Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/hf_ckpt/global_step40/tokenizer.model +3 -0
- ckpts/hf_ckpt/tokenizer.model +3 -0
- venv/lib/python3.10/site-packages/Jinja2-3.1.3.dist-info/INSTALLER +1 -0
- venv/lib/python3.10/site-packages/Jinja2-3.1.3.dist-info/LICENSE.rst +28 -0
- venv/lib/python3.10/site-packages/Jinja2-3.1.3.dist-info/METADATA +105 -0
- venv/lib/python3.10/site-packages/Jinja2-3.1.3.dist-info/RECORD +58 -0
- venv/lib/python3.10/site-packages/Jinja2-3.1.3.dist-info/WHEEL +5 -0
- venv/lib/python3.10/site-packages/Jinja2-3.1.3.dist-info/entry_points.txt +2 -0
- venv/lib/python3.10/site-packages/Jinja2-3.1.3.dist-info/top_level.txt +1 -0
- venv/lib/python3.10/site-packages/filelock/__init__.py +52 -0
- venv/lib/python3.10/site-packages/filelock/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/filelock/__pycache__/_api.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/filelock/__pycache__/_error.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/filelock/__pycache__/_soft.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/filelock/__pycache__/_unix.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/filelock/__pycache__/_util.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/filelock/__pycache__/_windows.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/filelock/__pycache__/version.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/filelock/_api.py +341 -0
- venv/lib/python3.10/site-packages/filelock/_error.py +30 -0
- venv/lib/python3.10/site-packages/filelock/_soft.py +47 -0
- venv/lib/python3.10/site-packages/filelock/_unix.py +68 -0
- venv/lib/python3.10/site-packages/filelock/_util.py +52 -0
- venv/lib/python3.10/site-packages/filelock/_windows.py +65 -0
- venv/lib/python3.10/site-packages/filelock/py.typed +0 -0
- venv/lib/python3.10/site-packages/filelock/version.py +16 -0
- venv/lib/python3.10/site-packages/sacrebleu/dataset/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sacrebleu/dataset/__pycache__/__main__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sacrebleu/dataset/__pycache__/base.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sacrebleu/dataset/__pycache__/fake_sgml.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sacrebleu/dataset/__pycache__/iwslt_xml.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sacrebleu/dataset/__pycache__/plain_text.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sacrebleu/dataset/__pycache__/tsv.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sacrebleu/dataset/__pycache__/wmt_xml.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sacrebleu/dataset/base.py +195 -0
- venv/lib/python3.10/site-packages/sacrebleu/dataset/fake_sgml.py +116 -0
- venv/lib/python3.10/site-packages/sacrebleu/dataset/wmt_xml.py +207 -0
- venv/lib/python3.10/site-packages/sacrebleu/metrics/__init__.py +11 -0
- venv/lib/python3.10/site-packages/sacrebleu/metrics/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sacrebleu/metrics/__pycache__/base.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sacrebleu/metrics/__pycache__/bleu.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sacrebleu/metrics/__pycache__/chrf.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sacrebleu/metrics/__pycache__/helpers.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sacrebleu/metrics/__pycache__/lib_ter.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sacrebleu/metrics/__pycache__/ter.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sacrebleu/metrics/base.py +438 -0
- venv/lib/python3.10/site-packages/sacrebleu/metrics/bleu.py +420 -0
- venv/lib/python3.10/site-packages/sacrebleu/metrics/chrf.py +284 -0
- venv/lib/python3.10/site-packages/sacrebleu/metrics/helpers.py +69 -0
- venv/lib/python3.10/site-packages/sacrebleu/metrics/lib_ter.py +478 -0
ckpts/hf_ckpt/global_step40/tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
|
3 |
+
size 499723
|
ckpts/hf_ckpt/tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
|
3 |
+
size 499723
|
venv/lib/python3.10/site-packages/Jinja2-3.1.3.dist-info/INSTALLER
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
pip
|
venv/lib/python3.10/site-packages/Jinja2-3.1.3.dist-info/LICENSE.rst
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Copyright 2007 Pallets
|
2 |
+
|
3 |
+
Redistribution and use in source and binary forms, with or without
|
4 |
+
modification, are permitted provided that the following conditions are
|
5 |
+
met:
|
6 |
+
|
7 |
+
1. Redistributions of source code must retain the above copyright
|
8 |
+
notice, this list of conditions and the following disclaimer.
|
9 |
+
|
10 |
+
2. Redistributions in binary form must reproduce the above copyright
|
11 |
+
notice, this list of conditions and the following disclaimer in the
|
12 |
+
documentation and/or other materials provided with the distribution.
|
13 |
+
|
14 |
+
3. Neither the name of the copyright holder nor the names of its
|
15 |
+
contributors may be used to endorse or promote products derived from
|
16 |
+
this software without specific prior written permission.
|
17 |
+
|
18 |
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
19 |
+
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
20 |
+
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
|
21 |
+
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
22 |
+
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
23 |
+
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
|
24 |
+
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
25 |
+
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
26 |
+
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
27 |
+
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
28 |
+
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
venv/lib/python3.10/site-packages/Jinja2-3.1.3.dist-info/METADATA
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Metadata-Version: 2.1
|
2 |
+
Name: Jinja2
|
3 |
+
Version: 3.1.3
|
4 |
+
Summary: A very fast and expressive template engine.
|
5 |
+
Home-page: https://palletsprojects.com/p/jinja/
|
6 |
+
Maintainer: Pallets
|
7 |
+
Maintainer-email: [email protected]
|
8 |
+
License: BSD-3-Clause
|
9 |
+
Project-URL: Donate, https://palletsprojects.com/donate
|
10 |
+
Project-URL: Documentation, https://jinja.palletsprojects.com/
|
11 |
+
Project-URL: Changes, https://jinja.palletsprojects.com/changes/
|
12 |
+
Project-URL: Source Code, https://github.com/pallets/jinja/
|
13 |
+
Project-URL: Issue Tracker, https://github.com/pallets/jinja/issues/
|
14 |
+
Project-URL: Chat, https://discord.gg/pallets
|
15 |
+
Classifier: Development Status :: 5 - Production/Stable
|
16 |
+
Classifier: Environment :: Web Environment
|
17 |
+
Classifier: Intended Audience :: Developers
|
18 |
+
Classifier: License :: OSI Approved :: BSD License
|
19 |
+
Classifier: Operating System :: OS Independent
|
20 |
+
Classifier: Programming Language :: Python
|
21 |
+
Classifier: Topic :: Internet :: WWW/HTTP :: Dynamic Content
|
22 |
+
Classifier: Topic :: Text Processing :: Markup :: HTML
|
23 |
+
Requires-Python: >=3.7
|
24 |
+
Description-Content-Type: text/x-rst
|
25 |
+
License-File: LICENSE.rst
|
26 |
+
Requires-Dist: MarkupSafe >=2.0
|
27 |
+
Provides-Extra: i18n
|
28 |
+
Requires-Dist: Babel >=2.7 ; extra == 'i18n'
|
29 |
+
|
30 |
+
Jinja
|
31 |
+
=====
|
32 |
+
|
33 |
+
Jinja is a fast, expressive, extensible templating engine. Special
|
34 |
+
placeholders in the template allow writing code similar to Python
|
35 |
+
syntax. Then the template is passed data to render the final document.
|
36 |
+
|
37 |
+
It includes:
|
38 |
+
|
39 |
+
- Template inheritance and inclusion.
|
40 |
+
- Define and import macros within templates.
|
41 |
+
- HTML templates can use autoescaping to prevent XSS from untrusted
|
42 |
+
user input.
|
43 |
+
- A sandboxed environment can safely render untrusted templates.
|
44 |
+
- AsyncIO support for generating templates and calling async
|
45 |
+
functions.
|
46 |
+
- I18N support with Babel.
|
47 |
+
- Templates are compiled to optimized Python code just-in-time and
|
48 |
+
cached, or can be compiled ahead-of-time.
|
49 |
+
- Exceptions point to the correct line in templates to make debugging
|
50 |
+
easier.
|
51 |
+
- Extensible filters, tests, functions, and even syntax.
|
52 |
+
|
53 |
+
Jinja's philosophy is that while application logic belongs in Python if
|
54 |
+
possible, it shouldn't make the template designer's job difficult by
|
55 |
+
restricting functionality too much.
|
56 |
+
|
57 |
+
|
58 |
+
Installing
|
59 |
+
----------
|
60 |
+
|
61 |
+
Install and update using `pip`_:
|
62 |
+
|
63 |
+
.. code-block:: text
|
64 |
+
|
65 |
+
$ pip install -U Jinja2
|
66 |
+
|
67 |
+
.. _pip: https://pip.pypa.io/en/stable/getting-started/
|
68 |
+
|
69 |
+
|
70 |
+
In A Nutshell
|
71 |
+
-------------
|
72 |
+
|
73 |
+
.. code-block:: jinja
|
74 |
+
|
75 |
+
{% extends "base.html" %}
|
76 |
+
{% block title %}Members{% endblock %}
|
77 |
+
{% block content %}
|
78 |
+
<ul>
|
79 |
+
{% for user in users %}
|
80 |
+
<li><a href="{{ user.url }}">{{ user.username }}</a></li>
|
81 |
+
{% endfor %}
|
82 |
+
</ul>
|
83 |
+
{% endblock %}
|
84 |
+
|
85 |
+
|
86 |
+
Donate
|
87 |
+
------
|
88 |
+
|
89 |
+
The Pallets organization develops and supports Jinja and other popular
|
90 |
+
packages. In order to grow the community of contributors and users, and
|
91 |
+
allow the maintainers to devote more time to the projects, `please
|
92 |
+
donate today`_.
|
93 |
+
|
94 |
+
.. _please donate today: https://palletsprojects.com/donate
|
95 |
+
|
96 |
+
|
97 |
+
Links
|
98 |
+
-----
|
99 |
+
|
100 |
+
- Documentation: https://jinja.palletsprojects.com/
|
101 |
+
- Changes: https://jinja.palletsprojects.com/changes/
|
102 |
+
- PyPI Releases: https://pypi.org/project/Jinja2/
|
103 |
+
- Source Code: https://github.com/pallets/jinja/
|
104 |
+
- Issue Tracker: https://github.com/pallets/jinja/issues/
|
105 |
+
- Chat: https://discord.gg/pallets
|
venv/lib/python3.10/site-packages/Jinja2-3.1.3.dist-info/RECORD
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Jinja2-3.1.3.dist-info/INSTALLER,sha256=zuuue4knoyJ-UwPPXg8fezS7VCrXJQrAP7zeNuwvFQg,4
|
2 |
+
Jinja2-3.1.3.dist-info/LICENSE.rst,sha256=O0nc7kEF6ze6wQ-vG-JgQI_oXSUrjp3y4JefweCUQ3s,1475
|
3 |
+
Jinja2-3.1.3.dist-info/METADATA,sha256=0cLNbRCI91jytc7Bzv3XAQfZzFDF2gxkJuH46eF5vew,3301
|
4 |
+
Jinja2-3.1.3.dist-info/RECORD,,
|
5 |
+
Jinja2-3.1.3.dist-info/WHEEL,sha256=oiQVh_5PnQM0E3gPdiz09WCNmwiHDMaGer_elqB3coM,92
|
6 |
+
Jinja2-3.1.3.dist-info/entry_points.txt,sha256=zRd62fbqIyfUpsRtU7EVIFyiu1tPwfgO7EvPErnxgTE,59
|
7 |
+
Jinja2-3.1.3.dist-info/top_level.txt,sha256=PkeVWtLb3-CqjWi1fO29OCbj55EhX_chhKrCdrVe_zs,7
|
8 |
+
jinja2/__init__.py,sha256=NTBwMwsECrdHmxeXF7seusHLzrh6Ldn1A9qhS5cDuf0,1927
|
9 |
+
jinja2/__pycache__/__init__.cpython-310.pyc,,
|
10 |
+
jinja2/__pycache__/_identifier.cpython-310.pyc,,
|
11 |
+
jinja2/__pycache__/async_utils.cpython-310.pyc,,
|
12 |
+
jinja2/__pycache__/bccache.cpython-310.pyc,,
|
13 |
+
jinja2/__pycache__/compiler.cpython-310.pyc,,
|
14 |
+
jinja2/__pycache__/constants.cpython-310.pyc,,
|
15 |
+
jinja2/__pycache__/debug.cpython-310.pyc,,
|
16 |
+
jinja2/__pycache__/defaults.cpython-310.pyc,,
|
17 |
+
jinja2/__pycache__/environment.cpython-310.pyc,,
|
18 |
+
jinja2/__pycache__/exceptions.cpython-310.pyc,,
|
19 |
+
jinja2/__pycache__/ext.cpython-310.pyc,,
|
20 |
+
jinja2/__pycache__/filters.cpython-310.pyc,,
|
21 |
+
jinja2/__pycache__/idtracking.cpython-310.pyc,,
|
22 |
+
jinja2/__pycache__/lexer.cpython-310.pyc,,
|
23 |
+
jinja2/__pycache__/loaders.cpython-310.pyc,,
|
24 |
+
jinja2/__pycache__/meta.cpython-310.pyc,,
|
25 |
+
jinja2/__pycache__/nativetypes.cpython-310.pyc,,
|
26 |
+
jinja2/__pycache__/nodes.cpython-310.pyc,,
|
27 |
+
jinja2/__pycache__/optimizer.cpython-310.pyc,,
|
28 |
+
jinja2/__pycache__/parser.cpython-310.pyc,,
|
29 |
+
jinja2/__pycache__/runtime.cpython-310.pyc,,
|
30 |
+
jinja2/__pycache__/sandbox.cpython-310.pyc,,
|
31 |
+
jinja2/__pycache__/tests.cpython-310.pyc,,
|
32 |
+
jinja2/__pycache__/utils.cpython-310.pyc,,
|
33 |
+
jinja2/__pycache__/visitor.cpython-310.pyc,,
|
34 |
+
jinja2/_identifier.py,sha256=_zYctNKzRqlk_murTNlzrju1FFJL7Va_Ijqqd7ii2lU,1958
|
35 |
+
jinja2/async_utils.py,sha256=dFcmh6lMNfbh7eLKrBio8JqAKLHdZbpCuurFN4OERtY,2447
|
36 |
+
jinja2/bccache.py,sha256=mhz5xtLxCcHRAa56azOhphIAe19u1we0ojifNMClDio,14061
|
37 |
+
jinja2/compiler.py,sha256=PJzYdRLStlEOqmnQs1YxlizPrJoj3jTZuUleREn6AIQ,72199
|
38 |
+
jinja2/constants.py,sha256=GMoFydBF_kdpaRKPoM5cl5MviquVRLVyZtfp5-16jg0,1433
|
39 |
+
jinja2/debug.py,sha256=iWJ432RadxJNnaMOPrjIDInz50UEgni3_HKuFXi2vuQ,6299
|
40 |
+
jinja2/defaults.py,sha256=boBcSw78h-lp20YbaXSJsqkAI2uN_mD_TtCydpeq5wU,1267
|
41 |
+
jinja2/environment.py,sha256=0qldX3VQKZcm6lgn7zHz94oRFow7YPYERiqkquomNjU,61253
|
42 |
+
jinja2/exceptions.py,sha256=ioHeHrWwCWNaXX1inHmHVblvc4haO7AXsjCp3GfWvx0,5071
|
43 |
+
jinja2/ext.py,sha256=5fnMpllaXkfm2P_93RIvi-OnK7Tk8mCW8Du-GcD12Hc,31844
|
44 |
+
jinja2/filters.py,sha256=vYjKb2zaPShvYtn_LpSmqfS8SScbrA_KOanNibsMDIE,53862
|
45 |
+
jinja2/idtracking.py,sha256=GfNmadir4oDALVxzn3DL9YInhJDr69ebXeA2ygfuCGA,10704
|
46 |
+
jinja2/lexer.py,sha256=DW2nX9zk-6MWp65YR2bqqj0xqCvLtD-u9NWT8AnFRxQ,29726
|
47 |
+
jinja2/loaders.py,sha256=ayAwxfrA1SAffQta0nwSDm3TDT4KYiIGN_D9Z45B310,23085
|
48 |
+
jinja2/meta.py,sha256=GNPEvifmSaU3CMxlbheBOZjeZ277HThOPUTf1RkppKQ,4396
|
49 |
+
jinja2/nativetypes.py,sha256=7GIGALVJgdyL80oZJdQUaUfwSt5q2lSSZbXt0dNf_M4,4210
|
50 |
+
jinja2/nodes.py,sha256=i34GPRAZexXMT6bwuf5SEyvdmS-bRCy9KMjwN5O6pjk,34550
|
51 |
+
jinja2/optimizer.py,sha256=tHkMwXxfZkbfA1KmLcqmBMSaz7RLIvvItrJcPoXTyD8,1650
|
52 |
+
jinja2/parser.py,sha256=Y199wPL-G67gJoi5G_5sHuu9uEP1PJkjjLEW_xTH8-k,39736
|
53 |
+
jinja2/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
54 |
+
jinja2/runtime.py,sha256=_6LkKIWFJjQdqlrgA3K39zBFQ-7Orm3wGDm96RwxQoE,33406
|
55 |
+
jinja2/sandbox.py,sha256=Y0xZeXQnH6EX5VjaV2YixESxoepnRbW_3UeQosaBU3M,14584
|
56 |
+
jinja2/tests.py,sha256=Am5Z6Lmfr2XaH_npIfJJ8MdXtWsbLjMULZJulTAj30E,5905
|
57 |
+
jinja2/utils.py,sha256=IMwRIcN1SsTw2-jdQtlH2KzNABsXZBW_-tnFXafQBvY,23933
|
58 |
+
jinja2/visitor.py,sha256=MH14C6yq24G_KVtWzjwaI7Wg14PCJIYlWW1kpkxYak0,3568
|
venv/lib/python3.10/site-packages/Jinja2-3.1.3.dist-info/WHEEL
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Wheel-Version: 1.0
|
2 |
+
Generator: bdist_wheel (0.42.0)
|
3 |
+
Root-Is-Purelib: true
|
4 |
+
Tag: py3-none-any
|
5 |
+
|
venv/lib/python3.10/site-packages/Jinja2-3.1.3.dist-info/entry_points.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
[babel.extractors]
|
2 |
+
jinja2 = jinja2.ext:babel_extract[i18n]
|
venv/lib/python3.10/site-packages/Jinja2-3.1.3.dist-info/top_level.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
jinja2
|
venv/lib/python3.10/site-packages/filelock/__init__.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
A platform independent file lock that supports the with-statement.
|
3 |
+
|
4 |
+
.. autodata:: filelock.__version__
|
5 |
+
:no-value:
|
6 |
+
|
7 |
+
"""
|
8 |
+
|
9 |
+
from __future__ import annotations
|
10 |
+
|
11 |
+
import sys
|
12 |
+
import warnings
|
13 |
+
from typing import TYPE_CHECKING
|
14 |
+
|
15 |
+
from ._api import AcquireReturnProxy, BaseFileLock
|
16 |
+
from ._error import Timeout
|
17 |
+
from ._soft import SoftFileLock
|
18 |
+
from ._unix import UnixFileLock, has_fcntl
|
19 |
+
from ._windows import WindowsFileLock
|
20 |
+
from .version import version
|
21 |
+
|
22 |
+
#: version of the project as a string
|
23 |
+
__version__: str = version
|
24 |
+
|
25 |
+
|
26 |
+
if sys.platform == "win32": # pragma: win32 cover
|
27 |
+
_FileLock: type[BaseFileLock] = WindowsFileLock
|
28 |
+
else: # pragma: win32 no cover # noqa: PLR5501
|
29 |
+
if has_fcntl:
|
30 |
+
_FileLock: type[BaseFileLock] = UnixFileLock
|
31 |
+
else:
|
32 |
+
_FileLock = SoftFileLock
|
33 |
+
if warnings is not None:
|
34 |
+
warnings.warn("only soft file lock is available", stacklevel=2)
|
35 |
+
|
36 |
+
if TYPE_CHECKING:
|
37 |
+
FileLock = SoftFileLock
|
38 |
+
else:
|
39 |
+
#: Alias for the lock, which should be used for the current platform.
