Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step120/zero/4.mlp.dense_h_to_4h_swiglu.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step120/zero/4.mlp.dense_h_to_4h_swiglu.weight/fp32.pt +3 -0
- ckpts/universal/global_step120/zero/5.mlp.dense_4h_to_h.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step120/zero/7.mlp.dense_h_to_4h.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step120/zero/7.mlp.dense_h_to_4h.weight/fp32.pt +3 -0
- venv/lib/python3.10/site-packages/sympy/matrices/__pycache__/common.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/matrices/__pycache__/decompositions.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/matrices/__pycache__/dense.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/matrices/__pycache__/eigen.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/matrices/__pycache__/graph.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/matrices/__pycache__/immutable.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/matrices/__pycache__/inverse.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/matrices/__pycache__/normalforms.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/matrices/__pycache__/reductions.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/matrices/__pycache__/solvers.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/matrices/__pycache__/sparse.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/matrices/__pycache__/sparsetools.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/matrices/__pycache__/subspaces.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/matrices/__pycache__/utilities.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_adjoint.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_applyfunc.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_blockmatrix.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_derivatives.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_determinant.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_dotproduct.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_factorizations.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_fourier.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_funcmatrix.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_hadamard.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_indexing.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_inverse.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_kronecker.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_matadd.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_matexpr.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_matpow.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_permutation.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_sets.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_slice.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_transpose.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_blockmatrix.py +445 -0
- venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_derivatives.py +477 -0
- venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_determinant.py +62 -0
- venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_diagonal.py +156 -0
- venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_dotproduct.py +35 -0
- venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_factorizations.py +29 -0
- venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_funcmatrix.py +56 -0
- venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_indexing.py +299 -0
- venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_inverse.py +62 -0
- venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_kronecker.py +150 -0
- venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_matadd.py +58 -0
ckpts/universal/global_step120/zero/4.mlp.dense_h_to_4h_swiglu.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9d8482768118ba69c44357b1bf36bef5f8616e7bbd205f619363d7704846dc2d
|
3 |
+
size 33555612
|
ckpts/universal/global_step120/zero/4.mlp.dense_h_to_4h_swiglu.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0ded136b07ab79eeaeebe5ca9f43b7943fafdf53f9f1ac9f6f903432ec9686e6
|
3 |
+
size 33555533
|
ckpts/universal/global_step120/zero/5.mlp.dense_4h_to_h.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ba883ae15fda29f7dee2dd791763d96a7a34fc9dcaf284afda4692eebc196242
|
3 |
+
size 33555612
|
ckpts/universal/global_step120/zero/7.mlp.dense_h_to_4h.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5b0645a25322010737954b1f4dd9836f4c5bc31eed3b7c79c592f460a13ee585
|
3 |
+
size 33555627
|
ckpts/universal/global_step120/zero/7.mlp.dense_h_to_4h.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:45a589ec2dbc155011808308467c1c267bd965e3279f048c7de5a85b2ab82d59
|
3 |
+
size 33555533
|
venv/lib/python3.10/site-packages/sympy/matrices/__pycache__/common.cpython-310.pyc
ADDED
Binary file (99.9 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/matrices/__pycache__/decompositions.cpython-310.pyc
ADDED
Binary file (41.4 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/matrices/__pycache__/dense.cpython-310.pyc
ADDED
Binary file (31.2 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/matrices/__pycache__/eigen.cpython-310.pyc
ADDED
Binary file (36.9 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/matrices/__pycache__/graph.cpython-310.pyc
ADDED
Binary file (9.11 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/matrices/__pycache__/immutable.cpython-310.pyc
ADDED
Binary file (6.24 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/matrices/__pycache__/inverse.cpython-310.pyc
ADDED
Binary file (11.4 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/matrices/__pycache__/normalforms.cpython-310.pyc
ADDED
Binary file (4.39 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/matrices/__pycache__/reductions.cpython-310.pyc
ADDED
Binary file (9.83 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/matrices/__pycache__/solvers.cpython-310.pyc
ADDED
Binary file (21.5 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/matrices/__pycache__/sparse.cpython-310.pyc
ADDED
Binary file (13.8 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/matrices/__pycache__/sparsetools.cpython-310.pyc
ADDED
Binary file (8.52 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/matrices/__pycache__/subspaces.cpython-310.pyc
ADDED
Binary file (4.36 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/matrices/__pycache__/utilities.cpython-310.pyc
ADDED
Binary file (2.72 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_adjoint.cpython-310.pyc
ADDED
Binary file (1.32 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_applyfunc.cpython-310.pyc
ADDED
Binary file (3.66 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_blockmatrix.cpython-310.pyc
ADDED
Binary file (15.8 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_derivatives.cpython-310.pyc
ADDED
Binary file (13.3 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_determinant.cpython-310.pyc
ADDED
Binary file (2.82 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_dotproduct.cpython-310.pyc
ADDED
Binary file (1.92 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_factorizations.cpython-310.pyc
ADDED
Binary file (1.34 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_fourier.cpython-310.pyc
ADDED
Binary file (2.48 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_funcmatrix.cpython-310.pyc
ADDED
Binary file (3.83 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_hadamard.cpython-310.pyc
ADDED
Binary file (5.6 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_indexing.cpython-310.pyc
ADDED
Binary file (12 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_inverse.cpython-310.pyc
ADDED
Binary file (2.74 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_kronecker.cpython-310.pyc
ADDED
Binary file (5.84 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_matadd.cpython-310.pyc
ADDED
Binary file (3.13 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_matexpr.cpython-310.pyc
ADDED
Binary file (21.8 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_matpow.cpython-310.pyc
ADDED
Binary file (8.65 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_permutation.cpython-310.pyc
ADDED
Binary file (5.91 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_sets.cpython-310.pyc
ADDED
Binary file (2.35 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_slice.cpython-310.pyc
ADDED
Binary file (3.7 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_transpose.cpython-310.pyc
ADDED
Binary file (2.66 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_blockmatrix.py
ADDED
@@ -0,0 +1,445 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.matrices.expressions.trace import Trace
|
2 |
+
from sympy.testing.pytest import raises, slow
|
3 |
+
from sympy.matrices.expressions.blockmatrix import (
|
4 |
+
block_collapse, bc_matmul, bc_block_plus_ident, BlockDiagMatrix,
|
5 |
+
BlockMatrix, bc_dist, bc_matadd, bc_transpose, bc_inverse,
|
6 |
+
blockcut, reblock_2x2, deblock)
|
7 |
+
from sympy.matrices.expressions import (MatrixSymbol, Identity,
|
8 |
+
Inverse, trace, Transpose, det, ZeroMatrix, OneMatrix)
|
9 |
+
from sympy.matrices.common import NonInvertibleMatrixError
|
10 |
+
from sympy.matrices import (
|
11 |
+
Matrix, ImmutableMatrix, ImmutableSparseMatrix)
|
12 |
+
from sympy.core import Tuple, symbols, Expr, S
|
13 |
+
from sympy.functions import transpose, im, re
|
14 |
+
|
15 |
+
i, j, k, l, m, n, p = symbols('i:n, p', integer=True)
|
16 |
+
A = MatrixSymbol('A', n, n)
|
17 |
+
B = MatrixSymbol('B', n, n)
|
18 |
+
C = MatrixSymbol('C', n, n)
|
19 |
+
D = MatrixSymbol('D', n, n)
|
20 |
+
G = MatrixSymbol('G', n, n)
|
21 |
+
H = MatrixSymbol('H', n, n)
|
22 |
+
b1 = BlockMatrix([[G, H]])
|
23 |
+
b2 = BlockMatrix([[G], [H]])
|
24 |
+
|
25 |
+
def test_bc_matmul():
|
26 |
+
assert bc_matmul(H*b1*b2*G) == BlockMatrix([[(H*G*G + H*H*H)*G]])
|
27 |
+
|
28 |
+
def test_bc_matadd():
|
29 |
+
assert bc_matadd(BlockMatrix([[G, H]]) + BlockMatrix([[H, H]])) == \
|
30 |
+
BlockMatrix([[G+H, H+H]])
|
31 |
+
|
32 |
+
def test_bc_transpose():
|
33 |
+
assert bc_transpose(Transpose(BlockMatrix([[A, B], [C, D]]))) == \
|
34 |
+
BlockMatrix([[A.T, C.T], [B.T, D.T]])
|
35 |
+
|
36 |
+
def test_bc_dist_diag():
|
37 |
+
A = MatrixSymbol('A', n, n)
|
38 |
+
B = MatrixSymbol('B', m, m)
|
39 |
+
C = MatrixSymbol('C', l, l)
|
40 |
+
X = BlockDiagMatrix(A, B, C)
|
41 |
+
|
42 |
+
assert bc_dist(X+X).equals(BlockDiagMatrix(2*A, 2*B, 2*C))
|
43 |
+
|
44 |
+
def test_block_plus_ident():
|
45 |
+
A = MatrixSymbol('A', n, n)
|
46 |
+
B = MatrixSymbol('B', n, m)
|
47 |
+
C = MatrixSymbol('C', m, n)
|
48 |
+
D = MatrixSymbol('D', m, m)
|
49 |
+
X = BlockMatrix([[A, B], [C, D]])
|
50 |
+
Z = MatrixSymbol('Z', n + m, n + m)
|
51 |
+
assert bc_block_plus_ident(X + Identity(m + n) + Z) == \
|
52 |
+
BlockDiagMatrix(Identity(n), Identity(m)) + X + Z
|
53 |
+
|
54 |
+
def test_BlockMatrix():
|
55 |
+
A = MatrixSymbol('A', n, m)
|
56 |
+
B = MatrixSymbol('B', n, k)
|
57 |
+
C = MatrixSymbol('C', l, m)
|
58 |
+
D = MatrixSymbol('D', l, k)
|
59 |
+
M = MatrixSymbol('M', m + k, p)
|
60 |
+
N = MatrixSymbol('N', l + n, k + m)
