n, (n, 0, oo)) == \
|
269 |
+
Piecewise((1/(-x + 1), Abs(x) < 1), (Sum(x**n, (n, 0, oo)), True))
|
270 |
+
|
271 |
+
assert summation(-2**n, (n, 0, oo)) is -oo
|
272 |
+
assert summation(I**n, (n, 0, oo)) == Sum(I**n, (n, 0, oo))
|
273 |
+
|
274 |
+
# issue 6802:
|
275 |
+
assert summation((-1)**(2*x + 2), (x, 0, n)) == n + 1
|
276 |
+
assert summation((-2)**(2*x + 2), (x, 0, n)) == 4*4**(n + 1)/S(3) - Rational(4, 3)
|
277 |
+
assert summation((-1)**x, (x, 0, n)) == -(-1)**(n + 1)/S(2) + S.Half
|
278 |
+
assert summation(y**x, (x, a, b)) == \
|
279 |
+
Piecewise((-a + b + 1, Eq(y, 1)), ((y**a - y**(b + 1))/(-y + 1), True))
|
280 |
+
assert summation((-2)**(y*x + 2), (x, 0, n)) == \
|
281 |
+
4*Piecewise((n + 1, Eq((-2)**y, 1)),
|
282 |
+
((-(-2)**(y*(n + 1)) + 1)/(-(-2)**y + 1), True))
|
283 |
+
|
284 |
+
# issue 8251:
|
285 |
+
assert summation((1/(n + 1)**2)*n**2, (n, 0, oo)) is oo
|
286 |
+
|
287 |
+
#issue 9908:
|
288 |
+
assert Sum(1/(n**3 - 1), (n, -oo, -2)).doit() == summation(1/(n**3 - 1), (n, -oo, -2))
|
289 |
+
|
290 |
+
#issue 11642:
|
291 |
+
result = Sum(0.5**n, (n, 1, oo)).doit()
|
292 |
+
assert result == 1.0
|
293 |
+
assert result.is_Float
|
294 |
+
|
295 |
+
result = Sum(0.25**n, (n, 1, oo)).doit()
|
296 |
+
assert result == 1/3.
|
297 |
+
assert result.is_Float
|
298 |
+
|
299 |
+
result = Sum(0.99999**n, (n, 1, oo)).doit()
|
300 |
+
assert result == 99999.0
|
301 |
+
assert result.is_Float
|
302 |
+
|
303 |
+
result = Sum(S.Half**n, (n, 1, oo)).doit()
|
304 |
+
assert result == 1
|
305 |
+
assert not result.is_Float
|
306 |
+
|
307 |
+
result = Sum(Rational(3, 5)**n, (n, 1, oo)).doit()
|
308 |
+
assert result == Rational(3, 2)
|
309 |
+
assert not result.is_Float
|
310 |
+
|
311 |
+
assert Sum(1.0**n, (n, 1, oo)).doit() is oo
|
312 |
+
assert Sum(2.43**n, (n, 1, oo)).doit() is oo
|
313 |
+
|
314 |
+
# Issue 13979
|
315 |
+
i, k, q = symbols('i k q', integer=True)
|
316 |
+
result = summation(
|
317 |
+
exp(-2*I*pi*k*i/n) * exp(2*I*pi*q*i/n) / n, (i, 0, n - 1)
|
318 |
+
)
|
319 |
+
assert result.simplify() == Piecewise(
|
320 |
+
(1, Eq(exp(-2*I*pi*(k - q)/n), 1)), (0, True)
|
321 |
+
)
|
322 |
+
|
323 |
+
#Issue 23491
|
324 |
+
assert Sum(1/(n**2 + 1), (n, 1, oo)).doit() == S(-1)/2 + pi/(2*tanh(pi))
|
325 |
+
|
326 |
+
def test_harmonic_sums():
|
327 |
+
assert summation(1/k, (k, 0, n)) == Sum(1/k, (k, 0, n))
|
328 |
+
assert summation(1/k, (k, 1, n)) == harmonic(n)
|
329 |
+
assert summation(n/k, (k, 1, n)) == n*harmonic(n)
|
330 |
+
assert summation(1/k, (k, 5, n)) == harmonic(n) - harmonic(4)
|
331 |
+
|
332 |
+
|
333 |
+
def test_composite_sums():
|
334 |
+
f = S.Half*(7 - 6*n + Rational(1, 7)*n**3)
|
335 |
+
s = summation(f, (n, a, b))
|
336 |
+
assert not isinstance(s, Sum)
|
337 |
+
A = 0
|
338 |
+
for i in range(-3, 5):
|
339 |
+
A += f.subs(n, i)
|
340 |
+
B = s.subs(a, -3).subs(b, 4)
|
341 |
+
assert A == B
|
342 |
+
|
343 |
+
|
344 |
+
def test_hypergeometric_sums():
|
345 |
+
assert summation(
|
346 |
+
binomial(2*k, k)/4**k, (k, 0, n)) == (1 + 2*n)*binomial(2*n, n)/4**n
|
347 |
+
assert summation(binomial(2*k, k)/5**k, (k, -oo, oo)) == sqrt(5)
|
348 |
+
|
349 |
+
|
350 |
+
def test_other_sums():
|
351 |
+
f = m**2 + m*exp(m)
|
352 |
+
g = 3*exp(Rational(3, 2))/2 + exp(S.Half)/2 - exp(Rational(-1, 2))/2 - 3*exp(Rational(-3, 2))/2 + 5
|
353 |
+
|
354 |
+
assert summation(f, (m, Rational(-3, 2), Rational(3, 2))) == g
|
355 |
+
assert summation(f, (m, -1.5, 1.5)).evalf().epsilon_eq(g.evalf(), 1e-10)
|
356 |
+
|
357 |
+
fac = factorial
|
358 |
+
|
359 |
+
|
360 |
+
def NS(e, n=15, **options):
|
361 |
+
return str(sympify(e).evalf(n, **options))
|
362 |
+
|
363 |
+
|
364 |
+
def test_evalf_fast_series():
|
365 |
+
# Euler transformed series for sqrt(1+x)
|
366 |
+
assert NS(Sum(
|
367 |
+
fac(2*n + 1)/fac(n)**2/2**(3*n + 1), (n, 0, oo)), 100) == NS(sqrt(2), 100)
|
368 |
+
|
369 |
+
# Some series for exp(1)
|
370 |
+
estr = NS(E, 100)
|
371 |
+
assert NS(Sum(1/fac(n), (n, 0, oo)), 100) == estr
|
372 |
+
assert NS(1/Sum((1 - 2*n)/fac(2*n), (n, 0, oo)), 100) == estr
|
373 |
+
assert NS(Sum((2*n + 1)/fac(2*n), (n, 0, oo)), 100) == estr
|
374 |
+
assert NS(Sum((4*n + 3)/2**(2*n + 1)/fac(2*n + 1), (n, 0, oo))**2, 100) == estr
|
375 |
+
|
376 |
+
pistr = NS(pi, 100)
|
377 |
+
# Ramanujan series for pi
|
378 |
+
assert NS(9801/sqrt(8)/Sum(fac(
|
379 |
+
4*n)*(1103 + 26390*n)/fac(n)**4/396**(4*n), (n, 0, oo)), 100) == pistr
|
380 |
+
assert NS(1/Sum(
|
381 |
+
binomial(2*n, n)**3 * (42*n + 5)/2**(12*n + 4), (n, 0, oo)), 100) == pistr
|
382 |
+
# Machin's formula for pi
|
383 |
+
assert NS(16*Sum((-1)**n/(2*n + 1)/5**(2*n + 1), (n, 0, oo)) -
|
384 |
+
4*Sum((-1)**n/(2*n + 1)/239**(2*n + 1), (n, 0, oo)), 100) == pistr
|
385 |
+
|
386 |
+
# Apery's constant
|
387 |
+
astr = NS(zeta(3), 100)
|
388 |
+
P = 126392*n**5 + 412708*n**4 + 531578*n**3 + 336367*n**2 + 104000* \
|
389 |
+
n + 12463
|
390 |
+
assert NS(Sum((-1)**n * P / 24 * (fac(2*n + 1)*fac(2*n)*fac(
|
391 |
+
n))**3 / fac(3*n + 2) / fac(4*n + 3)**3, (n, 0, oo)), 100) == astr
|
392 |
+
assert NS(Sum((-1)**n * (205*n**2 + 250*n + 77)/64 * fac(n)**10 /
|
393 |
+
fac(2*n + 1)**5, (n, 0, oo)), 100) == astr
|
394 |
+
|
395 |
+
|
396 |
+
def test_evalf_fast_series_issue_4021():
|
397 |
+
# Catalan's constant
|
398 |
+
assert NS(Sum((-1)**(n - 1)*2**(8*n)*(40*n**2 - 24*n + 3)*fac(2*n)**3*
|
399 |
+
fac(n)**2/n**3/(2*n - 1)/fac(4*n)**2, (n, 1, oo))/64, 100) == \
|
400 |
+
NS(Catalan, 100)
|
401 |
+
astr = NS(zeta(3), 100)
|
402 |
+
assert NS(5*Sum(
|
403 |
+
(-1)**(n - 1)*fac(n)**2 / n**3 / fac(2*n), (n, 1, oo))/2, 100) == astr
|
404 |
+
assert NS(Sum((-1)**(n - 1)*(56*n**2 - 32*n + 5) / (2*n - 1)**2 * fac(n - 1)
|
405 |
+
**3 / fac(3*n), (n, 1, oo))/4, 100) == astr
|
406 |
+
|
407 |
+
|
408 |
+
def test_evalf_slow_series():
|
409 |
+
assert NS(Sum((-1)**n / n, (n, 1, oo)), 15) == NS(-log(2), 15)
|
410 |
+
assert NS(Sum((-1)**n / n, (n, 1, oo)), 50) == NS(-log(2), 50)
|
411 |
+
assert NS(Sum(1/n**2, (n, 1, oo)), 15) == NS(pi**2/6, 15)
|
412 |
+
assert NS(Sum(1/n**2, (n, 1, oo)), 100) == NS(pi**2/6, 100)
|
413 |
+
assert NS(Sum(1/n**2, (n, 1, oo)), 500) == NS(pi**2/6, 500)
|
414 |
+
assert NS(Sum((-1)**n / (2*n + 1)**3, (n, 0, oo)), 15) == NS(pi**3/32, 15)
|
415 |
+
assert NS(Sum((-1)**n / (2*n + 1)**3, (n, 0, oo)), 50) == NS(pi**3/32, 50)
|
416 |
+
|
417 |
+
|
418 |
+
def test_evalf_oo_to_oo():
|
419 |
+
# There used to be an error in certain cases
|
420 |
+
# Does not evaluate, but at least do not throw an error
|
421 |
+
# Evaluates symbolically to 0, which is not correct
|
422 |
+
assert Sum(1/(n**2+1), (n, -oo, oo)).evalf() == Sum(1/(n**2+1), (n, -oo, oo))
|
423 |
+
# This evaluates if from 1 to oo and symbolically
|
424 |
+
assert Sum(1/(factorial(abs(n))), (n, -oo, -1)).evalf() == Sum(1/(factorial(abs(n))), (n, -oo, -1))
|
425 |
+
|
426 |
+
|
427 |
+
def test_euler_maclaurin():
|
428 |
+
# Exact polynomial sums with E-M
|
429 |
+
def check_exact(f, a, b, m, n):
|
430 |
+
A = Sum(f, (k, a, b))
|
431 |
+
s, e = A.euler_maclaurin(m, n)
|
432 |
+
assert (e == 0) and (s.expand() == A.doit())
|
433 |
+
check_exact(k**4, a, b, 0, 2)
|
434 |
+
check_exact(k**4 + 2*k, a, b, 1, 2)
|
435 |
+
check_exact(k**4 + k**2, a, b, 1, 5)
|
436 |
+
check_exact(k**5, 2, 6, 1, 2)
|
437 |
+
check_exact(k**5, 2, 6, 1, 3)
|
438 |
+
assert Sum(x-1, (x, 0, 2)).euler_maclaurin(m=30, n=30, eps=2**-15) == (0, 0)
|
439 |
+
# Not exact
|
440 |
+
assert Sum(k**6, (k, a, b)).euler_maclaurin(0, 2)[1] != 0
|
441 |
+
# Numerical test
|
442 |
+
for mi, ni in [(2, 4), (2, 20), (10, 20), (18, 20)]:
|
443 |
+
A = Sum(1/k**3, (k, 1, oo))
|
444 |
+
s, e = A.euler_maclaurin(mi, ni)
|
445 |
+
assert abs((s - zeta(3)).evalf()) < e.evalf()
|
446 |
+
|
447 |
+
raises(ValueError, lambda: Sum(1, (x, 0, 1), (k, 0, 1)).euler_maclaurin())
|
448 |
+
|
449 |
+
|
450 |
+
@slow
|
451 |
+
def test_evalf_euler_maclaurin():
|
452 |
+
assert NS(Sum(1/k**k, (k, 1, oo)), 15) == '1.29128599706266'
|
453 |
+
assert NS(Sum(1/k**k, (k, 1, oo)),
|
454 |
+
50) == '1.2912859970626635404072825905956005414986193682745'
|
455 |
+
assert NS(Sum(1/k - log(1 + 1/k), (k, 1, oo)), 15) == NS(EulerGamma, 15)
|
456 |
+
assert NS(Sum(1/k - log(1 + 1/k), (k, 1, oo)), 50) == NS(EulerGamma, 50)
|
457 |
+
assert NS(Sum(log(k)/k**2, (k, 1, oo)), 15) == '0.937548254315844'
|
458 |
+
assert NS(Sum(log(k)/k**2, (k, 1, oo)),
|
459 |
+
50) == '0.93754825431584375370257409456786497789786028861483'
|
460 |
+
assert NS(Sum(1/k, (k, 1000000, 2000000)), 15) == '0.693147930560008'
|
461 |
+
assert NS(Sum(1/k, (k, 1000000, 2000000)),
|
462 |
+
50) == '0.69314793056000780941723211364567656807940638436025'
|
463 |
+
|
464 |
+
|
465 |
+
def test_evalf_symbolic():
|
466 |
+
# issue 6328
|
467 |
+
expr = Sum(f(x), (x, 1, 3)) + Sum(g(x), (x, 1, 3))
|
468 |
+
assert expr.evalf() == expr
|
469 |
+
|
470 |
+
|
471 |
+
def test_evalf_issue_3273():
|
472 |
+
assert Sum(0, (k, 1, oo)).evalf() == 0
|
473 |
+
|
474 |
+
|
475 |
+
def test_simple_products():
|
476 |
+
assert Product(S.NaN, (x, 1, 3)) is S.NaN
|
477 |
+
assert product(S.NaN, (x, 1, 3)) is S.NaN
|
478 |
+
assert Product(x, (n, a, a)).doit() == x
|
479 |
+
assert Product(x, (x, a, a)).doit() == a
|
480 |
+
assert Product(x, (y, 1, a)).doit() == x**a
|
481 |
+
|
482 |
+
lo, hi = 1, 2
|
483 |
+
s1 = Product(n, (n, lo, hi))
|
484 |
+
s2 = Product(n, (n, hi, lo))
|
485 |
+
assert s1 != s2
|
486 |
+
# This IS correct according to Karr product convention
|
487 |
+
assert s1.doit() == 2
|
488 |
+
assert s2.doit() == 1
|
489 |
+
|
490 |
+
lo, hi = x, x + 1
|
491 |
+
s1 = Product(n, (n, lo, hi))
|
492 |
+
s2 = Product(n, (n, hi, lo))
|
493 |
+
s3 = 1 / Product(n, (n, hi + 1, lo - 1))
|
494 |
+
assert s1 != s2
|
495 |
+
# This IS correct according to Karr product convention
|
496 |
+
assert s1.doit() == x*(x + 1)
|
497 |
+
assert s2.doit() == 1
|
498 |
+
assert s3.doit() == x*(x + 1)
|
499 |
+
|
500 |
+
assert Product(Integral(2*x, (x, 1, y)) + 2*x, (x, 1, 2)).doit() == \
|
501 |
+
(y**2 + 1)*(y**2 + 3)
|
502 |
+
assert product(2, (n, a, b)) == 2**(b - a + 1)
|
503 |
+
assert product(n, (n, 1, b)) == factorial(b)
|
504 |
+
assert product(n**3, (n, 1, b)) == factorial(b)**3
|
505 |
+
assert product(3**(2 + n), (n, a, b)) \
|
506 |
+
== 3**(2*(1 - a + b) + b/2 + (b**2)/2 + a/2 - (a**2)/2)
|
507 |
+
assert product(cos(n), (n, 3, 5)) == cos(3)*cos(4)*cos(5)
|
508 |
+
assert product(cos(n), (n, x, x + 2)) == cos(x)*cos(x + 1)*cos(x + 2)
|
509 |
+
assert isinstance(product(cos(n), (n, x, x + S.Half)), Product)
