applied-ai-018 commited on
Commit
345605d
·
verified ·
1 Parent(s): a2f9f48

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. ckpts/llama-3b/global_step100/bf16_zero_pp_rank_101_mp_rank_00_optim_states.pt +3 -0
  2. ckpts/llama-3b/global_step100/bf16_zero_pp_rank_114_mp_rank_01_optim_states.pt +3 -0
  3. ckpts/llama-3b/global_step100/bf16_zero_pp_rank_153_mp_rank_01_optim_states.pt +3 -0
  4. ckpts/llama-3b/global_step100/bf16_zero_pp_rank_159_mp_rank_03_optim_states.pt +3 -0
  5. ckpts/llama-3b/global_step100/bf16_zero_pp_rank_16_mp_rank_02_optim_states.pt +3 -0
  6. ckpts/llama-3b/global_step100/bf16_zero_pp_rank_184_mp_rank_01_optim_states.pt +3 -0
  7. ckpts/llama-3b/global_step100/bf16_zero_pp_rank_202_mp_rank_00_optim_states.pt +3 -0
  8. venv/lib/python3.10/site-packages/pandas/_libs/__init__.py +27 -0
  9. venv/lib/python3.10/site-packages/pandas/_libs/__pycache__/__init__.cpython-310.pyc +0 -0
  10. venv/lib/python3.10/site-packages/pandas/_libs/algos.pyi +416 -0
  11. venv/lib/python3.10/site-packages/pandas/_libs/arrays.cpython-310-x86_64-linux-gnu.so +0 -0
  12. venv/lib/python3.10/site-packages/pandas/_libs/arrays.pyi +40 -0
  13. venv/lib/python3.10/site-packages/pandas/_libs/byteswap.cpython-310-x86_64-linux-gnu.so +0 -0
  14. venv/lib/python3.10/site-packages/pandas/_libs/hashtable.pyi +252 -0
  15. venv/lib/python3.10/site-packages/pandas/_libs/index.cpython-310-x86_64-linux-gnu.so +0 -0
  16. venv/lib/python3.10/site-packages/pandas/_libs/indexing.pyi +17 -0
  17. venv/lib/python3.10/site-packages/pandas/_libs/internals.cpython-310-x86_64-linux-gnu.so +0 -0
  18. venv/lib/python3.10/site-packages/pandas/_libs/interval.pyi +174 -0
  19. venv/lib/python3.10/site-packages/pandas/_libs/join.pyi +79 -0
  20. venv/lib/python3.10/site-packages/pandas/_libs/json.pyi +23 -0
  21. venv/lib/python3.10/site-packages/pandas/_libs/lib.cpython-310-x86_64-linux-gnu.so +0 -0
  22. venv/lib/python3.10/site-packages/pandas/_libs/lib.pyi +213 -0
  23. venv/lib/python3.10/site-packages/pandas/_libs/missing.pyi +16 -0
  24. venv/lib/python3.10/site-packages/pandas/_libs/ops.cpython-310-x86_64-linux-gnu.so +0 -0
  25. venv/lib/python3.10/site-packages/pandas/_libs/ops.pyi +51 -0
  26. venv/lib/python3.10/site-packages/pandas/_libs/ops_dispatch.cpython-310-x86_64-linux-gnu.so +0 -0
  27. venv/lib/python3.10/site-packages/pandas/_libs/ops_dispatch.pyi +5 -0
  28. venv/lib/python3.10/site-packages/pandas/_libs/pandas_datetime.cpython-310-x86_64-linux-gnu.so +0 -0
  29. venv/lib/python3.10/site-packages/pandas/_libs/pandas_parser.cpython-310-x86_64-linux-gnu.so +0 -0
  30. venv/lib/python3.10/site-packages/pandas/_libs/parsers.cpython-310-x86_64-linux-gnu.so +0 -0
  31. venv/lib/python3.10/site-packages/pandas/_libs/parsers.pyi +77 -0
  32. venv/lib/python3.10/site-packages/pandas/_libs/properties.cpython-310-x86_64-linux-gnu.so +0 -0
  33. venv/lib/python3.10/site-packages/pandas/_libs/properties.pyi +27 -0
  34. venv/lib/python3.10/site-packages/pandas/_libs/reshape.cpython-310-x86_64-linux-gnu.so +0 -0
  35. venv/lib/python3.10/site-packages/pandas/_libs/reshape.pyi +16 -0
  36. venv/lib/python3.10/site-packages/pandas/_libs/sas.cpython-310-x86_64-linux-gnu.so +0 -0
  37. venv/lib/python3.10/site-packages/pandas/_libs/sas.pyi +7 -0
  38. venv/lib/python3.10/site-packages/pandas/_libs/sparse.cpython-310-x86_64-linux-gnu.so +0 -0
  39. venv/lib/python3.10/site-packages/pandas/_libs/testing.cpython-310-x86_64-linux-gnu.so +0 -0
  40. venv/lib/python3.10/site-packages/pandas/_libs/testing.pyi +12 -0
  41. venv/lib/python3.10/site-packages/pandas/_libs/tslibs/__init__.py +87 -0
  42. venv/lib/python3.10/site-packages/pandas/_libs/tslibs/__pycache__/__init__.cpython-310.pyc +0 -0
  43. venv/lib/python3.10/site-packages/pandas/_libs/tslibs/base.cpython-310-x86_64-linux-gnu.so +0 -0
  44. venv/lib/python3.10/site-packages/pandas/_libs/tslibs/ccalendar.cpython-310-x86_64-linux-gnu.so +0 -0
  45. venv/lib/python3.10/site-packages/pandas/_libs/tslibs/ccalendar.pyi +12 -0
  46. venv/lib/python3.10/site-packages/pandas/_libs/tslibs/conversion.cpython-310-x86_64-linux-gnu.so +0 -0
  47. venv/lib/python3.10/site-packages/pandas/_libs/tslibs/conversion.pyi +14 -0
  48. venv/lib/python3.10/site-packages/pandas/_libs/tslibs/dtypes.cpython-310-x86_64-linux-gnu.so +0 -0
  49. venv/lib/python3.10/site-packages/pandas/_libs/tslibs/dtypes.pyi +83 -0
  50. venv/lib/python3.10/site-packages/pandas/_libs/tslibs/fields.cpython-310-x86_64-linux-gnu.so +0 -0
ckpts/llama-3b/global_step100/bf16_zero_pp_rank_101_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7f0e3d094e1c331f64b1cc62f98437bce7503be726b98e3b254b31ed3252bf6f
3
+ size 41830212
ckpts/llama-3b/global_step100/bf16_zero_pp_rank_114_mp_rank_01_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4b2979074f1dc059e9a311e3a9c817093ee86d0fc2e071ffb8af855fe3f0895b
3
+ size 41830148
ckpts/llama-3b/global_step100/bf16_zero_pp_rank_153_mp_rank_01_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:91b947e142b8210ae3d66dd736a6db7a4bc8aaa3215373740688e084b6f07b49
3
+ size 41830148
ckpts/llama-3b/global_step100/bf16_zero_pp_rank_159_mp_rank_03_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2a24e0154820d32a63e7027ab286273c3042b8c4a13dc3390f5b44b522d5186e
3
+ size 41830340
ckpts/llama-3b/global_step100/bf16_zero_pp_rank_16_mp_rank_02_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7f21fdd267cecef091ba9dd638d4d04c6756a94d9a659b969112debb8a22c8fb
3
+ size 41830394
ckpts/llama-3b/global_step100/bf16_zero_pp_rank_184_mp_rank_01_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:214aea51f9cb954de15e888b89e2d52f2bfe596149dea7bc5553322d2dc7ed02
3
+ size 41830212
ckpts/llama-3b/global_step100/bf16_zero_pp_rank_202_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13e00003ccc2d26df7db7cf4e20b7ee28acf997802739a74e77fe65ba3c190d4
3
+ size 41830148
venv/lib/python3.10/site-packages/pandas/_libs/__init__.py ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ __all__ = [
2
+ "NaT",
3
+ "NaTType",
4
+ "OutOfBoundsDatetime",
5
+ "Period",
6
+ "Timedelta",
7
+ "Timestamp",
8
+ "iNaT",
9
+ "Interval",
10
+ ]
11
+
12
+
13
+ # Below imports needs to happen first to ensure pandas top level
14
+ # module gets monkeypatched with the pandas_datetime_CAPI
15
+ # see pandas_datetime_exec in pd_datetime.c
16
+ import pandas._libs.pandas_parser # isort: skip # type: ignore[reportUnusedImport]
17
+ import pandas._libs.pandas_datetime # noqa: F401 # isort: skip # type: ignore[reportUnusedImport]
18
+ from pandas._libs.interval import Interval
19
+ from pandas._libs.tslibs import (
20
+ NaT,
21
+ NaTType,
22
+ OutOfBoundsDatetime,
23
+ Period,
24
+ Timedelta,
25
+ Timestamp,
26
+ iNaT,
27
+ )
venv/lib/python3.10/site-packages/pandas/_libs/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (548 Bytes). View file
 