|
40 |
+
FileLock = _FileLock
|
41 |
+
|
42 |
+
|
43 |
+
__all__ = [
|
44 |
+
"AcquireReturnProxy",
|
45 |
+
"BaseFileLock",
|
46 |
+
"FileLock",
|
47 |
+
"SoftFileLock",
|
48 |
+
"Timeout",
|
49 |
+
"UnixFileLock",
|
50 |
+
"WindowsFileLock",
|
51 |
+
"__version__",
|
52 |
+
]
|
venv/lib/python3.10/site-packages/filelock/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.07 kB). View file
|
|
venv/lib/python3.10/site-packages/filelock/__pycache__/_api.cpython-310.pyc
ADDED
Binary file (11.3 kB). View file
|
|
venv/lib/python3.10/site-packages/filelock/__pycache__/_error.cpython-310.pyc
ADDED
Binary file (1.45 kB). View file
|
|
venv/lib/python3.10/site-packages/filelock/__pycache__/_soft.cpython-310.pyc
ADDED
Binary file (1.56 kB). View file
|
|
venv/lib/python3.10/site-packages/filelock/__pycache__/_unix.cpython-310.pyc
ADDED
Binary file (2.13 kB). View file
|
|
venv/lib/python3.10/site-packages/filelock/__pycache__/_util.cpython-310.pyc
ADDED
Binary file (1.51 kB). View file
|
|
venv/lib/python3.10/site-packages/filelock/__pycache__/_windows.cpython-310.pyc
ADDED
Binary file (2.08 kB). View file
|
|
venv/lib/python3.10/site-packages/filelock/__pycache__/version.cpython-310.pyc
ADDED
Binary file (499 Bytes). View file
|
|
venv/lib/python3.10/site-packages/filelock/_api.py
ADDED
@@ -0,0 +1,341 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import contextlib
|
4 |
+
import logging
|
5 |
+
import os
|
6 |
+
import time
|
7 |
+
import warnings
|
8 |
+
from abc import ABC, abstractmethod
|
9 |
+
from dataclasses import dataclass
|
10 |
+
from threading import local
|
11 |
+
from typing import TYPE_CHECKING, Any
|
12 |
+
from weakref import WeakValueDictionary
|
13 |
+
|
14 |
+
from ._error import Timeout
|
15 |
+
|
16 |
+
if TYPE_CHECKING:
|
17 |
+
import sys
|
18 |
+
from types import TracebackType
|
19 |
+
|
20 |
+
if sys.version_info >= (3, 11): # pragma: no cover (py311+)
|
21 |
+
from typing import Self
|
22 |
+
else: # pragma: no cover (<py311)
|
23 |
+
from typing_extensions import Self
|
24 |
+
|
25 |
+
|
26 |
+
_LOGGER = logging.getLogger("filelock")
|
27 |
+
|
28 |
+
|
29 |
+
# This is a helper class which is returned by :meth:`BaseFileLock.acquire` and wraps the lock to make sure __enter__
|
30 |
+
# is not called twice when entering the with statement. If we would simply return *self*, the lock would be acquired
|
31 |
+
# again in the *__enter__* method of the BaseFileLock, but not released again automatically. issue #37 (memory leak)
|
32 |
+
class AcquireReturnProxy:
|
33 |
+
"""A context-aware object that will release the lock file when exiting."""
|
34 |
+
|
35 |
+
def __init__(self, lock: BaseFileLock) -> None:
|
36 |
+
self.lock = lock
|
37 |
+
|
38 |
+
def __enter__(self) -> BaseFileLock:
|
39 |
+
return self.lock
|
40 |
+
|
41 |
+
def __exit__(
|
42 |
+
self,
|
43 |
+
exc_type: type[BaseException] | None,
|
44 |
+
exc_value: BaseException | None,
|
45 |
+
traceback: TracebackType | None,
|
46 |
+
) -> None:
|
47 |
+
self.lock.release()
|
48 |
+
|
49 |
+
|
50 |
+
@dataclass
|
51 |
+
class FileLockContext:
|
52 |
+
"""A dataclass which holds the context for a ``BaseFileLock`` object."""
|
53 |
+
|
54 |
+
# The context is held in a separate class to allow optional use of thread local storage via the
|
55 |
+
# ThreadLocalFileContext class.
|
56 |
+
|
57 |
+
#: The path to the lock file.
|
58 |
+
lock_file: str
|
59 |
+
|
60 |
+
#: The default timeout value.
|
61 |
+
timeout: float
|
62 |
+
|
63 |
+
#: The mode for the lock files
|
64 |
+
mode: int
|
65 |
+
|
66 |
+
#: The file descriptor for the *_lock_file* as it is returned by the os.open() function, not None when lock held
|
67 |
+
lock_file_fd: int | None = None
|
68 |
+
|
69 |
+
#: The lock counter is used for implementing the nested locking mechanism.
|
70 |
+
lock_counter: int = 0 # When the lock is acquired is increased and the lock is only released, when this value is 0
|
71 |
+
|
72 |
+
|
73 |
+
class ThreadLocalFileContext(FileLockContext, local):
|
74 |
+
"""A thread local version of the ``FileLockContext`` class."""
|
75 |
+
|
76 |
+
|
77 |
+
class BaseFileLock(ABC, contextlib.ContextDecorator):
|
78 |
+
"""Abstract base class for a file lock object."""
|
79 |
+
|
80 |
+
_instances: WeakValueDictionary[str, BaseFileLock]
|
81 |
+
|
82 |
+
def __new__( # noqa: PLR0913
|
83 |
+
cls,
|
84 |
+
lock_file: str | os.PathLike[str],
|
85 |
+
timeout: float = -1,
|
86 |
+
mode: int = 0o644,
|
87 |
+
thread_local: bool = True, # noqa: ARG003, FBT001, FBT002
|
88 |
+
*,
|
89 |
+
is_singleton: bool = False,
|
90 |
+
**kwargs: dict[str, Any], # capture remaining kwargs for subclasses # noqa: ARG003
|
91 |
+
) -> Self:
|
92 |
+
"""Create a new lock object or if specified return the singleton instance for the lock file."""
|
93 |
+
if not is_singleton:
|
94 |
+
return super().__new__(cls)
|
95 |
+
|
96 |
+
instance = cls._instances.get(str(lock_file))
|
97 |
+
if not instance:
|
98 |
+
instance = super().__new__(cls)
|
99 |
+
cls._instances[str(lock_file)] = instance
|
100 |
+
elif timeout != instance.timeout or mode != instance.mode:
|
101 |
+
msg = "Singleton lock instances cannot be initialized with differing arguments"
|
102 |
+
raise ValueError(msg)
|
103 |
+
|
104 |
+
return instance # type: ignore[return-value] # https://github.com/python/mypy/issues/15322
|
105 |
+
|
106 |
+
def __init_subclass__(cls, **kwargs: dict[str, Any]) -> None:
|
107 |
+
"""Setup unique state for lock subclasses."""
|
108 |
+
super().__init_subclass__(**kwargs)
|
109 |
+
cls._instances = WeakValueDictionary()
|
110 |
+
|
111 |
+
def __init__( # noqa: PLR0913
|
112 |
+
self,
|
113 |
+
lock_file: str | os.PathLike[str],
|
114 |
+
timeout: float = -1,
|
115 |
+
mode: int = 0o644,
|
116 |
+
thread_local: bool = True, # noqa: FBT001, FBT002
|
117 |
+
*,
|
118 |
+
is_singleton: bool = False,
|
119 |
+
) -> None:
|
120 |
+
"""
|
121 |
+
Create a new lock object.
|
122 |
+
|
123 |
+
:param lock_file: path to the file
|
124 |
+
:param timeout: default timeout when acquiring the lock, in seconds. It will be used as fallback value in \
|
125 |
+
the acquire method, if no timeout value (``None``) is given. If you want to disable the timeout, set it \
|
126 |
+
to a negative value. A timeout of 0 means that there is exactly one attempt to acquire the file lock.
|
127 |
+
:param mode: file permissions for the lockfile
|
128 |
+
:param thread_local: Whether this object's internal context should be thread local or not. If this is set to \
|
129 |
+
``False`` then the lock will be reentrant across threads.
|
130 |
+
:param is_singleton: If this is set to ``True`` then only one instance of this class will be created \
|
131 |
+
per lock file. This is useful if you want to use the lock object for reentrant locking without needing \
|
132 |
+
to pass the same object around.
|
133 |
+
|
134 |
+
"""
|
135 |
+
self._is_thread_local = thread_local
|
136 |
+
self._is_singleton = is_singleton
|
137 |
+
|
138 |
+
# Create the context. Note that external code should not work with the context directly and should instead use
|
139 |
+
# properties of this class.
|
140 |
+
kwargs: dict[str, Any] = {
|
141 |
+
"lock_file": os.fspath(lock_file),
|
142 |
+
"timeout": timeout,
|
143 |
+
"mode": mode,
|
144 |
+
}
|
145 |
+
self._context: FileLockContext = (ThreadLocalFileContext if thread_local else FileLockContext)(**kwargs)
|
146 |
+
|
147 |
+
def is_thread_local(self) -> bool:
|
148 |
+
""":return: a flag indicating if this lock is thread local or not"""
|
149 |
+
return self._is_thread_local
|
150 |
+
|
151 |
+
@property
|
152 |
+
def is_singleton(self) -> bool:
|
153 |
+
""":return: a flag indicating if this lock is singleton or not"""
|
154 |
+
return self._is_singleton
|
155 |
+
|
156 |
+
@property
|
157 |
+
def lock_file(self) -> str:
|
158 |
+
""":return: path to the lock file"""
|
159 |
+
return self._context.lock_file
|
160 |
+
|
161 |
+
@property
|
162 |
+
def timeout(self) -> float:
|
163 |
+
"""
|
164 |
+
:return: the default timeout value, in seconds
|
165 |
+
|
166 |
+
.. versionadded:: 2.0.0
|
167 |
+
"""
|
168 |
+
return self._context.timeout
|
169 |
+
|
170 |
+
@timeout.setter
|
171 |
+
def timeout(self, value: float | str) -> None:
|
172 |
+
"""
|
173 |
+
Change the default timeout value.
|
174 |
+
|
175 |
+
:param value: the new value, in seconds
|
176 |
+
|
177 |
+
"""
|
178 |
+
self._context.timeout = float(value)
|
179 |
+
|
180 |
+
@property
|
181 |
+
def mode(self) -> int:
|
182 |
+
""":return: the file permissions for the lockfile"""
|
183 |
+
return self._context.mode
|
184 |
+
|
185 |
+
@abstractmethod
|
186 |
+
def _acquire(self) -> None:
|
187 |
+
"""If the file lock could be acquired, self._context.lock_file_fd holds the file descriptor of the lock file."""
|
188 |
+
raise NotImplementedError
|
189 |
+
|
190 |
+
@abstractmethod
|
191 |
+
def _release(self) -> None:
|
192 |
+
"""Releases the lock and sets self._context.lock_file_fd to None."""
|
193 |
+
raise NotImplementedError
|
194 |
+
|
195 |
+
@property
|
196 |
+
def is_locked(self) -> bool:
|
197 |
+
"""
|
198 |
+
|
199 |
+
:return: A boolean indicating if the lock file is holding the lock currently.
|
200 |
+
|
201 |
+
.. versionchanged:: 2.0.0
|
202 |
+
|
203 |
+
This was previously a method and is now a property.
|
204 |
+
"""
|
205 |
+
return self._context.lock_file_fd is not None
|
206 |
+
|
207 |
+
@property
|
208 |
+
def lock_counter(self) -> int:
|
209 |
+
""":return: The number of times this lock has been acquired (but not yet released)."""
|
210 |
+
return self._context.lock_counter
|
211 |
+
|
212 |
+
def acquire(
|
213 |
+
self,
|
214 |
+
timeout: float | None = None,
|
215 |
+
poll_interval: float = 0.05,
|
216 |
+
*,
|
217 |
+
poll_intervall: float | None = None,
|
218 |
+
blocking: bool = True,
|
219 |
+
) -> AcquireReturnProxy:
|
220 |
+
"""
|
221 |
+
Try to acquire the file lock.
|
222 |
+
|
223 |
+
:param timeout: maximum wait time for acquiring the lock, ``None`` means use the default :attr:`~timeout` is and
|
224 |
+
if ``timeout < 0``, there is no timeout and this method will block until the lock could be acquired
|
225 |
+
:param poll_interval: interval of trying to acquire the lock file
|
226 |
+
:param poll_intervall: deprecated, kept for backwards compatibility, use ``poll_interval`` instead
|
227 |
+
:param blocking: defaults to True. If False, function will return immediately if it cannot obtain a lock on the
|
228 |
+
first attempt. Otherwise, this method will block until the timeout expires or the lock is acquired.
|
229 |
+
:raises Timeout: if fails to acquire lock within the timeout period
|
230 |
+
:return: a context object that will unlock the file when the context is exited
|
231 |
+
|
232 |
+
.. code-block:: python
|
233 |
+
|
234 |
+
# You can use this method in the context manager (recommended)
|
235 |
+
with lock.acquire():
|
236 |
+
pass
|
237 |
+
|
238 |
+
# Or use an equivalent try-finally construct:
|
239 |
+
lock.acquire()
|
240 |
+
try:
|
241 |
+
pass
|
242 |
+
finally:
|
243 |
+
lock.release()
|
244 |
+
|
245 |
+
.. versionchanged:: 2.0.0
|
246 |
+
|
247 |
+
This method returns now a *proxy* object instead of *self*,
|
248 |
+
so that it can be used in a with statement without side effects.
|
249 |
+
|
250 |
+
"""
|
251 |
+
# Use the default timeout, if no timeout is provided.
|
252 |
+
if timeout is None:
|
253 |
+
timeout = self._context.timeout
|
254 |
+
|
255 |
+
if poll_intervall is not None:
|
256 |
+
msg = "use poll_interval instead of poll_intervall"
|
257 |
+
warnings.warn(msg, DeprecationWarning, stacklevel=2)
|
258 |
+
poll_interval = poll_intervall
|
259 |
+
|
260 |
+
# Increment the number right at the beginning. We can still undo it, if something fails.
|
261 |
+
self._context.lock_counter += 1
|
262 |
+
|
263 |
+
lock_id = id(self)
|
264 |
+
lock_filename = self.lock_file
|
265 |
+
start_time = time.perf_counter()
|
266 |
+
try:
|
267 |
+
while True:
|
268 |
+
if not self.is_locked:
|
269 |
+
_LOGGER.debug("Attempting to acquire lock %s on %s", lock_id, lock_filename)
|
270 |
+
self._acquire()
|
271 |
+
if self.is_locked:
|
272 |
+
_LOGGER.debug("Lock %s acquired on %s", lock_id, lock_filename)
|
273 |
+
break
|
274 |
+
if blocking is False:
|
275 |
+
_LOGGER.debug("Failed to immediately acquire lock %s on %s", lock_id, lock_filename)
|
276 |
+
raise Timeout(lock_filename) # noqa: TRY301
|
277 |
+
if 0 <= timeout < time.perf_counter() - start_time:
|
278 |
+
_LOGGER.debug("Timeout on acquiring lock %s on %s", lock_id, lock_filename)
|
279 |
+
raise Timeout(lock_filename) # noqa: TRY301
|
280 |
+
msg = "Lock %s not acquired on %s, waiting %s seconds ..."
|
281 |
+
_LOGGER.debug(msg, lock_id, lock_filename, poll_interval)
|
282 |
+
time.sleep(poll_interval)
|
283 |
+
except BaseException: # Something did go wrong, so decrement the counter.
|
284 |
+
self._context.lock_counter = max(0, self._context.lock_counter - 1)
|
285 |
+
raise
|
286 |
+
return AcquireReturnProxy(lock=self)
|
287 |
+
|
288 |
+
def release(self, force: bool = False) -> None: # noqa: FBT001, FBT002
|
289 |
+
"""
|
290 |
+
Releases the file lock. Please note, that the lock is only completely released, if the lock counter is 0.
|
291 |
+
Also note, that the lock file itself is not automatically deleted.
|
292 |
+
|
293 |
+
:param force: If true, the lock counter is ignored and the lock is released in every case/
|
294 |
+
|
295 |
+
"""
|
296 |
+
if self.is_locked:
|
297 |
+
self._context.lock_counter -= 1
|
298 |
+
|
299 |
+
if self._context.lock_counter == 0 or force:
|
300 |
+
lock_id, lock_filename = id(self), self.lock_file
|
301 |
+
|
302 |
+
_LOGGER.debug("Attempting to release lock %s on %s", lock_id, lock_filename)
|
303 |
+
self._release()
|
304 |
+
self._context.lock_counter = 0
|
305 |
+
_LOGGER.debug("Lock %s released on %s", lock_id, lock_filename)
|
306 |
+
|
307 |
+
def __enter__(self) -> Self:
|
308 |
+
"""
|
309 |
+
Acquire the lock.
|
310 |
+
|
311 |
+
:return: the lock object
|
312 |
+
|
313 |
+
"""
|
314 |
+
self.acquire()
|
315 |
+
return self
|
316 |
+
|
317 |
+
def __exit__(
|
318 |
+
self,
|
319 |
+
exc_type: type[BaseException] | None,
|
320 |
+
exc_value: BaseException | None,
|
321 |
+
traceback: TracebackType | None,
|
322 |
+
) -> None:
|
323 |
+
"""
|
324 |
+
Release the lock.
|
325 |
+
|
326 |
+
:param exc_type: the exception type if raised
|
327 |
+
:param exc_value: the exception value if raised
|
328 |
+
:param traceback: the exception traceback if raised
|
329 |
+
|
330 |
+
"""
|
331 |
+
self.release()
|
332 |
+
|
333 |
+
def __del__(self) -> None:
|
334 |
+
"""Called when the lock object is deleted."""
|
335 |
+
self.release(force=True)
|
336 |
+
|
337 |
+
|
338 |
+
__all__ = [
|
339 |
+
"AcquireReturnProxy",
|
340 |
+
"BaseFileLock",
|
341 |
+
]
|
venv/lib/python3.10/site-packages/filelock/_error.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
from typing import Any
|
4 |
+
|
5 |
+
|
6 |
+
class Timeout(TimeoutError): # noqa: N818
|
7 |
+
"""Raised when the lock could not be acquired in *timeout* seconds."""
|
8 |
+
|
9 |
+
def __init__(self, lock_file: str) -> None:
|
10 |
+
super().__init__()
|
11 |
+
self._lock_file = lock_file
|
12 |
+
|
13 |
+
def __reduce__(self) -> str | tuple[Any, ...]:
|
14 |
+
return self.__class__, (self._lock_file,) # Properly pickle the exception
|
15 |
+
|
16 |
+
def __str__(self) -> str:
|
17 |
+
return f"The file lock '{self._lock_file}' could not be acquired."
|
18 |
+
|
19 |
+
def __repr__(self) -> str:
|
20 |
+
return f"{self.__class__.__name__}({self.lock_file!r})"
|
21 |
+
|
22 |
+
@property
|
23 |
+
def lock_file(self) -> str:
|
24 |
+
""":return: The path of the file lock."""
|
25 |
+
return self._lock_file
|
26 |
+
|
27 |
+
|
28 |
+
__all__ = [
|
29 |
+
"Timeout",
|
30 |
+
]
|
venv/lib/python3.10/site-packages/filelock/_soft.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import os
|
4 |
+
import sys
|
5 |
+
from contextlib import suppress
|
6 |
+
from errno import EACCES, EEXIST
|
7 |
+
from pathlib import Path
|
8 |
+
|
9 |
+
from ._api import BaseFileLock
|
10 |
+
from ._util import ensure_directory_exists, raise_on_not_writable_file
|
11 |
+
|
12 |
+
|
13 |
+
class SoftFileLock(BaseFileLock):
|
14 |
+
"""Simply watches the existence of the lock file."""