|
510 |
+
# If Product managed to evaluate this one, it most likely got it wrong!
|
511 |
+
assert isinstance(Product(n**n, (n, 1, b)), Product)
|
512 |
+
|
513 |
+
|
514 |
+
def test_rational_products():
|
515 |
+
assert combsimp(product(1 + 1/n, (n, a, b))) == (1 + b)/a
|
516 |
+
assert combsimp(product(n + 1, (n, a, b))) == gamma(2 + b)/gamma(1 + a)
|
517 |
+
assert combsimp(product((n + 1)/(n - 1), (n, a, b))) == b*(1 + b)/(a*(a - 1))
|
518 |
+
assert combsimp(product(n/(n + 1)/(n + 2), (n, a, b))) == \
|
519 |
+
a*gamma(a + 2)/(b + 1)/gamma(b + 3)
|
520 |
+
assert combsimp(product(n*(n + 1)/(n - 1)/(n - 2), (n, a, b))) == \
|
521 |
+
b**2*(b - 1)*(1 + b)/(a - 1)**2/(a*(a - 2))
|
522 |
+
|
523 |
+
|
524 |
+
def test_wallis_product():
|
525 |
+
# Wallis product, given in two different forms to ensure that Product
|
526 |
+
# can factor simple rational expressions
|
527 |
+
A = Product(4*n**2 / (4*n**2 - 1), (n, 1, b))
|
528 |
+
B = Product((2*n)*(2*n)/(2*n - 1)/(2*n + 1), (n, 1, b))
|
529 |
+
R = pi*gamma(b + 1)**2/(2*gamma(b + S.Half)*gamma(b + Rational(3, 2)))
|
530 |
+
assert simplify(A.doit()) == R
|
531 |
+
assert simplify(B.doit()) == R
|
532 |
+
# This one should eventually also be doable (Euler's product formula for sin)
|
533 |
+
# assert Product(1+x/n**2, (n, 1, b)) == ...
|
534 |
+
|
535 |
+
|
536 |
+
def test_telescopic_sums():
|
537 |
+
#checks also input 2 of comment 1 issue 4127
|
538 |
+
assert Sum(1/k - 1/(k + 1), (k, 1, n)).doit() == 1 - 1/(1 + n)
|
539 |
+
assert Sum(
|
540 |
+
f(k) - f(k + 2), (k, m, n)).doit() == -f(1 + n) - f(2 + n) + f(m) + f(1 + m)
|
541 |
+
assert Sum(cos(k) - cos(k + 3), (k, 1, n)).doit() == -cos(1 + n) - \
|
542 |
+
cos(2 + n) - cos(3 + n) + cos(1) + cos(2) + cos(3)
|
543 |
+
|
544 |
+
# dummy variable shouldn't matter
|
545 |
+
assert telescopic(1/m, -m/(1 + m), (m, n - 1, n)) == \
|
546 |
+
telescopic(1/k, -k/(1 + k), (k, n - 1, n))
|
547 |
+
|
548 |
+
assert Sum(1/x/(x - 1), (x, a, b)).doit() == 1/(a - 1) - 1/b
|
549 |
+
eq = 1/((5*n + 2)*(5*(n + 1) + 2))
|
550 |
+
assert Sum(eq, (n, 0, oo)).doit() == S(1)/10
|
551 |
+
nz = symbols('nz', nonzero=True)
|
552 |
+
v = Sum(eq.subs(5, nz), (n, 0, oo)).doit()
|
553 |
+
assert v.subs(nz, 5).simplify() == S(1)/10
|
554 |
+
# check that apart is being used in non-symbolic case
|
555 |
+
s = Sum(eq, (n, 0, k)).doit()
|
556 |
+
v = Sum(eq, (n, 0, 10**100)).doit()
|
557 |
+
assert v == s.subs(k, 10**100)
|
558 |
+
|
559 |
+
|
560 |
+
def test_sum_reconstruct():
|
561 |
+
s = Sum(n**2, (n, -1, 1))
|
562 |
+
assert s == Sum(*s.args)
|
563 |
+
raises(ValueError, lambda: Sum(x, x))
|
564 |
+
raises(ValueError, lambda: Sum(x, (x, 1)))
|
565 |
+
|
566 |
+
|
567 |
+
def test_limit_subs():
|
568 |
+
for F in (Sum, Product, Integral):
|
569 |
+
assert F(a*exp(a), (a, -2, 2)) == F(a*exp(a), (a, -b, b)).subs(b, 2)
|
570 |
+
assert F(a, (a, F(b, (b, 1, 2)), 4)).subs(F(b, (b, 1, 2)), c) == \
|
571 |
+
F(a, (a, c, 4))
|
572 |
+
assert F(x, (x, 1, x + y)).subs(x, 1) == F(x, (x, 1, y + 1))
|
573 |
+
|
574 |
+
|
575 |
+
def test_function_subs():
|
576 |
+
S = Sum(x*f(y),(x,0,oo),(y,0,oo))
|
577 |
+
assert S.subs(f(y),y) == Sum(x*y,(x,0,oo),(y,0,oo))
|
578 |
+
assert S.subs(f(x),x) == S
|
579 |
+
raises(ValueError, lambda: S.subs(f(y),x+y) )
|
580 |
+
S = Sum(x*log(y),(x,0,oo),(y,0,oo))
|
581 |
+
assert S.subs(log(y),y) == S
|
582 |
+
S = Sum(x*f(y),(x,0,oo),(y,0,oo))
|
583 |
+
assert S.subs(f(y),y) == Sum(x*y,(x,0,oo),(y,0,oo))
|
584 |
+
|
585 |
+
|
586 |
+
def test_equality():
|
587 |
+
# if this fails remove special handling below
|
588 |
+
raises(ValueError, lambda: Sum(x, x))
|
589 |
+
r = symbols('x', real=True)
|
590 |
+
for F in (Sum, Product, Integral):
|
591 |
+
try:
|
592 |
+
assert F(x, x) != F(y, y)
|
593 |
+
assert F(x, (x, 1, 2)) != F(x, x)
|
594 |
+
assert F(x, (x, x)) != F(x, x) # or else they print the same
|
595 |
+
assert F(1, x) != F(1, y)
|
596 |
+
except ValueError:
|
597 |
+
pass
|
598 |
+
assert F(a, (x, 1, 2)) != F(a, (x, 1, 3)) # diff limit
|
599 |
+
assert F(a, (x, 1, x)) != F(a, (y, 1, y))
|
600 |
+
assert F(a, (x, 1, 2)) != F(b, (x, 1, 2)) # diff expression
|
601 |
+
assert F(x, (x, 1, 2)) != F(r, (r, 1, 2)) # diff assumptions
|
602 |
+
assert F(1, (x, 1, x)) != F(1, (y, 1, x)) # only dummy is diff
|
603 |
+
assert F(1, (x, 1, x)).dummy_eq(F(1, (y, 1, x)))
|
604 |
+
|
605 |
+
# issue 5265
|
606 |
+
assert Sum(x, (x, 1, x)).subs(x, a) == Sum(x, (x, 1, a))
|
607 |
+
|
608 |
+
|
609 |
+
def test_Sum_doit():
|
610 |
+
assert Sum(n*Integral(a**2), (n, 0, 2)).doit() == a**3
|
611 |
+
assert Sum(n*Integral(a**2), (n, 0, 2)).doit(deep=False) == \
|
612 |
+
3*Integral(a**2)
|
613 |
+
assert summation(n*Integral(a**2), (n, 0, 2)) == 3*Integral(a**2)
|
614 |
+
|
615 |
+
# test nested sum evaluation
|
616 |
+
s = Sum( Sum( Sum(2,(z,1,n+1)), (y,x+1,n)), (x,1,n))
|
617 |
+
assert 0 == (s.doit() - n*(n+1)*(n-1)).factor()
|
618 |
+
|
619 |
+
# Integer assumes finite
|
620 |
+
assert Sum(KroneckerDelta(x, y), (x, -oo, oo)).doit() == Piecewise((1, And(-oo < y, y < oo)), (0, True))
|
621 |
+
assert Sum(KroneckerDelta(m, n), (m, -oo, oo)).doit() == 1
|
622 |
+
assert Sum(m*KroneckerDelta(x, y), (x, -oo, oo)).doit() == Piecewise((m, And(-oo < y, y < oo)), (0, True))
|
623 |
+
assert Sum(x*KroneckerDelta(m, n), (m, -oo, oo)).doit() == x
|
624 |
+
assert Sum(Sum(KroneckerDelta(m, n), (m, 1, 3)), (n, 1, 3)).doit() == 3
|
625 |
+
assert Sum(Sum(KroneckerDelta(k, m), (m, 1, 3)), (n, 1, 3)).doit() == \
|
626 |
+
3 * Piecewise((1, And(1 <= k, k <= 3)), (0, True))
|
627 |
+
assert Sum(f(n) * Sum(KroneckerDelta(m, n), (m, 0, oo)), (n, 1, 3)).doit() == \
|
628 |
+
f(1) + f(2) + f(3)
|
629 |
+
assert Sum(f(n) * Sum(KroneckerDelta(m, n), (m, 0, oo)), (n, 1, oo)).doit() == \
|
630 |
+
Sum(f(n), (n, 1, oo))
|
631 |
+
|
632 |
+
# issue 2597
|
633 |
+
nmax = symbols('N', integer=True, positive=True)
|
634 |
+
pw = Piecewise((1, And(1 <= n, n <= nmax)), (0, True))
|
635 |
+
assert Sum(pw, (n, 1, nmax)).doit() == Sum(Piecewise((1, nmax >= n),
|
636 |
+
(0, True)), (n, 1, nmax))
|
637 |
+
|
638 |
+
q, s = symbols('q, s')
|
639 |
+
assert summation(1/n**(2*s), (n, 1, oo)) == Piecewise((zeta(2*s), 2*s > 1),
|
640 |
+
(Sum(n**(-2*s), (n, 1, oo)), True))
|
641 |
+
assert summation(1/(n+1)**s, (n, 0, oo)) == Piecewise((zeta(s), s > 1),
|
642 |
+
(Sum((n + 1)**(-s), (n, 0, oo)), True))
|
643 |
+
assert summation(1/(n+q)**s, (n, 0, oo)) == Piecewise(
|
644 |
+
(zeta(s, q), And(q > 0, s > 1)),
|
645 |
+
(Sum((n + q)**(-s), (n, 0, oo)), True))
|
646 |
+
assert summation(1/(n+q)**s, (n, q, oo)) == Piecewise(
|
647 |
+
(zeta(s, 2*q), And(2*q > 0, s > 1)),
|
648 |
+
(Sum((n + q)**(-s), (n, q, oo)), True))
|
649 |
+
assert summation(1/n**2, (n, 1, oo)) == zeta(2)
|
650 |
+
assert summation(1/n**s, (n, 0, oo)) == Sum(n**(-s), (n, 0, oo))
|
651 |
+
|
652 |
+
|
653 |
+
def test_Product_doit():
|
654 |
+
assert Product(n*Integral(a**2), (n, 1, 3)).doit() == 2 * a**9 / 9
|
655 |
+
assert Product(n*Integral(a**2), (n, 1, 3)).doit(deep=False) == \
|
656 |
+
6*Integral(a**2)**3
|
657 |
+
assert product(n*Integral(a**2), (n, 1, 3)) == 6*Integral(a**2)**3
|
658 |
+
|
659 |
+
|
660 |
+
def test_Sum_interface():
|
661 |
+
assert isinstance(Sum(0, (n, 0, 2)), Sum)
|
662 |
+
assert Sum(nan, (n, 0, 2)) is nan
|
663 |
+
assert Sum(nan, (n, 0, oo)) is nan
|
664 |
+
assert Sum(0, (n, 0, 2)).doit() == 0
|
665 |
+
assert isinstance(Sum(0, (n, 0, oo)), Sum)
|
666 |
+
assert Sum(0, (n, 0, oo)).doit() == 0
|
667 |
+
raises(ValueError, lambda: Sum(1))
|
668 |
+
raises(ValueError, lambda: summation(1))
|
669 |
+
|
670 |
+
|
671 |
+
def test_diff():
|
672 |
+
assert Sum(x, (x, 1, 2)).diff(x) == 0
|
673 |
+
assert Sum(x*y, (x, 1, 2)).diff(x) == 0
|
674 |
+
assert Sum(x*y, (y, 1, 2)).diff(x) == Sum(y, (y, 1, 2))
|
675 |
+
e = Sum(x*y, (x, 1, a))
|
676 |
+
assert e.diff(a) == Derivative(e, a)
|
677 |
+
assert Sum(x*y, (x, 1, 3), (a, 2, 5)).diff(y).doit() == \
|
678 |
+
Sum(x*y, (x, 1, 3), (a, 2, 5)).doit().diff(y) == 24
|
679 |
+
assert Sum(x, (x, 1, 2)).diff(y) == 0
|
680 |
+
|
681 |
+
|
682 |
+
def test_hypersum():
|
683 |
+
assert simplify(summation(x**n/fac(n), (n, 1, oo))) == -1 + exp(x)
|
684 |
+