venv/lib/python3.10/site-packages/pandas/_libs/algos.pyi ADDED
@@ -0,0 +1,416 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Any
2
+
3
+ import numpy as np
4
+
5
+ from pandas._typing import npt
6
+
7
+ class Infinity:
8
+ def __eq__(self, other) -> bool: ...
9
+ def __ne__(self, other) -> bool: ...
10
+ def __lt__(self, other) -> bool: ...
11
+ def __le__(self, other) -> bool: ...
12
+ def __gt__(self, other) -> bool: ...
13
+ def __ge__(self, other) -> bool: ...
14
+
15
+ class NegInfinity:
16
+ def __eq__(self, other) -> bool: ...
17
+ def __ne__(self, other) -> bool: ...
18
+ def __lt__(self, other) -> bool: ...
19
+ def __le__(self, other) -> bool: ...
20
+ def __gt__(self, other) -> bool: ...
21
+ def __ge__(self, other) -> bool: ...
22
+
23
+ def unique_deltas(
24
+ arr: np.ndarray, # const int64_t[:]
25
+ ) -> np.ndarray: ... # np.ndarray[np.int64, ndim=1]
26
+ def is_lexsorted(list_of_arrays: list[npt.NDArray[np.int64]]) -> bool: ...
27
+ def groupsort_indexer(
28
+ index: np.ndarray, # const int64_t[:]
29
+ ngroups: int,
30
+ ) -> tuple[
31
+ np.ndarray, # ndarray[int64_t, ndim=1]
32
+ np.ndarray, # ndarray[int64_t, ndim=1]
33
+ ]: ...
34
+ def kth_smallest(
35
+ arr: np.ndarray, # numeric[:]
36
+ k: int,
37
+ ) -> Any: ... # numeric
38
+
39
+ # ----------------------------------------------------------------------
40
+ # Pairwise correlation/covariance
41
+
42
+ def nancorr(
43
+ mat: npt.NDArray[np.float64], # const float64_t[:, :]
44
+ cov: bool = ...,
45
+ minp: int | None = ...,
46
+ ) -> npt.NDArray[np.float64]: ... # ndarray[float64_t, ndim=2]
47
+ def nancorr_spearman(
48
+ mat: npt.NDArray[np.float64], # ndarray[float64_t, ndim=2]
49
+ minp: int = ...,
50
+ ) -> npt.NDArray[np.float64]: ... # ndarray[float64_t, ndim=2]
51
+
52
+ # ----------------------------------------------------------------------
53
+
54
+ def validate_limit(nobs: int | None, limit=...) -> int: ...
55
+ def get_fill_indexer(
56
+ mask: npt.NDArray[np.bool_],
57
+ limit: int | None = None,
58
+ ) -> npt.NDArray[np.intp]: ...
59
+ def pad(
60
+ old: np.ndarray, # ndarray[numeric_object_t]
61
+ new: np.ndarray, # ndarray[numeric_object_t]
62
+ limit=...,
63
+ ) -> npt.NDArray[np.intp]: ... # np.ndarray[np.intp, ndim=1]
64
+ def pad_inplace(
65
+ values: np.ndarray, # numeric_object_t[:]
66
+ mask: np.ndarray, # uint8_t[:]
67
+ limit=...,
68
+ ) -> None: ...
69
+ def pad_2d_inplace(
70
+ values: np.ndarray, # numeric_object_t[:, :]
71
+ mask: np.ndarray, # const uint8_t[:, :]
72
+ limit=...,
73
+ ) -> None: ...
74
+ def backfill(
75
+ old: np.ndarray, # ndarray[numeric_object_t]
76
+ new: np.ndarray, # ndarray[numeric_object_t]
77
+ limit=...,
78
+ ) -> npt.NDArray[np.intp]: ... # np.ndarray[np.intp, ndim=1]
79
+ def backfill_inplace(
80
+ values: np.ndarray, # numeric_object_t[:]
81
+ mask: np.ndarray, # uint8_t[:]
82
+ limit=...,
83
+ ) -> None: ...
84
+ def backfill_2d_inplace(
85
+ values: np.ndarray, # numeric_object_t[:, :]
86
+ mask: np.ndarray, # const uint8_t[:, :]
87
+ limit=...,
88
+ ) -> None: ...
89
+ def is_monotonic(
90
+ arr: np.ndarray, # ndarray[numeric_object_t, ndim=1]
91
+ timelike: bool,
92
+ ) -> tuple[bool, bool, bool]: ...
93
+
94
+ # ----------------------------------------------------------------------
95
+ # rank_1d, rank_2d
96
+ # ----------------------------------------------------------------------
97
+
98
+ def rank_1d(
99
+ values: np.ndarray, # ndarray[numeric_object_t, ndim=1]
100
+ labels: np.ndarray | None = ..., # const int64_t[:]=None
101
+ is_datetimelike: bool = ...,
102
+ ties_method=...,
103
+ ascending: bool = ...,
104
+ pct: bool = ...,
105
+ na_option=...,
106
+ mask: npt.NDArray[np.bool_] | None = ...,
107
+ ) -> np.ndarray: ... # np.ndarray[float64_t, ndim=1]
108
+ def rank_2d(
109
+ in_arr: np.ndarray, # ndarray[numeric_object_t, ndim=2]
110
+ axis: int = ...,
111
+ is_datetimelike: bool = ...,
112
+ ties_method=...,
113
+ ascending: bool = ...,
114
+ na_option=...,
115
+ pct: bool = ...,
116
+ ) -> np.ndarray: ... # np.ndarray[float64_t, ndim=1]
117
+ def diff_2d(
118
+ arr: np.ndarray, # ndarray[diff_t, ndim=2]
119
+ out: np.ndarray, # ndarray[out_t, ndim=2]
120
+ periods: int,
121
+ axis: int,
122
+ datetimelike: bool = ...,
123
+ ) -> None: ...
124
+ def ensure_platform_int(arr: object) -> npt.NDArray[np.intp]: ...
125
+ def ensure_object(arr: object) -> npt.NDArray[np.object_]: ...
126
+ def ensure_float64(arr: object) -> npt.NDArray[np.float64]: ...
127
+ def ensure_int8(arr: object) -> npt.NDArray[np.int8]: ...
128
+ def ensure_int16(arr: object) -> npt.NDArray[np.int16]: ...
129
+ def ensure_int32(arr: object) -> npt.NDArray[np.int32]: ...
130
+ def ensure_int64(arr: object) -> npt.NDArray[np.int64]: ...
131
+ def ensure_uint64(arr: object) -> npt.NDArray[np.uint64]: ...
132
+ def take_1d_int8_int8(
133
+ values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
134
+ ) -> None: ...
135
+ def take_1d_int8_int32(
136
+ values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
137
+ ) -> None: ...
138
+ def take_1d_int8_int64(
139
+ values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
140
+ ) -> None: ...
141
+ def take_1d_int8_float64(
142
+ values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
143
+ ) -> None: ...
144
+ def take_1d_int16_int16(
145
+ values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
146
+ ) -> None: ...
147
+ def take_1d_int16_int32(
148
+ values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
149
+ ) -> None: ...
150
+ def take_1d_int16_int64(
151
+ values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
152
+ ) -> None: ...
153
+ def take_1d_int16_float64(
154
+ values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
155
+ ) -> None: ...
156
+ def take_1d_int32_int32(
157
+ values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
158
+ ) -> None: ...
159
+ def take_1d_int32_int64(
160
+ values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
161
+ ) -> None: ...
162
+ def take_1d_int32_float64(
163
+ values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
164
+ ) -> None: ...
165
+ def take_1d_int64_int64(
166
+ values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
167
+ ) -> None: ...
168
+ def take_1d_int64_float64(
169
+ values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
170
+ ) -> None: ...
171
+ def take_1d_float32_float32(
172
+ values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
173
+ ) -> None: ...
174
+ def take_1d_float32_float64(
175
+ values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
176
+ ) -> None: ...
177
+ def take_1d_float64_float64(
178
+ values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
179
+ ) -> None: ...
180
+ def take_1d_object_object(
181
+ values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
182
+ ) -> None: ...
183
+ def take_1d_bool_bool(
184
+ values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
185
+ ) -> None: ...
186
+ def take_1d_bool_object(
187
+ values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
188
+ ) -> None: ...
189
+ def take_2d_axis0_int8_int8(
190
+ values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
191
+ ) -> None: ...
192
+ def take_2d_axis0_int8_int32(
193
+ values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
194
+ ) -> None: ...
195
+ def take_2d_axis0_int8_int64(
196
+ values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
197
+ ) -> None: ...
198
+ def take_2d_axis0_int8_float64(
199
+ values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
200
+ ) -> None: ...
201
+ def take_2d_axis0_int16_int16(
202
+ values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
203
+ ) -> None: ...
204
+ def take_2d_axis0_int16_int32(
205
+ values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
206
+ ) -> None: ...
207
+ def take_2d_axis0_int16_int64(
208
+ values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
209
+ ) -> None: ...
210
+ def take_2d_axis0_int16_float64(
211
+ values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
212
+ ) -> None: ...
213
+ def take_2d_axis0_int32_int32(
214
+ values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
215
+ ) -> None: ...
216
+ def take_2d_axis0_int32_int64(
217
+ values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
218
+ ) -> None: ...
219
+ def take_2d_axis0_int32_float64(
220
+ values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
221
+ ) -> None: ...
222
+ def take_2d_axis0_int64_int64(
223
+ values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
224
+ ) -> None: ...
225
+ def take_2d_axis0_int64_float64(
226
+ values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
227
+ ) -> None: ...
228
+ def take_2d_axis0_float32_float32(
229
+ values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
230
+ ) -> None: ...
231
+ def take_2d_axis0_float32_float64(
232
+ values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
233
+ ) -> None: ...
234
+ def take_2d_axis0_float64_float64(
235
+ values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
236
+ ) -> None: ...
237
+ def take_2d_axis0_object_object(
238
+ values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
239
+ ) -> None: ...
240
+ def take_2d_axis0_bool_bool(
241
+ values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
242
+ ) -> None: ...
243
+ def take_2d_axis0_bool_object(
244
+ values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
245
+ ) -> None: ...
246
+ def take_2d_axis1_int8_int8(
247
+ values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
248
+ ) -> None: ...
249
+ def take_2d_axis1_int8_int32(
250
+ values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
251
+ ) -> None: ...
252
+ def take_2d_axis1_int8_int64(
253
+ values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
254
+ ) -> None: ...
255
+ def take_2d_axis1_int8_float64(
256
+ values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
257
+ ) -> None: ...
258
+ def take_2d_axis1_int16_int16(
259
+ values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
260
+ ) -> None: ...
261
+ def take_2d_axis1_int16_int32(
262
+ values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
263
+ ) -> None: ...
264
+ def take_2d_axis1_int16_int64(
265
+ values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
266
+ ) -> None: ...
267
+ def take_2d_axis1_int16_float64(
268
+ values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
269
+ ) -> None: ...
270
+ def take_2d_axis1_int32_int32(
271
+ values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
272
+ ) -> None: ...
273
+ def take_2d_axis1_int32_int64(
274
+ values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
275
+ ) -> None: ...
276
+ def take_2d_axis1_int32_float64(
277
+ values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
278
+ ) -> None: ...
279
+ def take_2d_axis1_int64_int64(
280
+ values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
281
+ ) -> None: ...
282
+ def take_2d_axis1_int64_float64(
283
+ values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
284
+ ) -> None: ...
285
+ def take_2d_axis1_float32_float32(
286
+ values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
287
+ ) -> None: ...
288
+ def take_2d_axis1_float32_float64(
289
+ values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
290
+ ) -> None: ...
291
+ def take_2d_axis1_float64_float64(
292
+ values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
293
+ ) -> None: ...
294
+ def take_2d_axis1_object_object(
295
+ values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
296
+ ) -> None: ...
297
+ def take_2d_axis1_bool_bool(
298
+ values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
299
+ ) -> None: ...
300
+ def take_2d_axis1_bool_object(
301
+ values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
302
+ ) -> None: ...
303
+ def take_2d_multi_int8_int8(
304
+ values: np.ndarray,
305
+ indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
306
+ out: np.ndarray,
307
+ fill_value=...,
308
+ ) -> None: ...
309
+ def take_2d_multi_int8_int32(
310
+ values: np.ndarray,
311
+ indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
312
+ out: np.ndarray,
313
+ fill_value=...,
314
+ ) -> None: ...
315
+ def take_2d_multi_int8_int64(
316
+ values: np.ndarray,
317
+ indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
318
+ out: np.ndarray,
319
+ fill_value=...,
320
+ ) -> None: ...
321
+ def take_2d_multi_int8_float64(
322
+ values: np.ndarray,
323
+ indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
324
+ out: np.ndarray,
325
+ fill_value=...,
326
+ ) -> None: ...
327
+ def take_2d_multi_int16_int16(
328
+ values: np.ndarray,
329
+ indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
330
+ out: np.ndarray,
331
+ fill_value=...,
332
+ ) -> None: ...
333
+ def take_2d_multi_int16_int32(
334
+ values: np.ndarray,
335
+ indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
336
+ out: np.ndarray,
337
+ fill_value=...,
338
+ ) -> None: ...
339
+ def take_2d_multi_int16_int64(
340
+ values: np.ndarray,
341
+ indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
342
+ out: np.ndarray,
343
+ fill_value=...,
344
+ ) -> None: ...
345
+ def take_2d_multi_int16_float64(
346
+ values: np.ndarray,
347
+ indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
348
+ out: np.ndarray,
349
+ fill_value=...,
350
+ ) -> None: ...
351
+ def take_2d_multi_int32_int32(
352
+ values: np.ndarray,
353
+ indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
354
+ out: np.ndarray,
355
+ fill_value=...,
356
+ ) -> None: ...
357
+ def take_2d_multi_int32_int64(
358
+ values: np.ndarray,
359
+ indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
360
+ out: np.ndarray,
361
+ fill_value=...,
362
+ ) -> None: ...
363
+ def take_2d_multi_int32_float64(
364
+ values: np.ndarray,
365
+ indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
366
+ out: np.ndarray,
367
+ fill_value=...,
368
+ ) -> None: ...
369
+ def take_2d_multi_int64_float64(
370
+ values: np.ndarray,
371
+ indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
372
+ out: np.ndarray,
373
+ fill_value=...,
374
+ ) -> None: ...
375
+ def take_2d_multi_float32_float32(
376
+ values: np.ndarray,
377
+ indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
378
+ out: np.ndarray,
379
+ fill_value=...,
380
+ ) -> None: ...
381
+ def take_2d_multi_float32_float64(
382
+ values: np.ndarray,
383
+ indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
384
+ out: np.ndarray,
385
+ fill_value=...,
386
+ ) -> None: ...
387
+ def take_2d_multi_float64_float64(
388
+ values: np.ndarray,
389
+ indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
390
+ out: np.ndarray,
391
+ fill_value=...,
392
+ ) -> None: ...
393
+ def take_2d_multi_object_object(
394
+ values: np.ndarray,
395
+ indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
396
+ out: np.ndarray,
397
+ fill_value=...,
398
+ ) -> None: ...
399
+ def take_2d_multi_bool_bool(
400
+ values: np.ndarray,
401
+ indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
402
+ out: np.ndarray,
403
+ fill_value=...,
404
+ ) -> None: ...
405
+ def take_2d_multi_bool_object(
406
+ values: np.ndarray,
407
+ indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
408
+ out: np.ndarray,
409
+ fill_value=...,
410
+ ) -> None: ...
411
+ def take_2d_multi_int64_int64(
412
+ values: np.ndarray,
413
+ indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
414
+ out: np.ndarray,
415
+ fill_value=...,
416
+ ) -> None: ...
venv/lib/python3.10/site-packages/pandas/_libs/arrays.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (133 kB). View file
 