|
61 |
+
X = BlockMatrix(Matrix([[A, B], [C, D]]))
|
62 |
+
|
63 |
+
assert X.__class__(*X.args) == X
|
64 |
+
|
65 |
+
# block_collapse does nothing on normal inputs
|
66 |
+
E = MatrixSymbol('E', n, m)
|
67 |
+
assert block_collapse(A + 2*E) == A + 2*E
|
68 |
+
F = MatrixSymbol('F', m, m)
|
69 |
+
assert block_collapse(E.T*A*F) == E.T*A*F
|
70 |
+
|
71 |
+
assert X.shape == (l + n, k + m)
|
72 |
+
assert X.blockshape == (2, 2)
|
73 |
+
assert transpose(X) == BlockMatrix(Matrix([[A.T, C.T], [B.T, D.T]]))
|
74 |
+
assert transpose(X).shape == X.shape[::-1]
|
75 |
+
|
76 |
+
# Test that BlockMatrices and MatrixSymbols can still mix
|
77 |
+
assert (X*M).is_MatMul
|
78 |
+
assert X._blockmul(M).is_MatMul
|
79 |
+
assert (X*M).shape == (n + l, p)
|
80 |
+
assert (X + N).is_MatAdd
|
81 |
+
assert X._blockadd(N).is_MatAdd
|
82 |
+
assert (X + N).shape == X.shape
|
83 |
+
|
84 |
+
E = MatrixSymbol('E', m, 1)
|
85 |
+
F = MatrixSymbol('F', k, 1)
|
86 |
+
|
87 |
+
Y = BlockMatrix(Matrix([[E], [F]]))
|
88 |
+
|
89 |
+
assert (X*Y).shape == (l + n, 1)
|
90 |
+
assert block_collapse(X*Y).blocks[0, 0] == A*E + B*F
|
91 |
+
assert block_collapse(X*Y).blocks[1, 0] == C*E + D*F
|
92 |
+
|
93 |
+
# block_collapse passes down into container objects, transposes, and inverse
|
94 |
+
assert block_collapse(transpose(X*Y)) == transpose(block_collapse(X*Y))
|
95 |
+
assert block_collapse(Tuple(X*Y, 2*X)) == (
|
96 |
+
block_collapse(X*Y), block_collapse(2*X))
|
97 |
+
|
98 |
+
# Make sure that MatrixSymbols will enter 1x1 BlockMatrix if it simplifies
|
99 |
+
Ab = BlockMatrix([[A]])
|
100 |
+
Z = MatrixSymbol('Z', *A.shape)
|
101 |
+
assert block_collapse(Ab + Z) == A + Z
|
102 |
+
|
103 |
+
def test_block_collapse_explicit_matrices():
|
104 |
+
A = Matrix([[1, 2], [3, 4]])
|
105 |
+
assert block_collapse(BlockMatrix([[A]])) == A
|
106 |
+
|
107 |
+
A = ImmutableSparseMatrix([[1, 2], [3, 4]])
|
108 |
+
assert block_collapse(BlockMatrix([[A]])) == A
|
109 |
+
|
110 |
+
def test_issue_17624():
|
111 |
+
a = MatrixSymbol("a", 2, 2)
|
112 |
+
z = ZeroMatrix(2, 2)
|
113 |
+
b = BlockMatrix([[a, z], [z, z]])
|
114 |
+
assert block_collapse(b * b) == BlockMatrix([[a**2, z], [z, z]])
|
115 |
+
assert block_collapse(b * b * b) == BlockMatrix([[a**3, z], [z, z]])
|
116 |
+
|
117 |
+
def test_issue_18618():
|
118 |
+
A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
|
119 |
+
assert A == Matrix(BlockDiagMatrix(A))
|
120 |
+
|
121 |
+
def test_BlockMatrix_trace():
|
122 |
+
A, B, C, D = [MatrixSymbol(s, 3, 3) for s in 'ABCD']
|
123 |
+
X = BlockMatrix([[A, B], [C, D]])
|
124 |
+
assert trace(X) == trace(A) + trace(D)
|
125 |
+
assert trace(BlockMatrix([ZeroMatrix(n, n)])) == 0
|
126 |
+
|
127 |
+
def test_BlockMatrix_Determinant():
|
128 |
+
A, B, C, D = [MatrixSymbol(s, 3, 3) for s in 'ABCD']
|
129 |
+
X = BlockMatrix([[A, B], [C, D]])
|
130 |
+
from sympy.assumptions.ask import Q
|
131 |
+
from sympy.assumptions.assume import assuming
|
132 |
+
with assuming(Q.invertible(A)):
|
133 |
+
assert det(X) == det(A) * det(X.schur('A'))
|
134 |
+
|
135 |
+
assert isinstance(det(X), Expr)
|
136 |
+
assert det(BlockMatrix([A])) == det(A)
|
137 |
+
assert det(BlockMatrix([ZeroMatrix(n, n)])) == 0
|
138 |
+
|
139 |
+
def test_squareBlockMatrix():
|
140 |
+
A = MatrixSymbol('A', n, n)
|
141 |
+
B = MatrixSymbol('B', n, m)
|
142 |
+
C = MatrixSymbol('C', m, n)
|
143 |
+
D = MatrixSymbol('D', m, m)
|
144 |
+
X = BlockMatrix([[A, B], [C, D]])
|
145 |
+
Y = BlockMatrix([[A]])
|
146 |
+
|
147 |
+
assert X.is_square
|
148 |
+
|
149 |
+
Q = X + Identity(m + n)
|
150 |
+
assert (block_collapse(Q) ==
|
151 |
+
BlockMatrix([[A + Identity(n), B], [C, D + Identity(m)]]))
|
152 |
+
|
153 |
+
assert (X + MatrixSymbol('Q', n + m, n + m)).is_MatAdd
|
154 |
+
assert (X * MatrixSymbol('Q', n + m, n + m)).is_MatMul
|
155 |
+
|
156 |
+
assert block_collapse(Y.I) == A.I
|
157 |
+
|
158 |
+
assert isinstance(X.inverse(), Inverse)
|
159 |
+
|
160 |
+
assert not X.is_Identity
|
161 |
+
|
162 |
+
Z = BlockMatrix([[Identity(n), B], [C, D]])
|
163 |
+
assert not Z.is_Identity
|
164 |
+
|
165 |
+
|
166 |
+
def test_BlockMatrix_2x2_inverse_symbolic():
|
167 |
+
A = MatrixSymbol('A', n, m)
|
168 |
+
B = MatrixSymbol('B', n, k - m)
|
169 |
+
C = MatrixSymbol('C', k - n, m)
|
170 |
+
D = MatrixSymbol('D', k - n, k - m)
|
171 |
+
X = BlockMatrix([[A, B], [C, D]])
|
172 |
+
assert X.is_square and X.shape == (k, k)
|
173 |
+
assert isinstance(block_collapse(X.I), Inverse) # Can't invert when none of the blocks is square
|
174 |
+
|
175 |
+
# test code path where only A is invertible
|
176 |
+
A = MatrixSymbol('A', n, n)
|
177 |
+
B = MatrixSymbol('B', n, m)
|
178 |
+
C = MatrixSymbol('C', m, n)
|
179 |
+
D = ZeroMatrix(m, m)
|
180 |
+
X = BlockMatrix([[A, B], [C, D]])
|
181 |
+
assert block_collapse(X.inverse()) == BlockMatrix([
|
182 |
+
[A.I + A.I * B * X.schur('A').I * C * A.I, -A.I * B * X.schur('A').I],
|
183 |
+
[-X.schur('A').I * C * A.I, X.schur('A').I],
|
184 |
+
])
|
185 |
+
|
186 |
+
# test code path where only B is invertible
|
187 |
+
A = MatrixSymbol('A', n, m)
|
188 |
+
B = MatrixSymbol('B', n, n)
|
189 |
+
C = ZeroMatrix(m, m)
|
190 |
+
D = MatrixSymbol('D', m, n)
|
191 |
+
X = BlockMatrix([[A, B], [C, D]])
|
192 |
+
assert block_collapse(X.inverse()) == BlockMatrix([
|
193 |
+
[-X.schur('B').I * D * B.I, X.schur('B').I],
|
194 |
+
[B.I + B.I * A * X.schur('B').I * D * B.I, -B.I * A * X.schur('B').I],
|
195 |
+
])
|
196 |
+
|
197 |
+
# test code path where only C is invertible
|
198 |
+
A = MatrixSymbol('A', n, m)
|
199 |
+
B = ZeroMatrix(n, n)
|
200 |
+
C = MatrixSymbol('C', m, m)
|
201 |
+
D = MatrixSymbol('D', m, n)
|
202 |
+
X = BlockMatrix([[A, B], [C, D]])
|
203 |
+
assert block_collapse(X.inverse()) == BlockMatrix([
|
204 |
+
[-C.I * D * X.schur('C').I, C.I + C.I * D * X.schur('C').I * A * C.I],
|
205 |
+
[X.schur('C').I, -X.schur('C').I * A * C.I],
|
206 |
+
])
|
207 |
+
|
208 |
+
# test code path where only D is invertible
|
209 |
+
A = ZeroMatrix(n, n)
|
210 |
+
B = MatrixSymbol('B', n, m)
|
211 |
+
C = MatrixSymbol('C', m, n)
|
212 |
+
D = MatrixSymbol('D', m, m)
|
213 |
+
X = BlockMatrix([[A, B], [C, D]])
|
214 |
+
assert block_collapse(X.inverse()) == BlockMatrix([
|
215 |
+
[X.schur('D').I, -X.schur('D').I * B * D.I],
|
216 |
+
[-D.I * C * X.schur('D').I, D.I + D.I * C * X.schur('D').I * B * D.I],
|
217 |
+
])
|
218 |
+
|
219 |
+
|
220 |
+
def test_BlockMatrix_2x2_inverse_numeric():
|
221 |
+
"""Test 2x2 block matrix inversion numerically for all 4 formulas"""
|
222 |
+
M = Matrix([[1, 2], [3, 4]])
|
223 |
+
# rank deficient matrices that have full rank when two of them combined
|
224 |
+
D1 = Matrix([[1, 2], [2, 4]])
|
225 |
+
D2 = Matrix([[1, 3], [3, 9]])
|
226 |
+
D3 = Matrix([[1, 4], [4, 16]])
|
227 |
+
assert D1.rank() == D2.rank() == D3.rank() == 1
|
228 |
+
assert (D1 + D2).rank() == (D2 + D3).rank() == (D3 + D1).rank() == 2
|
229 |
+
|
230 |
+
# Only A is invertible
|
231 |
+
K = BlockMatrix([[M, D1], [D2, D3]])
|
232 |
+
assert block_collapse(K.inv()).as_explicit() == K.as_explicit().inv()
|
233 |
+
# Only B is invertible
|
234 |
+
K = BlockMatrix([[D1, M], [D2, D3]])
|
235 |
+
assert block_collapse(K.inv()).as_explicit() == K.as_explicit().inv()
|
236 |
+
# Only C is invertible
|
237 |
+
K = BlockMatrix([[D1, D2], [M, D3]])
|
238 |
+
assert block_collapse(K.inv()).as_explicit() == K.as_explicit().inv()
|
239 |
+
# Only D is invertible
|
240 |
+
K = BlockMatrix([[D1, D2], [D3, M]])
|
241 |
+
assert block_collapse(K.inv()).as_explicit() == K.as_explicit().inv()
|
242 |
+
|
243 |
+
|
244 |
+
@slow
|
245 |
+
def test_BlockMatrix_3x3_symbolic():
|
246 |
+
# Only test one of these, instead of all permutations, because it's slow
|
247 |
+
rowblocksizes = (n, m, k)
|
248 |
+
colblocksizes = (m, k, n)
|
249 |
+
K = BlockMatrix([
|
250 |
+
[MatrixSymbol('M%s%s' % (rows, cols), rows, cols) for cols in colblocksizes]
|
251 |
+
for rows in rowblocksizes
|
252 |
+
])
|
253 |
+
collapse = block_collapse(K.I)
|
254 |
+
assert isinstance(collapse, BlockMatrix)
|
255 |
+
|
256 |
+
|
257 |
+
def test_BlockDiagMatrix():
|
258 |
+
A = MatrixSymbol('A', n, n)
|
259 |
+
B = MatrixSymbol('B', m, m)
|
260 |
+
C = MatrixSymbol('C', l, l)
|
261 |
+
M = MatrixSymbol('M', n + m + l, n + m + l)
|
262 |
+
|
263 |
+
X = BlockDiagMatrix(A, B, C)
|
264 |
+
Y = BlockDiagMatrix(A, 2*B, 3*C)
|
265 |
+
|
266 |
+
assert X.blocks[1, 1] == B
|
267 |
+
assert X.shape == (n + m + l, n + m + l)
|
268 |
+
assert all(X.blocks[i, j].is_ZeroMatrix if i != j else X.blocks[i, j] in [A, B, C]
|
269 |
+
for i in range(3) for j in range(3))
|
270 |
+
assert X.__class__(*X.args) == X
|
271 |
+
assert X.get_diag_blocks() == (A, B, C)
|
272 |
+
|
273 |
+
assert isinstance(block_collapse(X.I * X), Identity)
|
274 |
+
|
275 |
+
assert bc_matmul(X*X) == BlockDiagMatrix(A*A, B*B, C*C)
|
276 |
+
assert block_collapse(X*X) == BlockDiagMatrix(A*A, B*B, C*C)
|
277 |
+
#XXX: should be == ??
|
278 |
+
assert block_collapse(X + X).equals(BlockDiagMatrix(2*A, 2*B, 2*C))
|
279 |
+
assert block_collapse(X*Y) == BlockDiagMatrix(A*A, 2*B*B, 3*C*C)
|
280 |
+
assert block_collapse(X + Y) == BlockDiagMatrix(2*A, 3*B, 4*C)
|
281 |
+
|
282 |
+
# Ensure that BlockDiagMatrices can still interact with normal MatrixExprs
|
283 |
+
assert (X*(2*M)).is_MatMul
|
284 |
+
assert (X + (2*M)).is_MatAdd
|
285 |
+
|
286 |
+
assert (X._blockmul(M)).is_MatMul
|
287 |
+
assert (X._blockadd(M)).is_MatAdd
|
288 |
+
|
289 |
+
def test_BlockDiagMatrix_nonsquare():
|
290 |
+
A = MatrixSymbol('A', n, m)
|
291 |
+
B = MatrixSymbol('B', k, l)
|
292 |
+
X = BlockDiagMatrix(A, B)
|
293 |
+
assert X.shape == (n + k, m + l)
|
294 |
+
assert X.shape == (n + k, m + l)
|
295 |
+
assert X.rowblocksizes == [n, k]
|
296 |
+
assert X.colblocksizes == [m, l]
|
297 |
+
C = MatrixSymbol('C', n, m)
|
298 |
+
D = MatrixSymbol('D', k, l)
|
299 |
+
Y = BlockDiagMatrix(C, D)
|
300 |
+
assert block_collapse(X + Y) == BlockDiagMatrix(A + C, B + D)
|
301 |
+
assert block_collapse(X * Y.T) == BlockDiagMatrix(A * C.T, B * D.T)
|
302 |
+
raises(NonInvertibleMatrixError, lambda: BlockDiagMatrix(A, C.T).inverse())
|
303 |
+
|
304 |
+
def test_BlockDiagMatrix_determinant():
|
305 |
+
A = MatrixSymbol('A', n, n)
|
306 |
+
B = MatrixSymbol('B', m, m)
|
307 |
+
assert det(BlockDiagMatrix()) == 1
|
308 |
+
assert det(BlockDiagMatrix(A)) == det(A)
|
309 |
+
assert det(BlockDiagMatrix(A, B)) == det(A) * det(B)
|
310 |
+
|
311 |
+
# non-square blocks
|
312 |
+
C = MatrixSymbol('C', m, n)
|
313 |
+
D = MatrixSymbol('D', n, m)
|
314 |
+
assert det(BlockDiagMatrix(C, D)) == 0
|
315 |
+
|
316 |
+
def test_BlockDiagMatrix_trace():
|
317 |
+
assert trace(BlockDiagMatrix()) == 0
|
318 |
+
assert trace(BlockDiagMatrix(ZeroMatrix(n, n))) == 0
|
319 |
+
A = MatrixSymbol('A', n, n)
|
320 |
+
assert trace(BlockDiagMatrix(A)) == trace(A)
|
321 |
+
B = MatrixSymbol('B', m, m)
|
322 |
+
assert trace(BlockDiagMatrix(A, B)) == trace(A) + trace(B)
|
323 |
+
|
324 |
+
# non-square blocks
|
325 |
+
C = MatrixSymbol('C', m, n)
|
326 |
+
D = MatrixSymbol('D', n, m)
|
327 |
+
assert isinstance(trace(BlockDiagMatrix(C, D)), Trace)
|
328 |
+
|
329 |
+