assert summation((-1)**n * x**(2*n) / fac(2*n), (n, 0, oo)) == cos(x)
|
685 |
+
assert simplify(summation((-1)**n*x**(2*n + 1) /
|
686 |
+
factorial(2*n + 1), (n, 3, oo))) == -x + sin(x) + x**3/6 - x**5/120
|
687 |
+
|
688 |
+
assert summation(1/(n + 2)**3, (n, 1, oo)) == Rational(-9, 8) + zeta(3)
|
689 |
+
assert summation(1/n**4, (n, 1, oo)) == pi**4/90
|
690 |
+
|
691 |
+
s = summation(x**n*n, (n, -oo, 0))
|
692 |
+
assert s.is_Piecewise
|
693 |
+
assert s.args[0].args[0] == -1/(x*(1 - 1/x)**2)
|
694 |
+
assert s.args[0].args[1] == (abs(1/x) < 1)
|
695 |
+
|
696 |
+
m = Symbol('n', integer=True, positive=True)
|
697 |
+
assert summation(binomial(m, k), (k, 0, m)) == 2**m
|
698 |
+
|
699 |
+
|
700 |
+
def test_issue_4170():
|
701 |
+
assert summation(1/factorial(k), (k, 0, oo)) == E
|
702 |
+
|
703 |
+
|
704 |
+
def test_is_commutative():
|
705 |
+
from sympy.physics.secondquant import NO, F, Fd
|
706 |
+
m = Symbol('m', commutative=False)
|
707 |
+
for f in (Sum, Product, Integral):
|
708 |
+
assert f(z, (z, 1, 1)).is_commutative is True
|
709 |
+
assert f(z*y, (z, 1, 6)).is_commutative is True
|
710 |
+
assert f(m*x, (x, 1, 2)).is_commutative is False
|
711 |
+
|
712 |
+
assert f(NO(Fd(x)*F(y))*z, (z, 1, 2)).is_commutative is False
|
713 |
+
|
714 |
+
|
715 |
+
def test_is_zero():
|
716 |
+
for func in [Sum, Product]:
|
717 |
+
assert func(0, (x, 1, 1)).is_zero is True
|
718 |
+
assert func(x, (x, 1, 1)).is_zero is None
|
719 |
+
|
720 |
+
assert Sum(0, (x, 1, 0)).is_zero is True
|
721 |
+
assert Product(0, (x, 1, 0)).is_zero is False
|
722 |
+
|
723 |
+
|
724 |
+
def test_is_number():
|
725 |
+
# is number should not rely on evaluation or assumptions,
|
726 |
+
# it should be equivalent to `not foo.free_symbols`
|
727 |
+
assert Sum(1, (x, 1, 1)).is_number is True
|
728 |
+
assert Sum(1, (x, 1, x)).is_number is False
|
729 |
+
assert Sum(0, (x, y, z)).is_number is False
|
730 |
+
assert Sum(x, (y, 1, 2)).is_number is False
|
731 |
+
assert Sum(x, (y, 1, 1)).is_number is False
|
732 |
+
assert Sum(x, (x, 1, 2)).is_number is True
|
733 |
+
assert Sum(x*y, (x, 1, 2), (y, 1, 3)).is_number is True
|
734 |
+
|
735 |
+
assert Product(2, (x, 1, 1)).is_number is True
|
736 |
+
assert Product(2, (x, 1, y)).is_number is False
|
737 |
+
assert Product(0, (x, y, z)).is_number is False
|
738 |
+
assert Product(1, (x, y, z)).is_number is False
|
739 |
+
assert Product(x, (y, 1, x)).is_number is False
|
740 |
+
assert Product(x, (y, 1, 2)).is_number is False
|
741 |
+
assert Product(x, (y, 1, 1)).is_number is False
|
742 |
+
assert Product(x, (x, 1, 2)).is_number is True
|
743 |
+
|
744 |
+
|
745 |
+
def test_free_symbols():
|
746 |
+
for func in [Sum, Product]:
|
747 |
+
assert func(1, (x, 1, 2)).free_symbols == set()
|
748 |
+
assert func(0, (x, 1, y)).free_symbols == {y}
|
749 |
+
assert func(2, (x, 1, y)).free_symbols == {y}
|
750 |
+
assert func(x, (x, 1, 2)).free_symbols == set()
|
751 |
+
assert func(x, (x, 1, y)).free_symbols == {y}
|
752 |
+
assert func(x, (y, 1, y)).free_symbols == {x, y}
|
753 |
+
assert func(x, (y, 1, 2)).free_symbols == {x}
|
754 |
+
assert func(x, (y, 1, 1)).free_symbols == {x}
|
755 |
+
assert func(x, (y, 1, z)).free_symbols == {x, z}
|
756 |
+
assert func(x, (x, 1, y), (y, 1, 2)).free_symbols == set()
|
757 |
+
assert func(x, (x, 1, y), (y, 1, z)).free_symbols == {z}
|
758 |
+
assert func(x, (x, 1, y), (y, 1, y)).free_symbols == {y}
|
759 |
+
assert func(x, (y, 1, y), (y, 1, z)).free_symbols == {x, z}
|
760 |
+
assert Sum(1, (x, 1, y)).free_symbols == {y}
|
761 |
+
# free_symbols answers whether the object *as written* has free symbols,
|
762 |
+
# not whether the evaluated expression has free symbols
|
763 |
+
assert Product(1, (x, 1, y)).free_symbols == {y}
|
764 |
+
# don't count free symbols that are not independent of integration
|
765 |
+
# variable(s)
|
766 |
+
assert func(f(x), (f(x), 1, 2)).free_symbols == set()
|
767 |
+
assert func(f(x), (f(x), 1, x)).free_symbols == {x}
|
768 |
+
assert func(f(x), (f(x), 1, y)).free_symbols == {y}
|
769 |
+
assert func(f(x), (z, 1, y)).free_symbols == {x, y}
|
770 |
+
|
771 |
+
|
772 |
+
def test_conjugate_transpose():
|
773 |
+
A, B = symbols("A B", commutative=False)
|
774 |
+
p = Sum(A*B**n, (n, 1, 3))
|
775 |
+
assert p.adjoint().doit() == p.doit().adjoint()
|
776 |
+
assert p.conjugate().doit() == p.doit().conjugate()
|
777 |
+
assert p.transpose().doit() == p.doit().transpose()
|
778 |
+
|
779 |
+
p = Sum(B**n*A, (n, 1, 3))
|
780 |
+
assert p.adjoint().doit() == p.doit().adjoint()
|
781 |
+
assert p.conjugate().doit() == p.doit().conjugate()
|
782 |
+
assert p.transpose().doit() == p.doit().transpose()
|
783 |
+
|
784 |
+
|
785 |
+
def test_noncommutativity_honoured():
|
786 |
+
A, B = symbols("A B", commutative=False)
|
787 |
+
M = symbols('M', integer=True, positive=True)
|
788 |
+
p = Sum(A*B**n, (n, 1, M))
|
789 |
+
assert p.doit() == A*Piecewise((M, Eq(B, 1)),
|
790 |
+
((B - B**(M + 1))*(1 - B)**(-1), True))
|
791 |
+
|
792 |
+
p = Sum(B**n*A, (n, 1, M))
|
793 |
+
assert p.doit() == Piecewise((M, Eq(B, 1)),
|
794 |
+
((B - B**(M + 1))*(1 - B)**(-1), True))*A
|
795 |
+
|
796 |
+
p = Sum(B**n*A*B**n, (n, 1, M))
|
797 |
+
assert p.doit() == p
|
798 |
+
|
799 |
+
|
800 |
+
def test_issue_4171():
|
801 |
+
assert summation(factorial(2*k + 1)/factorial(2*k), (k, 0, oo)) is oo
|
802 |
+
assert summation(2*k + 1, (k, 0, oo)) is oo
|
803 |
+
|
804 |
+
|
805 |
+
def test_issue_6273():
|
806 |
+
assert Sum(x, (x, 1, n)).n(2, subs={n: 1}) == Float(1, 2)
|
807 |
+
|
808 |
+
|
809 |
+
def test_issue_6274():
|
810 |
+
assert Sum(x, (x, 1, 0)).doit() == 0
|
811 |
+
assert NS(Sum(x, (x, 1, 0))) == '0'
|
812 |
+
assert Sum(n, (n, 10, 5)).doit() == -30
|
813 |
+
assert NS(Sum(n, (n, 10, 5))) == '-30.0000000000000'
|
814 |
+
|
815 |
+
|
816 |
+
def test_simplify_sum():
|
817 |
+
y, t, v = symbols('y, t, v')
|
818 |
+
|
819 |
+
_simplify = lambda e: simplify(e, doit=False)
|
820 |
+
assert _simplify(Sum(x*y, (x, n, m), (y, a, k)) + \
|
821 |
+
Sum(y, (x, n, m), (y, a, k))) == Sum(y * (x + 1), (x, n, m), (y, a, k))
|
822 |
+
assert _simplify(Sum(x, (x, n, m)) + Sum(x, (x, m + 1, a))) == \
|
823 |
+
Sum(x, (x, n, a))
|
824 |
+
assert _simplify(Sum(x, (x, k + 1, a)) + Sum(x, (x, n, k))) == \
|
825 |
+
Sum(x, (x, n, a))
|
826 |
+
assert _simplify(Sum(x, (x, k + 1, a)) + Sum(x + 1, (x, n, k))) == \
|
827 |
+
Sum(x, (x, n, a)) + Sum(1, (x, n, k))
|
828 |
+
assert _simplify(Sum(x, (x, 0, 3)) * 3 + 3 * Sum(x, (x, 4, 6)) + \
|
829 |
+
4 * Sum(z, (z, 0, 1))) == 4*Sum(z, (z, 0, 1)) + 3*Sum(x, (x, 0, 6))
|
830 |
+
assert _simplify(3*Sum(x**2, (x, a, b)) + Sum(x, (x, a, b))) == \
|
831 |
+
Sum(x*(3*x + 1), (x, a, b))
|
832 |
+
assert _simplify(Sum(x**3, (x, n, k)) * 3 + 3 * Sum(x, (x, n, k)) + \
|
833 |
+
4 * y * Sum(z, (z, n, k))) + 1 == \
|
834 |
+
4*y*Sum(z, (z, n, k)) + 3*Sum(x**3 + x, (x, n, k)) + 1
|
835 |
+
assert _simplify(Sum(x, (x, a, b)) + 1 + Sum(x, (x, b + 1, c))) == \
|
836 |
+
1 + Sum(x, (x, a, c))
|
837 |
+
assert _simplify(Sum(x, (t, a, b)) + Sum(y, (t, a, b)) + \
|
838 |
+
Sum(x, (t, b+1, c))) == x * Sum(1, (t, a, c)) + y * Sum(1, (t, a, b))
|
839 |
+
assert _simplify(Sum(x, (t, a, b)) + Sum(x, (t, b+1, c)) + \
|
840 |
+
Sum(y, (t, a, b))) == x * Sum(1, (t, a, c)) + y * Sum(1, (t, a, b))
|
841 |
+
assert _simplify(Sum(x, (t, a, b)) + 2 * Sum(x, (t, b+1, c))) == \
|
842 |
+
_simplify(Sum(x, (t, a, b)) + Sum(x, (t, b+1, c)) + Sum(x, (t, b+1, c)))
|
843 |
+
assert _simplify(Sum(x, (x, a, b))*Sum(x**2, (x, a, b))) == \
|
844 |
+
Sum(x, (x, a, b)) * Sum(x**2, (x, a, b))
|
845 |
+
assert _simplify(Sum(x, (t, a, b)) + Sum(y, (t, a, b)) + Sum(z, (t, a, b))) \
|
846 |
+
== (x + y + z) * Sum(1, (t, a, b)) # issue 8596
|
847 |
+
assert _simplify(Sum(x, (t, a, b)) + Sum(y, (t, a, b)) + Sum(z, (t, a, b)) + \
|
848 |
+
Sum(v, (t, a, b))) == (x + y + z + v) * Sum(1, (t, a, b)) # issue 8596
|
849 |
+
assert _simplify(Sum(x * y, (x, a, b)) / (3 * y)) == \
|
850 |
+
(Sum(x, (x, a, b)) / 3)
|
851 |
+
assert _simplify(Sum(f(x) * y * z, (x, a, b)) / (y * z)) \
|
852 |
+
== Sum(f(x), (x, a, b))
|
853 |
+
assert _simplify(Sum(c * x, (x, a, b)) - c * Sum(x, (x, a, b))) == 0
|
854 |
+