venv/lib/python3.10/site-packages/pandas/_libs/arrays.pyi ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Sequence
2
+
3
+ import numpy as np
4
+
5
+ from pandas._typing import (
6
+ AxisInt,
7
+ DtypeObj,
8
+ Self,
9
+ Shape,
10
+ )
11
+
12
+ class NDArrayBacked:
13
+ _dtype: DtypeObj
14
+ _ndarray: np.ndarray
15
+ def __init__(self, values: np.ndarray, dtype: DtypeObj) -> None: ...
16
+ @classmethod
17
+ def _simple_new(cls, values: np.ndarray, dtype: DtypeObj): ...
18
+ def _from_backing_data(self, values: np.ndarray): ...
19
+ def __setstate__(self, state): ...
20
+ def __len__(self) -> int: ...
21
+ @property
22
+ def shape(self) -> Shape: ...
23
+ @property
24
+ def ndim(self) -> int: ...
25
+ @property
26
+ def size(self) -> int: ...
27
+ @property
28
+ def nbytes(self) -> int: ...
29
+ def copy(self, order=...): ...
30
+ def delete(self, loc, axis=...): ...
31
+ def swapaxes(self, axis1, axis2): ...
32
+ def repeat(self, repeats: int | Sequence[int], axis: int | None = ...): ...
33
+ def reshape(self, *args, **kwargs): ...
34
+ def ravel(self, order=...): ...
35
+ @property
36
+ def T(self): ...
37
+ @classmethod
38
+ def _concat_same_type(
39
+ cls, to_concat: Sequence[Self], axis: AxisInt = ...
40
+ ) -> Self: ...
venv/lib/python3.10/site-packages/pandas/_libs/byteswap.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (61.7 kB). View file
 
