Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step40/zero/16.mlp.dense_4h_to_h.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step40/zero/17.mlp.dense_h_to_4h.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step40/zero/17.mlp.dense_h_to_4h.weight/fp32.pt +3 -0
- ckpts/universal/global_step40/zero/6.attention.dense.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step40/zero/6.attention.dense.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step40/zero/6.attention.dense.weight/fp32.pt +3 -0
- venv/lib/python3.10/site-packages/transformers/models/autoformer/__init__.py +63 -0
- venv/lib/python3.10/site-packages/transformers/models/autoformer/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/autoformer/configuration_autoformer.py +245 -0
- venv/lib/python3.10/site-packages/transformers/models/autoformer/modeling_autoformer.py +0 -0
- venv/lib/python3.10/site-packages/transformers/models/bartpho/__init__.py +42 -0
- venv/lib/python3.10/site-packages/transformers/models/bartpho/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/bartpho/__pycache__/tokenization_bartpho.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/bartpho/tokenization_bartpho.py +314 -0
- venv/lib/python3.10/site-packages/transformers/models/dbrx/__init__.py +51 -0
- venv/lib/python3.10/site-packages/transformers/models/dbrx/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/dbrx/__pycache__/configuration_dbrx.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/dbrx/__pycache__/modeling_dbrx.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/dbrx/configuration_dbrx.py +257 -0
- venv/lib/python3.10/site-packages/transformers/models/dbrx/modeling_dbrx.py +1523 -0
- venv/lib/python3.10/site-packages/transformers/models/esm/__init__.py +94 -0
- venv/lib/python3.10/site-packages/transformers/models/esm/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/esm/__pycache__/configuration_esm.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/esm/__pycache__/convert_esm.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/esm/__pycache__/modeling_esm.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/esm/__pycache__/modeling_esmfold.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/esm/__pycache__/modeling_tf_esm.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/esm/__pycache__/tokenization_esm.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/esm/configuration_esm.py +361 -0
- venv/lib/python3.10/site-packages/transformers/models/esm/convert_esm.py +400 -0
- venv/lib/python3.10/site-packages/transformers/models/esm/modeling_esm.py +1265 -0
- venv/lib/python3.10/site-packages/transformers/models/esm/modeling_esmfold.py +2322 -0
- venv/lib/python3.10/site-packages/transformers/models/esm/modeling_tf_esm.py +1567 -0
- venv/lib/python3.10/site-packages/transformers/models/esm/openfold_utils/__init__.py +8 -0
- venv/lib/python3.10/site-packages/transformers/models/esm/openfold_utils/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/esm/openfold_utils/__pycache__/chunk_utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/esm/openfold_utils/__pycache__/data_transforms.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/esm/openfold_utils/__pycache__/feats.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/esm/openfold_utils/__pycache__/loss.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/esm/openfold_utils/__pycache__/protein.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/esm/openfold_utils/__pycache__/residue_constants.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/esm/openfold_utils/__pycache__/rigid_utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/esm/openfold_utils/__pycache__/tensor_utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/esm/openfold_utils/chunk_utils.py +397 -0
- venv/lib/python3.10/site-packages/transformers/models/esm/openfold_utils/data_transforms.py +93 -0
- venv/lib/python3.10/site-packages/transformers/models/esm/openfold_utils/feats.py +255 -0
- venv/lib/python3.10/site-packages/transformers/models/esm/openfold_utils/loss.py +105 -0
- venv/lib/python3.10/site-packages/transformers/models/esm/openfold_utils/protein.py +329 -0
- venv/lib/python3.10/site-packages/transformers/models/esm/openfold_utils/residue_constants.py +983 -0
- venv/lib/python3.10/site-packages/transformers/models/esm/openfold_utils/rigid_utils.py +1242 -0
ckpts/universal/global_step40/zero/16.mlp.dense_4h_to_h.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e89bf2e55e35ed0f05fbec26ef376f030a1b946484f40f2c9c0c827f184f1889
|
3 |
+
size 33555627
|
ckpts/universal/global_step40/zero/17.mlp.dense_h_to_4h.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cbc680c6b7aa23968e96f914f4e462357b4fb538d4a269593c227c67d4f4bd1c
|
3 |
+
size 33555627
|
ckpts/universal/global_step40/zero/17.mlp.dense_h_to_4h.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:808d89a48271846ad48d88b3d8c563a03d2650c4ba42a020a2b2e9e35f2294d1
|
3 |
+
size 33555533
|
ckpts/universal/global_step40/zero/6.attention.dense.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:be0cdd8a27794a9b0901b27c872baccf9e5ff24b3ac7505f9b3235390c31e9ea
|
3 |
+
size 16778396
|
ckpts/universal/global_step40/zero/6.attention.dense.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f05953525977728553a39a506e566c6611353f64cb94b6053cd02e152cef9964
|
3 |
+
size 16778411
|
ckpts/universal/global_step40/zero/6.attention.dense.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b6c7ae9a86ef8973269e9560eb05c8eba5ea41f355259ba690fc2ac7c0efb0c2
|
3 |
+
size 16778317
|
venv/lib/python3.10/site-packages/transformers/models/autoformer/__init__.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
# rely on isort to merge the imports
|
17 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
|
18 |
+
|
19 |
+
|
20 |
+
_import_structure = {
|
21 |
+
"configuration_autoformer": [
|
22 |
+
"AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
23 |
+
"AutoformerConfig",
|
24 |
+
],
|
25 |
+
}
|
26 |
+
|
27 |
+
try:
|
28 |
+
if not is_torch_available():
|
29 |
+
raise OptionalDependencyNotAvailable()
|
30 |
+
except OptionalDependencyNotAvailable:
|
31 |
+
pass
|
32 |
+
else:
|
33 |
+
_import_structure["modeling_autoformer"] = [
|
34 |
+
"AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
|
35 |
+
"AutoformerForPrediction",
|
36 |
+
"AutoformerModel",
|
37 |
+
"AutoformerPreTrainedModel",
|
38 |
+
]
|
39 |
+
|
40 |
+
|
41 |
+
if TYPE_CHECKING:
|
42 |
+
from .configuration_autoformer import (
|
43 |
+
AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
44 |
+
AutoformerConfig,
|
45 |
+
)
|
46 |
+
|
47 |
+
try:
|
48 |
+
if not is_torch_available():
|
49 |
+
raise OptionalDependencyNotAvailable()
|
50 |
+
except OptionalDependencyNotAvailable:
|
51 |
+
pass
|
52 |
+
else:
|
53 |
+
from .modeling_autoformer import (
|
54 |
+
AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
|
55 |
+
AutoformerForPrediction,
|
56 |
+
AutoformerModel,
|
57 |
+
AutoformerPreTrainedModel,
|
58 |
+
)
|
59 |
+
|
60 |
+
else:
|
61 |
+
import sys
|
62 |
+
|
63 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
venv/lib/python3.10/site-packages/transformers/models/autoformer/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (954 Bytes). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/autoformer/configuration_autoformer.py
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Autoformer model configuration"""
|
16 |
+
|
17 |
+
from typing import List, Optional
|
18 |
+
|
19 |
+
from ...configuration_utils import PretrainedConfig
|
20 |
+
from ...utils import logging
|
21 |
+
|
22 |
+
|
23 |
+
logger = logging.get_logger(__name__)
|
24 |
+
|
25 |
+
|
26 |
+
from ..deprecated._archive_maps import AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
27 |
+
|
28 |
+
|
29 |
+
class AutoformerConfig(PretrainedConfig):
|
30 |
+
r"""
|
31 |
+
This is the configuration class to store the configuration of an [`AutoformerModel`]. It is used to instantiate an
|
32 |
+
Autoformer model according to the specified arguments, defining the model architecture. Instantiating a
|
33 |
+
configuration with the defaults will yield a similar configuration to that of the Autoformer
|
34 |
+
[huggingface/autoformer-tourism-monthly](https://huggingface.co/huggingface/autoformer-tourism-monthly)
|
35 |
+
architecture.
|
36 |
+
|
37 |
+
Configuration objects inherit from [`PretrainedConfig`] can be used to control the model outputs. Read the
|
38 |
+
documentation from [`PretrainedConfig`] for more information.
|
39 |
+
|
40 |
+
Args:
|
41 |
+
prediction_length (`int`):
|
42 |
+
The prediction length for the decoder. In other words, the prediction horizon of the model.
|
43 |
+
context_length (`int`, *optional*, defaults to `prediction_length`):
|
44 |
+
The context length for the encoder. If unset, the context length will be the same as the
|
45 |
+
`prediction_length`.
|
46 |
+
distribution_output (`string`, *optional*, defaults to `"student_t"`):
|
47 |
+
The distribution emission head for the model. Could be either "student_t", "normal" or "negative_binomial".
|
48 |
+
loss (`string`, *optional*, defaults to `"nll"`):
|
49 |
+
The loss function for the model corresponding to the `distribution_output` head. For parametric
|
50 |
+
distributions it is the negative log likelihood (nll) - which currently is the only supported one.
|
51 |
+
input_size (`int`, *optional*, defaults to 1):
|
52 |
+
The size of the target variable which by default is 1 for univariate targets. Would be > 1 in case of
|
53 |
+
multivariate targets.
|
54 |
+
lags_sequence (`list[int]`, *optional*, defaults to `[1, 2, 3, 4, 5, 6, 7]`):
|
55 |
+
The lags of the input time series as covariates often dictated by the frequency. Default is `[1, 2, 3, 4,
|
56 |
+
5, 6, 7]`.
|
57 |
+
scaling (`bool`, *optional* defaults to `True`):
|
58 |
+
Whether to scale the input targets.
|
59 |
+
num_time_features (`int`, *optional*, defaults to 0):
|
60 |
+
The number of time features in the input time series.
|
61 |
+
num_dynamic_real_features (`int`, *optional*, defaults to 0):
|
62 |
+
The number of dynamic real valued features.
|
63 |
+
num_static_categorical_features (`int`, *optional*, defaults to 0):
|
64 |
+
The number of static categorical features.
|
65 |
+
num_static_real_features (`int`, *optional*, defaults to 0):
|
66 |
+
The number of static real valued features.
|
67 |
+
cardinality (`list[int]`, *optional*):
|
68 |
+
The cardinality (number of different values) for each of the static categorical features. Should be a list
|
69 |
+
of integers, having the same length as `num_static_categorical_features`. Cannot be `None` if
|
70 |
+
`num_static_categorical_features` is > 0.
|
71 |
+
embedding_dimension (`list[int]`, *optional*):
|
72 |
+
The dimension of the embedding for each of the static categorical features. Should be a list of integers,
|
73 |
+
having the same length as `num_static_categorical_features`. Cannot be `None` if
|
74 |
+
`num_static_categorical_features` is > 0.
|
75 |
+
d_model (`int`, *optional*, defaults to 64):
|
76 |
+
Dimensionality of the transformer layers.
|
77 |
+
encoder_layers (`int`, *optional*, defaults to 2):
|
78 |
+
Number of encoder layers.
|
79 |
+
decoder_layers (`int`, *optional*, defaults to 2):
|
80 |
+
Number of decoder layers.
|
81 |
+
encoder_attention_heads (`int`, *optional*, defaults to 2):
|
82 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
83 |
+
decoder_attention_heads (`int`, *optional*, defaults to 2):
|
84 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
85 |
+
encoder_ffn_dim (`int`, *optional*, defaults to 32):
|
86 |
+
Dimension of the "intermediate" (often named feed-forward) layer in encoder.
|
87 |
+
decoder_ffn_dim (`int`, *optional*, defaults to 32):
|
88 |
+
Dimension of the "intermediate" (often named feed-forward) layer in decoder.
|
89 |
+
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
|
90 |
+
The non-linear activation function (function or string) in the encoder and decoder. If string, `"gelu"` and
|
91 |
+
`"relu"` are supported.
|
92 |
+
dropout (`float`, *optional*, defaults to 0.1):
|
93 |
+
The dropout probability for all fully connected layers in the encoder, and decoder.
|
94 |
+
encoder_layerdrop (`float`, *optional*, defaults to 0.1):
|
95 |
+
The dropout probability for the attention and fully connected layers for each encoder layer.
|
96 |
+
decoder_layerdrop (`float`, *optional*, defaults to 0.1):
|
97 |
+
The dropout probability for the attention and fully connected layers for each decoder layer.
|
98 |
+
attention_dropout (`float`, *optional*, defaults to 0.1):
|
99 |
+
The dropout probability for the attention probabilities.
|
100 |
+
activation_dropout (`float`, *optional*, defaults to 0.1):
|
101 |
+
The dropout probability used between the two layers of the feed-forward networks.
|
102 |
+
num_parallel_samples (`int`, *optional*, defaults to 100):
|
103 |
+
The number of samples to generate in parallel for each time step of inference.
|
104 |
+
init_std (`float`, *optional*, defaults to 0.02):
|
105 |
+
The standard deviation of the truncated normal weight initialization distribution.
|
106 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
107 |
+
Whether to use the past key/values attentions (if applicable to the model) to speed up decoding.
|
108 |
+
label_length (`int`, *optional*, defaults to 10):
|
109 |
+
Start token length of the Autoformer decoder, which is used for direct multi-step prediction (i.e.
|
110 |
+
non-autoregressive generation).
|
111 |
+
moving_average (`int`, defaults to 25):
|
112 |
+
The window size of the moving average. In practice, it's the kernel size in AvgPool1d of the Decomposition
|
113 |
+
Layer.
|
114 |
+
autocorrelation_factor (`int`, defaults to 3):
|
115 |
+
"Attention" (i.e. AutoCorrelation mechanism) factor which is used to find top k autocorrelations delays.
|
116 |
+
It's recommended in the paper to set it to a number between 1 and 5.
|
117 |
+
|
118 |
+
|
119 |
+
Example:
|
120 |
+
|
121 |
+
```python
|
122 |
+
>>> from transformers import AutoformerConfig, AutoformerModel
|
123 |
+
|
124 |
+
>>> # Initializing a default Autoformer configuration
|
125 |
+
>>> configuration = AutoformerConfig()
|
126 |
+
|
127 |
+
>>> # Randomly initializing a model (with random weights) from the configuration
|
128 |
+
>>> model = AutoformerModel(configuration)
|
129 |
+
|
130 |
+
>>> # Accessing the model configuration
|
131 |
+
>>> configuration = model.config
|
132 |
+
```"""
|
133 |
+
|
134 |
+
model_type = "autoformer"
|
135 |
+
attribute_map = {
|
136 |
+
"hidden_size": "d_model",
|
137 |
+
"num_attention_heads": "encoder_attention_heads",
|
138 |
+
"num_hidden_layers": "encoder_layers",
|
139 |
+
}
|
140 |
+
|
141 |
+
def __init__(
|
142 |
+
self,
|
143 |
+
prediction_length: Optional[int] = None,
|
144 |
+
context_length: Optional[int] = None,
|
145 |
+
distribution_output: str = "student_t",
|
146 |
+
loss: str = "nll",
|
147 |
+
input_size: int = 1,
|
148 |
+
lags_sequence: List[int] = [1, 2, 3, 4, 5, 6, 7],
|
149 |
+
scaling: bool = True,
|
150 |
+
num_time_features: int = 0,
|
151 |
+
num_dynamic_real_features: int = 0,
|
152 |
+
num_static_categorical_features: int = 0,
|
153 |
+
num_static_real_features: int = 0,
|
154 |
+
cardinality: Optional[List[int]] = None,
|
155 |
+
embedding_dimension: Optional[List[int]] = None,
|
156 |
+
d_model: int = 64,
|
157 |
+
encoder_attention_heads: int = 2,
|
158 |
+
decoder_attention_heads: int = 2,
|
159 |
+
encoder_layers: int = 2,
|
160 |
+
decoder_layers: int = 2,
|
161 |
+
encoder_ffn_dim: int = 32,
|
162 |
+
decoder_ffn_dim: int = 32,
|
163 |
+
activation_function: str = "gelu",
|
164 |
+
dropout: float = 0.1,
|
165 |
+
encoder_layerdrop: float = 0.1,
|
166 |
+
decoder_layerdrop: float = 0.1,
|
167 |
+
attention_dropout: float = 0.1,
|
168 |
+
activation_dropout: float = 0.1,
|
169 |
+
num_parallel_samples: int = 100,
|
170 |
+
init_std: float = 0.02,
|
171 |
+
use_cache: bool = True,
|
172 |
+
is_encoder_decoder=True,
|
173 |
+
# Autoformer arguments
|
174 |
+
label_length: int = 10,
|
175 |
+
moving_average: int = 25,
|
176 |
+
autocorrelation_factor: int = 3,
|
177 |
+
**kwargs,
|
178 |
+
):
|
179 |
+
# time series specific configuration
|
180 |
+
self.prediction_length = prediction_length
|
181 |
+
self.context_length = context_length if context_length is not None else prediction_length
|
182 |
+
self.distribution_output = distribution_output
|
183 |
+
self.loss = loss
|
184 |
+
self.input_size = input_size
|
185 |
+
self.num_time_features = num_time_features
|
186 |
+
self.lags_sequence = lags_sequence
|
187 |
+
self.scaling = scaling
|
188 |
+
self.num_dynamic_real_features = num_dynamic_real_features
|
189 |
+
self.num_static_real_features = num_static_real_features
|
190 |
+
self.num_static_categorical_features = num_static_categorical_features
|
191 |
+
if cardinality is not None and num_static_categorical_features > 0:
|
192 |
+
if len(cardinality) != num_static_categorical_features:
|
193 |
+
raise ValueError(
|
194 |
+
"The cardinality should be a list of the same length as `num_static_categorical_features`"
|
195 |
+
)
|
196 |
+
self.cardinality = cardinality
|
197 |
+
else:
|
198 |
+
self.cardinality = [0]
|
199 |
+
if embedding_dimension is not None and num_static_categorical_features > 0:
|
200 |
+
if len(embedding_dimension) != num_static_categorical_features:
|
201 |
+
raise ValueError(
|
202 |
+
"The embedding dimension should be a list of the same length as `num_static_categorical_features`"
|
203 |
+
)
|
204 |
+
self.embedding_dimension = embedding_dimension
|
205 |
+
else:
|
206 |
+
self.embedding_dimension = [min(50, (cat + 1) // 2) for cat in self.cardinality]
|
207 |
+
self.num_parallel_samples = num_parallel_samples
|
208 |
+
|
209 |
+
# Transformer architecture configuration
|
210 |
+
self.feature_size = input_size * len(self.lags_sequence) + self._number_of_features
|
211 |
+
self.d_model = d_model
|
212 |
+
self.encoder_attention_heads = encoder_attention_heads
|
213 |
+
self.decoder_attention_heads = decoder_attention_heads
|
214 |
+
self.encoder_ffn_dim = encoder_ffn_dim
|
215 |
+
self.decoder_ffn_dim = decoder_ffn_dim
|
216 |
+
self.encoder_layers = encoder_layers
|
217 |
+
self.decoder_layers = decoder_layers
|
218 |
+
|
219 |
+
self.dropout = dropout
|
220 |
+
self.attention_dropout = attention_dropout
|
221 |
+
self.activation_dropout = activation_dropout
|
222 |
+
self.encoder_layerdrop = encoder_layerdrop
|
223 |
+
self.decoder_layerdrop = decoder_layerdrop
|
224 |
+
|
225 |
+
self.activation_function = activation_function
|
226 |
+
self.init_std = init_std
|
227 |
+
|
228 |
+
self.use_cache = use_cache
|
229 |
+
|
230 |
+
# Autoformer
|
231 |
+
self.label_length = label_length
|
232 |
+
self.moving_average = moving_average
|
233 |
+
self.autocorrelation_factor = autocorrelation_factor
|
234 |
+
|
235 |
+
super().__init__(is_encoder_decoder=is_encoder_decoder, **kwargs)
|
236 |
+
|
237 |
+
@property
|
238 |
+
def _number_of_features(self) -> int:
|
239 |
+
return (
|
240 |
+
sum(self.embedding_dimension)
|
241 |
+
+ self.num_dynamic_real_features
|
242 |
+
+ self.num_time_features
|
243 |
+
+ self.num_static_real_features
|
244 |
+
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
|
245 |
+
)
|
venv/lib/python3.10/site-packages/transformers/models/autoformer/modeling_autoformer.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
venv/lib/python3.10/site-packages/transformers/models/bartpho/__init__.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import TYPE_CHECKING
|
16 |
+
|
17 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
|
18 |
+
|
19 |
+
|
20 |
+
_import_structure = {}
|
21 |
+
|
22 |
+
try:
|
23 |
+
if not is_sentencepiece_available():
|
24 |
+
raise OptionalDependencyNotAvailable()
|
25 |
+
except OptionalDependencyNotAvailable:
|
26 |
+
pass
|
27 |
+
else:
|
28 |
+
_import_structure["tokenization_bartpho"] = ["BartphoTokenizer"]
|
29 |
+
|
30 |
+
if TYPE_CHECKING:
|
31 |
+
try:
|
32 |
+
if not is_sentencepiece_available():
|
33 |
+
raise OptionalDependencyNotAvailable()
|
34 |
+
except OptionalDependencyNotAvailable:
|
35 |
+
pass
|
36 |
+
else:
|
37 |
+
from .tokenization_bartpho import BartphoTokenizer
|
38 |
+
|
39 |
+
else:
|
40 |
+
import sys
|
41 |
+
|
42 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
venv/lib/python3.10/site-packages/transformers/models/bartpho/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (696 Bytes). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/bartpho/__pycache__/tokenization_bartpho.cpython-310.pyc
ADDED
Binary file (12.2 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/bartpho/tokenization_bartpho.py
ADDED
@@ -0,0 +1,314 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 VinAI Research and the HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License
|
15 |
+
""" Tokenization classes for BARTpho-syllable model."""
|
16 |
+
|
17 |
+
|
18 |
+
import os
|
19 |
+
from shutil import copyfile
|
20 |
+
from typing import Any, Dict, List, Optional, Tuple
|
21 |
+
|
22 |
+
import sentencepiece as spm
|
23 |
+
|
24 |
+
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
|
25 |
+
from ...utils import logging
|
26 |
+
|
27 |
+
|
28 |
+
logger = logging.get_logger(__name__)
|
29 |
+
|
30 |
+
SPIECE_UNDERLINE = "▁"
|
31 |
+
|
32 |
+
VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model", "monolingual_vocab_file": "dict.txt"}
|
33 |
+
|
34 |
+
|
35 |
+
class BartphoTokenizer(PreTrainedTokenizer):
|
36 |
+
"""
|
37 |
+
Adapted from [`XLMRobertaTokenizer`]. Based on [SentencePiece](https://github.com/google/sentencepiece).
|
38 |
+
|
39 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
40 |
+
this superclass for more information regarding those methods.
|
41 |
+
|
42 |
+
Args:
|
43 |
+
vocab_file (`str`):
|
44 |
+
Path to the vocabulary file. This vocabulary is the pre-trained SentencePiece model available from the
|
45 |
+
multilingual XLM-RoBERTa, also used in mBART, consisting of 250K types.
|
46 |
+
monolingual_vocab_file (`str`):
|
47 |
+
Path to the monolingual vocabulary file. This monolingual vocabulary consists of Vietnamese-specialized
|
48 |
+
types extracted from the multilingual vocabulary vocab_file of 250K types.
|
49 |
+
bos_token (`str`, *optional*, defaults to `"<s>"`):
|
50 |
+
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
|
51 |
+
|
52 |
+
<Tip>
|
53 |
+
|
54 |
+
When building a sequence using special tokens, this is not the token that is used for the beginning of
|
55 |
+
sequence. The token used is the `cls_token`.
|
56 |
+
|
57 |
+
</Tip>
|
58 |
+
|
59 |
+
eos_token (`str`, *optional*, defaults to `"</s>"`):
|
60 |
+
The end of sequence token.
|
61 |
+
|
62 |
+
<Tip>
|
63 |
+
|
64 |
+
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
|
65 |
+
The token used is the `sep_token`.
|
66 |
+
|
67 |
+
</Tip>
|
68 |
+
|
69 |
+
sep_token (`str`, *optional*, defaults to `"</s>"`):
|
70 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
71 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
72 |
+
token of a sequence built with special tokens.
|
73 |
+
cls_token (`str`, *optional*, defaults to `"<s>"`):
|
74 |
+
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
75 |
+
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
76 |
+
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
77 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
78 |
+
token instead.
|
79 |
+
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
80 |
+
The token used for padding, for example when batching sequences of different lengths.
|
81 |
+
mask_token (`str`, *optional*, defaults to `"<mask>"`):
|
82 |
+
The token used for masking values. This is the token used when training this model with masked language
|
83 |
+
modeling. This is the token which the model will try to predict.
|
84 |
+
sp_model_kwargs (`dict`, *optional*):
|
85 |
+
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
|
86 |
+
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
|
87 |
+
to set:
|
88 |
+
|
89 |
+
- `enable_sampling`: Enable subword regularization.
|
90 |
+
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
|
91 |
+
|
92 |
+
- `nbest_size = {0,1}`: No sampling is performed.
|
93 |
+
- `nbest_size > 1`: samples from the nbest_size results.
|
94 |
+
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
|
95 |
+
using forward-filtering-and-backward-sampling algorithm.
|
96 |
+
|
97 |
+
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
|
98 |
+
BPE-dropout.
|
99 |
+
|
100 |
+
Attributes:
|
101 |
+
sp_model (`SentencePieceProcessor`):
|
102 |
+
The *SentencePiece* processor that is used for every conversion (string, tokens and IDs).
|
103 |
+
"""
|
104 |
+
|
105 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
106 |
+
model_input_names = ["input_ids", "attention_mask"]
|
107 |
+
|
108 |
+
def __init__(
|
109 |
+
self,
|
110 |
+
vocab_file,
|
111 |
+
monolingual_vocab_file,
|
112 |
+
bos_token="<s>",
|
113 |
+
eos_token="</s>",
|
114 |
+
sep_token="</s>",
|
115 |
+
cls_token="<s>",
|
116 |
+
unk_token="<unk>",
|
117 |
+
pad_token="<pad>",
|
118 |
+
mask_token="<mask>",
|
119 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
120 |
+
**kwargs,
|
121 |
+
) -> None:
|
122 |
+
# Mask token behave like a normal word, i.e. include the space before it
|
123 |
+
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
|
124 |
+
|
125 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
126 |
+
|
127 |
+
self.vocab_file = vocab_file
|
128 |
+
self.monolingual_vocab_file = monolingual_vocab_file
|
129 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
130 |
+
self.sp_model.Load(str(vocab_file))
|
131 |
+
|
132 |
+
# Load the reduced vocab
|
133 |
+
|
134 |
+
# Keep order of special tokens for backward compatibility
|
135 |
+
self.fairseq_tokens_to_ids = {}
|
136 |
+
cnt = 0
|
137 |
+
for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]:
|
138 |
+
if str(token) not in self.fairseq_tokens_to_ids:
|
139 |
+
self.fairseq_tokens_to_ids[str(token)] = cnt
|
140 |
+
cnt += 1
|
141 |
+
with open(monolingual_vocab_file, "r", encoding="utf-8") as f:
|
142 |
+
for line in f.readlines():
|
143 |
+
token = line.strip().split()[0]
|
144 |
+
self.fairseq_tokens_to_ids[token] = len(self.fairseq_tokens_to_ids)
|
145 |
+
if str(mask_token) not in self.fairseq_tokens_to_ids:
|
146 |
+
self.fairseq_tokens_to_ids[str(mask_token)] = len(self.fairseq_tokens_to_ids)
|
147 |
+
|
148 |
+
self.fairseq_ids_to_tokens = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
|
149 |
+
|
150 |
+
super().__init__(
|
151 |
+
bos_token=bos_token,
|
152 |
+
eos_token=eos_token,
|
153 |
+
unk_token=unk_token,
|
154 |
+
sep_token=sep_token,
|
155 |
+
cls_token=cls_token,
|
156 |
+
pad_token=pad_token,
|
157 |
+
mask_token=mask_token,
|
158 |
+
sp_model_kwargs=self.sp_model_kwargs,
|
159 |
+
**kwargs,
|
160 |
+
)
|
161 |
+
|
162 |
+
def __getstate__(self):
|
163 |
+
state = self.__dict__.copy()
|
164 |
+
state["sp_model"] = None
|
165 |
+
state["sp_model_proto"] = self.sp_model.serialized_model_proto()
|
166 |
+
return state
|
167 |
+
|
168 |
+
def __setstate__(self, d):
|
169 |
+
self.__dict__ = d
|
170 |
+
|
171 |
+
# for backward compatibility
|
172 |
+
if not hasattr(self, "sp_model_kwargs"):
|
173 |
+
self.sp_model_kwargs = {}
|
174 |
+
|
175 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
176 |
+
self.sp_model.LoadFromSerializedProto(self.sp_model_proto)
|
177 |
+
|
178 |
+
def build_inputs_with_special_tokens(
|
179 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
180 |
+
) -> List[int]:
|
181 |
+
"""
|
182 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
183 |
+
adding special tokens. An BARTPho sequence has the following format:
|
184 |
+
|
185 |
+
- single sequence: `<s> X </s>`
|
186 |
+
- pair of sequences: `<s> A </s></s> B </s>`
|
187 |
+
|
188 |
+
Args:
|
189 |
+
token_ids_0 (`List[int]`):
|
190 |
+
List of IDs to which the special tokens will be added.
|
191 |
+
token_ids_1 (`List[int]`, *optional*):
|
192 |
+
Optional second list of IDs for sequence pairs.
|
193 |
+
|
194 |
+
Returns:
|
195 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
196 |
+
"""
|
197 |
+
|
198 |
+
if token_ids_1 is None:
|
199 |
+
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
200 |
+
cls = [self.cls_token_id]
|
201 |
+
sep = [self.sep_token_id]
|
202 |
+
return cls + token_ids_0 + sep + sep + token_ids_1 + sep
|
203 |
+
|
204 |
+
def get_special_tokens_mask(
|
205 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
206 |
+
) -> List[int]:
|
207 |
+
"""
|
208 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
209 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
210 |
+
|
211 |
+
Args:
|
212 |
+
token_ids_0 (`List[int]`):
|
213 |
+
List of IDs.
|
214 |
+
token_ids_1 (`List[int]`, *optional*):
|
215 |
+
Optional second list of IDs for sequence pairs.
|
216 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
217 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
218 |
+
|
219 |
+
Returns:
|
220 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
221 |
+
"""
|
222 |
+
|
223 |
+
if already_has_special_tokens:
|
224 |
+
return super().get_special_tokens_mask(
|
225 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
226 |
+
)
|
227 |
+
|
228 |
+
if token_ids_1 is None:
|
229 |
+
return [1] + ([0] * len(token_ids_0)) + [1]
|
230 |
+
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
|
231 |
+
|
232 |
+
def create_token_type_ids_from_sequences(
|
233 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
234 |
+
) -> List[int]:
|
235 |
+
"""
|
236 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. BARTPho does not
|
237 |
+
make use of token type ids, therefore a list of zeros is returned.
|
238 |
+
|
239 |
+
Args:
|
240 |
+
token_ids_0 (`List[int]`):
|
241 |
+
List of IDs.
|
242 |
+
token_ids_1 (`List[int]`, *optional*):
|
243 |
+
Optional second list of IDs for sequence pairs.
|
244 |
+
|
245 |
+
Returns:
|
246 |
+
`List[int]`: List of zeros.
|
247 |
+
|
248 |
+
"""
|
249 |
+
|
250 |
+
sep = [self.sep_token_id]
|
251 |
+
cls = [self.cls_token_id]
|
252 |
+
|
253 |
+
if token_ids_1 is None:
|
254 |
+
return len(cls + token_ids_0 + sep) * [0]
|
255 |
+
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
|
256 |
+
|
257 |
+
@property
|
258 |
+
def vocab_size(self):
|
259 |
+
return len(self.fairseq_ids_to_tokens)
|
260 |
+
|
261 |
+
def get_vocab(self):
|
262 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
263 |
+
vocab.update(self.added_tokens_encoder)
|
264 |
+
return vocab
|
265 |
+
|
266 |
+
def _tokenize(self, text: str) -> List[str]:
|
267 |
+
return self.sp_model.encode(text, out_type=str)
|
268 |
+
|
269 |
+
def _convert_token_to_id(self, token):
|
270 |
+
"""Converts a token (str) in an id using the vocab."""
|
271 |
+
if token in self.fairseq_tokens_to_ids:
|
272 |
+
return self.fairseq_tokens_to_ids[token]
|
273 |
+
else:
|
274 |
+
return self.unk_token_id
|
275 |
+
|
276 |
+
def _convert_id_to_token(self, index):
|
277 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
278 |
+
return self.fairseq_ids_to_tokens[index]
|
279 |
+
|
280 |
+
def convert_tokens_to_string(self, tokens):
|
281 |
+
"""Converts a sequence of tokens (strings for sub-words) in a single string."""
|
282 |
+
out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip()
|
283 |
+
return out_string
|
284 |
+
|
285 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
286 |
+
if not os.path.isdir(save_directory):
|
287 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
288 |
+
return
|
289 |
+
out_vocab_file = os.path.join(
|
290 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
291 |
+
)
|
292 |
+
out_monolingual_vocab_file = os.path.join(
|
293 |
+
save_directory,
|
294 |
+
(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["monolingual_vocab_file"],
|
295 |
+
)
|
296 |
+
|
297 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
298 |
+
copyfile(self.vocab_file, out_vocab_file)
|
299 |
+
elif not os.path.isfile(self.vocab_file):
|
300 |
+
with open(out_vocab_file, "wb") as fi:
|
301 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
302 |
+
fi.write(content_spiece_model)
|
303 |
+
|
304 |
+
if os.path.abspath(self.monolingual_vocab_file) != os.path.abspath(
|
305 |
+
out_monolingual_vocab_file
|
306 |
+
) and os.path.isfile(self.monolingual_vocab_file):
|
307 |
+
copyfile(self.monolingual_vocab_file, out_monolingual_vocab_file)
|
308 |
+
elif not os.path.isfile(self.monolingual_vocab_file):
|
309 |
+
with open(out_monolingual_vocab_file, "w", encoding="utf-8") as fp:
|
310 |
+
for token in self.fairseq_tokens_to_ids:
|
311 |
+
if token not in self.all_special_tokens:
|
312 |
+
fp.write(f"{str(token)} \n")
|
313 |
+
|
314 |
+
return out_vocab_file, out_monolingual_vocab_file
|
venv/lib/python3.10/site-packages/transformers/models/dbrx/__init__.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
|
17 |
+
|
18 |
+
|
19 |
+
_import_structure = {
|
20 |
+
"configuration_dbrx": ["DbrxConfig"],
|
21 |
+
}
|
22 |
+
|
23 |
+
try:
|
24 |
+
if not is_torch_available():
|
25 |
+
raise OptionalDependencyNotAvailable()
|
26 |
+
except OptionalDependencyNotAvailable:
|
27 |
+
pass
|
28 |
+
else:
|
29 |
+
_import_structure["modeling_dbrx"] = [
|
30 |
+
"DbrxForCausalLM",
|
31 |
+
"DbrxModel",
|
32 |
+
"DbrxPreTrainedModel",
|
33 |
+
]
|
34 |
+
|
35 |
+
|
36 |
+
if TYPE_CHECKING:
|
37 |
+
from .configuration_dbrx import DbrxConfig
|
38 |
+
|
39 |
+
try:
|
40 |
+
if not is_torch_available():
|
41 |
+
raise OptionalDependencyNotAvailable()
|
42 |
+
except OptionalDependencyNotAvailable:
|
43 |
+
pass
|
44 |
+
else:
|
45 |
+
from .modeling_dbrx import DbrxForCausalLM, DbrxModel, DbrxPreTrainedModel
|
46 |
+
|
47 |
+
|
48 |
+
else:
|
49 |
+
import sys
|
50 |
+
|
51 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
venv/lib/python3.10/site-packages/transformers/models/dbrx/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (795 Bytes). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/dbrx/__pycache__/configuration_dbrx.cpython-310.pyc
ADDED
Binary file (9.37 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/dbrx/__pycache__/modeling_dbrx.cpython-310.pyc
ADDED
Binary file (44.4 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/dbrx/configuration_dbrx.py
ADDED
@@ -0,0 +1,257 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 Databricks Mosaic Research and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" DBRX model configuration """
|
16 |
+
|
17 |
+
from typing import Any, Optional
|
18 |
+
|
19 |
+
from ...configuration_utils import PretrainedConfig
|
20 |
+
from ...utils import logging
|
21 |
+
|
22 |
+
|
23 |
+
logger = logging.get_logger(__name__)
|
24 |
+
|
25 |
+
|
26 |
+
class DbrxAttentionConfig(PretrainedConfig):
|
27 |
+
"""Configuration class for Dbrx Attention.
|
28 |
+
|
29 |
+
[`DbrxAttention`] class. It is used to instantiate attention layers
|
30 |
+
according to the specified arguments, defining the layers architecture.
|
31 |
+
|
32 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
33 |
+
documentation from [`PretrainedConfig`] for more information.
|
34 |
+
|
35 |
+
Args:
|
36 |
+
attn_pdrop (`float`, *optional*, defaults to 0.0):
|
37 |
+
The dropout probability for the attention layers.
|
38 |
+
clip_qkv (`float`, *optional*):
|
39 |
+
If set, clip the queries, keys, and values in the attention layer to this value.
|
40 |
+
kv_n_heads (`Optional[int]`, defaults to 1): For grouped_query_attention only, allow user to specify number of kv heads.
|
41 |
+
rope_theta (`float`, defaults to 10000.0): The base frequency for rope.
|
42 |
+
"""
|
43 |
+
|
44 |
+
def __init__(
|
45 |
+
self,
|
46 |
+
attn_pdrop: float = 0.0,
|
47 |
+
clip_qkv: Optional[float] = None,
|
48 |
+
kv_n_heads: int = 1,
|
49 |
+
rope_theta: float = 10000.0,
|
50 |
+
**kwargs: Any,
|
51 |
+
):
|
52 |
+
super().__init__(**kwargs)
|
53 |
+
self.attn_pdrop = attn_pdrop
|
54 |
+
self.clip_qkv = clip_qkv
|
55 |
+
self.kv_n_heads = kv_n_heads
|
56 |
+
self.rope_theta = rope_theta
|
57 |
+
|
58 |
+
for k in ["model_type"]:
|
59 |
+
if k in kwargs:
|
60 |
+
kwargs.pop(k)
|
61 |
+
if len(kwargs) != 0:
|
62 |
+
raise ValueError(f"Found unknown {kwargs=}")
|
63 |
+
|
64 |
+
@classmethod
|
65 |
+
def from_pretrained(cls, pretrained_model_name_or_path: str, **kwargs: Any) -> "PretrainedConfig":
|
66 |
+
cls._set_token_in_kwargs(kwargs)
|
67 |
+
|
68 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
69 |
+
|
70 |
+
if config_dict.get("model_type") == "dbrx":
|
71 |
+
config_dict = config_dict["attn_config"]
|
72 |
+
|
73 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
74 |
+
logger.warning(
|
75 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
76 |
+
+ f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
77 |
+
)
|
78 |
+
|
79 |
+
return cls.from_dict(config_dict, **kwargs)
|
80 |
+
|
81 |
+
|
82 |
+
class DbrxFFNConfig(PretrainedConfig):
|
83 |
+
"""Configuration class for Dbrx FFN.
|
84 |
+
|
85 |
+
[`DbrxFFN`] class. It is used to instantiate feedforward layers according to
|
86 |
+
the specified arguments, defining the layers architecture.
|
87 |
+
|
88 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
89 |
+
documentation from [`PretrainedConfig`] for more information.
|
90 |
+
|
91 |
+
Args:
|
92 |
+
ffn_act_fn (`dict`, *optional*, defaults to `None`): A dict specifying activation function for the FFN.
|
93 |
+
The dict should have a key 'name' with the value being the name of the activation function along with
|
94 |
+
any additional keyword arguments. If `None`, then set to `{"name": "silu"}`.
|
95 |
+
ffn_hidden_size (`int`, defaults to 3584): The hidden size of the feedforward network.
|
96 |
+
moe_num_experts (`int`, defaults to 4): The number of experts in the mixture of experts layer.
|
97 |
+
moe_top_k (`int`, defaults to 1): The number of experts to use in the mixture of experts layer.
|
98 |
+
moe_jitter_eps (`float`, *optional*, defaults to `None`): If not `None`, the jitter epsilon for the mixture of experts layer.
|
99 |
+
moe_loss_weight (`float`, defaults to 0.01): The loss weight for the mixture of experts layer.
|
100 |
+
moe_normalize_expert_weights (`float`, *optional*, defaults to 1.0): The normalization factor for the expert weights.