assert _simplify(c * (Sum(x, (x, a, b)) + y)) == c * (y + Sum(x, (x, a, b)))
|
855 |
+
assert _simplify(c * (Sum(x, (x, a, b)) + y * Sum(x, (x, a, b)))) == \
|
856 |
+
c * (y + 1) * Sum(x, (x, a, b))
|
857 |
+
assert _simplify(Sum(Sum(c * x, (x, a, b)), (y, a, b))) == \
|
858 |
+
c * Sum(x, (x, a, b), (y, a, b))
|
859 |
+
assert _simplify(Sum((3 + y) * Sum(c * x, (x, a, b)), (y, a, b))) == \
|
860 |
+
c * Sum((3 + y), (y, a, b)) * Sum(x, (x, a, b))
|
861 |
+
assert _simplify(Sum((3 + t) * Sum(c * t, (x, a, b)), (y, a, b))) == \
|
862 |
+
c*t*(t + 3)*Sum(1, (x, a, b))*Sum(1, (y, a, b))
|
863 |
+
assert _simplify(Sum(Sum(d * t, (x, a, b - 1)) + \
|
864 |
+
Sum(d * t, (x, b, c)), (t, a, b))) == \
|
865 |
+
d * Sum(1, (x, a, c)) * Sum(t, (t, a, b))
|
866 |
+
assert _simplify(Sum(sin(t)**2 + cos(t)**2 + 1, (t, a, b))) == \
|
867 |
+
2 * Sum(1, (t, a, b))
|
868 |
+
|
869 |
+
|
870 |
+
def test_change_index():
|
871 |
+
b, v, w = symbols('b, v, w', integer = True)
|
872 |
+
|
873 |
+
assert Sum(x, (x, a, b)).change_index(x, x + 1, y) == \
|
874 |
+
Sum(y - 1, (y, a + 1, b + 1))
|
875 |
+
assert Sum(x**2, (x, a, b)).change_index( x, x - 1) == \
|
876 |
+
Sum((x+1)**2, (x, a - 1, b - 1))
|
877 |
+
assert Sum(x**2, (x, a, b)).change_index( x, -x, y) == \
|
878 |
+
Sum((-y)**2, (y, -b, -a))
|
879 |
+
assert Sum(x, (x, a, b)).change_index( x, -x - 1) == \
|
880 |
+
Sum(-x - 1, (x, -b - 1, -a - 1))
|
881 |
+
assert Sum(x*y, (x, a, b), (y, c, d)).change_index( x, x - 1, z) == \
|
882 |
+
Sum((z + 1)*y, (z, a - 1, b - 1), (y, c, d))
|
883 |
+
assert Sum(x, (x, a, b)).change_index( x, x + v) == \
|
884 |
+
Sum(-v + x, (x, a + v, b + v))
|
885 |
+
assert Sum(x, (x, a, b)).change_index( x, -x - v) == \
|
886 |
+
Sum(-v - x, (x, -b - v, -a - v))
|
887 |
+
assert Sum(x, (x, a, b)).change_index(x, w*x, v) == \
|
888 |
+
Sum(v/w, (v, b*w, a*w))
|
889 |
+
raises(ValueError, lambda: Sum(x, (x, a, b)).change_index(x, 2*x))
|
890 |
+
|
891 |
+
|
892 |
+
def test_reorder():
|
893 |
+
b, y, c, d, z = symbols('b, y, c, d, z', integer = True)
|
894 |
+
|
895 |
+
assert Sum(x*y, (x, a, b), (y, c, d)).reorder((0, 1)) == \
|
896 |
+
Sum(x*y, (y, c, d), (x, a, b))
|
897 |
+
assert Sum(x, (x, a, b), (x, c, d)).reorder((0, 1)) == \
|
898 |
+
Sum(x, (x, c, d), (x, a, b))
|
899 |
+
assert Sum(x*y + z, (x, a, b), (z, m, n), (y, c, d)).reorder(\
|
900 |
+
(2, 0), (0, 1)) == Sum(x*y + z, (z, m, n), (y, c, d), (x, a, b))
|
901 |
+
assert Sum(x*y*z, (x, a, b), (y, c, d), (z, m, n)).reorder(\
|
902 |
+
(0, 1), (1, 2), (0, 2)) == Sum(x*y*z, (x, a, b), (z, m, n), (y, c, d))
|
903 |
+
assert Sum(x*y*z, (x, a, b), (y, c, d), (z, m, n)).reorder(\
|
904 |
+
(x, y), (y, z), (x, z)) == Sum(x*y*z, (x, a, b), (z, m, n), (y, c, d))
|
905 |
+
assert Sum(x*y, (x, a, b), (y, c, d)).reorder((x, 1)) == \
|
906 |
+
Sum(x*y, (y, c, d), (x, a, b))
|
907 |
+
assert Sum(x*y, (x, a, b), (y, c, d)).reorder((y, x)) == \
|
908 |
+
Sum(x*y, (y, c, d), (x, a, b))
|
909 |
+
|
910 |
+
|
911 |
+
def test_reverse_order():
|
912 |
+
assert Sum(x, (x, 0, 3)).reverse_order(0) == Sum(-x, (x, 4, -1))
|
913 |
+
assert Sum(x*y, (x, 1, 5), (y, 0, 6)).reverse_order(0, 1) == \
|
914 |
+
Sum(x*y, (x, 6, 0), (y, 7, -1))
|
915 |
+
assert Sum(x, (x, 1, 2)).reverse_order(0) == Sum(-x, (x, 3, 0))
|
916 |
+
assert Sum(x, (x, 1, 3)).reverse_order(0) == Sum(-x, (x, 4, 0))
|
917 |
+
assert Sum(x, (x, 1, a)).reverse_order(0) == Sum(-x, (x, a + 1, 0))
|
918 |
+
assert Sum(x, (x, a, 5)).reverse_order(0) == Sum(-x, (x, 6, a - 1))
|
919 |
+
assert Sum(x, (x, a + 1, a + 5)).reverse_order(0) == \
|
920 |
+
Sum(-x, (x, a + 6, a))
|
921 |
+
assert Sum(x, (x, a + 1, a + 2)).reverse_order(0) == \
|
922 |
+
Sum(-x, (x, a + 3, a))
|
923 |
+
assert Sum(x, (x, a + 1, a + 1)).reverse_order(0) == \
|
924 |
+
Sum(-x, (x, a + 2, a))
|
925 |
+
assert Sum(x, (x, a, b)).reverse_order(0) == Sum(-x, (x, b + 1, a - 1))
|
926 |
+
assert Sum(x, (x, a, b)).reverse_order(x) == Sum(-x, (x, b + 1, a - 1))
|
927 |
+
assert Sum(x*y, (x, a, b), (y, 2, 5)).reverse_order(x, 1) == \
|
928 |
+
Sum(x*y, (x, b + 1, a - 1), (y, 6, 1))
|
929 |
+
assert Sum(x*y, (x, a, b), (y, 2, 5)).reverse_order(y, x) == \
|
930 |
+
Sum(x*y, (x, b + 1, a - 1), (y, 6, 1))
|
931 |
+
|
932 |
+
|
933 |
+
def test_issue_7097():
|
934 |
+
assert sum(x**n/n for n in range(1, 401)) == summation(x**n/n, (n, 1, 400))
|
935 |
+
|
936 |
+
|
937 |
+
def test_factor_expand_subs():
|
938 |
+
# test factoring
|
939 |
+
assert Sum(4 * x, (x, 1, y)).factor() == 4 * Sum(x, (x, 1, y))
|
940 |
+
assert Sum(x * a, (x, 1, y)).factor() == a * Sum(x, (x, 1, y))
|
941 |
+
assert Sum(4 * x * a, (x, 1, y)).factor() == 4 * a * Sum(x, (x, 1, y))
|
942 |
+
assert Sum(4 * x * y, (x, 1, y)).factor() == 4 * y * Sum(x, (x, 1, y))
|
943 |
+
|
944 |
+
# test expand
|
945 |
+
_x = Symbol('x', zero=False)
|
946 |
+
assert Sum(x+1,(x,1,y)).expand() == Sum(x,(x,1,y)) + Sum(1,(x,1,y))
|
947 |
+
assert Sum(x+a*x**2,(x,1,y)).expand() == Sum(x,(x,1,y)) + Sum(a*x**2,(x,1,y))
|
948 |
+
assert Sum(_x**(n + 1)*(n + 1), (n, -1, oo)).expand() \
|
949 |
+
== Sum(n*_x*_x**n + _x*_x**n, (n, -1, oo))
|
950 |
+
assert Sum(x**(n + 1)*(n + 1), (n, -1, oo)).expand(power_exp=False) \
|
951 |
+
== Sum(n*x**(n + 1) + x**(n + 1), (n, -1, oo))
|
952 |
+
assert Sum(x**(n + 1)*(n + 1), (n, -1, oo)).expand(force=True) \
|
953 |
+
== Sum(x*x**n, (n, -1, oo)) + Sum(n*x*x**n, (n, -1, oo))
|
954 |
+
assert Sum(a*n+a*n**2,(n,0,4)).expand() \
|
955 |
+
== Sum(a*n,(n,0,4)) + Sum(a*n**2,(n,0,4))
|
956 |
+
assert Sum(_x**a*_x**n,(x,0,3)) \
|
957 |
+
== Sum(_x**(a+n),(x,0,3)).expand(power_exp=True)
|
958 |
+
_a, _n = symbols('a n', positive=True)
|
959 |
+
assert Sum(x**(_a+_n),(x,0,3)).expand(power_exp=True) \
|
960 |
+
== Sum(x**_a*x**_n, (x, 0, 3))
|
961 |
+
assert Sum(x**(_a-_n),(x,0,3)).expand(power_exp=True) \
|
962 |
+
== Sum(x**(_a-_n),(x,0,3)).expand(power_exp=False)
|
963 |
+
|
964 |
+
# test subs
|
965 |
+
assert Sum(1/(1+a*x**2),(x,0,3)).subs([(a,3)]) == Sum(1/(1+3*x**2),(x,0,3))
|
966 |
+
assert Sum(x*y,(x,0,y),(y,0,x)).subs([(x,3)]) == Sum(x*y,(x,0,y),(y,0,3))
|
967 |
+
assert Sum(x,(x,1,10)).subs([(x,y-2)]) == Sum(x,(x,1,10))
|
968 |
+
assert Sum(1/x,(x,1,10)).subs([(x,(3+n)**3)]) == Sum(1/x,(x,1,10))
|
969 |
+
assert Sum(1/x,(x,1,10)).subs([(x,3*x-2)]) == Sum(1/x,(x,1,10))
|
970 |
+
|
971 |
+
|
972 |
+
def test_distribution_over_equality():
|
973 |
+
assert Product(Eq(x*2, f(x)), (x, 1, 3)).doit() == Eq(48, f(1)*f(2)*f(3))
|
974 |
+
assert Sum(Eq(f(x), x**2), (x, 0, y)) == \
|
975 |
+
Eq(Sum(f(x), (x, 0, y)), Sum(x**2, (x, 0, y)))
|
976 |
+
|
977 |
+
|
978 |
+
def test_issue_2787():
|
979 |
+
n, k = symbols('n k', positive=True, integer=True)
|
980 |
+
p = symbols('p', positive=True)
|
981 |
+
binomial_dist = binomial(n, k)*p**k*(1 - p)**(n - k)
|
982 |
+
s = Sum(binomial_dist*k, (k, 0, n))
|
983 |
+
res = s.doit().simplify()
|
984 |
+
ans = Piecewise(
|
985 |
+
(n*p, x),
|
986 |
+
(Sum(k*p**k*binomial(n, k)*(1 - p)**(n - k), (k, 0, n)),
|
987 |
+
True)).subs(x, (Eq(n, 1) | (n > 1)) & (p/Abs(p - 1) <= 1))
|
988 |
+
ans2 = Piecewise(
|
989 |
+
(n*p, x),
|
990 |
+
(factorial(n)*Sum(p**k*(1 - p)**(-k + n)/
|
991 |
+
(factorial(-k + n)*factorial(k - 1)), (k, 0, n)),
|
992 |
+
True)).subs(x, (Eq(n, 1) | (n > 1)) & (p/Abs(p - 1) <= 1))
|
993 |
+
assert res in [ans, ans2] # XXX system dependent
|
994 |
+
# Issue #17165: make sure that another simplify does not complicate
|
995 |
+
# the result by much. Why didn't first simplify replace
|
996 |
+
# Eq(n, 1) | (n > 1) with True?
|
997 |
+
assert res.simplify().count_ops() <= res.count_ops() + 2
|
998 |
+
|
999 |
+
|
1000 |
+
def test_issue_4668():
|
1001 |
+
assert summation(1/n, (n, 2, oo)) is oo
|
1002 |
+
|
1003 |
+
|
1004 |
+
def test_matrix_sum():
|
1005 |
+
A = Matrix([[0, 1], [n, 0]])
|
1006 |
+
|
1007 |
+
result = Sum(A, (n, 0, 3)).doit()
|
1008 |
+
assert result == Matrix([[0, 4], [6, 0]])
|
1009 |
+
assert result.__class__ == ImmutableDenseMatrix
|
1010 |
+
|
1011 |
+
A = SparseMatrix([[0, 1], [n, 0]])
|
1012 |
+
|
1013 |
+
result = Sum(A, (n, 0, 3)).doit()
|
1014 |
+
assert result.__class__ == ImmutableSparseMatrix
|
1015 |
+
|
1016 |
+
|
1017 |
+
def test_failing_matrix_sum():
|
1018 |
+
n = Symbol('n')