venv/lib/python3.10/site-packages/pandas/_libs/hashtable.pyi ADDED
@@ -0,0 +1,252 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import (
2
+ Any,
3
+ Hashable,
4
+ Literal,
5
+ )
6
+
7
+ import numpy as np
8
+
9
+ from pandas._typing import npt
10
+
11
+ def unique_label_indices(
12
+ labels: np.ndarray, # const int64_t[:]
13
+ ) -> np.ndarray: ...
14
+
15
+ class Factorizer:
16
+ count: int
17
+ uniques: Any
18
+ def __init__(self, size_hint: int) -> None: ...
19
+ def get_count(self) -> int: ...
20
+ def factorize(
21
+ self,
22
+ values: np.ndarray,
23
+ na_sentinel=...,
24
+ na_value=...,
25
+ mask=...,
26
+ ) -> npt.NDArray[np.intp]: ...
27
+
28
+ class ObjectFactorizer(Factorizer):
29
+ table: PyObjectHashTable
30
+ uniques: ObjectVector
31
+
32
+ class Int64Factorizer(Factorizer):
33
+ table: Int64HashTable
34
+ uniques: Int64Vector
35
+
36
+ class UInt64Factorizer(Factorizer):
37
+ table: UInt64HashTable
38
+ uniques: UInt64Vector
39
+
40
+ class Int32Factorizer(Factorizer):
41
+ table: Int32HashTable
42
+ uniques: Int32Vector
43
+
44
+ class UInt32Factorizer(Factorizer):
45
+ table: UInt32HashTable
46
+ uniques: UInt32Vector
47
+
48
+ class Int16Factorizer(Factorizer):
49
+ table: Int16HashTable
50
+ uniques: Int16Vector
51
+
52
+ class UInt16Factorizer(Factorizer):
53
+ table: UInt16HashTable
54
+ uniques: UInt16Vector
55
+
56
+ class Int8Factorizer(Factorizer):
57
+ table: Int8HashTable
58
+ uniques: Int8Vector
59
+
60
+ class UInt8Factorizer(Factorizer):
61
+ table: UInt8HashTable
62
+ uniques: UInt8Vector
63
+
64
+ class Float64Factorizer(Factorizer):
65
+ table: Float64HashTable
66
+ uniques: Float64Vector
67
+
68
+ class Float32Factorizer(Factorizer):
69
+ table: Float32HashTable
70
+ uniques: Float32Vector
71
+
72
+ class Complex64Factorizer(Factorizer):
73
+ table: Complex64HashTable
74
+ uniques: Complex64Vector
75
+
76
+ class Complex128Factorizer(Factorizer):
77
+ table: Complex128HashTable
78
+ uniques: Complex128Vector
79
+
80
+ class Int64Vector:
81
+ def __init__(self, *args) -> None: ...
82
+ def __len__(self) -> int: ...
83
+ def to_array(self) -> npt.NDArray[np.int64]: ...
84
+
85
+ class Int32Vector:
86
+ def __init__(self, *args) -> None: ...
87
+ def __len__(self) -> int: ...
88
+ def to_array(self) -> npt.NDArray[np.int32]: ...
89
+
90
+ class Int16Vector:
91
+ def __init__(self, *args) -> None: ...
92
+ def __len__(self) -> int: ...
93
+ def to_array(self) -> npt.NDArray[np.int16]: ...
94
+
95
+ class Int8Vector:
96
+ def __init__(self, *args) -> None: ...
97
+ def __len__(self) -> int: ...
98
+ def to_array(self) -> npt.NDArray[np.int8]: ...
99
+
100
+ class UInt64Vector:
101
+ def __init__(self, *args) -> None: ...
102
+ def __len__(self) -> int: ...
103
+ def to_array(self) -> npt.NDArray[np.uint64]: ...
104
+
105
+ class UInt32Vector:
106
+ def __init__(self, *args) -> None: ...
107
+ def __len__(self) -> int: ...
108
+ def to_array(self) -> npt.NDArray[np.uint32]: ...
109
+
110
+ class UInt16Vector:
111
+ def __init__(self, *args) -> None: ...
112
+ def __len__(self) -> int: ...
113
+ def to_array(self) -> npt.NDArray[np.uint16]: ...
114
+
115
+ class UInt8Vector:
116
+ def __init__(self, *args) -> None: ...
117
+ def __len__(self) -> int: ...
118
+ def to_array(self) -> npt.NDArray[np.uint8]: ...
119
+
120
+ class Float64Vector:
121
+ def __init__(self, *args) -> None: ...
122
+ def __len__(self) -> int: ...
123
+ def to_array(self) -> npt.NDArray[np.float64]: ...
124
+
125
+ class Float32Vector:
126
+ def __init__(self, *args) -> None: ...
127
+ def __len__(self) -> int: ...
128
+ def to_array(self) -> npt.NDArray[np.float32]: ...
129
+
130
+ class Complex128Vector:
131
+ def __init__(self, *args) -> None: ...
132
+ def __len__(self) -> int: ...
133
+ def to_array(self) -> npt.NDArray[np.complex128]: ...
134
+
135
+ class Complex64Vector:
136
+ def __init__(self, *args) -> None: ...
137
+ def __len__(self) -> int: ...
138
+ def to_array(self) -> npt.NDArray[np.complex64]: ...
139
+
140
+ class StringVector:
141
+ def __init__(self, *args) -> None: ...
142
+ def __len__(self) -> int: ...
143
+ def to_array(self) -> npt.NDArray[np.object_]: ...
144
+
145
+ class ObjectVector:
146
+ def __init__(self, *args) -> None: ...
147
+ def __len__(self) -> int: ...
148
+ def to_array(self) -> npt.NDArray[np.object_]: ...
149
+
150
+ class HashTable:
151
+ # NB: The base HashTable class does _not_ actually have these methods;
152
+ # we are putting them here for the sake of mypy to avoid
153
+ # reproducing them in each subclass below.
154
+ def __init__(self, size_hint: int = ..., uses_mask: bool = ...) -> None: ...
155
+ def __len__(self) -> int: ...
156
+ def __contains__(self, key: Hashable) -> bool: ...
157
+ def sizeof(self, deep: bool = ...) -> int: ...
158
+ def get_state(self) -> dict[str, int]: ...
159
+ # TODO: `val/key` type is subclass-specific
160
+ def get_item(self, val): ... # TODO: return type?
161
+ def set_item(self, key, val) -> None: ...
162
+ def get_na(self): ... # TODO: return type?
163
+ def set_na(self, val) -> None: ...
164
+ def map_locations(
165
+ self,
166
+ values: np.ndarray, # np.ndarray[subclass-specific]
167
+ mask: npt.NDArray[np.bool_] | None = ...,
168
+ ) -> None: ...
169
+ def lookup(
170
+ self,
171
+ values: np.ndarray, # np.ndarray[subclass-specific]
172
+ mask: npt.NDArray[np.bool_] | None = ...,
173
+ ) -> npt.NDArray[np.intp]: ...
174
+ def get_labels(
175
+ self,
176
+ values: np.ndarray, # np.ndarray[subclass-specific]
177
+ uniques, # SubclassTypeVector
178
+ count_prior: int = ...,
179
+ na_sentinel: int = ...,
180
+ na_value: object = ...,
181
+ mask=...,
182
+ ) -> npt.NDArray[np.intp]: ...
183
+ def unique(
184
+ self,
185
+ values: np.ndarray, # np.ndarray[subclass-specific]
186
+ return_inverse: bool = ...,
187
+ mask=...,
188
+ ) -> (
189
+ tuple[
190
+ np.ndarray, # np.ndarray[subclass-specific]
191
+ npt.NDArray[np.intp],
192
+ ]
193
+ | np.ndarray
194
+ ): ... # np.ndarray[subclass-specific]
195
+ def factorize(
196
+ self,
197
+ values: np.ndarray, # np.ndarray[subclass-specific]
198
+ na_sentinel: int = ...,
199
+ na_value: object = ...,
200
+ mask=...,
201
+ ignore_na: bool = True,
202
+ ) -> tuple[np.ndarray, npt.NDArray[np.intp]]: ... # np.ndarray[subclass-specific]
203
+
204
+ class Complex128HashTable(HashTable): ...
205
+ class Complex64HashTable(HashTable): ...
206
+ class Float64HashTable(HashTable): ...
207
+ class Float32HashTable(HashTable): ...
208
+
209
+ class Int64HashTable(HashTable):
210
+ # Only Int64HashTable has get_labels_groupby, map_keys_to_values
211
+ def get_labels_groupby(
212
+ self,
213
+ values: npt.NDArray[np.int64], # const int64_t[:]
214
+ ) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.int64]]: ...
215
+ def map_keys_to_values(
216
+ self,
217
+ keys: npt.NDArray[np.int64],
218
+ values: npt.NDArray[np.int64], # const int64_t[:]
219
+ ) -> None: ...
220
+
221
+ class Int32HashTable(HashTable): ...
222
+ class Int16HashTable(HashTable): ...
223
+ class Int8HashTable(HashTable): ...
224
+ class UInt64HashTable(HashTable): ...
225
+ class UInt32HashTable(HashTable): ...
226
+ class UInt16HashTable(HashTable): ...
227
+ class UInt8HashTable(HashTable): ...
228
+ class StringHashTable(HashTable): ...
229
+ class PyObjectHashTable(HashTable): ...
230
+ class IntpHashTable(HashTable): ...
231
+
232
+ def duplicated(
233
+ values: np.ndarray,
234
+ keep: Literal["last", "first", False] = ...,
235
+ mask: npt.NDArray[np.bool_] | None = ...,
236
+ ) -> npt.NDArray[np.bool_]: ...
237
+ def mode(
238
+ values: np.ndarray, dropna: bool, mask: npt.NDArray[np.bool_] | None = ...
239
+ ) -> np.ndarray: ...
240
+ def value_count(
241
+ values: np.ndarray,
242
+ dropna: bool,
243
+ mask: npt.NDArray[np.bool_] | None = ...,
244
+ ) -> tuple[np.ndarray, npt.NDArray[np.int64], int]: ... # np.ndarray[same-as-values]
245
+
246
+ # arr and values should have same dtype
247
+ def ismember(
248
+ arr: np.ndarray,
249
+ values: np.ndarray,
250
+ ) -> npt.NDArray[np.bool_]: ...
251
+ def object_hash(obj) -> int: ...
252
+ def objects_are_equal(a, b) -> bool: ...
venv/lib/python3.10/site-packages/pandas/_libs/index.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (988 kB). View file
 
venv/lib/python3.10/site-packages/pandas/_libs/indexing.pyi ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import (
2
+ Generic,
3
+ TypeVar,
4
+ )
5
+
6
+ from pandas.core.indexing import IndexingMixin
7
+
8
+ _IndexingMixinT = TypeVar("_IndexingMixinT", bound=IndexingMixin)
9
+
10
+ class NDFrameIndexerBase(Generic[_IndexingMixinT]):
11
+ name: str
12
+ # in practice obj is either a DataFrame or a Series
13
+ obj: _IndexingMixinT
14
+
15
+ def __init__(self, name: str, obj: _IndexingMixinT) -> None: ...
16
+ @property
17
+ def ndim(self) -> int: ...
venv/lib/python3.10/site-packages/pandas/_libs/internals.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (416 kB). View file
 
