Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/llama-3b/global_step100/bf16_zero_pp_rank_101_mp_rank_00_optim_states.pt +3 -0
- ckpts/llama-3b/global_step100/bf16_zero_pp_rank_114_mp_rank_01_optim_states.pt +3 -0
- ckpts/llama-3b/global_step100/bf16_zero_pp_rank_153_mp_rank_01_optim_states.pt +3 -0
- ckpts/llama-3b/global_step100/bf16_zero_pp_rank_159_mp_rank_03_optim_states.pt +3 -0
- ckpts/llama-3b/global_step100/bf16_zero_pp_rank_16_mp_rank_02_optim_states.pt +3 -0
- ckpts/llama-3b/global_step100/bf16_zero_pp_rank_184_mp_rank_01_optim_states.pt +3 -0
- ckpts/llama-3b/global_step100/bf16_zero_pp_rank_202_mp_rank_00_optim_states.pt +3 -0
- venv/lib/python3.10/site-packages/pandas/_libs/__init__.py +27 -0
- venv/lib/python3.10/site-packages/pandas/_libs/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/_libs/algos.pyi +416 -0
- venv/lib/python3.10/site-packages/pandas/_libs/arrays.cpython-310-x86_64-linux-gnu.so +0 -0
- venv/lib/python3.10/site-packages/pandas/_libs/arrays.pyi +40 -0
- venv/lib/python3.10/site-packages/pandas/_libs/byteswap.cpython-310-x86_64-linux-gnu.so +0 -0
- venv/lib/python3.10/site-packages/pandas/_libs/hashtable.pyi +252 -0
- venv/lib/python3.10/site-packages/pandas/_libs/index.cpython-310-x86_64-linux-gnu.so +0 -0
- venv/lib/python3.10/site-packages/pandas/_libs/indexing.pyi +17 -0
- venv/lib/python3.10/site-packages/pandas/_libs/internals.cpython-310-x86_64-linux-gnu.so +0 -0
- venv/lib/python3.10/site-packages/pandas/_libs/interval.pyi +174 -0
- venv/lib/python3.10/site-packages/pandas/_libs/join.pyi +79 -0
- venv/lib/python3.10/site-packages/pandas/_libs/json.pyi +23 -0
- venv/lib/python3.10/site-packages/pandas/_libs/lib.cpython-310-x86_64-linux-gnu.so +0 -0
- venv/lib/python3.10/site-packages/pandas/_libs/lib.pyi +213 -0
- venv/lib/python3.10/site-packages/pandas/_libs/missing.pyi +16 -0
- venv/lib/python3.10/site-packages/pandas/_libs/ops.cpython-310-x86_64-linux-gnu.so +0 -0
- venv/lib/python3.10/site-packages/pandas/_libs/ops.pyi +51 -0
- venv/lib/python3.10/site-packages/pandas/_libs/ops_dispatch.cpython-310-x86_64-linux-gnu.so +0 -0
- venv/lib/python3.10/site-packages/pandas/_libs/ops_dispatch.pyi +5 -0
- venv/lib/python3.10/site-packages/pandas/_libs/pandas_datetime.cpython-310-x86_64-linux-gnu.so +0 -0
- venv/lib/python3.10/site-packages/pandas/_libs/pandas_parser.cpython-310-x86_64-linux-gnu.so +0 -0
- venv/lib/python3.10/site-packages/pandas/_libs/parsers.cpython-310-x86_64-linux-gnu.so +0 -0
- venv/lib/python3.10/site-packages/pandas/_libs/parsers.pyi +77 -0
- venv/lib/python3.10/site-packages/pandas/_libs/properties.cpython-310-x86_64-linux-gnu.so +0 -0
- venv/lib/python3.10/site-packages/pandas/_libs/properties.pyi +27 -0
- venv/lib/python3.10/site-packages/pandas/_libs/reshape.cpython-310-x86_64-linux-gnu.so +0 -0
- venv/lib/python3.10/site-packages/pandas/_libs/reshape.pyi +16 -0
- venv/lib/python3.10/site-packages/pandas/_libs/sas.cpython-310-x86_64-linux-gnu.so +0 -0
- venv/lib/python3.10/site-packages/pandas/_libs/sas.pyi +7 -0
- venv/lib/python3.10/site-packages/pandas/_libs/sparse.cpython-310-x86_64-linux-gnu.so +0 -0
- venv/lib/python3.10/site-packages/pandas/_libs/testing.cpython-310-x86_64-linux-gnu.so +0 -0
- venv/lib/python3.10/site-packages/pandas/_libs/testing.pyi +12 -0
- venv/lib/python3.10/site-packages/pandas/_libs/tslibs/__init__.py +87 -0
- venv/lib/python3.10/site-packages/pandas/_libs/tslibs/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/_libs/tslibs/base.cpython-310-x86_64-linux-gnu.so +0 -0
- venv/lib/python3.10/site-packages/pandas/_libs/tslibs/ccalendar.cpython-310-x86_64-linux-gnu.so +0 -0
- venv/lib/python3.10/site-packages/pandas/_libs/tslibs/ccalendar.pyi +12 -0
- venv/lib/python3.10/site-packages/pandas/_libs/tslibs/conversion.cpython-310-x86_64-linux-gnu.so +0 -0
- venv/lib/python3.10/site-packages/pandas/_libs/tslibs/conversion.pyi +14 -0
- venv/lib/python3.10/site-packages/pandas/_libs/tslibs/dtypes.cpython-310-x86_64-linux-gnu.so +0 -0
- venv/lib/python3.10/site-packages/pandas/_libs/tslibs/dtypes.pyi +83 -0
- venv/lib/python3.10/site-packages/pandas/_libs/tslibs/fields.cpython-310-x86_64-linux-gnu.so +0 -0
ckpts/llama-3b/global_step100/bf16_zero_pp_rank_101_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7f0e3d094e1c331f64b1cc62f98437bce7503be726b98e3b254b31ed3252bf6f
|
3 |
+
size 41830212
|
ckpts/llama-3b/global_step100/bf16_zero_pp_rank_114_mp_rank_01_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4b2979074f1dc059e9a311e3a9c817093ee86d0fc2e071ffb8af855fe3f0895b
|
3 |
+
size 41830148
|
ckpts/llama-3b/global_step100/bf16_zero_pp_rank_153_mp_rank_01_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:91b947e142b8210ae3d66dd736a6db7a4bc8aaa3215373740688e084b6f07b49
|
3 |
+
size 41830148
|
ckpts/llama-3b/global_step100/bf16_zero_pp_rank_159_mp_rank_03_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2a24e0154820d32a63e7027ab286273c3042b8c4a13dc3390f5b44b522d5186e
|
3 |
+
size 41830340
|
ckpts/llama-3b/global_step100/bf16_zero_pp_rank_16_mp_rank_02_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7f21fdd267cecef091ba9dd638d4d04c6756a94d9a659b969112debb8a22c8fb
|
3 |
+
size 41830394
|
ckpts/llama-3b/global_step100/bf16_zero_pp_rank_184_mp_rank_01_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:214aea51f9cb954de15e888b89e2d52f2bfe596149dea7bc5553322d2dc7ed02
|
3 |
+
size 41830212
|
ckpts/llama-3b/global_step100/bf16_zero_pp_rank_202_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:13e00003ccc2d26df7db7cf4e20b7ee28acf997802739a74e77fe65ba3c190d4
|
3 |
+
size 41830148
|
venv/lib/python3.10/site-packages/pandas/_libs/__init__.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__all__ = [
|
2 |
+
"NaT",
|
3 |
+
"NaTType",
|
4 |
+
"OutOfBoundsDatetime",
|
5 |
+
"Period",
|
6 |
+
"Timedelta",
|
7 |
+
"Timestamp",
|
8 |
+
"iNaT",
|
9 |
+
"Interval",
|
10 |
+
]
|
11 |
+
|
12 |
+
|
13 |
+
# Below imports needs to happen first to ensure pandas top level
|
14 |
+
# module gets monkeypatched with the pandas_datetime_CAPI
|
15 |
+
# see pandas_datetime_exec in pd_datetime.c
|
16 |
+
import pandas._libs.pandas_parser # isort: skip # type: ignore[reportUnusedImport]
|
17 |
+
import pandas._libs.pandas_datetime # noqa: F401 # isort: skip # type: ignore[reportUnusedImport]
|
18 |
+
from pandas._libs.interval import Interval
|
19 |
+
from pandas._libs.tslibs import (
|
20 |
+
NaT,
|
21 |
+
NaTType,
|
22 |
+
OutOfBoundsDatetime,
|
23 |
+
Period,
|
24 |
+
Timedelta,
|
25 |
+
Timestamp,
|
26 |
+
iNaT,
|
27 |
+
)
|
venv/lib/python3.10/site-packages/pandas/_libs/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (548 Bytes). View file
|
|
venv/lib/python3.10/site-packages/pandas/_libs/algos.pyi
ADDED
@@ -0,0 +1,416 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
from pandas._typing import npt
|
6 |
+
|
7 |
+
class Infinity:
|
8 |
+
def __eq__(self, other) -> bool: ...
|
9 |
+
def __ne__(self, other) -> bool: ...
|
10 |
+
def __lt__(self, other) -> bool: ...
|
11 |
+
def __le__(self, other) -> bool: ...
|
12 |
+
def __gt__(self, other) -> bool: ...
|
13 |
+
def __ge__(self, other) -> bool: ...
|
14 |
+
|
15 |
+
class NegInfinity:
|
16 |
+
def __eq__(self, other) -> bool: ...
|
17 |
+
def __ne__(self, other) -> bool: ...
|
18 |
+
def __lt__(self, other) -> bool: ...
|
19 |
+
def __le__(self, other) -> bool: ...
|
20 |
+
def __gt__(self, other) -> bool: ...
|
21 |
+
def __ge__(self, other) -> bool: ...
|
22 |
+
|
23 |
+
def unique_deltas(
|
24 |
+
arr: np.ndarray, # const int64_t[:]
|
25 |
+
) -> np.ndarray: ... # np.ndarray[np.int64, ndim=1]
|
26 |
+
def is_lexsorted(list_of_arrays: list[npt.NDArray[np.int64]]) -> bool: ...
|
27 |
+
def groupsort_indexer(
|
28 |
+
index: np.ndarray, # const int64_t[:]
|
29 |
+
ngroups: int,
|
30 |
+
) -> tuple[
|
31 |
+
np.ndarray, # ndarray[int64_t, ndim=1]
|
32 |
+
np.ndarray, # ndarray[int64_t, ndim=1]
|
33 |
+
]: ...
|
34 |
+
def kth_smallest(
|
35 |
+
arr: np.ndarray, # numeric[:]
|
36 |
+
k: int,
|
37 |
+
) -> Any: ... # numeric
|
38 |
+
|
39 |
+
# ----------------------------------------------------------------------
|
40 |
+
# Pairwise correlation/covariance
|
41 |
+
|
42 |
+
def nancorr(
|
43 |
+
mat: npt.NDArray[np.float64], # const float64_t[:, :]
|
44 |
+
cov: bool = ...,
|
45 |
+
minp: int | None = ...,
|
46 |
+
) -> npt.NDArray[np.float64]: ... # ndarray[float64_t, ndim=2]
|
47 |
+
def nancorr_spearman(
|
48 |
+
mat: npt.NDArray[np.float64], # ndarray[float64_t, ndim=2]
|
49 |
+
minp: int = ...,
|
50 |
+
) -> npt.NDArray[np.float64]: ... # ndarray[float64_t, ndim=2]
|
51 |
+
|
52 |
+
# ----------------------------------------------------------------------
|
53 |
+
|
54 |
+
def validate_limit(nobs: int | None, limit=...) -> int: ...