|
1019 |
+
# TODO Implement matrix geometric series summation.
|
1020 |
+
A = Matrix([[0, 1, 0], [-1, 0, 0], [0, 0, 0]])
|
1021 |
+
assert Sum(A ** n, (n, 1, 4)).doit() == \
|
1022 |
+
Matrix([[0, 0, 0], [0, 0, 0], [0, 0, 0]])
|
1023 |
+
# issue sympy/sympy#16989
|
1024 |
+
assert summation(A**n, (n, 1, 1)) == A
|
1025 |
+
|
1026 |
+
|
1027 |
+
def test_indexed_idx_sum():
|
1028 |
+
i = symbols('i', cls=Idx)
|
1029 |
+
r = Indexed('r', i)
|
1030 |
+
assert Sum(r, (i, 0, 3)).doit() == sum([r.xreplace({i: j}) for j in range(4)])
|
1031 |
+
assert Product(r, (i, 0, 3)).doit() == prod([r.xreplace({i: j}) for j in range(4)])
|
1032 |
+
|
1033 |
+
j = symbols('j', integer=True)
|
1034 |
+
assert Sum(r, (i, j, j+2)).doit() == sum([r.xreplace({i: j+k}) for k in range(3)])
|
1035 |
+
assert Product(r, (i, j, j+2)).doit() == prod([r.xreplace({i: j+k}) for k in range(3)])
|
1036 |
+
|
1037 |
+
k = Idx('k', range=(1, 3))
|
1038 |
+
A = IndexedBase('A')
|
1039 |
+
assert Sum(A[k], k).doit() == sum([A[Idx(j, (1, 3))] for j in range(1, 4)])
|
1040 |
+
assert Product(A[k], k).doit() == prod([A[Idx(j, (1, 3))] for j in range(1, 4)])
|
1041 |
+
|
1042 |
+
raises(ValueError, lambda: Sum(A[k], (k, 1, 4)))
|
1043 |
+
raises(ValueError, lambda: Sum(A[k], (k, 0, 3)))
|
1044 |
+
raises(ValueError, lambda: Sum(A[k], (k, 2, oo)))
|
1045 |
+
|
1046 |
+
raises(ValueError, lambda: Product(A[k], (k, 1, 4)))
|
1047 |
+
raises(ValueError, lambda: Product(A[k], (k, 0, 3)))
|
1048 |
+
raises(ValueError, lambda: Product(A[k], (k, 2, oo)))
|
1049 |
+
|
1050 |
+
|
1051 |
+
@slow
|
1052 |
+
def test_is_convergent():
|
1053 |
+
# divergence tests --
|
1054 |
+
assert Sum(n/(2*n + 1), (n, 1, oo)).is_convergent() is S.false
|
1055 |
+
assert Sum(factorial(n)/5**n, (n, 1, oo)).is_convergent() is S.false
|
1056 |
+
assert Sum(3**(-2*n - 1)*n**n, (n, 1, oo)).is_convergent() is S.false
|
1057 |
+
assert Sum((-1)**n*n, (n, 3, oo)).is_convergent() is S.false
|
1058 |
+
assert Sum((-1)**n, (n, 1, oo)).is_convergent() is S.false
|
1059 |
+
assert Sum(log(1/n), (n, 2, oo)).is_convergent() is S.false
|
1060 |
+
|
1061 |
+
# Raabe's test --
|
1062 |
+
assert Sum(Product((3*m),(m,1,n))/Product((3*m+4),(m,1,n)),(n,1,oo)).is_convergent() is S.true
|
1063 |
+
|
1064 |
+
# root test --
|
1065 |
+
assert Sum((-12)**n/n, (n, 1, oo)).is_convergent() is S.false
|
1066 |
+
|
1067 |
+
# integral test --
|
1068 |
+
|
1069 |
+
# p-series test --
|
1070 |
+
assert Sum(1/(n**2 + 1), (n, 1, oo)).is_convergent() is S.true
|
1071 |
+
assert Sum(1/n**Rational(6, 5), (n, 1, oo)).is_convergent() is S.true
|
1072 |
+
assert Sum(2/(n*sqrt(n - 1)), (n, 2, oo)).is_convergent() is S.true
|
1073 |
+
assert Sum(1/(sqrt(n)*sqrt(n)), (n, 2, oo)).is_convergent() is S.false
|
1074 |
+
assert Sum(factorial(n) / factorial(n+2), (n, 1, oo)).is_convergent() is S.true
|
1075 |
+
assert Sum(rf(5,n)/rf(7,n),(n,1,oo)).is_convergent() is S.true
|
1076 |
+
assert Sum((rf(1, n)*rf(2, n))/(rf(3, n)*factorial(n)),(n,1,oo)).is_convergent() is S.false
|
1077 |
+
|
1078 |
+
# comparison test --
|
1079 |
+
assert Sum(1/(n + log(n)), (n, 1, oo)).is_convergent() is S.false
|
1080 |
+
assert Sum(1/(n**2*log(n)), (n, 2, oo)).is_convergent() is S.true
|
1081 |
+
assert Sum(1/(n*log(n)), (n, 2, oo)).is_convergent() is S.false
|
1082 |
+
assert Sum(2/(n*log(n)*log(log(n))**2), (n, 5, oo)).is_convergent() is S.true
|
1083 |
+
assert Sum(2/(n*log(n)**2), (n, 2, oo)).is_convergent() is S.true
|
1084 |
+
assert Sum((n - 1)/(n**2*log(n)**3), (n, 2, oo)).is_convergent() is S.true
|
1085 |
+
assert Sum(1/(n*log(n)*log(log(n))), (n, 5, oo)).is_convergent() is S.false
|
1086 |
+
assert Sum((n - 1)/(n*log(n)**3), (n, 3, oo)).is_convergent() is S.false
|
1087 |
+
assert Sum(2/(n**2*log(n)), (n, 2, oo)).is_convergent() is S.true
|
1088 |
+
assert Sum(1/(n*sqrt(log(n))*log(log(n))), (n, 100, oo)).is_convergent() is S.false
|
1089 |
+
assert Sum(log(log(n))/(n*log(n)**2), (n, 100, oo)).is_convergent() is S.true
|
1090 |
+
assert Sum(log(n)/n**2, (n, 5, oo)).is_convergent() is S.true
|
1091 |
+
|
1092 |
+
# alternating series tests --
|
1093 |
+
assert Sum((-1)**(n - 1)/(n**2 - 1), (n, 3, oo)).is_convergent() is S.true
|
1094 |
+
|
1095 |
+
# with -negativeInfinite Limits
|
1096 |
+
assert Sum(1/(n**2 + 1), (n, -oo, 1)).is_convergent() is S.true
|
1097 |
+
assert Sum(1/(n - 1), (n, -oo, -1)).is_convergent() is S.false
|
1098 |
+
assert Sum(1/(n**2 - 1), (n, -oo, -5)).is_convergent() is S.true
|
1099 |
+
assert Sum(1/(n**2 - 1), (n, -oo, 2)).is_convergent() is S.true
|
1100 |
+
assert Sum(1/(n**2 - 1), (n, -oo, oo)).is_convergent() is S.true
|
1101 |
+
|
1102 |
+
# piecewise functions
|
1103 |
+
f = Piecewise((n**(-2), n <= 1), (n**2, n > 1))
|
1104 |
+
assert Sum(f, (n, 1, oo)).is_convergent() is S.false
|
1105 |
+
assert Sum(f, (n, -oo, oo)).is_convergent() is S.false
|
1106 |
+
assert Sum(f, (n, 1, 100)).is_convergent() is S.true
|
1107 |
+
#assert Sum(f, (n, -oo, 1)).is_convergent() is S.true
|
1108 |
+
|
1109 |
+
# integral test
|
1110 |
+
|
1111 |
+
assert Sum(log(n)/n**3, (n, 1, oo)).is_convergent() is S.true
|
1112 |
+
assert Sum(-log(n)/n**3, (n, 1, oo)).is_convergent() is S.true
|
1113 |
+
# the following function has maxima located at (x, y) =
|
1114 |
+
# (1.2, 0.43), (3.0, -0.25) and (6.8, 0.050)
|
1115 |
+
eq = (x - 2)*(x**2 - 6*x + 4)*exp(-x)
|
1116 |
+
assert Sum(eq, (x, 1, oo)).is_convergent() is S.true
|
1117 |
+
assert Sum(eq, (x, 1, 2)).is_convergent() is S.true
|
1118 |
+
assert Sum(1/(x**3), (x, 1, oo)).is_convergent() is S.true
|
1119 |
+
assert Sum(1/(x**S.Half), (x, 1, oo)).is_convergent() is S.false
|
1120 |
+
|
1121 |
+
# issue 19545
|
1122 |
+
assert Sum(1/n - 3/(3*n +2), (n, 1, oo)).is_convergent() is S.true
|
1123 |
+
|
1124 |
+
# issue 19836
|
1125 |
+
assert Sum(4/(n + 2) - 5/(n + 1) + 1/n,(n, 7, oo)).is_convergent() is S.true
|
1126 |
+
|
1127 |
+
|
1128 |
+
def test_is_absolutely_convergent():
|
1129 |
+
assert Sum((-1)**n, (n, 1, oo)).is_absolutely_convergent() is S.false
|
1130 |
+
assert Sum((-1)**n/n**2, (n, 1, oo)).is_absolutely_convergent() is S.true
|
1131 |
+
|
1132 |
+
|
1133 |
+
@XFAIL
|
1134 |
+
def test_convergent_failing():
|
1135 |
+
# dirichlet tests
|
1136 |
+
assert Sum(sin(n)/n, (n, 1, oo)).is_convergent() is S.true
|
1137 |
+
assert Sum(sin(2*n)/n, (n, 1, oo)).is_convergent() is S.true
|
1138 |
+
|
1139 |
+
|
1140 |
+
def test_issue_6966():
|
1141 |
+
i, k, m = symbols('i k m', integer=True)
|
1142 |
+
z_i, q_i = symbols('z_i q_i')
|
1143 |
+
a_k = Sum(-q_i*z_i/k,(i,1,m))
|
1144 |
+
b_k = a_k.diff(z_i)
|
1145 |
+
assert isinstance(b_k, Sum)
|
1146 |
+
assert b_k == Sum(-q_i/k,(i,1,m))
|
1147 |
+
|
1148 |
+
|
1149 |
+
def test_issue_10156():
|
1150 |
+
cx = Sum(2*y**2*x, (x, 1,3))
|
1151 |
+
e = 2*y*Sum(2*cx*x**2, (x, 1, 9))
|
1152 |
+
assert e.factor() == \
|
1153 |
+
8*y**3*Sum(x, (x, 1, 3))*Sum(x**2, (x, 1, 9))
|
1154 |
+
|
1155 |
+
|
1156 |
+
def test_issue_10973():
|
1157 |
+
assert Sum((-n + (n**3 + 1)**(S(1)/3))/log(n), (n, 1, oo)).is_convergent() is S.true
|
1158 |
+
|
1159 |
+
|
1160 |
+
def test_issue_14129():
|
1161 |
+
x = Symbol('x', zero=False)
|
1162 |
+
assert Sum( k*x**k, (k, 0, n-1)).doit() == \
|
1163 |
+
Piecewise((n**2/2 - n/2, Eq(x, 1)), ((n*x*x**n -
|
1164 |
+
n*x**n - x*x**n + x)/(x - 1)**2, True))
|
1165 |
+
assert Sum( x**k, (k, 0, n-1)).doit() == \
|
1166 |
+
Piecewise((n, Eq(x, 1)), ((-x**n + 1)/(-x + 1), True))
|
1167 |
+
assert Sum( k*(x/y+x)**k, (k, 0, n-1)).doit() == \
|
1168 |
+
Piecewise((n*(n - 1)/2, Eq(x, y/(y + 1))),
|
1169 |
+
(x*(y + 1)*(n*x*y*(x + x/y)**(n - 1) +
|
1170 |
+
n*x*(x + x/y)**(n - 1) - n*y*(x + x/y)**(n - 1) -
|
1171 |
+
x*y*(x + x/y)**(n - 1) - x*(x + x/y)**(n - 1) + y)/
|
1172 |
+
(x*y + x - y)**2, True))
|
1173 |
+
|
1174 |
+
|
1175 |
+
def test_issue_14112():
|
1176 |
+
assert Sum((-1)**n/sqrt(n), (n, 1, oo)).is_absolutely_convergent() is S.false
|
1177 |
+
assert Sum((-1)**(2*n)/n, (n, 1, oo)).is_convergent() is S.false
|
1178 |
+
assert Sum((-2)**n + (-3)**n, (n, 1, oo)).is_convergent() is S.false
|
1179 |
+
|
1180 |
+
|
1181 |
+
def test_issue_14219():
|
1182 |
+
A = diag(0, 2, -3)
|
1183 |
+
res = diag(1, 15, -20)
|
1184 |
+
assert Sum(A**n, (n, 0, 3)).doit() == res
|
1185 |
+
|
1186 |
+
|
1187 |
+
def test_sin_times_absolutely_convergent():
|
1188 |
+
assert Sum(sin(n) / n**3, (n, 1, oo)).is_convergent() is S.true
|
1189 |
+
assert Sum(sin(n) * log(n) / n**3, (n, 1, oo)).is_convergent() is S.true
|
1190 |
+
|
1191 |
+
|
1192 |
+
def test_issue_14111():
|
1193 |
+
assert Sum(1/log(log(n)), (n, 22, oo)).is_convergent() is S.false
|
1194 |
+
|
1195 |
+
|
1196 |
+
def test_issue_14484():
|
1197 |
+
assert Sum(sin(n)/log(log(n)), (n, 22, oo)).is_convergent() is S.false
|
1198 |
+
|
1199 |
+
|
1200 |
+
def test_issue_14640():
|
1201 |
+
i, n = symbols("i n", integer=True)
|
1202 |
+
a, b, c = symbols("a b c", zero=False)
|
1203 |
+
|
1204 |
+
assert Sum(a**-i/(a - b), (i, 0, n)).doit() == Sum(
|
1205 |
+
1/(a*a**i - a**i*b), (i, 0, n)).doit() == Piecewise(
|
1206 |
+
(n + 1, Eq(1/a, 1)),
|
1207 |
+
((-a**(-n - 1) + 1)/(1 - 1/a), True))/(a - b)
|
1208 |
+
|
1209 |
+
assert Sum((b*a**i - c*a**i)**-2, (i, 0, n)).doit() == Piecewise(
|
1210 |
+
(n + 1, Eq(a**(-2), 1)),
|
1211 |
+
((-a**(-2*n - 2) + 1)/(1 - 1/a**2), True))/(b - c)**2
|
1212 |
+
|
1213 |
+
s = Sum(i*(a**(n - i) - b**(n - i))/(a - b), (i, 0, n)).doit()
|
1214 |
+
assert not s.has(Sum)
|
1215 |
+
assert s.subs({a: 2, b: 3, n: 5}) == 122
|
1216 |
+
|
1217 |
+
|
1218 |
+
def test_issue_15943():
|
1219 |
+
s = Sum(binomial(n, k)*factorial(n - k), (k, 0, n)).doit().rewrite(gamma)
|
1220 |
+
assert s == -E*(n + 1)*gamma(n + 1)*lowergamma(n + 1, 1)/gamma(n + 2
|
1221 |
+
) + E*gamma(n + 1)
|
1222 |
+
assert s.simplify() == E*(factorial(n) - lowergamma(n + 1, 1))
|
1223 |
+
|
1224 |
+
|
1225 |
+
def test_Sum_dummy_eq():
|
1226 |
+
assert not Sum(x, (x, a, b)).dummy_eq(1)
|
1227 |
+
assert not Sum(x, (x, a, b)).dummy_eq(Sum(x, (x, a, b), (a, 1, 2)))
|
1228 |
+
assert not Sum(x, (x, a, b)).dummy_eq(Sum(x, (x, a, c)))
|
1229 |
+
assert Sum(x, (x, a, b)).dummy_eq(Sum(x, (x, a, b)))
|
1230 |
+
d = Dummy()
|
1231 |
+
assert Sum(x, (x, a, d)).dummy_eq(Sum(x, (x, a, c)), c)
|
1232 |
+
assert not Sum(x, (x, a, d)).dummy_eq(Sum(x, (x, a, c)))
|
1233 |
+
assert Sum(x, (x, a, c)).dummy_eq(Sum(y, (y, a, c)))
|
1234 |
+
assert Sum(x, (x, a, d)).dummy_eq(Sum(y, (y, a, c)), c)