venv/lib/python3.10/site-packages/pandas/_libs/interval.pyi ADDED
@@ -0,0 +1,174 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import (
2
+ Any,
3
+ Generic,
4
+ TypeVar,
5
+ overload,
6
+ )
7
+
8
+ import numpy as np
9
+ import numpy.typing as npt
10
+
11
+ from pandas._typing import (
12
+ IntervalClosedType,
13
+ Timedelta,
14
+ Timestamp,
15
+ )
16
+
17
+ VALID_CLOSED: frozenset[str]
18
+
19
+ _OrderableScalarT = TypeVar("_OrderableScalarT", int, float)
20
+ _OrderableTimesT = TypeVar("_OrderableTimesT", Timestamp, Timedelta)
21
+ _OrderableT = TypeVar("_OrderableT", int, float, Timestamp, Timedelta)
22
+
23
+ class _LengthDescriptor:
24
+ @overload
25
+ def __get__(
26
+ self, instance: Interval[_OrderableScalarT], owner: Any
27
+ ) -> _OrderableScalarT: ...
28
+ @overload
29
+ def __get__(
30
+ self, instance: Interval[_OrderableTimesT], owner: Any
31
+ ) -> Timedelta: ...
32
+
33
+ class _MidDescriptor:
34
+ @overload
35
+ def __get__(self, instance: Interval[_OrderableScalarT], owner: Any) -> float: ...
36
+ @overload
37
+ def __get__(
38
+ self, instance: Interval[_OrderableTimesT], owner: Any
39
+ ) -> _OrderableTimesT: ...
40
+
41
+ class IntervalMixin:
42
+ @property
43
+ def closed_left(self) -> bool: ...
44
+ @property
45
+ def closed_right(self) -> bool: ...
46
+ @property
47
+ def open_left(self) -> bool: ...
48
+ @property
49
+ def open_right(self) -> bool: ...
50
+ @property
51
+ def is_empty(self) -> bool: ...
52
+ def _check_closed_matches(self, other: IntervalMixin, name: str = ...) -> None: ...
53
+
54
+ class Interval(IntervalMixin, Generic[_OrderableT]):
55
+ @property
56
+ def left(self: Interval[_OrderableT]) -> _OrderableT: ...
57
+ @property
58
+ def right(self: Interval[_OrderableT]) -> _OrderableT: ...
59
+ @property
60
+ def closed(self) -> IntervalClosedType: ...
61
+ mid: _MidDescriptor
62
+ length: _LengthDescriptor
63
+ def __init__(
64
+ self,
65
+ left: _OrderableT,
66
+ right: _OrderableT,
67
+ closed: IntervalClosedType = ...,
68
+ ) -> None: ...
69
+ def __hash__(self) -> int: ...
70
+ @overload
71
+ def __contains__(
72
+ self: Interval[Timedelta], key: Timedelta | Interval[Timedelta]
73
+ ) -> bool: ...
74
+ @overload
75
+ def __contains__(
76
+ self: Interval[Timestamp], key: Timestamp | Interval[Timestamp]
77
+ ) -> bool: ...
78
+ @overload
79
+ def __contains__(
80
+ self: Interval[_OrderableScalarT],
81
+ key: _OrderableScalarT | Interval[_OrderableScalarT],
82
+ ) -> bool: ...
83
+ @overload
84
+ def __add__(
85
+ self: Interval[_OrderableTimesT], y: Timedelta
86
+ ) -> Interval[_OrderableTimesT]: ...
87
+ @overload
88
+ def __add__(
89
+ self: Interval[int], y: _OrderableScalarT
90
+ ) -> Interval[_OrderableScalarT]: ...
91
+ @overload
92
+ def __add__(self: Interval[float], y: float) -> Interval[float]: ...
93
+ @overload
94
+ def __radd__(
95
+ self: Interval[_OrderableTimesT], y: Timedelta
96
+ ) -> Interval[_OrderableTimesT]: ...
97
+ @overload
98
+ def __radd__(
99
+ self: Interval[int], y: _OrderableScalarT
100
+ ) -> Interval[_OrderableScalarT]: ...
101
+ @overload
102
+ def __radd__(self: Interval[float], y: float) -> Interval[float]: ...
103
+ @overload
104
+ def __sub__(
105
+ self: Interval[_OrderableTimesT], y: Timedelta
106
+ ) -> Interval[_OrderableTimesT]: ...
107
+ @overload
108
+ def __sub__(
109
+ self: Interval[int], y: _OrderableScalarT
110
+ ) -> Interval[_OrderableScalarT]: ...
111
+ @overload
112
+ def __sub__(self: Interval[float], y: float) -> Interval[float]: ...
113
+ @overload
114
+ def __rsub__(
115
+ self: Interval[_OrderableTimesT], y: Timedelta
116
+ ) -> Interval[_OrderableTimesT]: ...
117
+ @overload
118
+ def __rsub__(
119
+ self: Interval[int], y: _OrderableScalarT
120
+ ) -> Interval[_OrderableScalarT]: ...
121
+ @overload
122
+ def __rsub__(self: Interval[float], y: float) -> Interval[float]: ...
123
+ @overload
124
+ def __mul__(
125
+ self: Interval[int], y: _OrderableScalarT
126
+ ) -> Interval[_OrderableScalarT]: ...
127
+ @overload
128
+ def __mul__(self: Interval[float], y: float) -> Interval[float]: ...
129
+ @overload
130
+ def __rmul__(
131
+ self: Interval[int], y: _OrderableScalarT
132
+ ) -> Interval[_OrderableScalarT]: ...
133
+ @overload
134
+ def __rmul__(self: Interval[float], y: float) -> Interval[float]: ...
135
+ @overload
136
+ def __truediv__(
137
+ self: Interval[int], y: _OrderableScalarT
138
+ ) -> Interval[_OrderableScalarT]: ...
139
+ @overload
140
+ def __truediv__(self: Interval[float], y: float) -> Interval[float]: ...
141
+ @overload
142
+ def __floordiv__(
143
+ self: Interval[int], y: _OrderableScalarT
144
+ ) -> Interval[_OrderableScalarT]: ...
145
+ @overload
146
+ def __floordiv__(self: Interval[float], y: float) -> Interval[float]: ...
147
+ def overlaps(self: Interval[_OrderableT], other: Interval[_OrderableT]) -> bool: ...
148
+
149
+ def intervals_to_interval_bounds(
150
+ intervals: np.ndarray, validate_closed: bool = ...
151
+ ) -> tuple[np.ndarray, np.ndarray, IntervalClosedType]: ...
152
+
153
+ class IntervalTree(IntervalMixin):
154
+ def __init__(
155
+ self,
156
+ left: np.ndarray,
157
+ right: np.ndarray,
158
+ closed: IntervalClosedType = ...,
159
+ leaf_size: int = ...,
160
+ ) -> None: ...
161
+ @property
162
+ def mid(self) -> np.ndarray: ...
163
+ @property
164
+ def length(self) -> np.ndarray: ...
165
+ def get_indexer(self, target) -> npt.NDArray[np.intp]: ...
166
+ def get_indexer_non_unique(
167
+ self, target
168
+ ) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: ...
169
+ _na_count: int
170
+ @property
171
+ def is_overlapping(self) -> bool: ...
172
+ @property
173
+ def is_monotonic_increasing(self) -> bool: ...
174
+ def clear_mapping(self) -> None: ...
venv/lib/python3.10/site-packages/pandas/_libs/join.pyi ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+ from pandas._typing import npt
4
+
5
+ def inner_join(
6
+ left: np.ndarray, # const intp_t[:]
7
+ right: np.ndarray, # const intp_t[:]
8
+ max_groups: int,
9
+ sort: bool = ...,
10
+ ) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: ...
11
+ def left_outer_join(
12
+ left: np.ndarray, # const intp_t[:]
13
+ right: np.ndarray, # const intp_t[:]
14
+ max_groups: int,
15
+ sort: bool = ...,
16
+ ) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: ...
17
+ def full_outer_join(
18
+ left: np.ndarray, # const intp_t[:]
19
+ right: np.ndarray, # const intp_t[:]
20
+ max_groups: int,
21
+ ) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: ...
22
+ def ffill_indexer(
23
+ indexer: np.ndarray, # const intp_t[:]
24
+ ) -> npt.NDArray[np.intp]: ...
25
+ def left_join_indexer_unique(
26
+ left: np.ndarray, # ndarray[join_t]
27
+ right: np.ndarray, # ndarray[join_t]
28
+ ) -> npt.NDArray[np.intp]: ...
29
+ def left_join_indexer(
30
+ left: np.ndarray, # ndarray[join_t]
31
+ right: np.ndarray, # ndarray[join_t]
32
+ ) -> tuple[
33
+ np.ndarray, # np.ndarray[join_t]
34
+ npt.NDArray[np.intp],
35
+ npt.NDArray[np.intp],
36
+ ]: ...
37
+ def inner_join_indexer(
38
+ left: np.ndarray, # ndarray[join_t]
39
+ right: np.ndarray, # ndarray[join_t]
40
+ ) -> tuple[
41
+ np.ndarray, # np.ndarray[join_t]
42
+ npt.NDArray[np.intp],
43
+ npt.NDArray[np.intp],
44
+ ]: ...
45
+ def outer_join_indexer(
46
+ left: np.ndarray, # ndarray[join_t]
47
+ right: np.ndarray, # ndarray[join_t]
48
+ ) -> tuple[
49
+ np.ndarray, # np.ndarray[join_t]
50
+ npt.NDArray[np.intp],
51
+ npt.NDArray[np.intp],
52
+ ]: ...
53
+ def asof_join_backward_on_X_by_Y(
54
+ left_values: np.ndarray, # ndarray[numeric_t]
55
+ right_values: np.ndarray, # ndarray[numeric_t]
56
+ left_by_values: np.ndarray, # const int64_t[:]
57
+ right_by_values: np.ndarray, # const int64_t[:]
58
+ allow_exact_matches: bool = ...,
59
+ tolerance: np.number | float | None = ...,
60
+ use_hashtable: bool = ...,
61
+ ) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: ...
62
+ def asof_join_forward_on_X_by_Y(
63
+ left_values: np.ndarray, # ndarray[numeric_t]
64
+ right_values: np.ndarray, # ndarray[numeric_t]
65
+ left_by_values: np.ndarray, # const int64_t[:]
66
+ right_by_values: np.ndarray, # const int64_t[:]
67
+ allow_exact_matches: bool = ...,
68
+ tolerance: np.number | float | None = ...,
69
+ use_hashtable: bool = ...,
70
+ ) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: ...
71
+ def asof_join_nearest_on_X_by_Y(
72
+ left_values: np.ndarray, # ndarray[numeric_t]
73
+ right_values: np.ndarray, # ndarray[numeric_t]
74
+ left_by_values: np.ndarray, # const int64_t[:]
75
+ right_by_values: np.ndarray, # const int64_t[:]
76
+ allow_exact_matches: bool = ...,
77
+ tolerance: np.number | float | None = ...,
78
+ use_hashtable: bool = ...,
79
+ ) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: ...
venv/lib/python3.10/site-packages/pandas/_libs/json.pyi ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import (
2
+ Any,
3
+ Callable,
4
+ )
5
+
6
+ def ujson_dumps(
7
+ obj: Any,
8
+ ensure_ascii: bool = ...,
9
+ double_precision: int = ...,
10
+ indent: int = ...,
11
+ orient: str = ...,
12
+ date_unit: str = ...,
13
+ iso_dates: bool = ...,
14
+ default_handler: None
15
+ | Callable[[Any], str | float | bool | list | dict | None] = ...,
16
+ ) -> str: ...
17
+ def ujson_loads(
18
+ s: str,
19
+ precise_float: bool = ...,
20
+ numpy: bool = ...,
21
+ dtype: None = ...,
22
+ labelled: bool = ...,
23
+ ) -> Any: ...
venv/lib/python3.10/site-packages/pandas/_libs/lib.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (938 kB). View file
 