|
55 |
+
def get_fill_indexer(
|
56 |
+
mask: npt.NDArray[np.bool_],
|
57 |
+
limit: int | None = None,
|
58 |
+
) -> npt.NDArray[np.intp]: ...
|
59 |
+
def pad(
|
60 |
+
old: np.ndarray, # ndarray[numeric_object_t]
|
61 |
+
new: np.ndarray, # ndarray[numeric_object_t]
|
62 |
+
limit=...,
|
63 |
+
) -> npt.NDArray[np.intp]: ... # np.ndarray[np.intp, ndim=1]
|
64 |
+
def pad_inplace(
|
65 |
+
values: np.ndarray, # numeric_object_t[:]
|
66 |
+
mask: np.ndarray, # uint8_t[:]
|
67 |
+
limit=...,
|
68 |
+
) -> None: ...
|
69 |
+
def pad_2d_inplace(
|
70 |
+
values: np.ndarray, # numeric_object_t[:, :]
|
71 |
+
mask: np.ndarray, # const uint8_t[:, :]
|
72 |
+
limit=...,
|
73 |
+
) -> None: ...
|
74 |
+
def backfill(
|
75 |
+
old: np.ndarray, # ndarray[numeric_object_t]
|
76 |
+
new: np.ndarray, # ndarray[numeric_object_t]
|
77 |
+
limit=...,
|
78 |
+
) -> npt.NDArray[np.intp]: ... # np.ndarray[np.intp, ndim=1]
|
79 |
+
def backfill_inplace(
|
80 |
+
values: np.ndarray, # numeric_object_t[:]
|
81 |
+
mask: np.ndarray, # uint8_t[:]
|
82 |
+
limit=...,
|
83 |
+
) -> None: ...
|
84 |
+
def backfill_2d_inplace(
|
85 |
+
values: np.ndarray, # numeric_object_t[:, :]
|
86 |
+
mask: np.ndarray, # const uint8_t[:, :]
|
87 |
+
limit=...,
|
88 |
+
) -> None: ...
|
89 |
+
def is_monotonic(
|
90 |
+
arr: np.ndarray, # ndarray[numeric_object_t, ndim=1]
|
91 |
+
timelike: bool,
|
92 |
+
) -> tuple[bool, bool, bool]: ...
|
93 |
+
|
94 |
+
# ----------------------------------------------------------------------
|
95 |
+
# rank_1d, rank_2d
|
96 |
+
# ----------------------------------------------------------------------
|
97 |
+
|
98 |
+
def rank_1d(
|
99 |
+
values: np.ndarray, # ndarray[numeric_object_t, ndim=1]
|
100 |
+
labels: np.ndarray | None = ..., # const int64_t[:]=None
|
101 |
+
is_datetimelike: bool = ...,
|
102 |
+
ties_method=...,
|
103 |
+
ascending: bool = ...,
|
104 |
+
pct: bool = ...,
|
105 |
+
na_option=...,
|
106 |
+
mask: npt.NDArray[np.bool_] | None = ...,
|
107 |
+
) -> np.ndarray: ... # np.ndarray[float64_t, ndim=1]
|
108 |
+
def rank_2d(
|
109 |
+
in_arr: np.ndarray, # ndarray[numeric_object_t, ndim=2]
|
110 |
+
axis: int = ...,
|
111 |
+
is_datetimelike: bool = ...,
|
112 |
+
ties_method=...,
|
113 |
+
ascending: bool = ...,
|
114 |
+
na_option=...,
|
115 |
+
pct: bool = ...,
|
116 |
+
) -> np.ndarray: ... # np.ndarray[float64_t, ndim=1]
|
117 |
+
def diff_2d(
|
118 |
+
arr: np.ndarray, # ndarray[diff_t, ndim=2]
|
119 |
+
out: np.ndarray, # ndarray[out_t, ndim=2]
|
120 |
+
periods: int,
|
121 |
+
axis: int,
|
122 |
+
datetimelike: bool = ...,
|
123 |
+
) -> None: ...
|
124 |
+
def ensure_platform_int(arr: object) -> npt.NDArray[np.intp]: ...
|
125 |
+
def ensure_object(arr: object) -> npt.NDArray[np.object_]: ...
|
126 |
+
def ensure_float64(arr: object) -> npt.NDArray[np.float64]: ...
|
127 |
+
def ensure_int8(arr: object) -> npt.NDArray[np.int8]: ...
|
128 |
+
def ensure_int16(arr: object) -> npt.NDArray[np.int16]: ...
|
129 |
+
def ensure_int32(arr: object) -> npt.NDArray[np.int32]: ...
|
130 |
+
def ensure_int64(arr: object) -> npt.NDArray[np.int64]: ...
|
131 |
+
def ensure_uint64(arr: object) -> npt.NDArray[np.uint64]: ...
|
132 |
+
def take_1d_int8_int8(
|
133 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
134 |
+
) -> None: ...
|
135 |
+
def take_1d_int8_int32(
|
136 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
137 |
+
) -> None: ...
|
138 |
+
def take_1d_int8_int64(
|
139 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
140 |
+
) -> None: ...
|
141 |
+
def take_1d_int8_float64(
|
142 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
143 |
+
) -> None: ...
|
144 |
+
def take_1d_int16_int16(
|
145 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
146 |
+
) -> None: ...
|
147 |
+
def take_1d_int16_int32(
|
148 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
149 |
+
) -> None: ...
|
150 |
+
def take_1d_int16_int64(
|
151 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
152 |
+
) -> None: ...
|
153 |
+
def take_1d_int16_float64(
|
154 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
155 |
+
) -> None: ...
|
156 |
+
def take_1d_int32_int32(
|
157 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
158 |
+
) -> None: ...
|
159 |
+
def take_1d_int32_int64(
|
160 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
161 |
+
) -> None: ...
|
162 |
+
def take_1d_int32_float64(
|
163 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
164 |
+
) -> None: ...
|
165 |
+
def take_1d_int64_int64(
|
166 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
167 |
+
) -> None: ...
|
168 |
+
def take_1d_int64_float64(
|
169 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
170 |
+
) -> None: ...
|
171 |
+
def take_1d_float32_float32(
|
172 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
173 |
+
) -> None: ...
|
174 |
+
def take_1d_float32_float64(
|
175 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
176 |
+
) -> None: ...
|
177 |
+
def take_1d_float64_float64(
|
178 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
179 |
+
) -> None: ...
|
180 |
+
def take_1d_object_object(
|
181 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
182 |
+
) -> None: ...
|
183 |
+
def take_1d_bool_bool(
|
184 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
185 |
+
) -> None: ...
|
186 |
+
def take_1d_bool_object(
|
187 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
188 |
+
) -> None: ...
|
189 |
+
def take_2d_axis0_int8_int8(
|
190 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
191 |
+
) -> None: ...
|
192 |
+
def take_2d_axis0_int8_int32(
|
193 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
194 |
+
) -> None: ...
|
195 |
+
def take_2d_axis0_int8_int64(
|
196 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
197 |
+
) -> None: ...
|
198 |
+
def take_2d_axis0_int8_float64(
|
199 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
200 |
+
) -> None: ...
|
201 |
+
def take_2d_axis0_int16_int16(
|
202 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
203 |
+
) -> None: ...
|
204 |
+
def take_2d_axis0_int16_int32(
|
205 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
206 |
+
) -> None: ...
|
207 |
+
def take_2d_axis0_int16_int64(
|
208 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
209 |
+
) -> None: ...
|
210 |
+
def take_2d_axis0_int16_float64(
|
211 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
212 |
+
) -> None: ...
|
213 |
+
def take_2d_axis0_int32_int32(
|
214 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
215 |
+
) -> None: ...
|
216 |
+
def take_2d_axis0_int32_int64(
|
217 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
218 |
+
) -> None: ...
|
219 |
+
def take_2d_axis0_int32_float64(
|
220 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
221 |
+
) -> None: ...
|
222 |
+
def take_2d_axis0_int64_int64(
|
223 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
224 |
+
) -> None: ...
|
225 |
+
def take_2d_axis0_int64_float64(
|
226 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
227 |
+
) -> None: ...
|
228 |
+
def take_2d_axis0_float32_float32(
|
229 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
230 |
+
) -> None: ...
|
231 |
+
def take_2d_axis0_float32_float64(
|
232 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
233 |
+
) -> None: ...
|
234 |
+
def take_2d_axis0_float64_float64(
|
235 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
236 |
+
) -> None: ...
|
237 |
+
def take_2d_axis0_object_object(
|
238 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
239 |
+
) -> None: ...
|
240 |
+
def take_2d_axis0_bool_bool(
|
241 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
242 |
+
) -> None: ...
|
243 |
+
def take_2d_axis0_bool_object(
|
244 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
245 |
+
) -> None: ...
|
246 |
+
def take_2d_axis1_int8_int8(
|
247 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
248 |
+
) -> None: ...
|
249 |
+
def take_2d_axis1_int8_int32(
|
250 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
251 |
+
) -> None: ...
|
252 |
+
def take_2d_axis1_int8_int64(
|
253 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
254 |
+
) -> None: ...
|
255 |
+
def take_2d_axis1_int8_float64(
|
256 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
257 |
+
) -> None: ...
|
258 |
+
def take_2d_axis1_int16_int16(
|
259 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
260 |
+
) -> None: ...
|
261 |
+
def take_2d_axis1_int16_int32(
|
262 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
263 |
+
) -> None: ...
|
264 |
+
def take_2d_axis1_int16_int64(
|
265 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
266 |
+
) -> None: ...
|
267 |
+
def take_2d_axis1_int16_float64(
|
268 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
269 |
+
) -> None: ...
|
270 |
+
def take_2d_axis1_int32_int32(
|
271 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
272 |
+
) -> None: ...
|
273 |
+
def take_2d_axis1_int32_int64(
|
274 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
275 |
+
) -> None: ...
|
276 |
+
def take_2d_axis1_int32_float64(
|
277 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
278 |
+
) -> None: ...
|
279 |
+
def take_2d_axis1_int64_int64(
|
280 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
281 |
+
) -> None: ...
|
282 |
+
def take_2d_axis1_int64_float64(
|
283 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
284 |
+
) -> None: ...
|
285 |
+
def take_2d_axis1_float32_float32(
|
286 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
287 |
+
) -> None: ...
|
288 |
+
def take_2d_axis1_float32_float64(
|
289 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
290 |
+
) -> None: ...
|
291 |
+
def take_2d_axis1_float64_float64(
|
292 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
293 |
+
) -> None: ...
|
294 |
+
def take_2d_axis1_object_object(
|
295 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
296 |
+
) -> None: ...
|
297 |
+
def take_2d_axis1_bool_bool(
|
298 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
299 |
+
) -> None: ...
|
300 |
+
def take_2d_axis1_bool_object(
|
301 |
+
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
302 |
+
) -> None: ...
|
303 |
+
def take_2d_multi_int8_int8(
|
304 |
+
values: np.ndarray,
|
305 |
+
indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
|
306 |
+
out: np.ndarray,
|
307 |
+
fill_value=...,
|
308 |
+
) -> None: ...