def test_BlockDiagMatrix_transpose():
|
330 |
+
A = MatrixSymbol('A', n, m)
|
331 |
+
B = MatrixSymbol('B', k, l)
|
332 |
+
assert transpose(BlockDiagMatrix()) == BlockDiagMatrix()
|
333 |
+
assert transpose(BlockDiagMatrix(A)) == BlockDiagMatrix(A.T)
|
334 |
+
assert transpose(BlockDiagMatrix(A, B)) == BlockDiagMatrix(A.T, B.T)
|
335 |
+
|
336 |
+
def test_issue_2460():
|
337 |
+
bdm1 = BlockDiagMatrix(Matrix([i]), Matrix([j]))
|
338 |
+
bdm2 = BlockDiagMatrix(Matrix([k]), Matrix([l]))
|
339 |
+
assert block_collapse(bdm1 + bdm2) == BlockDiagMatrix(Matrix([i + k]), Matrix([j + l]))
|
340 |
+
|
341 |
+
def test_blockcut():
|
342 |
+
A = MatrixSymbol('A', n, m)
|
343 |
+
B = blockcut(A, (n/2, n/2), (m/2, m/2))
|
344 |
+
assert B == BlockMatrix([[A[:n/2, :m/2], A[:n/2, m/2:]],
|
345 |
+
[A[n/2:, :m/2], A[n/2:, m/2:]]])
|
346 |
+
|
347 |
+
M = ImmutableMatrix(4, 4, range(16))
|
348 |
+
B = blockcut(M, (2, 2), (2, 2))
|
349 |
+
assert M == ImmutableMatrix(B)
|
350 |
+
|
351 |
+
B = blockcut(M, (1, 3), (2, 2))
|
352 |
+
assert ImmutableMatrix(B.blocks[0, 1]) == ImmutableMatrix([[2, 3]])
|
353 |
+
|
354 |
+
def test_reblock_2x2():
|
355 |
+
B = BlockMatrix([[MatrixSymbol('A_%d%d'%(i,j), 2, 2)
|
356 |
+
for j in range(3)]
|
357 |
+
for i in range(3)])
|
358 |
+
assert B.blocks.shape == (3, 3)
|
359 |
+
|
360 |
+
BB = reblock_2x2(B)
|
361 |
+
assert BB.blocks.shape == (2, 2)
|
362 |
+
|
363 |
+
assert B.shape == BB.shape
|
364 |
+
assert B.as_explicit() == BB.as_explicit()
|
365 |
+
|
366 |
+
def test_deblock():
|
367 |
+
B = BlockMatrix([[MatrixSymbol('A_%d%d'%(i,j), n, n)
|
368 |
+
for j in range(4)]
|
369 |
+
for i in range(4)])
|
370 |
+
|
371 |
+
assert deblock(reblock_2x2(B)) == B
|
372 |
+
|
373 |
+
def test_block_collapse_type():
|
374 |
+
bm1 = BlockDiagMatrix(ImmutableMatrix([1]), ImmutableMatrix([2]))
|
375 |
+
bm2 = BlockDiagMatrix(ImmutableMatrix([3]), ImmutableMatrix([4]))
|
376 |
+
|
377 |
+
assert bm1.T.__class__ == BlockDiagMatrix
|
378 |
+
assert block_collapse(bm1 - bm2).__class__ == BlockDiagMatrix
|
379 |
+
assert block_collapse(Inverse(bm1)).__class__ == BlockDiagMatrix
|
380 |
+
assert block_collapse(Transpose(bm1)).__class__ == BlockDiagMatrix
|
381 |
+
assert bc_transpose(Transpose(bm1)).__class__ == BlockDiagMatrix
|
382 |
+
assert bc_inverse(Inverse(bm1)).__class__ == BlockDiagMatrix
|
383 |
+
|
384 |
+
def test_invalid_block_matrix():
|
385 |
+
raises(ValueError, lambda: BlockMatrix([
|
386 |
+
[Identity(2), Identity(5)],
|
387 |
+
]))
|
388 |
+
raises(ValueError, lambda: BlockMatrix([
|
389 |
+
[Identity(n), Identity(m)],
|
390 |
+
]))
|
391 |
+
raises(ValueError, lambda: BlockMatrix([
|
392 |
+
[ZeroMatrix(n, n), ZeroMatrix(n, n)],
|
393 |
+
[ZeroMatrix(n, n - 1), ZeroMatrix(n, n + 1)],
|
394 |
+
]))
|
395 |
+
raises(ValueError, lambda: BlockMatrix([
|
396 |
+
[ZeroMatrix(n - 1, n), ZeroMatrix(n, n)],
|
397 |
+
[ZeroMatrix(n + 1, n), ZeroMatrix(n, n)],
|
398 |
+
]))
|
399 |
+
|
400 |
+
def test_block_lu_decomposition():
|
401 |
+
A = MatrixSymbol('A', n, n)
|
402 |
+
B = MatrixSymbol('B', n, m)
|
403 |
+
C = MatrixSymbol('C', m, n)
|
404 |
+
D = MatrixSymbol('D', m, m)
|
405 |
+
X = BlockMatrix([[A, B], [C, D]])
|
406 |
+
|
407 |
+
#LDU decomposition
|
408 |
+
L, D, U = X.LDUdecomposition()
|
409 |
+
assert block_collapse(L*D*U) == X
|
410 |
+
|
411 |
+
#UDL decomposition
|
412 |
+
U, D, L = X.UDLdecomposition()
|
413 |
+
assert block_collapse(U*D*L) == X
|
414 |
+
|
415 |
+
#LU decomposition
|
416 |
+
L, U = X.LUdecomposition()
|
417 |
+
assert block_collapse(L*U) == X
|
418 |
+
|
419 |
+
def test_issue_21866():
|
420 |
+
n = 10
|
421 |
+
I = Identity(n)
|
422 |
+
O = ZeroMatrix(n, n)
|
423 |
+
A = BlockMatrix([[ I, O, O, O ],
|
424 |
+
[ O, I, O, O ],
|
425 |
+
[ O, O, I, O ],
|
426 |
+
[ I, O, O, I ]])
|
427 |
+
Ainv = block_collapse(A.inv())
|
428 |
+
AinvT = BlockMatrix([[ I, O, O, O ],
|
429 |
+
[ O, I, O, O ],
|
430 |
+
[ O, O, I, O ],
|
431 |
+
[ -I, O, O, I ]])
|
432 |
+
assert Ainv == AinvT
|
433 |
+
|
434 |
+
|
435 |
+
def test_adjoint_and_special_matrices():
|
436 |
+
A = Identity(3)
|
437 |
+
B = OneMatrix(3, 2)
|
438 |
+
C = ZeroMatrix(2, 3)
|
439 |
+
D = Identity(2)
|
440 |
+
X = BlockMatrix([[A, B], [C, D]])
|
441 |
+
X2 = BlockMatrix([[A, S.ImaginaryUnit*B], [C, D]])
|
442 |
+
assert X.adjoint() == BlockMatrix([[A, ZeroMatrix(3, 2)], [OneMatrix(2, 3), D]])
|
443 |
+
assert re(X) == X
|
444 |
+
assert X2.adjoint() == BlockMatrix([[A, ZeroMatrix(3, 2)], [-S.ImaginaryUnit*OneMatrix(2, 3), D]])
|
445 |
+
assert im(X2) == BlockMatrix([[ZeroMatrix(3, 3), OneMatrix(3, 2)], [ZeroMatrix(2, 3), ZeroMatrix(2, 2)]])
|
venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_derivatives.py
ADDED
@@ -0,0 +1,477 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Some examples have been taken from:
|
3 |
+
|
4 |
+
http://www.math.uwaterloo.ca/~hwolkowi//matrixcookbook.pdf
|
5 |
+
"""
|
6 |
+
from sympy import KroneckerProduct
|
7 |
+
from sympy.combinatorics import Permutation
|
8 |
+
from sympy.concrete.summations import Sum
|
9 |
+
from sympy.core.numbers import Rational
|
10 |
+
from sympy.core.singleton import S
|
11 |
+
from sympy.core.symbol import symbols
|
12 |
+
from sympy.functions.elementary.exponential import (exp, log)
|
13 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
14 |
+
from sympy.functions.elementary.trigonometric import (cos, sin, tan)
|
15 |
+
from sympy.functions.special.tensor_functions import KroneckerDelta
|
16 |
+
from sympy.matrices.expressions.determinant import Determinant
|
17 |
+
from sympy.matrices.expressions.diagonal import DiagMatrix
|
18 |
+
from sympy.matrices.expressions.hadamard import (HadamardPower, HadamardProduct, hadamard_product)
|
19 |
+
from sympy.matrices.expressions.inverse import Inverse
|
20 |
+
from sympy.matrices.expressions.matexpr import MatrixSymbol
|
21 |
+
from sympy.matrices.expressions.special import OneMatrix
|
22 |
+
from sympy.matrices.expressions.trace import Trace
|
23 |
+
from sympy.matrices.expressions.matadd import MatAdd
|
24 |
+
from sympy.matrices.expressions.matmul import MatMul
|
25 |
+
from sympy.matrices.expressions.special import (Identity, ZeroMatrix)
|
26 |
+
from sympy.tensor.array.array_derivatives import ArrayDerivative
|
27 |
+
from sympy.matrices.expressions import hadamard_power
|
28 |
+
from sympy.tensor.array.expressions.array_expressions import ArrayAdd, ArrayTensorProduct, PermuteDims
|
29 |
+
|
30 |
+
i, j, k = symbols("i j k")
|
31 |
+
m, n = symbols("m n")
|
32 |
+
|
33 |
+
X = MatrixSymbol("X", k, k)
|
34 |
+
x = MatrixSymbol("x", k, 1)
|
35 |
+
y = MatrixSymbol("y", k, 1)
|
36 |
+
|
37 |
+
A = MatrixSymbol("A", k, k)
|
38 |
+
B = MatrixSymbol("B", k, k)
|
39 |
+
C = MatrixSymbol("C", k, k)
|
40 |
+
D = MatrixSymbol("D", k, k)
|
41 |
+
|
42 |
+
a = MatrixSymbol("a", k, 1)
|
43 |
+
b = MatrixSymbol("b", k, 1)
|
44 |
+
c = MatrixSymbol("c", k, 1)
|
45 |
+
d = MatrixSymbol("d", k, 1)
|
46 |
+
|
47 |
+
|
48 |
+
KDelta = lambda i, j: KroneckerDelta(i, j, (0, k-1))
|
49 |
+
|
50 |
+
|
51 |
+
def _check_derivative_with_explicit_matrix(expr, x, diffexpr, dim=2):
|
52 |
+
# TODO: this is commented because it slows down the tests.
|
53 |
+
return
|
54 |
+
|
55 |
+
expr = expr.xreplace({k: dim})
|
56 |
+
x = x.xreplace({k: dim})
|
57 |
+
diffexpr = diffexpr.xreplace({k: dim})
|
58 |
+
|
59 |
+
expr = expr.as_explicit()
|
60 |
+
x = x.as_explicit()
|
61 |
+
diffexpr = diffexpr.as_explicit()
|
62 |
+
|
63 |
+
assert expr.diff(x).reshape(*diffexpr.shape).tomatrix() == diffexpr
|
64 |
+
|
65 |
+
|
66 |
+
def test_matrix_derivative_by_scalar():
|
67 |
+
assert A.diff(i) == ZeroMatrix(k, k)
|
68 |
+
assert (A*(X + B)*c).diff(i) == ZeroMatrix(k, 1)
|
69 |
+
assert x.diff(i) == ZeroMatrix(k, 1)
|
70 |
+
assert (x.T*y).diff(i) == ZeroMatrix(1, 1)
|
71 |
+
assert (x*x.T).diff(i) == ZeroMatrix(k, k)
|
72 |
+
assert (x + y).diff(i) == ZeroMatrix(k, 1)
|
73 |
+
assert hadamard_power(x, 2).diff(i) == ZeroMatrix(k, 1)
|
74 |
+
assert hadamard_power(x, i).diff(i).dummy_eq(
|
75 |
+
HadamardProduct(x.applyfunc(log), HadamardPower(x, i)))
|
76 |
+
assert hadamard_product(x, y).diff(i) == ZeroMatrix(k, 1)
|
77 |
+
assert hadamard_product(i*OneMatrix(k, 1), x, y).diff(i) == hadamard_product(x, y)
|
78 |
+
assert (i*x).diff(i) == x
|
79 |
+
assert (sin(i)*A*B*x).diff(i) == cos(i)*A*B*x
|
80 |
+
assert x.applyfunc(sin).diff(i) == ZeroMatrix(k, 1)
|
81 |
+
assert Trace(i**2*X).diff(i) == 2*i*Trace(X)
|
82 |
+
|
83 |
+
mu = symbols("mu")
|
84 |
+
expr = (2*mu*x)
|
85 |
+
assert expr.diff(x) == 2*mu*Identity(k)
|
86 |
+
|
87 |
+
|
88 |
+
def test_one_matrix():
|
89 |
+
assert MatMul(x.T, OneMatrix(k, 1)).diff(x) == OneMatrix(k, 1)
|
90 |
+
|
91 |
+
|
92 |
+
def test_matrix_derivative_non_matrix_result():
|
93 |
+
# This is a 4-dimensional array:
|
94 |
+
I = Identity(k)
|
95 |
+
AdA = PermuteDims(ArrayTensorProduct(I, I), Permutation(3)(1, 2))
|
96 |
+
assert A.diff(A) == AdA
|
97 |
+
assert A.T.diff(A) == PermuteDims(ArrayTensorProduct(I, I), Permutation(3)(1, 2, 3))
|
98 |
+
assert (2*A).diff(A) == PermuteDims(ArrayTensorProduct(2*I, I), Permutation(3)(1, 2))
|
99 |
+
assert MatAdd(A, A).diff(A) == ArrayAdd(AdA, AdA)
|
100 |
+
assert (A + B).diff(A) == AdA
|
101 |
+
|
102 |
+
|
103 |
+
def test_matrix_derivative_trivial_cases():
|
104 |
+
# Cookbook example 33:
|
105 |
+
# TODO: find a way to represent a four-dimensional zero-array:
|
106 |
+
assert X.diff(A) == ArrayDerivative(X, A)
|
107 |
+
|
108 |
+
|
109 |
+
def test_matrix_derivative_with_inverse():
|
110 |
+
|
111 |
+
# Cookbook example 61:
|
112 |
+
expr = a.T*Inverse(X)*b
|
113 |
+
assert expr.diff(X) == -Inverse(X).T*a*b.T*Inverse(X).T
|
114 |
+
|
115 |
+
# Cookbook example 62:
|
116 |
+
expr = Determinant(Inverse(X))
|
117 |
+
# Not implemented yet:
|
118 |
+
# assert expr.diff(X) == -Determinant(X.inv())*(X.inv()).T
|
119 |
+
|
120 |
+
# Cookbook example 63:
|
121 |
+
expr = Trace(A*Inverse(X)*B)
|
122 |
+
assert expr.diff(X) == -(X**(-1)*B*A*X**(-1)).T
|
123 |
+
|
124 |
+
# Cookbook example 64:
|
125 |
+
expr = Trace(Inverse(X + A))
|
126 |
+
assert expr.diff(X) == -(Inverse(X + A)).T**2
|
127 |
+
|
128 |
+
|
129 |
+
def test_matrix_derivative_vectors_and_scalars():
|
130 |
+
|
131 |
+
assert x.diff(x) == Identity(k)
|
132 |
+
assert x[i, 0].diff(x[m, 0]).doit() == KDelta(m, i)
|
133 |
+
|
134 |
+
assert x.T.diff(x) == Identity(k)
|
135 |
+
|
136 |
+
# Cookbook example 69:
|
137 |
+
expr = x.T*a
|
138 |
+
assert expr.diff(x) == a
|
139 |
+
assert expr[0, 0].diff(x[m, 0]).doit() == a[m, 0]
|
140 |
+
expr = a.T*x
|
141 |
+
assert expr.diff(x) == a
|
142 |
+
|
143 |
+
# Cookbook example 70:
|
144 |
+
expr = a.T*X*b
|
145 |
+
assert expr.diff(X) == a*b.T
|
146 |
+
|
147 |
+
# Cookbook example 71:
|
148 |
+
expr = a.T*X.T*b
|
149 |
+
assert expr.diff(X) == b*a.T
|
150 |
+
|
151 |
+
# Cookbook example 72:
|
152 |
+
expr = a.T*X*a
|
153 |
+
assert expr.diff(X) == a*a.T
|
154 |
+
expr = a.T*X.T*a
|
155 |
+
assert expr.diff(X) == a*a.T
|
156 |
+
|
157 |
+
# Cookbook example 77:
|
158 |
+
expr = b.T*X.T*X*c
|
159 |
+
assert expr.diff(X) == X*b*c.T + X*c*b.T
|
160 |
+
|
161 |
+
# Cookbook example 78:
|
162 |
+
expr = (B*x + b).T*C*(D*x + d)
|
163 |
+