|
15 |
+
|
16 |
+
def _acquire(self) -> None:
|
17 |
+
raise_on_not_writable_file(self.lock_file)
|
18 |
+
ensure_directory_exists(self.lock_file)
|
19 |
+
# first check for exists and read-only mode as the open will mask this case as EEXIST
|
20 |
+
flags = (
|
21 |
+
os.O_WRONLY # open for writing only
|
22 |
+
| os.O_CREAT
|
23 |
+
| os.O_EXCL # together with above raise EEXIST if the file specified by filename exists
|
24 |
+
| os.O_TRUNC # truncate the file to zero byte
|
25 |
+
)
|
26 |
+
try:
|
27 |
+
file_handler = os.open(self.lock_file, flags, self._context.mode)
|
28 |
+
except OSError as exception: # re-raise unless expected exception
|
29 |
+
if not (
|
30 |
+
exception.errno == EEXIST # lock already exist
|
31 |
+
or (exception.errno == EACCES and sys.platform == "win32") # has no access to this lock
|
32 |
+
): # pragma: win32 no cover
|
33 |
+
raise
|
34 |
+
else:
|
35 |
+
self._context.lock_file_fd = file_handler
|
36 |
+
|
37 |
+
def _release(self) -> None:
|
38 |
+
assert self._context.lock_file_fd is not None # noqa: S101
|
39 |
+
os.close(self._context.lock_file_fd) # the lock file is definitely not None
|
40 |
+
self._context.lock_file_fd = None
|
41 |
+
with suppress(OSError): # the file is already deleted and that's what we want
|
42 |
+
Path(self.lock_file).unlink()
|
43 |
+
|
44 |
+
|
45 |
+
__all__ = [
|
46 |
+
"SoftFileLock",
|
47 |
+
]
|
venv/lib/python3.10/site-packages/filelock/_unix.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import os
|
4 |
+
import sys
|
5 |
+
from contextlib import suppress
|
6 |
+
from errno import ENOSYS
|
7 |
+
from pathlib import Path
|
8 |
+
from typing import cast
|
9 |
+
|
10 |
+
from ._api import BaseFileLock
|
11 |
+
from ._util import ensure_directory_exists
|
12 |
+
|
13 |
+
#: a flag to indicate if the fcntl API is available
|
14 |
+
has_fcntl = False
|
15 |
+
if sys.platform == "win32": # pragma: win32 cover
|
16 |
+
|
17 |
+
class UnixFileLock(BaseFileLock):
|
18 |
+
"""Uses the :func:`fcntl.flock` to hard lock the lock file on unix systems."""
|
19 |
+
|
20 |
+
def _acquire(self) -> None:
|
21 |
+
raise NotImplementedError
|
22 |
+
|
23 |
+
def _release(self) -> None:
|
24 |
+
raise NotImplementedError
|
25 |
+
|
26 |
+
else: # pragma: win32 no cover
|
27 |
+
try:
|
28 |
+
import fcntl
|
29 |
+
except ImportError:
|
30 |
+
pass
|
31 |
+
else:
|
32 |
+
has_fcntl = True
|
33 |
+
|
34 |
+
class UnixFileLock(BaseFileLock):
|
35 |
+
"""Uses the :func:`fcntl.flock` to hard lock the lock file on unix systems."""
|
36 |
+
|
37 |
+
def _acquire(self) -> None:
|
38 |
+
ensure_directory_exists(self.lock_file)
|
39 |
+
open_flags = os.O_RDWR | os.O_TRUNC
|
40 |
+
if not Path(self.lock_file).exists():
|
41 |
+
open_flags |= os.O_CREAT
|
42 |
+
fd = os.open(self.lock_file, open_flags, self._context.mode)
|
43 |
+
with suppress(PermissionError): # This locked is not owned by this UID
|
44 |
+
os.fchmod(fd, self._context.mode)
|
45 |
+
try:
|
46 |
+
fcntl.flock(fd, fcntl.LOCK_EX | fcntl.LOCK_NB)
|
47 |
+
except OSError as exception:
|
48 |
+
os.close(fd)
|
49 |
+
if exception.errno == ENOSYS: # NotImplemented error
|
50 |
+
msg = "FileSystem does not appear to support flock; use SoftFileLock instead"
|
51 |
+
raise NotImplementedError(msg) from exception
|
52 |
+
else:
|
53 |
+
self._context.lock_file_fd = fd
|
54 |
+
|
55 |
+
def _release(self) -> None:
|
56 |
+
# Do not remove the lockfile:
|
57 |
+
# https://github.com/tox-dev/py-filelock/issues/31
|
58 |
+
# https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition
|
59 |
+
fd = cast(int, self._context.lock_file_fd)
|
60 |
+
self._context.lock_file_fd = None
|
61 |
+
fcntl.flock(fd, fcntl.LOCK_UN)
|
62 |
+
os.close(fd)
|
63 |
+
|
64 |
+
|
65 |
+
__all__ = [
|
66 |
+
"UnixFileLock",
|
67 |
+
"has_fcntl",
|
68 |
+
]
|
venv/lib/python3.10/site-packages/filelock/_util.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import os
|
4 |
+
import stat
|
5 |
+
import sys
|
6 |
+
from errno import EACCES, EISDIR
|
7 |
+
from pathlib import Path
|
8 |
+
|
9 |
+
|
10 |
+
def raise_on_not_writable_file(filename: str) -> None:
|
11 |
+
"""
|
12 |
+
Raise an exception if attempting to open the file for writing would fail.
|
13 |
+
|
14 |
+
This is done so files that will never be writable can be separated from files that are writable but currently
|
15 |
+
locked.
|
16 |
+
|
17 |
+
:param filename: file to check
|
18 |
+
:raises OSError: as if the file was opened for writing.
|
19 |
+
|
20 |
+
"""
|
21 |
+
try: # use stat to do exists + can write to check without race condition
|
22 |
+
file_stat = os.stat(filename) # noqa: PTH116
|
23 |
+
except OSError:
|
24 |
+
return # swallow does not exist or other errors
|
25 |
+
|
26 |
+
if file_stat.st_mtime != 0: # if os.stat returns but modification is zero that's an invalid os.stat - ignore it
|
27 |
+
if not (file_stat.st_mode & stat.S_IWUSR):
|
28 |
+
raise PermissionError(EACCES, "Permission denied", filename)
|
29 |
+
|
30 |
+
if stat.S_ISDIR(file_stat.st_mode):
|
31 |
+
if sys.platform == "win32": # pragma: win32 cover
|
32 |
+
# On Windows, this is PermissionError
|
33 |
+
raise PermissionError(EACCES, "Permission denied", filename)
|
34 |
+
else: # pragma: win32 no cover # noqa: RET506
|
35 |
+
# On linux / macOS, this is IsADirectoryError
|
36 |
+
raise IsADirectoryError(EISDIR, "Is a directory", filename)
|
37 |
+
|
38 |
+
|
39 |
+
def ensure_directory_exists(filename: Path | str) -> None:
|
40 |
+
"""
|
41 |
+
Ensure the directory containing the file exists (create it if necessary).
|
42 |
+
|
43 |
+
:param filename: file.
|
44 |
+
|
45 |
+
"""
|
46 |
+
Path(filename).parent.mkdir(parents=True, exist_ok=True)
|
47 |
+
|
48 |
+
|
49 |
+
__all__ = [
|
50 |
+
"ensure_directory_exists",
|
51 |
+
"raise_on_not_writable_file",
|
52 |
+
]
|
venv/lib/python3.10/site-packages/filelock/_windows.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import os
|
4 |
+
import sys
|
5 |
+
from contextlib import suppress
|
6 |
+
from errno import EACCES
|
7 |
+
from pathlib import Path
|
8 |
+
from typing import cast
|
9 |
+
|
10 |
+
from ._api import BaseFileLock
|
11 |
+
from ._util import ensure_directory_exists, raise_on_not_writable_file
|
12 |
+
|
13 |
+
if sys.platform == "win32": # pragma: win32 cover
|
14 |
+
import msvcrt
|
15 |
+
|
16 |
+
class WindowsFileLock(BaseFileLock):
|
17 |
+
"""Uses the :func:`msvcrt.locking` function to hard lock the lock file on Windows systems."""
|
18 |
+
|
19 |
+
def _acquire(self) -> None:
|
20 |
+
raise_on_not_writable_file(self.lock_file)
|
21 |
+
ensure_directory_exists(self.lock_file)
|
22 |
+
flags = (
|
23 |
+
os.O_RDWR # open for read and write
|
24 |
+
| os.O_CREAT # create file if not exists
|
25 |
+
| os.O_TRUNC # truncate file if not empty
|
26 |
+
)
|
27 |
+
try:
|
28 |
+
fd = os.open(self.lock_file, flags, self._context.mode)
|
29 |
+
except OSError as exception:
|
30 |
+
if exception.errno != EACCES: # has no access to this lock
|
31 |
+
raise
|
32 |
+
else:
|
33 |
+
try:
|
34 |
+
msvcrt.locking(fd, msvcrt.LK_NBLCK, 1)
|
35 |
+
except OSError as exception:
|
36 |
+
os.close(fd) # close file first
|
37 |
+
if exception.errno != EACCES: # file is already locked
|
38 |
+
raise
|
39 |
+
else:
|
40 |
+
self._context.lock_file_fd = fd
|
41 |
+
|
42 |
+
def _release(self) -> None:
|
43 |
+
fd = cast(int, self._context.lock_file_fd)
|
44 |
+
self._context.lock_file_fd = None
|
45 |
+
msvcrt.locking(fd, msvcrt.LK_UNLCK, 1)
|
46 |
+
os.close(fd)
|
47 |
+
|
48 |
+
with suppress(OSError): # Probably another instance of the application hat acquired the file lock.
|
49 |
+
Path(self.lock_file).unlink()
|
50 |
+
|
51 |
+
else: # pragma: win32 no cover
|
52 |
+
|
53 |
+
class WindowsFileLock(BaseFileLock):
|
54 |
+
"""Uses the :func:`msvcrt.locking` function to hard lock the lock file on Windows systems."""
|
55 |
+
|
56 |
+
def _acquire(self) -> None:
|
57 |
+
raise NotImplementedError
|
58 |
+
|
59 |
+
def _release(self) -> None:
|
60 |
+
raise NotImplementedError
|
61 |
+
|
62 |
+
|
63 |
+
__all__ = [
|
64 |
+
"WindowsFileLock",
|
65 |
+
]
|
venv/lib/python3.10/site-packages/filelock/py.typed
ADDED
File without changes
|
venv/lib/python3.10/site-packages/filelock/version.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# file generated by setuptools_scm
|
2 |
+
# don't change, don't track in version control
|
3 |
+
TYPE_CHECKING = False
|
4 |
+
if TYPE_CHECKING:
|
5 |
+
from typing import Tuple, Union
|
6 |
+
VERSION_TUPLE = Tuple[Union[int, str], ...]
|
7 |
+
else:
|
8 |
+
VERSION_TUPLE = object
|
9 |
+
|
10 |
+
version: str
|
11 |
+
__version__: str
|
12 |
+
__version_tuple__: VERSION_TUPLE
|
13 |
+
version_tuple: VERSION_TUPLE
|
14 |
+
|
15 |
+
__version__ = version = '3.13.4'
|
16 |
+
__version_tuple__ = version_tuple = (3, 13, 4)
|
venv/lib/python3.10/site-packages/sacrebleu/dataset/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (65.2 kB). View file
|
|
venv/lib/python3.10/site-packages/sacrebleu/dataset/__pycache__/__main__.cpython-310.pyc
ADDED
Binary file (1.35 kB). View file
|
|
venv/lib/python3.10/site-packages/sacrebleu/dataset/__pycache__/base.cpython-310.pyc
ADDED
Binary file (7.35 kB). View file
|
|
venv/lib/python3.10/site-packages/sacrebleu/dataset/__pycache__/fake_sgml.cpython-310.pyc
ADDED
Binary file (4.12 kB). View file
|
|
venv/lib/python3.10/site-packages/sacrebleu/dataset/__pycache__/iwslt_xml.cpython-310.pyc
ADDED
Binary file (475 Bytes). View file
|
|
venv/lib/python3.10/site-packages/sacrebleu/dataset/__pycache__/plain_text.cpython-310.pyc
ADDED
Binary file (1.57 kB). View file
|
|
venv/lib/python3.10/site-packages/sacrebleu/dataset/__pycache__/tsv.cpython-310.pyc
ADDED
Binary file (2.23 kB). View file
|
|
venv/lib/python3.10/site-packages/sacrebleu/dataset/__pycache__/wmt_xml.cpython-310.pyc
ADDED
Binary file (7.41 kB). View file
|
|
venv/lib/python3.10/site-packages/sacrebleu/dataset/base.py
ADDED
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
The base class for all types of datasets.
|
3 |
+
"""
|
4 |
+
import os
|
5 |
+
import re
|
6 |
+
from abc import ABCMeta, abstractmethod
|
7 |
+
from typing import Dict, List, Optional
|
8 |
+
|
9 |
+
from ..utils import SACREBLEU_DIR, download_file, smart_open
|
10 |
+
|
11 |
+
|
12 |
+
class Dataset(metaclass=ABCMeta):
|
13 |
+
def __init__(
|
14 |
+
self,
|
15 |
+
name: str,
|
16 |
+
data: Optional[List[str]] = None,
|
17 |
+
description: Optional[str] = None,
|
18 |
+
citation: Optional[str] = None,
|
19 |
+
md5: Optional[List[str]] = None,
|
20 |
+
langpairs=Dict[str, List[str]],
|
21 |
+
**kwargs,
|
22 |
+
):
|
23 |
+
"""
|
24 |
+
Params come from the values in DATASETS.
|
25 |
+
|
26 |
+
:param name: Name of the dataset.
|
27 |
+
:param data: URL of the raw data of the dataset.
|
28 |
+
:param description: Description of the dataset.
|
29 |
+
:param citation: Citation for the dataset.
|
30 |
+
:param md5: MD5 checksum of the dataset.
|
31 |
+
:param langpairs: List of available language pairs.
|
32 |
+
"""
|
33 |
+
self.name = name
|
34 |
+
self.data = data
|
35 |
+
self.description = description
|
36 |
+
self.citation = citation
|
37 |
+
self.md5 = md5
|
38 |
+
self.langpairs = langpairs
|
39 |
+
self.kwargs = kwargs
|
40 |
+
|
41 |
+
# Don't do any downloading or further processing now.
|
42 |
+
# Only do that lazily, when asked.
|
43 |
+
|
44 |
+
# where to store the dataset
|
45 |
+
self._outdir = os.path.join(SACREBLEU_DIR, self.name)
|
46 |
+
self._rawdir = os.path.join(self._outdir, "raw")
|
47 |
+
|
48 |
+
def maybe_download(self):
|
49 |
+
"""
|
50 |
+
If the dataset isn't downloaded, use utils/download_file()
|
51 |
+
This can be implemented here in the base class. It should write
|
52 |
+
to ~/.sacreleu/DATASET/raw exactly as it does now.
|
53 |
+
"""
|
54 |
+
os.makedirs(self._rawdir, exist_ok=True)
|
55 |
+
|
56 |
+
expected_checksums = self.md5 if self.md5 else [None] * len(self.data)
|
57 |
+
|
58 |
+
for url, expected_md5 in zip(self.data, expected_checksums):
|
59 |
+
tarball = os.path.join(self._rawdir, self._get_tarball_filename(url))
|
60 |
+
|
61 |
+
download_file(
|
62 |
+
url, tarball, extract_to=self._rawdir, expected_md5=expected_md5
|
63 |
+
)
|
64 |
+
|
65 |
+
@staticmethod
|
66 |
+
def _clean(s):
|
67 |
+
"""
|
68 |
+
Removes trailing and leading spaces and collapses multiple consecutive internal spaces to a single one.
|
69 |
+
|
70 |
+
:param s: The string.
|
71 |
+
:return: A cleaned-up string.
|
72 |
+
"""
|
73 |
+
return re.sub(r"\s+", " ", s.strip())
|
74 |
+
|
75 |
+
def _get_tarball_filename(self, url):
|
76 |
+
"""
|
77 |
+
Produces a local filename for tarball.
|
78 |
+
:param url: The url to download.
|
79 |
+
:return: A name produced from the dataset identifier and the URL basename.
|
80 |
+
"""
|
81 |
+
return self.name.replace("/", "_") + "." + os.path.basename(url)
|
82 |
+
|
83 |
+
def _get_txt_file_path(self, langpair, fieldname):
|
84 |
+
"""
|
85 |
+
Given the language pair and fieldname, return the path to the text file.
|
86 |
+
The format is: ~/.sacrebleu/DATASET/DATASET.LANGPAIR.FIELDNAME
|
87 |
+
|
88 |
+
:param langpair: The language pair.
|
89 |
+
:param fieldname: The fieldname.
|
90 |
+
:return: The path to the text file.
|
91 |
+
"""
|
92 |
+
# handle the special case of subsets. e.g. "wmt21/dev" > "wmt21_dev"
|
93 |
+
name = self.name.replace("/", "_")
|
94 |
+
# Colons are used to distinguish multiple references, but are not supported in Windows filenames
|
95 |
+
fieldname = fieldname.replace(":", "-")
|
96 |
+
return os.path.join(self._outdir, f"{name}.{langpair}.{fieldname}")
|
97 |
+
|
98 |
+
def _get_langpair_metadata(self, langpair):
|
99 |
+
"""
|
100 |
+
Given a language pair, return the metadata for that language pair.
|
101 |
+
Deal with errors if the language pair is not available.
|
102 |
+
|
103 |
+
:param langpair: The language pair. e.g. "en-de"
|
104 |
+
:return: Dict format which is same as self.langpairs.
|
105 |
+
"""
|
106 |
+
if langpair is None:
|
107 |
+
langpairs = self.langpairs
|
108 |
+
elif langpair not in self.langpairs:
|
109 |
+
raise Exception(f"No such language pair {self.name}/{langpair}")
|
110 |
+
else:
|
111 |
+
langpairs = {langpair: self.langpairs[langpair]}
|
112 |
+
|
113 |
+
return langpairs
|
114 |
+
|
115 |
+
@abstractmethod
|
116 |
+
def process_to_text(self, langpair=None) -> None:
|
117 |
+
"""Processes raw files to plain text files.
|
118 |
+
|
119 |
+
:param langpair: The language pair to process. e.g. "en-de". If None, all files will be processed.
|
120 |
+
"""
|
121 |
+
pass
|
122 |
+
|
123 |
+
def fieldnames(self, langpair) -> List[str]:
|
124 |
+
"""
|
125 |
+
Return a list of all the field names. For most source, this is just
|
126 |
+
the source and the reference. For others, it might include the document
|
127 |
+
ID for each line, or the original language (origLang).
|
128 |
+
|
129 |
+
get_files() should return the same number of items as this.
|
130 |
+
|
131 |
+
:param langpair: The language pair (e.g., "de-en")
|
132 |
+
:return: a list of field names
|
133 |
+
"""
|
134 |
+
return ["src", "ref"]
|
135 |
+
|
136 |
+
def __iter__(self, langpair):
|
137 |
+
"""
|
138 |
+
Iterates over all fields (source, references, and other metadata) defined
|
139 |
+
by the dataset.
|
140 |
+
"""
|
141 |
+
all_files = self.get_files(langpair)
|
142 |
+
all_fins = [smart_open(f) for f in all_files]
|
143 |
+
|
144 |
+
for item in zip(*all_fins):
|
145 |
+
yield item
|
146 |
+
|
147 |
+
def source(self, langpair):
|
148 |
+
"""
|
149 |
+
Return an iterable over the source lines.
|
150 |
+
"""
|
151 |
+
source_file = self.get_source_file(langpair)
|
152 |
+
with smart_open(source_file) as fin:
|
153 |
+
for line in fin:
|
154 |
+
yield line.strip()
|
155 |
+
|
156 |
+
def references(self, langpair):
|
157 |
+
"""
|
158 |
+
Return an iterable over the references.
|
159 |
+
"""
|
160 |
+
ref_files = self.get_reference_files(langpair)
|
161 |
+
ref_fins = [smart_open(f) for f in ref_files]
|
162 |
+
|
163 |
+
for item in zip(*ref_fins):
|
164 |
+
yield item
|
165 |
+
|
166 |
+
def get_source_file(self, langpair):
|
167 |
+
all_files = self.get_files(langpair)
|
168 |
+
all_fields = self.fieldnames(langpair)
|
169 |
+
index = all_fields.index("src")
|
170 |
+
return all_files[index]
|
171 |
+
|
172 |
+
def get_reference_files(self, langpair):
|
173 |
+
all_files = self.get_files(langpair)
|
174 |
+
all_fields = self.fieldnames(langpair)
|
175 |
+
ref_files = [
|
176 |
+
f for f, field in zip(all_files, all_fields) if field.startswith("ref")
|
177 |
+
]
|
178 |
+
return ref_files
|
179 |
+
|
180 |
+
def get_files(self, langpair):
|
181 |
+
"""
|
182 |
+
Returns the path of the source file and all reference files for
|
183 |
+
the provided test set / language pair.
|
184 |
+
Downloads the references first if they are not already local.
|
185 |
+
|
186 |
+
:param langpair: The language pair (e.g., "de-en")
|
187 |
+
:return: a list of the source file and all reference files
|
188 |
+
"""
|
189 |
+
fields = self.fieldnames(langpair)
|
190 |
+
files = [self._get_txt_file_path(langpair, field) for field in fields]
|
191 |
+
|
192 |
+
for file in files:
|
193 |
+
if not os.path.exists(file):
|
194 |
+
self.process_to_text(langpair)
|
195 |
+
return files
|
venv/lib/python3.10/site-packages/sacrebleu/dataset/fake_sgml.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
|
4 |
+
from ..utils import smart_open
|
5 |
+
from .base import Dataset
|
6 |
+
|
7 |
+
|
8 |
+
class FakeSGMLDataset(Dataset):
|
9 |
+
"""
|
10 |
+
The fake SGML format used by WMT prior to 2021. Can't be properly parsed.