|
309 |
+
def take_2d_multi_int8_int32(
|
310 |
+
values: np.ndarray,
|
311 |
+
indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
|
312 |
+
out: np.ndarray,
|
313 |
+
fill_value=...,
|
314 |
+
) -> None: ...
|
315 |
+
def take_2d_multi_int8_int64(
|
316 |
+
values: np.ndarray,
|
317 |
+
indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
|
318 |
+
out: np.ndarray,
|
319 |
+
fill_value=...,
|
320 |
+
) -> None: ...
|
321 |
+
def take_2d_multi_int8_float64(
|
322 |
+
values: np.ndarray,
|
323 |
+
indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
|
324 |
+
out: np.ndarray,
|
325 |
+
fill_value=...,
|
326 |
+
) -> None: ...
|
327 |
+
def take_2d_multi_int16_int16(
|
328 |
+
values: np.ndarray,
|
329 |
+
indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
|
330 |
+
out: np.ndarray,
|
331 |
+
fill_value=...,
|
332 |
+
) -> None: ...
|
333 |
+
def take_2d_multi_int16_int32(
|
334 |
+
values: np.ndarray,
|
335 |
+
indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
|
336 |
+
out: np.ndarray,
|
337 |
+
fill_value=...,
|
338 |
+
) -> None: ...
|
339 |
+
def take_2d_multi_int16_int64(
|
340 |
+
values: np.ndarray,
|
341 |
+
indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
|
342 |
+
out: np.ndarray,
|
343 |
+
fill_value=...,
|
344 |
+
) -> None: ...
|
345 |
+
def take_2d_multi_int16_float64(
|
346 |
+
values: np.ndarray,
|
347 |
+
indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
|
348 |
+
out: np.ndarray,
|
349 |
+
fill_value=...,
|
350 |
+
) -> None: ...
|
351 |
+
def take_2d_multi_int32_int32(
|
352 |
+
values: np.ndarray,
|
353 |
+
indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
|
354 |
+
out: np.ndarray,
|
355 |
+
fill_value=...,
|
356 |
+
) -> None: ...
|
357 |
+
def take_2d_multi_int32_int64(
|
358 |
+
values: np.ndarray,
|
359 |
+
indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
|
360 |
+
out: np.ndarray,
|
361 |
+
fill_value=...,
|
362 |
+
) -> None: ...
|
363 |
+
def take_2d_multi_int32_float64(
|
364 |
+
values: np.ndarray,
|
365 |
+
indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
|
366 |
+
out: np.ndarray,
|
367 |
+
fill_value=...,
|
368 |
+
) -> None: ...
|
369 |
+
def take_2d_multi_int64_float64(
|
370 |
+
values: np.ndarray,
|
371 |
+
indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
|
372 |
+
out: np.ndarray,
|
373 |
+
fill_value=...,
|
374 |
+
) -> None: ...
|
375 |
+
def take_2d_multi_float32_float32(
|
376 |
+
values: np.ndarray,
|
377 |
+
indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
|
378 |
+
out: np.ndarray,
|
379 |
+
fill_value=...,
|
380 |
+
) -> None: ...
|
381 |
+
def take_2d_multi_float32_float64(
|
382 |
+
values: np.ndarray,
|
383 |
+
indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
|
384 |
+
out: np.ndarray,
|
385 |
+
fill_value=...,
|
386 |
+
) -> None: ...
|
387 |
+
def take_2d_multi_float64_float64(
|
388 |
+
values: np.ndarray,
|
389 |
+
indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
|
390 |
+
out: np.ndarray,
|
391 |
+
fill_value=...,
|
392 |
+
) -> None: ...
|
393 |
+
def take_2d_multi_object_object(
|
394 |
+
values: np.ndarray,
|
395 |
+
indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
|
396 |
+
out: np.ndarray,
|
397 |
+
fill_value=...,
|
398 |
+
) -> None: ...
|
399 |
+
def take_2d_multi_bool_bool(
|
400 |
+
values: np.ndarray,
|
401 |
+
indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
|
402 |
+
out: np.ndarray,
|
403 |
+
fill_value=...,
|
404 |
+
) -> None: ...
|
405 |
+
def take_2d_multi_bool_object(
|
406 |
+
values: np.ndarray,
|
407 |
+
indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
|
408 |
+
out: np.ndarray,
|
409 |
+
fill_value=...,
|
410 |
+
) -> None: ...
|
411 |
+
def take_2d_multi_int64_int64(
|
412 |
+
values: np.ndarray,
|
413 |
+
indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
|
414 |
+
out: np.ndarray,
|
415 |
+
fill_value=...,
|
416 |
+
) -> None: ...
|
venv/lib/python3.10/site-packages/pandas/_libs/arrays.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (133 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/_libs/arrays.pyi
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Sequence
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
from pandas._typing import (
|
6 |
+
AxisInt,
|
7 |
+
DtypeObj,
|
8 |
+
Self,
|
9 |
+
Shape,
|
10 |
+
)
|
11 |
+
|
12 |
+
class NDArrayBacked:
|
13 |
+
_dtype: DtypeObj
|
14 |
+
_ndarray: np.ndarray
|
15 |
+
def __init__(self, values: np.ndarray, dtype: DtypeObj) -> None: ...
|
16 |
+
@classmethod
|
17 |
+
def _simple_new(cls, values: np.ndarray, dtype: DtypeObj): ...
|
18 |
+
def _from_backing_data(self, values: np.ndarray): ...
|
19 |
+
def __setstate__(self, state): ...
|
20 |
+
def __len__(self) -> int: ...
|
21 |
+
@property
|
22 |
+
def shape(self) -> Shape: ...
|
23 |
+
@property
|
24 |
+
def ndim(self) -> int: ...
|
25 |
+
@property
|
26 |
+
def size(self) -> int: ...
|
27 |
+
@property
|
28 |
+
def nbytes(self) -> int: ...
|
29 |
+
def copy(self, order=...): ...
|
30 |
+
def delete(self, loc, axis=...): ...
|
31 |
+
def swapaxes(self, axis1, axis2): ...
|
32 |
+
def repeat(self, repeats: int | Sequence[int], axis: int | None = ...): ...
|
33 |
+
def reshape(self, *args, **kwargs): ...
|
34 |
+
def ravel(self, order=...): ...
|
35 |
+
@property
|
36 |
+
def T(self): ...
|
37 |
+
@classmethod
|
38 |
+
def _concat_same_type(
|
39 |
+
cls, to_concat: Sequence[Self], axis: AxisInt = ...
|
40 |
+
) -> Self: ...
|
venv/lib/python3.10/site-packages/pandas/_libs/byteswap.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (61.7 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/_libs/hashtable.pyi
ADDED
@@ -0,0 +1,252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import (
|
2 |
+
Any,
|
3 |
+
Hashable,
|
4 |
+
Literal,
|
5 |
+
)
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
from pandas._typing import npt
|
10 |
+
|
11 |
+
def unique_label_indices(
|
12 |
+
labels: np.ndarray, # const int64_t[:]
|
13 |
+
) -> np.ndarray: ...
|
14 |
+
|
15 |
+
class Factorizer:
|
16 |
+
count: int
|
17 |
+
uniques: Any
|
18 |
+
def __init__(self, size_hint: int) -> None: ...
|
19 |
+
def get_count(self) -> int: ...
|
20 |
+
def factorize(
|
21 |
+
self,
|
22 |
+
values: np.ndarray,
|
23 |
+
na_sentinel=...,
|
24 |
+
na_value=...,
|
25 |
+
mask=...,
|
26 |
+
) -> npt.NDArray[np.intp]: ...
|
27 |
+
|
28 |
+
class ObjectFactorizer(Factorizer):
|
29 |
+
table: PyObjectHashTable
|
30 |
+
uniques: ObjectVector
|
31 |
+
|
32 |
+
class Int64Factorizer(Factorizer):
|
33 |
+
table: Int64HashTable
|
34 |
+
uniques: Int64Vector
|
35 |
+
|
36 |
+
class UInt64Factorizer(Factorizer):
|
37 |
+
table: UInt64HashTable
|
38 |
+
uniques: UInt64Vector
|
39 |
+
|
40 |
+
class Int32Factorizer(Factorizer):
|
41 |
+
table: Int32HashTable
|
42 |
+
uniques: Int32Vector
|
43 |
+
|
44 |
+
class UInt32Factorizer(Factorizer):
|
45 |
+
table: UInt32HashTable
|
46 |
+
uniques: UInt32Vector
|
47 |
+
|
48 |
+
class Int16Factorizer(Factorizer):
|
49 |
+
table: Int16HashTable
|
50 |
+
uniques: Int16Vector
|
51 |
+
|
52 |
+
class UInt16Factorizer(Factorizer):
|
53 |
+
table: UInt16HashTable
|
54 |
+
uniques: UInt16Vector
|
55 |
+
|
56 |
+
class Int8Factorizer(Factorizer):
|
57 |
+
table: Int8HashTable
|
58 |
+
uniques: Int8Vector
|
59 |
+
|
60 |
+
class UInt8Factorizer(Factorizer):
|
61 |
+
table: UInt8HashTable
|
62 |
+
uniques: UInt8Vector
|
63 |
+
|
64 |
+
class Float64Factorizer(Factorizer):
|
65 |
+
table: Float64HashTable
|
66 |
+
uniques: Float64Vector
|
67 |
+
|
68 |
+
class Float32Factorizer(Factorizer):
|
69 |
+
table: Float32HashTable
|
70 |
+
uniques: Float32Vector
|
71 |
+
|
72 |
+
class Complex64Factorizer(Factorizer):
|
73 |
+
table: Complex64HashTable
|
74 |
+
uniques: Complex64Vector
|
75 |
+
|
76 |
+
class Complex128Factorizer(Factorizer):
|
77 |
+
table: Complex128HashTable
|
78 |
+
uniques: Complex128Vector
|
79 |
+
|
80 |
+
class Int64Vector:
|
81 |
+
def __init__(self, *args) -> None: ...
|
82 |
+
def __len__(self) -> int: ...
|
83 |
+
def to_array(self) -> npt.NDArray[np.int64]: ...
|
84 |
+
|
85 |
+
class Int32Vector:
|
86 |
+
def __init__(self, *args) -> None: ...
|
87 |
+
def __len__(self) -> int: ...
|
88 |
+
def to_array(self) -> npt.NDArray[np.int32]: ...
|
89 |
+
|
90 |
+
class Int16Vector:
|
91 |
+
def __init__(self, *args) -> None: ...
|
92 |
+
def __len__(self) -> int: ...
|
93 |
+
def to_array(self) -> npt.NDArray[np.int16]: ...
|
94 |
+
|
95 |
+
class Int8Vector:
|
96 |
+
def __init__(self, *args) -> None: ...
|
97 |
+
def __len__(self) -> int: ...
|
98 |
+
def to_array(self) -> npt.NDArray[np.int8]: ...
|
99 |
+
|
100 |
+
class UInt64Vector:
|
101 |
+
def __init__(self, *args) -> None: ...
|
102 |
+
def __len__(self) -> int: ...
|
103 |
+
def to_array(self) -> npt.NDArray[np.uint64]: ...
|
104 |
+
|
105 |
+
class UInt32Vector:
|
106 |
+
def __init__(self, *args) -> None: ...
|
107 |
+
def __len__(self) -> int: ...