venv/lib/python3.10/site-packages/pandas/_libs/lib.pyi ADDED
@@ -0,0 +1,213 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # TODO(npdtypes): Many types specified here can be made more specific/accurate;
2
+ # the more specific versions are specified in comments
3
+ from decimal import Decimal
4
+ from typing import (
5
+ Any,
6
+ Callable,
7
+ Final,
8
+ Generator,
9
+ Hashable,
10
+ Literal,
11
+ TypeAlias,
12
+ overload,
13
+ )
14
+
15
+ import numpy as np
16
+
17
+ from pandas._libs.interval import Interval
18
+ from pandas._libs.tslibs import Period
19
+ from pandas._typing import (
20
+ ArrayLike,
21
+ DtypeObj,
22
+ TypeGuard,
23
+ npt,
24
+ )
25
+
26
+ # placeholder until we can specify np.ndarray[object, ndim=2]
27
+ ndarray_obj_2d = np.ndarray
28
+
29
+ from enum import Enum
30
+
31
+ class _NoDefault(Enum):
32
+ no_default = ...
33
+
34
+ no_default: Final = _NoDefault.no_default
35
+ NoDefault: TypeAlias = Literal[_NoDefault.no_default]
36
+
37
+ i8max: int
38
+ u8max: int
39
+
40
+ def is_np_dtype(dtype: object, kinds: str | None = ...) -> TypeGuard[np.dtype]: ...
41
+ def item_from_zerodim(val: object) -> object: ...
42
+ def infer_dtype(value: object, skipna: bool = ...) -> str: ...
43
+ def is_iterator(obj: object) -> bool: ...
44
+ def is_scalar(val: object) -> bool: ...
45
+ def is_list_like(obj: object, allow_sets: bool = ...) -> bool: ...
46
+ def is_pyarrow_array(obj: object) -> bool: ...
47
+ def is_period(val: object) -> TypeGuard[Period]: ...
48
+ def is_interval(obj: object) -> TypeGuard[Interval]: ...
49
+ def is_decimal(obj: object) -> TypeGuard[Decimal]: ...
50
+ def is_complex(obj: object) -> TypeGuard[complex]: ...
51
+ def is_bool(obj: object) -> TypeGuard[bool | np.bool_]: ...
52
+ def is_integer(obj: object) -> TypeGuard[int | np.integer]: ...
53
+ def is_int_or_none(obj) -> bool: ...
54
+ def is_float(obj: object) -> TypeGuard[float]: ...
55
+ def is_interval_array(values: np.ndarray) -> bool: ...
56
+ def is_datetime64_array(values: np.ndarray, skipna: bool = True) -> bool: ...
57
+ def is_timedelta_or_timedelta64_array(
58
+ values: np.ndarray, skipna: bool = True
59
+ ) -> bool: ...
60
+ def is_datetime_with_singletz_array(values: np.ndarray) -> bool: ...
61
+ def is_time_array(values: np.ndarray, skipna: bool = ...): ...
62
+ def is_date_array(values: np.ndarray, skipna: bool = ...): ...
63
+ def is_datetime_array(values: np.ndarray, skipna: bool = ...): ...
64
+ def is_string_array(values: np.ndarray, skipna: bool = ...): ...
65
+ def is_float_array(values: np.ndarray): ...
66
+ def is_integer_array(values: np.ndarray, skipna: bool = ...): ...
67
+ def is_bool_array(values: np.ndarray, skipna: bool = ...): ...
68
+ def fast_multiget(
69
+ mapping: dict,
70
+ keys: np.ndarray, # object[:]
71
+ default=...,
72
+ ) -> np.ndarray: ...
73
+ def fast_unique_multiple_list_gen(gen: Generator, sort: bool = ...) -> list: ...
74
+ def fast_unique_multiple_list(lists: list, sort: bool | None = ...) -> list: ...
75
+ def map_infer(
76
+ arr: np.ndarray,
77
+ f: Callable[[Any], Any],
78
+ convert: bool = ...,
79
+ ignore_na: bool = ...,
80
+ ) -> np.ndarray: ...
81
+ @overload
82
+ def maybe_convert_objects(
83
+ objects: npt.NDArray[np.object_],
84
+ *,
85
+ try_float: bool = ...,
86
+ safe: bool = ...,
87
+ convert_numeric: bool = ...,
88
+ convert_non_numeric: Literal[False] = ...,
89
+ convert_to_nullable_dtype: Literal[False] = ...,
90
+ dtype_if_all_nat: DtypeObj | None = ...,
91
+ ) -> npt.NDArray[np.object_ | np.number]: ...
92
+ @overload
93
+ def maybe_convert_objects(
94
+ objects: npt.NDArray[np.object_],
95
+ *,
96
+ try_float: bool = ...,
97
+ safe: bool = ...,
98
+ convert_numeric: bool = ...,
99
+ convert_non_numeric: bool = ...,
100
+ convert_to_nullable_dtype: Literal[True] = ...,
101
+ dtype_if_all_nat: DtypeObj | None = ...,
102
+ ) -> ArrayLike: ...
103
+ @overload
104
+ def maybe_convert_objects(
105
+ objects: npt.NDArray[np.object_],
106
+ *,
107
+ try_float: bool = ...,
108
+ safe: bool = ...,
109
+ convert_numeric: bool = ...,
110
+ convert_non_numeric: bool = ...,
111
+ convert_to_nullable_dtype: bool = ...,
112
+ dtype_if_all_nat: DtypeObj | None = ...,
113
+ ) -> ArrayLike: ...
114
+ @overload
115
+ def maybe_convert_numeric(
116
+ values: npt.NDArray[np.object_],
117
+ na_values: set,
118
+ convert_empty: bool = ...,
119
+ coerce_numeric: bool = ...,
120
+ convert_to_masked_nullable: Literal[False] = ...,
121
+ ) -> tuple[np.ndarray, None]: ...
122
+ @overload
123
+ def maybe_convert_numeric(
124
+ values: npt.NDArray[np.object_],
125
+ na_values: set,
126
+ convert_empty: bool = ...,
127
+ coerce_numeric: bool = ...,
128
+ *,
129
+ convert_to_masked_nullable: Literal[True],
130
+ ) -> tuple[np.ndarray, np.ndarray]: ...
131
+
132
+ # TODO: restrict `arr`?
133
+ def ensure_string_array(
134
+ arr,
135
+ na_value: object = ...,
136
+ convert_na_value: bool = ...,
137
+ copy: bool = ...,
138
+ skipna: bool = ...,
139
+ ) -> npt.NDArray[np.object_]: ...
140
+ def convert_nans_to_NA(
141
+ arr: npt.NDArray[np.object_],
142
+ ) -> npt.NDArray[np.object_]: ...
143
+ def fast_zip(ndarrays: list) -> npt.NDArray[np.object_]: ...
144
+
145
+ # TODO: can we be more specific about rows?
146
+ def to_object_array_tuples(rows: object) -> ndarray_obj_2d: ...
147
+ def tuples_to_object_array(
148
+ tuples: npt.NDArray[np.object_],
149
+ ) -> ndarray_obj_2d: ...
150
+
151
+ # TODO: can we be more specific about rows?
152
+ def to_object_array(rows: object, min_width: int = ...) -> ndarray_obj_2d: ...
153
+ def dicts_to_array(dicts: list, columns: list) -> ndarray_obj_2d: ...
154
+ def maybe_booleans_to_slice(
155
+ mask: npt.NDArray[np.uint8],
156
+ ) -> slice | npt.NDArray[np.uint8]: ...
157
+ def maybe_indices_to_slice(
158
+ indices: npt.NDArray[np.intp],
159
+ max_len: int,
160
+ ) -> slice | npt.NDArray[np.intp]: ...
161
+ def is_all_arraylike(obj: list) -> bool: ...
162
+
163
+ # -----------------------------------------------------------------
164
+ # Functions which in reality take memoryviews
165
+
166
+ def memory_usage_of_objects(arr: np.ndarray) -> int: ... # object[:] # np.int64
167
+ def map_infer_mask(
168
+ arr: np.ndarray,
169
+ f: Callable[[Any], Any],
170
+ mask: np.ndarray, # const uint8_t[:]
171
+ convert: bool = ...,
172
+ na_value: Any = ...,
173
+ dtype: np.dtype = ...,
174
+ ) -> np.ndarray: ...
175
+ def indices_fast(
176
+ index: npt.NDArray[np.intp],
177
+ labels: np.ndarray, # const int64_t[:]
178
+ keys: list,
179
+ sorted_labels: list[npt.NDArray[np.int64]],
180
+ ) -> dict[Hashable, npt.NDArray[np.intp]]: ...
181
+ def generate_slices(
182
+ labels: np.ndarray, ngroups: int # const intp_t[:]
183
+ ) -> tuple[npt.NDArray[np.int64], npt.NDArray[np.int64]]: ...
184
+ def count_level_2d(
185
+ mask: np.ndarray, # ndarray[uint8_t, ndim=2, cast=True],
186
+ labels: np.ndarray, # const intp_t[:]
187
+ max_bin: int,
188
+ ) -> np.ndarray: ... # np.ndarray[np.int64, ndim=2]
189
+ def get_level_sorter(
190
+ codes: np.ndarray, # const int64_t[:]
191
+ starts: np.ndarray, # const intp_t[:]
192
+ ) -> np.ndarray: ... # np.ndarray[np.intp, ndim=1]
193
+ def generate_bins_dt64(
194
+ values: npt.NDArray[np.int64],
195
+ binner: np.ndarray, # const int64_t[:]
196
+ closed: object = ...,
197
+ hasnans: bool = ...,
198
+ ) -> np.ndarray: ... # np.ndarray[np.int64, ndim=1]
199
+ def array_equivalent_object(
200
+ left: npt.NDArray[np.object_],
201
+ right: npt.NDArray[np.object_],
202
+ ) -> bool: ...
203
+ def has_infs(arr: np.ndarray) -> bool: ... # const floating[:]
204
+ def has_only_ints_or_nan(arr: np.ndarray) -> bool: ... # const floating[:]
205
+ def get_reverse_indexer(
206
+ indexer: np.ndarray, # const intp_t[:]
207
+ length: int,
208
+ ) -> npt.NDArray[np.intp]: ...
209
+ def is_bool_list(obj: list) -> bool: ...
210
+ def dtypes_all_equal(types: list[DtypeObj]) -> bool: ...
211
+ def is_range_indexer(
212
+ left: np.ndarray, n: int # np.ndarray[np.int64, ndim=1]
213
+ ) -> bool: ...
venv/lib/python3.10/site-packages/pandas/_libs/missing.pyi ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from numpy import typing as npt
3
+
4
+ class NAType:
5
+ def __new__(cls, *args, **kwargs): ...
6
+
7
+ NA: NAType
8
+
9
+ def is_matching_na(
10
+ left: object, right: object, nan_matches_none: bool = ...
11
+ ) -> bool: ...
12
+ def isposinf_scalar(val: object) -> bool: ...
13
+ def isneginf_scalar(val: object) -> bool: ...
14
+ def checknull(val: object, inf_as_na: bool = ...) -> bool: ...
15
+ def isnaobj(arr: np.ndarray, inf_as_na: bool = ...) -> npt.NDArray[np.bool_]: ...
16
+ def is_numeric_na(values: np.ndarray) -> npt.NDArray[np.bool_]: ...
venv/lib/python3.10/site-packages/pandas/_libs/ops.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (270 kB). View file
 