assert expr.diff(x) == B.T*C*(D*x + d) + D.T*C.T*(B*x + b)
|
164 |
+
|
165 |
+
# Cookbook example 81:
|
166 |
+
expr = x.T*B*x
|
167 |
+
assert expr.diff(x) == B*x + B.T*x
|
168 |
+
|
169 |
+
# Cookbook example 82:
|
170 |
+
expr = b.T*X.T*D*X*c
|
171 |
+
assert expr.diff(X) == D.T*X*b*c.T + D*X*c*b.T
|
172 |
+
|
173 |
+
# Cookbook example 83:
|
174 |
+
expr = (X*b + c).T*D*(X*b + c)
|
175 |
+
assert expr.diff(X) == D*(X*b + c)*b.T + D.T*(X*b + c)*b.T
|
176 |
+
assert str(expr[0, 0].diff(X[m, n]).doit()) == \
|
177 |
+
'b[n, 0]*Sum((c[_i_1, 0] + Sum(X[_i_1, _i_3]*b[_i_3, 0], (_i_3, 0, k - 1)))*D[_i_1, m], (_i_1, 0, k - 1)) + Sum((c[_i_2, 0] + Sum(X[_i_2, _i_4]*b[_i_4, 0], (_i_4, 0, k - 1)))*D[m, _i_2]*b[n, 0], (_i_2, 0, k - 1))'
|
178 |
+
|
179 |
+
# See https://github.com/sympy/sympy/issues/16504#issuecomment-1018339957
|
180 |
+
expr = x*x.T*x
|
181 |
+
I = Identity(k)
|
182 |
+
assert expr.diff(x) == KroneckerProduct(I, x.T*x) + 2*x*x.T
|
183 |
+
|
184 |
+
|
185 |
+
def test_matrix_derivatives_of_traces():
|
186 |
+
|
187 |
+
expr = Trace(A)*A
|
188 |
+
I = Identity(k)
|
189 |
+
assert expr.diff(A) == ArrayAdd(ArrayTensorProduct(I, A), PermuteDims(ArrayTensorProduct(Trace(A)*I, I), Permutation(3)(1, 2)))
|
190 |
+
assert expr[i, j].diff(A[m, n]).doit() == (
|
191 |
+
KDelta(i, m)*KDelta(j, n)*Trace(A) +
|
192 |
+
KDelta(m, n)*A[i, j]
|
193 |
+
)
|
194 |
+
|
195 |
+
## First order:
|
196 |
+
|
197 |
+
# Cookbook example 99:
|
198 |
+
expr = Trace(X)
|
199 |
+
assert expr.diff(X) == Identity(k)
|
200 |
+
assert expr.rewrite(Sum).diff(X[m, n]).doit() == KDelta(m, n)
|
201 |
+
|
202 |
+
# Cookbook example 100:
|
203 |
+
expr = Trace(X*A)
|
204 |
+
assert expr.diff(X) == A.T
|
205 |
+
assert expr.rewrite(Sum).diff(X[m, n]).doit() == A[n, m]
|
206 |
+
|
207 |
+
# Cookbook example 101:
|
208 |
+
expr = Trace(A*X*B)
|
209 |
+
assert expr.diff(X) == A.T*B.T
|
210 |
+
assert expr.rewrite(Sum).diff(X[m, n]).doit().dummy_eq((A.T*B.T)[m, n])
|
211 |
+
|
212 |
+
# Cookbook example 102:
|
213 |
+
expr = Trace(A*X.T*B)
|
214 |
+
assert expr.diff(X) == B*A
|
215 |
+
|
216 |
+
# Cookbook example 103:
|
217 |
+
expr = Trace(X.T*A)
|
218 |
+
assert expr.diff(X) == A
|
219 |
+
|
220 |
+
# Cookbook example 104:
|
221 |
+
expr = Trace(A*X.T)
|
222 |
+
assert expr.diff(X) == A
|
223 |
+
|
224 |
+
# Cookbook example 105:
|
225 |
+
# TODO: TensorProduct is not supported
|
226 |
+
#expr = Trace(TensorProduct(A, X))
|
227 |
+
#assert expr.diff(X) == Trace(A)*Identity(k)
|
228 |
+
|
229 |
+
## Second order:
|
230 |
+
|
231 |
+
# Cookbook example 106:
|
232 |
+
expr = Trace(X**2)
|
233 |
+
assert expr.diff(X) == 2*X.T
|
234 |
+
|
235 |
+
# Cookbook example 107:
|
236 |
+
expr = Trace(X**2*B)
|
237 |
+
assert expr.diff(X) == (X*B + B*X).T
|
238 |
+
expr = Trace(MatMul(X, X, B))
|
239 |
+
assert expr.diff(X) == (X*B + B*X).T
|
240 |
+
|
241 |
+
# Cookbook example 108:
|
242 |
+
expr = Trace(X.T*B*X)
|
243 |
+
assert expr.diff(X) == B*X + B.T*X
|
244 |
+
|
245 |
+
# Cookbook example 109:
|
246 |
+
expr = Trace(B*X*X.T)
|
247 |
+
assert expr.diff(X) == B*X + B.T*X
|
248 |
+
|
249 |
+
# Cookbook example 110:
|
250 |
+
expr = Trace(X*X.T*B)
|
251 |
+
assert expr.diff(X) == B*X + B.T*X
|
252 |
+
|
253 |
+
# Cookbook example 111:
|
254 |
+
expr = Trace(X*B*X.T)
|
255 |
+
assert expr.diff(X) == X*B.T + X*B
|
256 |
+
|
257 |
+
# Cookbook example 112:
|
258 |
+
expr = Trace(B*X.T*X)
|
259 |
+
assert expr.diff(X) == X*B.T + X*B
|
260 |
+
|
261 |
+
# Cookbook example 113:
|
262 |
+
expr = Trace(X.T*X*B)
|
263 |
+
assert expr.diff(X) == X*B.T + X*B
|
264 |
+
|
265 |
+
# Cookbook example 114:
|
266 |
+
expr = Trace(A*X*B*X)
|
267 |
+
assert expr.diff(X) == A.T*X.T*B.T + B.T*X.T*A.T
|
268 |
+
|
269 |
+
# Cookbook example 115:
|
270 |
+
expr = Trace(X.T*X)
|
271 |
+
assert expr.diff(X) == 2*X
|
272 |
+
expr = Trace(X*X.T)
|
273 |
+
assert expr.diff(X) == 2*X
|
274 |
+
|
275 |
+
# Cookbook example 116:
|
276 |
+
expr = Trace(B.T*X.T*C*X*B)
|
277 |
+
assert expr.diff(X) == C.T*X*B*B.T + C*X*B*B.T
|
278 |
+
|
279 |
+
# Cookbook example 117:
|
280 |
+
expr = Trace(X.T*B*X*C)
|
281 |
+
assert expr.diff(X) == B*X*C + B.T*X*C.T
|
282 |
+
|
283 |
+
# Cookbook example 118:
|
284 |
+
expr = Trace(A*X*B*X.T*C)
|
285 |
+
assert expr.diff(X) == A.T*C.T*X*B.T + C*A*X*B
|
286 |
+
|
287 |
+
# Cookbook example 119:
|
288 |
+
expr = Trace((A*X*B + C)*(A*X*B + C).T)
|
289 |
+
assert expr.diff(X) == 2*A.T*(A*X*B + C)*B.T
|
290 |
+
|
291 |
+
# Cookbook example 120:
|
292 |
+
# TODO: no support for TensorProduct.
|
293 |
+
# expr = Trace(TensorProduct(X, X))
|
294 |
+
# expr = Trace(X)*Trace(X)
|
295 |
+
# expr.diff(X) == 2*Trace(X)*Identity(k)
|
296 |
+
|
297 |
+
# Higher Order
|
298 |
+
|
299 |
+
# Cookbook example 121:
|
300 |
+
expr = Trace(X**k)
|
301 |
+
#assert expr.diff(X) == k*(X**(k-1)).T
|
302 |
+
|
303 |
+
# Cookbook example 122:
|
304 |
+
expr = Trace(A*X**k)
|
305 |
+
#assert expr.diff(X) == # Needs indices
|
306 |
+
|
307 |
+
# Cookbook example 123:
|
308 |
+
expr = Trace(B.T*X.T*C*X*X.T*C*X*B)
|
309 |
+
assert expr.diff(X) == C*X*X.T*C*X*B*B.T + C.T*X*B*B.T*X.T*C.T*X + C*X*B*B.T*X.T*C*X + C.T*X*X.T*C.T*X*B*B.T
|
310 |
+
|
311 |
+
# Other
|
312 |
+
|
313 |
+
# Cookbook example 124:
|
314 |
+
expr = Trace(A*X**(-1)*B)
|
315 |
+
assert expr.diff(X) == -Inverse(X).T*A.T*B.T*Inverse(X).T
|
316 |
+
|
317 |
+
# Cookbook example 125:
|
318 |
+
expr = Trace(Inverse(X.T*C*X)*A)
|
319 |
+
# Warning: result in the cookbook is equivalent if B and C are symmetric:
|
320 |
+
assert expr.diff(X) == - X.inv().T*A.T*X.inv()*C.inv().T*X.inv().T - X.inv().T*A*X.inv()*C.inv()*X.inv().T
|
321 |
+
|
322 |
+
# Cookbook example 126:
|
323 |
+
expr = Trace((X.T*C*X).inv()*(X.T*B*X))
|
324 |
+
assert expr.diff(X) == -2*C*X*(X.T*C*X).inv()*X.T*B*X*(X.T*C*X).inv() + 2*B*X*(X.T*C*X).inv()
|
325 |
+
|
326 |
+
# Cookbook example 127:
|
327 |
+
expr = Trace((A + X.T*C*X).inv()*(X.T*B*X))
|
328 |
+
# Warning: result in the cookbook is equivalent if B and C are symmetric:
|
329 |
+
assert expr.diff(X) == B*X*Inverse(A + X.T*C*X) - C*X*Inverse(A + X.T*C*X)*X.T*B*X*Inverse(A + X.T*C*X) - C.T*X*Inverse(A.T + (C*X).T*X)*X.T*B.T*X*Inverse(A.T + (C*X).T*X) + B.T*X*Inverse(A.T + (C*X).T*X)
|
330 |
+
|
331 |
+
|
332 |
+
def test_derivatives_of_complicated_matrix_expr():
|
333 |
+
expr = a.T*(A*X*(X.T*B + X*A) + B.T*X.T*(a*b.T*(X*D*X.T + X*(X.T*B + A*X)*D*B - X.T*C.T*A)*B + B*(X*D.T + B*A*X*A.T - 3*X*D))*B + 42*X*B*X.T*A.T*(X + X.T))*b
|
334 |
+
result = (B*(B*A*X*A.T - 3*X*D + X*D.T) + a*b.T*(X*(A*X + X.T*B)*D*B + X*D*X.T - X.T*C.T*A)*B)*B*b*a.T*B.T + B**2*b*a.T*B.T*X.T*a*b.T*X*D + 42*A*X*B.T*X.T*a*b.T + B*D*B**3*b*a.T*B.T*X.T*a*b.T*X + B*b*a.T*A*X + a*b.T*(42*X + 42*X.T)*A*X*B.T + b*a.T*X*B*a*b.T*B.T**2*X*D.T + b*a.T*X*B*a*b.T*B.T**3*D.T*(B.T*X + X.T*A.T) + 42*b*a.T*X*B*X.T*A.T + A.T*(42*X + 42*X.T)*b*a.T*X*B + A.T*B.T**2*X*B*a*b.T*B.T*A + A.T*a*b.T*(A.T*X.T + B.T*X) + A.T*X.T*b*a.T*X*B*a*b.T*B.T**3*D.T + B.T*X*B*a*b.T*B.T*D - 3*B.T*X*B*a*b.T*B.T*D.T - C.T*A*B**2*b*a.T*B.T*X.T*a*b.T + X.T*A.T*a*b.T*A.T
|
335 |
+
assert expr.diff(X) == result
|
336 |
+
|
337 |
+
|
338 |
+
def test_mixed_deriv_mixed_expressions():
|
339 |
+
|
340 |
+
expr = 3*Trace(A)
|
341 |
+
assert expr.diff(A) == 3*Identity(k)
|
342 |
+
|
343 |
+
expr = k
|
344 |
+
deriv = expr.diff(A)
|
345 |
+
assert isinstance(deriv, ZeroMatrix)
|
346 |
+
assert deriv == ZeroMatrix(k, k)
|
347 |
+
|
348 |
+
expr = Trace(A)**2
|
349 |
+
assert expr.diff(A) == (2*Trace(A))*Identity(k)
|
350 |
+
|
351 |
+
expr = Trace(A)*A
|
352 |
+
I = Identity(k)
|
353 |
+
assert expr.diff(A) == ArrayAdd(ArrayTensorProduct(I, A), PermuteDims(ArrayTensorProduct(Trace(A)*I, I), Permutation(3)(1, 2)))
|
354 |
+
|
355 |
+
expr = Trace(Trace(A)*A)
|
356 |
+
assert expr.diff(A) == (2*Trace(A))*Identity(k)
|
357 |
+
|
358 |
+
expr = Trace(Trace(Trace(A)*A)*A)
|
359 |
+
assert expr.diff(A) == (3*Trace(A)**2)*Identity(k)
|
360 |
+
|
361 |
+
|
362 |
+
def test_derivatives_matrix_norms():
|
363 |
+
|
364 |
+
expr = x.T*y
|
365 |
+
assert expr.diff(x) == y
|
366 |
+
assert expr[0, 0].diff(x[m, 0]).doit() == y[m, 0]
|
367 |
+
|
368 |
+
expr = (x.T*y)**S.Half
|
369 |
+
assert expr.diff(x) == y/(2*sqrt(x.T*y))
|
370 |
+
|
371 |
+
expr = (x.T*x)**S.Half
|
372 |
+
assert expr.diff(x) == x*(x.T*x)**Rational(-1, 2)
|
373 |
+
|
374 |
+
expr = (c.T*a*x.T*b)**S.Half
|
375 |
+
assert expr.diff(x) == b*a.T*c/sqrt(c.T*a*x.T*b)/2
|
376 |
+
|
377 |
+
expr = (c.T*a*x.T*b)**Rational(1, 3)
|
378 |
+
assert expr.diff(x) == b*a.T*c*(c.T*a*x.T*b)**Rational(-2, 3)/3
|
379 |
+
|
380 |
+
expr = (a.T*X*b)**S.Half
|
381 |
+
assert expr.diff(X) == a/(2*sqrt(a.T*X*b))*b.T
|
382 |
+
|
383 |
+
expr = d.T*x*(a.T*X*b)**S.Half*y.T*c
|
384 |
+
assert expr.diff(X) == a/(2*sqrt(a.T*X*b))*x.T*d*y.T*c*b.T
|
385 |
+
|
386 |
+
|
387 |
+
def test_derivatives_elementwise_applyfunc():
|
388 |
+
|
389 |
+
expr = x.applyfunc(tan)
|
390 |
+
assert expr.diff(x).dummy_eq(
|
391 |
+
DiagMatrix(x.applyfunc(lambda x: tan(x)**2 + 1)))
|
392 |
+
assert expr[i, 0].diff(x[m, 0]).doit() == (tan(x[i, 0])**2 + 1)*KDelta(i, m)
|
393 |
+
_check_derivative_with_explicit_matrix(expr, x, expr.diff(x))
|
394 |
+
|
395 |
+
expr = (i**2*x).applyfunc(sin)
|
396 |
+
assert expr.diff(i).dummy_eq(
|
397 |
+
HadamardProduct((2*i)*x, (i**2*x).applyfunc(cos)))
|
398 |
+
assert expr[i, 0].diff(i).doit() == 2*i*x[i, 0]*cos(i**2*x[i, 0])
|
399 |
+
_check_derivative_with_explicit_matrix(expr, i, expr.diff(i))
|
400 |
+
|
401 |
+
expr = (log(i)*A*B).applyfunc(sin)
|
402 |
+
assert expr.diff(i).dummy_eq(
|
403 |
+
HadamardProduct(A*B/i, (log(i)*A*B).applyfunc(cos)))
|
404 |
+
_check_derivative_with_explicit_matrix(expr, i, expr.diff(i))
|
405 |
+
|
406 |
+
expr = A*x.applyfunc(exp)
|
407 |
+
# TODO: restore this result (currently returning the transpose):
|
408 |
+
# assert expr.diff(x).dummy_eq(DiagMatrix(x.applyfunc(exp))*A.T)
|
409 |
+
_check_derivative_with_explicit_matrix(expr, x, expr.diff(x))
|
410 |
+
|
411 |
+
expr = x.T*A*x + k*y.applyfunc(sin).T*x
|
412 |
+
assert expr.diff(x).dummy_eq(A.T*x + A*x + k*y.applyfunc(sin))
|
413 |
+
_check_derivative_with_explicit_matrix(expr, x, expr.diff(x))
|
414 |
+
|
415 |
+
expr = x.applyfunc(sin).T*y
|
416 |
+
# TODO: restore (currently returning the transpose):
|
417 |
+
# assert expr.diff(x).dummy_eq(DiagMatrix(x.applyfunc(cos))*y)
|
418 |
+
_check_derivative_with_explicit_matrix(expr, x, expr.diff(x))
|
419 |
+
|
420 |
+
expr = (a.T * X * b).applyfunc(sin)
|
421 |
+
assert expr.diff(X).dummy_eq(a*(a.T*X*b).applyfunc(cos)*b.T)
|
422 |
+
_check_derivative_with_explicit_matrix(expr, X, expr.diff(X))
|
423 |
+
|
424 |
+
expr = a.T * X.applyfunc(sin) * b
|
425 |
+
assert expr.diff(X).dummy_eq(
|
426 |
+
DiagMatrix(a)*X.applyfunc(cos)*DiagMatrix(b))
|
427 |
+
_check_derivative_with_explicit_matrix(expr, X, expr.diff(X))
|
428 |
+
|
429 |
+
expr = a.T * (A*X*B).applyfunc(sin) * b
|
430 |
+
assert expr.diff(X).dummy_eq(
|
431 |
+
A.T*DiagMatrix(a)*(A*X*B).applyfunc(cos)*DiagMatrix(b)*B.T)
|
432 |
+
_check_derivative_with_explicit_matrix(expr, X, expr.diff(X))
|
433 |
+
|
434 |
+
expr = a.T * (A*X*b).applyfunc(sin) * b.T
|
435 |
+
# TODO: not implemented
|
436 |
+
#assert expr.diff(X) == ...