|
108 |
+
def to_array(self) -> npt.NDArray[np.uint32]: ...
|
109 |
+
|
110 |
+
class UInt16Vector:
|
111 |
+
def __init__(self, *args) -> None: ...
|
112 |
+
def __len__(self) -> int: ...
|
113 |
+
def to_array(self) -> npt.NDArray[np.uint16]: ...
|
114 |
+
|
115 |
+
class UInt8Vector:
|
116 |
+
def __init__(self, *args) -> None: ...
|
117 |
+
def __len__(self) -> int: ...
|
118 |
+
def to_array(self) -> npt.NDArray[np.uint8]: ...
|
119 |
+
|
120 |
+
class Float64Vector:
|
121 |
+
def __init__(self, *args) -> None: ...
|
122 |
+
def __len__(self) -> int: ...
|
123 |
+
def to_array(self) -> npt.NDArray[np.float64]: ...
|
124 |
+
|
125 |
+
class Float32Vector:
|
126 |
+
def __init__(self, *args) -> None: ...
|
127 |
+
def __len__(self) -> int: ...
|
128 |
+
def to_array(self) -> npt.NDArray[np.float32]: ...
|
129 |
+
|
130 |
+
class Complex128Vector:
|
131 |
+
def __init__(self, *args) -> None: ...
|
132 |
+
def __len__(self) -> int: ...
|
133 |
+
def to_array(self) -> npt.NDArray[np.complex128]: ...
|
134 |
+
|
135 |
+
class Complex64Vector:
|
136 |
+
def __init__(self, *args) -> None: ...
|
137 |
+
def __len__(self) -> int: ...
|
138 |
+
def to_array(self) -> npt.NDArray[np.complex64]: ...
|
139 |
+
|
140 |
+
class StringVector:
|
141 |
+
def __init__(self, *args) -> None: ...
|
142 |
+
def __len__(self) -> int: ...
|
143 |
+
def to_array(self) -> npt.NDArray[np.object_]: ...
|
144 |
+
|
145 |
+
class ObjectVector:
|
146 |
+
def __init__(self, *args) -> None: ...
|
147 |
+
def __len__(self) -> int: ...
|
148 |
+
def to_array(self) -> npt.NDArray[np.object_]: ...
|
149 |
+
|
150 |
+
class HashTable:
|
151 |
+
# NB: The base HashTable class does _not_ actually have these methods;
|
152 |
+
# we are putting them here for the sake of mypy to avoid
|
153 |
+
# reproducing them in each subclass below.
|
154 |
+
def __init__(self, size_hint: int = ..., uses_mask: bool = ...) -> None: ...
|
155 |
+
def __len__(self) -> int: ...
|
156 |
+
def __contains__(self, key: Hashable) -> bool: ...
|
157 |
+
def sizeof(self, deep: bool = ...) -> int: ...
|
158 |
+
def get_state(self) -> dict[str, int]: ...
|
159 |
+
# TODO: `val/key` type is subclass-specific
|
160 |
+
def get_item(self, val): ... # TODO: return type?
|
161 |
+
def set_item(self, key, val) -> None: ...
|
162 |
+
def get_na(self): ... # TODO: return type?
|
163 |
+
def set_na(self, val) -> None: ...
|
164 |
+
def map_locations(
|
165 |
+
self,
|
166 |
+
values: np.ndarray, # np.ndarray[subclass-specific]
|
167 |
+
mask: npt.NDArray[np.bool_] | None = ...,
|
168 |
+
) -> None: ...
|
169 |
+
def lookup(
|
170 |
+
self,
|
171 |
+
values: np.ndarray, # np.ndarray[subclass-specific]
|
172 |
+
mask: npt.NDArray[np.bool_] | None = ...,
|
173 |
+
) -> npt.NDArray[np.intp]: ...
|
174 |
+
def get_labels(
|
175 |
+
self,
|
176 |
+
values: np.ndarray, # np.ndarray[subclass-specific]
|
177 |
+
uniques, # SubclassTypeVector
|
178 |
+
count_prior: int = ...,
|
179 |
+
na_sentinel: int = ...,
|
180 |
+
na_value: object = ...,
|
181 |
+
mask=...,
|
182 |
+
) -> npt.NDArray[np.intp]: ...
|
183 |
+
def unique(
|
184 |
+
self,
|
185 |
+
values: np.ndarray, # np.ndarray[subclass-specific]
|
186 |
+
return_inverse: bool = ...,
|
187 |
+
mask=...,
|
188 |
+
) -> (
|
189 |
+
tuple[
|
190 |
+
np.ndarray, # np.ndarray[subclass-specific]
|
191 |
+
npt.NDArray[np.intp],
|
192 |
+
]
|
193 |
+
| np.ndarray
|
194 |
+
): ... # np.ndarray[subclass-specific]
|
195 |
+
def factorize(
|
196 |
+
self,
|
197 |
+
values: np.ndarray, # np.ndarray[subclass-specific]
|
198 |
+
na_sentinel: int = ...,
|
199 |
+
na_value: object = ...,
|
200 |
+
mask=...,
|
201 |
+
ignore_na: bool = True,
|
202 |
+
) -> tuple[np.ndarray, npt.NDArray[np.intp]]: ... # np.ndarray[subclass-specific]
|
203 |
+
|
204 |
+
class Complex128HashTable(HashTable): ...
|
205 |
+
class Complex64HashTable(HashTable): ...
|
206 |
+
class Float64HashTable(HashTable): ...
|
207 |
+
class Float32HashTable(HashTable): ...
|
208 |
+
|
209 |
+
class Int64HashTable(HashTable):
|
210 |
+
# Only Int64HashTable has get_labels_groupby, map_keys_to_values
|
211 |
+
def get_labels_groupby(
|
212 |
+
self,
|
213 |
+
values: npt.NDArray[np.int64], # const int64_t[:]
|
214 |
+
) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.int64]]: ...
|
215 |
+
def map_keys_to_values(
|
216 |
+
self,
|
217 |
+
keys: npt.NDArray[np.int64],
|
218 |
+
values: npt.NDArray[np.int64], # const int64_t[:]
|
219 |
+
) -> None: ...
|
220 |
+
|
221 |
+
class Int32HashTable(HashTable): ...
|
222 |
+
class Int16HashTable(HashTable): ...
|
223 |
+
class Int8HashTable(HashTable): ...
|
224 |
+
class UInt64HashTable(HashTable): ...
|
225 |
+
class UInt32HashTable(HashTable): ...
|
226 |
+
class UInt16HashTable(HashTable): ...
|
227 |
+
class UInt8HashTable(HashTable): ...
|
228 |
+
class StringHashTable(HashTable): ...
|
229 |
+
class PyObjectHashTable(HashTable): ...
|
230 |
+
class IntpHashTable(HashTable): ...
|
231 |
+
|
232 |
+
def duplicated(
|
233 |
+
values: np.ndarray,
|
234 |
+
keep: Literal["last", "first", False] = ...,
|
235 |
+
mask: npt.NDArray[np.bool_] | None = ...,
|
236 |
+
) -> npt.NDArray[np.bool_]: ...
|
237 |
+
def mode(
|
238 |
+
values: np.ndarray, dropna: bool, mask: npt.NDArray[np.bool_] | None = ...
|
239 |
+
) -> np.ndarray: ...
|
240 |
+
def value_count(
|
241 |
+
values: np.ndarray,
|
242 |
+
dropna: bool,
|
243 |
+
mask: npt.NDArray[np.bool_] | None = ...,
|
244 |
+
) -> tuple[np.ndarray, npt.NDArray[np.int64], int]: ... # np.ndarray[same-as-values]
|
245 |
+
|
246 |
+
# arr and values should have same dtype
|
247 |
+
def ismember(
|
248 |
+
arr: np.ndarray,
|
249 |
+
values: np.ndarray,
|
250 |
+
) -> npt.NDArray[np.bool_]: ...
|
251 |
+
def object_hash(obj) -> int: ...
|
252 |
+
def objects_are_equal(a, b) -> bool: ...
|
venv/lib/python3.10/site-packages/pandas/_libs/index.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (988 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/_libs/indexing.pyi
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import (
|
2 |
+
Generic,
|
3 |
+
TypeVar,
|
4 |
+
)
|
5 |
+
|
6 |
+
from pandas.core.indexing import IndexingMixin
|
7 |
+
|
8 |
+
_IndexingMixinT = TypeVar("_IndexingMixinT", bound=IndexingMixin)
|
9 |
+
|
10 |
+
class NDFrameIndexerBase(Generic[_IndexingMixinT]):
|
11 |
+
name: str
|
12 |
+
# in practice obj is either a DataFrame or a Series
|
13 |
+
obj: _IndexingMixinT
|
14 |
+
|
15 |
+
def __init__(self, name: str, obj: _IndexingMixinT) -> None: ...
|
16 |
+
@property
|
17 |
+
def ndim(self) -> int: ...
|
venv/lib/python3.10/site-packages/pandas/_libs/internals.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (416 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/_libs/interval.pyi
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import (
|
2 |
+
Any,
|
3 |
+
Generic,
|
4 |
+
TypeVar,
|
5 |
+
overload,
|
6 |
+
)
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import numpy.typing as npt
|
10 |
+
|
11 |
+
from pandas._typing import (
|
12 |
+
IntervalClosedType,
|
13 |
+
Timedelta,
|
14 |
+
Timestamp,
|
15 |
+
)
|
16 |
+
|
17 |
+
VALID_CLOSED: frozenset[str]
|
18 |
+
|
19 |
+
_OrderableScalarT = TypeVar("_OrderableScalarT", int, float)
|
20 |
+
_OrderableTimesT = TypeVar("_OrderableTimesT", Timestamp, Timedelta)
|
21 |
+
_OrderableT = TypeVar("_OrderableT", int, float, Timestamp, Timedelta)
|
22 |
+
|
23 |
+
class _LengthDescriptor:
|
24 |
+
@overload
|
25 |
+
def __get__(
|
26 |
+
self, instance: Interval[_OrderableScalarT], owner: Any
|
27 |
+
) -> _OrderableScalarT: ...
|
28 |
+
@overload
|
29 |
+
def __get__(
|
30 |
+
self, instance: Interval[_OrderableTimesT], owner: Any
|
31 |
+
) -> Timedelta: ...
|
32 |
+
|
33 |
+
class _MidDescriptor:
|
34 |
+
@overload
|
35 |
+
def __get__(self, instance: Interval[_OrderableScalarT], owner: Any) -> float: ...
|
36 |
+
@overload
|
37 |
+
def __get__(
|
38 |
+
self, instance: Interval[_OrderableTimesT], owner: Any
|
39 |
+
) -> _OrderableTimesT: ...
|
40 |
+
|
41 |
+
class IntervalMixin:
|
42 |
+
@property
|
43 |
+
def closed_left(self) -> bool: ...
|
44 |
+
@property
|
45 |
+
def closed_right(self) -> bool: ...
|
46 |
+
@property
|
47 |
+
def open_left(self) -> bool: ...
|
48 |
+
@property
|
49 |
+
def open_right(self) -> bool: ...
|
50 |
+
@property
|
51 |
+
def is_empty(self) -> bool: ...
|
52 |
+
def _check_closed_matches(self, other: IntervalMixin, name: str = ...) -> None: ...