|
11 |
+
Source and reference(s) in separate files.
|
12 |
+
"""
|
13 |
+
|
14 |
+
def _convert_format(self, input_file_path, output_filep_path):
|
15 |
+
"""
|
16 |
+
Extract data from raw file and convert to raw txt format.
|
17 |
+
"""
|
18 |
+
with smart_open(input_file_path) as fin, smart_open(
|
19 |
+
output_filep_path, "wt"
|
20 |
+
) as fout:
|
21 |
+
for line in fin:
|
22 |
+
if line.startswith("<seg "):
|
23 |
+
line = self._clean(re.sub(r"<seg.*?>(.*)</seg>.*?", "\\1", line))
|
24 |
+
print(line, file=fout)
|
25 |
+
|
26 |
+
def _convert_meta(self, input_file_path, field, output_filep_path):
|
27 |
+
"""
|
28 |
+
Extract metadata from document tags, projects across segments.
|
29 |
+
"""
|
30 |
+
with smart_open(input_file_path) as fin, smart_open(
|
31 |
+
output_filep_path, "wt"
|
32 |
+
) as fout:
|
33 |
+
value = ""
|
34 |
+
for line in fin:
|
35 |
+
if line.startswith("<doc "):
|
36 |
+
match = re.search(rf'{field}="(.*?)"', line)
|
37 |
+
if match is not None:
|
38 |
+
value = match.group(1)
|
39 |
+
|
40 |
+
elif line.startswith("<seg "):
|
41 |
+
# print the current value once for each field
|
42 |
+
print(value, file=fout)
|
43 |
+
|
44 |
+
def process_to_text(self, langpair=None):
|
45 |
+
"""Processes raw files to plain text files.
|
46 |
+
|
47 |
+
:param langpair: The language pair to process. e.g. "en-de". If None, all files will be processed.
|
48 |
+
"""
|
49 |
+
# ensure that the dataset is downloaded
|
50 |
+
self.maybe_download()
|
51 |
+
langpairs = self._get_langpair_metadata(langpair)
|
52 |
+
|
53 |
+
for langpair in langpairs:
|
54 |
+
fieldnames = self.fieldnames(langpair)
|
55 |
+
origin_files = [
|
56 |
+
os.path.join(self._rawdir, path) for path in langpairs[langpair]
|
57 |
+
]
|
58 |
+
|
59 |
+
# Add the source file three more times for docid, genre, origlang
|
60 |
+
origin_files += [
|
61 |
+
os.path.join(self._rawdir, langpairs[langpair][0]) for _ in range(3)
|
62 |
+
]
|
63 |
+
|
64 |
+
for field, origin_file in zip(fieldnames, origin_files):
|
65 |
+
|
66 |
+
origin_file = os.path.join(self._rawdir, origin_file)
|
67 |
+
output_file = self._get_txt_file_path(langpair, field)
|
68 |
+
|
69 |
+
if field.startswith("src") or field.startswith("ref"):
|
70 |
+
self._convert_format(origin_file, output_file)
|
71 |
+
else:
|
72 |
+
# document metadata keys
|
73 |
+
self._convert_meta(origin_file, field, output_file)
|
74 |
+
|
75 |
+
def fieldnames(self, langpair):
|
76 |
+
"""
|
77 |
+
Return a list of all the field names. For most source, this is just
|
78 |
+
the source and the reference. For others, it might include the document
|
79 |
+
ID for each line, or the original language (origLang).
|
80 |
+
|
81 |
+
get_files() should return the same number of items as this.
|
82 |
+
"""
|
83 |
+
meta = self._get_langpair_metadata(langpair)
|
84 |
+
length = len(meta[langpair])
|
85 |
+
|
86 |
+
assert (
|
87 |
+
length >= 2
|
88 |
+
), f"Each language pair in {self.name} must have at least 2 fields."
|
89 |
+
|
90 |
+
fields = ["src"]
|
91 |
+
|
92 |
+
if length == 2:
|
93 |
+
fields.append("ref")
|
94 |
+
else:
|
95 |
+
for i, _ in enumerate(meta[langpair][1:]):
|
96 |
+
fields.append(f"ref:{i}")
|
97 |
+
|
98 |
+
if not self.name.startswith("wmt08"):
|
99 |
+
fields += ["docid", "genre", "origlang"]
|
100 |
+
|
101 |
+
return fields
|
102 |
+
|
103 |
+
|
104 |
+
class WMTAdditionDataset(FakeSGMLDataset):
|
105 |
+
"""
|
106 |
+
Handle special case of WMT Google addition dataset.
|
107 |
+
"""
|
108 |
+
|
109 |
+
def _convert_format(self, input_file_path, output_filep_path):
|
110 |
+
if input_file_path.endswith(".sgm"):
|
111 |
+
return super()._convert_format(input_file_path, output_filep_path)
|
112 |
+
else:
|
113 |
+
with smart_open(input_file_path) as fin:
|
114 |
+
with smart_open(output_filep_path, "wt") as fout:
|
115 |
+
for line in fin:
|
116 |
+
print(line.rstrip(), file=fout)
|
venv/lib/python3.10/site-packages/sacrebleu/dataset/wmt_xml.py
ADDED
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import lxml.etree as ET
|
4 |
+
|
5 |
+
from ..utils import smart_open
|
6 |
+
from .base import Dataset
|
7 |
+
|
8 |
+
from collections import defaultdict
|
9 |
+
|
10 |
+
|
11 |
+
def _get_field_by_translator(translator):
|
12 |
+
if not translator:
|
13 |
+
return "ref"
|
14 |
+
else:
|
15 |
+
return f"ref:{translator}"
|
16 |
+
|
17 |
+
class WMTXMLDataset(Dataset):
|
18 |
+
"""
|
19 |
+
The 2021+ WMT dataset format. Everything is contained in a single file.
|
20 |
+
Can be parsed with the lxml parser.
|
21 |
+
"""
|
22 |
+
@staticmethod
|
23 |
+
def _unwrap_wmt21_or_later(raw_file):
|
24 |
+
"""
|
25 |
+
Unwraps the XML file from wmt21 or later.
|
26 |
+
This script is adapted from https://github.com/wmt-conference/wmt-format-tools
|
27 |
+
|
28 |
+
:param raw_file: The raw xml file to unwrap.
|
29 |
+
:return: Dictionary which contains the following fields:
|
30 |
+
- `src`: The source sentences.
|
31 |
+
- `docid`: ID indicating which document the sentences belong to.
|
32 |
+
- `origlang`: The original language of the document.
|
33 |
+
- `ref:{translator}`: The references produced by each translator.
|
34 |
+
- `ref`: An alias for the references from the first translator.
|
35 |
+
"""
|
36 |
+
tree = ET.parse(raw_file)
|
37 |
+
# Find and check the documents (src, ref, hyp)
|
38 |
+
src_langs, ref_langs, translators = set(), set(), set()
|
39 |
+
for src_doc in tree.getroot().findall(".//src"):
|
40 |
+
src_langs.add(src_doc.get("lang"))
|
41 |
+
|
42 |
+
for ref_doc in tree.getroot().findall(".//ref"):
|
43 |
+
ref_langs.add(ref_doc.get("lang"))
|
44 |
+
translator = ref_doc.get("translator")
|
45 |
+
translators.add(translator)
|
46 |
+
|
47 |
+
assert (
|
48 |
+
len(src_langs) == 1
|
49 |
+
), f"Multiple source languages found in the file: {raw_file}"
|
50 |
+
assert (
|
51 |
+
len(ref_langs) == 1
|
52 |
+
), f"Found {len(ref_langs)} reference languages found in the file: {raw_file}"
|
53 |
+
|
54 |
+
src = []
|
55 |
+
docids = []
|
56 |
+
orig_langs = []
|
57 |
+
domains = []
|
58 |
+
|
59 |
+
refs = { _get_field_by_translator(translator): [] for translator in translators }
|
60 |
+
|
61 |
+
systems = defaultdict(list)
|
62 |
+
|
63 |
+
src_sent_count, doc_count = 0, 0
|
64 |
+
for doc in tree.getroot().findall(".//doc"):
|
65 |
+
docid = doc.attrib["id"]
|
66 |
+
origlang = doc.attrib["origlang"]
|
67 |
+
# present wmt22++
|
68 |
+
domain = doc.attrib.get("domain", None)
|
69 |
+
|
70 |
+
# Skip the testsuite
|
71 |
+
if "testsuite" in doc.attrib:
|
72 |
+
continue
|
73 |
+
|
74 |
+
doc_count += 1
|
75 |
+
src_sents = {
|
76 |
+
int(seg.get("id")): seg.text for seg in doc.findall(".//src//seg")
|
77 |
+
}
|
78 |
+
|
79 |
+
def get_sents(doc):
|
80 |
+
return {
|
81 |
+
int(seg.get("id")): seg.text if seg.text else ""
|
82 |
+
for seg in doc.findall(".//seg")
|
83 |
+
}
|
84 |
+
|
85 |
+
ref_docs = doc.findall(".//ref")
|
86 |
+
|
87 |
+
trans_to_ref = {
|
88 |
+
ref_doc.get("translator"): get_sents(ref_doc) for ref_doc in ref_docs
|
89 |
+
}
|
90 |
+
|
91 |
+
hyp_docs = doc.findall(".//hyp")
|
92 |
+
hyps = {
|
93 |
+
hyp_doc.get("system"): get_sents(hyp_doc) for hyp_doc in hyp_docs
|
94 |
+
}
|
95 |
+
|
96 |
+
for seg_id in sorted(src_sents.keys()):
|
97 |
+
# no ref translation is available for this segment
|
98 |
+
if not any([value.get(seg_id, "") for value in trans_to_ref.values()]):
|
99 |
+
continue
|
100 |
+
for translator in translators:
|
101 |
+
refs[_get_field_by_translator(translator)].append(
|
102 |
+
trans_to_ref.get(translator, {translator: {}}).get(seg_id, "")
|
103 |
+
)
|
104 |
+
src.append(src_sents[seg_id])
|
105 |
+
for system_name in hyps.keys():
|
106 |
+
systems[system_name].append(hyps[system_name][seg_id])
|
107 |
+
docids.append(docid)
|
108 |
+
orig_langs.append(origlang)
|
109 |
+
if domain is not None:
|
110 |
+
domains.append(domain)
|
111 |
+
src_sent_count += 1
|
112 |
+
|
113 |
+
data = {"src": src, **refs, "docid": docids, "origlang": orig_langs, **systems}
|
114 |
+
if len(domains):
|
115 |
+
data["domain"] = domains
|
116 |
+
|
117 |
+
return data
|
118 |
+
|
119 |
+
def _get_langpair_path(self, langpair):
|
120 |
+
"""
|
121 |
+
Returns the path for this language pair.
|
122 |
+
This is useful because in WMT22, the language-pair data structure can be a dict,
|
123 |
+
in order to allow for overriding which test set to use.
|
124 |
+
"""
|
125 |
+
langpair_data = self._get_langpair_metadata(langpair)[langpair]
|
126 |
+
rel_path = langpair_data["path"] if isinstance(langpair_data, dict) else langpair_data[0]
|
127 |
+
return os.path.join(self._rawdir, rel_path)
|
128 |
+
|
129 |
+
def process_to_text(self, langpair=None):
|
130 |
+
"""Processes raw files to plain text files.
|
131 |
+
|
132 |
+
:param langpair: The language pair to process. e.g. "en-de". If None, all files will be processed.
|
133 |
+
"""
|
134 |
+
# ensure that the dataset is downloaded
|
135 |
+
self.maybe_download()
|
136 |
+
|
137 |
+
for langpair in sorted(self._get_langpair_metadata(langpair).keys()):
|
138 |
+
# The data type can be a list of paths, or a dict, containing the "path"
|
139 |
+
# and an override on which labeled reference to use (key "refs")
|
140 |
+
rawfile = self._get_langpair_path(langpair)
|
141 |
+
|
142 |
+
with smart_open(rawfile) as fin:
|
143 |
+
fields = self._unwrap_wmt21_or_later(fin)
|
144 |
+
|
145 |
+
for fieldname in fields:
|
146 |
+
textfile = self._get_txt_file_path(langpair, fieldname)
|
147 |
+
|
148 |
+
# skip if the file already exists
|
149 |
+
if os.path.exists(textfile) and os.path.getsize(textfile) > 0:
|
150 |
+
continue
|
151 |
+
|
152 |
+
with smart_open(textfile, "w") as fout:
|
153 |
+
for line in fields[fieldname]:
|
154 |
+
print(self._clean(line), file=fout)
|
155 |
+
|
156 |
+
def _get_langpair_allowed_refs(self, langpair):
|
157 |
+
"""
|
158 |
+
Returns the preferred references for this language pair.
|
159 |
+
This can be set in the language pair block (as in WMT22), and backs off to the
|
160 |
+
test-set-level default, or nothing.
|
161 |
+
|
162 |
+
There is one exception. In the metadata, sometimes there is no translator field
|
163 |
+
listed (e.g., wmt22:liv-en). In this case, the reference is set to "", and the
|
164 |
+
field "ref" is returned.
|
165 |
+
"""
|
166 |
+
defaults = self.kwargs.get("refs", [])
|
167 |
+
langpair_data = self._get_langpair_metadata(langpair)[langpair]
|
168 |
+
if isinstance(langpair_data, dict):
|
169 |
+
allowed_refs = langpair_data.get("refs", defaults)
|
170 |
+
else:
|
171 |
+
allowed_refs = defaults
|
172 |
+
allowed_refs = [_get_field_by_translator(ref) for ref in allowed_refs]
|
173 |
+
|
174 |
+
return allowed_refs
|
175 |
+
|
176 |
+
def get_reference_files(self, langpair):
|
177 |
+
"""
|
178 |
+
Returns the requested reference files.
|
179 |
+
This is defined as a default at the test-set level, and can be overridden per language.
|
180 |
+
"""
|
181 |
+
# Iterate through the (label, file path) pairs, looking for permitted labels
|
182 |
+
allowed_refs = self._get_langpair_allowed_refs(langpair)
|
183 |
+
all_files = self.get_files(langpair)
|
184 |
+
all_fields = self.fieldnames(langpair)
|
185 |
+
ref_files = [
|
186 |
+
f for f, field in zip(all_files, all_fields) if field in allowed_refs
|
187 |
+
]
|
188 |
+
return ref_files
|
189 |
+
|
190 |
+
def fieldnames(self, langpair):
|
191 |
+
"""
|
192 |
+
Return a list of all the field names. For most source, this is just
|
193 |
+
the source and the reference. For others, it might include the document
|
194 |
+
ID for each line, or the original language (origLang).
|
195 |
+
|
196 |
+
get_files() should return the same number of items as this.
|
197 |
+
|
198 |
+
:param langpair: The language pair (e.g., "de-en")
|
199 |
+
:return: a list of field names
|
200 |
+
"""
|
201 |
+
self.maybe_download()
|
202 |
+
rawfile = self._get_langpair_path(langpair)
|
203 |
+
|
204 |
+
with smart_open(rawfile) as fin:
|
205 |
+
fields = self._unwrap_wmt21_or_later(fin)
|
206 |
+
|
207 |
+
return list(fields.keys())
|
venv/lib/python3.10/site-packages/sacrebleu/metrics/__init__.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""The implementation of various metrics."""
|
2 |
+
|
3 |
+
from .bleu import BLEU, BLEUScore # noqa: F401
|
4 |
+
from .chrf import CHRF, CHRFScore # noqa: F401
|
5 |
+
from .ter import TER, TERScore # noqa: F401
|
6 |
+
|
7 |
+
METRICS = {
|
8 |
+
'BLEU': BLEU,
|
9 |
+
'CHRF': CHRF,
|
10 |
+
'TER': TER,
|
11 |
+
}
|
venv/lib/python3.10/site-packages/sacrebleu/metrics/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (442 Bytes). View file
|
|
venv/lib/python3.10/site-packages/sacrebleu/metrics/__pycache__/base.cpython-310.pyc
ADDED
Binary file (14.8 kB). View file
|
|
venv/lib/python3.10/site-packages/sacrebleu/metrics/__pycache__/bleu.cpython-310.pyc
ADDED
Binary file (13.5 kB). View file
|
|
venv/lib/python3.10/site-packages/sacrebleu/metrics/__pycache__/chrf.cpython-310.pyc
ADDED
Binary file (9.17 kB). View file
|
|
venv/lib/python3.10/site-packages/sacrebleu/metrics/__pycache__/helpers.cpython-310.pyc
ADDED
Binary file (3.07 kB). View file
|
|
venv/lib/python3.10/site-packages/sacrebleu/metrics/__pycache__/lib_ter.cpython-310.pyc
ADDED
Binary file (11 kB). View file
|
|
venv/lib/python3.10/site-packages/sacrebleu/metrics/__pycache__/ter.cpython-310.pyc
ADDED
Binary file (7.29 kB). View file
|
|
venv/lib/python3.10/site-packages/sacrebleu/metrics/base.py
ADDED
@@ -0,0 +1,438 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""The base `Score`, `Metric` and `Signature` classes to derive from.
|
2 |
+
|
3 |
+
`Metric` is an abstract class that enforces the implementation of a set
|
4 |
+
of abstract methods. This way, a correctly implemented metric will work
|
5 |
+
seamlessly with the rest of the codebase.
|
6 |
+
"""
|
7 |
+
|
8 |
+
import json
|
9 |
+
import logging
|
10 |
+
import statistics
|
11 |
+
from typing import List, Sequence, Any, Optional, Dict
|
12 |
+
from abc import ABCMeta, abstractmethod
|
13 |
+
|
14 |
+
from .. import __version__
|
15 |
+
|
16 |
+
sacrelogger = logging.getLogger('sacrebleu')
|
17 |
+
|
18 |
+
|
19 |
+
class Score:
|
20 |
+
"""A base score class to derive from.
|
21 |
+
|
22 |
+
:param name: The name of the underlying metric.
|
23 |
+
:param score: A floating point number for the final metric.
|
24 |
+
"""
|
25 |
+
def __init__(self, name: str, score: float):
|
26 |
+
"""`Score` initializer."""
|
27 |
+
self.name = name
|
28 |
+
self.score = score
|
29 |
+
|
30 |
+
# Statistical test related fields
|
31 |
+
self._mean = -1.0
|
32 |
+
self._ci = -1.0
|
33 |
+
|
34 |
+
# More info can be added right after the score
|
35 |
+
self._verbose = ''
|
36 |
+
|
37 |
+
def format(self, width: int = 2, score_only: bool = False,
|
38 |
+
signature: str = '', is_json: bool = False) -> str:
|
39 |
+
"""Returns a pretty representation of the score.
|
40 |
+
:param width: Floating point decimal precision width.
|
41 |
+
:param score_only: If `True`, and the format is not `json`,
|
42 |
+
returns a single score string.
|
43 |
+
:param signature: A string representation of the given `Signature`
|
44 |
+
instance.
|
45 |
+
:param is_json: If `True`, will output the score in JSON string.
|
46 |
+
:return: A plain or JSON-formatted string representation.
|
47 |
+
"""
|
48 |
+
d = {
|
49 |
+
'name': self.name,
|
50 |
+
'score': float(f'{self.score:.{width}f}'),
|
51 |
+
'signature': signature,
|
52 |
+
}
|
53 |
+
|
54 |
+
sc = f'{self.score:.{width}f}'
|
55 |
+
|
56 |
+
if self._mean > 0:
|
57 |
+
confidence_mean = f'{self._mean:.{width}f}'
|
58 |
+
confidence_var = f'{self._ci:.{width}f}'
|
59 |
+
confidence_str = f'μ = {confidence_mean} ± {confidence_var}'
|
60 |
+
|
61 |
+
sc += f' ({confidence_str})'
|
62 |
+
if is_json:
|
63 |
+
d['confidence_mean'] = float(confidence_mean)
|
64 |
+
d['confidence_var'] = float(confidence_var)
|
65 |
+
d['confidence'] = confidence_str
|
66 |
+
|
67 |
+
# Construct full score line
|
68 |
+
full_score = f"{self.name}|{signature}" if signature else self.name
|
69 |
+
full_score = f"{full_score} = {sc}"
|
70 |
+
if self._verbose:
|
71 |
+
full_score += f' {self._verbose}'
|
72 |
+
d['verbose_score'] = self._verbose
|
73 |
+
|
74 |
+
if score_only:
|
75 |
+
return sc
|
76 |
+
|
77 |
+
if is_json:
|
78 |
+
for param in signature.split('|'):
|
79 |
+
key, value = param.split(':')
|
80 |
+
d[key] = value
|
81 |
+
return json.dumps(d, indent=1, ensure_ascii=False)
|
82 |
+
|
83 |
+
return full_score
|
84 |
+
|
85 |
+
def estimate_ci(self, scores: List['Score']):
|
86 |
+
"""Takes a list of scores and stores mean, stdev and 95% confidence
|
87 |
+
interval around the mean.