venv/lib/python3.10/site-packages/pandas/_libs/ops.pyi ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import (
2
+ Any,
3
+ Callable,
4
+ Iterable,
5
+ Literal,
6
+ TypeAlias,
7
+ overload,
8
+ )
9
+
10
+ import numpy as np
11
+
12
+ from pandas._typing import npt
13
+
14
+ _BinOp: TypeAlias = Callable[[Any, Any], Any]
15
+ _BoolOp: TypeAlias = Callable[[Any, Any], bool]
16
+
17
+ def scalar_compare(
18
+ values: np.ndarray, # object[:]
19
+ val: object,
20
+ op: _BoolOp, # {operator.eq, operator.ne, ...}
21
+ ) -> npt.NDArray[np.bool_]: ...
22
+ def vec_compare(
23
+ left: npt.NDArray[np.object_],
24
+ right: npt.NDArray[np.object_],
25
+ op: _BoolOp, # {operator.eq, operator.ne, ...}
26
+ ) -> npt.NDArray[np.bool_]: ...
27
+ def scalar_binop(
28
+ values: np.ndarray, # object[:]
29
+ val: object,
30
+ op: _BinOp, # binary operator
31
+ ) -> np.ndarray: ...
32
+ def vec_binop(
33
+ left: np.ndarray, # object[:]
34
+ right: np.ndarray, # object[:]
35
+ op: _BinOp, # binary operator
36
+ ) -> np.ndarray: ...
37
+ @overload
38
+ def maybe_convert_bool(
39
+ arr: npt.NDArray[np.object_],
40
+ true_values: Iterable | None = None,
41
+ false_values: Iterable | None = None,
42
+ convert_to_masked_nullable: Literal[False] = ...,
43
+ ) -> tuple[np.ndarray, None]: ...
44
+ @overload
45
+ def maybe_convert_bool(
46
+ arr: npt.NDArray[np.object_],
47
+ true_values: Iterable = ...,
48
+ false_values: Iterable = ...,
49
+ *,
50
+ convert_to_masked_nullable: Literal[True],
51
+ ) -> tuple[np.ndarray, np.ndarray]: ...
venv/lib/python3.10/site-packages/pandas/_libs/ops_dispatch.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (61.7 kB). View file
 
venv/lib/python3.10/site-packages/pandas/_libs/ops_dispatch.pyi ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+ def maybe_dispatch_ufunc_to_dunder_op(
4
+ self, ufunc: np.ufunc, method: str, *inputs, **kwargs
5
+ ): ...
venv/lib/python3.10/site-packages/pandas/_libs/pandas_datetime.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (39.3 kB). View file
 
venv/lib/python3.10/site-packages/pandas/_libs/pandas_parser.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (43.4 kB). View file
 
venv/lib/python3.10/site-packages/pandas/_libs/parsers.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (595 kB). View file
 
venv/lib/python3.10/site-packages/pandas/_libs/parsers.pyi ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import (
2
+ Hashable,
3
+ Literal,
4
+ )
5
+
6
+ import numpy as np
7
+
8
+ from pandas._typing import (
9
+ ArrayLike,
10
+ Dtype,
11
+ npt,
12
+ )
13
+
14
+ STR_NA_VALUES: set[str]
15
+ DEFAULT_BUFFER_HEURISTIC: int
16
+
17
+ def sanitize_objects(
18
+ values: npt.NDArray[np.object_],
19
+ na_values: set,
20
+ ) -> int: ...
21
+
22
+ class TextReader:
23
+ unnamed_cols: set[str]
24
+ table_width: int # int64_t
25
+ leading_cols: int # int64_t
26
+ header: list[list[int]] # non-negative integers
27
+ def __init__(
28
+ self,
29
+ source,
30
+ delimiter: bytes | str = ..., # single-character only
31
+ header=...,
32
+ header_start: int = ..., # int64_t
33
+ header_end: int = ..., # uint64_t
34
+ index_col=...,
35
+ names=...,
36
+ tokenize_chunksize: int = ..., # int64_t
37
+ delim_whitespace: bool = ...,
38
+ converters=...,
39
+ skipinitialspace: bool = ...,
40
+ escapechar: bytes | str | None = ..., # single-character only
41
+ doublequote: bool = ...,
42
+ quotechar: str | bytes | None = ..., # at most 1 character
43
+ quoting: int = ...,
44
+ lineterminator: bytes | str | None = ..., # at most 1 character
45
+ comment=...,
46
+ decimal: bytes | str = ..., # single-character only
47
+ thousands: bytes | str | None = ..., # single-character only
48
+ dtype: Dtype | dict[Hashable, Dtype] = ...,
49
+ usecols=...,
50
+ error_bad_lines: bool = ...,
51
+ warn_bad_lines: bool = ...,
52
+ na_filter: bool = ...,
53
+ na_values=...,
54
+ na_fvalues=...,
55
+ keep_default_na: bool = ...,
56
+ true_values=...,
57
+ false_values=...,
58
+ allow_leading_cols: bool = ...,
59
+ skiprows=...,
60
+ skipfooter: int = ..., # int64_t
61
+ verbose: bool = ...,
62
+ float_precision: Literal["round_trip", "legacy", "high"] | None = ...,
63
+ skip_blank_lines: bool = ...,
64
+ encoding_errors: bytes | str = ...,
65
+ ) -> None: ...
66
+ def set_noconvert(self, i: int) -> None: ...
67
+ def remove_noconvert(self, i: int) -> None: ...
68
+ def close(self) -> None: ...
69
+ def read(self, rows: int | None = ...) -> dict[int, ArrayLike]: ...
70
+ def read_low_memory(self, rows: int | None) -> list[dict[int, ArrayLike]]: ...
71
+
72
+ # _maybe_upcast, na_values are only exposed for testing
73
+ na_values: dict
74
+
75
+ def _maybe_upcast(
76
+ arr, use_dtype_backend: bool = ..., dtype_backend: str = ...
77
+ ) -> np.ndarray: ...
venv/lib/python3.10/site-packages/pandas/_libs/properties.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (91.9 kB). View file
 
venv/lib/python3.10/site-packages/pandas/_libs/properties.pyi ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import (
2
+ Sequence,
3
+ overload,
4
+ )
5
+
6
+ from pandas._typing import (
7
+ AnyArrayLike,
8
+ DataFrame,
9
+ Index,
10
+ Series,
11
+ )
12
+
13
+ # note: this is a lie to make type checkers happy (they special
14
+ # case property). cache_readonly uses attribute names similar to
15
+ # property (fget) but it does not provide fset and fdel.
16
+ cache_readonly = property
17
+
18
+ class AxisProperty:
19
+ axis: int
20
+ def __init__(self, axis: int = ..., doc: str = ...) -> None: ...
21
+ @overload
22
+ def __get__(self, obj: DataFrame | Series, type) -> Index: ...
23
+ @overload
24
+ def __get__(self, obj: None, type) -> AxisProperty: ...
25
+ def __set__(
26
+ self, obj: DataFrame | Series, value: AnyArrayLike | Sequence
27
+ ) -> None: ...
venv/lib/python3.10/site-packages/pandas/_libs/reshape.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (310 kB). View file
 
venv/lib/python3.10/site-packages/pandas/_libs/reshape.pyi ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+ from pandas._typing import npt
4
+
5
+ def unstack(
6
+ values: np.ndarray, # reshape_t[:, :]
7
+ mask: np.ndarray, # const uint8_t[:]
8
+ stride: int,
9
+ length: int,
10
+ width: int,
11
+ new_values: np.ndarray, # reshape_t[:, :]
12
+ new_mask: np.ndarray, # uint8_t[:, :]
13
+ ) -> None: ...
14
+ def explode(
15
+ values: npt.NDArray[np.object_],
16
+ ) -> tuple[npt.NDArray[np.object_], npt.NDArray[np.int64]]: ...
venv/lib/python3.10/site-packages/pandas/_libs/sas.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (267 kB). View file
 