|
1235 |
+
assert not Sum(x, (x, a, d)).dummy_eq(Sum(y, (y, a, c)))
|
1236 |
+
|
1237 |
+
|
1238 |
+
def test_issue_15852():
|
1239 |
+
assert summation(x**y*y, (y, -oo, oo)).doit() == Sum(x**y*y, (y, -oo, oo))
|
1240 |
+
|
1241 |
+
|
1242 |
+
def test_exceptions():
|
1243 |
+
S = Sum(x, (x, a, b))
|
1244 |
+
raises(ValueError, lambda: S.change_index(x, x**2, y))
|
1245 |
+
S = Sum(x, (x, a, b), (x, 1, 4))
|
1246 |
+
raises(ValueError, lambda: S.index(x))
|
1247 |
+
S = Sum(x, (x, a, b), (y, 1, 4))
|
1248 |
+
raises(ValueError, lambda: S.reorder([x]))
|
1249 |
+
S = Sum(x, (x, y, b), (y, 1, 4))
|
1250 |
+
raises(ReorderError, lambda: S.reorder_limit(0, 1))
|
1251 |
+
S = Sum(x*y, (x, a, b), (y, 1, 4))
|
1252 |
+
raises(NotImplementedError, lambda: S.is_convergent())
|
1253 |
+
|
1254 |
+
|
1255 |
+
def test_sumproducts_assumptions():
|
1256 |
+
M = Symbol('M', integer=True, positive=True)
|
1257 |
+
|
1258 |
+
m = Symbol('m', integer=True)
|
1259 |
+
for func in [Sum, Product]:
|
1260 |
+
assert func(m, (m, -M, M)).is_positive is None
|
1261 |
+
assert func(m, (m, -M, M)).is_nonpositive is None
|
1262 |
+
assert func(m, (m, -M, M)).is_negative is None
|
1263 |
+
assert func(m, (m, -M, M)).is_nonnegative is None
|
1264 |
+
assert func(m, (m, -M, M)).is_finite is True
|
1265 |
+
|
1266 |
+
m = Symbol('m', integer=True, nonnegative=True)
|
1267 |
+
for func in [Sum, Product]:
|
1268 |
+
assert func(m, (m, 0, M)).is_positive is None
|
1269 |
+
assert func(m, (m, 0, M)).is_nonpositive is None
|
1270 |
+
assert func(m, (m, 0, M)).is_negative is False
|
1271 |
+
assert func(m, (m, 0, M)).is_nonnegative is True
|
1272 |
+
assert func(m, (m, 0, M)).is_finite is True
|
1273 |
+
|
1274 |
+
m = Symbol('m', integer=True, positive=True)
|
1275 |
+
for func in [Sum, Product]:
|
1276 |
+
assert func(m, (m, 1, M)).is_positive is True
|
1277 |
+
assert func(m, (m, 1, M)).is_nonpositive is False
|
1278 |
+
assert func(m, (m, 1, M)).is_negative is False
|
1279 |
+
assert func(m, (m, 1, M)).is_nonnegative is True
|
1280 |
+
assert func(m, (m, 1, M)).is_finite is True
|
1281 |
+
|
1282 |
+
m = Symbol('m', integer=True, negative=True)
|
1283 |
+
assert Sum(m, (m, -M, -1)).is_positive is False
|
1284 |
+
assert Sum(m, (m, -M, -1)).is_nonpositive is True
|
1285 |
+
assert Sum(m, (m, -M, -1)).is_negative is True
|
1286 |
+
assert Sum(m, (m, -M, -1)).is_nonnegative is False
|
1287 |
+
assert Sum(m, (m, -M, -1)).is_finite is True
|
1288 |
+
assert Product(m, (m, -M, -1)).is_positive is None
|
1289 |
+
assert Product(m, (m, -M, -1)).is_nonpositive is None
|
1290 |
+
assert Product(m, (m, -M, -1)).is_negative is None
|
1291 |
+
assert Product(m, (m, -M, -1)).is_nonnegative is None
|
1292 |
+
assert Product(m, (m, -M, -1)).is_finite is True
|
1293 |
+
|
1294 |
+
m = Symbol('m', integer=True, nonpositive=True)
|
1295 |
+
assert Sum(m, (m, -M, 0)).is_positive is False
|
1296 |
+
assert Sum(m, (m, -M, 0)).is_nonpositive is True
|
1297 |
+
assert Sum(m, (m, -M, 0)).is_negative is None
|
1298 |
+
assert Sum(m, (m, -M, 0)).is_nonnegative is None
|
1299 |
+
assert Sum(m, (m, -M, 0)).is_finite is True
|
1300 |
+
assert Product(m, (m, -M, 0)).is_positive is None
|
1301 |
+
assert Product(m, (m, -M, 0)).is_nonpositive is None
|
1302 |
+
assert Product(m, (m, -M, 0)).is_negative is None
|
1303 |
+
assert Product(m, (m, -M, 0)).is_nonnegative is None
|
1304 |
+
assert Product(m, (m, -M, 0)).is_finite is True
|
1305 |
+
|
1306 |
+
m = Symbol('m', integer=True)
|
1307 |
+
assert Sum(2, (m, 0, oo)).is_positive is None
|
1308 |
+
assert Sum(2, (m, 0, oo)).is_nonpositive is None
|
1309 |
+
assert Sum(2, (m, 0, oo)).is_negative is None
|
1310 |
+
assert Sum(2, (m, 0, oo)).is_nonnegative is None
|
1311 |
+
assert Sum(2, (m, 0, oo)).is_finite is None
|
1312 |
+
|
1313 |
+
assert Product(2, (m, 0, oo)).is_positive is None
|
1314 |
+
assert Product(2, (m, 0, oo)).is_nonpositive is None
|
1315 |
+
assert Product(2, (m, 0, oo)).is_negative is False
|
1316 |
+
assert Product(2, (m, 0, oo)).is_nonnegative is None
|
1317 |
+
assert Product(2, (m, 0, oo)).is_finite is None
|
1318 |
+
|
1319 |
+
assert Product(0, (x, M, M-1)).is_positive is True
|
1320 |
+
assert Product(0, (x, M, M-1)).is_finite is True
|
1321 |
+
|
1322 |
+
|
1323 |
+
def test_expand_with_assumptions():
|
1324 |
+
M = Symbol('M', integer=True, positive=True)
|
1325 |
+
x = Symbol('x', positive=True)
|
1326 |
+
m = Symbol('m', nonnegative=True)
|
1327 |
+
assert log(Product(x**m, (m, 0, M))).expand() == Sum(m*log(x), (m, 0, M))
|
1328 |
+
assert log(Product(exp(x**m), (m, 0, M))).expand() == Sum(x**m, (m, 0, M))
|
1329 |
+
assert log(Product(x**m, (m, 0, M))).rewrite(Sum).expand() == Sum(m*log(x), (m, 0, M))
|
1330 |
+
assert log(Product(exp(x**m), (m, 0, M))).rewrite(Sum).expand() == Sum(x**m, (m, 0, M))
|
1331 |
+
|
1332 |
+
n = Symbol('n', nonnegative=True)
|
1333 |
+
i, j = symbols('i,j', positive=True, integer=True)
|
1334 |
+
x, y = symbols('x,y', positive=True)
|
1335 |
+
assert log(Product(x**i*y**j, (i, 1, n), (j, 1, m))).expand() \
|
1336 |
+
== Sum(i*log(x) + j*log(y), (i, 1, n), (j, 1, m))
|
1337 |
+
|
1338 |
+
m = Symbol('m', nonnegative=True, integer=True)
|
1339 |
+
s = Sum(x**m, (m, 0, M))
|
1340 |
+
s_as_product = s.rewrite(Product)
|
1341 |
+
assert s_as_product.has(Product)
|
1342 |
+
assert s_as_product == log(Product(exp(x**m), (m, 0, M)))
|
1343 |
+
assert s_as_product.expand() == s
|
1344 |
+
s5 = s.subs(M, 5)
|
1345 |
+
s5_as_product = s5.rewrite(Product)
|
1346 |
+
assert s5_as_product.has(Product)
|
1347 |
+
assert s5_as_product.doit().expand() == s5.doit()
|
1348 |
+
|
1349 |
+
|
1350 |
+
def test_has_finite_limits():
|
1351 |
+
x = Symbol('x')
|
1352 |
+
assert Sum(1, (x, 1, 9)).has_finite_limits is True
|
1353 |
+
assert Sum(1, (x, 1, oo)).has_finite_limits is False
|
1354 |
+
M = Symbol('M')
|
1355 |
+
assert Sum(1, (x, 1, M)).has_finite_limits is None
|
1356 |
+
M = Symbol('M', positive=True)
|
1357 |
+
assert Sum(1, (x, 1, M)).has_finite_limits is True
|
1358 |
+
x = Symbol('x', positive=True)
|
1359 |
+
M = Symbol('M')
|
1360 |
+
assert Sum(1, (x, 1, M)).has_finite_limits is True
|
1361 |
+
|
1362 |
+
assert Sum(1, (x, 1, M), (y, -oo, oo)).has_finite_limits is False
|
1363 |
+
|
1364 |
+
def test_has_reversed_limits():
|
1365 |
+
assert Sum(1, (x, 1, 1)).has_reversed_limits is False
|
1366 |
+
assert Sum(1, (x, 1, 9)).has_reversed_limits is False
|
1367 |
+
assert Sum(1, (x, 1, -9)).has_reversed_limits is True
|
1368 |
+
assert Sum(1, (x, 1, 0)).has_reversed_limits is True
|
1369 |
+
assert Sum(1, (x, 1, oo)).has_reversed_limits is False
|
1370 |
+
M = Symbol('M')
|
1371 |
+
assert Sum(1, (x, 1, M)).has_reversed_limits is None
|
1372 |
+
M = Symbol('M', positive=True, integer=True)
|
1373 |
+
assert Sum(1, (x, 1, M)).has_reversed_limits is False
|
1374 |
+
assert Sum(1, (x, 1, M), (y, -oo, oo)).has_reversed_limits is False
|
1375 |
+
M = Symbol('M', negative=True)
|
1376 |
+
assert Sum(1, (x, 1, M)).has_reversed_limits is True
|
1377 |
+
|
1378 |
+
assert Sum(1, (x, 1, M), (y, -oo, oo)).has_reversed_limits is True
|
1379 |
+
assert Sum(1, (x, oo, oo)).has_reversed_limits is None
|
1380 |
+
|
1381 |
+
|
1382 |
+
def test_has_empty_sequence():
|
1383 |
+
assert Sum(1, (x, 1, 1)).has_empty_sequence is False
|
1384 |
+
assert Sum(1, (x, 1, 9)).has_empty_sequence is False
|
1385 |
+
assert Sum(1, (x, 1, -9)).has_empty_sequence is False
|
1386 |
+
assert Sum(1, (x, 1, 0)).has_empty_sequence is True
|
1387 |
+
assert Sum(1, (x, y, y - 1)).has_empty_sequence is True
|
1388 |
+
assert Sum(1, (x, 3, 2), (y, -oo, oo)).has_empty_sequence is True
|
1389 |
+
assert Sum(1, (y, -oo, oo), (x, 3, 2)).has_empty_sequence is True
|
1390 |
+
assert Sum(1, (x, oo, oo)).has_empty_sequence is False
|
1391 |
+
|
1392 |
+
|
1393 |
+
def test_empty_sequence():
|
1394 |
+
assert Product(x*y, (x, -oo, oo), (y, 1, 0)).doit() == 1
|
1395 |
+
assert Product(x*y, (y, 1, 0), (x, -oo, oo)).doit() == 1
|
1396 |
+
assert Sum(x, (x, -oo, oo), (y, 1, 0)).doit() == 0
|
1397 |
+
assert Sum(x, (y, 1, 0), (x, -oo, oo)).doit() == 0
|
1398 |
+
|
1399 |
+
|
1400 |
+
def test_issue_8016():
|
1401 |
+
k = Symbol('k', integer=True)
|
1402 |
+
n, m = symbols('n, m', integer=True, positive=True)
|
1403 |
+
s = Sum(binomial(m, k)*binomial(m, n - k)*(-1)**k, (k, 0, n))
|
1404 |
+
assert s.doit().simplify() == \
|
1405 |
+
cos(pi*n/2)*gamma(m + 1)/gamma(n/2 + 1)/gamma(m - n/2 + 1)
|
1406 |
+
|
1407 |
+
|
1408 |
+
def test_issue_14313():
|
1409 |
+
assert Sum(S.Half**floor(n/2), (n, 1, oo)).is_convergent()
|
1410 |
+
|
1411 |
+
|
1412 |
+
def test_issue_14563():
|
1413 |
+
# The assertion was failing due to no assumptions methods in Sums and Product
|
1414 |
+
assert 1 % Sum(1, (x, 0, 1)) == 1
|
1415 |
+
|
1416 |
+
|
1417 |
+
def test_issue_16735():
|
1418 |
+
assert Sum(5**n/gamma(n+1), (n, 1, oo)).is_convergent() is S.true
|
1419 |
+
|
1420 |
+
|
1421 |
+
def test_issue_14871():
|
1422 |
+
assert Sum((Rational(1, 10))**n*rf(0, n)/factorial(n), (n, 0, oo)).rewrite(factorial).doit() == 1
|
1423 |
+
|
1424 |
+
|
1425 |
+
def test_issue_17165():
|
1426 |
+
n = symbols("n", integer=True)
|
1427 |
+
x = symbols('x')
|
1428 |
+
s = (x*Sum(x**n, (n, -1, oo)))
|
1429 |
+
ssimp = s.doit().simplify()
|
1430 |
+
|
1431 |
+
assert ssimp == Piecewise((-1/(x - 1), (x > -1) & (x < 1)),
|
1432 |
+
(x*Sum(x**n, (n, -1, oo)), True)), ssimp
|
1433 |
+
assert ssimp.simplify() == ssimp
|
1434 |
+
|
1435 |
+
|
1436 |
+
def test_issue_19379():
|
1437 |
+
assert Sum(factorial(n)/factorial(n + 2), (n, 1, oo)).is_convergent() is S.true
|
1438 |
+
|
1439 |
+
|
1440 |
+
def test_issue_20777():
|
1441 |
+
assert Sum(exp(x*sin(n/m)), (n, 1, m)).doit() == Sum(exp(x*sin(n/m)), (n, 1, m))
|
1442 |
+
|
1443 |
+
|
1444 |
+
def test__dummy_with_inherited_properties_concrete():
|
1445 |
+
x = Symbol('x')
|
1446 |
+
|
1447 |
+
from sympy.core.containers import Tuple
|
1448 |
+
d = _dummy_with_inherited_properties_concrete(Tuple(x, 0, 5))
|
1449 |
+
assert d.is_real
|
1450 |
+
assert d.is_integer
|
1451 |
+
assert d.is_nonnegative
|
1452 |
+
assert d.is_extended_nonnegative
|
1453 |
+
|
1454 |
+
d = _dummy_with_inherited_properties_concrete(Tuple(x, 1, 9))
|
1455 |
+
assert d.is_real
|
1456 |
+
assert d.is_integer
|
1457 |
+
assert d.is_positive
|
1458 |
+
assert d.is_odd is None
|
1459 |
+
|
1460 |
+