|
53 |
+
|
54 |
+
class Interval(IntervalMixin, Generic[_OrderableT]):
|
55 |
+
@property
|
56 |
+
def left(self: Interval[_OrderableT]) -> _OrderableT: ...
|
57 |
+
@property
|
58 |
+
def right(self: Interval[_OrderableT]) -> _OrderableT: ...
|
59 |
+
@property
|
60 |
+
def closed(self) -> IntervalClosedType: ...
|
61 |
+
mid: _MidDescriptor
|
62 |
+
length: _LengthDescriptor
|
63 |
+
def __init__(
|
64 |
+
self,
|
65 |
+
left: _OrderableT,
|
66 |
+
right: _OrderableT,
|
67 |
+
closed: IntervalClosedType = ...,
|
68 |
+
) -> None: ...
|
69 |
+
def __hash__(self) -> int: ...
|
70 |
+
@overload
|
71 |
+
def __contains__(
|
72 |
+
self: Interval[Timedelta], key: Timedelta | Interval[Timedelta]
|
73 |
+
) -> bool: ...
|
74 |
+
@overload
|
75 |
+
def __contains__(
|
76 |
+
self: Interval[Timestamp], key: Timestamp | Interval[Timestamp]
|
77 |
+
) -> bool: ...
|
78 |
+
@overload
|
79 |
+
def __contains__(
|
80 |
+
self: Interval[_OrderableScalarT],
|
81 |
+
key: _OrderableScalarT | Interval[_OrderableScalarT],
|
82 |
+
) -> bool: ...
|
83 |
+
@overload
|
84 |
+
def __add__(
|
85 |
+
self: Interval[_OrderableTimesT], y: Timedelta
|
86 |
+
) -> Interval[_OrderableTimesT]: ...
|
87 |
+
@overload
|
88 |
+
def __add__(
|
89 |
+
self: Interval[int], y: _OrderableScalarT
|
90 |
+
) -> Interval[_OrderableScalarT]: ...
|
91 |
+
@overload
|
92 |
+
def __add__(self: Interval[float], y: float) -> Interval[float]: ...
|
93 |
+
@overload
|
94 |
+
def __radd__(
|
95 |
+
self: Interval[_OrderableTimesT], y: Timedelta
|
96 |
+
) -> Interval[_OrderableTimesT]: ...
|
97 |
+
@overload
|
98 |
+
def __radd__(
|
99 |
+
self: Interval[int], y: _OrderableScalarT
|
100 |
+
) -> Interval[_OrderableScalarT]: ...
|
101 |
+
@overload
|
102 |
+
def __radd__(self: Interval[float], y: float) -> Interval[float]: ...
|
103 |
+
@overload
|
104 |
+
def __sub__(
|
105 |
+
self: Interval[_OrderableTimesT], y: Timedelta
|
106 |
+
) -> Interval[_OrderableTimesT]: ...
|
107 |
+
@overload
|
108 |
+
def __sub__(
|
109 |
+
self: Interval[int], y: _OrderableScalarT
|
110 |
+
) -> Interval[_OrderableScalarT]: ...
|
111 |
+
@overload
|
112 |
+
def __sub__(self: Interval[float], y: float) -> Interval[float]: ...
|
113 |
+
@overload
|
114 |
+
def __rsub__(
|
115 |
+
self: Interval[_OrderableTimesT], y: Timedelta
|
116 |
+
) -> Interval[_OrderableTimesT]: ...
|
117 |
+
@overload
|
118 |
+
def __rsub__(
|
119 |
+
self: Interval[int], y: _OrderableScalarT
|
120 |
+
) -> Interval[_OrderableScalarT]: ...
|
121 |
+
@overload
|
122 |
+
def __rsub__(self: Interval[float], y: float) -> Interval[float]: ...
|
123 |
+
@overload
|
124 |
+
def __mul__(
|
125 |
+
self: Interval[int], y: _OrderableScalarT
|
126 |
+
) -> Interval[_OrderableScalarT]: ...
|
127 |
+
@overload
|
128 |
+
def __mul__(self: Interval[float], y: float) -> Interval[float]: ...
|
129 |
+
@overload
|
130 |
+
def __rmul__(
|
131 |
+
self: Interval[int], y: _OrderableScalarT
|
132 |
+
) -> Interval[_OrderableScalarT]: ...
|
133 |
+
@overload
|
134 |
+
def __rmul__(self: Interval[float], y: float) -> Interval[float]: ...
|
135 |
+
@overload
|
136 |
+
def __truediv__(
|
137 |
+
self: Interval[int], y: _OrderableScalarT
|
138 |
+
) -> Interval[_OrderableScalarT]: ...
|
139 |
+
@overload
|
140 |
+
def __truediv__(self: Interval[float], y: float) -> Interval[float]: ...
|
141 |
+
@overload
|
142 |
+
def __floordiv__(
|
143 |
+
self: Interval[int], y: _OrderableScalarT
|
144 |
+
) -> Interval[_OrderableScalarT]: ...
|
145 |
+
@overload
|
146 |
+
def __floordiv__(self: Interval[float], y: float) -> Interval[float]: ...
|
147 |
+
def overlaps(self: Interval[_OrderableT], other: Interval[_OrderableT]) -> bool: ...
|
148 |
+
|
149 |
+
def intervals_to_interval_bounds(
|
150 |
+
intervals: np.ndarray, validate_closed: bool = ...
|
151 |
+
) -> tuple[np.ndarray, np.ndarray, IntervalClosedType]: ...
|
152 |
+
|
153 |
+
class IntervalTree(IntervalMixin):
|
154 |
+
def __init__(
|
155 |
+
self,
|
156 |
+
left: np.ndarray,
|
157 |
+
right: np.ndarray,
|
158 |
+
closed: IntervalClosedType = ...,
|
159 |
+
leaf_size: int = ...,
|
160 |
+
) -> None: ...
|
161 |
+
@property
|
162 |
+
def mid(self) -> np.ndarray: ...
|
163 |
+
@property
|
164 |
+
def length(self) -> np.ndarray: ...
|
165 |
+
def get_indexer(self, target) -> npt.NDArray[np.intp]: ...
|
166 |
+
def get_indexer_non_unique(
|
167 |
+
self, target
|
168 |
+
) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: ...
|
169 |
+
_na_count: int
|
170 |
+
@property
|
171 |
+
def is_overlapping(self) -> bool: ...
|
172 |
+
@property
|
173 |
+
def is_monotonic_increasing(self) -> bool: ...
|
174 |
+
def clear_mapping(self) -> None: ...
|
venv/lib/python3.10/site-packages/pandas/_libs/join.pyi
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
from pandas._typing import npt
|
4 |
+
|
5 |
+
def inner_join(
|
6 |
+
left: np.ndarray, # const intp_t[:]
|
7 |
+
right: np.ndarray, # const intp_t[:]
|
8 |
+
max_groups: int,
|
9 |
+
sort: bool = ...,
|
10 |
+
) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: ...
|
11 |
+
def left_outer_join(
|
12 |
+
left: np.ndarray, # const intp_t[:]
|
13 |
+
right: np.ndarray, # const intp_t[:]
|
14 |
+
max_groups: int,
|
15 |
+
sort: bool = ...,
|
16 |
+
) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: ...
|
17 |
+
def full_outer_join(
|
18 |
+
left: np.ndarray, # const intp_t[:]
|
19 |
+
right: np.ndarray, # const intp_t[:]
|
20 |
+
max_groups: int,
|
21 |
+
) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: ...
|
22 |
+
def ffill_indexer(
|
23 |
+
indexer: np.ndarray, # const intp_t[:]
|
24 |
+
) -> npt.NDArray[np.intp]: ...
|
25 |
+
def left_join_indexer_unique(
|
26 |
+
left: np.ndarray, # ndarray[join_t]
|
27 |
+
right: np.ndarray, # ndarray[join_t]
|
28 |
+
) -> npt.NDArray[np.intp]: ...
|
29 |
+
def left_join_indexer(
|
30 |
+
left: np.ndarray, # ndarray[join_t]
|
31 |
+
right: np.ndarray, # ndarray[join_t]
|
32 |
+
) -> tuple[
|
33 |
+
np.ndarray, # np.ndarray[join_t]
|
34 |
+
npt.NDArray[np.intp],
|
35 |
+
npt.NDArray[np.intp],
|
36 |
+
]: ...
|
37 |
+
def inner_join_indexer(
|
38 |
+
left: np.ndarray, # ndarray[join_t]
|
39 |
+
right: np.ndarray, # ndarray[join_t]
|
40 |
+
) -> tuple[
|
41 |
+
np.ndarray, # np.ndarray[join_t]
|
42 |
+
npt.NDArray[np.intp],
|
43 |
+
npt.NDArray[np.intp],
|
44 |
+
]: ...
|
45 |
+
def outer_join_indexer(
|
46 |
+
left: np.ndarray, # ndarray[join_t]
|
47 |
+
right: np.ndarray, # ndarray[join_t]
|
48 |
+
) -> tuple[
|
49 |
+
np.ndarray, # np.ndarray[join_t]
|
50 |
+
npt.NDArray[np.intp],
|
51 |
+
npt.NDArray[np.intp],
|
52 |
+
]: ...
|
53 |
+
def asof_join_backward_on_X_by_Y(
|
54 |
+
left_values: np.ndarray, # ndarray[numeric_t]
|
55 |
+
right_values: np.ndarray, # ndarray[numeric_t]
|
56 |
+
left_by_values: np.ndarray, # const int64_t[:]
|
57 |
+
right_by_values: np.ndarray, # const int64_t[:]
|
58 |
+
allow_exact_matches: bool = ...,
|
59 |
+
tolerance: np.number | float | None = ...,
|
60 |
+
use_hashtable: bool = ...,
|
61 |
+
) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: ...
|
62 |
+
def asof_join_forward_on_X_by_Y(
|
63 |
+
left_values: np.ndarray, # ndarray[numeric_t]
|
64 |
+
right_values: np.ndarray, # ndarray[numeric_t]
|
65 |
+
left_by_values: np.ndarray, # const int64_t[:]
|
66 |
+
right_by_values: np.ndarray, # const int64_t[:]
|
67 |
+
allow_exact_matches: bool = ...,
|
68 |
+
tolerance: np.number | float | None = ...,
|
69 |
+
use_hashtable: bool = ...,
|
70 |
+
) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: ...
|
71 |
+
def asof_join_nearest_on_X_by_Y(
|
72 |
+
left_values: np.ndarray, # ndarray[numeric_t]
|
73 |
+
right_values: np.ndarray, # ndarray[numeric_t]
|
74 |
+
left_by_values: np.ndarray, # const int64_t[:]
|
75 |
+
right_by_values: np.ndarray, # const int64_t[:]
|
76 |
+
allow_exact_matches: bool = ...,
|
77 |
+
tolerance: np.number | float | None = ...,
|
78 |
+
use_hashtable: bool = ...,
|
79 |
+
) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: ...
|
venv/lib/python3.10/site-packages/pandas/_libs/json.pyi
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import (
|
2 |
+
Any,
|
3 |
+
Callable,
|
4 |
+
)
|
5 |
+
|
6 |
+
def ujson_dumps(
|
7 |
+
obj: Any,
|
8 |
+
ensure_ascii: bool = ...,
|
9 |
+
double_precision: int = ...,
|
10 |
+
indent: int = ...,
|
11 |
+
orient: str = ...,
|
12 |
+
date_unit: str = ...,
|
13 |
+
iso_dates: bool = ...,
|
14 |
+
default_handler: None
|
15 |
+
| Callable[[Any], str | float | bool | list | dict | None] = ...,
|
16 |
+
) -> str: ...