venv/lib/python3.10/site-packages/pandas/_libs/sas.pyi ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ from pandas.io.sas.sas7bdat import SAS7BDATReader
2
+
3
+ class Parser:
4
+ def __init__(self, parser: SAS7BDATReader) -> None: ...
5
+ def read(self, nrows: int) -> None: ...
6
+
7
+ def get_subheader_index(signature: bytes) -> int: ...
venv/lib/python3.10/site-packages/pandas/_libs/sparse.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (989 kB). View file
 
venv/lib/python3.10/site-packages/pandas/_libs/testing.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (132 kB). View file
 
venv/lib/python3.10/site-packages/pandas/_libs/testing.pyi ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ def assert_dict_equal(a, b, compare_keys: bool = ...): ...
2
+ def assert_almost_equal(
3
+ a,
4
+ b,
5
+ rtol: float = ...,
6
+ atol: float = ...,
7
+ check_dtype: bool = ...,
8
+ obj=...,
9
+ lobj=...,
10
+ robj=...,
11
+ index_values=...,
12
+ ): ...
venv/lib/python3.10/site-packages/pandas/_libs/tslibs/__init__.py ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ __all__ = [
2
+ "dtypes",
3
+ "localize_pydatetime",
4
+ "NaT",
5
+ "NaTType",
6
+ "iNaT",
7
+ "nat_strings",
8
+ "OutOfBoundsDatetime",
9
+ "OutOfBoundsTimedelta",
10
+ "IncompatibleFrequency",
11
+ "Period",
12
+ "Resolution",
13
+ "Timedelta",
14
+ "normalize_i8_timestamps",
15
+ "is_date_array_normalized",
16
+ "dt64arr_to_periodarr",
17
+ "delta_to_nanoseconds",
18
+ "ints_to_pydatetime",
19
+ "ints_to_pytimedelta",
20
+ "get_resolution",
21
+ "Timestamp",
22
+ "tz_convert_from_utc_single",
23
+ "tz_convert_from_utc",
24
+ "to_offset",
25
+ "Tick",
26
+ "BaseOffset",
27
+ "tz_compare",
28
+ "is_unitless",
29
+ "astype_overflowsafe",
30
+ "get_unit_from_dtype",
31
+ "periods_per_day",
32
+ "periods_per_second",
33
+ "guess_datetime_format",
34
+ "add_overflowsafe",
35
+ "get_supported_dtype",
36
+ "is_supported_dtype",
37
+ ]
38
+
39
+ from pandas._libs.tslibs import dtypes # pylint: disable=import-self
40
+ from pandas._libs.tslibs.conversion import localize_pydatetime
41
+ from pandas._libs.tslibs.dtypes import (
42
+ Resolution,
43
+ periods_per_day,
44
+ periods_per_second,
45
+ )
46
+ from pandas._libs.tslibs.nattype import (
47
+ NaT,
48
+ NaTType,
49
+ iNaT,
50
+ nat_strings,
51
+ )
52
+ from pandas._libs.tslibs.np_datetime import (
53
+ OutOfBoundsDatetime,
54
+ OutOfBoundsTimedelta,
55
+ add_overflowsafe,
56
+ astype_overflowsafe,
57
+ get_supported_dtype,
58
+ is_supported_dtype,
59
+ is_unitless,
60
+ py_get_unit_from_dtype as get_unit_from_dtype,
61
+ )
62
+ from pandas._libs.tslibs.offsets import (
63
+ BaseOffset,
64
+ Tick,
65
+ to_offset,
66
+ )
67
+ from pandas._libs.tslibs.parsing import guess_datetime_format
68
+ from pandas._libs.tslibs.period import (
69
+ IncompatibleFrequency,
70
+ Period,
71
+ )
72
+ from pandas._libs.tslibs.timedeltas import (
73
+ Timedelta,
74
+ delta_to_nanoseconds,
75
+ ints_to_pytimedelta,
76
+ )
77
+ from pandas._libs.tslibs.timestamps import Timestamp
78
+ from pandas._libs.tslibs.timezones import tz_compare
79
+ from pandas._libs.tslibs.tzconversion import tz_convert_from_utc_single
80
+ from pandas._libs.tslibs.vectorized import (
81
+ dt64arr_to_periodarr,
82
+ get_resolution,
83
+ ints_to_pydatetime,
84
+ is_date_array_normalized,
85
+ normalize_i8_timestamps,
86
+ tz_convert_from_utc,
87
+ )
venv/lib/python3.10/site-packages/pandas/_libs/tslibs/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.85 kB). View file
 
venv/lib/python3.10/site-packages/pandas/_libs/tslibs/base.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (62.3 kB). View file
 
venv/lib/python3.10/site-packages/pandas/_libs/tslibs/ccalendar.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (103 kB). View file
 
venv/lib/python3.10/site-packages/pandas/_libs/tslibs/ccalendar.pyi ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ DAYS: list[str]
2
+ MONTH_ALIASES: dict[int, str]
3
+ MONTH_NUMBERS: dict[str, int]
4
+ MONTHS: list[str]
5
+ int_to_weekday: dict[int, str]
6
+
7
+ def get_firstbday(year: int, month: int) -> int: ...
8
+ def get_lastbday(year: int, month: int) -> int: ...
9
+ def get_day_of_year(year: int, month: int, day: int) -> int: ...
10
+ def get_iso_calendar(year: int, month: int, day: int) -> tuple[int, int, int]: ...
11
+ def get_week_of_year(year: int, month: int, day: int) -> int: ...
12
+ def get_days_in_month(year: int, month: int) -> int: ...
venv/lib/python3.10/site-packages/pandas/_libs/tslibs/conversion.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (308 kB). View file
 
venv/lib/python3.10/site-packages/pandas/_libs/tslibs/conversion.pyi ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datetime import (
2
+ datetime,
3
+ tzinfo,
4
+ )
5
+
6
+ import numpy as np
7
+
8
+ DT64NS_DTYPE: np.dtype
9
+ TD64NS_DTYPE: np.dtype
10
+
11
+ def localize_pydatetime(dt: datetime, tz: tzinfo | None) -> datetime: ...
12
+ def cast_from_unit_vectorized(
13
+ values: np.ndarray, unit: str, out_unit: str = ...
14
+ ) -> np.ndarray: ...
venv/lib/python3.10/site-packages/pandas/_libs/tslibs/dtypes.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (203 kB). View file
 
venv/lib/python3.10/site-packages/pandas/_libs/tslibs/dtypes.pyi ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from enum import Enum
2
+
3
+ OFFSET_TO_PERIOD_FREQSTR: dict[str, str]
4
+
5
+ def periods_per_day(reso: int = ...) -> int: ...
6
+ def periods_per_second(reso: int) -> int: ...
7
+ def abbrev_to_npy_unit(abbrev: str | None) -> int: ...
8
+ def freq_to_period_freqstr(freq_n: int, freq_name: str) -> str: ...
9
+
10
+ class PeriodDtypeBase:
11
+ _dtype_code: int # PeriodDtypeCode
12
+ _n: int
13
+
14
+ # actually __cinit__
15
+ def __new__(cls, code: int, n: int): ...
16
+ @property
17
+ def _freq_group_code(self) -> int: ...
18
+ @property
19
+ def _resolution_obj(self) -> Resolution: ...
20
+ def _get_to_timestamp_base(self) -> int: ...
21
+ @property
22
+ def _freqstr(self) -> str: ...
23
+ def __hash__(self) -> int: ...
24
+ def _is_tick_like(self) -> bool: ...
25
+ @property
26
+ def _creso(self) -> int: ...
27
+ @property
28
+ def _td64_unit(self) -> str: ...
29
+
30
+ class FreqGroup(Enum):
31
+ FR_ANN: int
32
+ FR_QTR: int
33
+ FR_MTH: int
34
+ FR_WK: int
35
+ FR_BUS: int
36
+ FR_DAY: int
37
+ FR_HR: int
38
+ FR_MIN: int
39
+ FR_SEC: int
40
+ FR_MS: int
41
+ FR_US: int
42
+ FR_NS: int
43
+ FR_UND: int
44
+ @staticmethod
45
+ def from_period_dtype_code(code: int) -> FreqGroup: ...
46
+
47
+ class Resolution(Enum):
48
+ RESO_NS: int
49
+ RESO_US: int
50
+ RESO_MS: int
51
+ RESO_SEC: int
52
+ RESO_MIN: int
53
+ RESO_HR: int
54
+ RESO_DAY: int
55
+ RESO_MTH: int
56
+ RESO_QTR: int
57
+ RESO_YR: int
58
+ def __lt__(self, other: Resolution) -> bool: ...
59
+ def __ge__(self, other: Resolution) -> bool: ...
60
+ @property
61
+ def attrname(self) -> str: ...
62
+ @classmethod
63
+ def from_attrname(cls, attrname: str) -> Resolution: ...
64
+ @classmethod
65
+ def get_reso_from_freqstr(cls, freq: str) -> Resolution: ...
66
+ @property
67
+ def attr_abbrev(self) -> str: ...
68
+
69
+ class NpyDatetimeUnit(Enum):
70
+ NPY_FR_Y: int
71
+ NPY_FR_M: int
72
+ NPY_FR_W: int
73
+ NPY_FR_D: int
74
+ NPY_FR_h: int
75
+ NPY_FR_m: int
76
+ NPY_FR_s: int
77
+ NPY_FR_ms: int
78
+ NPY_FR_us: int
79
+ NPY_FR_ns: int
80
+ NPY_FR_ps: int
81
+ NPY_FR_fs: int
82
+ NPY_FR_as: int
83
+ NPY_FR_GENERIC: int
venv/lib/python3.10/site-packages/pandas/_libs/tslibs/fields.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (345 kB). View file