|
101 |
+
"""
|
102 |
+
|
103 |
+
def __init__(
|
104 |
+
self,
|
105 |
+
ffn_act_fn: dict = None,
|
106 |
+
ffn_hidden_size: int = 3584,
|
107 |
+
moe_num_experts: int = 4,
|
108 |
+
moe_top_k: int = 1,
|
109 |
+
moe_jitter_eps: Optional[float] = None,
|
110 |
+
moe_loss_weight: float = 0.01,
|
111 |
+
moe_normalize_expert_weights: Optional[float] = 1.0,
|
112 |
+
**kwargs: Any,
|
113 |
+
):
|
114 |
+
super().__init__()
|
115 |
+
if ffn_act_fn is None:
|
116 |
+
ffn_act_fn = {"name": "silu"}
|
117 |
+
self.ffn_act_fn = ffn_act_fn
|
118 |
+
self.ffn_hidden_size = ffn_hidden_size
|
119 |
+
self.moe_num_experts = moe_num_experts
|
120 |
+
self.moe_top_k = moe_top_k
|
121 |
+
self.moe_jitter_eps = moe_jitter_eps
|
122 |
+
self.moe_loss_weight = moe_loss_weight
|
123 |
+
self.moe_normalize_expert_weights = moe_normalize_expert_weights
|
124 |
+
|
125 |
+
for k in ["model_type"]:
|
126 |
+
if k in kwargs:
|
127 |
+
kwargs.pop(k)
|
128 |
+
if len(kwargs) != 0:
|
129 |
+
raise ValueError(f"Found unknown {kwargs=}")
|
130 |
+
|
131 |
+
@classmethod
|
132 |
+
def from_pretrained(cls, pretrained_model_name_or_path: str, **kwargs: Any) -> "PretrainedConfig":
|
133 |
+
cls._set_token_in_kwargs(kwargs)
|
134 |
+
|
135 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
136 |
+
|
137 |
+
if config_dict.get("model_type") == "dbrx":
|
138 |
+
config_dict = config_dict["ffn_config"]
|
139 |
+
|
140 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
141 |
+
logger.warning(
|
142 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
143 |
+
+ f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
144 |
+
)
|
145 |
+
|
146 |
+
return cls.from_dict(config_dict, **kwargs)
|
147 |
+
|
148 |
+
|
149 |
+
class DbrxConfig(PretrainedConfig):
|
150 |
+
r"""
|
151 |
+
|
152 |
+
This is the configuration class to store the configuration of a [`DbrxModel`]. It is used to instantiate a Dbrx model according to the
|
153 |
+
specified arguments, defining the model architecture. Instantiating a configuration with the
|
154 |
+
defaults will yield a different configuration to that of the [databricks/dbrx-instruct](https://huggingface.co/databricks/dbrx-instruct) architecture.
|
155 |
+
|
156 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
157 |
+
documentation from [`PretrainedConfig`] for more information.
|
158 |
+
|
159 |
+
|
160 |
+
Args:
|
161 |
+
d_model (`int`, *optional*, defaults to 2048):
|
162 |
+
Dimensionality of the embeddings and hidden states.
|
163 |
+
n_heads (`int`, *optional*, defaults to 16):
|
164 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
165 |
+
n_layers (`int`, *optional*, defaults to 24):
|
166 |
+
Number of hidden layers in the Transformer encoder.
|
167 |
+
max_seq_len (`int`, *optional*, defaults to 2048):
|
168 |
+
The maximum sequence length of the model.
|
169 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
170 |
+
Vocabulary size of the Dbrx model. Defines the maximum number of different tokens that can be represented by
|
171 |
+
the `inputs_ids` passed when calling [`DbrxModel`].
|
172 |
+
resid_pdrop (`float`, *optional*, defaults to 0.0):
|
173 |
+
The dropout probability applied to the attention output before combining with residual.
|
174 |
+
emb_pdrop (`float`, *optional*, defaults to 0.0):
|
175 |
+
The dropout probability for the embedding layer.
|
176 |
+
attn_config (`dict`, *optional*):
|
177 |
+
A dictionary used to configure the model's attention module.
|
178 |
+
ffn_config (`dict`, *optional*):
|
179 |
+
A dictionary used to configure the model's FFN module.
|
180 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
181 |
+
Whether or not the model should return the last key/values attentions (not used by all models).
|
182 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
183 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
184 |
+
output_router_logits (`bool`, *optional*, defaults to `False`):
|
185 |
+
Whether or not the router logits should be returned by the model. Enabling this will also
|
186 |
+
allow the model to output the auxiliary loss. See [here]() for more details.
|
187 |
+
|
188 |
+
|
189 |
+
Example:
|
190 |
+
```python
|
191 |
+
>>> from transformers import DbrxConfig, DbrxModel
|
192 |
+
|
193 |
+
>>> # Initializing a Dbrx configuration
|
194 |
+
>>> configuration = DbrxConfig(n_layers=2, d_model=256, n_heads=8, vocab_size=128)
|
195 |
+
|
196 |
+
>>> # Initializing a model (with random weights) from the configuration
|
197 |
+
>>> model = DbrxModel(configuration)
|
198 |
+
|
199 |
+
>>> # Accessing the model configuration
|
200 |
+
>>> configuration = model.config
|
201 |
+
```
|
202 |
+
"""
|
203 |
+
|
204 |
+
model_type = "dbrx"
|
205 |
+
attribute_map = {
|
206 |
+
"num_attention_heads": "n_heads",
|
207 |
+
"hidden_size": "d_model",
|
208 |
+
"num_hidden_layers": "n_layers",
|
209 |
+
"max_position_embeddings": "max_seq_len",
|
210 |
+
}
|
211 |
+
|
212 |
+
def __init__(
|
213 |
+
self,
|
214 |
+
d_model: int = 2048,
|
215 |
+
n_heads: int = 16,
|
216 |
+
n_layers: int = 24,
|
217 |
+
max_seq_len: int = 2048,
|
218 |
+
vocab_size: int = 32000,
|
219 |
+
resid_pdrop: float = 0.0,
|
220 |
+
emb_pdrop: float = 0.0,
|
221 |
+
attn_config: Optional[DbrxAttentionConfig] = None,
|
222 |
+
ffn_config: Optional[DbrxFFNConfig] = None,
|
223 |
+
use_cache: bool = True,
|
224 |
+
initializer_range: float = 0.02,
|
225 |
+
output_router_logits: bool = False,
|
226 |
+
**kwargs: Any,
|
227 |
+
):
|
228 |
+
if attn_config is None:
|
229 |
+
self.attn_config = DbrxAttentionConfig()
|
230 |
+
elif isinstance(attn_config, dict):
|
231 |
+
self.attn_config = DbrxAttentionConfig(**attn_config)
|
232 |
+
else:
|
233 |
+
self.attn_config = attn_config
|
234 |
+
|
235 |
+
if ffn_config is None:
|
236 |
+
self.ffn_config = DbrxFFNConfig()
|
237 |
+
elif isinstance(ffn_config, dict):
|
238 |
+
self.ffn_config = DbrxFFNConfig(**ffn_config)
|
239 |
+
else:
|
240 |
+
self.ffn_config = ffn_config
|
241 |
+
|
242 |
+
self.d_model = d_model
|
243 |
+
self.n_heads = n_heads
|
244 |
+
self.n_layers = n_layers
|
245 |
+
self.max_seq_len = max_seq_len
|
246 |
+
self.vocab_size = vocab_size
|
247 |
+
self.resid_pdrop = resid_pdrop
|
248 |
+
self.emb_pdrop = emb_pdrop
|
249 |
+
self.use_cache = use_cache
|
250 |
+
self.initializer_range = initializer_range
|
251 |
+
self.output_router_logits = output_router_logits
|
252 |
+
|
253 |
+
tie_word_embeddings = kwargs.pop("tie_word_embeddings", False)
|
254 |
+
if tie_word_embeddings:
|
255 |
+
raise ValueError("tie_word_embeddings is not supported for DBRX models.")
|
256 |
+
|
257 |
+
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
|
venv/lib/python3.10/site-packages/transformers/models/dbrx/modeling_dbrx.py
ADDED
@@ -0,0 +1,1523 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 Databricks Mosaic Research and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch DBRX model. """
|
16 |
+
|
17 |
+
import math
|
18 |
+
from typing import Any, Dict, Optional, Tuple, Union
|
19 |
+
|
20 |
+
import torch
|
21 |
+
import torch.nn.functional as F
|
22 |
+
import torch.utils.checkpoint
|
23 |
+
from torch import nn
|
24 |
+
|
25 |
+
from ...activations import ACT2FN
|
26 |
+
from ...cache_utils import Cache, DynamicCache, StaticCache
|
27 |
+
from ...modeling_attn_mask_utils import AttentionMaskConverter
|
28 |
+
from ...modeling_outputs import MoeCausalLMOutputWithPast, MoeModelOutputWithPast
|
29 |
+
from ...modeling_utils import PreTrainedModel
|
30 |
+
from ...utils import (
|
31 |
+
add_start_docstrings,
|
32 |
+
add_start_docstrings_to_model_forward,
|
33 |
+
is_flash_attn_2_available,
|
34 |
+
is_flash_attn_greater_or_equal_2_10,
|
35 |
+
logging,
|
36 |
+
replace_return_docstrings,
|
37 |
+
)
|
38 |
+
from .configuration_dbrx import DbrxConfig
|
39 |
+
|
40 |
+
|
41 |
+
if is_flash_attn_2_available():
|
42 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
43 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
44 |
+
|
45 |
+
logger = logging.get_logger(__name__)
|
46 |
+
|
47 |
+
_CONFIG_FOR_DOC = "DbrxConfig"
|
48 |
+
|
49 |
+
|
50 |
+
# Copied from transformers.models.gemma.modeling_gemma.GemmaRotaryEmbedding with Gemma->Dbrx
|
51 |
+
class DbrxRotaryEmbedding(nn.Module):
|
52 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
53 |
+
super().__init__()
|
54 |
+
|
55 |
+
self.dim = dim
|
56 |
+
self.max_position_embeddings = max_position_embeddings
|
57 |
+
self.base = base
|
58 |
+
self.register_buffer("inv_freq", None, persistent=False)
|
59 |
+
|
60 |
+
@torch.no_grad()
|
61 |
+
def forward(self, x, position_ids, seq_len=None):
|
62 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
63 |
+
if self.inv_freq is None:
|
64 |
+
self.inv_freq = 1.0 / (
|
65 |
+
self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim)
|
66 |
+
)
|
67 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
68 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
69 |
+
# Force float32 since bfloat16 loses precision on long contexts
|
70 |
+
# See https://github.com/huggingface/transformers/pull/29285
|
71 |
+
device_type = x.device.type
|
72 |
+
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
73 |
+
with torch.autocast(device_type=device_type, enabled=False):
|
74 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
75 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
76 |
+
cos = emb.cos()
|
77 |
+
sin = emb.sin()
|
78 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
79 |
+
|
80 |
+
|
81 |
+
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
82 |
+
def rotate_half(x):
|
83 |
+
"""Rotates half the hidden dims of the input."""
|
84 |
+
x1 = x[..., : x.shape[-1] // 2]
|
85 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
86 |
+
return torch.cat((-x2, x1), dim=-1)
|
87 |
+
|
88 |
+
|
89 |
+
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
|
90 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
91 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
92 |
+
|
93 |
+
Args:
|
94 |
+
q (`torch.Tensor`): The query tensor.
|
95 |
+
k (`torch.Tensor`): The key tensor.
|
96 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
97 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
98 |
+
position_ids (`torch.Tensor`, *optional*):
|
99 |
+
Deprecated and unused.
|
100 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
101 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
102 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
103 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
104 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
105 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
106 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
107 |
+
Returns:
|
108 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
109 |
+
"""
|
110 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
111 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
112 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
113 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
114 |
+
return q_embed, k_embed
|
115 |
+
|
116 |
+
|
117 |
+
# Copied from transformers.models.llama.modeling_llama.repeat_kv
|
118 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
119 |
+
"""
|
120 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
121 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
122 |
+
"""
|
123 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
124 |
+
if n_rep == 1:
|
125 |
+
return hidden_states
|
126 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
127 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
128 |
+
|
129 |
+
|
130 |
+
def load_balancing_loss_func(
|
131 |
+
gate_logits: torch.Tensor,
|
132 |
+
num_experts: int,
|
133 |
+
top_k: int,
|
134 |
+
attention_mask: Optional[torch.Tensor],
|
135 |
+
) -> torch.Tensor:
|
136 |
+
r"""Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
|
137 |
+
|
138 |
+
See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
|
139 |
+
function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
|
140 |
+
experts is too unbalanced.
|
141 |
+
|
142 |
+
Args:
|
143 |
+
gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]):
|
144 |
+
Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of
|
145 |
+
shape [batch_size X sequence_length, num_experts].
|
146 |
+
num_experts (`int`):
|
147 |
+
Number of experts.
|
148 |
+
top_k (`int`):
|
149 |
+
The number of experts each token is routed to.
|
150 |
+
attention_mask (`torch.Tensor`, None):
|
151 |
+
The attention_mask used in forward function
|
152 |
+
shape [batch_size X sequence_length] if not None.
|
153 |
+
|
154 |
+
Returns:
|
155 |
+
The auxiliary loss.
|
156 |
+
"""
|
157 |
+
if gate_logits is None or not isinstance(gate_logits, tuple):
|
158 |
+
return torch.tensor(0.0)
|
159 |
+
|
160 |
+
if isinstance(gate_logits, tuple):
|
161 |
+
compute_device = gate_logits[0].device
|
162 |
+
concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0)
|
163 |
+
|
164 |
+
routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1)
|
165 |
+
|
166 |
+
_, selected_experts = torch.topk(routing_weights, top_k, dim=-1)
|
167 |
+
|
168 |
+
expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts)
|
169 |
+
|
170 |
+
if attention_mask is None:
|
171 |
+
# Compute the percentage of tokens routed to each experts
|
172 |
+
tokens_per_expert = torch.mean(expert_mask.float(), dim=0)
|
173 |
+
|
174 |
+
# Compute the average probability of routing to these experts
|
175 |
+
router_prob_per_expert = torch.mean(routing_weights, dim=0)
|
176 |
+
else:
|
177 |
+
batch_size, sequence_length = attention_mask.shape
|
178 |
+
num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length)
|
179 |
+
|
180 |
+
# Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask
|
181 |
+
expert_attention_mask = (
|
182 |
+
attention_mask[None, :, :, None, None]
|
183 |
+
.expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts))
|
184 |
+
.reshape(-1, top_k, num_experts)
|
185 |
+
.to(compute_device)
|
186 |
+
)
|
187 |
+
|
188 |
+
# Compute the percentage of tokens routed to each experts
|
189 |
+
tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum(
|
190 |
+
expert_attention_mask, dim=0
|
191 |
+
)
|
192 |
+
|
193 |
+
# Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert
|
194 |
+
router_per_expert_attention_mask = (
|
195 |
+
attention_mask[None, :, :, None]
|
196 |
+
.expand((num_hidden_layers, batch_size, sequence_length, num_experts))
|
197 |
+
.reshape(-1, num_experts)
|
198 |
+
.to(compute_device)
|
199 |
+
)
|
200 |
+
|
201 |
+
# Compute the average probability of routing to these experts
|
202 |
+
router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum(
|
203 |
+
router_per_expert_attention_mask, dim=0
|
204 |
+
)
|
205 |
+
|
206 |
+
overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0))
|
207 |
+
return overall_loss * num_experts
|
208 |
+
|
209 |
+
|
210 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
211 |
+
def _get_unpad_data(attention_mask):
|
212 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
213 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
214 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
215 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
216 |
+
return (
|
217 |
+
indices,
|
218 |
+
cu_seqlens,
|
219 |
+
max_seqlen_in_batch,
|
220 |
+
)
|
221 |
+
|
222 |
+
|
223 |
+
class DbrxAttention(nn.Module):
|
224 |
+
"""Multi-head self attention."""
|
225 |
+
|
226 |
+
def __init__(self, config: DbrxConfig, block_idx: Optional[int] = None):
|
227 |
+
super().__init__()
|
228 |
+
self.config = config
|
229 |
+
self.hidden_size = config.d_model
|
230 |
+
self.num_heads = config.n_heads
|
231 |
+
self.head_dim = self.hidden_size // self.num_heads
|
232 |
+
self.max_position_embeddings = config.max_seq_len
|
233 |
+
self.block_idx = block_idx
|
234 |
+
if block_idx is None:
|
235 |
+
logger.warning_once(
|
236 |
+
f"Instantiating {self.__class__.__name__} without passing a `block_idx` is not recommended and will "
|
237 |
+
+ "lead to errors during the forward call if caching is used. Please make sure to provide a `block_idx` "
|
238 |
+
+ "when creating this class."
|
239 |
+
)
|
240 |
+
|
241 |
+
attn_config = config.attn_config
|
242 |
+
self.attn_pdrop = attn_config.attn_pdrop
|
243 |
+
self.clip_qkv = attn_config.clip_qkv
|
244 |
+
self.num_key_value_heads = attn_config.kv_n_heads
|
245 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
246 |
+
self.rope_theta = attn_config.rope_theta
|
247 |
+
self.is_causal = True
|
248 |
+
|
249 |
+
self.Wqkv = nn.Linear(
|
250 |
+
self.hidden_size, self.hidden_size + 2 * self.num_key_value_heads * self.head_dim, bias=False
|
251 |
+
)
|
252 |
+
self.out_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
|
253 |
+
self.rotary_emb = DbrxRotaryEmbedding(
|
254 |
+
self.head_dim,
|
255 |
+
max_position_embeddings=self.max_position_embeddings,
|
256 |
+
base=self.rope_theta,
|
257 |
+
)
|
258 |
+
|
259 |
+
def forward(
|
260 |
+
self,
|
261 |
+
hidden_states: torch.Tensor,
|
262 |
+
position_ids: torch.LongTensor,
|
263 |
+
attention_mask: Optional[torch.Tensor] = None,
|
264 |
+
past_key_value: Optional[Cache] = None,
|
265 |
+
output_attentions: bool = False,
|
266 |
+
use_cache: bool = False,
|
267 |
+
cache_position: Optional[torch.LongTensor] = None,
|
268 |
+
**kwargs: Any,
|
269 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
|
270 |
+
bsz, q_len, _ = hidden_states.size()
|
271 |
+
|
272 |
+
qkv_states = self.Wqkv(hidden_states)
|
273 |
+
min_val = -self.clip_qkv if self.clip_qkv is not None else None
|
274 |
+
max_val = self.clip_qkv
|
275 |
+
qkv_states = qkv_states.clamp(min=min_val, max=max_val)
|
276 |
+
|
277 |
+
query_states, key_states, value_states = qkv_states.split(
|
278 |
+
[
|
279 |
+
self.hidden_size,
|
280 |
+
self.num_key_value_heads * self.head_dim,
|
281 |
+
self.num_key_value_heads * self.head_dim,
|
282 |
+
],
|
283 |
+
dim=2,
|
284 |
+
)
|
285 |
+
|
286 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
287 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
288 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
289 |
+
|
290 |
+
past_key_value = getattr(self, "past_key_value", past_key_value)
|
291 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
292 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
293 |
+
|
294 |
+
if past_key_value is not None:
|
295 |
+
# sin and cos are specific to RoPE models; position_ids needed for the static cache
|
296 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
297 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.block_idx, cache_kwargs)
|
298 |
+
|
299 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
300 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
301 |
+
|
302 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
303 |
+
|
304 |
+
if attention_mask is not None: # no matter the length, we just slice it
|
305 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
306 |
+
attn_weights = attn_weights + causal_mask
|
307 |
+
|
308 |
+
# upcast attention to fp32
|
309 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
310 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.attn_pdrop, training=self.training)
|
311 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
312 |
+
|
313 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
314 |
+
raise ValueError(
|
315 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
316 |
+
+ f" {attn_output.size()}"
|
317 |
+
)
|
318 |
+
|
319 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
320 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
321 |
+
attn_output = self.out_proj(attn_output)
|
322 |
+
|
323 |
+
if not output_attentions:
|
324 |
+
attn_weights = None
|
325 |
+
|
326 |
+
return attn_output, attn_weights, past_key_value
|
327 |
+
|
328 |
+
|
329 |
+
class DbrxFlashAttention2(DbrxAttention):
|
330 |
+
"""Dbrx flash attention module.
|
331 |
+
|
332 |
+
This module inherits from `DbrxAttention` as the weights of the module stays
|
333 |
+
untouched. The only required change would be on the forward pass where it
|
334 |
+
calls the public API of flash attention.
|
335 |
+
"""
|
336 |
+
|
337 |
+
def __init__(self, *args: Any, **kwargs: Any):
|
338 |
+
super().__init__(*args, **kwargs)
|
339 |
+
|
340 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
341 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
342 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
343 |
+
# From: https://github.com/huggingface/transformers/blob/3b8e2932ce743008f63585aae1e1b8b30dc8b3ac/src/transformers/models/gemma/modeling_gemma.py#L318
|
344 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
345 |
+
|
346 |
+
def forward(
|
347 |
+
self,
|
348 |
+
hidden_states: torch.Tensor,
|
349 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
350 |
+
position_ids: Optional[torch.LongTensor] = None,
|
351 |
+
past_key_value: Optional[Cache] = None,
|
352 |
+
output_attentions: bool = False,
|
353 |
+
use_cache: bool = False,
|
354 |
+
cache_position: Optional[torch.LongTensor] = None,
|
355 |
+
**kwargs: Any,
|
356 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
357 |
+
logger.info("Implicitly setting `output_attentions` to False as it is not supported in Flash Attention.")
|
358 |
+
output_attentions = False
|
359 |
+
|
360 |
+
bsz, q_len, _ = hidden_states.size()
|
361 |
+
|
362 |
+
qkv_states = self.Wqkv(hidden_states)
|
363 |
+
if self.clip_qkv is not None:
|
364 |
+
qkv_states = qkv_states.clamp(min=-self.clip_qkv, max=self.clip_qkv)
|
365 |
+
|
366 |
+
query_states, key_states, value_states = qkv_states.split(
|
367 |
+
[
|
368 |
+
self.hidden_size,
|
369 |
+
self.num_key_value_heads * self.head_dim,
|
370 |
+
self.num_key_value_heads * self.head_dim,
|
371 |
+
],
|
372 |
+
dim=2,
|
373 |
+
)
|
374 |
+
|
375 |
+
# Flash attention requires the input to have the shape
|
376 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
377 |
+
# therefore we just need to keep the original shape
|
378 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
379 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
380 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
381 |
+
|
382 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
383 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
384 |
+
|
385 |
+
past_key_value = getattr(self, "past_key_value", past_key_value)
|
386 |
+
|
387 |
+
if past_key_value is not None:
|
388 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
389 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
390 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.block_idx, cache_kwargs)
|
391 |
+
|
392 |
+
# TODO: These transpose are quite inefficient but Flash Attention requires the layout
|
393 |
+
# [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
394 |
+
# to be able to avoid many of these transpose/reshape/view.
|
395 |
+
query_states = query_states.transpose(1, 2)
|
396 |
+
key_states = key_states.transpose(1, 2)
|
397 |
+
value_states = value_states.transpose(1, 2)
|
398 |
+
|
399 |
+
dropout_rate = self.attn_pdrop if self.training else 0.0
|
400 |
+
|
401 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
402 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
403 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
404 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
405 |
+
# in fp32. (LlamaRMSNorm handles it correctly)
|
406 |
+
input_dtype = query_states.dtype
|
407 |
+
if input_dtype == torch.float32:
|
408 |
+
if torch.is_autocast_enabled():
|
409 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
410 |
+
# Handle the case where the model is quantized
|
411 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
412 |
+
target_dtype = self.config._pre_quantization_dtype
|
413 |
+
else:
|
414 |
+
target_dtype = query_states.dtype
|
415 |
+
|
416 |
+
logger.warning_once(
|
417 |
+
"The input hidden states seems to be silently casted in float32, this might be "
|
418 |
+
+ "related to the fact you have upcasted embedding or layer norm layers in "
|
419 |
+
+ f"float32. We will cast back the input in {target_dtype}."
|
420 |
+
)
|
421 |
+
|
422 |
+
query_states = query_states.to(target_dtype)
|
423 |
+
key_states = key_states.to(target_dtype)
|
424 |
+
value_states = value_states.to(target_dtype)
|
425 |
+
|
426 |
+
attn_output = self._flash_attention_forward(
|
427 |
+
query_states,
|
428 |
+
key_states,
|
429 |
+
value_states,
|
430 |
+
attention_mask,
|
431 |
+
q_len,
|
432 |
+
dropout=dropout_rate,
|
433 |
+
)
|
434 |
+
|
435 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
436 |
+
attn_output = self.out_proj(attn_output)
|
437 |
+
|
438 |
+
if not output_attentions:
|
439 |
+
attn_weights = None
|
440 |
+
|
441 |
+
return attn_output, attn_weights, past_key_value
|
442 |
+
|
443 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._flash_attention_forward
|
444 |
+
def _flash_attention_forward(
|
445 |
+
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
446 |
+
):
|
447 |
+
"""
|
448 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
449 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
450 |
+
|
451 |
+
Args:
|
452 |
+
query_states (`torch.Tensor`):
|
453 |
+
Input query states to be passed to Flash Attention API
|
454 |
+
key_states (`torch.Tensor`):
|
455 |
+
Input key states to be passed to Flash Attention API
|
456 |
+
value_states (`torch.Tensor`):
|
457 |
+
Input value states to be passed to Flash Attention API
|
458 |
+
attention_mask (`torch.Tensor`):
|
459 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
460 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
461 |
+
dropout (`float`):
|
462 |
+
Attention dropout
|
463 |
+
softmax_scale (`float`, *optional*):
|
464 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
465 |
+
"""
|
466 |
+
if not self._flash_attn_uses_top_left_mask:
|
467 |
+
causal = self.is_causal
|
468 |
+
else:
|
469 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
470 |
+
causal = self.is_causal and query_length != 1
|
471 |
+
|
472 |
+
# Contains at least one padding token in the sequence
|
473 |
+
if attention_mask is not None:
|
474 |
+
batch_size = query_states.shape[0]
|
475 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
476 |
+
query_states, key_states, value_states, attention_mask, query_length
|
477 |
+
)
|
478 |
+
|
479 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
480 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
481 |
+
|
482 |
+
attn_output_unpad = flash_attn_varlen_func(
|
483 |
+
query_states,
|
484 |
+
key_states,
|
485 |
+
value_states,
|
486 |
+
cu_seqlens_q=cu_seqlens_q,
|
487 |
+
cu_seqlens_k=cu_seqlens_k,
|
488 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
489 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
490 |
+
dropout_p=dropout,
|
491 |
+
softmax_scale=softmax_scale,
|
492 |
+
causal=causal,
|
493 |
+
)
|
494 |
+
|
495 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
496 |
+
else:
|
497 |
+
attn_output = flash_attn_func(
|
498 |
+
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
499 |
+
)
|
500 |
+
|
501 |
+
return attn_output
|
502 |
+
|
503 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._upad_input
|
504 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
505 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
506 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
507 |
+
|
508 |
+
key_layer = index_first_axis(
|
509 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
510 |
+
)
|
511 |
+
value_layer = index_first_axis(
|
512 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
513 |
+
)
|
514 |
+
if query_length == kv_seq_len:
|
515 |
+
query_layer = index_first_axis(
|
516 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
|
517 |
+
)
|
518 |
+
cu_seqlens_q = cu_seqlens_k
|
519 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
520 |
+
indices_q = indices_k
|
521 |
+
elif query_length == 1:
|
522 |
+
max_seqlen_in_batch_q = 1
|
523 |
+
cu_seqlens_q = torch.arange(
|
524 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
525 |
+
) # There is a memcpy here, that is very bad.
|
526 |
+
indices_q = cu_seqlens_q[:-1]
|
527 |
+
query_layer = query_layer.squeeze(1)
|
528 |
+
else:
|
529 |
+
# The -q_len: slice assumes left padding.
|
530 |
+
attention_mask = attention_mask[:, -query_length:]
|
531 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
532 |
+
|
533 |
+
return (
|
534 |
+
query_layer,
|
535 |
+
key_layer,
|
536 |
+
value_layer,
|
537 |
+
indices_q,
|
538 |
+
(cu_seqlens_q, cu_seqlens_k),
|
539 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
540 |
+
)
|
541 |
+
|
542 |
+
|
543 |
+
class DbrxSdpaAttention(DbrxAttention):
|
544 |
+
"""
|
545 |
+
Dbrx attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
546 |
+
`DbrxAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
547 |
+
SDPA API.
|
548 |
+
"""
|
549 |
+
|
550 |
+
def forward(
|
551 |
+
self,
|
552 |
+
hidden_states: torch.Tensor,
|
553 |
+
attention_mask: Optional[torch.Tensor] = None,
|
554 |
+
position_ids: Optional[torch.LongTensor] = None,
|
555 |
+
past_key_value: Optional[Cache] = None,
|
556 |
+
output_attentions: bool = False,
|
557 |
+
use_cache: bool = False,
|
558 |
+
cache_position: Optional[torch.LongTensor] = None,
|
559 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
560 |
+
if output_attentions:
|
561 |
+
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
562 |
+
logger.warning_once(
|
563 |
+
"DbrxModel is using DbrxSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
564 |
+
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
565 |
+
)
|
566 |
+
return super().forward(
|
567 |
+
hidden_states=hidden_states,
|
568 |
+
attention_mask=attention_mask,
|
569 |
+
position_ids=position_ids,
|
570 |
+
past_key_value=past_key_value,
|
571 |
+
output_attentions=output_attentions,
|
572 |
+
use_cache=use_cache,
|
573 |
+
cache_position=cache_position,
|
574 |
+
)
|
575 |
+
|
576 |
+
bsz, q_len, _ = hidden_states.size()
|
577 |
+
|
578 |
+
qkv_states = self.Wqkv(hidden_states)
|
579 |
+
if self.clip_qkv is not None:
|
580 |
+
qkv_states = qkv_states.clamp(min=-self.clip_qkv, max=self.clip_qkv)
|
581 |
+
|
582 |
+
query_states, key_states, value_states = qkv_states.split(
|
583 |
+
[
|
584 |
+
self.hidden_size,
|
585 |
+
self.num_key_value_heads * self.head_dim,
|
586 |
+
self.num_key_value_heads * self.head_dim,
|
587 |
+
],
|
588 |
+
dim=2,
|
589 |
+
)
|
590 |
+
|
591 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
592 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
593 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
594 |
+
|
595 |
+
cos, sin = self.rotary_emb(value_states, position_ids, seq_len=None)
|
596 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, None)
|
597 |
+
|
598 |
+
past_key_value = getattr(self, "past_key_value", past_key_value)
|
599 |
+
|
600 |
+
if past_key_value is not None:
|
601 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
602 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
603 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.block_idx, cache_kwargs)
|
604 |
+
|
605 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
606 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
607 |
+
|
608 |
+
causal_mask = attention_mask
|
609 |
+
if attention_mask is not None:
|
610 |
+
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
|
611 |
+
|
612 |
+
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
613 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
614 |
+
if query_states.device.type == "cuda" and causal_mask is not None:
|
615 |
+
query_states = query_states.contiguous()
|
616 |
+
key_states = key_states.contiguous()
|
617 |
+
value_states = value_states.contiguous()
|
618 |
+
|
619 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
620 |
+
query_states,
|
621 |
+
key_states,
|
622 |
+
value_states,
|
623 |
+
attn_mask=causal_mask,
|
624 |
+
dropout_p=self.attn_pdrop if self.training else 0.0,
|
625 |
+
)
|
626 |
+
|
627 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
628 |
+
attn_output = attn_output.view(bsz, q_len, -1)
|
629 |
+
|
630 |
+
attn_output = self.out_proj(attn_output)
|
631 |
+
|
632 |
+
return attn_output, None, past_key_value
|
633 |
+
|
634 |
+
|
635 |
+
DBRX_ATTENTION_CLASSES = {
|
636 |
+
"eager": DbrxAttention,
|
637 |
+
"flash_attention_2": DbrxFlashAttention2,
|
638 |
+
"sdpa": DbrxSdpaAttention,
|
639 |
+
}
|
640 |
+
|
641 |
+
|
642 |
+
class DbrxNormAttentionNorm(nn.Module):
|
643 |
+
def __init__(self, config: DbrxConfig, block_idx: Optional[int] = None):
|
644 |
+
super().__init__()
|
645 |
+
self.block_idx = block_idx
|
646 |
+
self.resid_pdrop = config.resid_pdrop
|
647 |
+
self.norm_1 = nn.LayerNorm(config.d_model, bias=False)
|
648 |
+
self.attn = DBRX_ATTENTION_CLASSES[config._attn_implementation](
|
649 |
+
config=config,
|
650 |
+
block_idx=block_idx,
|
651 |
+
)
|
652 |
+
self.norm_2 = nn.LayerNorm(config.d_model, bias=False)
|
653 |
+
|
654 |
+
def forward(
|
655 |
+
self,
|
656 |
+
hidden_states: torch.Tensor,
|
657 |
+
position_ids: torch.LongTensor,
|
658 |
+
attention_mask: Optional[torch.Tensor] = None,
|
659 |
+
past_key_value: Optional[Cache] = None,
|
660 |
+
output_attentions: bool = False,
|
661 |
+
use_cache: bool = False,
|
662 |
+
cache_position: Optional[torch.LongTensor] = None,
|
663 |
+
**kwargs: Any,
|
664 |
+
) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
|
665 |
+
residual_states = hidden_states
|
666 |
+
hidden_states = self.norm_1(hidden_states).to(hidden_states.dtype)
|
667 |
+
|
668 |
+
hidden_states, attn_weights, past_key_value = self.attn(
|
669 |
+
hidden_states=hidden_states,
|
670 |
+
attention_mask=attention_mask,
|
671 |
+
position_ids=position_ids,
|
672 |
+
past_key_value=past_key_value,
|
673 |
+
output_attentions=output_attentions,
|
674 |
+
use_cache=use_cache,
|
675 |
+
cache_position=cache_position,
|
676 |
+
**kwargs,
|
677 |
+
)
|
678 |
+
|
679 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.resid_pdrop, training=self.training)
|
680 |
+
hidden_states = hidden_states + residual_states
|
681 |
+
|
682 |
+
residual_states = hidden_states
|
683 |
+
hidden_states = self.norm_2(hidden_states).to(hidden_states.dtype)
|
684 |
+
|
685 |
+
return residual_states, hidden_states, attn_weights, past_key_value
|
686 |
+
|
687 |
+
|
688 |
+
class DbrxRouter(nn.Module):
|
689 |
+
def __init__(
|
690 |
+
self,
|
691 |
+
hidden_size: int,
|
692 |
+
moe_num_experts: int,
|
693 |
+
moe_top_k: int,
|
694 |
+
moe_jitter_eps: Optional[float],
|
695 |
+
moe_normalize_expert_weights: Optional[float],
|
696 |
+
):
|
697 |
+
super().__init__()
|
698 |
+
self.hidden_size = hidden_size
|
699 |
+
self.moe_num_experts = moe_num_experts
|
700 |
+
self.moe_top_k = moe_top_k
|
701 |
+
self.moe_jitter_eps = moe_jitter_eps
|
702 |
+
self.moe_normalize_expert_weights = moe_normalize_expert_weights
|
703 |
+
|
704 |
+
self.layer = nn.Linear(self.hidden_size, self.moe_num_experts, bias=False)
|
705 |
+
|
706 |
+
def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.LongTensor]:
|
707 |
+
if self.training and self.moe_jitter_eps is not None:
|
708 |
+
hidden_states *= torch.empty_like(hidden_states).uniform_(
|
709 |
+
1.0 - self.moe_jitter_eps, 1.0 + self.moe_jitter_eps
|
710 |
+
)
|
711 |
+
hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
|
712 |
+
weights = self.layer(hidden_states).softmax(dim=-1, dtype=torch.float32)
|
713 |
+
top_weights, top_experts = torch.topk(weights, self.moe_top_k, dim=-1)
|
714 |
+
|
715 |
+
top_weights_scale = (
|
716 |
+
torch.norm(top_weights, p=self.moe_normalize_expert_weights, dim=-1, keepdim=True)
|
717 |
+
if self.moe_normalize_expert_weights is not None
|
718 |
+
else 1.0
|
719 |
+
)
|
720 |
+
top_weights = top_weights / top_weights_scale
|
721 |
+
|
722 |
+
weights = weights.to(hidden_states.dtype)
|
723 |
+
top_weights = top_weights.to(hidden_states.dtype)
|
724 |
+
return weights, top_weights, top_experts
|
725 |
+
|
726 |
+
|
727 |
+
class DbrxExpertGLU(nn.Module):
|
728 |
+
def __init__(self, hidden_size: int, ffn_hidden_size: int, moe_num_experts: int, ffn_act_fn: dict):
|
729 |
+
super().__init__()
|
730 |
+
self.hidden_size = hidden_size
|
731 |
+
self.ffn_hidden_size = ffn_hidden_size
|
732 |
+
self.moe_num_experts = moe_num_experts
|
733 |
+
|
734 |
+
self.w1 = nn.Parameter(torch.empty(moe_num_experts * ffn_hidden_size, hidden_size))
|
735 |
+
self.v1 = nn.Parameter(torch.empty(moe_num_experts * ffn_hidden_size, hidden_size))
|
736 |
+
self.w2 = nn.Parameter(torch.empty(moe_num_experts * ffn_hidden_size, hidden_size))
|
737 |
+
|
738 |
+
act_fn_name = ffn_act_fn.get("name", "silu")
|
739 |
+
self.activation_fn = ACT2FN[act_fn_name]
|
740 |
+
|
741 |
+
def forward(
|
742 |
+
self, x: torch.Tensor, expert_w1: torch.Tensor, expert_v1: torch.Tensor, expert_w2: torch.Tensor
|
743 |
+
) -> torch.Tensor:
|
744 |
+
gate_proj = x.matmul(expert_w1.t())
|
745 |
+
up_proj = x.matmul(expert_v1.t())
|
746 |
+
gate_proj = self.activation_fn(gate_proj)
|
747 |
+
intermediate_states = gate_proj * up_proj
|
748 |
+
down_proj = intermediate_states.matmul(expert_w2)
|
749 |
+
return down_proj
|
750 |
+
|
751 |
+
|
752 |
+
class DbrxExperts(nn.Module):
|
753 |
+
def __init__(self, hidden_size: int, ffn_hidden_size: int, moe_num_experts: int, ffn_act_fn: dict):
|
754 |
+
super().__init__()
|
755 |
+
self.moe_num_experts = moe_num_experts
|
756 |
+
self.mlp = DbrxExpertGLU(
|
757 |
+
hidden_size=hidden_size,
|
758 |
+
ffn_hidden_size=ffn_hidden_size,
|
759 |
+
moe_num_experts=moe_num_experts,
|
760 |
+
ffn_act_fn=ffn_act_fn,
|
761 |
+
)
|
762 |
+
|
763 |
+
def forward(
|
764 |
+
self, x: torch.Tensor, weights: torch.Tensor, top_weights: torch.Tensor, top_experts: torch.LongTensor
|
765 |
+
) -> torch.Tensor:
|
766 |
+
bsz, q_len, hidden_size = x.shape
|
767 |
+
x = x.view(-1, hidden_size)
|
768 |
+
out = torch.zeros_like(x)
|
769 |
+
|
770 |
+
expert_mask = nn.functional.one_hot(top_experts, num_classes=self.moe_num_experts).permute(2, 1, 0)
|
771 |
+
# Chunk experts at once to avoid storing full parameter multiple times in autograd
|
772 |
+
w1_chunked = self.mlp.w1.view(self.mlp.moe_num_experts, self.mlp.ffn_hidden_size, self.mlp.hidden_size).chunk(
|
773 |
+
self.moe_num_experts, dim=0
|
774 |
+
)
|
775 |
+
v1_chunked = self.mlp.v1.view(self.mlp.moe_num_experts, self.mlp.ffn_hidden_size, self.mlp.hidden_size).chunk(
|
776 |
+
self.moe_num_experts, dim=0
|
777 |
+
)
|
778 |
+
w2_chunked = self.mlp.w2.view(self.mlp.moe_num_experts, self.mlp.ffn_hidden_size, self.mlp.hidden_size).chunk(
|
779 |
+
self.moe_num_experts, dim=0
|
780 |
+
)
|
781 |
+
w1_chunked = [w1.squeeze(dim=0) for w1 in w1_chunked]
|
782 |
+
v1_chunked = [v1.squeeze(dim=0) for v1 in v1_chunked]
|
783 |
+
w2_chunked = [w2.squeeze(dim=0) for w2 in w2_chunked]
|
784 |
+
for expert_idx in range(0, self.moe_num_experts):
|
785 |
+
topk_idx, token_idx = torch.where(expert_mask[expert_idx])
|
786 |
+
if token_idx.shape[0] == 0:
|
787 |
+
continue
|
788 |
+
|
789 |
+
token_list = token_idx
|
790 |
+
topk_list = topk_idx
|
791 |
+
|
792 |
+
expert_tokens = x[None, token_list].reshape(-1, hidden_size)
|
793 |
+
expert_out = (
|
794 |
+
self.mlp(expert_tokens, w1_chunked[expert_idx], v1_chunked[expert_idx], w2_chunked[expert_idx])
|
795 |
+
* top_weights[token_list, topk_list, None]
|
796 |
+
)
|
797 |
+
|
798 |
+
out.index_add_(0, token_idx, expert_out)
|
799 |
+
|
800 |
+
out = out.reshape(bsz, q_len, hidden_size)
|
801 |
+
return out
|
802 |
+
|
803 |
+
|
804 |
+
class DbrxFFN(nn.Module):
|
805 |
+
def __init__(self, config: DbrxConfig):
|
806 |
+
super().__init__()
|
807 |
+
|
808 |
+
ffn_config = config.ffn_config
|
809 |
+
self.router = DbrxRouter(
|
810 |
+
hidden_size=config.d_model,
|
811 |
+
moe_num_experts=ffn_config.moe_num_experts,
|
812 |
+
moe_top_k=ffn_config.moe_top_k,
|
813 |
+
moe_jitter_eps=ffn_config.moe_jitter_eps,
|
814 |
+
moe_normalize_expert_weights=ffn_config.moe_normalize_expert_weights,
|
815 |
+
)
|
816 |
+
|
817 |
+
self.experts = DbrxExperts(
|
818 |
+
hidden_size=config.d_model,
|
819 |
+
ffn_hidden_size=ffn_config.ffn_hidden_size,
|
820 |
+
moe_num_experts=ffn_config.moe_num_experts,
|
821 |
+
ffn_act_fn=ffn_config.ffn_act_fn,
|
822 |
+
)
|
823 |
+
|
824 |
+
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
825 |
+
weights, top_weights, top_experts = self.router(x)
|
826 |
+
out = self.experts(x, weights, top_weights, top_experts)
|
827 |
+
return out, weights
|
828 |
+
|
829 |
+
|
830 |
+
class DbrxBlock(nn.Module):
|
831 |
+
def __init__(self, config: DbrxConfig, block_idx: int):
|
832 |
+
super().__init__()
|
833 |
+
self.hidden_size = config.d_model
|
834 |
+
self.resid_pdrop = config.resid_pdrop
|
835 |
+
self.block_idx = block_idx
|
836 |
+
self.norm_attn_norm = DbrxNormAttentionNorm(
|
837 |
+
config=config,
|
838 |
+
block_idx=block_idx,
|
839 |
+
)
|
840 |
+
self.ffn = DbrxFFN(config=config)
|
841 |
+
|
842 |
+
def forward(
|
843 |
+
self,
|
844 |
+
hidden_states: torch.Tensor,
|
845 |
+
attention_mask: Optional[torch.Tensor] = None,
|
846 |
+
position_ids: torch.LongTensor = None,
|
847 |
+
past_key_value: Optional[Cache] = None,
|
848 |
+
output_attentions: Optional[bool] = False,
|
849 |
+
output_router_logits: Optional[bool] = False,
|
850 |
+
use_cache: Optional[bool] = False,
|
851 |
+
cache_position: Optional[torch.LongTensor] = None,
|
852 |
+
**kwargs: Any,
|
853 |
+
) -> Union[
|
854 |
+
Tuple[torch.Tensor],
|
855 |
+
Tuple[torch.Tensor, Optional[torch.Tensor]],
|
856 |
+
Tuple[torch.Tensor, Optional[Cache]],
|
857 |
+
Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]],
|
858 |
+
Tuple[torch.Tensor, Optional[torch.Tensor], Optional[torch.Tensor]],
|
859 |
+
Tuple[torch.Tensor, Optional[Cache], Optional[torch.Tensor]],
|
860 |
+
Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache], Optional[torch.Tensor]],
|
861 |
+
]:
|
862 |
+
"""Forward function for DbrxBlock.