|
88 |
+
|
89 |
+
:param scores: A list of `Score` objects obtained from bootstrap
|
90 |
+
resampling for example.
|
91 |
+
"""
|
92 |
+
# Sort the scores
|
93 |
+
raw_scores = sorted([x.score for x in scores])
|
94 |
+
n = len(raw_scores)
|
95 |
+
|
96 |
+
# Get CI bounds (95%, i.e. 1/40 from left)
|
97 |
+
lower_idx = n // 40
|
98 |
+
upper_idx = n - lower_idx - 1
|
99 |
+
lower, upper = raw_scores[lower_idx], raw_scores[upper_idx]
|
100 |
+
self._ci = 0.5 * (upper - lower)
|
101 |
+
self._mean = statistics.mean(raw_scores)
|
102 |
+
|
103 |
+
def __repr__(self):
|
104 |
+
"""Returns a human readable score string."""
|
105 |
+
return self.format()
|
106 |
+
|
107 |
+
|
108 |
+
class Signature:
|
109 |
+
"""A convenience class to represent sacreBLEU reproducibility signatures.
|
110 |
+
|
111 |
+
:param args: key-value dictionary passed from the actual metric instance.
|
112 |
+
"""
|
113 |
+
def __init__(self, args: dict):
|
114 |
+
"""`Signature` initializer."""
|
115 |
+
# Global items that are shared across all metrics
|
116 |
+
self._abbr = {
|
117 |
+
'version': 'v',
|
118 |
+
'nrefs': '#',
|
119 |
+
'test': 't',
|
120 |
+
'lang': 'l',
|
121 |
+
'subset': 'S',
|
122 |
+
'origlang': 'o',
|
123 |
+
'bs': 'bs', # Bootstrap resampling trials
|
124 |
+
'ar': 'ar', # Approximate randomization trials
|
125 |
+
'seed': 'rs', # RNG's seed
|
126 |
+
}
|
127 |
+
|
128 |
+
if 'num_refs' not in args:
|
129 |
+
raise ValueError(
|
130 |
+
'Number of references unknown, please evaluate the metric first.')
|
131 |
+
|
132 |
+
num_refs = args['num_refs']
|
133 |
+
if num_refs == -1:
|
134 |
+
# Detect variable number of refs
|
135 |
+
num_refs = 'var'
|
136 |
+
|
137 |
+
# Global items that are shared across all metrics
|
138 |
+
# None's will be ignored
|
139 |
+
self.info = {
|
140 |
+
'version': __version__,
|
141 |
+
'nrefs': num_refs,
|
142 |
+
'bs': args.get('n_bootstrap', None),
|
143 |
+
'ar': None,
|
144 |
+
'seed': args.get('seed', None),
|
145 |
+
'test': args.get('test_set', None),
|
146 |
+
'lang': args.get('langpair', None),
|
147 |
+
'origlang': args.get('origlang', None),
|
148 |
+
'subset': args.get('subset', None),
|
149 |
+
}
|
150 |
+
|
151 |
+
def format(self, short: bool = False) -> str:
|
152 |
+
"""Returns a string representation of the signature.
|
153 |
+
|
154 |
+
:param short: If True, shortened signature is produced.
|
155 |
+
:return: A string representation of the signature.
|
156 |
+
"""
|
157 |
+
pairs = []
|
158 |
+
keys = list(self.info.keys())
|
159 |
+
# keep version always at end
|
160 |
+
keys.remove('version')
|
161 |
+
for name in keys + ['version']:
|
162 |
+
value = self.info[name]
|
163 |
+
if value is not None:
|
164 |
+
if isinstance(value, bool):
|
165 |
+
# Replace True/False with yes/no
|
166 |
+
value = 'yes' if value else 'no'
|
167 |
+
final_name = self._abbr[name] if short else name
|
168 |
+
pairs.append(f'{final_name}:{value}')
|
169 |
+
|
170 |
+
return '|'.join(pairs)
|
171 |
+
|
172 |
+
def update(self, key: str, value: Any):
|
173 |
+
"""Add a new item or update an existing one.
|
174 |
+
|
175 |
+
:param key: The key to use in the dictionary.
|
176 |
+
:param value: The associated value for the `key`.
|
177 |
+
"""
|
178 |
+
self.info[key] = value
|
179 |
+
|
180 |
+
def __str__(self):
|
181 |
+
"""Returns a human-readable signature string."""
|
182 |
+
return self.format()
|
183 |
+
|
184 |
+
def __repr__(self):
|
185 |
+
"""Returns a human-readable signature string."""
|
186 |
+
return self.format()
|
187 |
+
|
188 |
+
|
189 |
+
class Metric(metaclass=ABCMeta):
|
190 |
+
"""A base class for all metrics that ensures the implementation of some
|
191 |
+
methods. Much of the common functionality is moved to this base class
|
192 |
+
from other metrics."""
|
193 |
+
|
194 |
+
# Each metric should define its Signature class' name here
|
195 |
+
_SIGNATURE_TYPE = Signature
|
196 |
+
|
197 |
+
def __init__(self):
|
198 |
+
"""`Metric` initializer."""
|
199 |
+
# The pre-computed reference cache
|
200 |
+
self._ref_cache = None
|
201 |
+
|
202 |
+
# only useful for BLEU tokenized warnings. Set to True so that
|
203 |
+
# warnings are not issued for other metrics.
|
204 |
+
self._force = True
|
205 |
+
|
206 |
+
# Will be used by the signature when bootstrap resampling
|
207 |
+
self.n_bootstrap = None
|
208 |
+
self.seed = None
|
209 |
+
|
210 |
+
def _check_sentence_score_args(self, hyp: str, refs: Sequence[str]):
|
211 |
+
"""Performs sanity checks on `sentence_score` method's arguments.
|
212 |
+
|
213 |
+
:param hyp: A single hypothesis string.
|
214 |
+
:param refs: A sequence of reference strings.
|
215 |
+
"""
|
216 |
+
prefix = self.__class__.__name__
|
217 |
+
err_msg = None
|
218 |
+
|
219 |
+
if not isinstance(hyp, str):
|
220 |
+
err_msg = 'The argument `hyp` should be a string.'
|
221 |
+
elif isinstance(refs, str) or not isinstance(refs, Sequence):
|
222 |
+
err_msg = 'The argument `refs` should be a sequence of strings.'
|
223 |
+
elif not isinstance(refs[0], str) and refs[0] is not None:
|
224 |
+
err_msg = 'Each element of `refs` should be a string.'
|
225 |
+
|
226 |
+
if err_msg:
|
227 |
+
raise TypeError(f'{prefix}: {err_msg}')
|
228 |
+
|
229 |
+
def _check_corpus_score_args(self, hyps: Sequence[str],
|
230 |
+
refs: Optional[Sequence[Sequence[str]]]):
|
231 |
+
"""Performs sanity checks on `corpus_score` method's arguments.
|
232 |
+
|
233 |
+
:param hypses: A sequence of hypothesis strings.
|
234 |
+
:param refs: A sequence of reference documents with document being
|
235 |
+
defined as a sequence of reference strings. If `None`, cached references
|
236 |
+
will be used.
|
237 |
+
"""
|
238 |
+
|
239 |
+
prefix = self.__class__.__name__
|
240 |
+
err_msg = None
|
241 |
+
|
242 |
+
if not isinstance(hyps, Sequence):
|
243 |
+
err_msg = "`hyps` should be a sequence of strings."
|
244 |
+
elif not isinstance(hyps[0], str):
|
245 |
+
err_msg = 'Each element of `hyps` should be a string.'
|
246 |
+
elif any(line is None for line in hyps):
|
247 |
+
err_msg = "Undefined line in hypotheses stream!"
|
248 |
+
|
249 |
+
if refs is not None:
|
250 |
+
if not isinstance(refs, Sequence):
|
251 |
+
err_msg = "`refs` should be a sequence of sequence of strings."
|
252 |
+
elif not isinstance(refs[0], Sequence):
|
253 |
+
err_msg = "Each element of `refs` should be a sequence of strings."
|
254 |
+
elif not isinstance(refs[0][0], str) and refs[0][0] is not None:
|
255 |
+
err_msg = "`refs` should be a sequence of sequence of strings."
|
256 |
+
|
257 |
+
if err_msg:
|
258 |
+
raise TypeError(f'{prefix}: {err_msg}')
|
259 |
+
|
260 |
+
@abstractmethod
|
261 |
+
def _aggregate_and_compute(self, stats: List[List[Any]]) -> Any:
|
262 |
+
"""Computes the final score given the pre-computed match statistics.
|
263 |
+
|
264 |
+
:param stats: A list of segment-level statistics.
|
265 |
+
:return: A `Score` instance.
|
266 |
+
"""
|
267 |
+
pass
|
268 |
+
|
269 |
+
@abstractmethod
|
270 |
+
def _compute_score_from_stats(self, stats: List[Any]) -> Any:
|
271 |
+
"""Computes the final score from already aggregated statistics.
|
272 |
+
|
273 |
+
:param stats: A list or numpy array of segment-level statistics.
|
274 |
+
:return: A `Score` object.
|
275 |
+
"""
|
276 |
+
pass
|
277 |
+
|
278 |
+
@abstractmethod
|
279 |
+
def _preprocess_segment(self, sent: str) -> str:
|
280 |
+
"""A wrapper around the metric's tokenization and pre-processing logic.
|
281 |
+
This should be implemented for reference caching to work correctly.
|
282 |
+
|
283 |
+
:param sent: The input sentence.
|
284 |
+
:return: The pre-processed output sentence.
|
285 |
+
"""
|
286 |
+
pass
|
287 |
+
|
288 |
+
@abstractmethod
|
289 |
+
def _extract_reference_info(self, refs: Sequence[str]) -> Dict[str, Any]:
|
290 |
+
"""Given a list of reference segments, extract the required
|
291 |
+
information (such as n-grams for BLEU and chrF). This should be implemented
|
292 |
+
for the generic `_cache_references()` to work across all metrics.
|
293 |
+
|
294 |
+
:param refs: A sequence of strings.
|
295 |
+
"""
|
296 |
+
pass
|
297 |
+
|
298 |
+
@abstractmethod
|
299 |
+
def _compute_segment_statistics(self, hypothesis: str, ref_kwargs: Dict) -> List[Any]:
|
300 |
+
"""Given a (pre-processed) hypothesis sentence and already computed
|
301 |
+
reference info, returns the best match statistics across the
|
302 |
+
references. The return type is usually a List of ints or floats.
|
303 |
+
|
304 |
+
:param hypothesis: A pre-processed hypothesis sentence.
|
305 |
+
:param ref_kwargs: A dictionary with reference-related information
|
306 |
+
within. This is formulated as a dictionary as different metrics may
|
307 |
+
require different information regarding a reference segment.
|
308 |
+
"""
|
309 |
+
pass
|
310 |
+
|
311 |
+
def _cache_references(self, references: Sequence[Sequence[str]]) -> List[Any]:
|
312 |
+
"""Given the full set of document references, extract segment n-grams
|
313 |
+
(or other necessary information) for caching purposes.
|
314 |
+
|
315 |
+
:param references: A sequence of reference documents with document being
|
316 |
+
defined as a sequence of reference strings. A particular reference
|
317 |
+
segment can be '' or `None` to allow the use of variable number
|
318 |
+
of references per segment.
|
319 |
+
:return: A list where each element is a tuple of segment n-grams and
|
320 |
+
reference lengths, as returned by `_extract_reference_info()`.
|
321 |
+
"""
|
322 |
+
ref_cache = []
|
323 |
+
|
324 |
+
# Decide on final number of refs here as well
|
325 |
+
num_refs = set()
|
326 |
+
|
327 |
+
for refs in zip(*references):
|
328 |
+
# Remove undefined references
|
329 |
+
lines = [x for x in refs if x is not None]
|
330 |
+
|
331 |
+
# Keep track of reference counts to allow variable reference
|
332 |
+
# info in the signature
|
333 |
+
num_refs.add(len(lines))
|
334 |
+
|
335 |
+
lines = [self._preprocess_segment(x) for x in lines]
|
336 |
+
|
337 |
+
# Get n-grams
|
338 |
+
ref_cache.append(self._extract_reference_info(lines))
|
339 |
+
|
340 |
+
if len(num_refs) == 1:
|
341 |
+
self.num_refs = list(num_refs)[0]
|
342 |
+
else:
|
343 |
+
# A variable number of refs exist
|
344 |
+
self.num_refs = -1
|
345 |
+
|
346 |
+
return ref_cache
|
347 |
+
|
348 |
+
def _extract_corpus_statistics(self, hypotheses: Sequence[str],
|
349 |
+
references: Optional[Sequence[Sequence[str]]]) -> Any:
|
350 |
+
"""Reads the corpus and returns sentence-level match statistics for
|
351 |
+
faster re-computations esp. during statistical tests.
|
352 |
+
|
353 |
+
:param hypotheses: A sequence of hypothesis strings.
|
354 |
+
:param references: A sequence of reference documents with document being
|
355 |
+
defined as a sequence of reference strings. If `None`, cached references
|
356 |
+
will be used.
|
357 |
+
:return: A list where each sublist corresponds to segment statistics.
|
358 |
+
"""
|
359 |
+
# Pre-compute references
|
360 |
+
# Don't store the cache as the user is explicitly passing refs
|
361 |
+
if references:
|
362 |
+
ref_cache = self._cache_references(references)
|
363 |
+
elif self._ref_cache:
|
364 |
+
ref_cache = self._ref_cache
|
365 |
+
else:
|
366 |
+
raise RuntimeError('No references provided and the cache is empty.')
|
367 |
+
|
368 |
+
stats = []
|
369 |
+
tok_count = 0
|
370 |
+
|
371 |
+
for hyp, ref_kwargs in zip(hypotheses, ref_cache):
|
372 |
+
# Check for already-tokenized input problem (only for BLEU)
|
373 |
+
if not self._force and hyp.endswith(' .'):
|
374 |
+
tok_count += 1
|
375 |
+
|
376 |
+
hyp = self._preprocess_segment(hyp)
|
377 |
+
|
378 |
+
# Collect stats
|
379 |
+
stats.append(self._compute_segment_statistics(hyp, ref_kwargs))
|
380 |
+
|
381 |
+
if tok_count >= 100:
|
382 |
+
sacrelogger.warning("That's 100 lines that end in a tokenized period ('.')")
|
383 |
+
sacrelogger.warning("It looks like you forgot to detokenize your test data, which may hurt your score.")
|
384 |
+
sacrelogger.warning("If you insist your data is detokenized, or don't care, you can suppress this message with the `force` parameter.")
|
385 |
+
|
386 |
+
return stats
|
387 |
+
|
388 |
+
def sentence_score(self, hypothesis: str, references: Sequence[str]) -> Any:
|
389 |
+
"""Compute the metric for a single sentence against a single (or multiple) reference(s).
|
390 |
+
|
391 |
+
:param hypothesis: A single hypothesis string.
|
392 |
+
:param references: A sequence of reference strings.
|
393 |
+
:return: A `Score` object.
|
394 |
+
"""
|
395 |
+
self._check_sentence_score_args(hypothesis, references)
|
396 |
+
|
397 |
+
stats = self._extract_corpus_statistics(
|
398 |
+
[hypothesis], [[refs] for refs in references])
|
399 |
+
return self._aggregate_and_compute(stats)
|
400 |
+
|
401 |
+
def corpus_score(self, hypotheses: Sequence[str],
|
402 |
+
references: Optional[Sequence[Sequence[str]]],
|
403 |
+
n_bootstrap: int = 1) -> Any:
|
404 |
+
"""Compute the metric for a corpus against a single (or multiple) reference(s).
|
405 |
+
|
406 |
+
:param hypotheses: A sequence of hypothesis strings.
|
407 |
+
:param references: A sequence of reference documents with document being
|
408 |
+
defined as a sequence of reference strings. If `None`, cached references
|
409 |
+
will be used.
|
410 |
+
:param n_bootstrap: If > 1, provides 95% confidence interval around true mean
|
411 |
+
using bootstrap resampling with `n_bootstrap` samples.
|
412 |
+
:return: A `Score` object.
|
413 |
+
"""
|
414 |
+
self._check_corpus_score_args(hypotheses, references)
|
415 |
+
|
416 |
+
# Collect corpus stats
|
417 |
+
stats = self._extract_corpus_statistics(hypotheses, references)
|
418 |
+
|
419 |
+
# Compute the actual system score
|
420 |
+
actual_score = self._aggregate_and_compute(stats)
|
421 |
+
|
422 |
+
if n_bootstrap > 1:
|
423 |
+
# Compute bootstrap estimate as well
|
424 |
+
# Delayed import is to escape from numpy import if bootstrap
|
425 |
+
# is not requested.
|
426 |
+
from ..significance import _bootstrap_resample
|
427 |
+
|
428 |
+
self.n_bootstrap = n_bootstrap
|
429 |
+
self.seed, bs_scores = _bootstrap_resample(stats, self, n_bootstrap)
|
430 |
+
actual_score.estimate_ci(bs_scores)
|
431 |
+
|
432 |
+
return actual_score
|
433 |
+
|
434 |
+
def get_signature(self) -> Signature:
|
435 |
+
"""Creates and returns the signature for the metric. The creation
|
436 |
+
of signatures is delayed as the number of references is resolved
|
437 |
+
only at the point of reference caching."""
|
438 |
+
return self._SIGNATURE_TYPE(self.__dict__)
|
venv/lib/python3.10/site-packages/sacrebleu/metrics/bleu.py
ADDED
@@ -0,0 +1,420 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""The implementation of the BLEU metric (Papineni et al., 2002)."""
|
2 |
+
|
3 |
+
import math
|
4 |
+
import logging
|
5 |
+
from importlib import import_module
|
6 |
+
from typing import List, Sequence, Optional, Dict, Any
|
7 |
+
|
8 |
+
from ..utils import my_log, sum_of_lists
|
9 |
+
|
10 |
+
from .base import Score, Signature, Metric
|
11 |
+
from .helpers import extract_all_word_ngrams
|
12 |
+
|
13 |
+
sacrelogger = logging.getLogger('sacrebleu')
|
14 |
+
|
15 |
+
# The default for the maximum n-gram order when computing precisions
|
16 |
+
MAX_NGRAM_ORDER = 4
|
17 |
+
|
18 |
+
_TOKENIZERS = {
|
19 |
+
'none': 'tokenizer_none.NoneTokenizer',
|
20 |
+
'zh': 'tokenizer_zh.TokenizerZh',
|
21 |
+
'13a': 'tokenizer_13a.Tokenizer13a',
|
22 |
+
'intl': 'tokenizer_intl.TokenizerV14International',
|
23 |
+
'char': 'tokenizer_char.TokenizerChar',
|
24 |
+
'ja-mecab': 'tokenizer_ja_mecab.TokenizerJaMecab',
|
25 |
+
'ko-mecab': 'tokenizer_ko_mecab.TokenizerKoMecab',
|
26 |
+
'spm': 'tokenizer_spm.TokenizerSPM',
|
27 |
+
'flores101': 'tokenizer_spm.Flores101Tokenizer',
|
28 |
+
'flores200': 'tokenizer_spm.Flores200Tokenizer',
|
29 |
+
}
|
30 |
+
|
31 |
+
|
32 |
+
def _get_tokenizer(name: str):
|
33 |
+
"""Dynamically import tokenizer as importing all is slow."""
|
34 |
+
module_name, class_name = _TOKENIZERS[name].rsplit('.', 1)
|
35 |
+
return getattr(
|
36 |
+
import_module(f'.tokenizers.{module_name}', 'sacrebleu'),
|
37 |
+
class_name)
|
38 |
+
|
39 |
+
|
40 |
+
class BLEUSignature(Signature):
|
41 |
+
"""A convenience class to represent the reproducibility signature for BLEU.
|
42 |
+
|
43 |
+
:param args: key-value dictionary passed from the actual metric instance.
|
44 |
+
"""
|
45 |
+
def __init__(self, args: dict):
|
46 |
+
"""`BLEUSignature` initializer."""