|
17 |
+
def ujson_loads(
|
18 |
+
s: str,
|
19 |
+
precise_float: bool = ...,
|
20 |
+
numpy: bool = ...,
|
21 |
+
dtype: None = ...,
|
22 |
+
labelled: bool = ...,
|
23 |
+
) -> Any: ...
|
venv/lib/python3.10/site-packages/pandas/_libs/lib.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (938 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/_libs/lib.pyi
ADDED
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# TODO(npdtypes): Many types specified here can be made more specific/accurate;
|
2 |
+
# the more specific versions are specified in comments
|
3 |
+
from decimal import Decimal
|
4 |
+
from typing import (
|
5 |
+
Any,
|
6 |
+
Callable,
|
7 |
+
Final,
|
8 |
+
Generator,
|
9 |
+
Hashable,
|
10 |
+
Literal,
|
11 |
+
TypeAlias,
|
12 |
+
overload,
|
13 |
+
)
|
14 |
+
|
15 |
+
import numpy as np
|
16 |
+
|
17 |
+
from pandas._libs.interval import Interval
|
18 |
+
from pandas._libs.tslibs import Period
|
19 |
+
from pandas._typing import (
|
20 |
+
ArrayLike,
|
21 |
+
DtypeObj,
|
22 |
+
TypeGuard,
|
23 |
+
npt,
|
24 |
+
)
|
25 |
+
|
26 |
+
# placeholder until we can specify np.ndarray[object, ndim=2]
|
27 |
+
ndarray_obj_2d = np.ndarray
|
28 |
+
|
29 |
+
from enum import Enum
|
30 |
+
|
31 |
+
class _NoDefault(Enum):
|
32 |
+
no_default = ...
|
33 |
+
|
34 |
+
no_default: Final = _NoDefault.no_default
|
35 |
+
NoDefault: TypeAlias = Literal[_NoDefault.no_default]
|
36 |
+
|
37 |
+
i8max: int
|
38 |
+
u8max: int
|
39 |
+
|
40 |
+
def is_np_dtype(dtype: object, kinds: str | None = ...) -> TypeGuard[np.dtype]: ...
|
41 |
+
def item_from_zerodim(val: object) -> object: ...
|
42 |
+
def infer_dtype(value: object, skipna: bool = ...) -> str: ...
|
43 |
+
def is_iterator(obj: object) -> bool: ...
|
44 |
+
def is_scalar(val: object) -> bool: ...
|
45 |
+
def is_list_like(obj: object, allow_sets: bool = ...) -> bool: ...
|
46 |
+
def is_pyarrow_array(obj: object) -> bool: ...
|
47 |
+
def is_period(val: object) -> TypeGuard[Period]: ...
|
48 |
+
def is_interval(obj: object) -> TypeGuard[Interval]: ...
|
49 |
+
def is_decimal(obj: object) -> TypeGuard[Decimal]: ...
|
50 |
+
def is_complex(obj: object) -> TypeGuard[complex]: ...
|
51 |
+
def is_bool(obj: object) -> TypeGuard[bool | np.bool_]: ...
|
52 |
+
def is_integer(obj: object) -> TypeGuard[int | np.integer]: ...
|
53 |
+
def is_int_or_none(obj) -> bool: ...
|
54 |
+
def is_float(obj: object) -> TypeGuard[float]: ...
|
55 |
+
def is_interval_array(values: np.ndarray) -> bool: ...
|
56 |
+
def is_datetime64_array(values: np.ndarray, skipna: bool = True) -> bool: ...
|
57 |
+
def is_timedelta_or_timedelta64_array(
|
58 |
+
values: np.ndarray, skipna: bool = True
|
59 |
+
) -> bool: ...
|
60 |
+
def is_datetime_with_singletz_array(values: np.ndarray) -> bool: ...
|
61 |
+
def is_time_array(values: np.ndarray, skipna: bool = ...): ...
|
62 |
+
def is_date_array(values: np.ndarray, skipna: bool = ...): ...
|
63 |
+
def is_datetime_array(values: np.ndarray, skipna: bool = ...): ...
|
64 |
+
def is_string_array(values: np.ndarray, skipna: bool = ...): ...
|
65 |
+
def is_float_array(values: np.ndarray): ...
|
66 |
+
def is_integer_array(values: np.ndarray, skipna: bool = ...): ...
|
67 |
+
def is_bool_array(values: np.ndarray, skipna: bool = ...): ...
|
68 |
+
def fast_multiget(
|
69 |
+
mapping: dict,
|
70 |
+
keys: np.ndarray, # object[:]
|
71 |
+
default=...,
|
72 |
+
) -> np.ndarray: ...
|
73 |
+
def fast_unique_multiple_list_gen(gen: Generator, sort: bool = ...) -> list: ...
|
74 |
+
def fast_unique_multiple_list(lists: list, sort: bool | None = ...) -> list: ...
|
75 |
+
def map_infer(
|
76 |
+
arr: np.ndarray,
|
77 |
+
f: Callable[[Any], Any],
|
78 |
+
convert: bool = ...,
|
79 |
+
ignore_na: bool = ...,
|
80 |
+
) -> np.ndarray: ...
|
81 |
+
@overload
|
82 |
+
def maybe_convert_objects(
|
83 |
+
objects: npt.NDArray[np.object_],
|
84 |
+
*,
|
85 |
+
try_float: bool = ...,
|
86 |
+
safe: bool = ...,
|
87 |
+
convert_numeric: bool = ...,
|
88 |
+
convert_non_numeric: Literal[False] = ...,
|
89 |
+
convert_to_nullable_dtype: Literal[False] = ...,
|
90 |
+
dtype_if_all_nat: DtypeObj | None = ...,
|
91 |
+
) -> npt.NDArray[np.object_ | np.number]: ...
|
92 |
+
@overload
|
93 |
+
def maybe_convert_objects(
|
94 |
+
objects: npt.NDArray[np.object_],
|
95 |
+
*,
|
96 |
+
try_float: bool = ...,
|
97 |
+
safe: bool = ...,
|
98 |
+
convert_numeric: bool = ...,
|
99 |
+
convert_non_numeric: bool = ...,
|
100 |
+
convert_to_nullable_dtype: Literal[True] = ...,
|
101 |
+
dtype_if_all_nat: DtypeObj | None = ...,
|
102 |
+
) -> ArrayLike: ...
|
103 |
+
@overload
|
104 |
+
def maybe_convert_objects(
|
105 |
+
objects: npt.NDArray[np.object_],
|
106 |
+
*,
|
107 |
+
try_float: bool = ...,
|
108 |
+
safe: bool = ...,
|
109 |
+
convert_numeric: bool = ...,
|
110 |
+
convert_non_numeric: bool = ...,
|
111 |
+
convert_to_nullable_dtype: bool = ...,
|
112 |
+
dtype_if_all_nat: DtypeObj | None = ...,
|
113 |
+
) -> ArrayLike: ...
|
114 |
+
@overload
|
115 |
+
def maybe_convert_numeric(
|
116 |
+
values: npt.NDArray[np.object_],
|
117 |
+
na_values: set,
|
118 |
+
convert_empty: bool = ...,
|
119 |
+
coerce_numeric: bool = ...,
|
120 |
+
convert_to_masked_nullable: Literal[False] = ...,
|
121 |
+
) -> tuple[np.ndarray, None]: ...
|
122 |
+
@overload
|
123 |
+
def maybe_convert_numeric(
|
124 |
+
values: npt.NDArray[np.object_],
|
125 |
+
na_values: set,
|
126 |
+
convert_empty: bool = ...,
|
127 |
+
coerce_numeric: bool = ...,
|
128 |
+
*,
|
129 |
+
convert_to_masked_nullable: Literal[True],
|
130 |
+
) -> tuple[np.ndarray, np.ndarray]: ...
|
131 |
+
|
132 |
+
# TODO: restrict `arr`?
|
133 |
+
def ensure_string_array(
|
134 |
+
arr,
|
135 |
+
na_value: object = ...,
|
136 |
+
convert_na_value: bool = ...,
|
137 |
+
copy: bool = ...,
|
138 |
+
skipna: bool = ...,
|
139 |
+
) -> npt.NDArray[np.object_]: ...
|
140 |
+
def convert_nans_to_NA(
|
141 |
+
arr: npt.NDArray[np.object_],
|
142 |
+
) -> npt.NDArray[np.object_]: ...
|
143 |
+
def fast_zip(ndarrays: list) -> npt.NDArray[np.object_]: ...
|
144 |
+
|
145 |
+
# TODO: can we be more specific about rows?
|
146 |
+
def to_object_array_tuples(rows: object) -> ndarray_obj_2d: ...
|
147 |
+
def tuples_to_object_array(
|
148 |
+
tuples: npt.NDArray[np.object_],
|
149 |
+
) -> ndarray_obj_2d: ...
|
150 |
+
|
151 |
+
# TODO: can we be more specific about rows?
|
152 |
+
def to_object_array(rows: object, min_width: int = ...) -> ndarray_obj_2d: ...
|
153 |
+
def dicts_to_array(dicts: list, columns: list) -> ndarray_obj_2d: ...
|
154 |
+
def maybe_booleans_to_slice(
|
155 |
+
mask: npt.NDArray[np.uint8],
|
156 |
+
) -> slice | npt.NDArray[np.uint8]: ...
|
157 |
+
def maybe_indices_to_slice(
|
158 |
+
indices: npt.NDArray[np.intp],
|
159 |
+
max_len: int,
|
160 |
+
) -> slice | npt.NDArray[np.intp]: ...
|
161 |
+
def is_all_arraylike(obj: list) -> bool: ...
|
162 |
+
|
163 |
+
# -----------------------------------------------------------------
|
164 |
+
# Functions which in reality take memoryviews
|
165 |
+
|
166 |
+
def memory_usage_of_objects(arr: np.ndarray) -> int: ... # object[:] # np.int64
|
167 |
+
def map_infer_mask(
|
168 |
+
arr: np.ndarray,
|
169 |
+
f: Callable[[Any], Any],
|
170 |
+
mask: np.ndarray, # const uint8_t[:]
|
171 |
+
convert: bool = ...,
|
172 |
+
na_value: Any = ...,
|
173 |
+
dtype: np.dtype = ...,
|
174 |
+
) -> np.ndarray: ...
|
175 |
+
def indices_fast(
|
176 |
+
index: npt.NDArray[np.intp],
|
177 |
+
labels: np.ndarray, # const int64_t[:]
|
178 |
+
keys: list,
|
179 |
+
sorted_labels: list[npt.NDArray[np.int64]],
|
180 |
+
) -> dict[Hashable, npt.NDArray[np.intp]]: ...
|
181 |
+
def generate_slices(
|
182 |
+
labels: np.ndarray, ngroups: int # const intp_t[:]
|
183 |
+
) -> tuple[npt.NDArray[np.int64], npt.NDArray[np.int64]]: ...