d = _dummy_with_inherited_properties_concrete(Tuple(x, -5, 5))
|
1461 |
+
assert d.is_real
|
1462 |
+
assert d.is_integer
|
1463 |
+
assert d.is_positive is None
|
1464 |
+
assert d.is_extended_nonnegative is None
|
1465 |
+
assert d.is_odd is None
|
1466 |
+
|
1467 |
+
d = _dummy_with_inherited_properties_concrete(Tuple(x, -1.5, 1.5))
|
1468 |
+
assert d.is_real
|
1469 |
+
assert d.is_integer is None
|
1470 |
+
assert d.is_positive is None
|
1471 |
+
assert d.is_extended_nonnegative is None
|
1472 |
+
|
1473 |
+
N = Symbol('N', integer=True, positive=True)
|
1474 |
+
d = _dummy_with_inherited_properties_concrete(Tuple(x, 2, N))
|
1475 |
+
assert d.is_real
|
1476 |
+
assert d.is_positive
|
1477 |
+
assert d.is_integer
|
1478 |
+
|
1479 |
+
# Return None if no assumptions are added
|
1480 |
+
N = Symbol('N', integer=True, positive=True)
|
1481 |
+
d = _dummy_with_inherited_properties_concrete(Tuple(N, 2, 4))
|
1482 |
+
assert d is None
|
1483 |
+
|
1484 |
+
x = Symbol('x', negative=True)
|
1485 |
+
raises(InconsistentAssumptions,
|
1486 |
+
lambda: _dummy_with_inherited_properties_concrete(Tuple(x, 1, 5)))
|
1487 |
+
|
1488 |
+
|
1489 |
+
def test_matrixsymbol_summation_numerical_limits():
|
1490 |
+
A = MatrixSymbol('A', 3, 3)
|
1491 |
+
n = Symbol('n', integer=True)
|
1492 |
+
|
1493 |
+
assert Sum(A**n, (n, 0, 2)).doit() == Identity(3) + A + A**2
|
1494 |
+
assert Sum(A, (n, 0, 2)).doit() == 3*A
|
1495 |
+
assert Sum(n*A, (n, 0, 2)).doit() == 3*A
|
1496 |
+
|
1497 |
+
B = Matrix([[0, n, 0], [-1, 0, 0], [0, 0, 2]])
|
1498 |
+
ans = Matrix([[0, 6, 0], [-4, 0, 0], [0, 0, 8]]) + 4*A
|
1499 |
+
assert Sum(A+B, (n, 0, 3)).doit() == ans
|
1500 |
+
ans = A*Matrix([[0, 6, 0], [-4, 0, 0], [0, 0, 8]])
|
1501 |
+
assert Sum(A*B, (n, 0, 3)).doit() == ans
|
1502 |
+
|
1503 |
+
ans = (A**2*Matrix([[-2, 0, 0], [0,-2, 0], [0, 0, 4]]) +
|
1504 |
+
A**3*Matrix([[0, -9, 0], [3, 0, 0], [0, 0, 8]]) +
|
1505 |
+
A*Matrix([[0, 1, 0], [-1, 0, 0], [0, 0, 2]]))
|
1506 |
+
assert Sum(A**n*B**n, (n, 1, 3)).doit() == ans
|
1507 |
+
|
1508 |
+
|
1509 |
+
def test_issue_21651():
|
1510 |
+
i = Symbol('i')
|
1511 |
+
a = Sum(floor(2*2**(-i)), (i, S.One, 2))
|
1512 |
+
assert a.doit() == S.One
|
1513 |
+
|
1514 |
+
|
1515 |
+
@XFAIL
|
1516 |
+
def test_matrixsymbol_summation_symbolic_limits():
|
1517 |
+
N = Symbol('N', integer=True, positive=True)
|
1518 |
+
|
1519 |
+
A = MatrixSymbol('A', 3, 3)
|
1520 |
+
n = Symbol('n', integer=True)
|
1521 |
+
assert Sum(A, (n, 0, N)).doit() == (N+1)*A
|
1522 |
+
assert Sum(n*A, (n, 0, N)).doit() == (N**2/2+N/2)*A
|
1523 |
+
|
1524 |
+
|
1525 |
+
def test_summation_by_residues():
|
1526 |
+
x = Symbol('x')
|
1527 |
+
|
1528 |
+
# Examples from Nakhle H. Asmar, Loukas Grafakos,
|
1529 |
+
# Complex Analysis with Applications
|
1530 |
+
assert eval_sum_residue(1 / (x**2 + 1), (x, -oo, oo)) == pi/tanh(pi)
|
1531 |
+
assert eval_sum_residue(1 / x**6, (x, S(1), oo)) == pi**6/945
|
1532 |
+
assert eval_sum_residue(1 / (x**2 + 9), (x, -oo, oo)) == pi/(3*tanh(3*pi))
|
1533 |
+
assert eval_sum_residue(1 / (x**2 + 1)**2, (x, -oo, oo)).cancel() == \
|
1534 |
+
(-pi**2*tanh(pi)**2 + pi*tanh(pi) + pi**2)/(2*tanh(pi)**2)
|
1535 |
+
assert eval_sum_residue(x**2 / (x**2 + 1)**2, (x, -oo, oo)).cancel() == \
|
1536 |
+
(-pi**2 + pi*tanh(pi) + pi**2*tanh(pi)**2)/(2*tanh(pi)**2)
|
1537 |
+
assert eval_sum_residue(1 / (4*x**2 - 1), (x, -oo, oo)) == 0
|
1538 |
+
assert eval_sum_residue(x**2 / (x**2 - S(1)/4)**2, (x, -oo, oo)) == pi**2/2
|
1539 |
+
assert eval_sum_residue(1 / (4*x**2 - 1)**2, (x, -oo, oo)) == pi**2/8
|
1540 |
+
assert eval_sum_residue(1 / ((x - S(1)/2)**2 + 1), (x, -oo, oo)) == pi*tanh(pi)
|
1541 |
+
assert eval_sum_residue(1 / x**2, (x, S(1), oo)) == pi**2/6
|
1542 |
+
assert eval_sum_residue(1 / x**4, (x, S(1), oo)) == pi**4/90
|
1543 |
+
assert eval_sum_residue(1 / x**2 / (x**2 + 4), (x, S(1), oo)) == \
|
1544 |
+
-pi*(-pi/12 - 1/(16*pi) + 1/(8*tanh(2*pi)))/2
|
1545 |
+
|
1546 |
+
# Some examples made from 1 / (x**2 + 1)
|
1547 |
+
assert eval_sum_residue(1 / (x**2 + 1), (x, S(0), oo)) == \
|
1548 |
+
S(1)/2 + pi/(2*tanh(pi))
|
1549 |
+
assert eval_sum_residue(1 / (x**2 + 1), (x, S(1), oo)) == \
|
1550 |
+
-S(1)/2 + pi/(2*tanh(pi))
|
1551 |
+
assert eval_sum_residue(1 / (x**2 + 1), (x, S(-1), oo)) == \
|
1552 |
+
1 + pi/(2*tanh(pi))
|
1553 |
+
assert eval_sum_residue((-1)**x / (x**2 + 1), (x, -oo, oo)) == \
|
1554 |
+
pi/sinh(pi)
|
1555 |
+
assert eval_sum_residue((-1)**x / (x**2 + 1), (x, S(0), oo)) == \
|
1556 |
+
pi/(2*sinh(pi)) + S(1)/2
|
1557 |
+
assert eval_sum_residue((-1)**x / (x**2 + 1), (x, S(1), oo)) == \
|
1558 |
+
-S(1)/2 + pi/(2*sinh(pi))
|
1559 |
+
assert eval_sum_residue((-1)**x / (x**2 + 1), (x, S(-1), oo)) == \
|
1560 |
+
pi/(2*sinh(pi))
|
1561 |
+
|
1562 |
+
# Some examples made from shifting of 1 / (x**2 + 1)
|
1563 |
+
assert eval_sum_residue(1 / (x**2 + 2*x + 2), (x, S(-1), oo)) == S(1)/2 + pi/(2*tanh(pi))
|
1564 |
+
assert eval_sum_residue(1 / (x**2 + 4*x + 5), (x, S(-2), oo)) == S(1)/2 + pi/(2*tanh(pi))
|
1565 |
+
assert eval_sum_residue(1 / (x**2 - 2*x + 2), (x, S(1), oo)) == S(1)/2 + pi/(2*tanh(pi))
|
1566 |
+
assert eval_sum_residue(1 / (x**2 - 4*x + 5), (x, S(2), oo)) == S(1)/2 + pi/(2*tanh(pi))
|
1567 |
+
assert eval_sum_residue((-1)**x * -1 / (x**2 + 2*x + 2), (x, S(-1), oo)) == S(1)/2 + pi/(2*sinh(pi))
|
1568 |
+
assert eval_sum_residue((-1)**x * -1 / (x**2 -2*x + 2), (x, S(1), oo)) == S(1)/2 + pi/(2*sinh(pi))
|
1569 |
+
|
1570 |
+
# Some examples made from 1 / x**2
|
1571 |
+
assert eval_sum_residue(1 / x**2, (x, S(2), oo)) == -1 + pi**2/6
|
1572 |
+
assert eval_sum_residue(1 / x**2, (x, S(3), oo)) == -S(5)/4 + pi**2/6
|
1573 |
+
assert eval_sum_residue((-1)**x / x**2, (x, S(1), oo)) == -pi**2/12
|
1574 |
+
assert eval_sum_residue((-1)**x / x**2, (x, S(2), oo)) == 1 - pi**2/12
|
1575 |
+
|
1576 |
+
|
1577 |
+
@slow
|
1578 |
+
def test_summation_by_residues_failing():
|
1579 |
+
x = Symbol('x')
|
1580 |
+
|
1581 |
+
# Failing because of the bug in residue computation
|
1582 |
+
assert eval_sum_residue(x**2 / (x**4 + 1), (x, S(1), oo))
|
1583 |
+
assert eval_sum_residue(1 / ((x - 1)*(x - 2) + 1), (x, -oo, oo)) != 0
|
1584 |
+
|
1585 |
+
|
1586 |
+
def test_process_limits():
|
1587 |
+
from sympy.concrete.expr_with_limits import _process_limits
|
1588 |
+
|
1589 |
+
# these should be (x, Range(3)) not Range(3)
|
1590 |
+
raises(ValueError, lambda: _process_limits(
|
1591 |
+
Range(3), discrete=True))
|
1592 |
+
raises(ValueError, lambda: _process_limits(
|
1593 |
+
Range(3), discrete=False))
|
1594 |
+
# these should be (x, union) not union
|
1595 |
+
# (but then we would get a TypeError because we don't
|
1596 |
+
# handle non-contiguous sets: see below use of `union`)
|
1597 |
+
union = Or(x < 1, x > 3).as_set()
|
1598 |
+
raises(ValueError, lambda: _process_limits(
|
1599 |
+
union, discrete=True))
|
1600 |
+
raises(ValueError, lambda: _process_limits(
|
1601 |
+
union, discrete=False))
|
1602 |
+
|
1603 |
+
# error not triggered if not needed
|
1604 |
+
assert _process_limits((x, 1, 2)) == ([(x, 1, 2)], 1)
|
1605 |
+
|
1606 |
+
# this equivalence is used to detect Reals in _process_limits
|
1607 |
+
assert isinstance(S.Reals, Interval)
|
1608 |
+
|
1609 |
+
C = Integral # continuous limits
|
1610 |
+
assert C(x, x >= 5) == C(x, (x, 5, oo))
|
1611 |
+
assert C(x, x < 3) == C(x, (x, -oo, 3))
|
1612 |
+
ans = C(x, (x, 0, 3))
|
1613 |
+
assert C(x, And(x >= 0, x < 3)) == ans
|
1614 |
+
assert C(x, (x, Interval.Ropen(0, 3))) == ans
|
1615 |
+
raises(TypeError, lambda: C(x, (x, Range(3))))
|
1616 |
+
|
1617 |
+
# discrete limits
|
1618 |
+
for D in (Sum, Product):
|
1619 |
+
r, ans = Range(3, 10, 2), D(2*x + 3, (x, 0, 3))
|
1620 |
+
assert D(x, (x, r)) == ans
|
1621 |
+
assert D(x, (x, r.reversed)) == ans
|
1622 |
+
r, ans = Range(3, oo, 2), D(2*x + 3, (x, 0, oo))
|
1623 |
+
assert D(x, (x, r)) == ans
|
1624 |
+
assert D(x, (x, r.reversed)) == ans
|
1625 |
+
r, ans = Range(-oo, 5, 2), D(3 - 2*x, (x, 0, oo))
|
1626 |
+
assert D(x, (x, r)) == ans
|
1627 |
+
assert D(x, (x, r.reversed)) == ans
|
1628 |
+
raises(TypeError, lambda: D(x, x > 0))
|
1629 |
+
raises(ValueError, lambda: D(x, Interval(1, 3)))
|
1630 |
+
raises(NotImplementedError, lambda: D(x, (x, union)))
|
1631 |
+
|
1632 |
+
|
1633 |
+
def test_pr_22677():
|
1634 |
+
b = Symbol('b', integer=True, positive=True)
|
1635 |
+
assert Sum(1/x**2,(x, 0, b)).doit() == Sum(x**(-2), (x, 0, b))
|
1636 |
+
assert Sum(1/(x - b)**2,(x, 0, b-1)).doit() == Sum(
|
1637 |
+
(-b + x)**(-2), (x, 0, b - 1))
|
1638 |
+
|
1639 |
+
|
1640 |
+
def test_issue_23952():
|
1641 |
+
p, q = symbols("p q", real=True, nonnegative=True)
|
1642 |
+
k1, k2 = symbols("k1 k2", integer=True, nonnegative=True)
|
1643 |
+
n = Symbol("n", integer=True, positive=True)
|
1644 |
+
expr = Sum(abs(k1 - k2)*p**k1 *(1 - q)**(n - k2),
|
1645 |
+
(k1, 0, n), (k2, 0, n))
|
1646 |
+
assert expr.subs(p,0).subs(q,1).subs(n, 3).doit() == 3
|
venv/lib/python3.10/site-packages/sympy/matrices/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (2.49 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/matrices/__pycache__/determinant.cpython-310.pyc
ADDED
Binary file (24 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/matrices/__pycache__/matrices.cpython-310.pyc
ADDED
Binary file (70.7 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/matrices/__pycache__/repmatrix.cpython-310.pyc
ADDED
Binary file (22 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/matrices/benchmarks/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/sympy/matrices/benchmarks/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (193 Bytes). View file
|
|
venv/lib/python3.10/site-packages/sympy/matrices/benchmarks/__pycache__/bench_matrix.cpython-310.pyc
ADDED
Binary file (901 Bytes). View file
|
|
venv/lib/python3.10/site-packages/sympy/matrices/benchmarks/bench_matrix.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.numbers import Integer
|
2 |
+
from sympy.matrices.dense import (eye, zeros)
|
3 |
+
|
4 |
+
i3 = Integer(3)
|
5 |
+
M = eye(100)
|
6 |
+
|
7 |
+
|
8 |
+
def timeit_Matrix__getitem_ii():
|
9 |
+
M[3, 3]
|
10 |
+
|
11 |
+
|
12 |
+
def timeit_Matrix__getitem_II():
|
13 |
+
M[i3, i3]
|
14 |
+
|
15 |
+
|
16 |
+
def timeit_Matrix__getslice():
|
17 |
+
M[:, :]
|
18 |
+
|
19 |
+
|
20 |
+
def timeit_Matrix_zeronm():
|
21 |
+
zeros(100, 100)
|
venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (200 Bytes). View file
|
|
venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_companion.cpython-310.pyc
ADDED
Binary file (2.38 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_diagonal.cpython-310.pyc
ADDED
Binary file (4.38 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_matmul.cpython-310.pyc
ADDED
Binary file (8.06 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_special.cpython-310.pyc
ADDED
Binary file (8.41 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_trace.cpython-310.pyc
ADDED
Binary file (4.67 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/matrices/tests/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/sympy/matrices/tests/test_graph.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.combinatorics import Permutation
|
2 |
+
from sympy.core.symbol import symbols
|
3 |
+
from sympy.matrices import Matrix
|
4 |
+
from sympy.matrices.expressions import (
|
5 |
+
PermutationMatrix, BlockDiagMatrix, BlockMatrix)
|
6 |
+
|
7 |
+
|
8 |
+
def test_connected_components():
|
9 |
+
a, b, c, d, e, f, g, h, i, j, k, l, m = symbols('a:m')
|
10 |
+
|
11 |
+
M = Matrix([
|
12 |
+
[a, 0, 0, 0, b, 0, 0, 0, 0, 0, c, 0, 0],
|
13 |
+
[0, d, 0, 0, 0, e, 0, 0, 0, 0, 0, f, 0],
|
14 |
+
[0, 0, g, 0, 0, 0, h, 0, 0, 0, 0, 0, i],
|
15 |
+
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
16 |
+
[m, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
|
17 |
+
[0, m, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
|
18 |
+
[0, 0, m, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0],
|
19 |
+
[j, 0, 0, 0, k, 0, 0, 1, 0, 0, l, 0, 0],
|
20 |
+
[0, j, 0, 0, 0, k, 0, 0, 1, 0, 0, l, 0],
|
21 |
+
[0, 0, j, 0, 0, 0, k, 0, 0, 1, 0, 0, l],
|
22 |
+
[0, 0, 0, 0, d, 0, 0, 0, 0, 0, 1, 0, 0],
|
23 |
+
[0, 0, 0, 0, 0, d, 0, 0, 0, 0, 0, 1, 0],
|
24 |
+
[0, 0, 0, 0, 0, 0, d, 0, 0, 0, 0, 0, 1]])
|
25 |
+
cc = M.connected_components()
|
26 |
+
assert cc == [[0, 4, 7, 10], [1, 5, 8, 11], [2, 6, 9, 12], [3]]
|
27 |
+
|
28 |
+
P, B = M.connected_components_decomposition()
|
29 |
+
p = Permutation([0, 4, 7, 10, 1, 5, 8, 11, 2, 6, 9, 12, 3])
|
30 |
+
assert P == PermutationMatrix(p)
|
31 |
+
|
32 |
+
B0 = Matrix([
|
33 |
+
[a, b, 0, c],
|
34 |
+
[m, 1, 0, 0],
|
35 |
+
[j, k, 1, l],
|
36 |
+
[0, d, 0, 1]])
|
37 |
+
B1 = Matrix([
|
38 |
+
[d, e, 0, f],
|
39 |
+
[m, 1, 0, 0],
|
40 |
+
[j, k, 1, l],
|
41 |
+
[0, d, 0, 1]])
|
42 |
+
B2 = Matrix([
|
43 |
+
[g, h, 0, i],
|
44 |
+
[m, 1, 0, 0],
|
45 |
+
[j, k, 1, l],
|
46 |
+
[0, d, 0, 1]])
|
47 |
+
B3 = Matrix([[1]])
|
48 |
+
assert B == BlockDiagMatrix(B0, B1, B2, B3)
|
49 |
+
|
50 |
+
|
51 |
+
def test_strongly_connected_components():
|
52 |
+
M = Matrix([
|
53 |
+
[11, 14, 10, 0, 15, 0],
|
54 |
+
[0, 44, 0, 0, 45, 0],
|
55 |
+
[1, 4, 0, 0, 5, 0],
|
56 |
+
[0, 0, 0, 22, 0, 23],
|
57 |
+
[0, 54, 0, 0, 55, 0],
|
58 |
+
[0, 0, 0, 32, 0, 33]])
|
59 |
+
scc = M.strongly_connected_components()
|
60 |
+
assert scc == [[1, 4], [0, 2], [3, 5]]
|
61 |
+
|
62 |
+
P, B = M.strongly_connected_components_decomposition()
|
63 |
+
p = Permutation([1, 4, 0, 2, 3, 5])
|
64 |
+
assert P == PermutationMatrix(p)
|
65 |
+
assert B == BlockMatrix([
|
66 |
+
[
|
67 |
+
Matrix([[44, 45], [54, 55]]),
|
68 |
+
Matrix.zeros(2, 2),
|
69 |
+
Matrix.zeros(2, 2)
|
70 |
+
],
|
71 |
+
[
|
72 |
+
Matrix([[14, 15], [4, 5]]),
|
73 |
+
Matrix([[11, 10], [1, 0]]),
|
74 |
+
Matrix.zeros(2, 2)
|
75 |
+
],
|
76 |
+
[
|
77 |
+
Matrix.zeros(2, 2),
|
78 |
+
Matrix.zeros(2, 2),
|
79 |
+
Matrix([[22, 23], [32, 33]])
|
80 |
+
]
|
81 |
+
])
|
82 |
+
P = P.as_explicit()
|
83 |
+
B = B.as_explicit()
|
84 |
+
assert P.T * B * P == M
|
85 |
+
|
86 |
+
P, B = M.strongly_connected_components_decomposition(lower=False)
|
87 |
+
p = Permutation([3, 5, 0, 2, 1, 4])
|
88 |
+
assert P == PermutationMatrix(p)
|
89 |
+
assert B == BlockMatrix([
|
90 |
+
[
|
91 |
+
Matrix([[22, 23], [32, 33]]),
|
92 |
+
Matrix.zeros(2, 2),
|
93 |
+
Matrix.zeros(2, 2)
|
94 |
+
],
|
95 |
+
[
|
96 |
+
Matrix.zeros(2, 2),
|
97 |
+
Matrix([[11, 10], [1, 0]]),
|
98 |
+
Matrix([[14, 15], [4, 5]])
|
99 |
+
],
|
100 |
+
[
|
101 |
+
Matrix.zeros(2, 2),
|
102 |
+
Matrix.zeros(2, 2),
|
103 |
+
Matrix([[44, 45], [54, 55]])
|
104 |
+
]
|
105 |
+
])
|
106 |
+
P = P.as_explicit()
|
107 |
+
B = B.as_explicit()
|
108 |
+
assert P.T * B * P == M
|
venv/lib/python3.10/site-packages/sympy/matrices/tests/test_matrices.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
venv/lib/python3.10/site-packages/sympy/matrices/tests/test_sparsetools.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.matrices.sparsetools import _doktocsr, _csrtodok, banded
|
2 |
+
from sympy.matrices.dense import (Matrix, eye, ones, zeros)
|
3 |
+
from sympy.matrices import SparseMatrix
|
4 |
+
from sympy.testing.pytest import raises
|
5 |
+
|
6 |
+
|
7 |
+
def test_doktocsr():
|
8 |
+
a = SparseMatrix([[1, 2, 0, 0], [0, 3, 9, 0], [0, 1, 4, 0]])
|
9 |
+
b = SparseMatrix(4, 6, [10, 20, 0, 0, 0, 0, 0, 30, 0, 40, 0, 0, 0, 0, 50,
|
10 |
+
60, 70, 0, 0, 0, 0, 0, 0, 80])
|
11 |
+
c = SparseMatrix(4, 4, [0, 0, 0, 0, 0, 12, 0, 2, 15, 0, 12, 0, 0, 0, 0, 4])
|
12 |
+
d = SparseMatrix(10, 10, {(1, 1): 12, (3, 5): 7, (7, 8): 12})
|
13 |
+
e = SparseMatrix([[0, 0, 0], [1, 0, 2], [3, 0, 0]])
|
14 |
+
f = SparseMatrix(7, 8, {(2, 3): 5, (4, 5):12})
|
15 |
+
assert _doktocsr(a) == [[1, 2, 3, 9, 1, 4], [0, 1, 1, 2, 1, 2],
|
16 |
+
[0, 2, 4, 6], [3, 4]]
|
17 |
+
assert _doktocsr(b) == [[10, 20, 30, 40, 50, 60, 70, 80],
|
18 |
+
[0, 1, 1, 3, 2, 3, 4, 5], [0, 2, 4, 7, 8], [4, 6]]
|
19 |
+
assert _doktocsr(c) == [[12, 2, 15, 12, 4], [1, 3, 0, 2, 3],
|
20 |
+
[0, 0, 2, 4, 5], [4, 4]]
|
21 |
+
assert _doktocsr(d) == [[12, 7, 12], [1, 5, 8],
|
22 |
+
[0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3], [10, 10]]
|
23 |
+
assert _doktocsr(e) == [[1, 2, 3], [0, 2, 0], [0, 0, 2, 3], [3, 3]]
|
24 |
+
assert _doktocsr(f) == [[5, 12], [3, 5], [0, 0, 0, 1, 1, 2, 2, 2], [7, 8]]
|
25 |
+
|
26 |
+
|
27 |
+
def test_csrtodok():
|
28 |
+
h = [[5, 7, 5], [2, 1, 3], [0, 1, 1, 3], [3, 4]]
|
29 |
+
g = [[12, 5, 4], [2, 4, 2], [0, 1, 2, 3], [3, 7]]
|
30 |
+
i = [[1, 3, 12], [0, 2, 4], [0, 2, 3], [2, 5]]
|
31 |
+
j = [[11, 15, 12, 15], [2, 4, 1, 2], [0, 1, 1, 2, 3, 4], [5, 8]]
|
32 |
+
k = [[1, 3], [2, 1], [0, 1, 1, 2], [3, 3]]
|
33 |
+
m = _csrtodok(h)
|
34 |
+
assert isinstance(m, SparseMatrix)
|
35 |
+
assert m == SparseMatrix(3, 4,
|
36 |
+
{(0, 2): 5, (2, 1): 7, (2, 3): 5})
|
37 |
+
assert _csrtodok(g) == SparseMatrix(3, 7,
|
38 |
+
{(0, 2): 12, (1, 4): 5, (2, 2): 4})
|
39 |
+
assert _csrtodok(i) == SparseMatrix([[1, 0, 3, 0, 0], [0, 0, 0, 0, 12]])
|
40 |
+
assert _csrtodok(j) == SparseMatrix(5, 8,
|
41 |
+
{(0, 2): 11, (2, 4): 15, (3, 1): 12, (4, 2): 15})
|
42 |
+
assert _csrtodok(k) == SparseMatrix(3, 3, {(0, 2): 1, (2, 1): 3})
|
43 |
+
|
44 |
+
|
45 |
+
def test_banded():
|
46 |
+
raises(TypeError, lambda: banded())
|
47 |
+
raises(TypeError, lambda: banded(1))
|
48 |
+
raises(TypeError, lambda: banded(1, 2))
|
49 |
+
raises(TypeError, lambda: banded(1, 2, 3))
|
50 |
+
raises(TypeError, lambda: banded(1, 2, 3, 4))
|
51 |
+
raises(ValueError, lambda: banded({0: (1, 2)}, rows=1))
|
52 |
+
raises(ValueError, lambda: banded({0: (1, 2)}, cols=1))
|
53 |
+
raises(ValueError, lambda: banded(1, {0: (1, 2)}))
|
54 |
+
raises(ValueError, lambda: banded(2, 1, {0: (1, 2)}))
|
55 |
+
raises(ValueError, lambda: banded(1, 2, {0: (1, 2)}))
|
56 |
+
|
57 |
+
assert isinstance(banded(2, 4, {}), SparseMatrix)
|
58 |
+
assert banded(2, 4, {}) == zeros(2, 4)
|
59 |
+
assert banded({0: 0, 1: 0}) == zeros(0)
|
60 |
+
assert banded({0: Matrix([1, 2])}) == Matrix([1, 2])
|
61 |
+
assert banded({1: [1, 2, 3, 0], -1: [4, 5, 6]}) == \
|
62 |
+
banded({1: (1, 2, 3), -1: (4, 5, 6)}) == \
|
63 |
+
Matrix([
|
64 |
+
[0, 1, 0, 0],
|
65 |
+
[4, 0, 2, 0],
|
66 |
+
[0, 5, 0, 3],
|
67 |
+
[0, 0, 6, 0]])
|
68 |
+
assert banded(3, 4, {-1: 1, 0: 2, 1: 3}) == \
|
69 |
+
Matrix([
|
70 |
+
[2, 3, 0, 0],
|
71 |
+
[1, 2, 3, 0],
|
72 |
+
[0, 1, 2, 3]])
|
73 |
+
s = lambda d: (1 + d)**2
|
74 |
+
assert banded(5, {0: s, 2: s}) == \
|
75 |
+
Matrix([
|
76 |
+
[1, 0, 1, 0, 0],
|
77 |
+
[0, 4, 0, 4, 0],
|
78 |
+
[0, 0, 9, 0, 9],
|
79 |
+
[0, 0, 0, 16, 0],
|
80 |
+
[0, 0, 0, 0, 25]])
|
81 |
+
assert banded(2, {0: 1}) == \
|
82 |
+
Matrix([
|
83 |
+
[1, 0],
|
84 |
+
[0, 1]])
|
85 |
+
assert banded(2, 3, {0: 1}) == \
|
86 |
+
Matrix([
|
87 |
+
[1, 0, 0],
|
88 |
+
[0, 1, 0]])
|
89 |
+
vert = Matrix([1, 2, 3])
|
90 |
+
assert banded({0: vert}, cols=3) == \
|
91 |
+
Matrix([
|
92 |
+
[1, 0, 0],
|
93 |
+
[2, 1, 0],
|
94 |
+
[3, 2, 1],
|
95 |
+
[0, 3, 2],
|
96 |
+
[0, 0, 3]])
|
97 |
+
assert banded(4, {0: ones(2)}) == \
|
98 |
+
Matrix([
|
99 |
+
[1, 1, 0, 0],
|
100 |
+
[1, 1, 0, 0],
|
101 |
+
[0, 0, 1, 1],
|
102 |
+
[0, 0, 1, 1]])
|
103 |
+
raises(ValueError, lambda: banded({0: 2, 1: ones(2)}, rows=5))
|
104 |
+
assert banded({0: 2, 2: (ones(2),)*3}) == \
|
105 |
+
Matrix([
|
106 |
+
[2, 0, 1, 1, 0, 0, 0, 0],
|
107 |
+
[0, 2, 1, 1, 0, 0, 0, 0],
|
108 |
+
[0, 0, 2, 0, 1, 1, 0, 0],
|
109 |
+
[0, 0, 0, 2, 1, 1, 0, 0],
|
110 |
+
[0, 0, 0, 0, 2, 0, 1, 1],
|
111 |
+
[0, 0, 0, 0, 0, 2, 1, 1]])
|
112 |
+
raises(ValueError, lambda: banded({0: (2,)*5, 1: (ones(2),)*3}))
|
113 |
+
u2 = Matrix([[1, 1], [0, 1]])
|
114 |
+
assert banded({0: (2,)*5, 1: (u2,)*3}) == \
|
115 |
+
Matrix([
|
116 |
+
[2, 1, 1, 0, 0, 0, 0],
|
117 |
+
[0, 2, 1, 0, 0, 0, 0],
|
118 |
+
[0, 0, 2, 1, 1, 0, 0],
|
119 |
+
[0, 0, 0, 2, 1, 0, 0],
|
120 |
+
[0, 0, 0, 0, 2, 1, 1],
|
121 |
+
[0, 0, 0, 0, 0, 0, 1]])
|
122 |
+
assert banded({0:(0, ones(2)), 2: 2}) == \
|
123 |
+
Matrix([
|
124 |
+
[0, 0, 2],
|
125 |
+
[0, 1, 1],
|
126 |
+
[0, 1, 1]])
|
127 |
+
raises(ValueError, lambda: banded({0: (0, ones(2)), 1: 2}))
|
128 |
+
assert banded({0: 1}, cols=3) == banded({0: 1}, rows=3) == eye(3)
|
129 |
+
assert banded({1: 1}, rows=3) == Matrix([
|
130 |
+
[0, 1, 0],
|
131 |
+
[0, 0, 1],
|
132 |
+
[0, 0, 0]])
|
venv/lib/python3.10/site-packages/sympy/multipledispatch/__init__.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .core import dispatch
|
2 |
+
from .dispatcher import (Dispatcher, halt_ordering, restart_ordering,
|
3 |
+
MDNotImplementedError)
|
4 |
+
|
5 |
+
__version__ = '0.4.9'
|
6 |
+
|
7 |
+
__all__ = [
|
8 |
+
'dispatch',
|
9 |
+
|
10 |
+
'Dispatcher', 'halt_ordering', 'restart_ordering', 'MDNotImplementedError',
|
11 |
+
]
|