|
437 |
+
#_check_derivative_with_explicit_matrix(expr, X, expr.diff(X))
|
438 |
+
|
439 |
+
expr = a.T*A*X.applyfunc(sin)*B*b
|
440 |
+
assert expr.diff(X).dummy_eq(
|
441 |
+
HadamardProduct(A.T * a * b.T * B.T, X.applyfunc(cos)))
|
442 |
+
|
443 |
+
expr = a.T * (A*X.applyfunc(sin)*B).applyfunc(log) * b
|
444 |
+
# TODO: wrong
|
445 |
+
# assert expr.diff(X) == A.T*DiagMatrix(a)*(A*X.applyfunc(sin)*B).applyfunc(Lambda(k, 1/k))*DiagMatrix(b)*B.T
|
446 |
+
|
447 |
+
expr = a.T * (X.applyfunc(sin)).applyfunc(log) * b
|
448 |
+
# TODO: wrong
|
449 |
+
# assert expr.diff(X) == DiagMatrix(a)*X.applyfunc(sin).applyfunc(Lambda(k, 1/k))*DiagMatrix(b)
|
450 |
+
|
451 |
+
|
452 |
+
def test_derivatives_of_hadamard_expressions():
|
453 |
+
|
454 |
+
# Hadamard Product
|
455 |
+
|
456 |
+
expr = hadamard_product(a, x, b)
|
457 |
+
assert expr.diff(x) == DiagMatrix(hadamard_product(b, a))
|
458 |
+
|
459 |
+
expr = a.T*hadamard_product(A, X, B)*b
|
460 |
+
assert expr.diff(X) == HadamardProduct(a*b.T, A, B)
|
461 |
+
|
462 |
+
# Hadamard Power
|
463 |
+
|
464 |
+
expr = hadamard_power(x, 2)
|
465 |
+
assert expr.diff(x).doit() == 2*DiagMatrix(x)
|
466 |
+
|
467 |
+
expr = hadamard_power(x.T, 2)
|
468 |
+
assert expr.diff(x).doit() == 2*DiagMatrix(x)
|
469 |
+
|
470 |
+
expr = hadamard_power(x, S.Half)
|
471 |
+
assert expr.diff(x) == S.Half*DiagMatrix(hadamard_power(x, Rational(-1, 2)))
|
472 |
+
|
473 |
+
expr = hadamard_power(a.T*X*b, 2)
|
474 |
+
assert expr.diff(X) == 2*a*a.T*X*b*b.T
|
475 |
+
|
476 |
+
expr = hadamard_power(a.T*X*b, S.Half)
|
477 |
+
assert expr.diff(X) == a/(2*sqrt(a.T*X*b))*b.T
|
venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_determinant.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core import S, symbols
|
2 |
+
from sympy.matrices import eye, ones, Matrix, ShapeError
|
3 |
+
from sympy.matrices.expressions import (
|
4 |
+
Identity, MatrixExpr, MatrixSymbol, Determinant,
|
5 |
+
det, per, ZeroMatrix, Transpose,
|
6 |
+
Permanent
|
7 |
+
)
|
8 |
+
from sympy.matrices.expressions.special import OneMatrix
|
9 |
+
from sympy.testing.pytest import raises
|
10 |
+
from sympy.assumptions.ask import Q
|
11 |
+
from sympy.assumptions.refine import refine
|
12 |
+
|
13 |
+
n = symbols('n', integer=True)
|
14 |
+
A = MatrixSymbol('A', n, n)
|
15 |
+
B = MatrixSymbol('B', n, n)
|
16 |
+
C = MatrixSymbol('C', 3, 4)
|
17 |
+
|
18 |
+
|
19 |
+
def test_det():
|
20 |
+
assert isinstance(Determinant(A), Determinant)
|
21 |
+
assert not isinstance(Determinant(A), MatrixExpr)
|
22 |
+
raises(ShapeError, lambda: Determinant(C))
|
23 |
+
assert det(eye(3)) == 1
|
24 |
+
assert det(Matrix(3, 3, [1, 3, 2, 4, 1, 3, 2, 5, 2])) == 17
|
25 |
+
_ = A / det(A) # Make sure this is possible
|
26 |
+
|
27 |
+
raises(TypeError, lambda: Determinant(S.One))
|
28 |
+
|
29 |
+
assert Determinant(A).arg is A
|
30 |
+
|
31 |
+
def test_eval_determinant():
|
32 |
+
assert det(Identity(n)) == 1
|
33 |
+
assert det(ZeroMatrix(n, n)) == 0
|
34 |
+
assert det(OneMatrix(n, n)) == Determinant(OneMatrix(n, n))
|
35 |
+
assert det(OneMatrix(1, 1)) == 1
|
36 |
+
assert det(OneMatrix(2, 2)) == 0
|
37 |
+
assert det(Transpose(A)) == det(A)
|
38 |
+
|
39 |
+
|
40 |
+
def test_refine():
|
41 |
+
assert refine(det(A), Q.orthogonal(A)) == 1
|
42 |
+
assert refine(det(A), Q.singular(A)) == 0
|
43 |
+
assert refine(det(A), Q.unit_triangular(A)) == 1
|
44 |
+
assert refine(det(A), Q.normal(A)) == det(A)
|
45 |
+
|
46 |
+
|
47 |
+
def test_commutative():
|
48 |
+
det_a = Determinant(A)
|
49 |
+
det_b = Determinant(B)
|
50 |
+
assert det_a.is_commutative
|
51 |
+
assert det_b.is_commutative
|
52 |
+
assert det_a * det_b == det_b * det_a
|
53 |
+
|
54 |
+
def test_permanent():
|
55 |
+
assert isinstance(Permanent(A), Permanent)
|
56 |
+
assert not isinstance(Permanent(A), MatrixExpr)
|
57 |
+
assert isinstance(Permanent(C), Permanent)
|
58 |
+
assert Permanent(ones(3, 3)).doit() == 6
|
59 |
+
_ = C / per(C)
|
60 |
+
assert per(Matrix(3, 3, [1, 3, 2, 4, 1, 3, 2, 5, 2])) == 103
|
61 |
+
raises(TypeError, lambda: Permanent(S.One))
|
62 |
+
assert Permanent(A).arg is A
|
venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_diagonal.py
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.matrices.expressions import MatrixSymbol
|
2 |
+
from sympy.matrices.expressions.diagonal import DiagonalMatrix, DiagonalOf, DiagMatrix, diagonalize_vector
|
3 |
+
from sympy.assumptions.ask import (Q, ask)
|
4 |
+
from sympy.core.symbol import Symbol
|
5 |
+
from sympy.functions.special.tensor_functions import KroneckerDelta
|
6 |
+
from sympy.matrices.dense import Matrix
|
7 |
+
from sympy.matrices.expressions.matmul import MatMul
|
8 |
+
from sympy.matrices.expressions.special import Identity
|
9 |
+
from sympy.testing.pytest import raises
|
10 |
+
|
11 |
+
|
12 |
+
n = Symbol('n')
|
13 |
+
m = Symbol('m')
|
14 |
+
|
15 |
+
|
16 |
+
def test_DiagonalMatrix():
|
17 |
+
x = MatrixSymbol('x', n, m)
|
18 |
+
D = DiagonalMatrix(x)
|
19 |
+
assert D.diagonal_length is None
|
20 |
+
assert D.shape == (n, m)
|
21 |
+
|
22 |
+
x = MatrixSymbol('x', n, n)
|
23 |
+
D = DiagonalMatrix(x)
|
24 |
+
assert D.diagonal_length == n
|
25 |
+
assert D.shape == (n, n)
|
26 |
+
assert D[1, 2] == 0
|
27 |
+
assert D[1, 1] == x[1, 1]
|
28 |
+
i = Symbol('i')
|
29 |
+
j = Symbol('j')
|
30 |
+
x = MatrixSymbol('x', 3, 3)
|
31 |
+
ij = DiagonalMatrix(x)[i, j]
|
32 |
+
assert ij != 0
|
33 |
+
assert ij.subs({i:0, j:0}) == x[0, 0]
|
34 |
+
assert ij.subs({i:0, j:1}) == 0
|
35 |
+
assert ij.subs({i:1, j:1}) == x[1, 1]
|
36 |
+
assert ask(Q.diagonal(D)) # affirm that D is diagonal
|
37 |
+
|
38 |
+
x = MatrixSymbol('x', n, 3)
|
39 |
+
D = DiagonalMatrix(x)
|
40 |
+
assert D.diagonal_length == 3
|
41 |
+
assert D.shape == (n, 3)
|
42 |
+
assert D[2, m] == KroneckerDelta(2, m)*x[2, m]
|
43 |
+
assert D[3, m] == 0
|
44 |
+
raises(IndexError, lambda: D[m, 3])
|
45 |
+
|
46 |
+
x = MatrixSymbol('x', 3, n)
|
47 |
+
D = DiagonalMatrix(x)
|
48 |
+
assert D.diagonal_length == 3
|
49 |
+
assert D.shape == (3, n)
|
50 |
+
assert D[m, 2] == KroneckerDelta(m, 2)*x[m, 2]
|
51 |
+
assert D[m, 3] == 0
|
52 |
+
raises(IndexError, lambda: D[3, m])
|
53 |
+
|
54 |
+
x = MatrixSymbol('x', n, m)
|
55 |
+
D = DiagonalMatrix(x)
|
56 |
+
assert D.diagonal_length is None
|
57 |
+
assert D.shape == (n, m)
|
58 |
+
assert D[m, 4] != 0
|
59 |
+
|
60 |
+
x = MatrixSymbol('x', 3, 4)
|
61 |
+
assert [DiagonalMatrix(x)[i] for i in range(12)] == [
|
62 |
+
x[0, 0], 0, 0, 0, 0, x[1, 1], 0, 0, 0, 0, x[2, 2], 0]
|
63 |
+
|
64 |
+
# shape is retained, issue 12427
|
65 |
+
assert (
|
66 |
+
DiagonalMatrix(MatrixSymbol('x', 3, 4))*
|
67 |
+
DiagonalMatrix(MatrixSymbol('x', 4, 2))).shape == (3, 2)
|
68 |
+
|
69 |
+
|
70 |
+
def test_DiagonalOf():
|
71 |
+
x = MatrixSymbol('x', n, n)
|
72 |
+
d = DiagonalOf(x)
|
73 |
+
assert d.shape == (n, 1)
|
74 |
+
assert d.diagonal_length == n
|
75 |
+
assert d[2, 0] == d[2] == x[2, 2]
|
76 |
+
|
77 |
+
x = MatrixSymbol('x', n, m)
|
78 |
+
d = DiagonalOf(x)
|
79 |
+
assert d.shape == (None, 1)
|
80 |
+
assert d.diagonal_length is None
|
81 |
+
assert d[2, 0] == d[2] == x[2, 2]
|
82 |
+
|
83 |
+
d = DiagonalOf(MatrixSymbol('x', 4, 3))
|
84 |
+
assert d.shape == (3, 1)
|
85 |
+
d = DiagonalOf(MatrixSymbol('x', n, 3))
|
86 |
+
assert d.shape == (3, 1)
|
87 |
+
d = DiagonalOf(MatrixSymbol('x', 3, n))
|
88 |
+
assert d.shape == (3, 1)
|
89 |
+
x = MatrixSymbol('x', n, m)
|
90 |
+
assert [DiagonalOf(x)[i] for i in range(4)] ==[
|
91 |
+
x[0, 0], x[1, 1], x[2, 2], x[3, 3]]
|
92 |
+
|
93 |
+
|
94 |
+
def test_DiagMatrix():
|
95 |
+
x = MatrixSymbol('x', n, 1)
|
96 |
+
d = DiagMatrix(x)
|
97 |
+
assert d.shape == (n, n)
|
98 |
+
assert d[0, 1] == 0
|
99 |
+
assert d[0, 0] == x[0, 0]
|
100 |
+
|
101 |
+
a = MatrixSymbol('a', 1, 1)
|
102 |
+
d = diagonalize_vector(a)
|
103 |
+
assert isinstance(d, MatrixSymbol)
|
104 |
+
assert a == d
|
105 |
+
assert diagonalize_vector(Identity(3)) == Identity(3)
|
106 |
+
assert DiagMatrix(Identity(3)).doit() == Identity(3)
|
107 |
+
assert isinstance(DiagMatrix(Identity(3)), DiagMatrix)
|
108 |
+
|
109 |
+
# A diagonal matrix is equal to its transpose:
|
110 |
+
assert DiagMatrix(x).T == DiagMatrix(x)
|
111 |
+
assert diagonalize_vector(x.T) == DiagMatrix(x)
|
112 |
+
|
113 |
+
dx = DiagMatrix(x)
|
114 |
+
assert dx[0, 0] == x[0, 0]
|
115 |
+
assert dx[1, 1] == x[1, 0]
|
116 |
+
assert dx[0, 1] == 0
|
117 |
+
assert dx[0, m] == x[0, 0]*KroneckerDelta(0, m)
|
118 |
+
|
119 |
+
z = MatrixSymbol('z', 1, n)
|
120 |
+
dz = DiagMatrix(z)
|
121 |
+
assert dz[0, 0] == z[0, 0]
|
122 |
+
assert dz[1, 1] == z[0, 1]
|
123 |
+
assert dz[0, 1] == 0
|
124 |
+
assert dz[0, m] == z[0, m]*KroneckerDelta(0, m)
|
125 |
+
|
126 |
+
v = MatrixSymbol('v', 3, 1)
|
127 |
+
dv = DiagMatrix(v)
|
128 |
+
assert dv.as_explicit() == Matrix([
|
129 |
+
[v[0, 0], 0, 0],
|
130 |
+
[0, v[1, 0], 0],
|
131 |
+
[0, 0, v[2, 0]],
|
132 |
+
])
|
133 |
+
|
134 |
+
v = MatrixSymbol('v', 1, 3)
|
135 |
+
dv = DiagMatrix(v)
|
136 |
+
assert dv.as_explicit() == Matrix([
|
137 |
+
[v[0, 0], 0, 0],
|
138 |
+
[0, v[0, 1], 0],
|
139 |
+
[0, 0, v[0, 2]],
|
140 |
+
])
|
141 |
+
|
142 |
+
dv = DiagMatrix(3*v)
|
143 |
+
assert dv.args == (3*v,)
|
144 |
+
assert dv.doit() == 3*DiagMatrix(v)
|
145 |
+
assert isinstance(dv.doit(), MatMul)
|
146 |
+
|
147 |
+
a = MatrixSymbol("a", 3, 1).as_explicit()
|
148 |
+
expr = DiagMatrix(a)
|
149 |
+
result = Matrix([
|
150 |
+
[a[0, 0], 0, 0],
|
151 |
+
[0, a[1, 0], 0],
|
152 |
+
[0, 0, a[2, 0]],
|
153 |
+
])
|
154 |
+
assert expr.doit() == result
|
155 |
+
expr = DiagMatrix(a.T)
|
156 |
+
assert expr.doit() == result
|
venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_dotproduct.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.expr import unchanged
|
2 |
+
from sympy.core.mul import Mul
|
3 |
+
from sympy.matrices import Matrix
|
4 |
+
from sympy.matrices.expressions.matexpr import MatrixSymbol
|
5 |
+
from sympy.matrices.expressions.dotproduct import DotProduct
|
6 |
+
from sympy.testing.pytest import raises
|
7 |
+
|
8 |
+
|
9 |
+