|
47 |
+
super().__init__(args)
|
48 |
+
|
49 |
+
self._abbr.update({
|
50 |
+
'case': 'c',
|
51 |
+
'eff': 'e',
|
52 |
+
'tok': 'tok',
|
53 |
+
'smooth': 's',
|
54 |
+
})
|
55 |
+
|
56 |
+
# Construct a combined string for smoothing method and value
|
57 |
+
smooth_str = args['smooth_method']
|
58 |
+
smooth_def = BLEU.SMOOTH_DEFAULTS[smooth_str]
|
59 |
+
|
60 |
+
# If the method requires a parameter, add it within brackets
|
61 |
+
if smooth_def is not None:
|
62 |
+
# the following can be None if the user wants to use the default
|
63 |
+
smooth_val = args['smooth_value']
|
64 |
+
|
65 |
+
if smooth_val is None:
|
66 |
+
smooth_val = smooth_def
|
67 |
+
|
68 |
+
smooth_str += f'[{smooth_val:.2f}]'
|
69 |
+
|
70 |
+
self.info.update({
|
71 |
+
'case': 'lc' if args['lowercase'] else 'mixed',
|
72 |
+
'eff': 'yes' if args['effective_order'] else 'no',
|
73 |
+
'tok': args['tokenizer_signature'],
|
74 |
+
'smooth': smooth_str,
|
75 |
+
})
|
76 |
+
|
77 |
+
|
78 |
+
class BLEUScore(Score):
|
79 |
+
"""A convenience class to represent BLEU scores.
|
80 |
+
|
81 |
+
:param score: The BLEU score.
|
82 |
+
:param counts: List of counts of correct ngrams, 1 <= n <= max_ngram_order
|
83 |
+
:param totals: List of counts of total ngrams, 1 <= n <= max_ngram_order
|
84 |
+
:param precisions: List of precisions, 1 <= n <= max_ngram_order
|
85 |
+
:param bp: The brevity penalty.
|
86 |
+
:param sys_len: The cumulative system length.
|
87 |
+
:param ref_len: The cumulative reference length.
|
88 |
+
"""
|
89 |
+
def __init__(self, score: float, counts: List[int], totals: List[int],
|
90 |
+
precisions: List[float], bp: float,
|
91 |
+
sys_len: int, ref_len: int):
|
92 |
+
"""`BLEUScore` initializer."""
|
93 |
+
super().__init__('BLEU', score)
|
94 |
+
self.bp = bp
|
95 |
+
self.counts = counts
|
96 |
+
self.totals = totals
|
97 |
+
self.sys_len = sys_len
|
98 |
+
self.ref_len = ref_len
|
99 |
+
self.precisions = precisions
|
100 |
+
|
101 |
+
self.prec_str = "/".join([f"{p:.1f}" for p in self.precisions])
|
102 |
+
self.ratio = self.sys_len / self.ref_len if self.ref_len else 0
|
103 |
+
|
104 |
+
# The verbose part of BLEU
|
105 |
+
self._verbose = f"{self.prec_str} (BP = {self.bp:.3f} "
|
106 |
+
self._verbose += f"ratio = {self.ratio:.3f} hyp_len = {self.sys_len:d} "
|
107 |
+
self._verbose += f"ref_len = {self.ref_len:d})"
|
108 |
+
|
109 |
+
|
110 |
+
class BLEU(Metric):
|
111 |
+
"""Computes the BLEU metric given hypotheses and references.
|
112 |
+
|
113 |
+
:param lowercase: If True, lowercased BLEU is computed.
|
114 |
+
:param force: Ignore data that looks already tokenized.
|
115 |
+
:param tokenize: The tokenizer to use. If None, defaults to language-specific tokenizers with '13a' as the fallback default.
|
116 |
+
:param smooth_method: The smoothing method to use ('floor', 'add-k', 'exp' or 'none').
|
117 |
+
:param smooth_value: The smoothing value for `floor` and `add-k` methods. `None` falls back to default value.
|
118 |
+
:param max_ngram_order: If given, it overrides the maximum n-gram order (default: 4) when computing precisions.
|
119 |
+
:param effective_order: If `True`, stop including n-gram orders for which precision is 0. This should be
|
120 |
+
`True`, if sentence-level BLEU will be computed.
|
121 |
+
:param trg_lang: An optional language code to raise potential tokenizer warnings.
|
122 |
+
:param references: A sequence of reference documents with document being
|
123 |
+
defined as a sequence of reference strings. If given, the reference n-grams
|
124 |
+
and lengths will be pre-computed and cached for faster BLEU computation
|
125 |
+
across many systems.
|
126 |
+
"""
|
127 |
+
|
128 |
+
SMOOTH_DEFAULTS: Dict[str, Optional[float]] = {
|
129 |
+
# The defaults for `floor` and `add-k` are obtained from the following paper
|
130 |
+
# A Systematic Comparison of Smoothing Techniques for Sentence-Level BLEU
|
131 |
+
# Boxing Chen and Colin Cherry
|
132 |
+
# http://aclweb.org/anthology/W14-3346
|
133 |
+
'none': None, # No value is required
|
134 |
+
'floor': 0.1,
|
135 |
+
'add-k': 1,
|
136 |
+
'exp': None, # No value is required
|
137 |
+
}
|
138 |
+
|
139 |
+
TOKENIZERS = _TOKENIZERS.keys()
|
140 |
+
|
141 |
+
# mteval-v13a.pl tokenizer unless Chinese or Japanese is provided
|
142 |
+
TOKENIZER_DEFAULT = '13a'
|
143 |
+
|
144 |
+
# Some language specific mappings to use if `trg_lang` is given
|
145 |
+
# and the tokenizer is not explicitly specified
|
146 |
+
_TOKENIZER_MAP = {
|
147 |
+
'zh': 'zh',
|
148 |
+
'ja': 'ja-mecab',
|
149 |
+
'ko': 'ko-mecab',
|
150 |
+
}
|
151 |
+
|
152 |
+
_SIGNATURE_TYPE = BLEUSignature
|
153 |
+
|
154 |
+
def __init__(self, lowercase: bool = False,
|
155 |
+
force: bool = False,
|
156 |
+
tokenize: Optional[str] = None,
|
157 |
+
smooth_method: str = 'exp',
|
158 |
+
smooth_value: Optional[float] = None,
|
159 |
+
max_ngram_order: int = MAX_NGRAM_ORDER,
|
160 |
+
effective_order: bool = False,
|
161 |
+
trg_lang: str = '',
|
162 |
+
references: Optional[Sequence[Sequence[str]]] = None):
|
163 |
+
"""`BLEU` initializer."""
|
164 |
+
super().__init__()
|
165 |
+
|
166 |
+
self._force = force
|
167 |
+
self.trg_lang = trg_lang
|
168 |
+
self.lowercase = lowercase
|
169 |
+
self.smooth_value = smooth_value
|
170 |
+
self.smooth_method = smooth_method
|
171 |
+
self.max_ngram_order = max_ngram_order
|
172 |
+
self.effective_order = effective_order
|
173 |
+
|
174 |
+
# Sanity check
|
175 |
+
assert self.smooth_method in self.SMOOTH_DEFAULTS.keys(), \
|
176 |
+
"Unknown smooth_method {self.smooth_method!r}"
|
177 |
+
|
178 |
+
# If the tokenizer wasn't specified, choose it according to the
|
179 |
+
# following logic. We use 'v13a' except for ZH and JA. Note that
|
180 |
+
# this logic can only be applied when sacrebleu knows the target
|
181 |
+
# language, which is only the case for builtin datasets.
|
182 |
+
if tokenize is None:
|
183 |
+
best_tokenizer = self.TOKENIZER_DEFAULT
|
184 |
+
|
185 |
+
# Set `zh` or `ja-mecab` or `ko-mecab` if target language is provided
|
186 |
+
if self.trg_lang in self._TOKENIZER_MAP:
|
187 |
+
best_tokenizer = self._TOKENIZER_MAP[self.trg_lang]
|
188 |
+
else:
|
189 |
+
best_tokenizer = tokenize
|
190 |
+
if self.trg_lang == 'zh' and best_tokenizer != 'zh':
|
191 |
+
sacrelogger.warning(
|
192 |
+
"Consider using the 'zh' or 'spm' tokenizer for Chinese.")
|
193 |
+
if self.trg_lang == 'ja' and best_tokenizer != 'ja-mecab':
|
194 |
+
sacrelogger.warning(
|
195 |
+
"Consider using the 'ja-mecab' or 'spm' tokenizer for Japanese.")
|
196 |
+
if self.trg_lang == 'ko' and best_tokenizer != 'ko-mecab':
|
197 |
+
sacrelogger.warning(
|
198 |
+
"Consider using the 'ko-mecab' or 'spm' tokenizer for Korean.")
|
199 |
+
|
200 |
+
# Create the tokenizer
|
201 |
+
self.tokenizer = _get_tokenizer(best_tokenizer)()
|
202 |
+
|
203 |
+
# Build the signature
|
204 |
+
self.tokenizer_signature = self.tokenizer.signature()
|
205 |
+
|
206 |
+
if references is not None:
|
207 |
+
# Pre-compute reference ngrams and lengths
|
208 |
+
self._ref_cache = self._cache_references(references)
|
209 |
+
|
210 |
+
@staticmethod
|
211 |
+
def compute_bleu(correct: List[int],
|
212 |
+
total: List[int],
|
213 |
+
sys_len: int,
|
214 |
+
ref_len: int,
|
215 |
+
smooth_method: str = 'none',
|
216 |
+
smooth_value=None,
|
217 |
+
effective_order: bool = False,
|
218 |
+
max_ngram_order: int = MAX_NGRAM_ORDER) -> BLEUScore:
|
219 |
+
"""Computes BLEU score from its sufficient statistics with smoothing.
|
220 |
+
|
221 |
+
Smoothing methods (citing "A Systematic Comparison of Smoothing Techniques for Sentence-Level BLEU",
|
222 |
+
Boxing Chen and Colin Cherry, WMT 2014: http://aclweb.org/anthology/W14-3346)
|
223 |
+
|
224 |
+
- none: No smoothing.
|
225 |
+
- floor: Method 1 (requires small positive value (0.1 in the paper) to be set)
|
226 |
+
- add-k: Method 2 (Generalizing Lin and Och, 2004)
|
227 |
+
- exp: Method 3 (NIST smoothing method i.e. in use with mteval-v13a.pl)
|
228 |
+
|
229 |
+
:param correct: List of counts of correct ngrams, 1 <= n <= max_ngram_order
|
230 |
+
:param total: List of counts of total ngrams, 1 <= n <= max_ngram_order
|
231 |
+
:param sys_len: The cumulative system length
|
232 |
+
:param ref_len: The cumulative reference length
|
233 |
+
:param smooth_method: The smoothing method to use ('floor', 'add-k', 'exp' or 'none')
|
234 |
+
:param smooth_value: The smoothing value for `floor` and `add-k` methods. `None` falls back to default value.
|
235 |
+
:param effective_order: If `True`, stop including n-gram orders for which precision is 0. This should be
|
236 |
+
`True`, if sentence-level BLEU will be computed.
|
237 |
+
:param max_ngram_order: If given, it overrides the maximum n-gram order (default: 4) when computing precisions.
|
238 |
+
:return: A `BLEUScore` instance.
|
239 |
+
"""
|
240 |
+
assert smooth_method in BLEU.SMOOTH_DEFAULTS.keys(), \
|
241 |
+
"Unknown smooth_method {smooth_method!r}"
|
242 |
+
|
243 |
+
# Fetch the default value for floor and add-k
|
244 |
+
if smooth_value is None:
|
245 |
+
smooth_value = BLEU.SMOOTH_DEFAULTS[smooth_method]
|
246 |
+
|
247 |
+
# Compute brevity penalty
|
248 |
+
if sys_len < ref_len:
|
249 |
+
bp = math.exp(1 - ref_len / sys_len) if sys_len > 0 else 0.0
|
250 |
+
else:
|
251 |
+
bp = 1.0
|
252 |
+
|
253 |
+
# n-gram precisions
|
254 |
+
precisions = [0.0 for x in range(max_ngram_order)]
|
255 |
+
|
256 |
+
# Early stop if there are no matches (#141)
|
257 |
+
if not any(correct):
|
258 |
+
return BLEUScore(0.0, correct, total, precisions, bp, sys_len, ref_len)
|
259 |
+
|
260 |
+
smooth_mteval = 1.
|
261 |
+
eff_order = max_ngram_order
|
262 |
+
for n in range(1, len(precisions) + 1):
|
263 |
+
if smooth_method == 'add-k' and n > 1:
|
264 |
+
correct[n - 1] += smooth_value
|
265 |
+
total[n - 1] += smooth_value
|
266 |
+
|
267 |
+
if total[n - 1] == 0:
|
268 |
+
break
|
269 |
+
|
270 |
+
# If the system guesses no i-grams, 1 <= i <= max_ngram_order,
|
271 |
+
# the BLEU score is 0 (technically undefined). This is a problem for sentence
|
272 |
+
# level BLEU or a corpus of short sentences, where systems will get
|
273 |
+
# no credit if sentence lengths fall under the max_ngram_order threshold.
|
274 |
+
# This fix scales max_ngram_order to the observed maximum order.
|
275 |
+
# It is only available through the API and off by default
|
276 |
+
if effective_order:
|
277 |
+
eff_order = n
|
278 |
+
|
279 |
+
if correct[n - 1] == 0:
|
280 |
+
if smooth_method == 'exp':
|
281 |
+
smooth_mteval *= 2
|
282 |
+
precisions[n - 1] = 100. / (smooth_mteval * total[n - 1])
|
283 |
+
elif smooth_method == 'floor':
|
284 |
+
precisions[n - 1] = 100. * smooth_value / total[n - 1]
|
285 |
+
else:
|
286 |
+
precisions[n - 1] = 100. * correct[n - 1] / total[n - 1]
|
287 |
+
|
288 |
+
# Compute BLEU score
|
289 |
+
score = bp * math.exp(
|
290 |
+
sum([my_log(p) for p in precisions[:eff_order]]) / eff_order)
|
291 |
+
|
292 |
+
return BLEUScore(score, correct, total, precisions, bp, sys_len, ref_len)
|
293 |
+
|
294 |
+
def _preprocess_segment(self, sent: str) -> str:
|
295 |
+
"""Given a sentence, lowercases (optionally) and tokenizes it
|
296 |
+
:param sent: The input sentence string.
|
297 |
+
:return: The pre-processed output string.
|
298 |
+
"""
|
299 |
+
if self.lowercase:
|
300 |
+
sent = sent.lower()
|
301 |
+
return self.tokenizer(sent.rstrip())
|
302 |
+
|
303 |
+
def _compute_score_from_stats(self, stats: List[int]) -> BLEUScore:
|
304 |
+
"""Computes the final score from already aggregated statistics.
|
305 |
+
|
306 |
+
:param stats: A list or numpy array of segment-level statistics.
|
307 |
+
:return: A `BLEUScore` object.
|
308 |
+
"""
|
309 |
+
return self.compute_bleu(
|
310 |
+
correct=stats[2: 2 + self.max_ngram_order],
|
311 |
+
total=stats[2 + self.max_ngram_order:],
|
312 |
+
sys_len=int(stats[0]), ref_len=int(stats[1]),
|
313 |
+
smooth_method=self.smooth_method, smooth_value=self.smooth_value,
|
314 |
+
effective_order=self.effective_order,
|
315 |
+
max_ngram_order=self.max_ngram_order
|
316 |
+
)
|
317 |
+
|
318 |
+
def _aggregate_and_compute(self, stats: List[List[int]]) -> BLEUScore:
|
319 |
+
"""Computes the final BLEU score given the pre-computed corpus statistics.
|
320 |
+
|
321 |
+
:param stats: A list of segment-level statistics
|
322 |
+
:return: A `BLEUScore` instance.
|
323 |
+
"""
|
324 |
+
return self._compute_score_from_stats(sum_of_lists(stats))
|
325 |
+
|
326 |
+
def _get_closest_ref_len(self, hyp_len: int, ref_lens: List[int]) -> int:
|
327 |
+
"""Given a hypothesis length and a list of reference lengths, returns
|
328 |
+
the closest reference length to be used by BLEU.
|
329 |
+
|
330 |
+
:param hyp_len: The hypothesis length.
|
331 |
+
:param ref_lens: A list of reference lengths.
|
332 |
+
:return: The closest reference length.
|
333 |
+
"""
|
334 |
+
closest_diff, closest_len = -1, -1
|
335 |
+
|
336 |
+
for ref_len in ref_lens:
|
337 |
+
diff = abs(hyp_len - ref_len)
|
338 |
+
if closest_diff == -1 or diff < closest_diff:
|
339 |
+
closest_diff = diff
|
340 |
+
closest_len = ref_len
|
341 |
+
elif diff == closest_diff and ref_len < closest_len:
|
342 |
+
closest_len = ref_len
|
343 |
+
|
344 |
+
return closest_len
|
345 |
+
|
346 |
+
def _extract_reference_info(self, refs: Sequence[str]) -> Dict[str, Any]:
|
347 |
+
"""Given a list of reference segments, extract the n-grams and reference lengths.
|
348 |
+
The latter will be useful when comparing hypothesis and reference lengths for BLEU.
|
349 |
+
|
350 |
+
:param refs: A sequence of strings.
|
351 |
+
:return: A dictionary that will be passed to `_compute_segment_statistics()`
|
352 |
+
through keyword arguments.
|
353 |
+
"""
|
354 |
+
ngrams = None
|
355 |
+
ref_lens = []
|
356 |
+
|
357 |
+
for ref in refs:
|
358 |
+
# extract n-grams for this ref
|
359 |
+
this_ngrams, ref_len = extract_all_word_ngrams(ref, 1, self.max_ngram_order)
|
360 |
+
ref_lens.append(ref_len)
|
361 |
+
|
362 |
+
if ngrams is None:
|
363 |
+
# Set it directly for first set of refs
|
364 |
+
ngrams = this_ngrams
|
365 |
+
else:
|
366 |
+
# Merge counts across multiple references
|
367 |
+
# The below loop is faster than `ngrams |= this_ngrams`
|
368 |
+
for ngram, count in this_ngrams.items():
|
369 |
+
ngrams[ngram] = max(ngrams[ngram], count)
|
370 |
+
|
371 |
+
return {'ref_ngrams': ngrams, 'ref_lens': ref_lens}
|
372 |
+
|
373 |
+
def _compute_segment_statistics(self, hypothesis: str,
|
374 |
+
ref_kwargs: Dict) -> List[int]:
|
375 |
+
"""Given a (pre-processed) hypothesis sentence and already computed
|
376 |
+
reference n-grams & lengths, returns the best match statistics across the
|
377 |
+
references.
|
378 |
+
|
379 |
+
:param hypothesis: Hypothesis sentence.
|
380 |
+
:param ref_kwargs: A dictionary with `refs_ngrams`and `ref_lens` keys
|
381 |
+
that denote the counter containing all n-gram counts and reference lengths,
|
382 |
+
respectively.
|
383 |
+
:return: A list of integers with match statistics.
|
384 |
+
"""
|
385 |
+
|
386 |
+
ref_ngrams, ref_lens = ref_kwargs['ref_ngrams'], ref_kwargs['ref_lens']
|
387 |
+
|
388 |
+
# Extract n-grams for the hypothesis
|
389 |
+
hyp_ngrams, hyp_len = extract_all_word_ngrams(
|
390 |
+
hypothesis, 1, self.max_ngram_order)
|
391 |
+
|
392 |
+
ref_len = self._get_closest_ref_len(hyp_len, ref_lens)
|
393 |
+
|
394 |
+
# Count the stats
|
395 |
+
# Although counter has its internal & and | operators, this is faster
|
396 |
+
correct = [0 for i in range(self.max_ngram_order)]
|
397 |
+
total = correct[:]
|
398 |
+
for hyp_ngram, hyp_count in hyp_ngrams.items():
|
399 |
+
# n-gram order
|
400 |
+
n = len(hyp_ngram) - 1
|
401 |
+
# count hypothesis n-grams
|
402 |
+
total[n] += hyp_count
|
403 |
+
# count matched n-grams
|
404 |
+
if hyp_ngram in ref_ngrams:
|
405 |
+
correct[n] += min(hyp_count, ref_ngrams[hyp_ngram])
|
406 |
+
|
407 |
+
# Return a flattened list for efficient computation
|
408 |
+
return [hyp_len, ref_len] + correct + total
|
409 |
+
|
410 |
+
def sentence_score(self, hypothesis: str, references: Sequence[str]) -> BLEUScore:
|
411 |
+
"""Compute the metric for a single sentence against a single (or multiple) reference(s).