|
863 |
+
|
864 |
+
Args:
|
865 |
+
hidden_states (`torch.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
866 |
+
position_ids (`torch.LongTensor`): position ids of shape `(batch, seq_len)`
|
867 |
+
attention_mask (`torch.Tensor`, optional): attention mask of size (batch_size, sequence_length)
|
868 |
+
if flash attention is used or (batch_size, 1, query_sequence_length, key_sequence_length)
|
869 |
+
if default attention is used.
|
870 |
+
past_key_value (`Tuple(torch.Tensor)`, optional): cached past key and value projection states
|
871 |
+
output_attentions (`bool`, optional): Whether or not to return the attentions tensors of all
|
872 |
+
attention layers. See `attentions` under returned tensors for more detail.
|
873 |
+
output_router_logits (`bool`, optional): Whether or not to return the router logits.
|
874 |
+
use_cache (`bool`, optional): If set to `True`, `past_key_values` key value states are
|
875 |
+
returned and can be used to speed up decoding (see `past_key_values`).
|
876 |
+
cache_position (`torch.LongTensor`, optional): position ids of the cache
|
877 |
+
"""
|
878 |
+
|
879 |
+
# Norm + Attention + Norm
|
880 |
+
resid_states, hidden_states, self_attn_weights, present_key_value = self.norm_attn_norm(
|
881 |
+
hidden_states=hidden_states,
|
882 |
+
attention_mask=attention_mask,
|
883 |
+
position_ids=position_ids,
|
884 |
+
past_key_value=past_key_value,
|
885 |
+
output_attentions=output_attentions,
|
886 |
+
use_cache=use_cache,
|
887 |
+
cache_position=cache_position,
|
888 |
+
**kwargs,
|
889 |
+
)
|
890 |
+
|
891 |
+
# Fully Connected
|
892 |
+
hidden_states, router_logits = self.ffn(hidden_states)
|
893 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.resid_pdrop, training=self.training)
|
894 |
+
hidden_states = resid_states + hidden_states
|
895 |
+
|
896 |
+
outputs = (hidden_states,)
|
897 |
+
|
898 |
+
if output_attentions:
|
899 |
+
outputs += (self_attn_weights,)
|
900 |
+
|
901 |
+
if use_cache:
|
902 |
+
outputs += (present_key_value,)
|
903 |
+
|
904 |
+
if output_router_logits:
|
905 |
+
outputs += (router_logits,)
|
906 |
+
|
907 |
+
return outputs
|
908 |
+
|
909 |
+
|
910 |
+
DBRX_START_DOCSTRING = r"""
|
911 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
912 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
913 |
+
etc.)
|
914 |
+
|
915 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
916 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
917 |
+
and behavior.
|
918 |
+
|
919 |
+
Parameters:
|
920 |
+
config ([`DbrxConfig`]):
|
921 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
922 |
+
load the weights associated with the model, only the configuration. Check out the
|
923 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
924 |
+
"""
|
925 |
+
|
926 |
+
|
927 |
+
@add_start_docstrings(
|
928 |
+
"The bare DBRX Model outputting raw hidden-states without any specific head on top.",
|
929 |
+
DBRX_START_DOCSTRING,
|
930 |
+
)
|
931 |
+
class DbrxPreTrainedModel(PreTrainedModel):
|
932 |
+
config_class = DbrxConfig
|
933 |
+
base_model_prefix = "transformer"
|
934 |
+
supports_gradient_checkpointing = True
|
935 |
+
_no_split_modules = ["DbrxBlock"]
|
936 |
+
_skip_keys_device_placement = ["past_key_values"]
|
937 |
+
_supports_flash_attn_2 = True
|
938 |
+
_supports_sdpa = True
|
939 |
+
_supports_cache_class = True
|
940 |
+
|
941 |
+
def _init_weights(self, module: nn.Module):
|
942 |
+
std = self.config.initializer_range
|
943 |
+
if isinstance(module, nn.Linear):
|
944 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
945 |
+
if module.bias is not None:
|
946 |
+
module.bias.data.zero_()
|
947 |
+
elif isinstance(module, nn.Embedding):
|
948 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
949 |
+
if module.padding_idx is not None:
|
950 |
+
module.weight.data[module.padding_idx].zero_()
|
951 |
+
elif isinstance(module, nn.LayerNorm):
|
952 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
953 |
+
if module.bias is not None:
|
954 |
+
module.bias.data.zero_()
|
955 |
+
elif isinstance(module, DbrxExpertGLU):
|
956 |
+
module.w1.data.normal_(mean=0.0, std=std)
|
957 |
+
module.v1.data.normal_(mean=0.0, std=std)
|
958 |
+
module.w2.data.normal_(mean=0.0, std=std)
|
959 |
+
|
960 |
+
def _setup_cache(self, cache_cls: Any, max_batch_size: int, max_cache_len: int):
|
961 |
+
if self.config._attn_implementation == "flash_attention_2" and cache_cls == StaticCache:
|
962 |
+
raise ValueError(
|
963 |
+
"`static` cache implementation is not compatible with "
|
964 |
+
+ "`attn_implementation==flash_attention_2`. Make sure to use "
|
965 |
+
+ "`spda` in the mean time and open an issue at https://github.com/huggingface/transformers."
|
966 |
+
)
|
967 |
+
|
968 |
+
for block in self.transformer.blocks:
|
969 |
+
device = block.norm_attn_norm.norm_1.weight.device
|
970 |
+
if hasattr(self.config, "_pre_quantization_dtype"):
|
971 |
+
dtype = self.config._pre_quantization_dtype
|
972 |
+
else:
|
973 |
+
dtype = block.norm_attn_norm.attn.out_proj.weight.dtype
|
974 |
+
block.norm_attn_norm.attn.past_key_value = cache_cls(
|
975 |
+
self.config, max_batch_size, max_cache_len, device=device, dtype=dtype
|
976 |
+
)
|
977 |
+
|
978 |
+
def _reset_cache(self):
|
979 |
+
for block in self.transformer.blocks:
|
980 |
+
block.norm_attn_norm.attn.past_key_value = None
|
981 |
+
|
982 |
+
|
983 |
+
DBRX_INPUTS_DOCSTRING = r"""
|
984 |
+
Args:
|
985 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
986 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
987 |
+
it.
|
988 |
+
|
989 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
990 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
991 |
+
|
992 |
+
[What are input IDs?](../glossary#input-ids)
|
993 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
994 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
995 |
+
|
996 |
+
- 1 for tokens that are **not masked**,
|
997 |
+
- 0 for tokens that are **masked**.
|
998 |
+
|
999 |
+
[What are attention masks?](../glossary#attention-mask)
|
1000 |
+
|
1001 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1002 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
1003 |
+
|
1004 |
+
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
1005 |
+
`past_key_values`).
|
1006 |
+
|
1007 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
1008 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
1009 |
+
information on the default strategy.
|
1010 |
+
|
1011 |
+
- 1 indicates the head is **not masked**,
|
1012 |
+
- 0 indicates the head is **masked**.
|
1013 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1014 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
1015 |
+
config.n_positions - 1]`.
|
1016 |
+
|
1017 |
+
[What are position IDs?](../glossary#position-ids)
|
1018 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
1019 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
1020 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
1021 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
1022 |
+
|
1023 |
+
Two formats are allowed:
|
1024 |
+
- a [`~cache_utils.Cache`] instance;
|
1025 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
1026 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
1027 |
+
cache format.
|
1028 |
+
|
1029 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
1030 |
+
legacy cache format will be returned.
|
1031 |
+
|
1032 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
1033 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
1034 |
+
of shape `(batch_size, sequence_length)`.
|
1035 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
1036 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
1037 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
1038 |
+
model's internal embedding lookup matrix.
|
1039 |
+
use_cache (`bool`, *optional*):
|
1040 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
1041 |
+
`past_key_values`).
|
1042 |
+
output_attentions (`bool`, *optional*):
|
1043 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
1044 |
+
tensors for more detail.
|
1045 |
+
output_hidden_states (`bool`, *optional*):
|
1046 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
1047 |
+
more detail.
|
1048 |
+
output_router_logits (`bool`, *optional*):
|
1049 |
+
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
|
1050 |
+
should not be returned during inference.
|
1051 |
+
return_dict (`bool`, *optional*):
|
1052 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
1053 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
1054 |
+
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
1055 |
+
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
1056 |
+
the complete sequence length.
|
1057 |
+
"""
|
1058 |
+
|
1059 |
+
|
1060 |
+
@add_start_docstrings(
|
1061 |
+
"The bare DBRX Model outputting raw hidden-states without any specific head on top.",
|
1062 |
+
DBRX_START_DOCSTRING,
|
1063 |
+
)
|
1064 |
+
class DbrxModel(DbrxPreTrainedModel):
|
1065 |
+
"""Transformer decoder consisting of *config.num_hidden_layers*. Each layer is a [`DbrxBlock`] layer.
|
1066 |
+
|
1067 |
+
Args:
|
1068 |
+
config ([`DbrxConfig`]): Model configuration class with all parameters of the model.
|
1069 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
1070 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
1071 |
+
"""
|
1072 |
+
|
1073 |
+
def __init__(self, config: DbrxConfig):
|
1074 |
+
super().__init__(config)
|
1075 |
+
self.padding_idx = config.pad_token_id
|
1076 |
+
self.vocab_size = config.vocab_size
|
1077 |
+
self.emb_pdrop = config.emb_pdrop
|
1078 |
+
|
1079 |
+
self.wte = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx)
|
1080 |
+
self.blocks = nn.ModuleList([DbrxBlock(config, block_idx) for block_idx in range(config.n_layers)])
|
1081 |
+
self.norm_f = nn.LayerNorm(config.d_model, bias=False)
|
1082 |
+
self.gradient_checkpointing = False
|
1083 |
+
|
1084 |
+
# Initialize weights and apply final processing
|
1085 |
+
self.post_init()
|
1086 |
+
|
1087 |
+
def get_input_embeddings(self) -> nn.Embedding:
|
1088 |
+
return self.wte
|
1089 |
+
|
1090 |
+
def set_input_embeddings(self, value: nn.Embedding):
|
1091 |
+
self.wte = value
|
1092 |
+
|
1093 |
+
@add_start_docstrings_to_model_forward(DBRX_INPUTS_DOCSTRING)
|
1094 |
+
def forward(
|
1095 |
+
self,
|
1096 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1097 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1098 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1099 |
+
past_key_values: Optional[Cache] = None,
|
1100 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1101 |
+
use_cache: Optional[bool] = None,
|
1102 |
+
output_attentions: Optional[bool] = None,
|
1103 |
+
output_hidden_states: Optional[bool] = None,
|
1104 |
+
output_router_logits: Optional[bool] = None,
|
1105 |
+
return_dict: Optional[bool] = None,
|
1106 |
+
cache_position: Optional[torch.LongTensor] = None,
|
1107 |
+
) -> Union[Tuple, MoeModelOutputWithPast]:
|
1108 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1109 |
+
output_hidden_states = (
|
1110 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1111 |
+
)
|
1112 |
+
output_router_logits = (
|
1113 |
+
output_router_logits if output_router_logits is not None else self.config.output_router_logits
|
1114 |
+
)
|
1115 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1116 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1117 |
+
|
1118 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
1119 |
+
raise ValueError(
|
1120 |
+
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
1121 |
+
)
|
1122 |
+
|
1123 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
1124 |
+
logger.warning_once(
|
1125 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
|
1126 |
+
)
|
1127 |
+
use_cache = False
|
1128 |
+
|
1129 |
+
if inputs_embeds is None:
|
1130 |
+
inputs_embeds = self.wte(input_ids)
|
1131 |
+
|
1132 |
+
inputs_embeds = nn.functional.dropout(inputs_embeds, p=self.emb_pdrop, training=self.training)
|
1133 |
+
|
1134 |
+
past_seen_tokens = 0
|
1135 |
+
if use_cache: # kept for BC (cache positions)
|
1136 |
+
if not isinstance(past_key_values, StaticCache):
|
1137 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
1138 |
+
past_seen_tokens = past_key_values.get_seq_length()
|
1139 |
+
|
1140 |
+
if cache_position is None:
|
1141 |
+
if isinstance(past_key_values, StaticCache):
|
1142 |
+
raise ValueError("cache_position is a required argument when using StaticCache.")
|
1143 |
+
cache_position = torch.arange(
|
1144 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
1145 |
+
)
|
1146 |
+
|
1147 |
+
if position_ids is None:
|
1148 |
+
position_ids = cache_position.unsqueeze(0)
|
1149 |
+
causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position)
|
1150 |
+
|
1151 |
+
# embed positions
|
1152 |
+
hidden_states = inputs_embeds
|
1153 |
+
|
1154 |
+
# decoder layers
|
1155 |
+
all_hidden_states = () if output_hidden_states else None
|
1156 |
+
all_self_attns = () if output_attentions else None
|
1157 |
+
all_router_logits = () if output_router_logits else None
|
1158 |
+
next_decoder_cache = None
|
1159 |
+
|
1160 |
+
for block in self.blocks:
|
1161 |
+
if output_hidden_states:
|
1162 |
+
all_hidden_states += (hidden_states,)
|
1163 |
+
|
1164 |
+
if self.gradient_checkpointing and self.training:
|
1165 |
+
block_outputs = self._gradient_checkpointing_func(
|
1166 |
+
block.__call__,
|
1167 |
+
hidden_states,
|
1168 |
+
causal_mask,
|
1169 |
+
position_ids,
|
1170 |
+
past_key_values,
|
1171 |
+
output_attentions,
|
1172 |
+
output_router_logits,
|
1173 |
+
use_cache,
|
1174 |
+
cache_position,
|
1175 |
+
)
|
1176 |
+
else:
|
1177 |
+
block_outputs = block(
|
1178 |
+
hidden_states,
|
1179 |
+
attention_mask=causal_mask,
|
1180 |
+
position_ids=position_ids,
|
1181 |
+
past_key_value=past_key_values,
|
1182 |
+
output_attentions=output_attentions,
|
1183 |
+
output_router_logits=output_router_logits,
|
1184 |
+
use_cache=use_cache,
|
1185 |
+
cache_position=cache_position,
|
1186 |
+
)
|
1187 |
+
|
1188 |
+
hidden_states = block_outputs[0]
|
1189 |
+
|
1190 |
+
if use_cache:
|
1191 |
+
next_decoder_cache = block_outputs[2 if output_attentions else 1]
|
1192 |
+
|
1193 |
+
if output_attentions:
|
1194 |
+
all_self_attns += (block_outputs[1],)
|
1195 |
+
|
1196 |
+
if output_router_logits:
|
1197 |
+
all_router_logits += (block_outputs[-1],)
|
1198 |
+
|
1199 |
+
hidden_states = self.norm_f(hidden_states)
|
1200 |
+
|
1201 |
+
# add hidden states from the last decoder layer
|
1202 |
+
if output_hidden_states:
|
1203 |
+
all_hidden_states += (hidden_states,)
|
1204 |
+
|
1205 |
+
next_cache = None
|
1206 |
+
if use_cache:
|
1207 |
+
next_cache = (
|
1208 |
+
next_decoder_cache.to_legacy_cache() if isinstance(next_decoder_cache, Cache) else next_decoder_cache
|
1209 |
+
)
|
1210 |
+
if not return_dict:
|
1211 |
+
return tuple(
|
1212 |
+
v
|
1213 |
+
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_router_logits]
|
1214 |
+
if v is not None
|
1215 |
+
)
|
1216 |
+
return MoeModelOutputWithPast(
|
1217 |
+
last_hidden_state=hidden_states,
|
1218 |
+
past_key_values=next_cache,
|
1219 |
+
hidden_states=all_hidden_states,
|
1220 |
+
attentions=all_self_attns,
|
1221 |
+
router_logits=all_router_logits,
|
1222 |
+
)
|
1223 |
+
|
1224 |
+
# TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
|
1225 |
+
# KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
|
1226 |
+
# (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
|
1227 |
+
# `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
|
1228 |
+
def _update_causal_mask(
|
1229 |
+
self, attention_mask: Optional[torch.Tensor], input_tensor: torch.Tensor, cache_position: torch.Tensor
|
1230 |
+
) -> Optional[torch.Tensor]:
|
1231 |
+
if self.config._attn_implementation == "flash_attention_2":
|
1232 |
+
if attention_mask is not None and 0.0 in attention_mask:
|
1233 |
+
return attention_mask
|
1234 |
+
return None
|
1235 |
+
|
1236 |
+
dtype, device = input_tensor.dtype, input_tensor.device
|
1237 |
+
min_dtype = torch.finfo(dtype).min
|
1238 |
+
sequence_length = input_tensor.shape[1]
|
1239 |
+
if hasattr(self.blocks[0].norm_attn_norm.attn, "past_key_value"): # static cache
|
1240 |
+
target_length = self.config.max_position_embeddings
|
1241 |
+
else: # dynamic cache
|
1242 |
+
target_length = (
|
1243 |
+
attention_mask.shape[-1] if isinstance(attention_mask, torch.Tensor) else cache_position[-1] + 1
|
1244 |
+
)
|
1245 |
+
target_length = int(target_length)
|
1246 |
+
|
1247 |
+
causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
|
1248 |
+
if sequence_length != 1:
|
1249 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
1250 |
+
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
1251 |
+
causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
|
1252 |
+
if attention_mask is not None:
|
1253 |
+
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
1254 |
+
if attention_mask.dim() == 2:
|
1255 |
+
mask_length = attention_mask.shape[-1]
|
1256 |
+
padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[:, None, None, :].eq(0.0)
|
1257 |
+
causal_mask[..., :mask_length] = causal_mask[..., :mask_length].masked_fill(padding_mask, min_dtype)
|
1258 |
+
elif attention_mask.dim() == 4:
|
1259 |
+
# backwards compatibility: we allow passing a 4D attention mask shorter than the input length with
|
1260 |
+
# cache. In that case, the 4D attention mask attends to the newest tokens only.
|
1261 |
+
if attention_mask.shape[-2] < cache_position[0] + sequence_length:
|
1262 |
+
offset = cache_position[0]
|
1263 |
+
else:
|
1264 |
+
offset = 0
|
1265 |
+
mask_shape = attention_mask.shape
|
1266 |
+
mask_slice = (attention_mask.eq(0.0)).to(dtype=dtype) * min_dtype
|
1267 |
+
causal_mask[
|
1268 |
+
: mask_shape[0], : mask_shape[1], offset : mask_shape[2] + offset, : mask_shape[3]
|
1269 |
+
] = mask_slice
|
1270 |
+
|
1271 |
+
if (
|
1272 |
+
self.config._attn_implementation == "sdpa"
|
1273 |
+
and attention_mask is not None
|
1274 |
+
and attention_mask.device.type == "cuda"
|
1275 |
+
):
|
1276 |
+
# TODO: For dynamo, rather use a check on fullgraph=True once this is possible (https://github.com/pytorch/pytorch/pull/120400).
|
1277 |
+
is_tracing = (
|
1278 |
+
torch.jit.is_tracing()
|
1279 |
+
or isinstance(input_tensor, torch.fx.Proxy)
|
1280 |
+
or (hasattr(torch, "_dynamo") and torch._dynamo.is_compiling())
|
1281 |
+
)
|
1282 |
+
if not is_tracing and torch.any(attention_mask != 1):
|
1283 |
+
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
1284 |
+
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
1285 |
+
# Details: https://github.com/pytorch/pytorch/issues/110213
|
1286 |
+
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
1287 |
+
|
1288 |
+
return causal_mask
|
1289 |
+
|
1290 |
+
|
1291 |
+
@add_start_docstrings("The DBRX Model transformer for causal language modeling.", DBRX_START_DOCSTRING)
|
1292 |
+
class DbrxForCausalLM(DbrxPreTrainedModel):
|
1293 |
+
def __init__(self, config: DbrxConfig):
|
1294 |
+
super().__init__(config)
|
1295 |
+
self.transformer = DbrxModel(config)
|
1296 |
+
self.vocab_size = config.vocab_size
|
1297 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1298 |
+
self.moe_loss_weight = config.ffn_config.moe_loss_weight
|
1299 |
+
self.num_experts = config.ffn_config.moe_num_experts
|
1300 |
+
self.num_experts_per_tok = config.ffn_config.moe_top_k
|
1301 |
+
|
1302 |
+
# Initialize weights and apply final processing
|
1303 |
+
self.post_init()
|
1304 |
+
|
1305 |
+
def get_input_embeddings(self) -> nn.Embedding:
|
1306 |
+
return self.transformer.get_input_embeddings()
|
1307 |
+
|
1308 |
+
def set_input_embeddings(self, value: nn.Embedding):
|
1309 |
+
self.transformer.set_input_embeddings(value)
|
1310 |
+
|
1311 |
+
def get_output_embeddings(self) -> nn.Linear:
|
1312 |
+
return self.lm_head
|
1313 |
+
|
1314 |
+
def set_output_embeddings(self, new_embeddings: nn.Linear):
|
1315 |
+
self.lm_head = new_embeddings
|
1316 |
+
|
1317 |
+
def set_decoder(self, decoder: DbrxModel):
|
1318 |
+
self.transformer = decoder
|
1319 |
+
|
1320 |
+
def get_decoder(self) -> DbrxModel:
|
1321 |
+
return self.transformer
|
1322 |
+
|
1323 |
+
@add_start_docstrings_to_model_forward(DBRX_INPUTS_DOCSTRING)
|
1324 |
+
@replace_return_docstrings(output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1325 |
+
def forward(
|
1326 |
+
self,
|
1327 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1328 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1329 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1330 |
+
past_key_values: Optional[Cache] = None,
|
1331 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1332 |
+
labels: Optional[torch.LongTensor] = None,
|
1333 |
+
use_cache: Optional[bool] = None,
|
1334 |
+
output_attentions: Optional[bool] = None,
|
1335 |
+
output_hidden_states: Optional[bool] = None,
|
1336 |
+
output_router_logits: Optional[bool] = None,
|
1337 |
+
return_dict: Optional[bool] = None,
|
1338 |
+
cache_position: Optional[torch.LongTensor] = None,
|
1339 |
+
) -> Union[Tuple, MoeCausalLMOutputWithPast]:
|
1340 |
+
r"""Forward function for causal language modeling.
|
1341 |
+
|
1342 |
+
Args:
|
1343 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1344 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1345 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1346 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1347 |
+
|
1348 |
+
Returns:
|
1349 |
+
|
1350 |
+
Example:
|
1351 |
+
|
1352 |
+
```python
|
1353 |
+
>> from transformers import AutoTokenizer, DbrxForCausalLM
|
1354 |
+
|
1355 |
+
>> model = DbrxForCausalLM.from_pretrained("databricks/dbrx-instruct")
|
1356 |
+
>> tokenizer = AutoTokenizer.from_pretrained("databricks/dbrx-instruct")
|
1357 |
+
|
1358 |
+
>> prompt = "Hey, are you conscious? Can you talk to me?"
|
1359 |
+
>> inputs = tokenizer(prompt, return_tensors="pt")
|
1360 |
+
|
1361 |
+
>> # Generate
|
1362 |
+
>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1363 |
+
>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1364 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
1365 |
+
```
|
1366 |
+
"""
|
1367 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1368 |
+
output_hidden_states = (
|
1369 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1370 |
+
)
|
1371 |
+
output_router_logits = (
|
1372 |
+
output_router_logits if output_router_logits is not None else self.config.output_router_logits
|
1373 |
+
)
|
1374 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1375 |
+
|
1376 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1377 |
+
outputs = self.transformer(
|
1378 |
+
input_ids=input_ids,
|
1379 |
+
attention_mask=attention_mask,
|
1380 |
+
position_ids=position_ids,
|
1381 |
+
past_key_values=past_key_values,
|
1382 |
+
inputs_embeds=inputs_embeds,
|
1383 |
+
use_cache=use_cache,
|
1384 |
+
output_attentions=output_attentions,
|
1385 |
+
output_hidden_states=output_hidden_states,
|
1386 |
+
output_router_logits=output_router_logits,
|
1387 |
+
return_dict=return_dict,
|
1388 |
+
cache_position=cache_position,
|
1389 |
+
)
|
1390 |
+
|
1391 |
+
hidden_states = outputs[0]
|
1392 |
+
logits = self.lm_head(hidden_states)
|
1393 |
+
|
1394 |
+
loss = None
|
1395 |
+
if labels is not None:
|
1396 |
+
# Shift so that tokens < n predict n
|
1397 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1398 |
+
shift_labels = labels[..., 1:].contiguous()
|
1399 |
+
# Flatten the tokens
|
1400 |
+
loss_fct = nn.CrossEntropyLoss()
|
1401 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1402 |
+
shift_labels = shift_labels.view(-1)
|
1403 |
+
# Enable model parallelism
|
1404 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1405 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1406 |
+
|
1407 |
+
aux_loss = None
|
1408 |
+
if output_router_logits:
|
1409 |
+
aux_loss = load_balancing_loss_func(
|
1410 |
+
outputs.router_logits if return_dict else outputs[-1],
|
1411 |
+
self.num_experts,
|
1412 |
+
self.num_experts_per_tok,
|
1413 |
+
attention_mask,
|
1414 |
+
)
|
1415 |
+
if labels is not None and loss is not None:
|
1416 |
+
loss += self.moe_loss_weight * aux_loss.to(loss.device) # make sure to reside in the same device
|
1417 |
+
|
1418 |
+
if not return_dict:
|
1419 |
+
output = (logits,) + outputs[1:]
|
1420 |
+
if output_router_logits:
|
1421 |
+
output = (aux_loss,) + output
|
1422 |
+
return (loss,) + output if loss is not None else output
|
1423 |
+
|
1424 |
+
return MoeCausalLMOutputWithPast(
|
1425 |
+
loss=loss,
|
1426 |
+
aux_loss=aux_loss,
|
1427 |
+
logits=logits,
|
1428 |
+
past_key_values=outputs.past_key_values,
|
1429 |
+
hidden_states=outputs.hidden_states,
|
1430 |
+
attentions=outputs.attentions,
|
1431 |
+
router_logits=outputs.router_logits,
|
1432 |
+
)
|
1433 |
+
|
1434 |
+
def prepare_inputs_for_generation(
|
1435 |
+
self,
|
1436 |
+
input_ids: torch.Tensor,
|
1437 |
+
past_key_values: Optional[Cache] = None,
|
1438 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1439 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1440 |
+
**kwargs: Any,
|
1441 |
+
) -> Dict[str, Any]:
|
1442 |
+
past_length = 0
|
1443 |
+
if past_key_values is not None:
|
1444 |
+
if isinstance(past_key_values, Cache):
|
1445 |
+
cache_length = past_key_values.get_seq_length()
|
1446 |
+
past_length = past_key_values.seen_tokens
|
1447 |
+
max_cache_length = past_key_values.get_max_length()
|
1448 |
+
else:
|
1449 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
1450 |
+
max_cache_length = None
|
1451 |
+
|
1452 |
+
# Keep only the unprocessed tokens:
|
1453 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
1454 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
1455 |
+
# input)
|
1456 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
1457 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
1458 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
1459 |
+
# input_ids based on the past_length.
|
1460 |
+
elif past_length < input_ids.shape[1]:
|
1461 |
+
input_ids = input_ids[:, past_length:]
|
1462 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
1463 |
+
|
1464 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
1465 |
+
if (
|
1466 |
+
max_cache_length is not None
|
1467 |
+
and attention_mask is not None
|
1468 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
1469 |
+
):
|
1470 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
1471 |
+
|
1472 |
+
position_ids = kwargs.get("position_ids", None)
|
1473 |
+
if attention_mask is not None and position_ids is None:
|
1474 |
+
# create position_ids on the fly for batch generation
|
1475 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1476 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1477 |
+
if past_key_values:
|
1478 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1479 |
+
|
1480 |
+
if self.generation_config.cache_implementation == "static":
|
1481 |
+
# generation with static cache
|
1482 |
+
cache_position = kwargs.get("cache_position", None)
|
1483 |
+
if cache_position is None:
|
1484 |
+
past_length = 0
|
1485 |
+
else:
|
1486 |
+
past_length = cache_position[-1] + 1
|
1487 |
+
input_ids = input_ids[:, past_length:]
|
1488 |
+
position_ids = position_ids[:, past_length:] if position_ids is not None else None
|
1489 |
+
|
1490 |
+
# TODO @gante we should only keep a `cache_position` in generate, and do +=1.
|
1491 |
+
# same goes for position ids. Could also help with continued generation.
|
1492 |
+
input_length = position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1]
|
1493 |
+
cache_position = torch.arange(past_length, past_length + input_length, device=input_ids.device)
|
1494 |
+
position_ids = position_ids.contiguous() if position_ids is not None else None
|
1495 |
+
|
1496 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1497 |
+
if inputs_embeds is not None and past_key_values is None:
|
1498 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
1499 |
+
else:
|
1500 |
+
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
|
1501 |
+
# recompiles graphs as the stride of the inputs is a guard. Ref: https://github.com/huggingface/transformers/pull/29114
|
1502 |
+
# TODO: use `next_tokens` directly instead.
|
1503 |
+
model_inputs = {"input_ids": input_ids.contiguous()}
|
1504 |
+
|
1505 |
+
model_inputs.update(
|
1506 |
+
{
|
1507 |
+
"position_ids": position_ids,
|
1508 |
+
"cache_position": cache_position,
|
1509 |
+
"past_key_values": past_key_values,
|
1510 |
+
"use_cache": kwargs.get("use_cache"),
|
1511 |
+
"attention_mask": attention_mask,
|
1512 |
+
}
|
1513 |
+
)
|
1514 |
+
return model_inputs
|
1515 |
+
|
1516 |
+
@staticmethod
|
1517 |
+
def _reorder_cache(past_key_values: Cache, beam_idx: torch.LongTensor):
|
1518 |
+
reordered_past = ()
|
1519 |
+
for layer_past in past_key_values:
|
1520 |
+
reordered_past += (
|
1521 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
1522 |
+
)
|
1523 |
+
return reordered_past
|
venv/lib/python3.10/site-packages/transformers/models/esm/__init__.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 Facebook and The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
|
17 |
+
|
18 |
+
|
19 |
+
_import_structure = {
|
20 |
+
"configuration_esm": ["ESM_PRETRAINED_CONFIG_ARCHIVE_MAP", "EsmConfig"],
|
21 |
+
"tokenization_esm": ["EsmTokenizer"],
|
22 |
+
}
|
23 |
+
|
24 |
+
try:
|
25 |
+
if not is_torch_available():
|
26 |
+
raise OptionalDependencyNotAvailable()
|
27 |
+
except OptionalDependencyNotAvailable:
|
28 |
+
pass
|
29 |
+
else:
|
30 |
+
_import_structure["modeling_esm"] = [
|
31 |
+
"ESM_PRETRAINED_MODEL_ARCHIVE_LIST",
|
32 |
+
"EsmForMaskedLM",
|
33 |
+
"EsmForSequenceClassification",
|
34 |
+
"EsmForTokenClassification",
|
35 |
+
"EsmModel",
|
36 |
+
"EsmPreTrainedModel",
|
37 |
+
]
|
38 |
+
_import_structure["modeling_esmfold"] = ["EsmForProteinFolding", "EsmFoldPreTrainedModel"]
|
39 |
+
|
40 |
+
try:
|
41 |
+
if not is_tf_available():
|
42 |
+
raise OptionalDependencyNotAvailable()
|
43 |
+
except OptionalDependencyNotAvailable:
|
44 |
+
pass
|
45 |
+
else:
|
46 |
+
_import_structure["modeling_tf_esm"] = [
|
47 |
+
"TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST",
|
48 |
+
"TFEsmForMaskedLM",
|
49 |
+
"TFEsmForSequenceClassification",
|
50 |
+
"TFEsmForTokenClassification",
|
51 |
+
"TFEsmModel",
|
52 |
+
"TFEsmPreTrainedModel",
|
53 |
+
]
|
54 |
+
|
55 |
+
if TYPE_CHECKING:
|
56 |
+
from .configuration_esm import ESM_PRETRAINED_CONFIG_ARCHIVE_MAP, EsmConfig
|
57 |
+
from .tokenization_esm import EsmTokenizer
|
58 |
+
|
59 |
+
try:
|
60 |
+
if not is_torch_available():
|
61 |
+
raise OptionalDependencyNotAvailable()
|
62 |
+
except OptionalDependencyNotAvailable:
|
63 |
+
pass
|
64 |
+
else:
|
65 |
+
from .modeling_esm import (
|
66 |
+
ESM_PRETRAINED_MODEL_ARCHIVE_LIST,
|
67 |
+
EsmForMaskedLM,
|
68 |
+
EsmForSequenceClassification,
|
69 |
+
EsmForTokenClassification,
|
70 |
+
EsmModel,
|
71 |
+
EsmPreTrainedModel,
|
72 |
+
)
|
73 |
+
from .modeling_esmfold import EsmFoldPreTrainedModel, EsmForProteinFolding
|
74 |
+
|
75 |
+
try:
|
76 |
+
if not is_tf_available():
|
77 |
+
raise OptionalDependencyNotAvailable()
|
78 |
+
except OptionalDependencyNotAvailable:
|
79 |
+
pass
|
80 |
+
else:
|
81 |
+
from .modeling_tf_esm import (
|
82 |
+
TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST,
|
83 |
+
TFEsmForMaskedLM,
|
84 |
+
TFEsmForSequenceClassification,
|
85 |
+
TFEsmForTokenClassification,
|
86 |
+
TFEsmModel,
|
87 |
+
TFEsmPreTrainedModel,
|
88 |
+
)
|
89 |
+
|
90 |
+
|
91 |
+
else:
|
92 |
+
import sys
|
93 |
+
|
94 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
|
venv/lib/python3.10/site-packages/transformers/models/esm/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.5 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/esm/__pycache__/configuration_esm.cpython-310.pyc
ADDED
Binary file (12.3 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/esm/__pycache__/convert_esm.cpython-310.pyc
ADDED
Binary file (9.73 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/esm/__pycache__/modeling_esm.cpython-310.pyc
ADDED
Binary file (36 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/esm/__pycache__/modeling_esmfold.cpython-310.pyc
ADDED
Binary file (66.1 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/esm/__pycache__/modeling_tf_esm.cpython-310.pyc
ADDED
Binary file (43.7 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/esm/__pycache__/tokenization_esm.cpython-310.pyc
ADDED
Binary file (5.36 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/esm/configuration_esm.py
ADDED
@@ -0,0 +1,361 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 Meta and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" ESM model configuration"""
|
16 |
+
|
17 |
+
from dataclasses import asdict, dataclass
|
18 |
+
from typing import Optional
|
19 |
+
|
20 |
+
from ...configuration_utils import PretrainedConfig
|
21 |
+
from ...utils import logging
|
22 |
+
|
23 |
+
|
24 |
+
logger = logging.get_logger(__name__)
|
25 |
+
|
26 |
+
# TODO Update this
|
27 |
+
|
28 |
+
from ..deprecated._archive_maps import ESM_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
29 |
+
|
30 |
+
|
31 |
+
class EsmConfig(PretrainedConfig):
|
32 |
+
r"""
|
33 |
+
This is the configuration class to store the configuration of a [`ESMModel`]. It is used to instantiate a ESM model
|
34 |
+
according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
35 |
+
defaults will yield a similar configuration to that of the ESM
|
36 |
+
[facebook/esm-1b](https://huggingface.co/facebook/esm-1b) architecture.
|
37 |
+
|
38 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
39 |
+
documentation from [`PretrainedConfig`] for more information.
|
40 |
+
|
41 |
+
|
42 |
+
Args:
|
43 |
+
vocab_size (`int`, *optional*):
|
44 |
+
Vocabulary size of the ESM model. Defines the number of different tokens that can be represented by the
|
45 |
+
`inputs_ids` passed when calling [`ESMModel`].
|
46 |
+
mask_token_id (`int`, *optional*):
|
47 |
+
The index of the mask token in the vocabulary. This must be included in the config because of the
|
48 |
+
"mask-dropout" scaling trick, which will scale the inputs depending on the number of masked tokens.
|
49 |
+
pad_token_id (`int`, *optional*):
|
50 |
+
The index of the padding token in the vocabulary. This must be included in the config because certain parts
|
51 |
+
of the ESM code use this instead of the attention mask.
|
52 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
53 |
+
Dimensionality of the encoder layers and the pooler layer.
|
54 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
55 |
+
Number of hidden layers in the Transformer encoder.
|
56 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
57 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
58 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
59 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
|
60 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
61 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
62 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
|
63 |
+
The dropout ratio for the attention probabilities.
|
64 |
+
max_position_embeddings (`int`, *optional*, defaults to 1026):
|
65 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
66 |
+
just in case (e.g., 512 or 1024 or 2048).
|
67 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
68 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
69 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
70 |
+
The epsilon used by the layer normalization layers.
|
71 |
+
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
|
72 |
+
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query", "rotary"`.
|
73 |
+
For positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
|
74 |
+
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
|
75 |
+
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
|
76 |
+
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
|
77 |
+
is_decoder (`bool`, *optional*, defaults to `False`):
|
78 |
+
Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
|
79 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
80 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
81 |
+
relevant if `config.is_decoder=True`.