A = Matrix(3, 1, [1, 2, 3])
|
10 |
+
B = Matrix(3, 1, [1, 3, 5])
|
11 |
+
C = Matrix(4, 1, [1, 2, 4, 5])
|
12 |
+
D = Matrix(2, 2, [1, 2, 3, 4])
|
13 |
+
|
14 |
+
def test_docproduct():
|
15 |
+
assert DotProduct(A, B).doit() == 22
|
16 |
+
assert DotProduct(A.T, B).doit() == 22
|
17 |
+
assert DotProduct(A, B.T).doit() == 22
|
18 |
+
assert DotProduct(A.T, B.T).doit() == 22
|
19 |
+
|
20 |
+
raises(TypeError, lambda: DotProduct(1, A))
|
21 |
+
raises(TypeError, lambda: DotProduct(A, 1))
|
22 |
+
raises(TypeError, lambda: DotProduct(A, D))
|
23 |
+
raises(TypeError, lambda: DotProduct(D, A))
|
24 |
+
|
25 |
+
raises(TypeError, lambda: DotProduct(B, C).doit())
|
26 |
+
|
27 |
+
def test_dotproduct_symbolic():
|
28 |
+
A = MatrixSymbol('A', 3, 1)
|
29 |
+
B = MatrixSymbol('B', 3, 1)
|
30 |
+
|
31 |
+
dot = DotProduct(A, B)
|
32 |
+
assert dot.is_scalar == True
|
33 |
+
assert unchanged(Mul, 2, dot)
|
34 |
+
# XXX Fix forced evaluation for arithmetics with matrix expressions
|
35 |
+
assert dot * A == (A[0, 0]*B[0, 0] + A[1, 0]*B[1, 0] + A[2, 0]*B[2, 0])*A
|
venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_factorizations.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.matrices.expressions.factorizations import lu, LofCholesky, qr, svd
|
2 |
+
from sympy.assumptions.ask import (Q, ask)
|
3 |
+
from sympy.core.symbol import Symbol
|
4 |
+
from sympy.matrices.expressions.matexpr import MatrixSymbol
|
5 |
+
|
6 |
+
n = Symbol('n')
|
7 |
+
X = MatrixSymbol('X', n, n)
|
8 |
+
|
9 |
+
def test_LU():
|
10 |
+
L, U = lu(X)
|
11 |
+
assert L.shape == U.shape == X.shape
|
12 |
+
assert ask(Q.lower_triangular(L))
|
13 |
+
assert ask(Q.upper_triangular(U))
|
14 |
+
|
15 |
+
def test_Cholesky():
|
16 |
+
LofCholesky(X)
|
17 |
+
|
18 |
+
def test_QR():
|
19 |
+
Q_, R = qr(X)
|
20 |
+
assert Q_.shape == R.shape == X.shape
|
21 |
+
assert ask(Q.orthogonal(Q_))
|
22 |
+
assert ask(Q.upper_triangular(R))
|
23 |
+
|
24 |
+
def test_svd():
|
25 |
+
U, S, V = svd(X)
|
26 |
+
assert U.shape == S.shape == V.shape == X.shape
|
27 |
+
assert ask(Q.orthogonal(U))
|
28 |
+
assert ask(Q.orthogonal(V))
|
29 |
+
assert ask(Q.diagonal(S))
|
venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_funcmatrix.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core import symbols, Lambda
|
2 |
+
from sympy.functions import KroneckerDelta
|
3 |
+
from sympy.matrices import Matrix
|
4 |
+
from sympy.matrices.expressions import FunctionMatrix, MatrixExpr, Identity
|
5 |
+
from sympy.testing.pytest import raises, warns
|
6 |
+
from sympy.utilities.exceptions import SymPyDeprecationWarning
|
7 |
+
|
8 |
+
|
9 |
+
def test_funcmatrix_creation():
|
10 |
+
i, j, k = symbols('i j k')
|
11 |
+
assert FunctionMatrix(2, 2, Lambda((i, j), 0))
|
12 |
+
assert FunctionMatrix(0, 0, Lambda((i, j), 0))
|
13 |
+
|
14 |
+
raises(ValueError, lambda: FunctionMatrix(-1, 0, Lambda((i, j), 0)))
|
15 |
+
raises(ValueError, lambda: FunctionMatrix(2.0, 0, Lambda((i, j), 0)))
|
16 |
+
raises(ValueError, lambda: FunctionMatrix(2j, 0, Lambda((i, j), 0)))
|
17 |
+
raises(ValueError, lambda: FunctionMatrix(0, -1, Lambda((i, j), 0)))
|
18 |
+
raises(ValueError, lambda: FunctionMatrix(0, 2.0, Lambda((i, j), 0)))
|
19 |
+
raises(ValueError, lambda: FunctionMatrix(0, 2j, Lambda((i, j), 0)))
|
20 |
+
|
21 |
+
raises(ValueError, lambda: FunctionMatrix(2, 2, Lambda(i, 0)))
|
22 |
+
with warns(SymPyDeprecationWarning, test_stacklevel=False):
|
23 |
+
# This raises a deprecation warning from sympify()
|
24 |
+
raises(ValueError, lambda: FunctionMatrix(2, 2, lambda i, j: 0))
|
25 |
+
raises(ValueError, lambda: FunctionMatrix(2, 2, Lambda((i,), 0)))
|
26 |
+
raises(ValueError, lambda: FunctionMatrix(2, 2, Lambda((i, j, k), 0)))
|
27 |
+
raises(ValueError, lambda: FunctionMatrix(2, 2, i+j))
|
28 |
+
assert FunctionMatrix(2, 2, "lambda i, j: 0") == \
|
29 |
+
FunctionMatrix(2, 2, Lambda((i, j), 0))
|
30 |
+
|
31 |
+
m = FunctionMatrix(2, 2, KroneckerDelta)
|
32 |
+
assert m.as_explicit() == Identity(2).as_explicit()
|
33 |
+
assert m.args[2].dummy_eq(Lambda((i, j), KroneckerDelta(i, j)))
|
34 |
+
|
35 |
+
n = symbols('n')
|
36 |
+
assert FunctionMatrix(n, n, Lambda((i, j), 0))
|
37 |
+
n = symbols('n', integer=False)
|
38 |
+
raises(ValueError, lambda: FunctionMatrix(n, n, Lambda((i, j), 0)))
|
39 |
+
n = symbols('n', negative=True)
|
40 |
+
raises(ValueError, lambda: FunctionMatrix(n, n, Lambda((i, j), 0)))
|
41 |
+
|
42 |
+
|
43 |
+
def test_funcmatrix():
|
44 |
+
i, j = symbols('i,j')
|
45 |
+
X = FunctionMatrix(3, 3, Lambda((i, j), i - j))
|
46 |
+
assert X[1, 1] == 0
|
47 |
+
assert X[1, 2] == -1
|
48 |
+
assert X.shape == (3, 3)
|
49 |
+
assert X.rows == X.cols == 3
|
50 |
+
assert Matrix(X) == Matrix(3, 3, lambda i, j: i - j)
|
51 |
+
assert isinstance(X*X + X, MatrixExpr)
|
52 |
+
|
53 |
+
|
54 |
+
def test_replace_issue():
|
55 |
+
X = FunctionMatrix(3, 3, KroneckerDelta)
|
56 |
+
assert X.replace(lambda x: True, lambda x: x) == X
|
venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_indexing.py
ADDED
@@ -0,0 +1,299 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.concrete.summations import Sum
|
2 |
+
from sympy.core.symbol import symbols, Symbol, Dummy
|
3 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
4 |
+
from sympy.functions.special.tensor_functions import KroneckerDelta
|
5 |
+
from sympy.matrices.dense import eye
|
6 |
+
from sympy.matrices.expressions.blockmatrix import BlockMatrix
|
7 |
+
from sympy.matrices.expressions.hadamard import HadamardPower
|
8 |
+
from sympy.matrices.expressions.matexpr import (MatrixSymbol,
|
9 |
+
MatrixExpr, MatrixElement)
|
10 |
+
from sympy.matrices.expressions.matpow import MatPow
|
11 |
+
from sympy.matrices.expressions.special import (ZeroMatrix, Identity,
|
12 |
+
OneMatrix)
|
13 |
+
from sympy.matrices.expressions.trace import Trace, trace
|
14 |
+
from sympy.matrices.immutable import ImmutableMatrix
|
15 |
+
from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct
|
16 |
+
from sympy.testing.pytest import XFAIL, raises
|
17 |
+
|
18 |
+
k, l, m, n = symbols('k l m n', integer=True)
|
19 |
+
i, j = symbols('i j', integer=True)
|
20 |
+
|
21 |
+
W = MatrixSymbol('W', k, l)
|
22 |
+
X = MatrixSymbol('X', l, m)
|
23 |
+
Y = MatrixSymbol('Y', l, m)
|
24 |
+
Z = MatrixSymbol('Z', m, n)
|
25 |
+
|
26 |
+
X1 = MatrixSymbol('X1', m, m)
|
27 |
+
X2 = MatrixSymbol('X2', m, m)
|
28 |
+
X3 = MatrixSymbol('X3', m, m)
|
29 |
+
X4 = MatrixSymbol('X4', m, m)
|
30 |
+
|
31 |
+
A = MatrixSymbol('A', 2, 2)
|
32 |
+
B = MatrixSymbol('B', 2, 2)
|
33 |
+
x = MatrixSymbol('x', 1, 2)
|
34 |
+
y = MatrixSymbol('x', 2, 1)
|
35 |
+
|
36 |
+
|
37 |
+
def test_symbolic_indexing():
|
38 |
+
x12 = X[1, 2]
|
39 |
+
assert all(s in str(x12) for s in ['1', '2', X.name])
|
40 |
+
# We don't care about the exact form of this. We do want to make sure
|
41 |
+
# that all of these features are present
|
42 |
+
|
43 |
+
|
44 |
+
def test_add_index():
|
45 |
+
assert (X + Y)[i, j] == X[i, j] + Y[i, j]
|
46 |
+
|
47 |
+
|
48 |
+
def test_mul_index():
|
49 |
+
assert (A*y)[0, 0] == A[0, 0]*y[0, 0] + A[0, 1]*y[1, 0]
|
50 |
+
assert (A*B).as_mutable() == (A.as_mutable() * B.as_mutable())
|
51 |
+
X = MatrixSymbol('X', n, m)
|
52 |
+
Y = MatrixSymbol('Y', m, k)
|
53 |
+
|
54 |
+
result = (X*Y)[4,2]
|
55 |
+
expected = Sum(X[4, i]*Y[i, 2], (i, 0, m - 1))
|
56 |
+
assert result.args[0].dummy_eq(expected.args[0], i)
|
57 |
+
assert result.args[1][1:] == expected.args[1][1:]
|
58 |
+
|
59 |
+
|
60 |
+
def test_pow_index():
|
61 |
+
Q = MatPow(A, 2)
|
62 |
+
assert Q[0, 0] == A[0, 0]**2 + A[0, 1]*A[1, 0]
|
63 |
+
n = symbols("n")
|
64 |
+
Q2 = A**n
|
65 |
+
assert Q2[0, 0] == 2*(
|
66 |
+
-sqrt((A[0, 0] + A[1, 1])**2 - 4*A[0, 0]*A[1, 1] +
|
67 |
+
4*A[0, 1]*A[1, 0])/2 + A[0, 0]/2 + A[1, 1]/2
|
68 |
+
)**n * \
|
69 |
+
A[0, 1]*A[1, 0]/(
|
70 |
+
(sqrt(A[0, 0]**2 - 2*A[0, 0]*A[1, 1] + 4*A[0, 1]*A[1, 0] +
|
71 |
+
A[1, 1]**2) + A[0, 0] - A[1, 1])*
|
72 |
+
sqrt(A[0, 0]**2 - 2*A[0, 0]*A[1, 1] + 4*A[0, 1]*A[1, 0] + A[1, 1]**2)
|
73 |
+
) - 2*(
|
74 |
+
sqrt((A[0, 0] + A[1, 1])**2 - 4*A[0, 0]*A[1, 1] +
|
75 |
+
4*A[0, 1]*A[1, 0])/2 + A[0, 0]/2 + A[1, 1]/2
|
76 |
+
)**n * A[0, 1]*A[1, 0]/(
|
77 |
+
(-sqrt(A[0, 0]**2 - 2*A[0, 0]*A[1, 1] + 4*A[0, 1]*A[1, 0] +
|
78 |
+
A[1, 1]**2) + A[0, 0] - A[1, 1])*
|
79 |
+
sqrt(A[0, 0]**2 - 2*A[0, 0]*A[1, 1] + 4*A[0, 1]*A[1, 0] + A[1, 1]**2)
|
80 |
+
)
|
81 |
+
|
82 |
+
|
83 |
+
def test_transpose_index():
|
84 |
+
assert X.T[i, j] == X[j, i]
|
85 |
+
|
86 |
+
|
87 |
+
def test_Identity_index():
|
88 |
+
I = Identity(3)
|
89 |
+
assert I[0, 0] == I[1, 1] == I[2, 2] == 1
|
90 |
+
assert I[1, 0] == I[0, 1] == I[2, 1] == 0
|
91 |
+
assert I[i, 0].delta_range == (0, 2)
|
92 |
+
raises(IndexError, lambda: I[3, 3])
|
93 |
+
|
94 |
+
|
95 |
+
def test_block_index():
|
96 |
+
I = Identity(3)
|
97 |
+
Z = ZeroMatrix(3, 3)
|
98 |
+
B = BlockMatrix([[I, I], [I, I]])
|
99 |
+
e3 = ImmutableMatrix(eye(3))
|
100 |
+
BB = BlockMatrix([[e3, e3], [e3, e3]])
|
101 |
+
assert B[0, 0] == B[3, 0] == B[0, 3] == B[3, 3] == 1
|
102 |
+
assert B[4, 3] == B[5, 1] == 0
|
103 |
+
|
104 |
+
BB = BlockMatrix([[e3, e3], [e3, e3]])
|
105 |
+
assert B.as_explicit() == BB.as_explicit()
|
106 |
+
|
107 |
+
BI = BlockMatrix([[I, Z], [Z, I]])
|
108 |
+
|
109 |
+
assert BI.as_explicit().equals(eye(6))
|
110 |
+
|
111 |
+
|
112 |
+
def test_block_index_symbolic():
|
113 |
+
# Note that these matrices may be zero-sized and indices may be negative, which causes
|
114 |
+
# all naive simplifications given in the comments to be invalid
|
115 |
+
A1 = MatrixSymbol('A1', n, k)
|
116 |
+
A2 = MatrixSymbol('A2', n, l)
|
117 |
+
A3 = MatrixSymbol('A3', m, k)
|
118 |
+
A4 = MatrixSymbol('A4', m, l)
|
119 |
+
A = BlockMatrix([[A1, A2], [A3, A4]])
|
120 |
+
assert A[0, 0] == MatrixElement(A, 0, 0) # Cannot be A1[0, 0]
|
121 |
+
assert A[n - 1, k - 1] == A1[n - 1, k - 1]
|
122 |
+
assert A[n, k] == A4[0, 0]
|
123 |
+
assert A[n + m - 1, 0] == MatrixElement(A, n + m - 1, 0) # Cannot be A3[m - 1, 0]
|
124 |
+