|
184 |
+
def count_level_2d(
|
185 |
+
mask: np.ndarray, # ndarray[uint8_t, ndim=2, cast=True],
|
186 |
+
labels: np.ndarray, # const intp_t[:]
|
187 |
+
max_bin: int,
|
188 |
+
) -> np.ndarray: ... # np.ndarray[np.int64, ndim=2]
|
189 |
+
def get_level_sorter(
|
190 |
+
codes: np.ndarray, # const int64_t[:]
|
191 |
+
starts: np.ndarray, # const intp_t[:]
|
192 |
+
) -> np.ndarray: ... # np.ndarray[np.intp, ndim=1]
|
193 |
+
def generate_bins_dt64(
|
194 |
+
values: npt.NDArray[np.int64],
|
195 |
+
binner: np.ndarray, # const int64_t[:]
|
196 |
+
closed: object = ...,
|
197 |
+
hasnans: bool = ...,
|
198 |
+
) -> np.ndarray: ... # np.ndarray[np.int64, ndim=1]
|
199 |
+
def array_equivalent_object(
|
200 |
+
left: npt.NDArray[np.object_],
|
201 |
+
right: npt.NDArray[np.object_],
|
202 |
+
) -> bool: ...
|
203 |
+
def has_infs(arr: np.ndarray) -> bool: ... # const floating[:]
|
204 |
+
def has_only_ints_or_nan(arr: np.ndarray) -> bool: ... # const floating[:]
|
205 |
+
def get_reverse_indexer(
|
206 |
+
indexer: np.ndarray, # const intp_t[:]
|
207 |
+
length: int,
|
208 |
+
) -> npt.NDArray[np.intp]: ...
|
209 |
+
def is_bool_list(obj: list) -> bool: ...
|
210 |
+
def dtypes_all_equal(types: list[DtypeObj]) -> bool: ...
|
211 |
+
def is_range_indexer(
|
212 |
+
left: np.ndarray, n: int # np.ndarray[np.int64, ndim=1]
|
213 |
+
) -> bool: ...
|
venv/lib/python3.10/site-packages/pandas/_libs/missing.pyi
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from numpy import typing as npt
|
3 |
+
|
4 |
+
class NAType:
|
5 |
+
def __new__(cls, *args, **kwargs): ...
|
6 |
+
|
7 |
+
NA: NAType
|
8 |
+
|
9 |
+
def is_matching_na(
|
10 |
+
left: object, right: object, nan_matches_none: bool = ...
|
11 |
+
) -> bool: ...
|
12 |
+
def isposinf_scalar(val: object) -> bool: ...
|
13 |
+
def isneginf_scalar(val: object) -> bool: ...
|
14 |
+
def checknull(val: object, inf_as_na: bool = ...) -> bool: ...
|
15 |
+
def isnaobj(arr: np.ndarray, inf_as_na: bool = ...) -> npt.NDArray[np.bool_]: ...
|
16 |
+
def is_numeric_na(values: np.ndarray) -> npt.NDArray[np.bool_]: ...
|
venv/lib/python3.10/site-packages/pandas/_libs/ops.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (270 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/_libs/ops.pyi
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import (
|
2 |
+
Any,
|
3 |
+
Callable,
|
4 |
+
Iterable,
|
5 |
+
Literal,
|
6 |
+
TypeAlias,
|
7 |
+
overload,
|
8 |
+
)
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
|
12 |
+
from pandas._typing import npt
|
13 |
+
|
14 |
+
_BinOp: TypeAlias = Callable[[Any, Any], Any]
|
15 |
+
_BoolOp: TypeAlias = Callable[[Any, Any], bool]
|
16 |
+
|
17 |
+
def scalar_compare(
|
18 |
+
values: np.ndarray, # object[:]
|
19 |
+
val: object,
|
20 |
+
op: _BoolOp, # {operator.eq, operator.ne, ...}
|
21 |
+
) -> npt.NDArray[np.bool_]: ...
|
22 |
+
def vec_compare(
|
23 |
+
left: npt.NDArray[np.object_],
|
24 |
+
right: npt.NDArray[np.object_],
|
25 |
+
op: _BoolOp, # {operator.eq, operator.ne, ...}
|
26 |
+
) -> npt.NDArray[np.bool_]: ...
|
27 |
+
def scalar_binop(
|
28 |
+
values: np.ndarray, # object[:]
|
29 |
+
val: object,
|
30 |
+
op: _BinOp, # binary operator
|
31 |
+
) -> np.ndarray: ...
|
32 |
+
def vec_binop(
|
33 |
+
left: np.ndarray, # object[:]
|
34 |
+
right: np.ndarray, # object[:]
|
35 |
+
op: _BinOp, # binary operator
|
36 |
+
) -> np.ndarray: ...
|
37 |
+
@overload
|
38 |
+
def maybe_convert_bool(
|
39 |
+
arr: npt.NDArray[np.object_],
|
40 |
+
true_values: Iterable | None = None,
|
41 |
+
false_values: Iterable | None = None,
|
42 |
+
convert_to_masked_nullable: Literal[False] = ...,
|
43 |
+
) -> tuple[np.ndarray, None]: ...
|
44 |
+
@overload
|
45 |
+
def maybe_convert_bool(
|
46 |
+
arr: npt.NDArray[np.object_],
|
47 |
+
true_values: Iterable = ...,
|
48 |
+
false_values: Iterable = ...,
|
49 |
+
*,
|
50 |
+
convert_to_masked_nullable: Literal[True],
|
51 |
+
) -> tuple[np.ndarray, np.ndarray]: ...
|
venv/lib/python3.10/site-packages/pandas/_libs/ops_dispatch.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (61.7 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/_libs/ops_dispatch.pyi
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
def maybe_dispatch_ufunc_to_dunder_op(
|
4 |
+
self, ufunc: np.ufunc, method: str, *inputs, **kwargs
|
5 |
+
): ...
|
venv/lib/python3.10/site-packages/pandas/_libs/pandas_datetime.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (39.3 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/_libs/pandas_parser.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (43.4 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/_libs/parsers.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (595 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/_libs/parsers.pyi
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import (
|
2 |
+
Hashable,
|
3 |
+
Literal,
|
4 |
+
)
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
from pandas._typing import (
|
9 |
+
ArrayLike,
|
10 |
+
Dtype,
|
11 |
+
npt,
|
12 |
+
)
|
13 |
+
|
14 |
+
STR_NA_VALUES: set[str]
|
15 |
+
DEFAULT_BUFFER_HEURISTIC: int
|
16 |
+
|
17 |
+
def sanitize_objects(
|
18 |
+
values: npt.NDArray[np.object_],
|
19 |
+
na_values: set,
|
20 |
+
) -> int: ...
|
21 |
+
|
22 |
+
class TextReader:
|
23 |
+
unnamed_cols: set[str]
|
24 |
+
table_width: int # int64_t
|
25 |
+
leading_cols: int # int64_t
|
26 |
+
header: list[list[int]] # non-negative integers
|
27 |
+
def __init__(
|
28 |
+
self,
|
29 |
+
source,
|
30 |
+
delimiter: bytes | str = ..., # single-character only
|
31 |
+
header=...,
|
32 |
+
header_start: int = ..., # int64_t
|
33 |
+
header_end: int = ..., # uint64_t
|
34 |
+
index_col=...,
|
35 |
+
names=...,
|
36 |
+
tokenize_chunksize: int = ..., # int64_t
|
37 |
+
delim_whitespace: bool = ...,
|
38 |
+
converters=...,
|
39 |
+
skipinitialspace: bool = ...,
|
40 |
+
escapechar: bytes | str | None = ..., # single-character only
|
41 |
+
doublequote: bool = ...,
|
42 |
+
quotechar: str | bytes | None = ..., # at most 1 character
|
43 |
+
quoting: int = ...,
|
44 |
+
lineterminator: bytes | str | None = ..., # at most 1 character
|
45 |
+
comment=...,
|
46 |
+
decimal: bytes | str = ..., # single-character only
|
47 |
+
thousands: bytes | str | None = ..., # single-character only
|
48 |
+
dtype: Dtype | dict[Hashable, Dtype] = ...,
|
49 |
+
usecols=...,
|
50 |
+
error_bad_lines: bool = ...,
|
51 |
+
warn_bad_lines: bool = ...,
|
52 |
+
na_filter: bool = ...,
|
53 |
+
na_values=...,
|
54 |
+
na_fvalues=...,
|
55 |
+
keep_default_na: bool = ...,
|
56 |
+
true_values=...,
|
57 |
+
false_values=...,
|
58 |
+
allow_leading_cols: bool = ...,
|
59 |
+
skiprows=...,
|
60 |
+
skipfooter: int = ..., # int64_t
|
61 |
+
verbose: bool = ...,
|
62 |
+
float_precision: Literal["round_trip", "legacy", "high"] | None = ...,
|
63 |
+
skip_blank_lines: bool = ...,
|
64 |
+
encoding_errors: bytes | str = ...,
|
65 |
+
) -> None: ...
|
66 |
+
def set_noconvert(self, i: int) -> None: ...
|
67 |
+
def remove_noconvert(self, i: int) -> None: ...
|
68 |
+
def close(self) -> None: ...
|
69 |
+
def read(self, rows: int | None = ...) -> dict[int, ArrayLike]: ...
|
70 |
+
def read_low_memory(self, rows: int | None) -> list[dict[int, ArrayLike]]: ...
|
71 |
+
|
72 |
+
# _maybe_upcast, na_values are only exposed for testing
|
73 |
+
na_values: dict
|
74 |
+
|
75 |
+
def _maybe_upcast(
|
76 |
+
arr, use_dtype_backend: bool = ..., dtype_backend: str = ...
|
77 |
+
) -> np.ndarray: ...
|
venv/lib/python3.10/site-packages/pandas/_libs/properties.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (91.9 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/_libs/properties.pyi
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import (
|
2 |
+
Sequence,
|
3 |
+
overload,
|
4 |
+
)
|
5 |
+
|
6 |
+
from pandas._typing import (
|
7 |
+
AnyArrayLike,
|
8 |
+
DataFrame,
|
9 |
+
Index,
|
10 |
+
Series,
|
11 |
+
)
|
12 |
+
|
13 |
+
# note: this is a lie to make type checkers happy (they special
|
14 |
+
# case property). cache_readonly uses attribute names similar to
|
15 |
+
# property (fget) but it does not provide fset and fdel.
|
16 |
+
cache_readonly = property
|
17 |
+
|
18 |
+
class AxisProperty:
|
19 |
+
axis: int
|
20 |
+
def __init__(self, axis: int = ..., doc: str = ...) -> None: ...
|
21 |
+
@overload
|
22 |
+
def __get__(self, obj: DataFrame | Series, type) -> Index: ...
|
23 |
+
@overload
|
24 |
+
def __get__(self, obj: None, type) -> AxisProperty: ...
|
25 |
+
def __set__(
|
26 |
+
self, obj: DataFrame | Series, value: AnyArrayLike | Sequence
|
27 |
+
) -> None: ...
|
venv/lib/python3.10/site-packages/pandas/_libs/reshape.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (310 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/_libs/reshape.pyi
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
from pandas._typing import npt
|
4 |
+
|
5 |
+
def unstack(
|
6 |
+
values: np.ndarray, # reshape_t[:, :]
|
7 |
+
mask: np.ndarray, # const uint8_t[:]
|
8 |
+
stride: int,
|
9 |
+
length: int,
|
10 |
+
width: int,
|
11 |
+
new_values: np.ndarray, # reshape_t[:, :]
|
12 |
+
new_mask: np.ndarray, # uint8_t[:, :]
|
13 |
+
) -> None: ...