|
82 |
+
emb_layer_norm_before (`bool`, *optional*):
|
83 |
+
Whether to apply layer normalization after embeddings but before the main stem of the network.
|
84 |
+
token_dropout (`bool`, defaults to `False`):
|
85 |
+
When this is enabled, masked tokens are treated as if they had been dropped out by input dropout.
|
86 |
+
|
87 |
+
Examples:
|
88 |
+
|
89 |
+
```python
|
90 |
+
>>> from transformers import EsmModel, EsmConfig
|
91 |
+
|
92 |
+
>>> # Initializing a ESM facebook/esm-1b style configuration >>> configuration = EsmConfig()
|
93 |
+
|
94 |
+
>>> # Initializing a model from the configuration >>> model = ESMModel(configuration)
|
95 |
+
|
96 |
+
>>> # Accessing the model configuration >>> configuration = model.config
|
97 |
+
```"""
|
98 |
+
|
99 |
+
model_type = "esm"
|
100 |
+
|
101 |
+
def __init__(
|
102 |
+
self,
|
103 |
+
vocab_size=None,
|
104 |
+
mask_token_id=None,
|
105 |
+
pad_token_id=None,
|
106 |
+
hidden_size=768,
|
107 |
+
num_hidden_layers=12,
|
108 |
+
num_attention_heads=12,
|
109 |
+
intermediate_size=3072,
|
110 |
+
hidden_dropout_prob=0.1,
|
111 |
+
attention_probs_dropout_prob=0.1,
|
112 |
+
max_position_embeddings=1026,
|
113 |
+
initializer_range=0.02,
|
114 |
+
layer_norm_eps=1e-12,
|
115 |
+
position_embedding_type="absolute",
|
116 |
+
use_cache=True,
|
117 |
+
emb_layer_norm_before=None,
|
118 |
+
token_dropout=False,
|
119 |
+
is_folding_model=False,
|
120 |
+
esmfold_config=None,
|
121 |
+
vocab_list=None,
|
122 |
+
**kwargs,
|
123 |
+
):
|
124 |
+
super().__init__(pad_token_id=pad_token_id, mask_token_id=mask_token_id, **kwargs)
|
125 |
+
|
126 |
+
self.vocab_size = vocab_size
|
127 |
+
self.hidden_size = hidden_size
|
128 |
+
self.num_hidden_layers = num_hidden_layers
|
129 |
+
self.num_attention_heads = num_attention_heads
|
130 |
+
self.intermediate_size = intermediate_size
|
131 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
132 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
133 |
+
self.max_position_embeddings = max_position_embeddings
|
134 |
+
self.initializer_range = initializer_range
|
135 |
+
self.layer_norm_eps = layer_norm_eps
|
136 |
+
self.position_embedding_type = position_embedding_type
|
137 |
+
self.use_cache = use_cache
|
138 |
+
self.emb_layer_norm_before = emb_layer_norm_before
|
139 |
+
self.token_dropout = token_dropout
|
140 |
+
self.is_folding_model = is_folding_model
|
141 |
+
if is_folding_model:
|
142 |
+
if esmfold_config is None:
|
143 |
+
logger.info("No esmfold_config supplied for folding model, using default values.")
|
144 |
+
esmfold_config = EsmFoldConfig()
|
145 |
+
elif isinstance(esmfold_config, dict):
|
146 |
+
esmfold_config = EsmFoldConfig(**esmfold_config)
|
147 |
+
self.esmfold_config = esmfold_config
|
148 |
+
if vocab_list is None:
|
149 |
+
logger.warning("No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!")
|
150 |
+
self.vocab_list = get_default_vocab_list()
|
151 |
+
else:
|
152 |
+
self.vocab_list = vocab_list
|
153 |
+
else:
|
154 |
+
self.esmfold_config = None
|
155 |
+
self.vocab_list = None
|
156 |
+
if self.esmfold_config is not None and getattr(self.esmfold_config, "use_esm_attn_map", False):
|
157 |
+
raise ValueError("The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!")
|
158 |
+
|
159 |
+
def to_dict(self):
|
160 |
+
"""
|
161 |
+
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
|
162 |
+
|
163 |
+
Returns:
|
164 |
+
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
|
165 |
+
"""
|
166 |
+
output = super().to_dict()
|
167 |
+
if isinstance(self.esmfold_config, EsmFoldConfig):
|
168 |
+
output["esmfold_config"] = self.esmfold_config.to_dict()
|
169 |
+
return output
|
170 |
+
|
171 |
+
|
172 |
+
@dataclass
|
173 |
+
class EsmFoldConfig:
|
174 |
+
esm_type: str = None
|
175 |
+
fp16_esm: bool = True
|
176 |
+
use_esm_attn_map: bool = False
|
177 |
+
esm_ablate_pairwise: bool = False
|
178 |
+
esm_ablate_sequence: bool = False
|
179 |
+
esm_input_dropout: float = 0
|
180 |
+
|
181 |
+
embed_aa: bool = True
|
182 |
+
bypass_lm: bool = False
|
183 |
+
|
184 |
+
lddt_head_hid_dim: int = 128
|
185 |
+
trunk: "TrunkConfig" = None
|
186 |
+
|
187 |
+
def __post_init__(self):
|
188 |
+
if self.trunk is None:
|
189 |
+
self.trunk = TrunkConfig()
|
190 |
+
elif isinstance(self.trunk, dict):
|
191 |
+
self.trunk = TrunkConfig(**self.trunk)
|
192 |
+
|
193 |
+
def to_dict(self):
|
194 |
+
"""
|
195 |
+
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
|
196 |
+
|
197 |
+
Returns:
|
198 |
+
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
|
199 |
+
"""
|
200 |
+
output = asdict(self)
|
201 |
+
output["trunk"] = self.trunk.to_dict()
|
202 |
+
return output
|
203 |
+
|
204 |
+
|
205 |
+
@dataclass
|
206 |
+
class TrunkConfig:
|
207 |
+
num_blocks: int = 48
|
208 |
+
sequence_state_dim: int = 1024
|
209 |
+
pairwise_state_dim: int = 128
|
210 |
+
sequence_head_width: int = 32
|
211 |
+
pairwise_head_width: int = 32
|
212 |
+
position_bins: int = 32
|
213 |
+
dropout: float = 0
|
214 |
+
layer_drop: float = 0
|
215 |
+
cpu_grad_checkpoint: bool = False
|
216 |
+
max_recycles: int = 4
|
217 |
+
chunk_size: Optional[int] = 128
|
218 |
+
structure_module: "StructureModuleConfig" = None
|
219 |
+
|
220 |
+
def __post_init__(self):
|
221 |
+
if self.structure_module is None:
|
222 |
+
self.structure_module = StructureModuleConfig()
|
223 |
+
elif isinstance(self.structure_module, dict):
|
224 |
+
self.structure_module = StructureModuleConfig(**self.structure_module)
|
225 |
+
|
226 |
+
if self.max_recycles <= 0:
|
227 |
+
raise ValueError(f"`max_recycles` should be positive, got {self.max_recycles}.")
|
228 |
+
if self.sequence_state_dim % self.sequence_state_dim != 0:
|
229 |
+
raise ValueError(
|
230 |
+
"`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got"
|
231 |
+
f" {self.sequence_state_dim} and {self.sequence_state_dim}."
|
232 |
+
)
|
233 |
+
if self.pairwise_state_dim % self.pairwise_state_dim != 0:
|
234 |
+
raise ValueError(
|
235 |
+
"`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got"
|
236 |
+
f" {self.pairwise_state_dim} and {self.pairwise_state_dim}."
|
237 |
+
)
|
238 |
+
|
239 |
+
sequence_num_heads = self.sequence_state_dim // self.sequence_head_width
|
240 |
+
pairwise_num_heads = self.pairwise_state_dim // self.pairwise_head_width
|
241 |
+
|
242 |
+
if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width:
|
243 |
+
raise ValueError(
|
244 |
+
"`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got"
|
245 |
+
f" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}."
|
246 |
+
)
|
247 |
+
if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width:
|
248 |
+
raise ValueError(
|
249 |
+
"`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got"
|
250 |
+
f" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}."
|
251 |
+
)
|
252 |
+
if self.pairwise_state_dim % 2 != 0:
|
253 |
+
raise ValueError(f"`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.")
|
254 |
+
|
255 |
+
if self.dropout >= 0.4:
|
256 |
+
raise ValueError(f"`dropout` should not be greater than 0.4, got {self.dropout}.")
|
257 |
+
|
258 |
+
def to_dict(self):
|
259 |
+
"""
|
260 |
+
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
|
261 |
+
|
262 |
+
Returns:
|
263 |
+
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
|
264 |
+
"""
|
265 |
+
output = asdict(self)
|
266 |
+
output["structure_module"] = self.structure_module.to_dict()
|
267 |
+
return output
|
268 |
+
|
269 |
+
|
270 |
+
@dataclass
|
271 |
+
class StructureModuleConfig:
|
272 |
+
"""
|
273 |
+
Args:
|
274 |
+
sequence_dim:
|
275 |
+
Single representation channel dimension
|
276 |
+
pairwise_dim:
|
277 |
+
Pair representation channel dimension
|
278 |
+
ipa_dim:
|
279 |
+
IPA hidden channel dimension
|
280 |
+
resnet_dim:
|
281 |
+
Angle resnet (Alg. 23 lines 11-14) hidden channel dimension
|
282 |
+
num_heads_ipa:
|
283 |
+
Number of IPA heads
|
284 |
+
num_qk_points:
|
285 |
+
Number of query/key points to generate during IPA
|
286 |
+
num_v_points:
|
287 |
+
Number of value points to generate during IPA
|
288 |
+
dropout_rate:
|
289 |
+
Dropout rate used throughout the layer
|
290 |
+
num_blocks:
|
291 |
+
Number of structure module blocks
|
292 |
+
num_transition_layers:
|
293 |
+
Number of layers in the single representation transition (Alg. 23 lines 8-9)
|
294 |
+
num_resnet_blocks:
|
295 |
+
Number of blocks in the angle resnet
|
296 |
+
num_angles:
|
297 |
+
Number of angles to generate in the angle resnet
|
298 |
+
trans_scale_factor:
|
299 |
+
Scale of single representation transition hidden dimension
|
300 |
+
epsilon:
|
301 |
+
Small number used in angle resnet normalization
|
302 |
+
inf:
|
303 |
+
Large number used for attention masking
|
304 |
+
"""
|
305 |
+
|
306 |
+
sequence_dim: int = 384
|
307 |
+
pairwise_dim: int = 128
|
308 |
+
ipa_dim: int = 16
|
309 |
+
resnet_dim: int = 128
|
310 |
+
num_heads_ipa: int = 12
|
311 |
+
num_qk_points: int = 4
|
312 |
+
num_v_points: int = 8
|
313 |
+
dropout_rate: float = 0.1
|
314 |
+
num_blocks: int = 8
|
315 |
+
num_transition_layers: int = 1
|
316 |
+
num_resnet_blocks: int = 2
|
317 |
+
num_angles: int = 7
|
318 |
+
trans_scale_factor: int = 10
|
319 |
+
epsilon: float = 1e-8
|
320 |
+
inf: float = 1e5
|
321 |
+
|
322 |
+
def to_dict(self):
|
323 |
+
return asdict(self)
|
324 |
+
|
325 |
+
|
326 |
+
def get_default_vocab_list():
|
327 |
+
return (
|
328 |
+
"<cls>",
|
329 |
+
"<pad>",
|
330 |
+
"<eos>",
|
331 |
+
"<unk>",
|
332 |
+
"L",
|
333 |
+
"A",
|
334 |
+
"G",
|
335 |
+
"V",
|
336 |
+
"S",
|
337 |
+
"E",
|
338 |
+
"R",
|
339 |
+
"T",
|
340 |
+
"I",
|
341 |
+
"D",
|
342 |
+
"P",
|
343 |
+
"K",
|
344 |
+
"Q",
|
345 |
+
"N",
|
346 |
+
"F",
|
347 |
+
"Y",
|
348 |
+
"M",
|
349 |
+
"H",
|
350 |
+
"W",
|
351 |
+
"C",
|
352 |
+
"X",
|
353 |
+
"B",
|
354 |
+
"U",
|
355 |
+
"Z",
|
356 |
+
"O",
|
357 |
+
".",
|
358 |
+
"-",
|
359 |
+
"<null_1>",
|
360 |
+
"<mask>",
|
361 |
+
)
|
venv/lib/python3.10/site-packages/transformers/models/esm/convert_esm.py
ADDED
@@ -0,0 +1,400 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Convert ESM checkpoint."""
|
16 |
+
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import pathlib
|
20 |
+
from pathlib import Path
|
21 |
+
from tempfile import TemporaryDirectory
|
22 |
+
|
23 |
+
import esm as esm_module
|
24 |
+
import torch
|
25 |
+
from esm.esmfold.v1.misc import batch_encode_sequences as esmfold_encode_sequences
|
26 |
+
from esm.esmfold.v1.pretrained import esmfold_v1
|
27 |
+
|
28 |
+
from transformers.models.esm.configuration_esm import EsmConfig, EsmFoldConfig
|
29 |
+
from transformers.models.esm.modeling_esm import (
|
30 |
+
EsmForMaskedLM,
|
31 |
+
EsmForSequenceClassification,
|
32 |
+
EsmIntermediate,
|
33 |
+
EsmLayer,
|
34 |
+
EsmOutput,
|
35 |
+
EsmSelfAttention,
|
36 |
+
EsmSelfOutput,
|
37 |
+
)
|
38 |
+
from transformers.models.esm.modeling_esmfold import EsmForProteinFolding
|
39 |
+
from transformers.models.esm.tokenization_esm import EsmTokenizer
|
40 |
+
from transformers.utils import logging
|
41 |
+
|
42 |
+
|
43 |
+
logging.set_verbosity_info()
|
44 |
+
logger = logging.get_logger(__name__)
|
45 |
+
|
46 |
+
SAMPLE_DATA = [
|
47 |
+
(
|
48 |
+
"protein1",
|
49 |
+
"MNGTEGPNFYVPFSNATGVVRSPFEYPQYYLAEPWQFSMLAAYMFLLIVLGFPINFLTLYVTVQHKKLRTPLNYILLNLAVADLFMVLGGFTSTLYTSLHGYFVFGPTGCNLEGFFATLGGEIALWSLVVLAIERYVVVCKPMSNFRFGENHAIMGVAFTWVMALACAAPPLAGWSRYIPEGLQCSCGIDYYTLKPEVNNESFVIYMFVVHFTIPMIIIFFCYGQLVFTVKEAAAQQQESATTQKAEKEVTRMVIIMVIAFLICWVPYASVAFYIFTHQGSNFGPIFMTIPAFFAKSAAIYNPVIYIMMNKQFRNCMLTTICCGKNPLGDDEASATVSKTETSQVAPA",
|
50 |
+
),
|
51 |
+
("protein2", "MKTVRQERLKSIVRILERSKEPVSGAQLAEELSVSRQVIVQDIAYLRSLGYNIVATPRGYVLA"),
|
52 |
+
("protein3", "MKTVRQERLKSI<mask>RILERSKEPVSGAQLAEELS<mask>SRQVIVQDIAYLRSLGYN<mask>VATPRGYVLAGG"),
|
53 |
+
("protein4", "MKTVRQERLKSI<mask>RILERSKEPVSGAQLAEELS<mask>SRQVIVQDIAYLRSLGYN<mask>VATPRGYVLA"),
|
54 |
+
]
|
55 |
+
|
56 |
+
MODEL_MAPPING = {
|
57 |
+
"esm1b_t33_650M_UR50S": esm_module.pretrained.esm1b_t33_650M_UR50S,
|
58 |
+
"esm1v_t33_650M_UR90S_1": esm_module.pretrained.esm1v_t33_650M_UR90S_1,
|
59 |
+
"esm1v_t33_650M_UR90S_2": esm_module.pretrained.esm1v_t33_650M_UR90S_2,
|
60 |
+
"esm1v_t33_650M_UR90S_3": esm_module.pretrained.esm1v_t33_650M_UR90S_3,
|
61 |
+
"esm1v_t33_650M_UR90S_4": esm_module.pretrained.esm1v_t33_650M_UR90S_4,
|
62 |
+
"esm1v_t33_650M_UR90S_5": esm_module.pretrained.esm1v_t33_650M_UR90S_5,
|
63 |
+
"esm2_t48_15B_UR50D": esm_module.pretrained.esm2_t48_15B_UR50D,
|
64 |
+
"esm2_t36_3B_UR50D": esm_module.pretrained.esm2_t36_3B_UR50D,
|
65 |
+
"esm2_t33_650M_UR50D": esm_module.pretrained.esm2_t33_650M_UR50D,
|
66 |
+
"esm2_t30_150M_UR50D": esm_module.pretrained.esm2_t30_150M_UR50D,
|
67 |
+
"esm2_t12_35M_UR50D": esm_module.pretrained.esm2_t12_35M_UR50D,
|
68 |
+
"esm2_t6_8M_UR50D": esm_module.pretrained.esm2_t6_8M_UR50D,
|
69 |
+
"esmfold_v1": esmfold_v1,
|
70 |
+
}
|
71 |
+
|
72 |
+
restypes = list("ARNDCQEGHILKMFPSTWYV")
|
73 |
+
|
74 |
+
restypes_with_x = restypes + ["X"]
|
75 |
+
restypes_with_extras = restypes_with_x + ["<pad>", "<mask>", "<cls>", "<sep>", "<eos>"]
|
76 |
+
|
77 |
+
|
78 |
+
def get_esmfold_tokenizer():
|
79 |
+
with TemporaryDirectory() as tempdir:
|
80 |
+
vocab = "\n".join(restypes_with_extras)
|
81 |
+
vocab_file = Path(tempdir) / "vocab.txt"
|
82 |
+
vocab_file.write_text(vocab)
|
83 |
+
hf_tokenizer = EsmTokenizer(vocab_file=str(vocab_file))
|
84 |
+
hf_tokenizer.pad_token_id = 0 # Overlaps with 'A' but that seems to be what they want
|
85 |
+
return hf_tokenizer
|
86 |
+
|
87 |
+
|
88 |
+
def transfer_and_check_weights(original_module, our_module):
|
89 |
+
status = our_module.load_state_dict(original_module.state_dict())
|
90 |
+
if status.missing_keys:
|
91 |
+
raise ValueError(f"Missing keys: {status.missing_keys}")
|
92 |
+
if status.unexpected_keys:
|
93 |
+
raise ValueError(f"Unexpected keys: {status.unexpected_keys}")
|
94 |
+
|
95 |
+
|
96 |
+
def convert_esm_checkpoint_to_pytorch(
|
97 |
+
model: str, pytorch_dump_folder_path: str, classification_head: bool, push_to_repo: str, auth_token: str
|
98 |
+
):
|
99 |
+
"""
|
100 |
+
Copy/paste/tweak esm's weights to our BERT structure.
|
101 |
+
"""
|
102 |
+
if model.startswith("esmfold"):
|
103 |
+
esm = MODEL_MAPPING[model]()
|
104 |
+
else:
|
105 |
+
esm, alphabet = MODEL_MAPPING[model]()
|
106 |
+
esm.eval() # disable dropout
|
107 |
+
|
108 |
+
if model.startswith("esmfold"):
|
109 |
+
embed_dim = esm.esm.embed_dim
|
110 |
+
num_layers = esm.esm.num_layers
|
111 |
+
num_attention_heads = esm.esm.attention_heads
|
112 |
+
intermediate_size = 4 * embed_dim
|
113 |
+
token_dropout = esm.esm.token_dropout
|
114 |
+
emb_layer_norm_before = False # This code path does not exist in ESM-2
|
115 |
+
position_embedding_type = "rotary"
|
116 |
+
is_folding_model = True
|
117 |
+
esmfold_config = EsmFoldConfig()
|
118 |
+
for key, val in esm.cfg.items():
|
119 |
+
if hasattr(esmfold_config, key) and key != "trunk":
|
120 |
+
setattr(esmfold_config, key, val)
|
121 |
+
for key, val in esm.cfg.trunk.items():
|
122 |
+
if hasattr(esmfold_config.trunk, key) and key != "structure_module":
|
123 |
+
setattr(esmfold_config.trunk, key, val)
|
124 |
+
for key, val in esm.cfg.trunk.structure_module.items():
|
125 |
+
if hasattr(esmfold_config.trunk.structure_module, key):
|
126 |
+
setattr(esmfold_config.trunk.structure_module, key, val)
|
127 |
+
elif hasattr(esm, "args"):
|
128 |
+
# Indicates an ESM-1b or ESM-1v model
|
129 |
+
embed_dim = esm.args.embed_dim
|
130 |
+
num_layers = esm.args.layers
|
131 |
+
num_attention_heads = esm.args.attention_heads
|
132 |
+
intermediate_size = esm.args.ffn_embed_dim
|
133 |
+
token_dropout = esm.args.token_dropout
|
134 |
+
emb_layer_norm_before = True if esm.emb_layer_norm_before else False
|
135 |
+
position_embedding_type = "absolute"
|
136 |
+
is_folding_model = False
|
137 |
+
esmfold_config = None
|
138 |
+
else:
|
139 |
+
# Indicates an ESM-2 model
|
140 |
+
embed_dim = esm.embed_dim
|
141 |
+
num_layers = esm.num_layers
|
142 |
+
num_attention_heads = esm.attention_heads
|
143 |
+
intermediate_size = 4 * embed_dim # This is hardcoded in ESM-2
|
144 |
+
token_dropout = esm.token_dropout
|
145 |
+
emb_layer_norm_before = False # This code path does not exist in ESM-2
|
146 |
+
position_embedding_type = "rotary"
|
147 |
+
is_folding_model = False
|
148 |
+
esmfold_config = None
|
149 |
+
|
150 |
+
if is_folding_model:
|
151 |
+
alphabet = esm.esm.alphabet
|
152 |
+
vocab_list = tuple(alphabet.all_toks)
|
153 |
+
mask_token_id = alphabet.mask_idx
|
154 |
+
pad_token_id = alphabet.padding_idx
|
155 |
+
|
156 |
+
if is_folding_model:
|
157 |
+
original_esm_model = esm.esm
|
158 |
+
else:
|
159 |
+
original_esm_model = esm
|
160 |
+
|
161 |
+
config = EsmConfig(
|
162 |
+
vocab_size=original_esm_model.embed_tokens.num_embeddings,
|
163 |
+
mask_token_id=mask_token_id,
|
164 |
+
hidden_size=embed_dim,
|
165 |
+
num_hidden_layers=num_layers,
|
166 |
+
num_attention_heads=num_attention_heads,
|
167 |
+
intermediate_size=intermediate_size,
|
168 |
+
max_position_embeddings=1026,
|
169 |
+
layer_norm_eps=1e-5, # PyTorch default used in fairseq
|
170 |
+
attention_probs_dropout_prob=0.0,
|
171 |
+
hidden_dropout_prob=0.0,
|
172 |
+
pad_token_id=pad_token_id,
|
173 |
+
emb_layer_norm_before=emb_layer_norm_before,
|
174 |
+
token_dropout=token_dropout,
|
175 |
+
position_embedding_type=position_embedding_type,
|
176 |
+
is_folding_model=is_folding_model,
|
177 |
+
esmfold_config=esmfold_config,
|
178 |
+
vocab_list=vocab_list,
|
179 |
+
)
|
180 |
+
if classification_head:
|
181 |
+
config.num_labels = esm.classification_heads["mnli"].out_proj.weight.shape[0]
|
182 |
+
print("Our ESM config:", config)
|
183 |
+
|
184 |
+
if model.startswith("esmfold"):
|
185 |
+
model_class = EsmForProteinFolding
|
186 |
+
elif classification_head:
|
187 |
+
model_class = EsmForSequenceClassification
|
188 |
+
else:
|
189 |
+
model_class = EsmForMaskedLM
|
190 |
+
model = model_class(config)
|
191 |
+
model.eval()
|
192 |
+
|
193 |
+
# Now let's copy all the weights.
|
194 |
+
# Embeddings
|
195 |
+
model.esm.embeddings.word_embeddings.weight = original_esm_model.embed_tokens.weight
|
196 |
+
if position_embedding_type == "absolute":
|
197 |
+
model.esm.embeddings.position_embeddings.weight = original_esm_model.embed_positions.weight
|
198 |
+
|
199 |
+
if config.emb_layer_norm_before:
|
200 |
+
model.esm.embeddings.layer_norm.weight = original_esm_model.emb_layer_norm_before.weight
|
201 |
+
model.esm.embeddings.layer_norm.bias = original_esm_model.emb_layer_norm_before.bias
|
202 |
+
|
203 |
+
model.esm.encoder.emb_layer_norm_after.weight = original_esm_model.emb_layer_norm_after.weight
|
204 |
+
model.esm.encoder.emb_layer_norm_after.bias = original_esm_model.emb_layer_norm_after.bias
|
205 |
+
|
206 |
+
for i in range(config.num_hidden_layers):
|
207 |
+
# Encoder: start of layer
|
208 |
+
layer: EsmLayer = model.esm.encoder.layer[i]
|
209 |
+
# esm_layer: TransformerSentenceEncoderLayer = original_esm_model.layers[i]
|
210 |
+
esm_layer = original_esm_model.layers[i]
|
211 |
+
|
212 |
+
# self attention
|
213 |
+
self_attn: EsmSelfAttention = layer.attention.self
|
214 |
+
assert (
|
215 |
+
esm_layer.self_attn.k_proj.weight.data.shape
|
216 |
+
== esm_layer.self_attn.q_proj.weight.data.shape
|
217 |
+
== esm_layer.self_attn.v_proj.weight.data.shape
|
218 |
+
== torch.Size((config.hidden_size, config.hidden_size))
|
219 |
+
)
|
220 |
+
|
221 |
+
self_attn.query.weight.data = esm_layer.self_attn.q_proj.weight
|
222 |
+
self_attn.query.bias.data = esm_layer.self_attn.q_proj.bias
|
223 |
+
self_attn.key.weight.data = esm_layer.self_attn.k_proj.weight
|
224 |
+
self_attn.key.bias.data = esm_layer.self_attn.k_proj.bias
|
225 |
+
self_attn.value.weight.data = esm_layer.self_attn.v_proj.weight
|
226 |
+
self_attn.value.bias.data = esm_layer.self_attn.v_proj.bias
|
227 |
+
|
228 |
+
if getattr(esm_layer.self_attn, "rot_emb", None) is not None:
|
229 |
+
# Matt: Although inv_freq is not a trainable weight, it is computed at model init and cached.
|
230 |
+
# During the training of ESM-2 the model was converted to float16 precision, which also converts
|
231 |
+
# the inv_freq tensor, and the loss of precision remains even if the model is loaded later as float32.
|
232 |
+
# If we recompute inv_freq without this loss of precision then we will get subtly different rotary
|
233 |
+
# embeddings, which are enough to cause significant discrepancies in model outputs. To avoid this,
|
234 |
+
# we make sure the new model copies the data from the old inv_freq.
|
235 |
+
self_attn.rotary_embeddings.inv_freq.data = esm_layer.self_attn.rot_emb.inv_freq
|
236 |
+
|
237 |
+
# LayerNorm changes for pre-activation
|
238 |
+
layer.attention.LayerNorm.weight = esm_layer.self_attn_layer_norm.weight
|
239 |
+
layer.attention.LayerNorm.bias = esm_layer.self_attn_layer_norm.bias
|
240 |
+
layer.LayerNorm.weight = esm_layer.final_layer_norm.weight
|
241 |
+
layer.LayerNorm.bias = esm_layer.final_layer_norm.bias
|
242 |
+
|
243 |
+
# self-attention output
|
244 |
+
self_output: EsmSelfOutput = layer.attention.output
|
245 |
+
assert self_output.dense.weight.shape == esm_layer.self_attn.out_proj.weight.shape
|
246 |
+
self_output.dense.weight = esm_layer.self_attn.out_proj.weight
|
247 |
+
self_output.dense.bias = esm_layer.self_attn.out_proj.bias
|
248 |
+
|
249 |
+
# intermediate
|
250 |
+
intermediate: EsmIntermediate = layer.intermediate
|
251 |
+
assert intermediate.dense.weight.shape == esm_layer.fc1.weight.shape
|
252 |
+
intermediate.dense.weight = esm_layer.fc1.weight
|
253 |
+
intermediate.dense.bias = esm_layer.fc1.bias
|
254 |
+
|
255 |
+
# output
|
256 |
+
bert_output: EsmOutput = layer.output
|
257 |
+
assert bert_output.dense.weight.shape == esm_layer.fc2.weight.shape
|
258 |
+
bert_output.dense.weight = esm_layer.fc2.weight
|
259 |
+
bert_output.dense.bias = esm_layer.fc2.bias
|
260 |
+
# end of layer
|
261 |
+
|
262 |
+
if is_folding_model:
|
263 |
+
model.esm_s_combine.data = esm.esm_s_combine.data
|
264 |
+
model.af2_to_esm.data = esm.af2_to_esm.data
|
265 |
+
transfer_and_check_weights(esm.embedding, model.embedding)
|
266 |
+
transfer_and_check_weights(esm.esm_s_mlp, model.esm_s_mlp)
|
267 |
+
transfer_and_check_weights(esm.trunk, model.trunk)
|
268 |
+
transfer_and_check_weights(esm.distogram_head, model.distogram_head)
|
269 |
+
transfer_and_check_weights(esm.ptm_head, model.ptm_head)
|
270 |
+
transfer_and_check_weights(esm.lm_head, model.lm_head)
|
271 |
+
transfer_and_check_weights(esm.lddt_head, model.lddt_head)
|
272 |
+
|
273 |
+
elif classification_head:
|
274 |
+
model.classifier.dense.weight = esm.esm.classification_heads["mnli"].dense.weight
|
275 |
+
model.classifier.dense.bias = esm.classification_heads["mnli"].dense.bias
|
276 |
+
model.classifier.out_proj.weight = esm.classification_heads["mnli"].out_proj.weight
|
277 |
+
model.classifier.out_proj.bias = esm.classification_heads["mnli"].out_proj.bias
|
278 |
+
else:
|
279 |
+
# LM Head
|
280 |
+
model.lm_head.dense.weight = esm.lm_head.dense.weight
|
281 |
+
model.lm_head.dense.bias = esm.lm_head.dense.bias
|
282 |
+
model.lm_head.layer_norm.weight = esm.lm_head.layer_norm.weight
|
283 |
+
model.lm_head.layer_norm.bias = esm.lm_head.layer_norm.bias
|
284 |
+
model.lm_head.decoder.weight = esm.lm_head.weight
|
285 |
+
model.lm_head.bias = esm.lm_head.bias
|
286 |
+
|
287 |
+
# Contact prediction head
|
288 |
+
transfer_and_check_weights(esm.contact_head, model.esm.contact_head)
|
289 |
+
|
290 |
+
# Prepare data (first 2 sequences from ESMStructuralSplitDataset superfamily / 4)
|
291 |
+
if is_folding_model:
|
292 |
+
# Folding models aren't trained on masked inputs and don't like mask tokens.
|
293 |
+
sample_data = SAMPLE_DATA[:2]
|
294 |
+
else:
|
295 |
+
sample_data = SAMPLE_DATA
|
296 |
+
|
297 |
+
if is_folding_model:
|
298 |
+
hf_tokenizer = get_esmfold_tokenizer()
|
299 |
+
hf_tokens = hf_tokenizer(
|
300 |
+
[row[1] for row in sample_data], return_tensors="pt", padding=True, add_special_tokens=False
|
301 |
+
)
|
302 |
+
esmfold_aas, esmfold_mask, _, _, _ = esmfold_encode_sequences([row[1] for row in sample_data])
|
303 |
+
success = torch.all(hf_tokens["input_ids"] == esmfold_aas) and torch.all(
|
304 |
+
hf_tokens["attention_mask"] == esmfold_mask
|
305 |
+
)
|
306 |
+
else:
|
307 |
+
# Let's check that we get the same results.
|
308 |
+
batch_converter = alphabet.get_batch_converter()
|
309 |
+
batch_labels, batch_strs, batch_tokens = batch_converter(sample_data)
|
310 |
+
# Prepare tokenizer and make sure it matches
|
311 |
+
with TemporaryDirectory() as tempdir:
|
312 |
+
vocab = "\n".join(alphabet.all_toks)
|
313 |
+
vocab_file = Path(tempdir) / "vocab.txt"
|
314 |
+
vocab_file.write_text(vocab)
|
315 |
+
hf_tokenizer = EsmTokenizer(vocab_file=str(vocab_file))
|
316 |
+
|
317 |
+
hf_tokens = hf_tokenizer([row[1] for row in sample_data], return_tensors="pt", padding=True)
|
318 |
+
success = torch.all(hf_tokens["input_ids"] == batch_tokens)
|
319 |
+
|
320 |
+
print("Do both models tokenizers output the same tokens?", "🔥" if success else "💩")
|
321 |
+
if not success:
|
322 |
+
raise Exception("Tokenization does not match!")
|
323 |
+
|
324 |
+
with torch.no_grad():
|
325 |
+
if is_folding_model:
|
326 |
+
# Let's test the model in parts
|
327 |
+
# ESMFold always converts the ESM stem to float16, which requires float16 ops
|
328 |
+
# that don't exist on CPU. Therefore, to test it we need to run it on GPU. However,
|
329 |
+
# ESMFold is what we in the community call a "big boy" and so we desperately avoid putting both the
|
330 |
+
# original and the converted model on the GPU at the same time.
|
331 |
+
their_output = esm.cuda().infer([row[1] for row in sample_data])
|
332 |
+
our_output = model.cuda()(
|
333 |
+
input_ids=hf_tokens["input_ids"].cuda(), attention_mask=hf_tokens["attention_mask"].cuda()
|
334 |
+
)
|
335 |
+
else:
|
336 |
+
our_output = model(**hf_tokens, output_hidden_states=True)
|
337 |
+
our_output = our_output["logits"]
|
338 |
+
if classification_head:
|
339 |
+
their_output = esm.model.classification_heads["mnli"](esm.extract_features(batch_tokens))
|
340 |
+
else:
|
341 |
+
their_output = esm(hf_tokens["input_ids"], repr_layers=list(range(999)))
|
342 |
+
their_output = their_output["logits"]
|
343 |
+
|
344 |
+
if is_folding_model:
|
345 |
+
max_absolute_diff = torch.max(torch.abs(our_output["positions"] - their_output["positions"])).item()
|
346 |
+
success = torch.allclose(our_output["positions"], their_output["positions"], atol=1e-5)
|
347 |
+
else:
|
348 |
+
max_absolute_diff = torch.max(torch.abs(our_output - their_output)).item()
|
349 |
+
success = torch.allclose(our_output, their_output, atol=1e-5)
|
350 |
+
|
351 |
+
print(f"max_absolute_diff = {max_absolute_diff}") # ~ 1e-5
|
352 |
+
print("Do both models output the same tensors?", "🔥" if success else "💩")
|
353 |
+
|
354 |
+
if not success:
|
355 |
+
raise Exception("Something went wRoNg")
|
356 |
+
|
357 |
+
if not is_folding_model:
|
358 |
+
# Let's check contact prediction too
|
359 |
+
our_output = model.predict_contacts(hf_tokens["input_ids"], hf_tokens["attention_mask"])
|
360 |
+
their_output = esm.predict_contacts(hf_tokens["input_ids"])
|
361 |
+
max_absolute_diff = torch.max(torch.abs(our_output - their_output)).item()
|
362 |
+
success = torch.allclose(our_output, their_output, atol=1e-5)
|
363 |
+
|
364 |
+
print("Contact prediction testing:")
|
365 |
+
print(f"max_absolute_diff = {max_absolute_diff}") # ~ 1e-5
|
366 |
+
print("Do both models output the same tensors?", "🔥" if success else "💩")
|
367 |
+
|
368 |
+
if not success:
|
369 |
+
raise Exception("Something went wRoNg")
|
370 |
+
|
371 |
+
pathlib.Path(pytorch_dump_folder_path).mkdir(parents=True, exist_ok=True)
|
372 |
+
print(f"Saving model to {pytorch_dump_folder_path}")
|
373 |
+
model.save_pretrained(pytorch_dump_folder_path)
|
374 |
+
|
375 |
+
del esm # Free up some memory before continuing
|
376 |
+
|
377 |
+
print(f"Saving tokenizer to {pytorch_dump_folder_path}")
|
378 |
+
hf_tokenizer.save_pretrained(pytorch_dump_folder_path)
|
379 |
+
|
380 |
+
if push_to_repo:
|
381 |
+
model.push_to_hub(repo_id=push_to_repo, token_token=auth_token)
|
382 |
+
hf_tokenizer.push_to_hub(repo_id=push_to_repo, token_token=auth_token)
|
383 |
+
|
384 |
+
|
385 |
+
if __name__ == "__main__":
|
386 |
+
parser = argparse.ArgumentParser()
|
387 |
+
# Required parameters
|
388 |
+
parser.add_argument(
|
389 |
+
"--pytorch_dump_folder_path", type=str, required=True, help="Path to the output PyTorch model."
|
390 |
+
)
|
391 |
+
parser.add_argument(
|
392 |
+
"--classification_head", action="store_true", help="Whether to convert a final classification head."
|
393 |
+
)
|
394 |
+
parser.add_argument("--model", default=None, type=str, required=True, help="Name of model to convert.")
|
395 |
+
parser.add_argument("--push_to_repo", type=str, help="Repo to upload to (including username!).")
|
396 |
+
parser.add_argument("--auth_token", type=str, help="HuggingFace auth token.")
|
397 |
+
args = parser.parse_args()
|
398 |
+
convert_esm_checkpoint_to_pytorch(
|
399 |
+
args.model, args.pytorch_dump_folder_path, args.classification_head, args.push_to_repo, args.auth_token
|
400 |
+
)
|
venv/lib/python3.10/site-packages/transformers/models/esm/modeling_esm.py
ADDED
@@ -0,0 +1,1265 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 Meta and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch ESM model."""
|
16 |
+
|
17 |
+
import math
|
18 |
+
from typing import List, Optional, Tuple, Union
|
19 |
+
|
20 |
+
import torch
|
21 |
+
import torch.utils.checkpoint
|
22 |
+
from torch import nn
|
23 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
24 |
+
|
25 |
+
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
|
26 |
+
from ...modeling_outputs import (
|
27 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
28 |
+
BaseModelOutputWithPoolingAndCrossAttentions,
|
29 |
+
MaskedLMOutput,
|
30 |
+
SequenceClassifierOutput,
|
31 |
+
TokenClassifierOutput,
|
32 |
+
)
|
33 |
+
from ...modeling_utils import PreTrainedModel, find_pruneable_heads_and_indices, prune_linear_layer
|
34 |
+
from ...utils import logging
|
35 |
+
from .configuration_esm import EsmConfig
|
36 |
+
|
37 |
+
|
38 |
+
logger = logging.get_logger(__name__)
|
39 |
+
|
40 |
+
_CHECKPOINT_FOR_DOC = "facebook/esm2_t6_8M_UR50D"
|
41 |
+
_CONFIG_FOR_DOC = "EsmConfig"
|
42 |
+
|
43 |
+
|
44 |
+
from ..deprecated._archive_maps import ESM_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
45 |
+
|
46 |
+
|
47 |
+
def rotate_half(x):
|
48 |
+
x1, x2 = x.chunk(2, dim=-1)
|
49 |
+
return torch.cat((-x2, x1), dim=-1)
|
50 |
+
|
51 |
+
|
52 |
+
def apply_rotary_pos_emb(x, cos, sin):
|
53 |
+
cos = cos[:, :, : x.shape[-2], :]
|
54 |
+
sin = sin[:, :, : x.shape[-2], :]
|
55 |
+
|
56 |
+
return (x * cos) + (rotate_half(x) * sin)
|
57 |
+
|
58 |
+
|
59 |
+
def gelu(x):
|
60 |
+
"""
|
61 |
+
This is the gelu implementation from the original ESM repo. Using F.gelu yields subtly wrong results.
|
62 |
+
"""
|
63 |
+
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
|
64 |
+
|
65 |
+
|
66 |
+
def symmetrize(x):
|
67 |
+
"Make layer symmetric in final two dimensions, used for contact prediction."
|
68 |
+
return x + x.transpose(-1, -2)
|
69 |
+
|
70 |
+
|
71 |
+
def average_product_correct(x):
|
72 |
+
"Perform average product correct, used for contact prediction."
|
73 |
+
a1 = x.sum(-1, keepdims=True)
|
74 |
+
a2 = x.sum(-2, keepdims=True)
|
75 |
+
a12 = x.sum((-1, -2), keepdims=True)
|
76 |
+
|
77 |
+
avg = a1 * a2
|
78 |
+
avg.div_(a12) # in-place to reduce memory
|
79 |
+
normalized = x - avg
|
80 |
+
return normalized
|
81 |
+
|
82 |
+
|
83 |
+
class RotaryEmbedding(torch.nn.Module):
|
84 |
+
"""
|
85 |
+
Rotary position embeddings based on those in
|
86 |
+
[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer). Query and keys are transformed by rotation
|
87 |
+
matrices which depend on their relative positions.