|
412 |
+
|
413 |
+
:param hypothesis: A single hypothesis string.
|
414 |
+
:param references: A sequence of reference strings.
|
415 |
+
:return: a `BLEUScore` object.
|
416 |
+
"""
|
417 |
+
if not self.effective_order:
|
418 |
+
sacrelogger.warning(
|
419 |
+
'It is recommended to enable `effective_order` for sentence-level BLEU.')
|
420 |
+
return super().sentence_score(hypothesis, references)
|
venv/lib/python3.10/site-packages/sacrebleu/metrics/chrf.py
ADDED
@@ -0,0 +1,284 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""The implementation of chrF (Popović 2015) and chrF++ (Popović 2017) metrics."""
|
2 |
+
|
3 |
+
from typing import List, Sequence, Optional, Dict
|
4 |
+
from collections import Counter
|
5 |
+
|
6 |
+
from ..utils import sum_of_lists
|
7 |
+
from .base import Score, Signature, Metric
|
8 |
+
from .helpers import extract_all_char_ngrams, extract_word_ngrams
|
9 |
+
|
10 |
+
|
11 |
+
class CHRFSignature(Signature):
|
12 |
+
"""A convenience class to represent the reproducibility signature for chrF.
|
13 |
+
|
14 |
+
:param args: key-value dictionary passed from the actual metric instance.
|
15 |
+
"""
|
16 |
+
def __init__(self, args: dict):
|
17 |
+
"""`CHRFSignature` initializer."""
|
18 |
+
super().__init__(args)
|
19 |
+
self._abbr.update({
|
20 |
+
'case': 'c',
|
21 |
+
'eff': 'e',
|
22 |
+
'nc': 'nc',
|
23 |
+
'nw': 'nw',
|
24 |
+
'space': 's',
|
25 |
+
})
|
26 |
+
|
27 |
+
self.info.update({
|
28 |
+
'case': 'lc' if args['lowercase'] else 'mixed',
|
29 |
+
'eff': 'yes' if not args['eps_smoothing'] else 'no',
|
30 |
+
'nc': args['char_order'],
|
31 |
+
'nw': args['word_order'],
|
32 |
+
'space': 'yes' if args['whitespace'] else 'no',
|
33 |
+
})
|
34 |
+
|
35 |
+
|
36 |
+
class CHRFScore(Score):
|
37 |
+
"""A convenience class to represent chrF scores.
|
38 |
+
|
39 |
+
:param score: The chrF (chrF++) score.
|
40 |
+
:param char_order: The character n-gram order.
|
41 |
+
:param word_order: The word n-gram order. If equals to 2, the metric is referred to as chrF++.
|
42 |
+
:param beta: Determine the importance of recall w.r.t precision.
|
43 |
+
"""
|
44 |
+
def __init__(self, score: float, char_order: int, word_order: int, beta: int):
|
45 |
+
"""`CHRFScore` initializer."""
|
46 |
+
self.beta = beta
|
47 |
+
self.char_order = char_order
|
48 |
+
self.word_order = word_order
|
49 |
+
|
50 |
+
# Add + signs to denote chrF+ variant
|
51 |
+
name = f'chrF{self.beta}' + '+' * self.word_order
|
52 |
+
|
53 |
+
super().__init__(name, score)
|
54 |
+
|
55 |
+
|
56 |
+
class CHRF(Metric):
|
57 |
+
"""Computes the chrF(++) metric given hypotheses and references.
|
58 |
+
|
59 |
+
:param char_order: Character n-gram order.
|
60 |
+
:param word_order: Word n-gram order. If equals to 2, the metric is referred to as chrF++.
|
61 |
+
:param beta: Determine the importance of recall w.r.t precision.
|
62 |
+
:param lowercase: Enable case-insensitivity.
|
63 |
+
:param whitespace: If `True`, include whitespaces when extracting character n-grams.
|
64 |
+
:param eps_smoothing: If `True`, applies epsilon smoothing similar
|
65 |
+
to reference chrF++.py, NLTK and Moses implementations. Otherwise,
|
66 |
+
it takes into account effective match order similar to sacreBLEU < 2.0.0.
|
67 |
+
:param references: A sequence of reference documents with document being
|
68 |
+
defined as a sequence of reference strings. If given, the reference n-grams
|
69 |
+
will be pre-computed and cached for faster re-computation across many systems.
|
70 |
+
"""
|
71 |
+
|
72 |
+
# Maximum character n-gram order to take into account
|
73 |
+
CHAR_ORDER = 6
|
74 |
+
|
75 |
+
# chrF+ additionally takes into account some of the word n-grams
|
76 |
+
WORD_ORDER = 0
|
77 |
+
|
78 |
+
# Defaults to 2 (per http://www.aclweb.org/anthology/W16-2341)
|
79 |
+
BETA = 2
|
80 |
+
|
81 |
+
# Cache string.punctuation for chrF+' punctuation stripper
|
82 |
+
_PUNCTS = set('!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~')
|
83 |
+
|
84 |
+
_SIGNATURE_TYPE = CHRFSignature
|
85 |
+
|
86 |
+
def __init__(self, char_order: int = CHAR_ORDER,
|
87 |
+
word_order: int = WORD_ORDER,
|
88 |
+
beta: int = BETA,
|
89 |
+
lowercase: bool = False,
|
90 |
+
whitespace: bool = False,
|
91 |
+
eps_smoothing: bool = False,
|
92 |
+
references: Optional[Sequence[Sequence[str]]] = None):
|
93 |
+
"""`CHRF` initializer."""
|
94 |
+
super().__init__()
|
95 |
+
|
96 |
+
self.beta = beta
|
97 |
+
self.char_order = char_order
|
98 |
+
self.word_order = word_order
|
99 |
+
self.order = self.char_order + self.word_order
|
100 |
+
self.lowercase = lowercase
|
101 |
+
self.whitespace = whitespace
|
102 |
+
self.eps_smoothing = eps_smoothing
|
103 |
+
|
104 |
+
if references is not None:
|
105 |
+
# Pre-compute reference ngrams
|
106 |
+
self._ref_cache = self._cache_references(references)
|
107 |
+
|
108 |
+
@staticmethod
|
109 |
+
def _get_match_statistics(hyp_ngrams: Counter, ref_ngrams: Counter) -> List[int]:
|
110 |
+
"""Computes the match statistics between hypothesis and reference n-grams.
|
111 |
+
|
112 |
+
:param hyp_ngrams: A `Counter` holding hypothesis n-grams.
|
113 |
+
:param ref_ngrams: A `Counter` holding reference n-grams.
|
114 |
+
:return: A list of three numbers denoting hypothesis n-gram count,
|
115 |
+
reference n-gram count and the intersection count.
|
116 |
+
"""
|
117 |
+
# Counter's internal intersection is not that fast, count manually
|
118 |
+
match_count, hyp_count = 0, 0
|
119 |
+
for ng, count in hyp_ngrams.items():
|
120 |
+
hyp_count += count
|
121 |
+
if ng in ref_ngrams:
|
122 |
+
match_count += min(count, ref_ngrams[ng])
|
123 |
+
|
124 |
+
return [
|
125 |
+
# Don't count hits if no reference exists for that n-gram
|
126 |
+
hyp_count if ref_ngrams else 0,
|
127 |
+
sum(ref_ngrams.values()),
|
128 |
+
match_count,
|
129 |
+
]
|
130 |
+
|
131 |
+
def _remove_punctuation(self, sent: str) -> List[str]:
|
132 |
+
"""Separates out punctuations from beginning and end of words for chrF.
|
133 |
+
Adapted from https://github.com/m-popovic/chrF
|
134 |
+
|
135 |
+
:param sent: A string.
|
136 |
+
:return: A list of words.
|
137 |
+
"""
|
138 |
+
tokenized = []
|
139 |
+
for w in sent.split():
|
140 |
+
if len(w) == 1:
|
141 |
+
tokenized.append(w)
|
142 |
+
else:
|
143 |
+
# NOTE: This splits '(hi)' to '(hi' and ')' (issue #124)
|
144 |
+
if w[-1] in self._PUNCTS:
|
145 |
+
tokenized += [w[:-1], w[-1]]
|
146 |
+
elif w[0] in self._PUNCTS:
|
147 |
+
tokenized += [w[0], w[1:]]
|
148 |
+
else:
|
149 |
+
tokenized.append(w)
|
150 |
+
return tokenized
|
151 |
+
|
152 |
+
def _preprocess_segment(self, sent: str) -> str:
|
153 |
+
"""Given a sentence, apply optional lowercasing.
|
154 |
+
|
155 |
+
:param sent: The input sentence string.
|
156 |
+
:return: The pre-processed output string.
|
157 |
+
"""
|
158 |
+
return sent.lower() if self.lowercase else sent
|
159 |
+
|
160 |
+
def _compute_f_score(self, statistics: List[int]) -> float:
|
161 |
+
"""Compute the chrF score given the n-gram match statistics.
|
162 |
+
|
163 |
+
:param statistics: A flattened list of 3 * (`char_order` + `word_order`)
|
164 |
+
elements giving the [hyp, ref, match] counts for each order.
|
165 |
+
:return: The final f_beta score between [0, 100].
|
166 |
+
"""
|
167 |
+
eps = 1e-16
|
168 |
+
score = 0.0
|
169 |
+
effective_order = 0
|
170 |
+
factor = self.beta ** 2
|
171 |
+
avg_prec, avg_rec = 0.0, 0.0
|
172 |
+
|
173 |
+
for i in range(self.order):
|
174 |
+
n_hyp, n_ref, n_match = statistics[3 * i: 3 * i + 3]
|
175 |
+
|
176 |
+
# chrF++.py style EPS smoothing (also used by Moses and NLTK)
|
177 |
+
prec = n_match / n_hyp if n_hyp > 0 else eps
|
178 |
+
rec = n_match / n_ref if n_ref > 0 else eps
|
179 |
+
|
180 |
+
denom = factor * prec + rec
|
181 |
+
score += ((1 + factor) * prec * rec / denom) if denom > 0 else eps
|
182 |
+
|
183 |
+
# sacreBLEU <2.0.0 style effective order smoothing
|
184 |
+
if n_hyp > 0 and n_ref > 0:
|
185 |
+
avg_prec += prec
|
186 |
+
avg_rec += rec
|
187 |
+
effective_order += 1
|
188 |
+
|
189 |
+
if self.eps_smoothing:
|
190 |
+
return 100 * score / self.order
|
191 |
+
|
192 |
+
if effective_order == 0:
|
193 |
+
avg_prec = avg_rec = 0.0
|
194 |
+
else:
|
195 |
+
avg_prec /= effective_order
|
196 |
+
avg_rec /= effective_order
|
197 |
+
|
198 |
+
if avg_prec + avg_rec:
|
199 |
+
score = (1 + factor) * avg_prec * avg_rec
|
200 |
+
score /= ((factor * avg_prec) + avg_rec)
|
201 |
+
return 100 * score
|
202 |
+
else:
|
203 |
+
return 0.0
|
204 |
+
|
205 |
+
def _compute_score_from_stats(self, stats: List[int]) -> CHRFScore:
|
206 |
+
"""Computes the final score from already aggregated statistics.
|
207 |
+
|
208 |
+
:param stats: A list or numpy array of segment-level statistics.
|
209 |
+
:return: A `CHRFScore` object.
|
210 |
+
"""
|
211 |
+
return CHRFScore(
|
212 |
+
self._compute_f_score(stats), self.char_order,
|
213 |
+
self.word_order, self.beta)
|
214 |
+
|
215 |
+
def _aggregate_and_compute(self, stats: List[List[int]]) -> CHRFScore:
|
216 |
+
"""Computes the final score given the pre-computed corpus statistics.
|
217 |
+
|
218 |
+
:param stats: A list of segment-level statistics
|
219 |
+
:return: A `CHRFScore` object.
|
220 |
+
"""
|
221 |
+
return self._compute_score_from_stats(sum_of_lists(stats))
|
222 |
+
|
223 |
+
def _extract_reference_info(self, refs: Sequence[str]) -> Dict[str, List[List[Counter]]]:
|
224 |
+
"""Given a list of reference segments, extract the character and word n-grams.
|
225 |
+
|
226 |
+
:param refs: A sequence of reference segments.
|
227 |
+
:return: A list where each element contains n-grams per reference segment.
|
228 |
+
"""
|
229 |
+
ngrams = []
|
230 |
+
|
231 |
+
for ref in refs:
|
232 |
+
# extract character n-grams
|
233 |
+
stats = extract_all_char_ngrams(ref, self.char_order, self.whitespace)
|
234 |
+
|
235 |
+
# Check chrF+ mode
|
236 |
+
if self.word_order > 0:
|
237 |
+
ref_words = self._remove_punctuation(ref)
|
238 |
+
|
239 |
+
for n in range(self.word_order):
|
240 |
+
stats.append(extract_word_ngrams(ref_words, n + 1))
|
241 |
+
|
242 |
+
ngrams.append(stats)
|
243 |
+
|
244 |
+
return {'ref_ngrams': ngrams}
|
245 |
+
|
246 |
+
def _compute_segment_statistics(
|
247 |
+
self, hypothesis: str, ref_kwargs: Dict) -> List[int]:
|
248 |
+
"""Given a (pre-processed) hypothesis sentence and already computed
|
249 |
+
reference n-grams, returns the best match statistics across the
|
250 |
+
references.
|
251 |
+
|
252 |
+
:param hypothesis: Hypothesis sentence.
|
253 |
+
:param ref_kwargs: A dictionary with key `ref_ngrams` which is a list
|
254 |
+
where each sublist contains n-gram counters for a particular reference sentence.
|
255 |
+
:return: A list of integers where each triplet denotes [hyp, ref, match]
|
256 |
+
statistics.
|
257 |
+
"""
|
258 |
+
best_stats = []
|
259 |
+
best_f_score = -1.0
|
260 |
+
|
261 |
+
# extract character n-grams
|
262 |
+
all_hyp_ngrams = extract_all_char_ngrams(
|
263 |
+
hypothesis, self.char_order, self.whitespace)
|
264 |
+
|
265 |
+
# Check chrF+ mode to see if we'll add word n-grams as well
|
266 |
+
if self.word_order > 0:
|
267 |
+
# Primitive tokenization: separate out punctuations
|
268 |
+
hwords = self._remove_punctuation(hypothesis)
|
269 |
+
_range = range(1, self.word_order + 1)
|
270 |
+
all_hyp_ngrams.extend([extract_word_ngrams(hwords, n) for n in _range])
|
271 |
+
|
272 |
+
# Iterate over multiple references, pick the one with best F score
|
273 |
+
for _ref_ngrams in ref_kwargs['ref_ngrams']:
|
274 |
+
stats = []
|
275 |
+
# Traverse all orders
|
276 |
+
for h, r in zip(all_hyp_ngrams, _ref_ngrams):
|
277 |
+
stats.extend(self._get_match_statistics(h, r))
|
278 |
+
f_score = self._compute_f_score(stats)
|
279 |
+
|
280 |
+
if f_score > best_f_score:
|
281 |
+
best_f_score = f_score
|
282 |
+
best_stats = stats
|
283 |
+
|
284 |
+
return best_stats
|
venv/lib/python3.10/site-packages/sacrebleu/metrics/helpers.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Various utility functions for word and character n-gram extraction."""
|
2 |
+
|
3 |
+
from collections import Counter
|
4 |
+
from typing import List, Tuple
|
5 |
+
|
6 |
+
|
7 |
+
def extract_all_word_ngrams(line: str, min_order: int, max_order: int) -> Tuple[Counter, int]:
|
8 |
+
"""Extracts all ngrams (min_order <= n <= max_order) from a sentence.
|
9 |
+
|
10 |
+
:param line: A string sentence.
|
11 |
+
:param min_order: Minimum n-gram order.
|
12 |
+
:param max_order: Maximum n-gram order.
|
13 |
+
:return: a Counter object with n-grams counts and the sequence length.
|
14 |
+
"""
|
15 |
+
|
16 |
+
ngrams = []
|
17 |
+
tokens = line.split()
|
18 |
+
|
19 |
+
for n in range(min_order, max_order + 1):
|
20 |
+
for i in range(0, len(tokens) - n + 1):
|
21 |
+
ngrams.append(tuple(tokens[i: i + n]))
|
22 |
+
|
23 |
+
return Counter(ngrams), len(tokens)
|
24 |
+
|
25 |
+
|
26 |
+
def extract_word_ngrams(tokens: List[str], n: int) -> Counter:
|
27 |
+
"""Extracts n-grams with order `n` from a list of tokens.
|
28 |
+
|
29 |
+
:param tokens: A list of tokens.
|
30 |
+
:param n: The order of n-grams.
|
31 |
+
:return: a Counter object with n-grams counts.
|
32 |
+
"""
|
33 |
+
return Counter([' '.join(tokens[i:i + n]) for i in range(len(tokens) - n + 1)])
|
34 |
+
|
35 |
+
|
36 |
+
def extract_char_ngrams(line: str, n: int, include_whitespace: bool = False) -> Counter:
|
37 |
+
"""Yields counts of character n-grams from a sentence.
|
38 |
+
|
39 |
+
:param line: A segment containing a sequence of words.
|
40 |
+
:param n: The order of the n-grams.
|
41 |
+
:param include_whitespace: If given, will not strip whitespaces from the line.
|
42 |
+
:return: a dictionary containing ngrams and counts
|
43 |
+
"""
|
44 |
+
if not include_whitespace:
|
45 |
+
line = ''.join(line.split())
|
46 |
+
|
47 |
+
return Counter([line[i:i + n] for i in range(len(line) - n + 1)])
|
48 |
+
|
49 |
+
|
50 |
+
def extract_all_char_ngrams(
|
51 |
+
line: str, max_order: int, include_whitespace: bool = False) -> List[Counter]:
|
52 |
+
"""Extracts all character n-grams at once for convenience.
|
53 |
+
|
54 |
+
:param line: A segment containing a sequence of words.
|
55 |
+
:param max_order: The maximum order of the n-grams.
|
56 |
+
:param include_whitespace: If given, will not strip whitespaces from the line.
|
57 |
+
:return: a list of Counter objects containing ngrams and counts.
|
58 |
+
"""
|
59 |
+
|
60 |
+
counters = []
|
61 |
+
|
62 |
+
if not include_whitespace:
|
63 |
+
line = ''.join(line.split())
|
64 |
+
|
65 |
+
for n in range(1, max_order + 1):
|
66 |
+
ngrams = Counter([line[i:i + n] for i in range(len(line) - n + 1)])
|
67 |
+
counters.append(ngrams)
|
68 |
+
|
69 |
+
return counters
|
venv/lib/python3.10/site-packages/sacrebleu/metrics/lib_ter.py
ADDED
@@ -0,0 +1,478 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""This module implements various utility functions for the TER metric."""
|
2 |
+
|
3 |
+
# Copyright 2020 Memsource
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
|
17 |
+
|
18 |
+
import math
|
19 |
+
from typing import List, Tuple, Dict
|
20 |
+
|
21 |
+
|
22 |
+
_COST_INS = 1
|
23 |
+
_COST_DEL = 1
|
24 |
+
_COST_SUB = 1
|
25 |
+
|
26 |
+
# Tercom-inspired limits
|
27 |
+
_MAX_SHIFT_SIZE = 10
|
28 |
+
_MAX_SHIFT_DIST = 50
|
29 |
+
_BEAM_WIDTH = 25
|
30 |
+
|
31 |
+
# Our own limits
|
32 |
+
_MAX_CACHE_SIZE = 10000
|
33 |
+
_MAX_SHIFT_CANDIDATES = 1000
|
34 |
+
_INT_INFINITY = int(1e16)
|
35 |
+
|
36 |
+
_OP_INS = 'i'
|
37 |
+
_OP_DEL = 'd'
|
38 |
+
_OP_NOP = ' '
|
39 |
+
_OP_SUB = 's'
|
40 |
+
_OP_UNDEF = 'x'
|
41 |
+
|
42 |
+
_FLIP_OPS = str.maketrans(_OP_INS + _OP_DEL, _OP_DEL + _OP_INS)
|
43 |
+
|
44 |
+
|
45 |
+
def translation_edit_rate(words_hyp: List[str], words_ref: List[str]) -> Tuple[int, int]:
|
46 |
+
"""Calculate the translation edit rate.
|
47 |
+
|
48 |
+
:param words_hyp: Tokenized translation hypothesis.
|
49 |
+
:param words_ref: Tokenized reference translation.