assert A[0, k + l - 1] == MatrixElement(A, 0, k + l - 1) # Cannot be A2[0, l - 1]
|
125 |
+
assert A[n + m - 1, k + l - 1] == MatrixElement(A, n + m - 1, k + l - 1) # Cannot be A4[m - 1, l - 1]
|
126 |
+
assert A[i, j] == MatrixElement(A, i, j)
|
127 |
+
assert A[n + i, k + j] == MatrixElement(A, n + i, k + j) # Cannot be A4[i, j]
|
128 |
+
assert A[n - i - 1, k - j - 1] == MatrixElement(A, n - i - 1, k - j - 1) # Cannot be A1[n - i - 1, k - j - 1]
|
129 |
+
|
130 |
+
|
131 |
+
def test_block_index_symbolic_nonzero():
|
132 |
+
# All invalid simplifications from test_block_index_symbolic() that become valid if all
|
133 |
+
# matrices have nonzero size and all indices are nonnegative
|
134 |
+
k, l, m, n = symbols('k l m n', integer=True, positive=True)
|
135 |
+
i, j = symbols('i j', integer=True, nonnegative=True)
|
136 |
+
A1 = MatrixSymbol('A1', n, k)
|
137 |
+
A2 = MatrixSymbol('A2', n, l)
|
138 |
+
A3 = MatrixSymbol('A3', m, k)
|
139 |
+
A4 = MatrixSymbol('A4', m, l)
|
140 |
+
A = BlockMatrix([[A1, A2], [A3, A4]])
|
141 |
+
assert A[0, 0] == A1[0, 0]
|
142 |
+
assert A[n + m - 1, 0] == A3[m - 1, 0]
|
143 |
+
assert A[0, k + l - 1] == A2[0, l - 1]
|
144 |
+
assert A[n + m - 1, k + l - 1] == A4[m - 1, l - 1]
|
145 |
+
assert A[i, j] == MatrixElement(A, i, j)
|
146 |
+
assert A[n + i, k + j] == A4[i, j]
|
147 |
+
assert A[n - i - 1, k - j - 1] == A1[n - i - 1, k - j - 1]
|
148 |
+
assert A[2 * n, 2 * k] == A4[n, k]
|
149 |
+
|
150 |
+
|
151 |
+
def test_block_index_large():
|
152 |
+
n, m, k = symbols('n m k', integer=True, positive=True)
|
153 |
+
i = symbols('i', integer=True, nonnegative=True)
|
154 |
+
A1 = MatrixSymbol('A1', n, n)
|
155 |
+
A2 = MatrixSymbol('A2', n, m)
|
156 |
+
A3 = MatrixSymbol('A3', n, k)
|
157 |
+
A4 = MatrixSymbol('A4', m, n)
|
158 |
+
A5 = MatrixSymbol('A5', m, m)
|
159 |
+
A6 = MatrixSymbol('A6', m, k)
|
160 |
+
A7 = MatrixSymbol('A7', k, n)
|
161 |
+
A8 = MatrixSymbol('A8', k, m)
|
162 |
+
A9 = MatrixSymbol('A9', k, k)
|
163 |
+
A = BlockMatrix([[A1, A2, A3], [A4, A5, A6], [A7, A8, A9]])
|
164 |
+
assert A[n + i, n + i] == MatrixElement(A, n + i, n + i)
|
165 |
+
|
166 |
+
|
167 |
+
@XFAIL
|
168 |
+
def test_block_index_symbolic_fail():
|
169 |
+
# To make this work, symbolic matrix dimensions would need to be somehow assumed nonnegative
|
170 |
+
# even if the symbols aren't specified as such. Then 2 * n < n would correctly evaluate to
|
171 |
+
# False in BlockMatrix._entry()
|
172 |
+
A1 = MatrixSymbol('A1', n, 1)
|
173 |
+
A2 = MatrixSymbol('A2', m, 1)
|
174 |
+
A = BlockMatrix([[A1], [A2]])
|
175 |
+
assert A[2 * n, 0] == A2[n, 0]
|
176 |
+
|
177 |
+
|
178 |
+
def test_slicing():
|
179 |
+
A.as_explicit()[0, :] # does not raise an error
|
180 |
+
|
181 |
+
|
182 |
+
def test_errors():
|
183 |
+
raises(IndexError, lambda: Identity(2)[1, 2, 3, 4, 5])
|
184 |
+
raises(IndexError, lambda: Identity(2)[[1, 2, 3, 4, 5]])
|
185 |
+
|
186 |
+
|
187 |
+
def test_matrix_expression_to_indices():
|
188 |
+
i, j = symbols("i, j")
|
189 |
+
i1, i2, i3 = symbols("i_1:4")
|
190 |
+
|
191 |
+
def replace_dummies(expr):
|
192 |
+
repl = {i: Symbol(i.name) for i in expr.atoms(Dummy)}
|
193 |
+
return expr.xreplace(repl)
|
194 |
+
|
195 |
+
expr = W*X*Z
|
196 |
+
assert replace_dummies(expr._entry(i, j)) == \
|
197 |
+
Sum(W[i, i1]*X[i1, i2]*Z[i2, j], (i1, 0, l-1), (i2, 0, m-1))
|
198 |
+
assert MatrixExpr.from_index_summation(expr._entry(i, j)) == expr
|
199 |
+
|
200 |
+
expr = Z.T*X.T*W.T
|
201 |
+
assert replace_dummies(expr._entry(i, j)) == \
|
202 |
+
Sum(W[j, i2]*X[i2, i1]*Z[i1, i], (i1, 0, m-1), (i2, 0, l-1))
|
203 |
+
assert MatrixExpr.from_index_summation(expr._entry(i, j), i) == expr
|
204 |
+
|
205 |
+
expr = W*X*Z + W*Y*Z
|
206 |
+
assert replace_dummies(expr._entry(i, j)) == \
|
207 |
+
Sum(W[i, i1]*X[i1, i2]*Z[i2, j], (i1, 0, l-1), (i2, 0, m-1)) +\
|
208 |
+
Sum(W[i, i1]*Y[i1, i2]*Z[i2, j], (i1, 0, l-1), (i2, 0, m-1))
|
209 |
+
assert MatrixExpr.from_index_summation(expr._entry(i, j)) == expr
|
210 |
+
|
211 |
+
expr = 2*W*X*Z + 3*W*Y*Z
|
212 |
+
assert replace_dummies(expr._entry(i, j)) == \
|
213 |
+
2*Sum(W[i, i1]*X[i1, i2]*Z[i2, j], (i1, 0, l-1), (i2, 0, m-1)) +\
|
214 |
+
3*Sum(W[i, i1]*Y[i1, i2]*Z[i2, j], (i1, 0, l-1), (i2, 0, m-1))
|
215 |
+
assert MatrixExpr.from_index_summation(expr._entry(i, j)) == expr
|
216 |
+
|
217 |
+
expr = W*(X + Y)*Z
|
218 |
+
assert replace_dummies(expr._entry(i, j)) == \
|
219 |
+
Sum(W[i, i1]*(X[i1, i2] + Y[i1, i2])*Z[i2, j], (i1, 0, l-1), (i2, 0, m-1))
|
220 |
+
assert MatrixExpr.from_index_summation(expr._entry(i, j)) == expr
|
221 |
+
|
222 |
+
expr = A*B**2*A
|
223 |
+
#assert replace_dummies(expr._entry(i, j)) == \
|
224 |
+
# Sum(A[i, i1]*B[i1, i2]*B[i2, i3]*A[i3, j], (i1, 0, 1), (i2, 0, 1), (i3, 0, 1))
|
225 |
+
|
226 |
+
# Check that different dummies are used in sub-multiplications:
|
227 |
+
expr = (X1*X2 + X2*X1)*X3
|
228 |
+
assert replace_dummies(expr._entry(i, j)) == \
|
229 |
+
Sum((Sum(X1[i, i2] * X2[i2, i1], (i2, 0, m - 1)) + Sum(X1[i3, i1] * X2[i, i3], (i3, 0, m - 1))) * X3[
|
230 |
+
i1, j], (i1, 0, m - 1))
|
231 |
+
|
232 |
+
|
233 |
+
def test_matrix_expression_from_index_summation():
|
234 |
+
from sympy.abc import a,b,c,d
|
235 |
+
A = MatrixSymbol("A", k, k)
|
236 |
+
B = MatrixSymbol("B", k, k)
|
237 |
+
C = MatrixSymbol("C", k, k)
|
238 |
+
w1 = MatrixSymbol("w1", k, 1)
|
239 |
+
|
240 |
+
i0, i1, i2, i3, i4 = symbols("i0:5", cls=Dummy)
|
241 |
+
|
242 |
+
expr = Sum(W[a,b]*X[b,c]*Z[c,d], (b, 0, l-1), (c, 0, m-1))
|
243 |
+
assert MatrixExpr.from_index_summation(expr, a) == W*X*Z
|
244 |
+
expr = Sum(W.T[b,a]*X[b,c]*Z[c,d], (b, 0, l-1), (c, 0, m-1))
|
245 |
+
assert MatrixExpr.from_index_summation(expr, a) == W*X*Z
|
246 |
+
expr = Sum(A[b, a]*B[b, c]*C[c, d], (b, 0, k-1), (c, 0, k-1))
|
247 |
+
assert MatrixSymbol.from_index_summation(expr, a) == A.T*B*C
|
248 |
+
expr = Sum(A[b, a]*B[c, b]*C[c, d], (b, 0, k-1), (c, 0, k-1))
|
249 |
+
assert MatrixSymbol.from_index_summation(expr, a) == A.T*B.T*C
|
250 |
+
expr = Sum(C[c, d]*A[b, a]*B[c, b], (b, 0, k-1), (c, 0, k-1))
|
251 |
+
assert MatrixSymbol.from_index_summation(expr, a) == A.T*B.T*C
|
252 |
+
expr = Sum(A[a, b] + B[a, b], (a, 0, k-1), (b, 0, k-1))
|
253 |
+
assert MatrixExpr.from_index_summation(expr, a) == OneMatrix(1, k)*A*OneMatrix(k, 1) + OneMatrix(1, k)*B*OneMatrix(k, 1)
|
254 |
+
expr = Sum(A[a, b]**2, (a, 0, k - 1), (b, 0, k - 1))
|
255 |
+
assert MatrixExpr.from_index_summation(expr, a) == Trace(A * A.T)
|
256 |
+
expr = Sum(A[a, b]**3, (a, 0, k - 1), (b, 0, k - 1))
|
257 |
+
assert MatrixExpr.from_index_summation(expr, a) == Trace(HadamardPower(A.T, 2) * A)
|
258 |
+
expr = Sum((A[a, b] + B[a, b])*C[b, c], (b, 0, k-1))
|
259 |
+
assert MatrixExpr.from_index_summation(expr, a) == (A+B)*C
|
260 |
+
expr = Sum((A[a, b] + B[b, a])*C[b, c], (b, 0, k-1))
|
261 |
+
assert MatrixExpr.from_index_summation(expr, a) == (A+B.T)*C
|
262 |
+
expr = Sum(A[a, b]*A[b, c]*A[c, d], (b, 0, k-1), (c, 0, k-1))
|
263 |
+
assert MatrixExpr.from_index_summation(expr, a) == A**3
|
264 |
+
expr = Sum(A[a, b]*A[b, c]*B[c, d], (b, 0, k-1), (c, 0, k-1))
|
265 |
+
assert MatrixExpr.from_index_summation(expr, a) == A**2*B
|
266 |
+
|
267 |
+
# Parse the trace of a matrix:
|
268 |
+
|
269 |
+
expr = Sum(A[a, a], (a, 0, k-1))
|
270 |
+
assert MatrixExpr.from_index_summation(expr, None) == trace(A)
|
271 |
+
expr = Sum(A[a, a]*B[b, c]*C[c, d], (a, 0, k-1), (c, 0, k-1))
|
272 |
+
assert MatrixExpr.from_index_summation(expr, b) == trace(A)*B*C
|
273 |
+
|
274 |
+
# Check wrong sum ranges (should raise an exception):
|
275 |
+
|
276 |
+
## Case 1: 0 to m instead of 0 to m-1
|
277 |
+
expr = Sum(W[a,b]*X[b,c]*Z[c,d], (b, 0, l-1), (c, 0, m))
|
278 |
+
raises(ValueError, lambda: MatrixExpr.from_index_summation(expr, a))
|
279 |
+
## Case 2: 1 to m-1 instead of 0 to m-1
|
280 |
+
expr = Sum(W[a,b]*X[b,c]*Z[c,d], (b, 0, l-1), (c, 1, m-1))
|
281 |
+
raises(ValueError, lambda: MatrixExpr.from_index_summation(expr, a))
|
282 |
+
|
283 |
+
# Parse nested sums:
|
284 |
+
expr = Sum(A[a, b]*Sum(B[b, c]*C[c, d], (c, 0, k-1)), (b, 0, k-1))
|
285 |
+
assert MatrixExpr.from_index_summation(expr, a) == A*B*C
|
286 |
+
|
287 |
+
# Test Kronecker delta:
|
288 |
+
expr = Sum(A[a, b]*KroneckerDelta(b, c)*B[c, d], (b, 0, k-1), (c, 0, k-1))
|
289 |
+
assert MatrixExpr.from_index_summation(expr, a) == A*B
|
290 |
+
|
291 |
+
expr = Sum(KroneckerDelta(i1, m)*KroneckerDelta(i2, n)*A[i, i1]*A[j, i2], (i1, 0, k-1), (i2, 0, k-1))
|
292 |
+
assert MatrixExpr.from_index_summation(expr, m) == ArrayTensorProduct(A.T, A)
|
293 |
+
|
294 |
+
# Test numbered indices:
|
295 |
+
expr = Sum(A[i1, i2]*w1[i2, 0], (i2, 0, k-1))
|
296 |
+
assert MatrixExpr.from_index_summation(expr, i1) == MatrixElement(A*w1, i1, 0)
|
297 |
+
|
298 |
+
expr = Sum(A[i1, i2]*B[i2, 0], (i2, 0, k-1))
|
299 |
+
assert MatrixExpr.from_index_summation(expr, i1) == MatrixElement(A*B, i1, 0)
|
venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_inverse.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core import symbols, S
|
2 |
+
from sympy.matrices.expressions import MatrixSymbol, Inverse, MatPow, ZeroMatrix, OneMatrix
|
3 |
+
from sympy.matrices.common import NonInvertibleMatrixError, NonSquareMatrixError
|
4 |
+
from sympy.matrices import eye, Identity
|
5 |
+
from sympy.testing.pytest import raises
|
6 |
+
from sympy.assumptions.ask import Q
|
7 |
+
from sympy.assumptions.refine import refine
|
8 |
+
|
9 |
+
n, m, l = symbols('n m l', integer=True)
|
10 |
+
A = MatrixSymbol('A', n, m)
|
11 |
+
B = MatrixSymbol('B', m, l)
|
12 |
+
C = MatrixSymbol('C', n, n)
|
13 |
+
D = MatrixSymbol('D', n, n)
|
14 |
+
E = MatrixSymbol('E', m, n)
|
15 |
+
|
16 |
+
|
17 |
+
def test_inverse():
|
18 |
+
assert Inverse(C).args == (C, S.NegativeOne)
|
19 |
+
assert Inverse(C).shape == (n, n)
|
20 |
+
assert Inverse(A*E).shape == (n, n)
|
21 |
+
assert Inverse(E*A).shape == (m, m)
|
22 |
+
assert Inverse(C).inverse() == C
|
23 |
+
assert Inverse(Inverse(C)).doit() == C
|
24 |
+
assert isinstance(Inverse(Inverse(C)), Inverse)
|
25 |
+
|
26 |
+
assert Inverse(*Inverse(E*A).args) == Inverse(E*A)