|
88 |
+
"""
|
89 |
+
|
90 |
+
def __init__(self, dim: int):
|
91 |
+
super().__init__()
|
92 |
+
# Generate and save the inverse frequency buffer (non trainable)
|
93 |
+
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, dtype=torch.int64).float() / dim))
|
94 |
+
inv_freq = inv_freq
|
95 |
+
self.register_buffer("inv_freq", inv_freq)
|
96 |
+
|
97 |
+
self._seq_len_cached = None
|
98 |
+
self._cos_cached = None
|
99 |
+
self._sin_cached = None
|
100 |
+
|
101 |
+
def _update_cos_sin_tables(self, x, seq_dimension=2):
|
102 |
+
seq_len = x.shape[seq_dimension]
|
103 |
+
|
104 |
+
# Reset the tables if the sequence length has changed,
|
105 |
+
# or if we're on a new device (possibly due to tracing for instance)
|
106 |
+
if seq_len != self._seq_len_cached or self._cos_cached.device != x.device:
|
107 |
+
self._seq_len_cached = seq_len
|
108 |
+
t = torch.arange(x.shape[seq_dimension], device=x.device).type_as(self.inv_freq)
|
109 |
+
freqs = torch.outer(t, self.inv_freq)
|
110 |
+
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
|
111 |
+
|
112 |
+
self._cos_cached = emb.cos()[None, None, :, :]
|
113 |
+
self._sin_cached = emb.sin()[None, None, :, :]
|
114 |
+
|
115 |
+
return self._cos_cached, self._sin_cached
|
116 |
+
|
117 |
+
def forward(self, q: torch.Tensor, k: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
118 |
+
self._cos_cached, self._sin_cached = self._update_cos_sin_tables(k, seq_dimension=-2)
|
119 |
+
|
120 |
+
return (
|
121 |
+
apply_rotary_pos_emb(q, self._cos_cached, self._sin_cached),
|
122 |
+
apply_rotary_pos_emb(k, self._cos_cached, self._sin_cached),
|
123 |
+
)
|
124 |
+
|
125 |
+
|
126 |
+
class EsmContactPredictionHead(nn.Module):
|
127 |
+
"""Performs symmetrization, apc, and computes a logistic regression on the output features"""
|
128 |
+
|
129 |
+
def __init__(
|
130 |
+
self,
|
131 |
+
in_features: int,
|
132 |
+
bias=True,
|
133 |
+
eos_idx: int = 2,
|
134 |
+
):
|
135 |
+
super().__init__()
|
136 |
+
self.in_features = in_features
|
137 |
+
self.eos_idx = eos_idx
|
138 |
+
self.regression = nn.Linear(in_features, 1, bias)
|
139 |
+
self.activation = nn.Sigmoid()
|
140 |
+
|
141 |
+
def forward(self, tokens, attentions):
|
142 |
+
# remove eos token attentions
|
143 |
+
eos_mask = tokens.ne(self.eos_idx).to(attentions)
|
144 |
+
eos_mask = eos_mask.unsqueeze(1) * eos_mask.unsqueeze(2)
|
145 |
+
attentions = attentions * eos_mask[:, None, None, :, :]
|
146 |
+
attentions = attentions[..., :-1, :-1]
|
147 |
+
# remove cls token attentions
|
148 |
+
attentions = attentions[..., 1:, 1:]
|
149 |
+
batch_size, layers, heads, seqlen, _ = attentions.size()
|
150 |
+
attentions = attentions.view(batch_size, layers * heads, seqlen, seqlen)
|
151 |
+
|
152 |
+
# features: batch x channels x tokens x tokens (symmetric)
|
153 |
+
attentions = attentions.to(
|
154 |
+
self.regression.weight.device
|
155 |
+
) # attentions always float32, may need to convert to float16
|
156 |
+
attentions = average_product_correct(symmetrize(attentions))
|
157 |
+
attentions = attentions.permute(0, 2, 3, 1)
|
158 |
+
return self.activation(self.regression(attentions).squeeze(3))
|
159 |
+
|
160 |
+
|
161 |
+
class EsmEmbeddings(nn.Module):
|
162 |
+
"""
|
163 |
+
Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
|
164 |
+
"""
|
165 |
+
|
166 |
+
def __init__(self, config):
|
167 |
+
super().__init__()
|
168 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
169 |
+
|
170 |
+
if config.emb_layer_norm_before:
|
171 |
+
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
172 |
+
else:
|
173 |
+
self.layer_norm = None
|
174 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
175 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
176 |
+
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
177 |
+
self.register_buffer(
|
178 |
+
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
|
179 |
+
)
|
180 |
+
|
181 |
+
self.padding_idx = config.pad_token_id
|
182 |
+
self.position_embeddings = nn.Embedding(
|
183 |
+
config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
|
184 |
+
)
|
185 |
+
self.token_dropout = config.token_dropout
|
186 |
+
self.mask_token_id = config.mask_token_id
|
187 |
+
|
188 |
+
def forward(
|
189 |
+
self, input_ids=None, attention_mask=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
|
190 |
+
):
|
191 |
+
if position_ids is None:
|
192 |
+
if input_ids is not None:
|
193 |
+
# Create the position ids from the input token ids. Any padded tokens remain padded.
|
194 |
+
position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length)
|
195 |
+
else:
|
196 |
+
position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds)
|
197 |
+
|
198 |
+
if inputs_embeds is None:
|
199 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
200 |
+
|
201 |
+
# Note that if we want to support ESM-1 (not 1b!) in future then we need to support an
|
202 |
+
# embedding_scale factor here.
|
203 |
+
embeddings = inputs_embeds
|
204 |
+
|
205 |
+
# Matt: ESM has the option to handle masking in MLM in a slightly unusual way. If the token_dropout
|
206 |
+
# flag is False then it is handled in the same was as BERT/RoBERTa. If it is set to True, however,
|
207 |
+
# masked tokens are treated as if they were selected for input dropout and zeroed out.
|
208 |
+
# This "mask-dropout" is compensated for when masked tokens are not present, by scaling embeddings by
|
209 |
+
# a factor of (fraction of unmasked tokens during training) / (fraction of unmasked tokens in sample).
|
210 |
+
# This is analogous to the way that dropout layers scale down outputs during evaluation when not
|
211 |
+
# actually dropping out values (or, equivalently, scale up their un-dropped outputs in training).
|
212 |
+
if self.token_dropout:
|
213 |
+
embeddings = embeddings.masked_fill((input_ids == self.mask_token_id).unsqueeze(-1), 0.0)
|
214 |
+
mask_ratio_train = 0.15 * 0.8 # Hardcoded as the ratio used in all ESM model training runs
|
215 |
+
src_lengths = attention_mask.sum(-1)
|
216 |
+
mask_ratio_observed = (input_ids == self.mask_token_id).sum(-1).float() / src_lengths
|
217 |
+
embeddings = (embeddings * (1 - mask_ratio_train) / (1 - mask_ratio_observed)[:, None, None]).to(
|
218 |
+
embeddings.dtype
|
219 |
+
)
|
220 |
+
|
221 |
+
if self.position_embedding_type == "absolute":
|
222 |
+
position_embeddings = self.position_embeddings(position_ids)
|
223 |
+
embeddings = embeddings + position_embeddings
|
224 |
+
|
225 |
+
if self.layer_norm is not None:
|
226 |
+
embeddings = self.layer_norm(embeddings)
|
227 |
+
if attention_mask is not None:
|
228 |
+
embeddings = (embeddings * attention_mask.unsqueeze(-1)).to(embeddings.dtype)
|
229 |
+
# Matt: I think this line was copied incorrectly from BERT, disabling it for now.
|
230 |
+
# embeddings = self.dropout(embeddings)
|
231 |
+
return embeddings
|
232 |
+
|
233 |
+
def create_position_ids_from_inputs_embeds(self, inputs_embeds):
|
234 |
+
"""
|
235 |
+
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
|
236 |
+
|
237 |
+
Args:
|
238 |
+
inputs_embeds: torch.Tensor
|
239 |
+
|
240 |
+
Returns: torch.Tensor
|
241 |
+
"""
|
242 |
+
input_shape = inputs_embeds.size()[:-1]
|
243 |
+
sequence_length = input_shape[1]
|
244 |
+
|
245 |
+
position_ids = torch.arange(
|
246 |
+
self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
|
247 |
+
)
|
248 |
+
return position_ids.unsqueeze(0).expand(input_shape)
|
249 |
+
|
250 |
+
|
251 |
+
class EsmSelfAttention(nn.Module):
|
252 |
+
def __init__(self, config, position_embedding_type=None):
|
253 |
+
super().__init__()
|
254 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
255 |
+
raise ValueError(
|
256 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
257 |
+
f"heads ({config.num_attention_heads})"
|
258 |
+
)
|
259 |
+
|
260 |
+
self.num_attention_heads = config.num_attention_heads
|
261 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
262 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
263 |
+
|
264 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
265 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
266 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
267 |
+
|
268 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
269 |
+
self.position_embedding_type = position_embedding_type or getattr(
|
270 |
+
config, "position_embedding_type", "absolute"
|
271 |
+
)
|
272 |
+
self.rotary_embeddings = None
|
273 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
274 |
+
self.max_position_embeddings = config.max_position_embeddings
|
275 |
+
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
|
276 |
+
elif self.position_embedding_type == "rotary":
|
277 |
+
self.rotary_embeddings = RotaryEmbedding(dim=self.attention_head_size)
|
278 |
+
|
279 |
+
self.is_decoder = config.is_decoder
|
280 |
+
|
281 |
+
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
|
282 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
283 |
+
x = x.view(new_x_shape)
|
284 |
+
return x.permute(0, 2, 1, 3)
|
285 |
+
|
286 |
+
def forward(
|
287 |
+
self,
|
288 |
+
hidden_states: torch.Tensor,
|
289 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
290 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
291 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
292 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
293 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
294 |
+
output_attentions: Optional[bool] = False,
|
295 |
+
) -> Tuple[torch.Tensor]:
|
296 |
+
mixed_query_layer = self.query(hidden_states)
|
297 |
+
|
298 |
+
# If this is instantiated as a cross-attention module, the keys
|
299 |
+
# and values come from an encoder; the attention mask needs to be
|
300 |
+
# such that the encoder's padding tokens are not attended to.
|
301 |
+
is_cross_attention = encoder_hidden_states is not None
|
302 |
+
|
303 |
+
if is_cross_attention and past_key_value is not None:
|
304 |
+
# reuse k,v, cross_attentions
|
305 |
+
key_layer = past_key_value[0]
|
306 |
+
value_layer = past_key_value[1]
|
307 |
+
attention_mask = encoder_attention_mask
|
308 |
+
elif is_cross_attention:
|
309 |
+
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
|
310 |
+
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
311 |
+
attention_mask = encoder_attention_mask
|
312 |
+
elif past_key_value is not None:
|
313 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
314 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
315 |
+
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
|
316 |
+
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
|
317 |
+
else:
|
318 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
319 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
320 |
+
|
321 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
322 |
+
|
323 |
+
# Matt: Our BERT model (which this code was derived from) scales attention logits down by sqrt(head_dim).
|
324 |
+
# ESM scales the query down by the same factor instead. Modulo numerical stability these are equivalent,
|
325 |
+
# but not when rotary embeddings get involved. Therefore, we scale the query here to match the original
|
326 |
+
# ESM code and fix rotary embeddings.
|
327 |
+
query_layer = query_layer * self.attention_head_size**-0.5
|
328 |
+
|
329 |
+
if self.is_decoder:
|
330 |
+
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
331 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
332 |
+
# key/value_states (first "if" case)
|
333 |
+
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
334 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
335 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
336 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
337 |
+
past_key_value = (key_layer, value_layer)
|
338 |
+
|
339 |
+
if self.position_embedding_type == "rotary":
|
340 |
+
query_layer, key_layer = self.rotary_embeddings(query_layer, key_layer)
|
341 |
+
|
342 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
343 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
344 |
+
|
345 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
346 |
+
seq_length = hidden_states.size()[1]
|
347 |
+
position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
|
348 |
+
position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
|
349 |
+
distance = position_ids_l - position_ids_r
|
350 |
+
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
|
351 |
+
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
|
352 |
+
|
353 |
+
if self.position_embedding_type == "relative_key":
|
354 |
+
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
355 |
+
attention_scores = attention_scores + relative_position_scores
|
356 |
+
elif self.position_embedding_type == "relative_key_query":
|
357 |
+
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
358 |
+
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
|
359 |
+
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
|
360 |
+
|
361 |
+
if attention_mask is not None:
|
362 |
+
# Apply the attention mask is (precomputed for all layers in EsmModel forward() function)
|
363 |
+
attention_scores = attention_scores + attention_mask
|
364 |
+
|
365 |
+
# Normalize the attention scores to probabilities.
|
366 |
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
367 |
+
|
368 |
+
# This is actually dropping out entire tokens to attend to, which might
|
369 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
370 |
+
attention_probs = self.dropout(attention_probs)
|
371 |
+
|
372 |
+
# Mask heads if we want to
|
373 |
+
if head_mask is not None:
|
374 |
+
attention_probs = attention_probs * head_mask
|
375 |
+
|
376 |
+
context_layer = torch.matmul(attention_probs.to(value_layer.dtype), value_layer)
|
377 |
+
|
378 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
379 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
380 |
+
context_layer = context_layer.view(new_context_layer_shape)
|
381 |
+
|
382 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
383 |
+
|
384 |
+
if self.is_decoder:
|
385 |
+
outputs = outputs + (past_key_value,)
|
386 |
+
return outputs
|
387 |
+
|
388 |
+
|
389 |
+
class EsmSelfOutput(nn.Module):
|
390 |
+
def __init__(self, config):
|
391 |
+
super().__init__()
|
392 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
393 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
394 |
+
|
395 |
+
def forward(self, hidden_states, input_tensor):
|
396 |
+
hidden_states = self.dense(hidden_states)
|
397 |
+
hidden_states = self.dropout(hidden_states)
|
398 |
+
hidden_states = hidden_states + input_tensor
|
399 |
+
return hidden_states
|
400 |
+
|
401 |
+
|
402 |
+
class EsmAttention(nn.Module):
|
403 |
+
def __init__(self, config):
|
404 |
+
super().__init__()
|
405 |
+
self.self = EsmSelfAttention(config)
|
406 |
+
self.output = EsmSelfOutput(config)
|
407 |
+
self.pruned_heads = set()
|
408 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
409 |
+
|
410 |
+
def prune_heads(self, heads):
|
411 |
+
if len(heads) == 0:
|
412 |
+
return
|
413 |
+
heads, index = find_pruneable_heads_and_indices(
|
414 |
+
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
|
415 |
+
)
|
416 |
+
|
417 |
+
# Prune linear layers
|
418 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
419 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
420 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
421 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
422 |
+
|
423 |
+
# Update hyper params and store pruned heads
|
424 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
425 |
+
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
426 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
427 |
+
|
428 |
+
def forward(
|
429 |
+
self,
|
430 |
+
hidden_states,
|
431 |
+
attention_mask=None,
|
432 |
+
head_mask=None,
|
433 |
+
encoder_hidden_states=None,
|
434 |
+
encoder_attention_mask=None,
|
435 |
+
past_key_value=None,
|
436 |
+
output_attentions=False,
|
437 |
+
):
|
438 |
+
hidden_states_ln = self.LayerNorm(hidden_states)
|
439 |
+
self_outputs = self.self(
|
440 |
+
hidden_states_ln,
|
441 |
+
attention_mask,
|
442 |
+
head_mask,
|
443 |
+
encoder_hidden_states,
|
444 |
+
encoder_attention_mask,
|
445 |
+
past_key_value,
|
446 |
+
output_attentions,
|
447 |
+
)
|
448 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
449 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
450 |
+
return outputs
|
451 |
+
|
452 |
+
|
453 |
+
class EsmIntermediate(nn.Module):
|
454 |
+
def __init__(self, config):
|
455 |
+
super().__init__()
|
456 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
457 |
+
|
458 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
459 |
+
hidden_states = self.dense(hidden_states)
|
460 |
+
hidden_states = gelu(hidden_states)
|
461 |
+
return hidden_states
|
462 |
+
|
463 |
+
|
464 |
+
class EsmOutput(nn.Module):
|
465 |
+
def __init__(self, config):
|
466 |
+
super().__init__()
|
467 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
468 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
469 |
+
|
470 |
+
def forward(self, hidden_states, input_tensor):
|
471 |
+
hidden_states = self.dense(hidden_states)
|
472 |
+
hidden_states = self.dropout(hidden_states)
|
473 |
+
hidden_states = hidden_states + input_tensor
|
474 |
+
return hidden_states
|
475 |
+
|
476 |
+
|
477 |
+
class EsmLayer(nn.Module):
|
478 |
+
def __init__(self, config):
|
479 |
+
super().__init__()
|
480 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
481 |
+
self.seq_len_dim = 1
|
482 |
+
self.attention = EsmAttention(config)
|
483 |
+
self.is_decoder = config.is_decoder
|
484 |
+
self.add_cross_attention = config.add_cross_attention
|
485 |
+
if self.add_cross_attention:
|
486 |
+
if not self.is_decoder:
|
487 |
+
raise RuntimeError(f"{self} should be used as a decoder model if cross attention is added")
|
488 |
+
self.crossattention = EsmAttention(config)
|
489 |
+
self.intermediate = EsmIntermediate(config)
|
490 |
+
self.output = EsmOutput(config)
|
491 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
492 |
+
|
493 |
+
def forward(
|
494 |
+
self,
|
495 |
+
hidden_states,
|
496 |
+
attention_mask=None,
|
497 |
+
head_mask=None,
|
498 |
+
encoder_hidden_states=None,
|
499 |
+
encoder_attention_mask=None,
|
500 |
+
past_key_value=None,
|
501 |
+
output_attentions=False,
|
502 |
+
):
|
503 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
504 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
505 |
+
self_attention_outputs = self.attention(
|
506 |
+
hidden_states,
|
507 |
+
attention_mask,
|
508 |
+
head_mask,
|
509 |
+
output_attentions=output_attentions,
|
510 |
+
past_key_value=self_attn_past_key_value,
|
511 |
+
)
|
512 |
+
attention_output = self_attention_outputs[0]
|
513 |
+
|
514 |
+
# if decoder, the last output is tuple of self-attn cache
|
515 |
+
if self.is_decoder:
|
516 |
+
outputs = self_attention_outputs[1:-1]
|
517 |
+
present_key_value = self_attention_outputs[-1]
|
518 |
+
else:
|
519 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
520 |
+
|
521 |
+
cross_attn_present_key_value = None
|
522 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
523 |
+
if not hasattr(self, "crossattention"):
|
524 |
+
raise AttributeError(
|
525 |
+
f"If `encoder_hidden_states` are passed, {self} has to be instantiated"
|
526 |
+
" with cross-attention layers by setting `config.add_cross_attention=True`"
|
527 |
+
)
|
528 |
+
|
529 |
+
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
|
530 |
+
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
|
531 |
+
cross_attention_outputs = self.crossattention(
|
532 |
+
attention_output,
|
533 |
+
attention_mask,
|
534 |
+
head_mask,
|
535 |
+
encoder_hidden_states,
|
536 |
+
encoder_attention_mask,
|
537 |
+
cross_attn_past_key_value,
|
538 |
+
output_attentions,
|
539 |
+
)
|
540 |
+
attention_output = cross_attention_outputs[0]
|
541 |
+
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
|
542 |
+
|
543 |
+
# add cross-attn cache to positions 3,4 of present_key_value tuple
|
544 |
+
cross_attn_present_key_value = cross_attention_outputs[-1]
|
545 |
+
present_key_value = present_key_value + cross_attn_present_key_value
|
546 |
+
|
547 |
+
layer_output = self.feed_forward_chunk(attention_output)
|
548 |
+
|
549 |
+
outputs = (layer_output,) + outputs
|
550 |
+
|
551 |
+
# if decoder, return the attn key/values as the last output
|
552 |
+
if self.is_decoder:
|
553 |
+
outputs = outputs + (present_key_value,)
|
554 |
+
return outputs
|
555 |
+
|
556 |
+
def feed_forward_chunk(self, attention_output):
|
557 |
+
attention_output_ln = self.LayerNorm(attention_output)
|
558 |
+
intermediate_output = self.intermediate(attention_output_ln)
|
559 |
+
layer_output = self.output(intermediate_output, attention_output)
|
560 |
+
return layer_output
|
561 |
+
|
562 |
+
|
563 |
+
class EsmEncoder(nn.Module):
|
564 |
+
def __init__(self, config):
|
565 |
+
super().__init__()
|
566 |
+
self.config = config
|
567 |
+
self.layer = nn.ModuleList([EsmLayer(config) for _ in range(config.num_hidden_layers)])
|
568 |
+
self.emb_layer_norm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
569 |
+
self.gradient_checkpointing = False
|
570 |
+
|
571 |
+
def forward(
|
572 |
+
self,
|
573 |
+
hidden_states,
|
574 |
+
attention_mask=None,
|
575 |
+
head_mask=None,
|
576 |
+
encoder_hidden_states=None,
|
577 |
+
encoder_attention_mask=None,
|
578 |
+
past_key_values=None,
|
579 |
+
use_cache=None,
|
580 |
+
output_attentions=False,
|
581 |
+
output_hidden_states=False,
|
582 |
+
return_dict=True,
|
583 |
+
):
|
584 |
+
if self.gradient_checkpointing and self.training:
|
585 |
+
if use_cache:
|
586 |
+
logger.warning_once(
|
587 |
+
"`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting "
|
588 |
+
"`use_cache=False`..."
|
589 |
+
)
|
590 |
+
use_cache = False
|
591 |
+
all_hidden_states = () if output_hidden_states else None
|
592 |
+
all_self_attentions = () if output_attentions else None
|
593 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
594 |
+
|
595 |
+
next_decoder_cache = () if use_cache else None
|
596 |
+
for i, layer_module in enumerate(self.layer):
|
597 |
+
if output_hidden_states:
|
598 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
599 |
+
|
600 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
601 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
602 |
+
|
603 |
+
if self.gradient_checkpointing and self.training:
|
604 |
+
layer_outputs = self._gradient_checkpointing_func(
|
605 |
+
layer_module.__call__,
|
606 |
+
hidden_states,
|
607 |
+
attention_mask,
|
608 |
+
layer_head_mask,
|
609 |
+
encoder_hidden_states,
|
610 |
+
encoder_attention_mask,
|
611 |
+
past_key_value,
|
612 |
+
output_attentions,
|
613 |
+
)
|
614 |
+
else:
|
615 |
+
layer_outputs = layer_module(
|
616 |
+
hidden_states,
|
617 |
+
attention_mask,
|
618 |
+
layer_head_mask,
|
619 |
+
encoder_hidden_states,
|
620 |
+
encoder_attention_mask,
|
621 |
+
past_key_value,
|
622 |
+
output_attentions,
|
623 |
+
)
|
624 |
+
|
625 |
+
hidden_states = layer_outputs[0]
|
626 |
+
if use_cache:
|
627 |
+
next_decoder_cache = next_decoder_cache + (layer_outputs[-1],)
|
628 |
+
if output_attentions:
|
629 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
630 |
+
if self.config.add_cross_attention:
|
631 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
|
632 |
+
|
633 |
+
if self.emb_layer_norm_after:
|
634 |
+
hidden_states = self.emb_layer_norm_after(hidden_states)
|
635 |
+
|
636 |
+
if output_hidden_states:
|
637 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
638 |
+
|
639 |
+
if not return_dict:
|
640 |
+
return tuple(
|
641 |
+
v
|
642 |
+
for v in [
|
643 |
+
hidden_states,
|
644 |
+
next_decoder_cache,
|
645 |
+
all_hidden_states,
|
646 |
+
all_self_attentions,
|
647 |
+
all_cross_attentions,
|
648 |
+
]
|
649 |
+
if v is not None
|
650 |
+
)
|
651 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
652 |
+
last_hidden_state=hidden_states,
|
653 |
+
past_key_values=next_decoder_cache,
|
654 |
+
hidden_states=all_hidden_states,
|
655 |
+
attentions=all_self_attentions,
|
656 |
+
cross_attentions=all_cross_attentions,
|
657 |
+
)
|
658 |
+
|
659 |
+
|
660 |
+
# Copied from transformers.models.bert.modeling_bert.BertPooler
|
661 |
+
class EsmPooler(nn.Module):
|
662 |
+
def __init__(self, config):
|
663 |
+
super().__init__()
|
664 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
665 |
+
self.activation = nn.Tanh()
|
666 |
+
|
667 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
668 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
669 |
+
# to the first token.
|
670 |
+
first_token_tensor = hidden_states[:, 0]
|
671 |
+
pooled_output = self.dense(first_token_tensor)
|
672 |
+
pooled_output = self.activation(pooled_output)
|
673 |
+
return pooled_output
|
674 |
+
|
675 |
+
|
676 |
+
class EsmPreTrainedModel(PreTrainedModel):
|
677 |
+
"""
|
678 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
679 |
+
models.
|
680 |
+
"""
|
681 |
+
|
682 |
+
config_class = EsmConfig
|
683 |
+
base_model_prefix = "esm"
|
684 |
+
supports_gradient_checkpointing = True
|
685 |
+
_no_split_modules = ["EsmLayer", "EsmFoldTriangularSelfAttentionBlock", "EsmEmbeddings"]
|
686 |
+
|
687 |
+
# Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights
|
688 |
+
def _init_weights(self, module):
|
689 |
+
"""Initialize the weights"""
|
690 |
+
if isinstance(module, nn.Linear):
|
691 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
692 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
693 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
694 |
+
if module.bias is not None:
|
695 |
+
module.bias.data.zero_()
|
696 |
+
elif isinstance(module, nn.Embedding):
|
697 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
698 |
+
if module.padding_idx is not None:
|
699 |
+
module.weight.data[module.padding_idx].zero_()
|
700 |
+
elif isinstance(module, nn.LayerNorm):
|
701 |
+
module.bias.data.zero_()
|
702 |
+
module.weight.data.fill_(1.0)
|
703 |
+
|
704 |
+
|
705 |
+
ESM_START_DOCSTRING = r"""
|
706 |
+
|
707 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
708 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
709 |
+
etc.)
|
710 |
+
|
711 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
712 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
713 |
+
and behavior.
|
714 |
+
|
715 |
+
Parameters:
|
716 |
+
config ([`EsmConfig`]): Model configuration class with all the parameters of the
|
717 |
+
model. Initializing with a config file does not load the weights associated with the model, only the
|
718 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
719 |
+
"""
|
720 |
+
|
721 |
+
ESM_INPUTS_DOCSTRING = r"""
|
722 |
+
Args:
|
723 |
+
input_ids (`torch.LongTensor` of shape `({0})`):
|
724 |
+
Indices of input sequence tokens in the vocabulary.
|
725 |
+
|
726 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
727 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
728 |
+
|
729 |
+
[What are input IDs?](../glossary#input-ids)
|
730 |
+
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
731 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
732 |
+
|
733 |
+
- 1 for tokens that are **not masked**,
|
734 |
+
- 0 for tokens that are **masked**.
|
735 |
+
|
736 |
+
[What are attention masks?](../glossary#attention-mask)
|
737 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
738 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
739 |
+
config.max_position_embeddings - 1]`.
|
740 |
+
|
741 |
+
[What are position IDs?](../glossary#position-ids)
|
742 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
743 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
744 |
+
|
745 |
+
- 1 indicates the head is **not masked**,
|
746 |
+
- 0 indicates the head is **masked**.
|
747 |
+
|
748 |
+
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
749 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
750 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
751 |
+
model's internal embedding lookup matrix.
|
752 |
+
output_attentions (`bool`, *optional*):
|
753 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
754 |
+
tensors for more detail.
|
755 |
+
output_hidden_states (`bool`, *optional*):
|
756 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
757 |
+
more detail.
|
758 |
+
return_dict (`bool`, *optional*):
|
759 |
+
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
|
760 |
+
"""
|
761 |
+
|
762 |
+
|
763 |
+
@add_start_docstrings(
|
764 |
+
"The bare ESM Model transformer outputting raw hidden-states without any specific head on top.",
|
765 |
+
ESM_START_DOCSTRING,
|
766 |
+
)
|
767 |
+
class EsmModel(EsmPreTrainedModel):
|
768 |
+
"""
|
769 |
+
|
770 |
+
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
|
771 |
+
cross-attention is added between the self-attention layers, following the architecture described in [Attention is
|
772 |
+
all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
|
773 |
+
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
|
774 |
+
|
775 |
+
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
|
776 |
+
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
|
777 |
+
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
|
778 |
+
"""
|
779 |
+
|
780 |
+
def __init__(self, config, add_pooling_layer=True):
|
781 |
+
super().__init__(config)
|
782 |
+
self.config = config
|
783 |
+
|
784 |
+
self.embeddings = EsmEmbeddings(config)
|
785 |
+
self.encoder = EsmEncoder(config)
|
786 |
+
|
787 |
+
self.pooler = EsmPooler(config) if add_pooling_layer else None
|
788 |
+
|
789 |
+
self.contact_head = EsmContactPredictionHead(
|
790 |
+
in_features=config.num_hidden_layers * config.num_attention_heads, bias=True
|
791 |
+
)
|
792 |
+
|
793 |
+
# Initialize weights and apply final processing
|
794 |
+
self.post_init()
|
795 |
+
|
796 |
+
def get_input_embeddings(self):
|
797 |
+
return self.embeddings.word_embeddings
|
798 |
+
|
799 |
+
def set_input_embeddings(self, value):
|
800 |
+
self.embeddings.word_embeddings = value
|
801 |
+
|
802 |
+
def _prune_heads(self, heads_to_prune):
|
803 |
+
"""
|
804 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
805 |
+
class PreTrainedModel
|
806 |
+
"""
|
807 |
+
for layer, heads in heads_to_prune.items():
|
808 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
809 |
+
|
810 |
+
@add_start_docstrings_to_model_forward(ESM_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
|
811 |
+
@add_code_sample_docstrings(
|
812 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
813 |
+
output_type=BaseModelOutputWithPoolingAndCrossAttentions,
|
814 |
+
config_class=_CONFIG_FOR_DOC,
|
815 |
+
)
|
816 |
+
def forward(
|
817 |
+
self,
|
818 |
+
input_ids: Optional[torch.Tensor] = None,
|
819 |
+
attention_mask: Optional[torch.Tensor] = None,
|
820 |
+
position_ids: Optional[torch.Tensor] = None,
|
821 |
+
head_mask: Optional[torch.Tensor] = None,
|
822 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
823 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
824 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
825 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
826 |
+
use_cache: Optional[bool] = None,
|
827 |
+
output_attentions: Optional[bool] = None,
|
828 |
+
output_hidden_states: Optional[bool] = None,
|
829 |
+
return_dict: Optional[bool] = None,
|
830 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
|
831 |
+
r"""
|
832 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
833 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
834 |
+
the model is configured as a decoder.
|
835 |
+
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
836 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
837 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
838 |
+
|
839 |
+
- 1 for tokens that are **not masked**,
|
840 |
+
- 0 for tokens that are **masked**.
|
841 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
842 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
843 |
+
|
844 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
845 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
846 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
847 |
+
use_cache (`bool`, *optional*):
|
848 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
849 |
+
`past_key_values`).
|
850 |
+
"""
|
851 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
852 |
+
output_hidden_states = (
|
853 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
854 |
+
)
|
855 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
856 |
+
|
857 |
+
if self.config.is_decoder:
|
858 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
859 |
+
else:
|
860 |
+
use_cache = False
|
861 |
+
|
862 |
+
if input_ids is not None and inputs_embeds is not None:
|
863 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
864 |
+
elif input_ids is not None:
|
865 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
866 |
+
input_shape = input_ids.size()
|
867 |
+
elif inputs_embeds is not None:
|
868 |
+
input_shape = inputs_embeds.size()[:-1]
|
869 |
+
else:
|
870 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
871 |
+
|
872 |
+
batch_size, seq_length = input_shape
|
873 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
874 |
+
|
875 |
+
# past_key_values_length
|
876 |
+
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
877 |
+
|
878 |
+
if attention_mask is None:
|
879 |
+
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
|
880 |
+
|
881 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
882 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
883 |
+
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
|
884 |
+
|
885 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
886 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
887 |
+
if self.config.is_decoder and encoder_hidden_states is not None:
|
888 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
889 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
890 |
+
if encoder_attention_mask is None:
|
891 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
892 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
893 |
+
else:
|
894 |
+
encoder_extended_attention_mask = None
|
895 |
+
|
896 |
+
# Prepare head mask if needed
|
897 |
+
# 1.0 in head_mask indicate we keep the head
|
898 |
+
# attention_probs has shape bsz x n_heads x N x N
|
899 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
900 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
901 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
902 |
+
|
903 |
+
embedding_output = self.embeddings(
|
904 |
+
input_ids=input_ids,
|
905 |
+
position_ids=position_ids,
|
906 |
+
attention_mask=attention_mask,
|
907 |
+
inputs_embeds=inputs_embeds,
|
908 |
+
past_key_values_length=past_key_values_length,
|
909 |
+
)
|
910 |
+
encoder_outputs = self.encoder(
|
911 |
+
embedding_output,
|
912 |
+
attention_mask=extended_attention_mask,
|
913 |
+
head_mask=head_mask,
|
914 |
+
encoder_hidden_states=encoder_hidden_states,
|
915 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
916 |
+
past_key_values=past_key_values,
|
917 |
+
use_cache=use_cache,
|
918 |
+
output_attentions=output_attentions,
|
919 |
+
output_hidden_states=output_hidden_states,
|
920 |
+
return_dict=return_dict,
|
921 |
+
)
|
922 |
+
sequence_output = encoder_outputs[0]
|
923 |
+
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
924 |
+
|
925 |
+
if not return_dict:
|
926 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
927 |
+
|
928 |
+
return BaseModelOutputWithPoolingAndCrossAttentions(
|
929 |
+
last_hidden_state=sequence_output,
|
930 |
+
pooler_output=pooled_output,
|
931 |
+
past_key_values=encoder_outputs.past_key_values,
|
932 |
+
hidden_states=encoder_outputs.hidden_states,
|
933 |
+
attentions=encoder_outputs.attentions,
|
934 |
+
cross_attentions=encoder_outputs.cross_attentions,
|
935 |
+
)
|
936 |
+
|
937 |
+
def predict_contacts(self, tokens, attention_mask):
|
938 |
+
attns = self(tokens, attention_mask=attention_mask, return_dict=True, output_attentions=True).attentions
|
939 |
+
attns = torch.stack(attns, dim=1) # Matches the original model layout
|
940 |
+
# In the original model, attentions for padding tokens are completely zeroed out.
|
941 |
+
# This makes no difference most of the time because the other tokens won't attend to them,
|
942 |
+
# but it does for the contact prediction task, which takes attentions as input,
|
943 |
+
# so we have to mimic that here.
|
944 |
+
attns *= attention_mask.unsqueeze(1).unsqueeze(2).unsqueeze(3)
|
945 |
+
attns *= attention_mask.unsqueeze(1).unsqueeze(2).unsqueeze(4)
|
946 |
+
return self.contact_head(tokens, attns)
|
947 |
+
|
948 |
+
|
949 |
+
@add_start_docstrings("""ESM Model with a `language modeling` head on top.""", ESM_START_DOCSTRING)
|
950 |
+
class EsmForMaskedLM(EsmPreTrainedModel):
|
951 |
+
_tied_weights_keys = ["lm_head.decoder.weight"]
|
952 |
+
|
953 |
+
def __init__(self, config):
|
954 |
+
super().__init__(config)
|
955 |
+
|
956 |
+
if config.is_decoder:
|
957 |
+
logger.warning(
|
958 |
+
"If you want to use `EsmForMaskedLM` make sure `config.is_decoder=False` for "
|
959 |
+
"bi-directional self-attention."
|
960 |
+
)
|
961 |
+
|
962 |
+
self.esm = EsmModel(config, add_pooling_layer=False)
|
963 |
+
self.lm_head = EsmLMHead(config)
|
964 |
+
|
965 |
+
self.init_weights()
|
966 |
+
|
967 |
+
def get_output_embeddings(self):
|
968 |
+
return self.lm_head.decoder
|
969 |
+
|
970 |
+
def set_output_embeddings(self, new_embeddings):
|
971 |
+
self.lm_head.decoder = new_embeddings
|
972 |
+
|
973 |
+
@add_start_docstrings_to_model_forward(ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
974 |
+
@add_code_sample_docstrings(
|
975 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
976 |
+
output_type=MaskedLMOutput,
|
977 |
+
config_class=_CONFIG_FOR_DOC,
|
978 |
+
mask="<mask>",
|
979 |
+
)
|
980 |
+
def forward(
|
981 |
+
self,
|
982 |
+
input_ids: Optional[torch.LongTensor] = None,
|
983 |
+
attention_mask: Optional[torch.Tensor] = None,
|
984 |
+
position_ids: Optional[torch.LongTensor] = None,
|
985 |
+
head_mask: Optional[torch.Tensor] = None,
|
986 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
987 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
988 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
989 |
+
labels: Optional[torch.LongTensor] = None,
|
990 |
+
output_attentions: Optional[bool] = None,
|
991 |
+
output_hidden_states: Optional[bool] = None,
|
992 |
+
return_dict: Optional[bool] = None,
|
993 |
+
) -> Union[Tuple, MaskedLMOutput]:
|
994 |
+
r"""
|
995 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
996 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
997 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
998 |
+
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
999 |
+
kwargs (`Dict[str, any]`, optional, defaults to *{}*):
|
1000 |
+
Used to hide legacy arguments that have been deprecated.
|
1001 |
+
"""
|
1002 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1003 |
+
|
1004 |
+
outputs = self.esm(
|
1005 |
+
input_ids,
|
1006 |
+
attention_mask=attention_mask,
|
1007 |
+
position_ids=position_ids,
|
1008 |
+
head_mask=head_mask,
|
1009 |
+
inputs_embeds=inputs_embeds,
|
1010 |
+
encoder_hidden_states=encoder_hidden_states,
|
1011 |
+
encoder_attention_mask=encoder_attention_mask,
|
1012 |
+
output_attentions=output_attentions,
|
1013 |
+
output_hidden_states=output_hidden_states,
|
1014 |
+
return_dict=return_dict,
|
1015 |
+
)
|
1016 |
+
sequence_output = outputs[0]
|
1017 |
+
prediction_scores = self.lm_head(sequence_output)
|
1018 |
+
|
1019 |
+
masked_lm_loss = None
|
1020 |
+
if labels is not None:
|
1021 |
+
loss_fct = CrossEntropyLoss()
|
1022 |
+
|
1023 |
+
labels = labels.to(prediction_scores.device)
|
1024 |
+
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
1025 |
+
|
1026 |
+
if not return_dict:
|
1027 |
+
output = (prediction_scores,) + outputs[2:]
|
1028 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
1029 |
+
|
1030 |
+
return MaskedLMOutput(
|
1031 |
+
loss=masked_lm_loss,
|
1032 |
+
logits=prediction_scores,
|
1033 |
+
hidden_states=outputs.hidden_states,
|
1034 |
+
attentions=outputs.attentions,
|
1035 |
+
)
|
1036 |
+
|
1037 |
+
def predict_contacts(self, tokens, attention_mask):
|
1038 |
+
return self.esm.predict_contacts(tokens, attention_mask=attention_mask)
|
1039 |
+
|
1040 |
+
|
1041 |
+
class EsmLMHead(nn.Module):
|
1042 |
+
"""ESM Head for masked language modeling."""
|
1043 |
+
|
1044 |
+
def __init__(self, config):
|
1045 |
+
super().__init__()
|
1046 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
1047 |
+
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
1048 |
+
|
1049 |
+
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1050 |
+
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
1051 |
+
|
1052 |
+
def forward(self, features, **kwargs):
|
1053 |
+
x = self.dense(features)
|
1054 |
+
x = gelu(x)
|
1055 |
+
x = self.layer_norm(x)
|
1056 |
+
|
1057 |
+
# project back to size of vocabulary with bias
|
1058 |
+
x = self.decoder(x) + self.bias
|
1059 |
+
return x
|
1060 |
+
|
1061 |
+
|
1062 |
+
@add_start_docstrings(
|
1063 |
+
"""
|
1064 |
+
ESM Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
|
1065 |
+
output) e.g. for GLUE tasks.