|
14 |
+
def explode(
|
15 |
+
values: npt.NDArray[np.object_],
|
16 |
+
) -> tuple[npt.NDArray[np.object_], npt.NDArray[np.int64]]: ...
|
venv/lib/python3.10/site-packages/pandas/_libs/sas.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (267 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/_libs/sas.pyi
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pandas.io.sas.sas7bdat import SAS7BDATReader
|
2 |
+
|
3 |
+
class Parser:
|
4 |
+
def __init__(self, parser: SAS7BDATReader) -> None: ...
|
5 |
+
def read(self, nrows: int) -> None: ...
|
6 |
+
|
7 |
+
def get_subheader_index(signature: bytes) -> int: ...
|
venv/lib/python3.10/site-packages/pandas/_libs/sparse.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (989 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/_libs/testing.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (132 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/_libs/testing.pyi
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
def assert_dict_equal(a, b, compare_keys: bool = ...): ...
|
2 |
+
def assert_almost_equal(
|
3 |
+
a,
|
4 |
+
b,
|
5 |
+
rtol: float = ...,
|
6 |
+
atol: float = ...,
|
7 |
+
check_dtype: bool = ...,
|
8 |
+
obj=...,
|
9 |
+
lobj=...,
|
10 |
+
robj=...,
|
11 |
+
index_values=...,
|
12 |
+
): ...
|
venv/lib/python3.10/site-packages/pandas/_libs/tslibs/__init__.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__all__ = [
|
2 |
+
"dtypes",
|
3 |
+
"localize_pydatetime",
|
4 |
+
"NaT",
|
5 |
+
"NaTType",
|
6 |
+
"iNaT",
|
7 |
+
"nat_strings",
|
8 |
+
"OutOfBoundsDatetime",
|
9 |
+
"OutOfBoundsTimedelta",
|
10 |
+
"IncompatibleFrequency",
|
11 |
+
"Period",
|
12 |
+
"Resolution",
|
13 |
+
"Timedelta",
|
14 |
+
"normalize_i8_timestamps",
|
15 |
+
"is_date_array_normalized",
|
16 |
+
"dt64arr_to_periodarr",
|
17 |
+
"delta_to_nanoseconds",
|
18 |
+
"ints_to_pydatetime",
|
19 |
+
"ints_to_pytimedelta",
|
20 |
+
"get_resolution",
|
21 |
+
"Timestamp",
|
22 |
+
"tz_convert_from_utc_single",
|
23 |
+
"tz_convert_from_utc",
|
24 |
+
"to_offset",
|
25 |
+
"Tick",
|
26 |
+
"BaseOffset",
|
27 |
+
"tz_compare",
|
28 |
+
"is_unitless",
|
29 |
+
"astype_overflowsafe",
|
30 |
+
"get_unit_from_dtype",
|
31 |
+
"periods_per_day",
|
32 |
+
"periods_per_second",
|
33 |
+
"guess_datetime_format",
|
34 |
+
"add_overflowsafe",
|
35 |
+
"get_supported_dtype",
|
36 |
+
"is_supported_dtype",
|
37 |
+
]
|
38 |
+
|
39 |
+
from pandas._libs.tslibs import dtypes # pylint: disable=import-self
|
40 |
+
from pandas._libs.tslibs.conversion import localize_pydatetime
|
41 |
+
from pandas._libs.tslibs.dtypes import (
|
42 |
+
Resolution,
|
43 |
+
periods_per_day,
|
44 |
+
periods_per_second,
|
45 |
+
)
|
46 |
+
from pandas._libs.tslibs.nattype import (
|
47 |
+
NaT,
|
48 |
+
NaTType,
|
49 |
+
iNaT,
|
50 |
+
nat_strings,
|
51 |
+
)
|
52 |
+
from pandas._libs.tslibs.np_datetime import (
|
53 |
+
OutOfBoundsDatetime,
|
54 |
+
OutOfBoundsTimedelta,
|
55 |
+
add_overflowsafe,
|
56 |
+
astype_overflowsafe,
|
57 |
+
get_supported_dtype,
|
58 |
+
is_supported_dtype,
|
59 |
+
is_unitless,
|
60 |
+
py_get_unit_from_dtype as get_unit_from_dtype,
|
61 |
+
)
|
62 |
+
from pandas._libs.tslibs.offsets import (
|
63 |
+
BaseOffset,
|
64 |
+
Tick,
|
65 |
+
to_offset,
|
66 |
+
)
|
67 |
+
from pandas._libs.tslibs.parsing import guess_datetime_format
|
68 |
+
from pandas._libs.tslibs.period import (
|
69 |
+
IncompatibleFrequency,
|
70 |
+
Period,
|
71 |
+
)
|
72 |
+
from pandas._libs.tslibs.timedeltas import (
|
73 |
+
Timedelta,
|
74 |
+
delta_to_nanoseconds,
|
75 |
+
ints_to_pytimedelta,
|
76 |
+
)
|
77 |
+
from pandas._libs.tslibs.timestamps import Timestamp
|
78 |
+
from pandas._libs.tslibs.timezones import tz_compare
|
79 |
+
from pandas._libs.tslibs.tzconversion import tz_convert_from_utc_single
|
80 |
+
from pandas._libs.tslibs.vectorized import (
|
81 |
+
dt64arr_to_periodarr,
|
82 |
+
get_resolution,
|
83 |
+
ints_to_pydatetime,
|
84 |
+
is_date_array_normalized,
|
85 |
+
normalize_i8_timestamps,
|
86 |
+
tz_convert_from_utc,
|
87 |
+
)
|
venv/lib/python3.10/site-packages/pandas/_libs/tslibs/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.85 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/_libs/tslibs/base.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (62.3 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/_libs/tslibs/ccalendar.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (103 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/_libs/tslibs/ccalendar.pyi
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
DAYS: list[str]
|
2 |
+
MONTH_ALIASES: dict[int, str]
|
3 |
+
MONTH_NUMBERS: dict[str, int]
|
4 |
+
MONTHS: list[str]
|
5 |
+
int_to_weekday: dict[int, str]
|
6 |
+
|
7 |
+
def get_firstbday(year: int, month: int) -> int: ...
|
8 |
+
def get_lastbday(year: int, month: int) -> int: ...
|
9 |
+
def get_day_of_year(year: int, month: int, day: int) -> int: ...
|
10 |
+
def get_iso_calendar(year: int, month: int, day: int) -> tuple[int, int, int]: ...
|
11 |
+
def get_week_of_year(year: int, month: int, day: int) -> int: ...
|
12 |
+
def get_days_in_month(year: int, month: int) -> int: ...
|
venv/lib/python3.10/site-packages/pandas/_libs/tslibs/conversion.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (308 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/_libs/tslibs/conversion.pyi
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datetime import (
|
2 |
+
datetime,
|
3 |
+
tzinfo,
|
4 |
+
)
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
DT64NS_DTYPE: np.dtype
|
9 |
+
TD64NS_DTYPE: np.dtype
|
10 |
+
|
11 |
+
def localize_pydatetime(dt: datetime, tz: tzinfo | None) -> datetime: ...
|
12 |
+
def cast_from_unit_vectorized(
|
13 |
+
values: np.ndarray, unit: str, out_unit: str = ...
|
14 |
+
) -> np.ndarray: ...
|
venv/lib/python3.10/site-packages/pandas/_libs/tslibs/dtypes.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (203 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/_libs/tslibs/dtypes.pyi
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from enum import Enum
|
2 |
+
|
3 |
+
OFFSET_TO_PERIOD_FREQSTR: dict[str, str]
|
4 |
+
|
5 |
+
def periods_per_day(reso: int = ...) -> int: ...
|
6 |
+
def periods_per_second(reso: int) -> int: ...
|
7 |
+
def abbrev_to_npy_unit(abbrev: str | None) -> int: ...
|
8 |
+
def freq_to_period_freqstr(freq_n: int, freq_name: str) -> str: ...
|
9 |
+
|
10 |
+
class PeriodDtypeBase:
|
11 |
+
_dtype_code: int # PeriodDtypeCode
|
12 |
+
_n: int
|
13 |
+
|
14 |
+
# actually __cinit__
|
15 |
+
def __new__(cls, code: int, n: int): ...
|
16 |
+
@property
|
17 |
+
def _freq_group_code(self) -> int: ...
|
18 |
+
@property
|
19 |
+
def _resolution_obj(self) -> Resolution: ...
|
20 |
+
def _get_to_timestamp_base(self) -> int: ...
|
21 |
+
@property
|
22 |
+
def _freqstr(self) -> str: ...
|
23 |
+
def __hash__(self) -> int: ...
|
24 |
+
def _is_tick_like(self) -> bool: ...
|
25 |
+
@property
|
26 |
+
def _creso(self) -> int: ...
|
27 |
+
@property
|
28 |
+
def _td64_unit(self) -> str: ...
|
29 |
+
|
30 |
+
class FreqGroup(Enum):
|
31 |
+
FR_ANN: int
|
32 |
+
FR_QTR: int
|
33 |
+
FR_MTH: int
|
34 |
+
FR_WK: int
|
35 |
+
FR_BUS: int
|
36 |
+
FR_DAY: int
|
37 |
+
FR_HR: int
|
38 |
+
FR_MIN: int
|
39 |
+
FR_SEC: int
|
40 |
+
FR_MS: int
|
41 |
+
FR_US: int
|
42 |
+
FR_NS: int
|
43 |
+
FR_UND: int
|
44 |
+
@staticmethod
|
45 |
+
def from_period_dtype_code(code: int) -> FreqGroup: ...
|
46 |
+
|
47 |
+
class Resolution(Enum):
|
48 |
+
RESO_NS: int
|
49 |
+
RESO_US: int
|
50 |
+
RESO_MS: int
|
51 |
+
RESO_SEC: int
|
52 |
+
RESO_MIN: int
|
53 |
+
RESO_HR: int
|
54 |
+
RESO_DAY: int
|
55 |
+
RESO_MTH: int
|
56 |
+
RESO_QTR: int
|
57 |
+
RESO_YR: int
|
58 |
+
def __lt__(self, other: Resolution) -> bool: ...
|
59 |
+
def __ge__(self, other: Resolution) -> bool: ...
|
60 |
+
@property
|
61 |
+
def attrname(self) -> str: ...
|
62 |
+
@classmethod
|
63 |
+
def from_attrname(cls, attrname: str) -> Resolution: ...
|
64 |
+
@classmethod
|
65 |
+
def get_reso_from_freqstr(cls, freq: str) -> Resolution: ...
|
66 |
+
@property
|
67 |
+
def attr_abbrev(self) -> str: ...
|
68 |
+
|
69 |
+
class NpyDatetimeUnit(Enum):
|
70 |
+
NPY_FR_Y: int
|
71 |
+
NPY_FR_M: int
|
72 |
+
NPY_FR_W: int
|
73 |
+
NPY_FR_D: int
|
74 |
+
NPY_FR_h: int
|
75 |
+
NPY_FR_m: int
|
76 |
+
NPY_FR_s: int
|
77 |
+
NPY_FR_ms: int
|
78 |
+
NPY_FR_us: int
|
79 |
+
NPY_FR_ns: int
|
80 |
+
NPY_FR_ps: int
|
81 |
+
NPY_FR_fs: int
|
82 |
+
NPY_FR_as: int
|
83 |
+
NPY_FR_GENERIC: int
|
venv/lib/python3.10/site-packages/pandas/_libs/tslibs/fields.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (345 kB). View file
|
|