|
50 |
+
:return: tuple (number of edits, length)
|
51 |
+
"""
|
52 |
+
n_words_ref = len(words_ref)
|
53 |
+
n_words_hyp = len(words_hyp)
|
54 |
+
if n_words_ref == 0:
|
55 |
+
# FIXME: This trace here is not used?
|
56 |
+
trace = _OP_DEL * n_words_hyp
|
57 |
+
# special treatment of empty refs
|
58 |
+
return n_words_hyp, 0
|
59 |
+
|
60 |
+
cached_ed = BeamEditDistance(words_ref)
|
61 |
+
shifts = 0
|
62 |
+
|
63 |
+
input_words = words_hyp
|
64 |
+
checked_candidates = 0
|
65 |
+
while True:
|
66 |
+
# do shifts until they stop reducing the edit distance
|
67 |
+
delta, new_input_words, checked_candidates = _shift(
|
68 |
+
input_words, words_ref, cached_ed, checked_candidates)
|
69 |
+
|
70 |
+
if checked_candidates >= _MAX_SHIFT_CANDIDATES:
|
71 |
+
break
|
72 |
+
|
73 |
+
if delta <= 0:
|
74 |
+
break
|
75 |
+
shifts += 1
|
76 |
+
input_words = new_input_words
|
77 |
+
|
78 |
+
edit_distance, trace = cached_ed(input_words)
|
79 |
+
total_edits = shifts + edit_distance
|
80 |
+
|
81 |
+
return total_edits, n_words_ref
|
82 |
+
|
83 |
+
|
84 |
+
def _shift(words_h: List[str], words_r: List[str], cached_ed,
|
85 |
+
checked_candidates: int) -> Tuple[int, List[str], int]:
|
86 |
+
"""Attempt to shift words in hypothesis to match reference.
|
87 |
+
|
88 |
+
Returns the shift that reduces the edit distance the most.
|
89 |
+
|
90 |
+
Note that the filtering of possible shifts and shift selection are heavily
|
91 |
+
based on somewhat arbitrary heuristics. The code here follows as closely
|
92 |
+
as possible the logic in Tercom, not always justifying the particular design
|
93 |
+
choices.
|
94 |
+
|
95 |
+
:param words_h: Hypothesis.
|
96 |
+
:param words_r: Reference.
|
97 |
+
:param cached_ed: Cached edit distance.
|
98 |
+
:param checked_candidates: Number of shift candidates that were already
|
99 |
+
evaluated.
|
100 |
+
:return: (score, shifted_words, checked_candidates). Best shift and updated
|
101 |
+
number of evaluated shift candidates.
|
102 |
+
"""
|
103 |
+
pre_score, inv_trace = cached_ed(words_h)
|
104 |
+
|
105 |
+
# to get alignment, we pretend we are rewriting reference into hypothesis,
|
106 |
+
# so we need to flip the trace of edit operations
|
107 |
+
trace = _flip_trace(inv_trace)
|
108 |
+
align, ref_err, hyp_err = trace_to_alignment(trace)
|
109 |
+
|
110 |
+
best = None
|
111 |
+
|
112 |
+
for start_h, start_r, length in _find_shifted_pairs(words_h, words_r):
|
113 |
+
# don't do the shift unless both the hypothesis was wrong and the
|
114 |
+
# reference doesn't match hypothesis at the target position
|
115 |
+
if sum(hyp_err[start_h: start_h + length]) == 0:
|
116 |
+
continue
|
117 |
+
|
118 |
+
if sum(ref_err[start_r: start_r + length]) == 0:
|
119 |
+
continue
|
120 |
+
|
121 |
+
# don't try to shift within the subsequence
|
122 |
+
if start_h <= align[start_r] < start_h + length:
|
123 |
+
continue
|
124 |
+
|
125 |
+
prev_idx = -1
|
126 |
+
for offset in range(-1, length):
|
127 |
+
if start_r + offset == -1:
|
128 |
+
idx = 0 # insert before the beginning
|
129 |
+
elif start_r + offset in align:
|
130 |
+
# Unlike Tercom which inserts *after* the index, we insert
|
131 |
+
# *before* the index.
|
132 |
+
idx = align[start_r + offset] + 1
|
133 |
+
else:
|
134 |
+
break # offset is out of bounds => aims past reference
|
135 |
+
|
136 |
+
if idx == prev_idx:
|
137 |
+
continue # skip idx if already tried
|
138 |
+
|
139 |
+
prev_idx = idx
|
140 |
+
|
141 |
+
shifted_words = _perform_shift(words_h, start_h, length, idx)
|
142 |
+
assert(len(shifted_words) == len(words_h))
|
143 |
+
|
144 |
+
# Elements of the tuple are designed to replicate Tercom ranking
|
145 |
+
# of shifts:
|
146 |
+
candidate = (
|
147 |
+
pre_score - cached_ed(shifted_words)[0], # highest score first
|
148 |
+
length, # then, longest match first
|
149 |
+
-start_h, # then, earliest match first
|
150 |
+
-idx, # then, earliest target position first
|
151 |
+
shifted_words,
|
152 |
+
)
|
153 |
+
|
154 |
+
checked_candidates += 1
|
155 |
+
|
156 |
+
if not best or candidate > best:
|
157 |
+
best = candidate
|
158 |
+
|
159 |
+
if checked_candidates >= _MAX_SHIFT_CANDIDATES:
|
160 |
+
break
|
161 |
+
|
162 |
+
if not best:
|
163 |
+
return 0, words_h, checked_candidates
|
164 |
+
else:
|
165 |
+
best_score, _, _, _, shifted_words = best
|
166 |
+
return best_score, shifted_words, checked_candidates
|
167 |
+
|
168 |
+
|
169 |
+
def _perform_shift(words: List[str], start: int, length: int, target: int) -> List[str]:
|
170 |
+
"""Perform a shift in `words` from `start` to `target`.
|
171 |
+
|
172 |
+
:param words: Words to shift.
|
173 |
+
:param start: Where from.
|
174 |
+
:param length: How many words.
|
175 |
+
:param target: Where to.
|
176 |
+
:return: Shifted words.
|
177 |
+
"""
|
178 |
+
if target < start:
|
179 |
+
# shift before previous position
|
180 |
+
return words[:target] + words[start: start + length] \
|
181 |
+
+ words[target: start] + words[start + length:]
|
182 |
+
elif target > start + length:
|
183 |
+
# shift after previous position
|
184 |
+
return words[:start] + words[start + length: target] \
|
185 |
+
+ words[start: start + length] + words[target:]
|
186 |
+
else:
|
187 |
+
# shift within the shifted string
|
188 |
+
return words[:start] + words[start + length: length + target] \
|
189 |
+
+ words[start: start + length] + words[length + target:]
|
190 |
+
|
191 |
+
|
192 |
+
def _find_shifted_pairs(words_h: List[str], words_r: List[str]):
|
193 |
+
"""Find matching word sub-sequences in two lists of words.
|
194 |
+
|
195 |
+
Ignores sub-sequences starting at the same position.
|
196 |
+
|
197 |
+
:param words_h: First word list.
|
198 |
+
:param words_r: Second word list.
|
199 |
+
:return: Yields tuples of (h_start, r_start, length) such that:
|
200 |
+
words_h[h_start:h_start+length] = words_r[r_start:r_start+length]
|
201 |
+
"""
|
202 |
+
n_words_h = len(words_h)
|
203 |
+
n_words_r = len(words_r)
|
204 |
+
for start_h in range(n_words_h):
|
205 |
+
for start_r in range(n_words_r):
|
206 |
+
# this is slightly different from what tercom does but this should
|
207 |
+
# really only kick in in degenerate cases
|
208 |
+
if abs(start_r - start_h) > _MAX_SHIFT_DIST:
|
209 |
+
continue
|
210 |
+
|
211 |
+
length = 0
|
212 |
+
while words_h[start_h + length] == words_r[start_r + length] and length < _MAX_SHIFT_SIZE:
|
213 |
+
length += 1
|
214 |
+
|
215 |
+
yield start_h, start_r, length
|
216 |
+
|
217 |
+
# If one sequence is consumed, stop processing
|
218 |
+
if n_words_h == start_h + length or n_words_r == start_r + length:
|
219 |
+
break
|
220 |
+
|
221 |
+
|
222 |
+
def _flip_trace(trace):
|
223 |
+
"""Flip the trace of edit operations.
|
224 |
+
|
225 |
+
Instead of rewriting a->b, get a recipe for rewriting b->a.
|
226 |
+
|
227 |
+
Simply flips insertions and deletions.
|
228 |
+
"""
|
229 |
+
return trace.translate(_FLIP_OPS)
|
230 |
+
|
231 |
+
|
232 |
+
def trace_to_alignment(trace: str) -> Tuple[Dict, List, List]:
|
233 |
+
"""Transform trace of edit operations into an alignment of the sequences.
|
234 |
+
|
235 |
+
:param trace: Trace of edit operations (' '=no change or 's'/'i'/'d').
|
236 |
+
:return: Alignment, error positions in reference, error positions in hypothesis.
|
237 |
+
"""
|
238 |
+
pos_hyp = -1
|
239 |
+
pos_ref = -1
|
240 |
+
hyp_err = []
|
241 |
+
ref_err = []
|
242 |
+
align = {}
|
243 |
+
|
244 |
+
# we are rewriting a into b
|
245 |
+
for op in trace:
|
246 |
+
if op == _OP_NOP:
|
247 |
+
pos_hyp += 1
|
248 |
+
pos_ref += 1
|
249 |
+
align[pos_ref] = pos_hyp
|
250 |
+
hyp_err.append(0)
|
251 |
+
ref_err.append(0)
|
252 |
+
elif op == _OP_SUB:
|
253 |
+
pos_hyp += 1
|
254 |
+
pos_ref += 1
|
255 |
+
align[pos_ref] = pos_hyp
|
256 |
+
hyp_err.append(1)
|
257 |
+
ref_err.append(1)
|
258 |
+
elif op == _OP_INS:
|
259 |
+
pos_hyp += 1
|
260 |
+
hyp_err.append(1)
|
261 |
+
elif op == _OP_DEL:
|
262 |
+
pos_ref += 1
|
263 |
+
align[pos_ref] = pos_hyp
|
264 |
+
ref_err.append(1)
|
265 |
+
else:
|
266 |
+
raise Exception(f"unknown operation {op!r}")
|
267 |
+
|
268 |
+
return align, ref_err, hyp_err
|
269 |
+
|
270 |
+
|
271 |
+
class BeamEditDistance:
|
272 |
+
"""Edit distance with several features required for TER calculation.
|
273 |
+
|
274 |
+
* internal cache
|
275 |
+
* "beam" search
|
276 |
+
* tracking of edit operations
|
277 |
+
|
278 |
+
The internal self._cache works like this:
|
279 |
+
|
280 |
+
Keys are words of the hypothesis. Values are tuples (next_node, row) where:
|
281 |
+
|
282 |
+
* next_node is the cache for the next word in the sequence
|
283 |
+
* row is the stored row of the edit distance matrix
|
284 |
+
|
285 |
+
Effectively, caching allows to skip several rows in the edit distance
|
286 |
+
matrix calculation and instead, to initialize the computation with the last
|
287 |
+
matching matrix row.
|
288 |
+
|
289 |
+
Beam search, as implemented here, only explores a fixed-size sub-row of
|
290 |
+
candidates around the matrix diagonal (more precisely, it's a
|
291 |
+
"pseudo"-diagonal since we take the ratio of sequence lengths into account).
|
292 |
+
|
293 |
+
Tracking allows to reconstruct the optimal sequence of edit operations.
|
294 |
+
|
295 |
+
:param words_ref: A list of reference tokens.
|
296 |
+
"""
|
297 |
+
def __init__(self, words_ref: List[str]):
|
298 |
+
"""`BeamEditDistance` initializer."""
|
299 |
+
self._words_ref = words_ref
|
300 |
+
self._n_words_ref = len(self._words_ref)
|
301 |
+
|
302 |
+
# first row corresponds to insertion operations of the reference,
|
303 |
+
# so we do 1 edit operation per reference word
|
304 |
+
self._initial_row = [(i * _COST_INS, _OP_INS)
|
305 |
+
for i in range(self._n_words_ref + 1)]
|
306 |
+
|
307 |
+
self._cache = {} # type: Dict[str, Tuple]
|
308 |
+
self._cache_size = 0
|
309 |
+
|
310 |
+
# Precomputed empty matrix row. Contains infinities so that beam search
|
311 |
+
# avoids using the uninitialized cells.
|
312 |
+
self._empty_row = [(_INT_INFINITY, _OP_UNDEF)] * (self._n_words_ref + 1)
|
313 |
+
|
314 |
+
def __call__(self, words_hyp: List[str]) -> Tuple[int, str]:
|
315 |
+
"""Calculate edit distance between self._words_ref and the hypothesis.
|
316 |
+
|
317 |
+
Uses cache to skip some of the computation.
|
318 |
+
|
319 |
+
:param words_hyp: Words in translation hypothesis.
|
320 |
+
:return: Edit distance score.
|
321 |
+
"""
|
322 |
+
|
323 |
+
# skip initial words in the hypothesis for which we already know the
|
324 |
+
# edit distance
|
325 |
+
start_position, dist = self._find_cache(words_hyp)
|
326 |
+
|
327 |
+
# calculate the rest of the edit distance matrix
|
328 |
+
edit_distance, newly_created_matrix, trace = self._edit_distance(
|
329 |
+
words_hyp, start_position, dist)
|
330 |
+
|
331 |
+
# update our cache with the newly calculated rows
|
332 |
+
self._add_cache(words_hyp, newly_created_matrix)
|
333 |
+
|
334 |
+
return edit_distance, trace
|
335 |
+
|
336 |
+
def _edit_distance(self, words_h: List[str], start_h: int,
|
337 |
+
cache: List[List[Tuple[int, str]]]) -> Tuple[int, List, str]:
|
338 |
+
"""Actual edit distance calculation.
|
339 |
+
|
340 |
+
Can be initialized with the last cached row and a start position in
|
341 |
+
the hypothesis that it corresponds to.
|
342 |
+
|
343 |
+
:param words_h: Words in translation hypothesis.
|
344 |
+
:param start_h: Position from which to start the calculation.
|
345 |
+
(This is zero if no cache match was found.)
|
346 |
+
:param cache: Precomputed rows corresponding to edit distance matrix
|
347 |
+
before `start_h`.
|
348 |
+
:return: Edit distance value, newly computed rows to update the
|
349 |
+
cache, trace.
|
350 |
+
"""
|
351 |
+
|
352 |
+
n_words_h = len(words_h)
|
353 |
+
|
354 |
+
# initialize the rest of the matrix with infinite edit distances
|
355 |
+
rest_empty = [list(self._empty_row)
|
356 |
+
for _ in range(n_words_h - start_h)]
|
357 |
+
|
358 |
+
dist = cache + rest_empty
|
359 |
+
|
360 |
+
assert len(dist) == n_words_h + 1
|
361 |
+
|
362 |
+
length_ratio = self._n_words_ref / n_words_h if words_h else 1
|
363 |
+
|
364 |
+
# in some crazy sentences, the difference in length is so large that
|
365 |
+
# we may end up with zero overlap with previous row
|
366 |
+
if _BEAM_WIDTH < length_ratio / 2:
|
367 |
+
beam_width = math.ceil(length_ratio / 2 + _BEAM_WIDTH)
|
368 |
+
else:
|
369 |
+
beam_width = _BEAM_WIDTH
|
370 |
+
|
371 |
+
# calculate the Levenshtein distance
|
372 |
+
for i in range(start_h + 1, n_words_h + 1):
|
373 |
+
pseudo_diag = math.floor(i * length_ratio)
|
374 |
+
min_j = max(0, pseudo_diag - beam_width)
|
375 |
+
max_j = min(self._n_words_ref + 1, pseudo_diag + beam_width)
|
376 |
+
|
377 |
+
if i == n_words_h:
|
378 |
+
max_j = self._n_words_ref + 1
|
379 |
+
|
380 |
+
for j in range(min_j, max_j):
|
381 |
+
if j == 0:
|
382 |
+
dist[i][j] = (dist[i - 1][j][0] + _COST_DEL, _OP_DEL)
|
383 |
+
else:
|
384 |
+
if words_h[i - 1] == self._words_ref[j - 1]:
|
385 |
+
cost_sub = 0
|
386 |
+
op_sub = _OP_NOP
|
387 |
+
else:
|
388 |
+
cost_sub = _COST_SUB
|
389 |
+
op_sub = _OP_SUB
|
390 |
+
|
391 |
+
# Tercom prefers no-op/sub, then insertion, then deletion.
|
392 |
+
# But since we flip the trace and compute the alignment from
|
393 |
+
# the inverse, we need to swap order of insertion and
|
394 |
+
# deletion in the preference.
|
395 |
+
ops = (
|
396 |
+
(dist[i - 1][j - 1][0] + cost_sub, op_sub),
|
397 |
+
(dist[i - 1][j][0] + _COST_DEL, _OP_DEL),
|
398 |
+
(dist[i][j - 1][0] + _COST_INS, _OP_INS),
|
399 |
+
)
|
400 |
+
|
401 |
+
for op_cost, op_name in ops:
|
402 |
+
if dist[i][j][0] > op_cost:
|
403 |
+
dist[i][j] = op_cost, op_name
|
404 |
+
|
405 |
+
# get the trace
|
406 |
+
trace = ""
|
407 |
+
i = n_words_h
|
408 |
+
j = self._n_words_ref
|
409 |
+
|
410 |
+
while i > 0 or j > 0:
|
411 |
+
op = dist[i][j][1]
|
412 |
+
trace = op + trace
|
413 |
+
if op in (_OP_SUB, _OP_NOP):
|
414 |
+
i -= 1
|
415 |
+
j -= 1
|
416 |
+
elif op == _OP_INS:
|
417 |
+
j -= 1
|
418 |
+
elif op == _OP_DEL:
|
419 |
+
i -= 1
|
420 |
+
else:
|
421 |
+
raise Exception(f"unknown operation {op!r}")
|
422 |
+
|
423 |
+
return dist[-1][-1][0], dist[len(cache):], trace
|
424 |
+
|
425 |
+
def _add_cache(self, words_hyp: List[str], mat: List[List[Tuple]]):
|
426 |
+
"""Add newly computed rows to cache.
|
427 |
+
|
428 |
+
Since edit distance is only calculated on the hypothesis suffix that
|
429 |
+
was not in cache, the number of rows in `mat` may be shorter than
|
430 |
+
hypothesis length. In that case, we skip over these initial words.
|
431 |
+
|
432 |
+
:param words_hyp: Hypothesis words.
|
433 |
+
:param mat: Edit distance matrix rows for each position.
|
434 |
+
"""
|
435 |
+
if self._cache_size >= _MAX_CACHE_SIZE:
|
436 |
+
return
|
437 |
+
|
438 |
+
node = self._cache
|
439 |
+
|
440 |
+
n_mat = len(mat)
|
441 |
+
|
442 |
+
# how many initial words to skip
|
443 |
+
skip_num = len(words_hyp) - n_mat
|
444 |
+
|
445 |
+
# jump through the cache to the current position
|
446 |
+
for i in range(skip_num):
|
447 |
+
node = node[words_hyp[i]][0]
|
448 |
+
|
449 |
+
assert len(words_hyp[skip_num:]) == n_mat
|
450 |
+
|
451 |
+
# update cache with newly computed rows
|
452 |
+
for word, row in zip(words_hyp[skip_num:], mat):
|
453 |
+
if word not in node:
|
454 |
+
node[word] = ({}, tuple(row))
|
455 |
+
self._cache_size += 1
|
456 |
+
value = node[word]
|
457 |
+
node = value[0]
|
458 |
+
|
459 |
+
def _find_cache(self, words_hyp: List[str]) -> Tuple[int, List[List]]:
|
460 |
+
"""Find the already computed rows of the edit distance matrix in cache.
|
461 |
+
|
462 |
+
Returns a partially computed edit distance matrix.
|
463 |
+
|
464 |
+
:param words_hyp: Translation hypothesis.
|
465 |
+
:return: Tuple (start position, dist).
|
466 |
+
"""
|
467 |
+
node = self._cache
|
468 |
+
start_position = 0
|
469 |
+
dist = [self._initial_row]
|
470 |
+
for word in words_hyp:
|
471 |
+
if word in node:
|
472 |
+
start_position += 1
|
473 |
+
node, row = node[word]
|
474 |
+
dist.append(row)
|
475 |
+
else:
|
476 |
+
break
|
477 |
+
|
478 |
+
return start_position, dist
|