|
1066 |
+
""",
|
1067 |
+
ESM_START_DOCSTRING,
|
1068 |
+
)
|
1069 |
+
class EsmForSequenceClassification(EsmPreTrainedModel):
|
1070 |
+
def __init__(self, config):
|
1071 |
+
super().__init__(config)
|
1072 |
+
self.num_labels = config.num_labels
|
1073 |
+
self.config = config
|
1074 |
+
|
1075 |
+
self.esm = EsmModel(config, add_pooling_layer=False)
|
1076 |
+
self.classifier = EsmClassificationHead(config)
|
1077 |
+
|
1078 |
+
self.init_weights()
|
1079 |
+
|
1080 |
+
@add_start_docstrings_to_model_forward(ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1081 |
+
@add_code_sample_docstrings(
|
1082 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1083 |
+
output_type=SequenceClassifierOutput,
|
1084 |
+
config_class=_CONFIG_FOR_DOC,
|
1085 |
+
)
|
1086 |
+
def forward(
|
1087 |
+
self,
|
1088 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1089 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1090 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1091 |
+
head_mask: Optional[torch.Tensor] = None,
|
1092 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1093 |
+
labels: Optional[torch.LongTensor] = None,
|
1094 |
+
output_attentions: Optional[bool] = None,
|
1095 |
+
output_hidden_states: Optional[bool] = None,
|
1096 |
+
return_dict: Optional[bool] = None,
|
1097 |
+
) -> Union[Tuple, SequenceClassifierOutput]:
|
1098 |
+
r"""
|
1099 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1100 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1101 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1102 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1103 |
+
"""
|
1104 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1105 |
+
|
1106 |
+
outputs = self.esm(
|
1107 |
+
input_ids,
|
1108 |
+
attention_mask=attention_mask,
|
1109 |
+
position_ids=position_ids,
|
1110 |
+
head_mask=head_mask,
|
1111 |
+
inputs_embeds=inputs_embeds,
|
1112 |
+
output_attentions=output_attentions,
|
1113 |
+
output_hidden_states=output_hidden_states,
|
1114 |
+
return_dict=return_dict,
|
1115 |
+
)
|
1116 |
+
sequence_output = outputs[0]
|
1117 |
+
logits = self.classifier(sequence_output)
|
1118 |
+
|
1119 |
+
loss = None
|
1120 |
+
if labels is not None:
|
1121 |
+
labels = labels.to(logits.device)
|
1122 |
+
|
1123 |
+
if self.config.problem_type is None:
|
1124 |
+
if self.num_labels == 1:
|
1125 |
+
self.config.problem_type = "regression"
|
1126 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1127 |
+
self.config.problem_type = "single_label_classification"
|
1128 |
+
else:
|
1129 |
+
self.config.problem_type = "multi_label_classification"
|
1130 |
+
|
1131 |
+
if self.config.problem_type == "regression":
|
1132 |
+
loss_fct = MSELoss()
|
1133 |
+
if self.num_labels == 1:
|
1134 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
1135 |
+
else:
|
1136 |
+
loss = loss_fct(logits, labels)
|
1137 |
+
elif self.config.problem_type == "single_label_classification":
|
1138 |
+
loss_fct = CrossEntropyLoss()
|
1139 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1140 |
+
elif self.config.problem_type == "multi_label_classification":
|
1141 |
+
loss_fct = BCEWithLogitsLoss()
|
1142 |
+
loss = loss_fct(logits, labels)
|
1143 |
+
|
1144 |
+
if not return_dict:
|
1145 |
+
output = (logits,) + outputs[2:]
|
1146 |
+
return ((loss,) + output) if loss is not None else output
|
1147 |
+
|
1148 |
+
return SequenceClassifierOutput(
|
1149 |
+
loss=loss,
|
1150 |
+
logits=logits,
|
1151 |
+
hidden_states=outputs.hidden_states,
|
1152 |
+
attentions=outputs.attentions,
|
1153 |
+
)
|
1154 |
+
|
1155 |
+
|
1156 |
+
@add_start_docstrings(
|
1157 |
+
"""
|
1158 |
+
ESM Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
1159 |
+
Named-Entity-Recognition (NER) tasks.
|
1160 |
+
""",
|
1161 |
+
ESM_START_DOCSTRING,
|
1162 |
+
)
|
1163 |
+
class EsmForTokenClassification(EsmPreTrainedModel):
|
1164 |
+
def __init__(self, config):
|
1165 |
+
super().__init__(config)
|
1166 |
+
self.num_labels = config.num_labels
|
1167 |
+
|
1168 |
+
self.esm = EsmModel(config, add_pooling_layer=False)
|
1169 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
1170 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1171 |
+
|
1172 |
+
self.init_weights()
|
1173 |
+
|
1174 |
+
@add_start_docstrings_to_model_forward(ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1175 |
+
@add_code_sample_docstrings(
|
1176 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1177 |
+
output_type=TokenClassifierOutput,
|
1178 |
+
config_class=_CONFIG_FOR_DOC,
|
1179 |
+
)
|
1180 |
+
def forward(
|
1181 |
+
self,
|
1182 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1183 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1184 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1185 |
+
head_mask: Optional[torch.Tensor] = None,
|
1186 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1187 |
+
labels: Optional[torch.LongTensor] = None,
|
1188 |
+
output_attentions: Optional[bool] = None,
|
1189 |
+
output_hidden_states: Optional[bool] = None,
|
1190 |
+
return_dict: Optional[bool] = None,
|
1191 |
+
) -> Union[Tuple, TokenClassifierOutput]:
|
1192 |
+
r"""
|
1193 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1194 |
+
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
1195 |
+
"""
|
1196 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1197 |
+
|
1198 |
+
outputs = self.esm(
|
1199 |
+
input_ids,
|
1200 |
+
attention_mask=attention_mask,
|
1201 |
+
position_ids=position_ids,
|
1202 |
+
head_mask=head_mask,
|
1203 |
+
inputs_embeds=inputs_embeds,
|
1204 |
+
output_attentions=output_attentions,
|
1205 |
+
output_hidden_states=output_hidden_states,
|
1206 |
+
return_dict=return_dict,
|
1207 |
+
)
|
1208 |
+
|
1209 |
+
sequence_output = outputs[0]
|
1210 |
+
|
1211 |
+
sequence_output = self.dropout(sequence_output)
|
1212 |
+
logits = self.classifier(sequence_output)
|
1213 |
+
|
1214 |
+
loss = None
|
1215 |
+
if labels is not None:
|
1216 |
+
loss_fct = CrossEntropyLoss()
|
1217 |
+
|
1218 |
+
labels = labels.to(logits.device)
|
1219 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1220 |
+
|
1221 |
+
if not return_dict:
|
1222 |
+
output = (logits,) + outputs[2:]
|
1223 |
+
return ((loss,) + output) if loss is not None else output
|
1224 |
+
|
1225 |
+
return TokenClassifierOutput(
|
1226 |
+
loss=loss,
|
1227 |
+
logits=logits,
|
1228 |
+
hidden_states=outputs.hidden_states,
|
1229 |
+
attentions=outputs.attentions,
|
1230 |
+
)
|
1231 |
+
|
1232 |
+
|
1233 |
+
class EsmClassificationHead(nn.Module):
|
1234 |
+
"""Head for sentence-level classification tasks."""
|
1235 |
+
|
1236 |
+
def __init__(self, config):
|
1237 |
+
super().__init__()
|
1238 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
1239 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
1240 |
+
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
|
1241 |
+
|
1242 |
+
def forward(self, features, **kwargs):
|
1243 |
+
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
|
1244 |
+
x = self.dropout(x)
|
1245 |
+
x = self.dense(x)
|
1246 |
+
x = torch.tanh(x)
|
1247 |
+
x = self.dropout(x)
|
1248 |
+
x = self.out_proj(x)
|
1249 |
+
return x
|
1250 |
+
|
1251 |
+
|
1252 |
+
def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0):
|
1253 |
+
"""
|
1254 |
+
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
|
1255 |
+
are ignored. This is modified from fairseq's `utils.make_positions`.
|
1256 |
+
|
1257 |
+
Args:
|
1258 |
+
x: torch.Tensor x:
|
1259 |
+
|
1260 |
+
Returns: torch.Tensor
|
1261 |
+
"""
|
1262 |
+
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
|
1263 |
+
mask = input_ids.ne(padding_idx).int()
|
1264 |
+
incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask
|
1265 |
+
return incremental_indices.long() + padding_idx
|
venv/lib/python3.10/site-packages/transformers/models/esm/modeling_esmfold.py
ADDED
@@ -0,0 +1,2322 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 Meta and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
import math
|
16 |
+
import sys
|
17 |
+
from dataclasses import dataclass
|
18 |
+
from functools import partial
|
19 |
+
from typing import Callable, Dict, List, Optional, Sequence, Tuple, Union
|
20 |
+
|
21 |
+
import numpy as np
|
22 |
+
import torch
|
23 |
+
import torch.nn as nn
|
24 |
+
from torch.nn import LayerNorm
|
25 |
+
|
26 |
+
from ...integrations.deepspeed import is_deepspeed_available
|
27 |
+
from ...modeling_outputs import ModelOutput
|
28 |
+
from ...utils import (
|
29 |
+
ContextManagers,
|
30 |
+
add_start_docstrings,
|
31 |
+
add_start_docstrings_to_model_forward,
|
32 |
+
is_scipy_available,
|
33 |
+
logging,
|
34 |
+
replace_return_docstrings,
|
35 |
+
)
|
36 |
+
from .configuration_esm import EsmConfig
|
37 |
+
from .modeling_esm import ESM_START_DOCSTRING, EsmModel, EsmPreTrainedModel
|
38 |
+
from .openfold_utils import (
|
39 |
+
OFProtein,
|
40 |
+
Rigid,
|
41 |
+
Rotation,
|
42 |
+
atom14_to_atom37,
|
43 |
+
chunk_layer,
|
44 |
+
compute_predicted_aligned_error,
|
45 |
+
compute_tm,
|
46 |
+
frames_and_literature_positions_to_atom14_pos,
|
47 |
+
make_atom14_masks,
|
48 |
+
residue_constants,
|
49 |
+
to_pdb,
|
50 |
+
torsion_angles_to_frames,
|
51 |
+
)
|
52 |
+
|
53 |
+
|
54 |
+
logger = logging.get_logger(__name__)
|
55 |
+
_CHECKPOINT_FOR_DOC = "facebook/esmfold_v1"
|
56 |
+
_CONFIG_FOR_DOC = "EsmConfig"
|
57 |
+
|
58 |
+
|
59 |
+
@dataclass
|
60 |
+
class EsmForProteinFoldingOutput(ModelOutput):
|
61 |
+
"""
|
62 |
+
Output type of [`EsmForProteinFoldingOutput`].
|
63 |
+
|
64 |
+
Args:
|
65 |
+
frames (`torch.FloatTensor`):
|
66 |
+
Output frames.
|
67 |
+
sidechain_frames (`torch.FloatTensor`):
|
68 |
+
Output sidechain frames.
|
69 |
+
unnormalized_angles (`torch.FloatTensor`):
|
70 |
+
Predicted unnormalized backbone and side chain torsion angles.
|
71 |
+
angles (`torch.FloatTensor`):
|
72 |
+
Predicted backbone and side chain torsion angles.
|
73 |
+
positions (`torch.FloatTensor`):
|
74 |
+
Predicted positions of the backbone and side chain atoms.
|
75 |
+
states (`torch.FloatTensor`):
|
76 |
+
Hidden states from the protein folding trunk.
|
77 |
+
s_s (`torch.FloatTensor`):
|
78 |
+
Per-residue embeddings derived by concatenating the hidden states of each layer of the ESM-2 LM stem.
|
79 |
+
s_z (`torch.FloatTensor`):
|
80 |
+
Pairwise residue embeddings.
|
81 |
+
distogram_logits (`torch.FloatTensor`):
|
82 |
+
Input logits to the distogram used to compute residue distances.
|
83 |
+
lm_logits (`torch.FloatTensor`):
|
84 |
+
Logits output by the ESM-2 protein language model stem.
|
85 |
+
aatype (`torch.FloatTensor`):
|
86 |
+
Input amino acids (AlphaFold2 indices).
|
87 |
+
atom14_atom_exists (`torch.FloatTensor`):
|
88 |
+
Whether each atom exists in the atom14 representation.
|
89 |
+
residx_atom14_to_atom37 (`torch.FloatTensor`):
|
90 |
+
Mapping between atoms in the atom14 and atom37 representations.
|
91 |
+
residx_atom37_to_atom14 (`torch.FloatTensor`):
|
92 |
+
Mapping between atoms in the atom37 and atom14 representations.
|
93 |
+
atom37_atom_exists (`torch.FloatTensor`):
|
94 |
+
Whether each atom exists in the atom37 representation.
|
95 |
+
residue_index (`torch.FloatTensor`):
|
96 |
+
The index of each residue in the protein chain. Unless internal padding tokens are used, this will just be
|
97 |
+
a sequence of integers from 0 to `sequence_length`.
|
98 |
+
lddt_head (`torch.FloatTensor`):
|
99 |
+
Raw outputs from the lddt head used to compute plddt.
|
100 |
+
plddt (`torch.FloatTensor`):
|
101 |
+
Per-residue confidence scores. Regions of low confidence may indicate areas where the model's prediction is
|
102 |
+
uncertain, or where the protein structure is disordered.
|
103 |
+
ptm_logits (`torch.FloatTensor`):
|
104 |
+
Raw logits used for computing ptm.
|
105 |
+
ptm (`torch.FloatTensor`):
|
106 |
+
TM-score output representing the model's high-level confidence in the overall structure.
|
107 |
+
aligned_confidence_probs (`torch.FloatTensor`):
|
108 |
+
Per-residue confidence scores for the aligned structure.
|
109 |
+
predicted_aligned_error (`torch.FloatTensor`):
|
110 |
+
Predicted error between the model's prediction and the ground truth.
|
111 |
+
max_predicted_aligned_error (`torch.FloatTensor`):
|
112 |
+
Per-sample maximum predicted error.
|
113 |
+
"""
|
114 |
+
|
115 |
+
frames: torch.FloatTensor = None
|
116 |
+
sidechain_frames: torch.FloatTensor = None
|
117 |
+
unnormalized_angles: torch.FloatTensor = None
|
118 |
+
angles: torch.FloatTensor = None
|
119 |
+
positions: torch.FloatTensor = None
|
120 |
+
states: torch.FloatTensor = None
|
121 |
+
s_s: torch.FloatTensor = None
|
122 |
+
s_z: torch.FloatTensor = None
|
123 |
+
distogram_logits: torch.FloatTensor = None
|
124 |
+
lm_logits: torch.FloatTensor = None
|
125 |
+
aatype: torch.FloatTensor = None
|
126 |
+
atom14_atom_exists: torch.FloatTensor = None
|
127 |
+
residx_atom14_to_atom37: torch.FloatTensor = None
|
128 |
+
residx_atom37_to_atom14: torch.FloatTensor = None
|
129 |
+
atom37_atom_exists: torch.FloatTensor = None
|
130 |
+
residue_index: torch.FloatTensor = None
|
131 |
+
lddt_head: torch.FloatTensor = None
|
132 |
+
plddt: torch.FloatTensor = None
|
133 |
+
ptm_logits: torch.FloatTensor = None
|
134 |
+
ptm: torch.FloatTensor = None
|
135 |
+
aligned_confidence_probs: torch.FloatTensor = None
|
136 |
+
predicted_aligned_error: torch.FloatTensor = None
|
137 |
+
max_predicted_aligned_error: torch.FloatTensor = None
|
138 |
+
|
139 |
+
|
140 |
+
ESMFOLD_INPUTS_DOCSTRING = r"""
|
141 |
+
Args:
|
142 |
+
input_ids (`torch.LongTensor` of shape `({0})`):
|
143 |
+
Indices of input sequence tokens in the vocabulary.
|
144 |
+
|
145 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
146 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
147 |
+
|
148 |
+
[What are input IDs?](../glossary#input-ids)
|
149 |
+
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
150 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
151 |
+
|
152 |
+
- 1 for tokens that are **not masked**,
|
153 |
+
- 0 for tokens that are **masked**.
|
154 |
+
|
155 |
+
[What are attention masks?](../glossary#attention-mask)
|
156 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
157 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
158 |
+
config.max_position_embeddings - 1]`.
|
159 |
+
|
160 |
+
[What are position IDs?](../glossary#position-ids)
|
161 |
+
masking_pattern (`torch.LongTensor` of shape `({0})`, *optional*):
|
162 |
+
Locations of tokens to mask during training as a form of regularization. Mask values selected in `[0, 1]`.
|
163 |
+
num_recycles (`int`, *optional*, defaults to `None`):
|
164 |
+
Number of times to recycle the input sequence. If `None`, defaults to `config.num_recycles`. "Recycling"
|
165 |
+
consists of passing the output of the folding trunk back in as input to the trunk. During training, the
|
166 |
+
number of recycles should vary with each batch, to ensure that the model learns to output valid predictions
|
167 |
+
after each recycle. During inference, num_recycles should be set to the highest value that the model was
|
168 |
+
trained with for maximum accuracy. Accordingly, when this value is set to `None`, config.max_recycles is
|
169 |
+
used.
|
170 |
+
"""
|
171 |
+
|
172 |
+
|
173 |
+
def is_fp16_enabled():
|
174 |
+
# Autocast world
|
175 |
+
fp16_enabled = torch.get_autocast_gpu_dtype() == torch.float16
|
176 |
+
fp16_enabled = fp16_enabled and torch.is_autocast_enabled()
|
177 |
+
|
178 |
+
return fp16_enabled
|
179 |
+
|
180 |
+
|
181 |
+
def is_deepspeed_initialized():
|
182 |
+
if is_deepspeed_available():
|
183 |
+
return False
|
184 |
+
else:
|
185 |
+
try:
|
186 |
+
import deepspeed
|
187 |
+
|
188 |
+
# This is not available in all DeepSpeed versions.
|
189 |
+
return deepspeed.utils.is_initialized()
|
190 |
+
except Exception:
|
191 |
+
return False
|
192 |
+
|
193 |
+
|
194 |
+
def collate_dense_tensors(samples: List[torch.Tensor], pad_v: float = 0) -> torch.Tensor:
|
195 |
+
"""
|
196 |
+
Takes a list of tensors with the following dimensions:
|
197 |
+
[(d_11, ..., d_1K),
|
198 |
+
(d_21, ..., d_2K), ..., (d_N1, ..., d_NK)]
|
199 |
+
and stack + pads them into a single tensor of:
|
200 |
+
(N, max_i=1,N { d_i1 }, ..., max_i=1,N {diK})
|
201 |
+
"""
|
202 |
+
if len(samples) == 0:
|
203 |
+
return torch.Tensor()
|
204 |
+
if len({x.dim() for x in samples}) != 1:
|
205 |
+
raise RuntimeError(f"Samples has varying dimensions: {[x.dim() for x in samples]}")
|
206 |
+
(device,) = tuple({x.device for x in samples}) # assumes all on same device
|
207 |
+
max_shape = [max(lst) for lst in zip(*[x.shape for x in samples])]
|
208 |
+
result = torch.empty(len(samples), *max_shape, dtype=samples[0].dtype, device=device)
|
209 |
+
result.fill_(pad_v)
|
210 |
+
for i in range(len(samples)):
|
211 |
+
result_i = result[i]
|
212 |
+
t = samples[i]
|
213 |
+
result_i[tuple(slice(0, k) for k in t.shape)] = t
|
214 |
+
return result
|
215 |
+
|
216 |
+
|
217 |
+
def flatten_final_dims(t: torch.Tensor, no_dims: int):
|
218 |
+
return t.reshape(t.shape[:-no_dims] + (-1,))
|
219 |
+
|
220 |
+
|
221 |
+
def permute_final_dims(tensor: torch.Tensor, inds: List[int]):
|
222 |
+
zero_index = -1 * len(inds)
|
223 |
+
first_inds = list(range(len(tensor.shape[:zero_index])))
|
224 |
+
return tensor.permute(first_inds + [zero_index + i for i in inds])
|
225 |
+
|
226 |
+
|
227 |
+
def dict_multimap(fn, dicts):
|
228 |
+
first = dicts[0]
|
229 |
+
new_dict = {}
|
230 |
+
for k, v in first.items():
|
231 |
+
all_v = [d[k] for d in dicts]
|
232 |
+
if isinstance(v, dict):
|
233 |
+
new_dict[k] = dict_multimap(fn, all_v)
|
234 |
+
else:
|
235 |
+
new_dict[k] = fn(all_v)
|
236 |
+
|
237 |
+
return new_dict
|
238 |
+
|
239 |
+
|
240 |
+
def trunc_normal_init_(weights, scale=1.0, fan="fan_in"):
|
241 |
+
shape = weights.shape
|
242 |
+
scale = scale / max(1, shape[1])
|
243 |
+
|
244 |
+
if not is_scipy_available():
|
245 |
+
logger.warning(
|
246 |
+
"This init requires scipy, but scipy was not found, default to an approximation that might not be"
|
247 |
+
" equivalent."
|
248 |
+
)
|
249 |
+
std = math.sqrt(scale)
|
250 |
+
torch.nn.init.normal_(weights, std=std).clamp(min=0.0, max=2.0 * std)
|
251 |
+
|
252 |
+
else:
|
253 |
+
from scipy.stats import truncnorm
|
254 |
+
|
255 |
+
std = math.sqrt(scale) / truncnorm.std(a=-2, b=2, loc=0, scale=1)
|
256 |
+
samples = truncnorm.rvs(a=-2, b=2, loc=0, scale=std, size=weights.numel())
|
257 |
+
samples = np.reshape(samples, shape)
|
258 |
+
weights.copy_(torch.tensor(samples, device=weights.device))
|
259 |
+
|
260 |
+
|
261 |
+
def ipa_point_weights_init_(weights):
|
262 |
+
with torch.no_grad():
|
263 |
+
softplus_inverse_1 = 0.541324854612918
|
264 |
+
weights.fill_(softplus_inverse_1)
|
265 |
+
|
266 |
+
|
267 |
+
class EsmFoldLinear(nn.Linear):
|
268 |
+
"""
|
269 |
+
A Linear layer with built-in nonstandard initializations. Called just like torch.nn.Linear.
|
270 |
+
|
271 |
+
Implements the initializers in 1.11.4, plus some additional ones found in the code.
|
272 |
+
"""
|
273 |
+
|
274 |
+
def __init__(
|
275 |
+
self,
|
276 |
+
in_dim: int,
|
277 |
+
out_dim: int,
|
278 |
+
bias: bool = True,
|
279 |
+
init: str = "default",
|
280 |
+
init_fn: Optional[Callable[[torch.Tensor, torch.Tensor], None]] = None,
|
281 |
+
):
|
282 |
+
"""
|
283 |
+
Args:
|
284 |
+
in_dim:
|
285 |
+
The final dimension of inputs to the layer
|
286 |
+
out_dim:
|
287 |
+
The final dimension of layer outputs
|
288 |
+
bias:
|
289 |
+
Whether to learn an additive bias. True by default
|
290 |
+
init:
|
291 |
+
The initializer to use. Choose from:
|
292 |
+
|
293 |
+
"default": LeCun fan-in truncated normal initialization "relu": He initialization w/ truncated normal
|
294 |
+
distribution "glorot": Fan-average Glorot uniform initialization "gating": Weights=0, Bias=1 "normal":
|
295 |
+
Normal initialization with std=1/sqrt(fan_in) "final": Weights=0, Bias=0
|
296 |
+
|
297 |
+
Overridden by init_fn if the latter is not None.
|
298 |
+
init_fn:
|
299 |
+
A custom initializer taking weight and bias as inputs. Overrides init if not None.
|
300 |
+
"""
|
301 |
+
super().__init__(in_dim, out_dim, bias=bias)
|
302 |
+
|
303 |
+
if bias:
|
304 |
+
with torch.no_grad():
|
305 |
+
self.bias.fill_(0)
|
306 |
+
self.init = init
|
307 |
+
self.init_fn = init_fn
|
308 |
+
|
309 |
+
if init not in ["default", "relu", "glorot", "gating", "normal", "final"]:
|
310 |
+
raise ValueError("Invalid init string.")
|
311 |
+
|
312 |
+
|
313 |
+
class EsmFoldLayerNorm(nn.Module):
|
314 |
+
def __init__(self, c_in, eps=1e-5):
|
315 |
+
super().__init__()
|
316 |
+
|
317 |
+
self.c_in = (c_in,)
|
318 |
+
self.eps = eps
|
319 |
+
|
320 |
+
self.weight = nn.Parameter(torch.ones(c_in))
|
321 |
+
self.bias = nn.Parameter(torch.zeros(c_in))
|
322 |
+
|
323 |
+
def forward(self, x):
|
324 |
+
d = x.dtype
|
325 |
+
if d is torch.bfloat16 and not is_deepspeed_initialized():
|
326 |
+
with torch.cuda.amp.autocast(enabled=False):
|
327 |
+
out = nn.functional.layer_norm(x, self.c_in, self.weight.to(dtype=d), self.bias.to(dtype=d), self.eps)
|
328 |
+
else:
|
329 |
+
out = nn.functional.layer_norm(x, self.c_in, self.weight, self.bias, self.eps)
|
330 |
+
|
331 |
+
return out
|
332 |
+
|
333 |
+
|
334 |
+
@torch.jit.ignore
|
335 |
+
def softmax_no_cast(t: torch.Tensor, dim: int = -1) -> torch.Tensor:
|
336 |
+
"""
|
337 |
+
Softmax, but without automatic casting to fp32 when the input is of type bfloat16
|
338 |
+
"""
|
339 |
+
d = t.dtype
|
340 |
+
if d is torch.bfloat16 and not is_deepspeed_initialized():
|
341 |
+
with torch.cuda.amp.autocast(enabled=False):
|
342 |
+
s = torch.nn.functional.softmax(t, dim=dim)
|
343 |
+
else:
|
344 |
+
s = torch.nn.functional.softmax(t, dim=dim)
|
345 |
+
|
346 |
+
return s
|
347 |
+
|
348 |
+
|
349 |
+
class EsmFoldAttention(nn.Module):
|
350 |
+
"""
|
351 |
+
Standard multi-head attention using AlphaFold's default layer initialization. Allows multiple bias vectors.
|
352 |
+
"""
|
353 |
+
|
354 |
+
def __init__(
|
355 |
+
self,
|
356 |
+
c_q: int,
|
357 |
+
c_k: int,
|
358 |
+
c_v: int,
|
359 |
+
c_hidden: int,
|
360 |
+
no_heads: int,
|
361 |
+
gating: bool = True,
|
362 |
+
):
|
363 |
+
"""
|
364 |
+
Args:
|
365 |
+
c_q:
|
366 |
+
Input dimension of query data
|
367 |
+
c_k:
|
368 |
+
Input dimension of key data
|
369 |
+
c_v:
|
370 |
+
Input dimension of value data
|
371 |
+
c_hidden:
|
372 |
+
Per-head hidden dimension
|
373 |
+
no_heads:
|
374 |
+
Number of attention heads
|
375 |
+
gating:
|
376 |
+
Whether the output should be gated using query data
|
377 |
+
"""
|
378 |
+
super().__init__()
|
379 |
+
|
380 |
+
self.c_q = c_q
|
381 |
+
self.c_k = c_k
|
382 |
+
self.c_v = c_v
|
383 |
+
self.c_hidden = c_hidden
|
384 |
+
self.no_heads = no_heads
|
385 |
+
self.gating = gating
|
386 |
+
|
387 |
+
# DISCREPANCY: c_hidden is not the per-head channel dimension, as
|
388 |
+
# stated in the supplement, but the overall channel dimension.
|
389 |
+
|
390 |
+
self.linear_q = EsmFoldLinear(self.c_q, self.c_hidden * self.no_heads, bias=False, init="glorot")
|
391 |
+
self.linear_k = EsmFoldLinear(self.c_k, self.c_hidden * self.no_heads, bias=False, init="glorot")
|
392 |
+
self.linear_v = EsmFoldLinear(self.c_v, self.c_hidden * self.no_heads, bias=False, init="glorot")
|
393 |
+
self.linear_o = EsmFoldLinear(self.c_hidden * self.no_heads, self.c_q, init="final")
|
394 |
+
|
395 |
+
self.linear_g = None
|
396 |
+
if self.gating:
|
397 |
+
self.linear_g = EsmFoldLinear(self.c_q, self.c_hidden * self.no_heads, init="gating")
|
398 |
+
|
399 |
+
self.sigmoid = nn.Sigmoid()
|
400 |
+
|
401 |
+
def _prep_qkv(self, q_x: torch.Tensor, kv_x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
402 |
+
# [*, Q/K/V, H * C_hidden]
|
403 |
+
q = self.linear_q(q_x)
|
404 |
+
k = self.linear_k(kv_x)
|
405 |
+
v = self.linear_v(kv_x)
|
406 |
+
|
407 |
+
# [*, Q/K, H, C_hidden]
|
408 |
+
q = q.view(q.shape[:-1] + (self.no_heads, -1))
|
409 |
+
k = k.view(k.shape[:-1] + (self.no_heads, -1))
|
410 |
+
v = v.view(v.shape[:-1] + (self.no_heads, -1))
|
411 |
+
|
412 |
+
# [*, H, Q/K, C_hidden]
|
413 |
+
q = q.transpose(-2, -3)
|
414 |
+
k = k.transpose(-2, -3)
|
415 |
+
v = v.transpose(-2, -3)
|
416 |
+
|
417 |
+
q /= math.sqrt(self.c_hidden)
|
418 |
+
|
419 |
+
return q, k, v
|
420 |
+
|
421 |
+
def _wrap_up(self, o: torch.Tensor, q_x: torch.Tensor) -> torch.Tensor:
|
422 |
+
if self.linear_g is not None:
|
423 |
+
g = self.sigmoid(self.linear_g(q_x))
|
424 |
+
|
425 |
+
# [*, Q, H, C_hidden]
|
426 |
+
g = g.view(g.shape[:-1] + (self.no_heads, -1))
|
427 |
+
o = o * g
|
428 |
+
|
429 |
+
# [*, Q, H * C_hidden]
|
430 |
+
o = flatten_final_dims(o, 2)
|
431 |
+
|
432 |
+
# [*, Q, C_q]
|
433 |
+
o = self.linear_o(o)
|
434 |
+
|
435 |
+
return o
|
436 |
+
|
437 |
+
def forward(
|
438 |
+
self,
|
439 |
+
q_x: torch.Tensor,
|
440 |
+
kv_x: torch.Tensor,
|
441 |
+
biases: Optional[List[torch.Tensor]] = None,
|
442 |
+
use_memory_efficient_kernel: bool = False,
|
443 |
+
use_lma: bool = False,
|
444 |
+
lma_q_chunk_size: int = 1024,
|
445 |
+
lma_kv_chunk_size: int = 4096,
|
446 |
+
use_flash: bool = False,
|
447 |
+
flash_mask: Optional[torch.Tensor] = None,
|
448 |
+
) -> torch.Tensor:
|
449 |
+
"""
|
450 |
+
Args:
|
451 |
+
q_x:
|
452 |
+
[*, Q, C_q] query data
|
453 |
+
kv_x:
|
454 |
+
[*, K, C_k] key data
|
455 |
+
biases:
|
456 |
+
List of biases that broadcast to [*, H, Q, K]
|
457 |
+
use_memory_efficient_kernel:
|
458 |
+
Whether to use a custom memory-efficient attention kernel. This should be the default choice for most.
|
459 |
+
If none of the "use_<...>" flags are True, a stock PyTorch implementation is used instead
|
460 |
+
use_lma:
|
461 |
+
Whether to use low-memory attention (Staats & Rabe 2021). If none of the "use_<...>" flags are True, a
|
462 |
+
stock PyTorch implementation is used instead
|
463 |
+
lma_q_chunk_size:
|
464 |
+
Query chunk size (for LMA)
|
465 |
+
lma_kv_chunk_size:
|
466 |
+
Key/Value chunk size (for LMA)
|
467 |
+
Returns
|
468 |
+
[*, Q, C_q] attention update
|
469 |
+
"""
|
470 |
+
if use_lma and (lma_q_chunk_size is None or lma_kv_chunk_size is None):
|
471 |
+
raise ValueError("If use_lma is specified, lma_q_chunk_size and lma_kv_chunk_size must be provided")
|
472 |
+
|
473 |
+
if use_flash and biases is not None:
|
474 |
+
raise ValueError("use_flash is incompatible with the bias option. For masking, use flash_mask instead")
|
475 |
+
|
476 |
+
attn_options = [use_memory_efficient_kernel, use_lma, use_flash]
|
477 |
+
if sum(attn_options) > 1:
|
478 |
+
raise ValueError("Choose at most one alternative attention algorithm")
|
479 |
+
|
480 |
+
if biases is None:
|
481 |
+
biases = []
|
482 |
+
|
483 |
+
# [*, H, Q/K, C_hidden]
|
484 |
+
query, key, value = self._prep_qkv(q_x, kv_x)
|
485 |
+
key = permute_final_dims(key, (1, 0))
|
486 |
+
|
487 |
+
# [*, H, Q, K]
|
488 |
+
output = torch.matmul(query, key)
|
489 |
+
for b in biases:
|
490 |
+
output += b
|
491 |
+
output = softmax_no_cast(output, -1)
|
492 |
+
|
493 |
+
# [*, H, Q, C_hidden]
|
494 |
+
output = torch.matmul(output, value)
|
495 |
+
output = output.transpose(-2, -3)
|
496 |
+
output = self._wrap_up(output, q_x)
|
497 |
+
|
498 |
+
return output
|
499 |
+
|
500 |
+
|
501 |
+
class EsmFoldTriangleAttention(nn.Module):
|
502 |
+
def __init__(self, c_in, c_hidden, no_heads, starting=True, inf=1e9):
|
503 |
+
"""
|
504 |
+
Args:
|
505 |
+
c_in:
|
506 |
+
Input channel dimension
|
507 |
+
c_hidden:
|
508 |
+
Overall hidden channel dimension (not per-head)
|
509 |
+
no_heads:
|
510 |
+
Number of attention heads
|
511 |
+
"""
|
512 |
+
super().__init__()
|
513 |
+
|
514 |
+
self.c_in = c_in
|
515 |
+
self.c_hidden = c_hidden
|
516 |
+
self.no_heads = no_heads
|
517 |
+
self.starting = starting
|
518 |
+
self.inf = inf
|
519 |
+
|
520 |
+
self.layer_norm = LayerNorm(self.c_in)
|
521 |
+
|
522 |
+
self.linear = EsmFoldLinear(c_in, self.no_heads, bias=False, init="normal")
|
523 |
+
|
524 |
+
self.mha = EsmFoldAttention(self.c_in, self.c_in, self.c_in, self.c_hidden, self.no_heads)
|
525 |
+
|
526 |
+
@torch.jit.ignore
|
527 |
+
def _chunk(
|
528 |
+
self,
|
529 |
+
x: torch.Tensor,
|
530 |
+
biases: List[torch.Tensor],
|
531 |
+
chunk_size: int,
|
532 |
+
use_memory_efficient_kernel: bool = False,
|
533 |
+
use_lma: bool = False,
|
534 |
+
inplace_safe: bool = False,
|
535 |
+
) -> torch.Tensor:
|
536 |
+
"triangle! triangle!"
|
537 |
+
mha_inputs = {
|
538 |
+
"q_x": x,
|
539 |
+
"kv_x": x,
|
540 |
+
"biases": biases,
|
541 |
+
}
|
542 |
+
|
543 |
+
return chunk_layer(
|
544 |
+
partial(self.mha, use_memory_efficient_kernel=use_memory_efficient_kernel, use_lma=use_lma),
|
545 |
+
mha_inputs,
|
546 |
+
chunk_size=chunk_size,
|
547 |
+
no_batch_dims=len(x.shape[:-2]),
|
548 |
+
_out=x if inplace_safe else None,
|
549 |
+
)
|
550 |
+
|
551 |
+
def forward(
|
552 |
+
self,
|
553 |
+
x: torch.Tensor,
|
554 |
+
mask: Optional[torch.Tensor] = None,
|
555 |
+
chunk_size: Optional[int] = None,
|
556 |
+
use_memory_efficient_kernel: bool = False,
|
557 |
+
use_lma: bool = False,
|
558 |
+
inplace_safe: bool = False,
|
559 |
+
) -> torch.Tensor:
|
560 |
+
"""
|
561 |
+
Args:
|
562 |
+
x:
|
563 |
+
[*, I, J, C_in] input tensor (e.g. the pair representation)
|
564 |
+
Returns:
|
565 |
+
[*, I, J, C_in] output tensor
|
566 |
+
"""
|
567 |
+
if mask is None:
|
568 |
+
# [*, I, J]
|
569 |
+
mask = x.new_ones(
|
570 |
+
x.shape[:-1],
|
571 |
+
)
|
572 |
+
|
573 |
+
if not self.starting:
|
574 |
+
x = x.transpose(-2, -3)
|
575 |
+
mask = mask.transpose(-1, -2)
|
576 |
+
|
577 |
+
# [*, I, J, C_in]
|
578 |
+
x = self.layer_norm(x)
|
579 |
+
|
580 |
+
# [*, I, 1, 1, J]
|
581 |
+
mask_bias = (self.inf * (mask - 1))[..., :, None, None, :]
|
582 |
+
|
583 |
+
# [*, H, I, J]
|
584 |
+
triangle_bias = permute_final_dims(self.linear(x), (2, 0, 1))
|
585 |
+
|
586 |
+
# [*, 1, H, I, J]
|
587 |
+
triangle_bias = triangle_bias.unsqueeze(-4)
|
588 |
+
|
589 |
+
biases = [mask_bias, triangle_bias]
|
590 |
+
|
591 |
+
if chunk_size is not None:
|
592 |
+
x = self._chunk(
|
593 |
+
x,
|
594 |
+
biases,
|
595 |
+
chunk_size,
|
596 |
+
use_memory_efficient_kernel=use_memory_efficient_kernel,
|
597 |
+
use_lma=use_lma,
|
598 |
+
inplace_safe=inplace_safe,
|
599 |
+
)
|
600 |
+
else:
|
601 |
+
x = self.mha(
|
602 |
+
q_x=x, kv_x=x, biases=biases, use_memory_efficient_kernel=use_memory_efficient_kernel, use_lma=use_lma
|
603 |
+
)
|
604 |
+
|
605 |
+
if not self.starting:
|
606 |
+
x = x.transpose(-2, -3)
|
607 |
+
|
608 |
+
return x
|
609 |
+
|
610 |
+
|
611 |
+
class EsmFoldTriangleMultiplicativeUpdate(nn.Module):
|
612 |
+
"""
|
613 |
+
Implements Algorithms 11 and 12.
|
614 |
+
"""
|
615 |
+
|
616 |
+
def __init__(self, config, _outgoing=True):
|
617 |
+
super().__init__()
|
618 |
+
c_hidden = config.pairwise_state_dim
|
619 |
+
self._outgoing = _outgoing
|
620 |
+
|
621 |
+
self.linear_a_p = EsmFoldLinear(c_hidden, c_hidden)
|
622 |
+
self.linear_a_g = EsmFoldLinear(c_hidden, c_hidden, init="gating")
|
623 |
+
self.linear_b_p = EsmFoldLinear(c_hidden, c_hidden)
|
624 |
+
self.linear_b_g = EsmFoldLinear(c_hidden, c_hidden, init="gating")
|
625 |
+
self.linear_g = EsmFoldLinear(c_hidden, c_hidden, init="gating")
|
626 |
+
self.linear_z = EsmFoldLinear(c_hidden, c_hidden, init="final")
|
627 |
+
|
628 |
+
self.layer_norm_in = LayerNorm(c_hidden)
|
629 |
+
self.layer_norm_out = LayerNorm(c_hidden)
|
630 |
+
|
631 |
+
self.sigmoid = nn.Sigmoid()
|
632 |
+
|
633 |
+
def _combine_projections(
|
634 |
+
self, a: torch.Tensor, b: torch.Tensor, _inplace_chunk_size: Optional[int] = None
|
635 |
+
) -> torch.Tensor:
|
636 |
+
if self._outgoing:
|
637 |
+
a = permute_final_dims(a, (2, 0, 1))
|
638 |
+
b = permute_final_dims(b, (2, 1, 0))
|
639 |
+
else:
|
640 |
+
a = permute_final_dims(a, (2, 1, 0))
|
641 |
+
b = permute_final_dims(b, (2, 0, 1))
|
642 |
+
|
643 |
+
if _inplace_chunk_size is not None:
|
644 |
+
# To be replaced by torch vmap
|
645 |
+
for i in range(0, a.shape[-3], _inplace_chunk_size):
|
646 |
+
a_chunk = a[..., i : i + _inplace_chunk_size, :, :]
|
647 |
+
b_chunk = b[..., i : i + _inplace_chunk_size, :, :]
|
648 |
+
a[..., i : i + _inplace_chunk_size, :, :] = torch.matmul(
|
649 |
+
a_chunk,
|
650 |
+
b_chunk,
|
651 |
+
)
|
652 |
+
|
653 |
+
p = a
|
654 |
+
else:
|
655 |
+
p = torch.matmul(a, b)
|
656 |
+
|
657 |
+
return permute_final_dims(p, (1, 2, 0))
|
658 |
+
|
659 |
+
def _inference_forward(
|
660 |
+
self,
|
661 |
+
z: torch.Tensor,
|
662 |
+
mask: Optional[torch.Tensor] = None,
|
663 |
+
inplace_chunk_size: Optional[int] = None,
|
664 |
+
with_add: bool = True,
|
665 |
+
):
|
666 |
+
"""
|
667 |
+
Args:
|
668 |
+
z:
|
669 |
+
A [*, N, N, C_z] pair representation
|
670 |
+
mask:
|
671 |
+
A [*, N, N] pair mask
|
672 |
+
inplace_chunk_size:
|
673 |
+
Size of chunks used in the main computation. Increase to trade memory for speed.