|
27 |
+
|
28 |
+
assert C.inverse().inverse() == C
|
29 |
+
|
30 |
+
assert C.inverse()*C == Identity(C.rows)
|
31 |
+
|
32 |
+
assert Identity(n).inverse() == Identity(n)
|
33 |
+
assert (3*Identity(n)).inverse() == Identity(n)/3
|
34 |
+
|
35 |
+
# Simplifies Muls if possible (i.e. submatrices are square)
|
36 |
+
assert (C*D).inverse() == D.I*C.I
|
37 |
+
# But still works when not possible
|
38 |
+
assert isinstance((A*E).inverse(), Inverse)
|
39 |
+
assert Inverse(C*D).doit(inv_expand=False) == Inverse(C*D)
|
40 |
+
|
41 |
+
assert Inverse(eye(3)).doit() == eye(3)
|
42 |
+
assert Inverse(eye(3)).doit(deep=False) == eye(3)
|
43 |
+
|
44 |
+
assert OneMatrix(1, 1).I == Identity(1)
|
45 |
+
assert isinstance(OneMatrix(n, n).I, Inverse)
|
46 |
+
|
47 |
+
def test_inverse_non_invertible():
|
48 |
+
raises(NonInvertibleMatrixError, lambda: ZeroMatrix(n, n).I)
|
49 |
+
raises(NonInvertibleMatrixError, lambda: OneMatrix(2, 2).I)
|
50 |
+
|
51 |
+
def test_refine():
|
52 |
+
assert refine(C.I, Q.orthogonal(C)) == C.T
|
53 |
+
|
54 |
+
|
55 |
+
def test_inverse_matpow_canonicalization():
|
56 |
+
A = MatrixSymbol('A', 3, 3)
|
57 |
+
assert Inverse(MatPow(A, 3)).doit() == MatPow(Inverse(A), 3).doit()
|
58 |
+
|
59 |
+
|
60 |
+
def test_nonsquare_error():
|
61 |
+
A = MatrixSymbol('A', 3, 4)
|
62 |
+
raises(NonSquareMatrixError, lambda: Inverse(A))
|
venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_kronecker.py
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.mod import Mod
|
2 |
+
from sympy.core.numbers import I
|
3 |
+
from sympy.core.symbol import symbols
|
4 |
+
from sympy.functions.elementary.integers import floor
|
5 |
+
from sympy.matrices.dense import (Matrix, eye)
|
6 |
+
from sympy.matrices import MatrixSymbol, Identity
|
7 |
+
from sympy.matrices.expressions import det, trace
|
8 |
+
|
9 |
+
from sympy.matrices.expressions.kronecker import (KroneckerProduct,
|
10 |
+
kronecker_product,
|
11 |
+
combine_kronecker)
|
12 |
+
|
13 |
+
|
14 |
+
mat1 = Matrix([[1, 2 * I], [1 + I, 3]])
|
15 |
+
mat2 = Matrix([[2 * I, 3], [4 * I, 2]])
|
16 |
+
|
17 |
+
i, j, k, n, m, o, p, x = symbols('i,j,k,n,m,o,p,x')
|
18 |
+
Z = MatrixSymbol('Z', n, n)
|
19 |
+
W = MatrixSymbol('W', m, m)
|
20 |
+
A = MatrixSymbol('A', n, m)
|
21 |
+
B = MatrixSymbol('B', n, m)
|
22 |
+
C = MatrixSymbol('C', m, k)
|
23 |
+
|
24 |
+
|
25 |
+
def test_KroneckerProduct():
|
26 |
+
assert isinstance(KroneckerProduct(A, B), KroneckerProduct)
|
27 |
+
assert KroneckerProduct(A, B).subs(A, C) == KroneckerProduct(C, B)
|
28 |
+
assert KroneckerProduct(A, C).shape == (n*m, m*k)
|
29 |
+
assert (KroneckerProduct(A, C) + KroneckerProduct(-A, C)).is_ZeroMatrix
|
30 |
+
assert (KroneckerProduct(W, Z) * KroneckerProduct(W.I, Z.I)).is_Identity
|
31 |
+
|
32 |
+
|
33 |
+
def test_KroneckerProduct_identity():
|
34 |
+
assert KroneckerProduct(Identity(m), Identity(n)) == Identity(m*n)
|
35 |
+
assert KroneckerProduct(eye(2), eye(3)) == eye(6)
|
36 |
+
|
37 |
+
|
38 |
+
def test_KroneckerProduct_explicit():
|
39 |
+
X = MatrixSymbol('X', 2, 2)
|
40 |
+
Y = MatrixSymbol('Y', 2, 2)
|
41 |
+
kp = KroneckerProduct(X, Y)
|
42 |
+
assert kp.shape == (4, 4)
|
43 |
+
assert kp.as_explicit() == Matrix(
|
44 |
+
[
|
45 |
+
[X[0, 0]*Y[0, 0], X[0, 0]*Y[0, 1], X[0, 1]*Y[0, 0], X[0, 1]*Y[0, 1]],
|
46 |
+
[X[0, 0]*Y[1, 0], X[0, 0]*Y[1, 1], X[0, 1]*Y[1, 0], X[0, 1]*Y[1, 1]],
|
47 |
+
[X[1, 0]*Y[0, 0], X[1, 0]*Y[0, 1], X[1, 1]*Y[0, 0], X[1, 1]*Y[0, 1]],
|
48 |
+
[X[1, 0]*Y[1, 0], X[1, 0]*Y[1, 1], X[1, 1]*Y[1, 0], X[1, 1]*Y[1, 1]]
|
49 |
+
]
|
50 |
+
)
|
51 |
+
|
52 |
+
|
53 |
+
def test_tensor_product_adjoint():
|
54 |
+
assert KroneckerProduct(I*A, B).adjoint() == \
|
55 |
+
-I*KroneckerProduct(A.adjoint(), B.adjoint())
|
56 |
+
assert KroneckerProduct(mat1, mat2).adjoint() == \
|
57 |
+
kronecker_product(mat1.adjoint(), mat2.adjoint())
|
58 |
+
|
59 |
+
|
60 |
+
def test_tensor_product_conjugate():
|
61 |
+
assert KroneckerProduct(I*A, B).conjugate() == \
|
62 |
+
-I*KroneckerProduct(A.conjugate(), B.conjugate())
|
63 |
+
assert KroneckerProduct(mat1, mat2).conjugate() == \
|
64 |
+
kronecker_product(mat1.conjugate(), mat2.conjugate())
|
65 |
+
|
66 |
+
|
67 |
+
def test_tensor_product_transpose():
|
68 |
+
assert KroneckerProduct(I*A, B).transpose() == \
|
69 |
+
I*KroneckerProduct(A.transpose(), B.transpose())
|
70 |
+
assert KroneckerProduct(mat1, mat2).transpose() == \
|
71 |
+
kronecker_product(mat1.transpose(), mat2.transpose())
|
72 |
+
|
73 |
+
|
74 |
+
def test_KroneckerProduct_is_associative():
|
75 |
+
assert kronecker_product(A, kronecker_product(
|
76 |
+
B, C)) == kronecker_product(kronecker_product(A, B), C)
|
77 |
+
assert kronecker_product(A, kronecker_product(
|
78 |
+
B, C)) == KroneckerProduct(A, B, C)
|
79 |
+
|
80 |
+
|
81 |
+
def test_KroneckerProduct_is_bilinear():
|
82 |
+
assert kronecker_product(x*A, B) == x*kronecker_product(A, B)
|
83 |
+
assert kronecker_product(A, x*B) == x*kronecker_product(A, B)
|
84 |
+
|
85 |
+
|
86 |
+
def test_KroneckerProduct_determinant():
|
87 |
+
kp = kronecker_product(W, Z)
|
88 |
+
assert det(kp) == det(W)**n * det(Z)**m
|
89 |
+
|
90 |
+
|
91 |
+
def test_KroneckerProduct_trace():
|
92 |
+
kp = kronecker_product(W, Z)
|
93 |
+
assert trace(kp) == trace(W)*trace(Z)
|
94 |
+
|
95 |
+
|
96 |
+
def test_KroneckerProduct_isnt_commutative():
|
97 |
+
assert KroneckerProduct(A, B) != KroneckerProduct(B, A)
|
98 |
+
assert KroneckerProduct(A, B).is_commutative is False
|
99 |
+
|
100 |
+
|
101 |
+
def test_KroneckerProduct_extracts_commutative_part():
|
102 |
+
assert kronecker_product(x * A, 2 * B) == x * \
|
103 |
+
2 * KroneckerProduct(A, B)
|
104 |
+
|
105 |
+
|
106 |
+
def test_KroneckerProduct_inverse():
|
107 |
+
kp = kronecker_product(W, Z)
|
108 |
+
assert kp.inverse() == kronecker_product(W.inverse(), Z.inverse())
|
109 |
+
|
110 |
+
|
111 |
+
def test_KroneckerProduct_combine_add():
|
112 |
+
kp1 = kronecker_product(A, B)
|
113 |
+
kp2 = kronecker_product(C, W)
|
114 |
+
assert combine_kronecker(kp1*kp2) == kronecker_product(A*C, B*W)
|
115 |
+
|
116 |
+
|
117 |
+
def test_KroneckerProduct_combine_mul():
|
118 |
+
X = MatrixSymbol('X', m, n)
|
119 |
+
Y = MatrixSymbol('Y', m, n)
|
120 |
+
kp1 = kronecker_product(A, X)
|
121 |
+
kp2 = kronecker_product(B, Y)
|
122 |
+
assert combine_kronecker(kp1+kp2) == kronecker_product(A+B, X+Y)
|
123 |
+
|
124 |
+
|
125 |
+
def test_KroneckerProduct_combine_pow():
|
126 |
+
X = MatrixSymbol('X', n, n)
|
127 |
+
Y = MatrixSymbol('Y', n, n)
|
128 |
+
assert combine_kronecker(KroneckerProduct(
|
129 |
+
X, Y)**x) == KroneckerProduct(X**x, Y**x)
|
130 |
+
assert combine_kronecker(x * KroneckerProduct(X, Y)
|
131 |
+
** 2) == x * KroneckerProduct(X**2, Y**2)
|
132 |
+
assert combine_kronecker(
|
133 |
+
x * (KroneckerProduct(X, Y)**2) * KroneckerProduct(A, B)) == x * KroneckerProduct(X**2 * A, Y**2 * B)
|
134 |
+
# cannot simplify because of non-square arguments to kronecker product:
|
135 |
+
assert combine_kronecker(KroneckerProduct(A, B.T) ** m) == KroneckerProduct(A, B.T) ** m
|
136 |
+
|
137 |
+
|
138 |
+
def test_KroneckerProduct_expand():
|
139 |
+
X = MatrixSymbol('X', n, n)
|
140 |
+
Y = MatrixSymbol('Y', n, n)
|
141 |
+
|
142 |
+
assert KroneckerProduct(X + Y, Y + Z).expand(kroneckerproduct=True) == \
|
143 |
+
KroneckerProduct(X, Y) + KroneckerProduct(X, Z) + \
|
144 |
+
KroneckerProduct(Y, Y) + KroneckerProduct(Y, Z)
|
145 |
+
|
146 |
+
def test_KroneckerProduct_entry():
|
147 |
+
A = MatrixSymbol('A', n, m)
|
148 |
+
B = MatrixSymbol('B', o, p)
|
149 |
+
|
150 |
+
assert KroneckerProduct(A, B)._entry(i, j) == A[Mod(floor(i/o), n), Mod(floor(j/p), m)]*B[Mod(i, o), Mod(j, p)]
|
venv/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_matadd.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.matrices.expressions import MatrixSymbol, MatAdd, MatPow, MatMul
|
2 |
+
from sympy.matrices.expressions.special import GenericZeroMatrix, ZeroMatrix
|
3 |
+
from sympy.matrices.common import ShapeError
|
4 |
+
from sympy.matrices import eye, ImmutableMatrix
|
5 |
+
from sympy.core import Add, Basic, S
|
6 |
+
from sympy.core.add import add
|
7 |
+
from sympy.testing.pytest import XFAIL, raises
|
8 |
+
|
9 |
+
X = MatrixSymbol('X', 2, 2)
|
10 |
+
Y = MatrixSymbol('Y', 2, 2)
|
11 |
+
|
12 |
+
def test_evaluate():
|
13 |
+
assert MatAdd(X, X, evaluate=True) == add(X, X, evaluate=True) == MatAdd(X, X).doit()
|
14 |
+
|
15 |
+
def test_sort_key():
|
16 |
+
assert MatAdd(Y, X).doit().args == add(Y, X).doit().args == (X, Y)
|
17 |
+
|
18 |
+
|
19 |
+
def test_matadd_sympify():
|
20 |
+
assert isinstance(MatAdd(eye(1), eye(1)).args[0], Basic)
|
21 |
+
assert isinstance(add(eye(1), eye(1)).args[0], Basic)
|
22 |
+
|
23 |
+
|
24 |
+
def test_matadd_of_matrices():
|
25 |
+
assert MatAdd(eye(2), 4*eye(2), eye(2)).doit() == ImmutableMatrix(6*eye(2))
|
26 |
+
assert add(eye(2), 4*eye(2), eye(2)).doit() == ImmutableMatrix(6*eye(2))
|
27 |
+
|
28 |
+
|
29 |
+
def test_doit_args():
|
30 |
+
A = ImmutableMatrix([[1, 2], [3, 4]])
|
31 |
+
B = ImmutableMatrix([[2, 3], [4, 5]])
|
32 |
+
assert MatAdd(A, MatPow(B, 2)).doit() == A + B**2
|
33 |
+
assert MatAdd(A, MatMul(A, B)).doit() == A + A*B
|
34 |
+
assert (MatAdd(A, X, MatMul(A, B), Y, MatAdd(2*A, B)).doit() ==
|
35 |
+
add(A, X, MatMul(A, B), Y, add(2*A, B)).doit() ==
|
36 |
+
MatAdd(3*A + A*B + B, X, Y))
|
37 |
+
|
38 |
+
|
39 |
+
def test_generic_identity():
|
40 |
+
assert MatAdd.identity == GenericZeroMatrix()
|
41 |
+
assert MatAdd.identity != S.Zero
|
42 |
+
|
43 |
+
|
44 |
+
def test_zero_matrix_add():
|
45 |
+
assert Add(ZeroMatrix(2, 2), ZeroMatrix(2, 2)) == ZeroMatrix(2, 2)
|
46 |
+
|
47 |
+
@XFAIL
|
48 |
+
def test_matrix_Add_with_scalar():
|
49 |
+
raises(TypeError, lambda: Add(0, ZeroMatrix(2, 2)))
|
50 |
+
|
51 |
+
|
52 |
+
def test_shape_error():
|
53 |
+
A = MatrixSymbol('A', 2, 3)
|
54 |
+
B = MatrixSymbol('B', 3, 3)
|
55 |
+
raises(ShapeError, lambda: MatAdd(A, B))
|
56 |
+
|
57 |
+
A = MatrixSymbol('A', 3, 2)
|
58 |
+
raises(ShapeError, lambda: MatAdd(A, B))
|