|
674 |
+
with_add:
|
675 |
+
If True, z is overwritten with (z + update). Otherwise, it is overwritten with (update).
|
676 |
+
Returns:
|
677 |
+
A reference to the overwritten z
|
678 |
+
|
679 |
+
More memory-efficient, inference-only version of the forward function. Uses in-place operations, fusion of the
|
680 |
+
addition that happens after this module in the Evoformer, a smidge of recomputation, and a cache of overwritten
|
681 |
+
values to lower peak memory consumption of this module from 5x the size of the input tensor z to 2.5x its size.
|
682 |
+
Useful for inference on extremely long sequences.
|
683 |
+
|
684 |
+
It works as follows. We will make reference to variables used in the default forward implementation below.
|
685 |
+
Naively, triangle multiplication attention requires the manifestation of 5 tensors the size of z: 1) z, the
|
686 |
+
"square" input tensor, 2) a, the first projection of z, 3) b, the second projection of b, 4) g, a z-sized mask,
|
687 |
+
and 5) a z-sized tensor for intermediate computations. For large N, this is prohibitively expensive; for
|
688 |
+
N=4000, for example, z is more than 8GB alone. To avoid this problem, we compute b, g, and all intermediate
|
689 |
+
tensors in small chunks, noting that the chunks required to compute a chunk of the output depend only on the
|
690 |
+
tensor a and corresponding vertical and horizontal chunks of z. This suggests an algorithm that loops over
|
691 |
+
pairs of chunks of z: hereafter "columns" and "rows" of z, even though each "column" and "row" in fact contains
|
692 |
+
inplace_chunk_size contiguous true columns and rows of z. Writing output chunks to a new tensor would bring
|
693 |
+
total memory consumption down to 3x the size of z. However, more memory can be saved by writing output chunks
|
694 |
+
directly to z in-place. WLOG, we choose to write output chunks vertically, overwriting the ith "column" of z at
|
695 |
+
the end of the ith iteration of the main loop. Despite this overwriting, the ith column is always one column
|
696 |
+
ahead of previously overwritten columns and can be recovered directly from z. After the first iteration,
|
697 |
+
however, the ith row of z is always at least partially overwritten. For this reason, we introduce the z-cache,
|
698 |
+
a tensor one-half the size of z. The z-cache initially contains the left half (2nd and 3rd quadrants) of z. For
|
699 |
+
0 < i < N/2, the missing left part of the ith row of z is recovered from this cache at the beginning of the ith
|
700 |
+
iteration. Once i exceeds n/2, the cache is "reoriented" to encompass the 3rd and 4th quadrants of z instead.
|
701 |
+
Though the 3rd quadrant of the original z is entirely overwritten at this point, it can be recovered from the
|
702 |
+
z-cache itself. Thereafter, the ith row of z can be recovered in its entirety from the reoriented z-cache.
|
703 |
+
After the final iteration, z has been completely overwritten and contains the triangular multiplicative update.
|
704 |
+
If with_add is True, it instead contains the sum of z and the triangular multiplicative update. In either case,
|
705 |
+
peak memory consumption is just 2.5x the size of z, disregarding memory used for chunks and other small
|
706 |
+
variables.
|
707 |
+
"""
|
708 |
+
if mask is None:
|
709 |
+
mask = z.new_ones(z.shape[:-1])
|
710 |
+
|
711 |
+
mask = mask.unsqueeze(-1)
|
712 |
+
|
713 |
+
def compute_projection_helper(pair, mask, a=True):
|
714 |
+
if a:
|
715 |
+
linear_g = self.linear_a_g
|
716 |
+
linear_p = self.linear_a_p
|
717 |
+
else:
|
718 |
+
linear_g = self.linear_b_g
|
719 |
+
linear_p = self.linear_b_p
|
720 |
+
|
721 |
+
pair = self.layer_norm_in(pair)
|
722 |
+
p = linear_g(pair)
|
723 |
+
p.sigmoid_()
|
724 |
+
p *= linear_p(pair)
|
725 |
+
p *= mask
|
726 |
+
p = permute_final_dims(p, (2, 0, 1))
|
727 |
+
return p
|
728 |
+
|
729 |
+
def compute_projection(pair, mask, a=True, chunked=True):
|
730 |
+
need_transpose = self._outgoing ^ a
|
731 |
+
if not chunked:
|
732 |
+
p = compute_projection_helper(pair, mask, a)
|
733 |
+
if need_transpose:
|
734 |
+
p = p.transpose(-1, -2)
|
735 |
+
else:
|
736 |
+
# This computation is chunked so as not to exceed our 2.5x
|
737 |
+
# budget with a large intermediate tensor
|
738 |
+
linear_g = self.linear_a_g if a else self.linear_b_g
|
739 |
+
c = linear_g.bias.shape[-1]
|
740 |
+
out_shape = pair.shape[:-3] + (c,) + pair.shape[-3:-1]
|
741 |
+
p = pair.new_zeros(out_shape)
|
742 |
+
for i in range(0, pair.shape[-3], inplace_chunk_size):
|
743 |
+
pair_chunk = pair[..., i : i + inplace_chunk_size, :, :]
|
744 |
+
pair_chunk = compute_projection_helper(
|
745 |
+
pair[..., i : i + inplace_chunk_size, :, :],
|
746 |
+
mask[..., i : i + inplace_chunk_size, :, :],
|
747 |
+
a,
|
748 |
+
)
|
749 |
+
if need_transpose:
|
750 |
+
pair_chunk = pair_chunk.transpose(-1, -2)
|
751 |
+
p[..., i : i + inplace_chunk_size] = pair_chunk
|
752 |
+
else:
|
753 |
+
p[..., i : i + inplace_chunk_size, :] = pair_chunk
|
754 |
+
|
755 |
+
del pair_chunk
|
756 |
+
|
757 |
+
return p
|
758 |
+
|
759 |
+
# We start by fully manifesting a. In addition to the input, this
|
760 |
+
# brings total memory consumption to 2x z (disregarding size of chunks)
|
761 |
+
# [*, N, N, c]
|
762 |
+
a = compute_projection(z, mask, True, chunked=True)
|
763 |
+
|
764 |
+
if inplace_chunk_size is not None:
|
765 |
+
n = a.shape[-1]
|
766 |
+
half_n = n // 2 + n % 2
|
767 |
+
row_dim = -3
|
768 |
+
col_dim = -2
|
769 |
+
b_chunk_dim = row_dim if self._outgoing else col_dim
|
770 |
+
|
771 |
+
def empty_slicer(t):
|
772 |
+
return [slice(None) for _ in t.shape]
|
773 |
+
|
774 |
+
def slice_tensor(t, start, end, dim):
|
775 |
+
# Slices start:end from the dim dimension of t
|
776 |
+
s = empty_slicer(t)
|
777 |
+
s[dim] = slice(start, end)
|
778 |
+
return t[s]
|
779 |
+
|
780 |
+
def flip_z_cache_(z_cache, z):
|
781 |
+
# "Reorient" the z_cache (see below), filling it with quadrants
|
782 |
+
# 3---recovered from the z_cache---and 4---recovered from z---
|
783 |
+
# of the input tensor z.
|
784 |
+
quadrant_3 = slice_tensor(z_cache, half_n, None, row_dim)
|
785 |
+
z_cache = z_cache.transpose(row_dim, col_dim)
|
786 |
+
|
787 |
+
# If n is odd, we need to shrink the z_cache by one row
|
788 |
+
z_cache = z_cache[..., : (n // 2), :, :]
|
789 |
+
|
790 |
+
# Move the 3rd quadrant of z into the
|
791 |
+
first_half_slicer = empty_slicer(z_cache)
|
792 |
+
first_half_slicer[col_dim] = slice(0, half_n)
|
793 |
+
z_cache[first_half_slicer] = quadrant_3
|
794 |
+
|
795 |
+
# Get the fourth quadrant of z
|
796 |
+
quadrant_4 = slice_tensor(z, half_n, None, row_dim)
|
797 |
+
quadrant_4 = slice_tensor(quadrant_4, half_n, None, col_dim)
|
798 |
+
|
799 |
+
# Insert said quadrant into the rotated z-cache
|
800 |
+
quadrant_3_slicer = empty_slicer(z_cache)
|
801 |
+
quadrant_3_slicer[col_dim] = slice(half_n, None)
|
802 |
+
|
803 |
+
z_cache[quadrant_3_slicer] = quadrant_4
|
804 |
+
|
805 |
+
return z_cache
|
806 |
+
|
807 |
+
# Initialize the z cache to the left half of z.
|
808 |
+
z_cache_shape = list(z.shape)
|
809 |
+
z_cache_shape[col_dim] = half_n
|
810 |
+
z_cache = z.new_zeros(z_cache_shape)
|
811 |
+
z_cache_slicer = empty_slicer(z_cache)
|
812 |
+
z_cache_slicer[col_dim] = slice(0, half_n)
|
813 |
+
z_cache.copy_(z[z_cache_slicer])
|
814 |
+
z_cache_rotated = False
|
815 |
+
|
816 |
+
# We need to reorient the z-cache at the halfway point, and we
|
817 |
+
# don't want a single chunk to straddle that point. We contract one
|
818 |
+
# of the chunks in the middle to address that problem.
|
819 |
+
i_range = list(range(0, half_n, inplace_chunk_size))
|
820 |
+
initial_offsets = [i_2 - i_1 for i_1, i_2 in zip(i_range, i_range[1:] + [half_n])]
|
821 |
+
after_half = list(range(half_n, n, inplace_chunk_size))
|
822 |
+
after_half_offsets = [inplace_chunk_size for _ in after_half]
|
823 |
+
combined_range_with_offsets = zip(i_range + after_half, initial_offsets + after_half_offsets)
|
824 |
+
for i, offset in combined_range_with_offsets:
|
825 |
+
if not z_cache_rotated and i >= half_n:
|
826 |
+
z_cache = flip_z_cache_(z_cache, z)
|
827 |
+
z_cache_rotated = True
|
828 |
+
|
829 |
+
z_chunk_b = slice_tensor(z, i, i + offset, b_chunk_dim)
|
830 |
+
mask_chunk = slice_tensor(mask, i, i + offset, b_chunk_dim)
|
831 |
+
|
832 |
+
z_chunk_b = z_chunk_b.clone()
|
833 |
+
if b_chunk_dim == col_dim:
|
834 |
+
z_chunk_b = slice_tensor(z, i, i + offset, col_dim)
|
835 |
+
else: # b_chunk_dim == row_dim
|
836 |
+
# In this case, the b-dimension (b_chunk_dim) is partially
|
837 |
+
# overwritten at the end of each iteration. We need to
|
838 |
+
# restore the missing component from the z-cache.
|
839 |
+
if not z_cache_rotated:
|
840 |
+
z_chunk_slicer = empty_slicer(z_chunk_b)
|
841 |
+
z_chunk_slicer[col_dim] = slice(0, half_n)
|
842 |
+
z_chunk_b[z_chunk_slicer] = slice_tensor(z_cache, i, i + offset, row_dim)
|
843 |
+
else:
|
844 |
+
z_cache_offset = i - half_n
|
845 |
+
z_chunk_b = slice_tensor(z_cache, z_cache_offset, z_cache_offset + offset, row_dim)
|
846 |
+
|
847 |
+
b_chunk = compute_projection(z_chunk_b, mask_chunk, a=False, chunked=False)
|
848 |
+
del z_chunk_b
|
849 |
+
|
850 |
+
x_chunk = torch.matmul(a, b_chunk)
|
851 |
+
x_chunk = permute_final_dims(x_chunk, (1, 2, 0))
|
852 |
+
x_chunk = self.layer_norm_out(x_chunk)
|
853 |
+
x_chunk = self.linear_z(x_chunk)
|
854 |
+
|
855 |
+
# The g dimension (col_dim) is parallel to and ahead of the
|
856 |
+
# overwrites in z. We can extract the g chunk normally.
|
857 |
+
z_chunk_g = slice_tensor(z, i, i + offset, col_dim)
|
858 |
+
g_chunk = self.linear_g(self.layer_norm_in(z_chunk_g))
|
859 |
+
g_chunk.sigmoid_()
|
860 |
+
del z_chunk_g
|
861 |
+
|
862 |
+
x_chunk *= g_chunk
|
863 |
+
|
864 |
+
# Write the columns into z in-place
|
865 |
+
z_slicer = empty_slicer(z)
|
866 |
+
z_slicer[col_dim] = slice(i, i + offset)
|
867 |
+
if with_add:
|
868 |
+
z[z_slicer] += x_chunk
|
869 |
+
else:
|
870 |
+
z[z_slicer] = x_chunk
|
871 |
+
else:
|
872 |
+
b = compute_projection(z, mask, False, False)
|
873 |
+
x = torch.matmul(a, b)
|
874 |
+
x = self.layer_norm_out(x)
|
875 |
+
x = self.linear_z(x)
|
876 |
+
g = self.linear_g(z)
|
877 |
+
g.sigmoid_()
|
878 |
+
x *= g
|
879 |
+
if with_add:
|
880 |
+
z += x
|
881 |
+
else:
|
882 |
+
z = x
|
883 |
+
|
884 |
+
return z
|
885 |
+
|
886 |
+
def forward(
|
887 |
+
self,
|
888 |
+
z: torch.Tensor,
|
889 |
+
mask: Optional[torch.Tensor] = None,
|
890 |
+
inplace_safe: bool = False,
|
891 |
+
_add_with_inplace: bool = False,
|
892 |
+
_inplace_chunk_size: Optional[int] = 256,
|
893 |
+
) -> torch.Tensor:
|
894 |
+
"""
|
895 |
+
Args:
|
896 |
+
x:
|
897 |
+
[*, N_res, N_res, C_z] input tensor
|
898 |
+
mask:
|
899 |
+
[*, N_res, N_res] input mask
|
900 |
+
Returns:
|
901 |
+
[*, N_res, N_res, C_z] output tensor
|
902 |
+
"""
|
903 |
+
if inplace_safe:
|
904 |
+
x = self._inference_forward(
|
905 |
+
z,
|
906 |
+
mask,
|
907 |
+
inplace_chunk_size=_inplace_chunk_size,
|
908 |
+
with_add=_add_with_inplace,
|
909 |
+
)
|
910 |
+
return x
|
911 |
+
|
912 |
+
if mask is None:
|
913 |
+
mask = z.new_ones(z.shape[:-1])
|
914 |
+
|
915 |
+
mask = mask.unsqueeze(-1)
|
916 |
+
|
917 |
+
z = self.layer_norm_in(z)
|
918 |
+
a = mask
|
919 |
+
a = a * self.sigmoid(self.linear_a_g(z))
|
920 |
+
a = a * self.linear_a_p(z)
|
921 |
+
b = mask
|
922 |
+
b = b * self.sigmoid(self.linear_b_g(z))
|
923 |
+
b = b * self.linear_b_p(z)
|
924 |
+
|
925 |
+
if is_fp16_enabled():
|
926 |
+
with torch.cuda.amp.autocast(enabled=False):
|
927 |
+
x = self._combine_projections(a.float(), b.float())
|
928 |
+
else:
|
929 |
+
x = self._combine_projections(a, b)
|
930 |
+
|
931 |
+
del a, b
|
932 |
+
x = self.layer_norm_out(x)
|
933 |
+
x = self.linear_z(x)
|
934 |
+
g = self.sigmoid(self.linear_g(z))
|
935 |
+
x = x * g
|
936 |
+
|
937 |
+
return x
|
938 |
+
|
939 |
+
|
940 |
+
class EsmFoldPreTrainedModel(EsmPreTrainedModel):
|
941 |
+
"""
|
942 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
943 |
+
models.
|
944 |
+
"""
|
945 |
+
|
946 |
+
# Subclass `EsMPreTrainedModel` to deal with special init
|
947 |
+
def _init_weights(self, module):
|
948 |
+
"""Initialize the weights"""
|
949 |
+
if isinstance(module, EsmFoldLinear):
|
950 |
+
with torch.no_grad():
|
951 |
+
if module.init_fn is not None:
|
952 |
+
module.init_fn(module.weight, module.bias)
|
953 |
+
elif module.init == "default":
|
954 |
+
trunc_normal_init_(module.weight, scale=1.0)
|
955 |
+
elif module.init == "relu":
|
956 |
+
trunc_normal_init_(module.weight, scale=2.0)
|
957 |
+
elif module.init == "glorot":
|
958 |
+
nn.init.xavier_uniform_(module.weight, gain=1)
|
959 |
+
elif module.init == "gating":
|
960 |
+
module.weight.fill_(0.0)
|
961 |
+
if module.bias:
|
962 |
+
module.bias.fill_(1.0)
|
963 |
+
elif module.init == "normal":
|
964 |
+
torch.nn.init.kaiming_normal_(module.weight, nonlinearity="linear")
|
965 |
+
elif module.init == "final":
|
966 |
+
module.weight.fill_(0.0)
|
967 |
+
elif isinstance(module, EsmFoldInvariantPointAttention):
|
968 |
+
ipa_point_weights_init_(module.head_weights)
|
969 |
+
elif isinstance(module, EsmFoldTriangularSelfAttentionBlock):
|
970 |
+
torch.nn.init.zeros_(module.tri_mul_in.linear_z.weight)
|
971 |
+
torch.nn.init.zeros_(module.tri_mul_in.linear_z.bias)
|
972 |
+
torch.nn.init.zeros_(module.tri_mul_out.linear_z.weight)
|
973 |
+
torch.nn.init.zeros_(module.tri_mul_out.linear_z.bias)
|
974 |
+
torch.nn.init.zeros_(module.tri_att_start.mha.linear_o.weight)
|
975 |
+
torch.nn.init.zeros_(module.tri_att_start.mha.linear_o.bias)
|
976 |
+
torch.nn.init.zeros_(module.tri_att_end.mha.linear_o.weight)
|
977 |
+
torch.nn.init.zeros_(module.tri_att_end.mha.linear_o.bias)
|
978 |
+
|
979 |
+
torch.nn.init.zeros_(module.sequence_to_pair.o_proj.weight)
|
980 |
+
torch.nn.init.zeros_(module.sequence_to_pair.o_proj.bias)
|
981 |
+
torch.nn.init.zeros_(module.pair_to_sequence.linear.weight)
|
982 |
+
torch.nn.init.zeros_(module.seq_attention.o_proj.weight)
|
983 |
+
torch.nn.init.zeros_(module.seq_attention.o_proj.bias)
|
984 |
+
torch.nn.init.zeros_(module.mlp_seq.mlp[-2].weight)
|
985 |
+
torch.nn.init.zeros_(module.mlp_seq.mlp[-2].bias)
|
986 |
+
torch.nn.init.zeros_(module.mlp_pair.mlp[-2].weight)
|
987 |
+
torch.nn.init.zeros_(module.mlp_pair.mlp[-2].bias)
|
988 |
+
else:
|
989 |
+
super()._init_weights(module)
|
990 |
+
|
991 |
+
|
992 |
+
class EsmFoldSelfAttention(nn.Module):
|
993 |
+
def __init__(self, embed_dim, num_heads, head_width, gated=False):
|
994 |
+
super().__init__()
|
995 |
+
assert embed_dim == num_heads * head_width
|
996 |
+
|
997 |
+
self.embed_dim = embed_dim
|
998 |
+
self.num_heads = num_heads
|
999 |
+
self.head_width = head_width
|
1000 |
+
|
1001 |
+
self.proj = nn.Linear(embed_dim, embed_dim * 3, bias=False)
|
1002 |
+
self.o_proj = nn.Linear(embed_dim, embed_dim, bias=True)
|
1003 |
+
self.gated = gated
|
1004 |
+
if gated:
|
1005 |
+
self.g_proj = nn.Linear(embed_dim, embed_dim)
|
1006 |
+
torch.nn.init.zeros_(self.g_proj.weight)
|
1007 |
+
torch.nn.init.ones_(self.g_proj.bias)
|
1008 |
+
|
1009 |
+
self.rescale_factor = self.head_width**-0.5
|
1010 |
+
|
1011 |
+
torch.nn.init.zeros_(self.o_proj.bias)
|
1012 |
+
|
1013 |
+
def forward(self, x, mask=None, bias=None, indices=None):
|
1014 |
+
"""
|
1015 |
+
Basic self attention with optional mask and external pairwise bias. To handle sequences of different lengths,
|
1016 |
+
use mask.
|
1017 |
+
|
1018 |
+
Inputs:
|
1019 |
+
x: batch of input sequneces (.. x L x C) mask: batch of boolean masks where 1=valid, 0=padding position (..
|
1020 |
+
x L_k) bias: batch of scalar pairwise attention biases (.. x Lq x Lk x num_heads)
|
1021 |
+
|
1022 |
+
Outputs:
|
1023 |
+
sequence projection (B x L x embed_dim), attention maps (B x L x L x num_heads)
|
1024 |
+
"""
|
1025 |
+
|
1026 |
+
t = self.proj(x).view(*x.shape[:2], self.num_heads, -1)
|
1027 |
+
t = t.permute(0, 2, 1, 3)
|
1028 |
+
q, k, v = t.chunk(3, dim=-1)
|
1029 |
+
|
1030 |
+
q = self.rescale_factor * q
|
1031 |
+
a = torch.einsum("...qc,...kc->...qk", q, k)
|
1032 |
+
|
1033 |
+
# Add external attention bias.
|
1034 |
+
if bias is not None:
|
1035 |
+
a = a + bias.permute(0, 3, 1, 2)
|
1036 |
+
|
1037 |
+
# Do not attend to padding tokens.
|
1038 |
+
if mask is not None:
|
1039 |
+
mask = mask[:, None, None]
|
1040 |
+
a = a.masked_fill(mask == False, -np.inf) # noqa: E712
|
1041 |
+
|
1042 |
+
a = nn.functional.softmax(a, dim=-1)
|
1043 |
+
|
1044 |
+
y = torch.einsum("...hqk,...hkc->...qhc", a, v)
|
1045 |
+
y = y.reshape(*y.shape[:2], -1)
|
1046 |
+
|
1047 |
+
if self.gated:
|
1048 |
+
y = self.g_proj(x).sigmoid() * y
|
1049 |
+
y = self.o_proj(y)
|
1050 |
+
|
1051 |
+
return y, a.permute(0, 3, 1, 2)
|
1052 |
+
|
1053 |
+
|
1054 |
+
class EsmFoldDropout(nn.Module):
|
1055 |
+
"""
|
1056 |
+
Implementation of dropout with the ability to share the dropout mask along a particular dimension.
|
1057 |
+
"""
|
1058 |
+
|
1059 |
+
def __init__(self, r: float, batch_dim: Union[int, List[int]]):
|
1060 |
+
super().__init__()
|
1061 |
+
|
1062 |
+
self.r = r
|
1063 |
+
if isinstance(batch_dim, int):
|
1064 |
+
batch_dim = [batch_dim]
|
1065 |
+
self.batch_dim = batch_dim
|
1066 |
+
self.dropout = nn.Dropout(self.r)
|
1067 |
+
|
1068 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
1069 |
+
shape = list(x.shape)
|
1070 |
+
if self.batch_dim is not None:
|
1071 |
+
for bd in self.batch_dim:
|
1072 |
+
shape[bd] = 1
|
1073 |
+
return x * self.dropout(x.new_ones(shape))
|
1074 |
+
|
1075 |
+
|
1076 |
+
class EsmFoldSequenceToPair(nn.Module):
|
1077 |
+
def __init__(self, sequence_state_dim, inner_dim, pairwise_state_dim):
|
1078 |
+
super().__init__()
|
1079 |
+
|
1080 |
+
self.layernorm = nn.LayerNorm(sequence_state_dim)
|
1081 |
+
self.proj = nn.Linear(sequence_state_dim, inner_dim * 2, bias=True)
|
1082 |
+
self.o_proj = nn.Linear(2 * inner_dim, pairwise_state_dim, bias=True)
|
1083 |
+
|
1084 |
+
torch.nn.init.zeros_(self.proj.bias)
|
1085 |
+
torch.nn.init.zeros_(self.o_proj.bias)
|
1086 |
+
|
1087 |
+
def forward(self, sequence_state):
|
1088 |
+
"""
|
1089 |
+
Inputs:
|
1090 |
+
sequence_state: B x L x sequence_state_dim
|
1091 |
+
|
1092 |
+
Output:
|
1093 |
+
pairwise_state: B x L x L x pairwise_state_dim
|
1094 |
+
|
1095 |
+
Intermediate state:
|
1096 |
+
B x L x L x 2*inner_dim
|
1097 |
+
"""
|
1098 |
+
|
1099 |
+
assert len(sequence_state.shape) == 3
|
1100 |
+
|
1101 |
+
s = self.layernorm(sequence_state)
|
1102 |
+
s = self.proj(s)
|
1103 |
+
q, k = s.chunk(2, dim=-1)
|
1104 |
+
|
1105 |
+
prod = q[:, None, :, :] * k[:, :, None, :]
|
1106 |
+
diff = q[:, None, :, :] - k[:, :, None, :]
|
1107 |
+
|
1108 |
+
x = torch.cat([prod, diff], dim=-1)
|
1109 |
+
x = self.o_proj(x)
|
1110 |
+
|
1111 |
+
return x
|
1112 |
+
|
1113 |
+
|
1114 |
+
class EsmFoldPairToSequence(nn.Module):
|
1115 |
+
def __init__(self, pairwise_state_dim, num_heads):
|
1116 |
+
super().__init__()
|
1117 |
+
|
1118 |
+
self.layernorm = nn.LayerNorm(pairwise_state_dim)
|
1119 |
+
self.linear = nn.Linear(pairwise_state_dim, num_heads, bias=False)
|
1120 |
+
|
1121 |
+
def forward(self, pairwise_state):
|
1122 |
+
"""
|
1123 |
+
Inputs:
|
1124 |
+
pairwise_state: B x L x L x pairwise_state_dim
|
1125 |
+
|
1126 |
+
Output:
|
1127 |
+
pairwise_bias: B x L x L x num_heads
|
1128 |
+
"""
|
1129 |
+
assert len(pairwise_state.shape) == 4
|
1130 |
+
z = self.layernorm(pairwise_state)
|
1131 |
+
pairwise_bias = self.linear(z)
|
1132 |
+
return pairwise_bias
|
1133 |
+
|
1134 |
+
|
1135 |
+
class EsmFoldResidueMLP(nn.Module):
|
1136 |
+
def __init__(self, embed_dim, inner_dim, dropout=0):
|
1137 |
+
super().__init__()
|
1138 |
+
|
1139 |
+
self.mlp = nn.Sequential(
|
1140 |
+
nn.LayerNorm(embed_dim),
|
1141 |
+
nn.Linear(embed_dim, inner_dim),
|
1142 |
+
nn.ReLU(),
|
1143 |
+
nn.Linear(inner_dim, embed_dim),
|
1144 |
+
nn.Dropout(dropout),
|
1145 |
+
)
|
1146 |
+
|
1147 |
+
def forward(self, x):
|
1148 |
+
return x + self.mlp(x)
|
1149 |
+
|
1150 |
+
|
1151 |
+
class EsmFoldTriangularSelfAttentionBlock(nn.Module):
|
1152 |
+
def __init__(self, config):
|
1153 |
+
super().__init__()
|
1154 |
+
self.config = config
|
1155 |
+
|
1156 |
+
sequence_state_dim = config.sequence_state_dim
|
1157 |
+
pairwise_state_dim = config.pairwise_state_dim
|
1158 |
+
sequence_num_heads = sequence_state_dim // config.sequence_head_width
|
1159 |
+
pairwise_num_heads = pairwise_state_dim // config.pairwise_head_width
|
1160 |
+
|
1161 |
+
self.layernorm_1 = nn.LayerNorm(sequence_state_dim)
|
1162 |
+
|
1163 |
+
self.sequence_to_pair = EsmFoldSequenceToPair(sequence_state_dim, pairwise_state_dim // 2, pairwise_state_dim)
|
1164 |
+
self.pair_to_sequence = EsmFoldPairToSequence(pairwise_state_dim, sequence_num_heads)
|
1165 |
+
|
1166 |
+
self.seq_attention = EsmFoldSelfAttention(
|
1167 |
+
sequence_state_dim, sequence_num_heads, config.sequence_head_width, gated=True
|
1168 |
+
)
|
1169 |
+
self.tri_mul_out = EsmFoldTriangleMultiplicativeUpdate(config, _outgoing=True)
|
1170 |
+
self.tri_mul_in = EsmFoldTriangleMultiplicativeUpdate(config, _outgoing=False)
|
1171 |
+
|
1172 |
+
self.tri_att_start = EsmFoldTriangleAttention(
|
1173 |
+
pairwise_state_dim, config.pairwise_head_width, pairwise_num_heads, inf=1e9, starting=True
|
1174 |
+
)
|
1175 |
+
self.tri_att_end = EsmFoldTriangleAttention(
|
1176 |
+
pairwise_state_dim, config.pairwise_head_width, pairwise_num_heads, inf=1e9, starting=False
|
1177 |
+
)
|
1178 |
+
|
1179 |
+
self.mlp_seq = EsmFoldResidueMLP(sequence_state_dim, 4 * sequence_state_dim, dropout=config.dropout)
|
1180 |
+
self.mlp_pair = EsmFoldResidueMLP(pairwise_state_dim, 4 * pairwise_state_dim, dropout=config.dropout)
|
1181 |
+
|
1182 |
+
self.drop = nn.Dropout(config.dropout)
|
1183 |
+
self.row_drop = EsmFoldDropout(config.dropout * 2, 2)
|
1184 |
+
self.col_drop = EsmFoldDropout(config.dropout * 2, 1)
|
1185 |
+
|
1186 |
+
def forward(self, sequence_state, pairwise_state, mask=None, chunk_size=None, **__kwargs):
|
1187 |
+
"""
|
1188 |
+
Inputs:
|
1189 |
+
sequence_state: B x L x sequence_state_dim pairwise_state: B x L x L x pairwise_state_dim mask: B x L boolean
|
1190 |
+
tensor of valid positions
|
1191 |
+
|
1192 |
+
Output:
|
1193 |
+
sequence_state: B x L x sequence_state_dim pairwise_state: B x L x L x pairwise_state_dim
|
1194 |
+
"""
|
1195 |
+
if len(sequence_state.shape) != 3:
|
1196 |
+
raise ValueError(f"`sequence_state` should be a 3d-tensor, got {len(sequence_state.shape)} dims.")
|
1197 |
+
if len(pairwise_state.shape) != 4:
|
1198 |
+
raise ValueError(f"`pairwise_state` should be a 4d-tensor, got {len(pairwise_state.shape)} dims.")
|
1199 |
+
if mask is not None and len(mask.shape) != 2:
|
1200 |
+
raise ValueError(f"`mask` should be a 2d-tensor, got {len(mask.shape)} dims.")
|
1201 |
+
|
1202 |
+
batch_dim, seq_dim, sequence_state_dim = sequence_state.shape
|
1203 |
+
pairwise_state_dim = pairwise_state.shape[3]
|
1204 |
+
|
1205 |
+
if sequence_state_dim != self.config.sequence_state_dim:
|
1206 |
+
raise ValueError(
|
1207 |
+
"`sequence_state` last dimension should be equal to `self.sequence_state_dim`. Got "
|
1208 |
+
f"{sequence_state_dim} != {self.config.sequence_state_dim}."
|
1209 |
+
)
|
1210 |
+
if pairwise_state_dim != self.config.pairwise_state_dim:
|
1211 |
+
raise ValueError(
|
1212 |
+
"`pairwise_state` last dimension should be equal to `self.pairwise_state_dim`. Got "
|
1213 |
+
f"{pairwise_state_dim} != {self.config.pairwise_state_dim}."
|
1214 |
+
)
|
1215 |
+
if batch_dim != pairwise_state.shape[0]:
|
1216 |
+
raise ValueError(
|
1217 |
+
f"`sequence_state` and `pairwise_state` have inconsistent batch size: {batch_dim} != "
|
1218 |
+
f"{pairwise_state.shape[0]}."
|
1219 |
+
)
|
1220 |
+
if seq_dim != pairwise_state.shape[1] or seq_dim != pairwise_state.shape[2]:
|
1221 |
+
raise ValueError(
|
1222 |
+
f"`sequence_state` and `pairwise_state` have inconsistent sequence length: {seq_dim} != "
|
1223 |
+
f"{pairwise_state.shape[1]} or {pairwise_state.shape[2]}."
|
1224 |
+
)
|
1225 |
+
|
1226 |
+
# Update sequence state
|
1227 |
+
bias = self.pair_to_sequence(pairwise_state)
|
1228 |
+
|
1229 |
+
# Self attention with bias + mlp.
|
1230 |
+
y = self.layernorm_1(sequence_state)
|
1231 |
+
y, _ = self.seq_attention(y, mask=mask, bias=bias)
|
1232 |
+
sequence_state = sequence_state + self.drop(y)
|
1233 |
+
sequence_state = self.mlp_seq(sequence_state)
|
1234 |
+
|
1235 |
+
# Update pairwise state
|
1236 |
+
pairwise_state = pairwise_state + self.sequence_to_pair(sequence_state)
|
1237 |
+
|
1238 |
+
# Axial attention with triangular bias.
|
1239 |
+
tri_mask = mask.unsqueeze(2) * mask.unsqueeze(1) if mask is not None else None
|
1240 |
+
pairwise_state = pairwise_state + self.row_drop(self.tri_mul_out(pairwise_state, mask=tri_mask))
|
1241 |
+
pairwise_state = pairwise_state + self.col_drop(self.tri_mul_in(pairwise_state, mask=tri_mask))
|
1242 |
+
pairwise_state = pairwise_state + self.row_drop(
|
1243 |
+
self.tri_att_start(pairwise_state, mask=tri_mask, chunk_size=chunk_size)
|
1244 |
+
)
|
1245 |
+
pairwise_state = pairwise_state + self.col_drop(
|
1246 |
+
self.tri_att_end(pairwise_state, mask=tri_mask, chunk_size=chunk_size)
|
1247 |
+
)
|
1248 |
+
|
1249 |
+
# MLP over pairs.
|
1250 |
+
pairwise_state = self.mlp_pair(pairwise_state)
|
1251 |
+
|
1252 |
+
return sequence_state, pairwise_state
|
1253 |
+
|
1254 |
+
|
1255 |
+
class EsmCategoricalMixture:
|
1256 |
+
def __init__(self, param, bins=50, start=0, end=1):
|
1257 |
+
# All tensors are of shape ..., bins.
|
1258 |
+
self.logits = param
|
1259 |
+
bins = torch.linspace(start, end, bins + 1, device=self.logits.device, dtype=self.logits.dtype)
|
1260 |
+
self.v_bins = (bins[:-1] + bins[1:]) / 2
|
1261 |
+
|
1262 |
+
def log_prob(self, true):
|
1263 |
+
# Shapes are:
|
1264 |
+
# self.probs: ... x bins
|
1265 |
+
# true : ...
|
1266 |
+
true_index = (true.unsqueeze(-1) - self.v_bins[[None] * true.ndim]).abs().argmin(-1)
|
1267 |
+
nll = self.logits.log_softmax(-1)
|
1268 |
+
return torch.take_along_dim(nll, true_index.unsqueeze(-1), dim=-1).squeeze(-1)
|
1269 |
+
|
1270 |
+
def mean(self):
|
1271 |
+
return (self.logits.softmax(-1) @ self.v_bins.unsqueeze(1)).squeeze(-1)
|
1272 |
+
|
1273 |
+
|
1274 |
+
def categorical_lddt(logits, bins=50):
|
1275 |
+
# Logits are ..., 37, bins.
|
1276 |
+
return EsmCategoricalMixture(logits, bins=bins).mean()
|
1277 |
+
|
1278 |
+
|
1279 |
+
def get_axial_mask(mask):
|
1280 |
+
"""
|
1281 |
+
Helper to convert B x L mask of valid positions to axial mask used in row column attentions.
|
1282 |
+
|
1283 |
+
Input:
|
1284 |
+
mask: B x L tensor of booleans
|
1285 |
+
|
1286 |
+
Output:
|
1287 |
+
mask: B x L x L tensor of booleans
|
1288 |
+
"""
|
1289 |
+
|
1290 |
+
if mask is None:
|
1291 |
+
return None
|
1292 |
+
|
1293 |
+
if len(mask.shape) != 2:
|
1294 |
+
raise ValueError(f"`mask` should be a 2d-tensor, got {len(mask.shape)} dims.")
|
1295 |
+
batch_dim, seq_dim = mask.shape
|
1296 |
+
m = mask.unsqueeze(1).expand(batch_dim, seq_dim, seq_dim)
|
1297 |
+
m = m.reshape(batch_dim * seq_dim, seq_dim)
|
1298 |
+
return m
|
1299 |
+
|
1300 |
+
|
1301 |
+
class EsmFoldRelativePosition(nn.Module):
|
1302 |
+
def __init__(self, config):
|
1303 |
+
super().__init__()
|
1304 |
+
self.bins = config.position_bins
|
1305 |
+
|
1306 |
+
# Note an additional offset is used so that the 0th position
|
1307 |
+
# is reserved for masked pairs.
|
1308 |
+
self.embedding = torch.nn.Embedding(2 * self.bins + 2, config.pairwise_state_dim)
|
1309 |
+
|
1310 |
+
def forward(self, residue_index, mask=None):
|
1311 |
+
"""
|
1312 |
+
Input:
|
1313 |
+
residue_index: B x L tensor of indices (dytpe=torch.long) mask: B x L tensor of booleans
|
1314 |
+
|
1315 |
+
Output:
|
1316 |
+
pairwise_state: B x L x L x pairwise_state_dim tensor of embeddings
|
1317 |
+
"""
|
1318 |
+
if residue_index.dtype != torch.long:
|
1319 |
+
raise ValueError(f"`residue_index` has dtype {residue_index.dtype}, it should be `torch.long`.")
|
1320 |
+
if mask is not None and residue_index.shape != mask.shape:
|
1321 |
+
raise ValueError(
|
1322 |
+
f"`residue_index` and `mask` have inconsistent shapes: {residue_index.shape} != {mask.shape}."
|
1323 |
+
)
|
1324 |
+
|
1325 |
+
diff = residue_index[:, None, :] - residue_index[:, :, None]
|
1326 |
+
diff = diff.clamp(-self.bins, self.bins)
|
1327 |
+
diff = diff + self.bins + 1 # Add 1 to adjust for padding index.
|
1328 |
+
|
1329 |
+
if mask is not None:
|
1330 |
+
mask = mask[:, None, :] * mask[:, :, None]
|
1331 |
+
diff[mask == False] = 0 # noqa: E712
|
1332 |
+
|
1333 |
+
output = self.embedding(diff)
|
1334 |
+
return output
|
1335 |
+
|
1336 |
+
|
1337 |
+
class EsmFoldAngleResnetBlock(nn.Module):
|
1338 |
+
def __init__(self, config):
|
1339 |
+
super().__init__()
|
1340 |
+
|
1341 |
+
self.linear_1 = EsmFoldLinear(config.resnet_dim, config.resnet_dim, init="relu")
|
1342 |
+
self.linear_2 = EsmFoldLinear(config.resnet_dim, config.resnet_dim, init="final")
|
1343 |
+
|
1344 |
+
self.relu = nn.ReLU()
|
1345 |
+
|
1346 |
+
def forward(self, a: torch.Tensor) -> torch.Tensor:
|
1347 |
+
s_initial = a
|
1348 |
+
|
1349 |
+
a = self.relu(a)
|
1350 |
+
a = self.linear_1(a)
|
1351 |
+
a = self.relu(a)
|
1352 |
+
a = self.linear_2(a)
|
1353 |
+
|
1354 |
+
return a + s_initial
|
1355 |
+
|
1356 |
+
|
1357 |
+
class EsmFoldAngleResnet(nn.Module):
|
1358 |
+
"""
|
1359 |
+
Implements Algorithm 20, lines 11-14
|
1360 |
+
"""
|
1361 |
+
|
1362 |
+
def __init__(self, config):
|
1363 |
+
super().__init__()
|
1364 |
+
self.config = config
|
1365 |
+
|
1366 |
+
self.linear_in = EsmFoldLinear(config.sequence_dim, config.resnet_dim)
|
1367 |
+
self.linear_initial = EsmFoldLinear(config.sequence_dim, config.resnet_dim)
|
1368 |
+
|
1369 |
+
self.layers = nn.ModuleList()
|
1370 |
+
for _ in range(config.num_resnet_blocks):
|
1371 |
+
layer = EsmFoldAngleResnetBlock(config)
|
1372 |
+
self.layers.append(layer)
|
1373 |
+
|
1374 |
+
self.linear_out = EsmFoldLinear(config.resnet_dim, config.num_angles * 2)
|
1375 |
+
|
1376 |
+
self.relu = nn.ReLU()
|
1377 |
+
|
1378 |
+
def forward(self, s: torch.Tensor, s_initial: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
1379 |
+
"""
|
1380 |
+
Args:
|
1381 |
+
s:
|
1382 |
+
[*, C_hidden] single embedding
|
1383 |
+
s_initial:
|
1384 |
+
[*, C_hidden] single embedding as of the start of the StructureModule
|
1385 |
+
Returns:
|
1386 |
+
[*, no_angles, 2] predicted angles
|
1387 |
+
"""
|
1388 |
+
# NOTE: The ReLU's applied to the inputs are absent from the supplement
|
1389 |
+
# pseudocode but present in the source. For maximal compatibility with
|
1390 |
+
# the pretrained weights, I'm going with the source.
|
1391 |
+
|
1392 |
+
# [*, C_hidden]
|
1393 |
+
s_initial = self.relu(s_initial)
|
1394 |
+
s_initial = self.linear_initial(s_initial)
|
1395 |
+
s = self.relu(s)
|
1396 |
+
s = self.linear_in(s)
|
1397 |
+
s = s + s_initial
|
1398 |
+
|
1399 |
+
for l in self.layers:
|
1400 |
+
s = l(s)
|
1401 |
+
|
1402 |
+
s = self.relu(s)
|
1403 |
+
|
1404 |
+
# [*, no_angles * 2]
|
1405 |
+
s = self.linear_out(s)
|
1406 |
+
|
1407 |
+
# [*, no_angles, 2]
|
1408 |
+
s = s.view(s.shape[:-1] + (-1, 2))
|
1409 |
+
|
1410 |
+
unnormalized_s = s
|
1411 |
+
norm_denom = torch.sqrt(
|
1412 |
+
torch.clamp(
|
1413 |
+
torch.sum(s**2, dim=-1, keepdim=True),
|
1414 |
+
min=self.config.epsilon,
|
1415 |
+
)
|
1416 |
+
)
|
1417 |
+
s = s / norm_denom
|
1418 |
+
|
1419 |
+
return unnormalized_s, s
|
1420 |
+
|
1421 |
+
|
1422 |
+
class EsmFoldInvariantPointAttention(nn.Module):
|
1423 |
+
"""
|
1424 |
+
Implements Algorithm 22.
|
1425 |
+
"""
|
1426 |
+
|
1427 |
+
def __init__(self, config):
|
1428 |
+
super().__init__()
|
1429 |
+
self.config = config
|
1430 |
+
|
1431 |
+
c_s = config.sequence_dim
|
1432 |
+
c_z = config.pairwise_dim
|
1433 |
+
self.hidden_dim = config.ipa_dim
|
1434 |
+
self.num_heads = config.num_heads_ipa
|
1435 |
+
self.num_qk_points = config.num_qk_points
|
1436 |
+
self.num_v_points = config.num_v_points
|
1437 |
+
|
1438 |
+
# These linear layers differ from their specifications in the
|
1439 |
+
# supplement. There, they lack bias and use Glorot initialization.
|
1440 |
+
# Here as in the official source, they have bias and use the default
|
1441 |
+
# Lecun initialization.
|
1442 |
+
hc = config.ipa_dim * config.num_heads_ipa
|
1443 |
+
self.linear_q = EsmFoldLinear(c_s, hc)
|
1444 |
+
self.linear_kv = EsmFoldLinear(c_s, 2 * hc)
|
1445 |
+
|
1446 |
+
hpq = config.num_heads_ipa * config.num_qk_points * 3
|
1447 |
+
self.linear_q_points = EsmFoldLinear(c_s, hpq)
|
1448 |
+
|
1449 |
+
hpkv = config.num_heads_ipa * (config.num_qk_points + config.num_v_points) * 3
|
1450 |
+
self.linear_kv_points = EsmFoldLinear(c_s, hpkv)
|
1451 |
+
|
1452 |
+
self.linear_b = EsmFoldLinear(c_z, config.num_heads_ipa)
|
1453 |
+
|
1454 |
+
self.head_weights = nn.Parameter(torch.zeros((config.num_heads_ipa)))
|
1455 |
+
|
1456 |
+
concat_out_dim = config.num_heads_ipa * (c_z + config.ipa_dim + config.num_v_points * 4)
|
1457 |
+
self.linear_out = EsmFoldLinear(concat_out_dim, c_s, init="final")
|
1458 |
+
|
1459 |
+
self.softmax = nn.Softmax(dim=-1)
|
1460 |
+
self.softplus = nn.Softplus()
|
1461 |
+
|
1462 |
+
def forward(
|
1463 |
+
self,
|
1464 |
+
s: torch.Tensor,
|
1465 |
+
z: Optional[torch.Tensor],
|
1466 |
+
r: Rigid,
|
1467 |
+
mask: torch.Tensor,
|
1468 |
+
_offload_inference: bool = False,
|
1469 |
+
_z_reference_list: Optional[Sequence[torch.Tensor]] = None,
|
1470 |
+
) -> torch.Tensor:
|
1471 |
+
"""
|
1472 |
+
Args:
|
1473 |
+
s:
|
1474 |
+
[*, N_res, C_s] single representation
|
1475 |
+
z:
|
1476 |
+
[*, N_res, N_res, C_z] pair representation
|
1477 |
+
r:
|
1478 |
+
[*, N_res] transformation object
|
1479 |
+
mask:
|
1480 |
+
[*, N_res] mask
|
1481 |
+
Returns:
|
1482 |
+
[*, N_res, C_s] single representation update
|
1483 |
+
"""
|
1484 |
+
z = [z]
|
1485 |
+
|
1486 |
+
#######################################
|
1487 |
+
# Generate scalar and point activations
|
1488 |
+
#######################################
|
1489 |
+
# [*, N_res, H * C_hidden]
|
1490 |
+
q = self.linear_q(s)
|
1491 |
+
kv = self.linear_kv(s)
|
1492 |
+
|
1493 |
+
# [*, N_res, H, C_hidden]
|
1494 |
+
q = q.view(q.shape[:-1] + (self.num_heads, -1))
|
1495 |
+
|
1496 |
+
# [*, N_res, H, 2 * C_hidden]
|
1497 |
+
kv = kv.view(kv.shape[:-1] + (self.num_heads, -1))
|
1498 |
+
|
1499 |
+
# [*, N_res, H, C_hidden]
|
1500 |
+
k, v = torch.split(kv, self.hidden_dim, dim=-1)
|
1501 |
+
|
1502 |
+
# [*, N_res, H * P_q * 3]
|
1503 |
+
q_pts = self.linear_q_points(s)
|
1504 |
+
|
1505 |
+
# This is kind of clunky, but it's how the original does it
|
1506 |
+
# [*, N_res, H * P_q, 3]
|
1507 |
+
q_pts = torch.split(q_pts, q_pts.shape[-1] // 3, dim=-1)
|
1508 |
+
q_pts = torch.stack(q_pts, dim=-1)
|
1509 |
+
q_pts = r[..., None].apply(q_pts)
|
1510 |
+
|
1511 |
+
# [*, N_res, H, P_q, 3]
|
1512 |
+
q_pts = q_pts.view(q_pts.shape[:-2] + (self.num_heads, self.num_qk_points, 3))
|
1513 |
+
|
1514 |
+
# [*, N_res, H * (P_q + P_v) * 3]
|
1515 |
+
kv_pts = self.linear_kv_points(s)
|
1516 |
+
|
1517 |
+
# [*, N_res, H * (P_q + P_v), 3]
|
1518 |
+
kv_pts = torch.split(kv_pts, kv_pts.shape[-1] // 3, dim=-1)
|
1519 |
+
kv_pts = torch.stack(kv_pts, dim=-1)
|
1520 |
+
kv_pts = r[..., None].apply(kv_pts)
|
1521 |
+
|
1522 |
+
# [*, N_res, H, (P_q + P_v), 3]
|
1523 |
+
kv_pts = kv_pts.view(kv_pts.shape[:-2] + (self.num_heads, -1, 3))
|
1524 |
+
|
1525 |
+
# [*, N_res, H, P_q/P_v, 3]
|
1526 |
+
k_pts, v_pts = torch.split(kv_pts, [self.num_qk_points, self.num_v_points], dim=-2)
|
1527 |
+
|
1528 |
+
##########################
|
1529 |
+
# Compute attention scores
|
1530 |
+
##########################
|
1531 |
+
# [*, N_res, N_res, H]
|
1532 |
+
b = self.linear_b(z[0])
|
1533 |
+
|
1534 |
+
if _offload_inference:
|
1535 |
+
assert sys.getrefcount(z[0]) == 2
|
1536 |
+
z[0] = z[0].cpu()
|
1537 |
+
|
1538 |
+
# [*, H, N_res, N_res]
|
1539 |
+
if is_fp16_enabled():
|
1540 |
+
with torch.cuda.amp.autocast(enabled=False):
|
1541 |
+
a = torch.matmul(
|
1542 |
+
permute_final_dims(q.float(), (1, 0, 2)), # [*, H, N_res, C_hidden]
|
1543 |
+
permute_final_dims(k.float(), (1, 2, 0)), # [*, H, C_hidden, N_res]
|
1544 |
+
)
|
1545 |
+
else:
|
1546 |
+
a = torch.matmul(
|
1547 |
+
permute_final_dims(q, (1, 0, 2)), # [*, H, N_res, C_hidden]
|
1548 |
+
permute_final_dims(k, (1, 2, 0)), # [*, H, C_hidden, N_res]
|
1549 |
+
)
|
1550 |
+
|
1551 |
+
a *= math.sqrt(1.0 / (3 * self.hidden_dim))
|
1552 |
+
a += math.sqrt(1.0 / 3) * permute_final_dims(b, (2, 0, 1))
|
1553 |
+
|
1554 |
+
# [*, N_res, N_res, H, P_q, 3]
|
1555 |
+
pt_att = q_pts.unsqueeze(-4) - k_pts.unsqueeze(-5)
|
1556 |
+
pt_att = pt_att**2
|
1557 |
+
|
1558 |
+
# [*, N_res, N_res, H, P_q]
|
1559 |
+
pt_att = sum(torch.unbind(pt_att, dim=-1))
|
1560 |
+
head_weights = self.softplus(self.head_weights).view(*((1,) * len(pt_att.shape[:-2]) + (-1, 1)))
|
1561 |
+
head_weights = head_weights * math.sqrt(1.0 / (3 * (self.num_qk_points * 9.0 / 2)))
|
1562 |
+
pt_att = pt_att * head_weights
|
1563 |
+
|
1564 |
+
# [*, N_res, N_res, H]
|
1565 |
+
pt_att = torch.sum(pt_att, dim=-1) * (-0.5)
|
1566 |
+
# [*, N_res, N_res]
|
1567 |
+
square_mask = mask.unsqueeze(-1) * mask.unsqueeze(-2)
|
1568 |
+
square_mask = self.config.inf * (square_mask - 1)
|
1569 |
+
|
1570 |
+
# [*, H, N_res, N_res]
|
1571 |
+
pt_att = permute_final_dims(pt_att, (2, 0, 1))
|
1572 |
+
|
1573 |
+
a = a + pt_att
|
1574 |
+
a = a + square_mask.unsqueeze(-3)
|
1575 |
+
a = self.softmax(a)
|
1576 |
+
|
1577 |
+
################
|
1578 |
+
# Compute output
|
1579 |
+
################
|
1580 |
+
# [*, N_res, H, C_hidden]
|
1581 |
+
o = torch.matmul(a, v.transpose(-2, -3).to(dtype=a.dtype)).transpose(-2, -3)
|
1582 |
+
|
1583 |
+
# [*, N_res, H * C_hidden]
|
1584 |
+
o = flatten_final_dims(o, 2)
|
1585 |
+
|
1586 |
+
# [*, H, 3, N_res, P_v]
|
1587 |
+
o_pt = torch.sum(
|
1588 |
+
(a[..., None, :, :, None] * permute_final_dims(v_pts, (1, 3, 0, 2))[..., None, :, :]),
|
1589 |
+
dim=-2,
|
1590 |
+
)
|
1591 |
+
|
1592 |
+
# [*, N_res, H, P_v, 3]
|
1593 |
+
o_pt = permute_final_dims(o_pt, (2, 0, 3, 1))
|
1594 |
+
o_pt = r[..., None, None].invert_apply(o_pt)
|
1595 |
+
|
1596 |
+
# [*, N_res, H * P_v]
|
1597 |
+
o_pt_norm = flatten_final_dims(torch.sqrt(torch.sum(o_pt**2, dim=-1) + self.config.epsilon), 2)
|
1598 |
+
|
1599 |
+
# [*, N_res, H * P_v, 3]
|
1600 |
+
o_pt = o_pt.reshape(*o_pt.shape[:-3], -1, 3)
|
1601 |
+
|
1602 |
+
if _offload_inference:
|
1603 |
+
z[0] = z[0].to(o_pt.device)
|
1604 |
+
|
1605 |
+
# [*, N_res, H, C_z]
|
1606 |
+
o_pair = torch.matmul(a.transpose(-2, -3), z[0].to(dtype=a.dtype))
|
1607 |
+
|
1608 |
+
# [*, N_res, H * C_z]
|
1609 |
+
o_pair = flatten_final_dims(o_pair, 2)
|
1610 |
+
|
1611 |
+
# [*, N_res, C_s]
|
1612 |
+
s = self.linear_out(
|
1613 |
+
torch.cat((o, *torch.unbind(o_pt, dim=-1), o_pt_norm, o_pair), dim=-1).to(dtype=z[0].dtype)
|
1614 |
+
)
|
1615 |
+
|
1616 |
+
return s
|
1617 |
+
|
1618 |
+
|
1619 |
+
class EsmFoldBackboneUpdate(nn.Module):
|
1620 |
+
"""
|
1621 |
+
Implements part of Algorithm 23.
|
1622 |
+
"""
|
1623 |
+
|
1624 |
+
def __init__(self, config):
|
1625 |
+
super().__init__()
|
1626 |
+
|
1627 |
+
self.linear = EsmFoldLinear(config.sequence_dim, 6, init="final")
|
1628 |
+
|
1629 |
+
def forward(self, s: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
1630 |
+
"""
|
1631 |
+
Args:
|
1632 |
+
[*, N_res, C_s] single representation
|
1633 |
+
Returns:
|
1634 |
+
[*, N_res, 6] update vector
|
1635 |
+
"""
|
1636 |
+
# [*, 6]
|
1637 |
+
update = self.linear(s)
|
1638 |
+
|
1639 |
+
return update
|
1640 |
+
|
1641 |
+
|
1642 |
+
class EsmFoldStructureModuleTransitionLayer(nn.Module):
|
1643 |
+
def __init__(self, config):
|
1644 |
+
super().__init__()
|
1645 |
+
|
1646 |
+
self.linear_1 = EsmFoldLinear(config.sequence_dim, config.sequence_dim, init="relu")
|
1647 |
+
self.linear_2 = EsmFoldLinear(config.sequence_dim, config.sequence_dim, init="relu")
|
1648 |
+
self.linear_3 = EsmFoldLinear(config.sequence_dim, config.sequence_dim, init="final")
|
1649 |
+
|
1650 |
+
self.relu = nn.ReLU()
|
1651 |
+
|
1652 |
+
def forward(self, s):
|
1653 |
+
s_initial = s
|
1654 |
+
s = self.linear_1(s)
|
1655 |
+
s = self.relu(s)
|
1656 |
+
s = self.linear_2(s)
|
1657 |
+
s = self.relu(s)
|
1658 |
+
s = self.linear_3(s)
|
1659 |
+
|
1660 |
+
s = s + s_initial
|
1661 |
+
|
1662 |
+
return s
|
1663 |
+
|
1664 |
+
|
1665 |
+
class EsmFoldStructureModuleTransition(nn.Module):
|
1666 |
+
def __init__(self, config):
|
1667 |
+
super().__init__()
|
1668 |
+
self.config = config
|
1669 |
+
|
1670 |
+
self.layers = nn.ModuleList()
|
1671 |
+
for _ in range(config.num_transition_layers):
|
1672 |
+
l = EsmFoldStructureModuleTransitionLayer(config)
|
1673 |
+
self.layers.append(l)
|
1674 |
+
|
1675 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
1676 |
+
self.layer_norm = LayerNorm(config.sequence_dim)
|
1677 |
+
|
1678 |
+
def forward(self, s):
|
1679 |
+
for l in self.layers:
|
1680 |
+
s = l(s)
|
1681 |
+
|
1682 |
+
s = self.dropout(s)
|
1683 |
+
s = self.layer_norm(s)
|
1684 |
+
|
1685 |
+
return s
|
1686 |
+
|
1687 |
+
|
1688 |
+
class EsmFoldStructureModule(nn.Module):
|
1689 |
+
def __init__(self, config):
|
1690 |
+
super().__init__()
|
1691 |
+
self.config = config
|
1692 |
+
|
1693 |
+
# Buffers to be lazily initialized later
|
1694 |
+
# self.default_frames
|
1695 |
+
# self.group_idx
|
1696 |
+
# self.atom_mask
|
1697 |
+
# self.lit_positions
|
1698 |
+
|
1699 |
+
self.layer_norm_s = LayerNorm(config.sequence_dim)
|
1700 |
+
self.layer_norm_z = LayerNorm(config.pairwise_dim)
|
1701 |
+
|
1702 |
+
self.linear_in = EsmFoldLinear(config.sequence_dim, config.sequence_dim)
|
1703 |
+
|
1704 |
+
self.ipa = EsmFoldInvariantPointAttention(config)
|
1705 |
+
|
1706 |
+
self.ipa_dropout = nn.Dropout(config.dropout_rate)
|
1707 |
+
self.layer_norm_ipa = LayerNorm(config.sequence_dim)
|
1708 |
+
|
1709 |
+
self.transition = EsmFoldStructureModuleTransition(config)
|
1710 |
+
self.bb_update = EsmFoldBackboneUpdate(config)
|
1711 |
+
self.angle_resnet = EsmFoldAngleResnet(config)
|
1712 |
+
|
1713 |
+
def forward(
|
1714 |
+
self,
|
1715 |
+
evoformer_output_dict,
|
1716 |
+
aatype,
|
1717 |
+
mask=None,
|
1718 |
+
_offload_inference=False,
|
1719 |
+
):
|
1720 |
+
"""
|
1721 |
+
Args:
|
1722 |
+
evoformer_output_dict:
|
1723 |
+
Dictionary containing:
|
1724 |
+
"single":
|
1725 |
+
[*, N_res, C_s] single representation
|
1726 |
+
"pair":
|
1727 |
+
[*, N_res, N_res, C_z] pair representation
|
1728 |
+
aatype:
|
1729 |
+
[*, N_res] amino acid indices
|
1730 |
+
mask:
|
1731 |
+
Optional [*, N_res] sequence mask
|
1732 |
+
Returns:
|
1733 |
+
A dictionary of outputs
|
1734 |
+
"""
|
1735 |
+
s = evoformer_output_dict["single"]
|
1736 |
+
|
1737 |
+
if mask is None:
|
1738 |
+
# [*, N]
|
1739 |
+
mask = s.new_ones(s.shape[:-1])
|
1740 |
+
|
1741 |
+
# [*, N, C_s]
|
1742 |
+
s = self.layer_norm_s(s)
|
1743 |
+
|
1744 |
+
# [*, N, N, C_z]
|
1745 |
+
z = self.layer_norm_z(evoformer_output_dict["pair"])
|
1746 |
+
|
1747 |
+
z_reference_list = None
|
1748 |
+
if _offload_inference:
|
1749 |
+
assert sys.getrefcount(evoformer_output_dict["pair"]) == 2
|
1750 |
+
evoformer_output_dict["pair"] = evoformer_output_dict["pair"].cpu()
|
1751 |
+
z_reference_list = [z]
|
1752 |
+
z = None
|
1753 |
+
|
1754 |
+
# [*, N, C_s]
|
1755 |
+
s_initial = s
|
1756 |
+
s = self.linear_in(s)
|
1757 |
+
|
1758 |
+
# [*, N]
|
1759 |
+
rigids = Rigid.identity(
|
1760 |
+
s.shape[:-1],
|
1761 |
+
s.dtype,
|
1762 |
+
s.device,
|
1763 |
+
self.training,
|
1764 |
+
fmt="quat",
|
1765 |
+
)
|
1766 |
+
outputs = []
|
1767 |
+
for i in range(self.config.num_blocks):
|
1768 |
+
# [*, N, C_s]
|
1769 |
+
s = s + self.ipa(
|
1770 |
+
s,
|
1771 |
+
z,
|
1772 |
+
rigids,
|
1773 |
+
mask,
|
1774 |
+
_offload_inference=_offload_inference,
|
1775 |
+
_z_reference_list=z_reference_list,
|
1776 |
+
)
|
1777 |
+
s = self.ipa_dropout(s)
|
1778 |
+
s = self.layer_norm_ipa(s)
|
1779 |
+
s = self.transition(s)
|
1780 |
+
|
1781 |
+
# [*, N]
|
1782 |
+
rigids = rigids.compose_q_update_vec(self.bb_update(s))
|
1783 |
+
|
1784 |
+
# To hew as closely as possible to AlphaFold, we convert our
|
1785 |
+
# quaternion-based transformations to rotation-matrix ones
|
1786 |
+
# here
|
1787 |
+
backb_to_global = Rigid(
|
1788 |
+
Rotation(rot_mats=rigids.get_rots().get_rot_mats(), quats=None),
|
1789 |
+
rigids.get_trans(),
|
1790 |
+
)
|
1791 |
+
|
1792 |
+
backb_to_global = backb_to_global.scale_translation(self.config.trans_scale_factor)
|
1793 |
+
|
1794 |
+
# [*, N, 7, 2]
|
1795 |
+
unnormalized_angles, angles = self.angle_resnet(s, s_initial)
|
1796 |
+
|
1797 |
+
all_frames_to_global = self.torsion_angles_to_frames(backb_to_global, angles, aatype)
|
1798 |
+
|
1799 |
+
pred_xyz = self.frames_and_literature_positions_to_atom14_pos(all_frames_to_global, aatype)
|
1800 |
+
|
1801 |
+
scaled_rigids = rigids.scale_translation(self.config.trans_scale_factor)
|
1802 |
+
|
1803 |
+
preds = {
|
1804 |
+
"frames": scaled_rigids.to_tensor_7(),
|
1805 |
+
"sidechain_frames": all_frames_to_global.to_tensor_4x4(),
|
1806 |
+
"unnormalized_angles": unnormalized_angles,
|
1807 |
+
"angles": angles,
|
1808 |
+
"positions": pred_xyz,
|
1809 |
+
"states": s,
|
1810 |
+
}
|
1811 |
+
|
1812 |
+
outputs.append(preds)
|
1813 |
+
|
1814 |
+
rigids = rigids.stop_rot_gradient()
|
1815 |
+
|
1816 |
+
del z, z_reference_list
|
1817 |
+
|
1818 |
+
if _offload_inference:
|
1819 |
+
evoformer_output_dict["pair"] = evoformer_output_dict["pair"].to(s.device)
|
1820 |
+
|
1821 |
+
outputs = dict_multimap(torch.stack, outputs)
|
1822 |
+
outputs["single"] = s
|
1823 |
+
|
1824 |
+
return outputs
|
1825 |
+
|
1826 |
+
def _init_residue_constants(self, float_dtype, device):
|
1827 |
+
if not hasattr(self, "default_frames"):
|
1828 |
+
self.register_buffer(
|
1829 |
+
"default_frames",
|
1830 |
+
torch.tensor(
|
1831 |
+
residue_constants.restype_rigid_group_default_frame,
|
1832 |
+
dtype=float_dtype,
|
1833 |
+
device=device,
|
1834 |
+
requires_grad=False,
|
1835 |
+
),
|
1836 |
+
persistent=False,
|
1837 |
+
)
|
1838 |
+
if not hasattr(self, "group_idx"):
|
1839 |
+
self.register_buffer(
|
1840 |
+
"group_idx",
|
1841 |
+
torch.tensor(
|
1842 |
+
residue_constants.restype_atom14_to_rigid_group,
|
1843 |
+
device=device,
|
1844 |
+
requires_grad=False,
|
1845 |
+
),
|
1846 |
+
persistent=False,
|
1847 |
+
)
|
1848 |
+
if not hasattr(self, "atom_mask"):
|
1849 |
+
self.register_buffer(
|
1850 |
+
"atom_mask",
|
1851 |
+
torch.tensor(
|
1852 |
+
residue_constants.restype_atom14_mask,
|
1853 |
+
dtype=float_dtype,
|
1854 |
+
device=device,
|
1855 |
+
requires_grad=False,
|
1856 |
+
),
|
1857 |
+
persistent=False,
|
1858 |
+
)
|
1859 |
+
if not hasattr(self, "lit_positions"):
|
1860 |
+
self.register_buffer(
|
1861 |
+
"lit_positions",
|
1862 |
+
torch.tensor(
|
1863 |
+
residue_constants.restype_atom14_rigid_group_positions,
|
1864 |
+
dtype=float_dtype,
|
1865 |
+
device=device,
|
1866 |
+
requires_grad=False,
|
1867 |
+
),
|
1868 |
+
persistent=False,
|
1869 |
+
)
|
1870 |
+
|
1871 |
+
def torsion_angles_to_frames(self, r, alpha, f):
|
1872 |
+
# Lazily initialize the residue constants on the correct device
|
1873 |
+
self._init_residue_constants(alpha.dtype, alpha.device)
|
1874 |
+
# Separated purely to make testing less annoying
|
1875 |
+
return torsion_angles_to_frames(r, alpha, f, self.default_frames)
|
1876 |
+
|
1877 |
+
def frames_and_literature_positions_to_atom14_pos(self, r, f): # [*, N, 8] # [*, N]
|
1878 |
+
# Lazily initialize the residue constants on the correct device
|
1879 |
+
self._init_residue_constants(r.get_rots().dtype, r.get_rots().device)
|
1880 |
+
return frames_and_literature_positions_to_atom14_pos(
|
1881 |
+
r,
|
1882 |
+
f,
|
1883 |
+
self.default_frames,
|
1884 |
+
self.group_idx,
|
1885 |
+
self.atom_mask,
|
1886 |
+
self.lit_positions,
|
1887 |
+
)
|
1888 |
+
|
1889 |
+
|
1890 |
+
class EsmFoldingTrunk(nn.Module):
|
1891 |
+
def __init__(self, config):
|
1892 |
+
super().__init__()
|
1893 |
+
self.config = config
|
1894 |
+
|
1895 |
+
c_s = config.sequence_state_dim
|
1896 |
+
c_z = config.pairwise_state_dim
|
1897 |
+
|
1898 |
+
self.pairwise_positional_embedding = EsmFoldRelativePosition(config)
|
1899 |
+
|
1900 |
+
self.blocks = nn.ModuleList([EsmFoldTriangularSelfAttentionBlock(config) for _ in range(config.num_blocks)])
|
1901 |
+
|
1902 |
+
self.recycle_bins = 15
|
1903 |
+
self.recycle_s_norm = nn.LayerNorm(c_s)
|
1904 |
+
self.recycle_z_norm = nn.LayerNorm(c_z)
|
1905 |
+
self.recycle_disto = nn.Embedding(self.recycle_bins, c_z)
|
1906 |
+
self.recycle_disto.weight[0].detach().zero_()
|
1907 |
+
|
1908 |
+
self.structure_module = EsmFoldStructureModule(config.structure_module)
|
1909 |
+
self.trunk2sm_s = nn.Linear(c_s, config.structure_module.sequence_dim)
|
1910 |
+
self.trunk2sm_z = nn.Linear(c_z, config.structure_module.pairwise_dim)
|
1911 |
+
|
1912 |
+
self.chunk_size = config.chunk_size
|
1913 |
+
|
1914 |
+
def set_chunk_size(self, chunk_size):
|
1915 |
+
# This parameter means the axial attention will be computed
|
1916 |
+
# in a chunked manner. This should make the memory used more or less O(L) instead of O(L^2).
|
1917 |
+
# It's equivalent to running a for loop over chunks of the dimension we're iterative over,
|
1918 |
+
# where the chunk_size is the size of the chunks, so 128 would mean to parse 128-length chunks.
|
1919 |
+
self.chunk_size = chunk_size
|
1920 |
+
|
1921 |
+
def forward(self, seq_feats, pair_feats, true_aa, residx, mask, no_recycles):
|
1922 |
+
"""
|
1923 |
+
Inputs:
|
1924 |
+
seq_feats: B x L x C tensor of sequence features pair_feats: B x L x L x C tensor of pair features residx: B
|
1925 |
+
x L long tensor giving the position in the sequence mask: B x L boolean tensor indicating valid residues
|
1926 |
+
|
1927 |
+
Output:
|
1928 |
+
predicted_structure: B x L x (num_atoms_per_residue * 3) tensor wrapped in a Coordinates object
|
1929 |
+
"""
|
1930 |
+
|
1931 |
+
device = seq_feats.device
|
1932 |
+
s_s_0 = seq_feats
|
1933 |
+
s_z_0 = pair_feats
|
1934 |
+
|
1935 |
+
if no_recycles is None:
|
1936 |
+
no_recycles = self.config.max_recycles
|
1937 |
+
else:
|
1938 |
+
if no_recycles < 0:
|
1939 |
+
raise ValueError("Number of recycles must not be negative.")
|
1940 |
+
no_recycles += 1 # First 'recycle' is just the standard forward pass through the model.
|
1941 |
+
|
1942 |
+
def trunk_iter(s, z, residx, mask):
|
1943 |
+
z = z + self.pairwise_positional_embedding(residx, mask=mask)
|
1944 |
+
|
1945 |
+
for block in self.blocks:
|
1946 |
+
s, z = block(s, z, mask=mask, residue_index=residx, chunk_size=self.chunk_size)
|
1947 |
+
return s, z
|
1948 |
+
|
1949 |
+
s_s = s_s_0
|
1950 |
+
s_z = s_z_0
|
1951 |
+
recycle_s = torch.zeros_like(s_s)
|
1952 |
+
recycle_z = torch.zeros_like(s_z)
|
1953 |
+
recycle_bins = torch.zeros(*s_z.shape[:-1], device=device, dtype=torch.int64)
|
1954 |
+
|
1955 |
+
for recycle_idx in range(no_recycles):
|
1956 |
+
with ContextManagers([] if recycle_idx == no_recycles - 1 else [torch.no_grad()]):
|
1957 |
+
# === Recycling ===
|
1958 |
+
recycle_s = self.recycle_s_norm(recycle_s.detach()).to(device)
|
1959 |
+
recycle_z = self.recycle_z_norm(recycle_z.detach()).to(device)
|
1960 |
+
recycle_z += self.recycle_disto(recycle_bins.detach()).to(device)
|
1961 |
+
|
1962 |
+
s_s, s_z = trunk_iter(s_s_0 + recycle_s, s_z_0 + recycle_z, residx, mask)
|
1963 |
+
|
1964 |
+
# === Structure module ===
|
1965 |
+
structure = self.structure_module(
|
1966 |
+
{"single": self.trunk2sm_s(s_s), "pair": self.trunk2sm_z(s_z)},
|
1967 |
+
true_aa,
|
1968 |
+
mask.float(),
|
1969 |
+
)
|
1970 |
+
|
1971 |
+
recycle_s = s_s
|
1972 |
+
recycle_z = s_z
|
1973 |
+
# Distogram needs the N, CA, C coordinates, and bin constants same as alphafold.
|
1974 |
+
recycle_bins = EsmFoldingTrunk.distogram(
|
1975 |
+
structure["positions"][-1][:, :, :3],
|
1976 |
+
3.375,
|
1977 |
+
21.375,
|
1978 |
+
self.recycle_bins,
|
1979 |
+
)
|
1980 |
+
|
1981 |
+
structure["s_s"] = s_s
|
1982 |
+
structure["s_z"] = s_z
|
1983 |
+
|
1984 |
+
return structure
|
1985 |
+
|
1986 |
+
@staticmethod
|
1987 |
+
def distogram(coords, min_bin, max_bin, num_bins):
|
1988 |
+
# Coords are [... L x 3 x 3], where it's [N, CA, C] x 3 coordinates.
|
1989 |
+
boundaries = torch.linspace(
|
1990 |
+
min_bin,
|
1991 |
+
max_bin,
|
1992 |
+
num_bins - 1,
|
1993 |
+
device=coords.device,
|
1994 |
+
)
|
1995 |
+
boundaries = boundaries**2
|
1996 |
+
N, CA, C = [x.squeeze(-2) for x in coords.chunk(3, dim=-2)]
|
1997 |
+
# Infer CB coordinates.
|
1998 |
+
b = CA - N
|
1999 |
+
c = C - CA
|
2000 |
+
a = b.cross(c, dim=-1)
|
2001 |
+
CB = -0.58273431 * a + 0.56802827 * b - 0.54067466 * c + CA
|
2002 |
+
dists = (CB[..., None, :, :] - CB[..., :, None, :]).pow(2).sum(dim=-1, keepdims=True)
|
2003 |
+
bins = torch.sum(dists > boundaries, dim=-1) # [..., L, L]
|
2004 |
+
return bins
|
2005 |
+
|
2006 |
+
|
2007 |
+
# TODO Add information to the docstring about any methods that convert to PDB format, or otherwise prepare
|
2008 |
+
# the outputs for downstream use.
|
2009 |
+
|
2010 |
+
|
2011 |
+
@add_start_docstrings(
|
2012 |
+
"""
|
2013 |
+
ESMForProteinFolding is the HuggingFace port of the original ESMFold model. It consists of an ESM-2 "stem" followed
|
2014 |
+
by a protein folding "head", although unlike most other output heads, this "head" is similar in size and runtime to
|
2015 |
+
the rest of the model combined! It outputs a dictionary containing predicted structural information about the input
|
2016 |
+
protein(s).
|
2017 |
+
""",
|
2018 |
+
ESM_START_DOCSTRING,
|
2019 |
+
)
|
2020 |
+
class EsmForProteinFolding(EsmPreTrainedModel):
|
2021 |
+
_no_split_modules = ["EsmFoldStructureModule", "EsmFoldTriangularSelfAttentionBlock"]
|
2022 |
+
|
2023 |
+
def __init__(self, config):
|
2024 |
+
super().__init__(config)
|
2025 |
+
|
2026 |
+
self.config = config
|
2027 |
+
|
2028 |
+
self.distogram_bins = 64
|
2029 |
+
|
2030 |
+
self.esm = EsmModel(config, add_pooling_layer=False)
|
2031 |
+
|
2032 |
+
self.esm.requires_grad_(False)
|
2033 |
+
if self.config.esmfold_config.fp16_esm:
|
2034 |
+
self.esm.half()
|
2035 |
+
|
2036 |
+
self.esm_feats = self.config.hidden_size
|
2037 |
+
self.esm_attns = self.config.num_hidden_layers * self.config.num_attention_heads
|
2038 |
+
self.esm_layers = self.config.num_hidden_layers
|
2039 |
+
self.register_buffer("af2_to_esm", self._af2_to_esm_from_vocab_list(config.vocab_list))
|
2040 |
+
self.esm_s_combine = nn.Parameter(torch.zeros(self.esm_layers + 1))
|
2041 |
+
|
2042 |
+
trunk_config = self.config.esmfold_config.trunk
|
2043 |
+
c_s = trunk_config.sequence_state_dim
|
2044 |
+
c_z = trunk_config.pairwise_state_dim
|
2045 |
+
self.esm_s_mlp = nn.Sequential(
|
2046 |
+
LayerNorm(self.esm_feats),
|
2047 |
+
nn.Linear(self.esm_feats, c_s),
|
2048 |
+
nn.ReLU(),
|
2049 |
+
nn.Linear(c_s, c_s),
|
2050 |
+
)
|
2051 |
+
|
2052 |
+
# 0 is padding, N is unknown residues, N + 1 is mask.
|
2053 |
+
self.n_tokens_embed = residue_constants.restype_num + 3
|
2054 |
+
self.pad_idx = 0
|
2055 |
+
self.unk_idx = self.n_tokens_embed - 2
|
2056 |
+
self.mask_idx = self.n_tokens_embed - 1
|
2057 |
+
self.esm_dict_cls_idx = self.config.vocab_list.index("<cls>")
|
2058 |
+
self.esm_dict_mask_idx = self.config.vocab_list.index("<mask>")
|
2059 |
+
self.esm_dict_eos_idx = self.config.vocab_list.index("<eos>")
|
2060 |
+
self.esm_dict_padding_idx = self.config.vocab_list.index("<pad>")
|
2061 |
+
if self.config.esmfold_config.embed_aa:
|
2062 |
+
self.embedding = nn.Embedding(self.n_tokens_embed, c_s, padding_idx=0)
|
2063 |
+
|
2064 |
+
self.trunk = EsmFoldingTrunk(trunk_config)
|
2065 |
+
|
2066 |
+
self.distogram_head = nn.Linear(c_z, self.distogram_bins)
|
2067 |
+
self.ptm_head = nn.Linear(c_z, self.distogram_bins)
|
2068 |
+
self.lm_head = nn.Linear(c_s, self.n_tokens_embed)
|
2069 |
+
self.lddt_bins = 50
|
2070 |
+
structure_module_config = trunk_config.structure_module
|
2071 |
+
self.lddt_head = nn.Sequential(
|
2072 |
+
nn.LayerNorm(structure_module_config.sequence_dim),
|
2073 |
+
nn.Linear(structure_module_config.sequence_dim, self.config.esmfold_config.lddt_head_hid_dim),
|
2074 |
+
nn.Linear(self.config.esmfold_config.lddt_head_hid_dim, self.config.esmfold_config.lddt_head_hid_dim),
|
2075 |
+
nn.Linear(self.config.esmfold_config.lddt_head_hid_dim, 37 * self.lddt_bins),
|
2076 |
+
)
|
2077 |
+
|
2078 |
+
@staticmethod
|
2079 |
+
def _af2_to_esm_from_vocab_list(vocab_list: List[str]) -> torch.Tensor:
|
2080 |
+
# Remember that t is shifted from residue_constants by 1 (0 is padding).
|
2081 |
+
esm_reorder = [vocab_list.index("<pad>")] + [vocab_list.index(v) for v in residue_constants.restypes_with_x]
|
2082 |
+
return torch.tensor(esm_reorder)
|
2083 |
+
|
2084 |
+
@add_start_docstrings_to_model_forward(ESMFOLD_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
2085 |
+
@replace_return_docstrings(output_type=EsmForProteinFoldingOutput, config_class=EsmConfig)
|
2086 |
+
def forward(
|
2087 |
+
self,
|
2088 |
+
input_ids: torch.Tensor,
|
2089 |
+
attention_mask: Optional[torch.Tensor] = None,
|
2090 |
+
position_ids: Optional[torch.Tensor] = None,
|
2091 |
+
masking_pattern: Optional[torch.Tensor] = None,
|
2092 |
+
num_recycles: Optional[int] = None,
|
2093 |
+
) -> EsmForProteinFoldingOutput:
|
2094 |
+
r"""
|
2095 |
+
Returns:
|
2096 |
+
|
2097 |
+
Example:
|
2098 |
+
|
2099 |
+
```python
|
2100 |
+
>>> from transformers import AutoTokenizer, EsmForProteinFolding
|
2101 |
+
|
2102 |
+
>>> model = EsmForProteinFolding.from_pretrained("facebook/esmfold_v1")
|
2103 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/esmfold_v1")
|
2104 |
+
>>> inputs = tokenizer(["MLKNVQVQLV"], return_tensors="pt", add_special_tokens=False) # A tiny random peptide
|
2105 |
+
>>> outputs = model(**inputs)
|
2106 |
+
>>> folded_positions = outputs.positions
|
2107 |
+
```
|
2108 |
+
|
2109 |
+
"""
|
2110 |
+
cfg = self.config.esmfold_config
|
2111 |
+
|
2112 |
+
aa = input_ids # B x L
|
2113 |
+
B = aa.shape[0]
|
2114 |
+
L = aa.shape[1]
|
2115 |
+
device = input_ids.device
|
2116 |
+
if attention_mask is None:
|
2117 |
+
attention_mask = torch.ones_like(aa, device=device)
|
2118 |
+
if position_ids is None:
|
2119 |
+
position_ids = torch.arange(L, device=device).expand_as(input_ids)
|
2120 |
+
|
2121 |
+
# === ESM ===
|
2122 |
+
esmaa = self.af2_idx_to_esm_idx(aa, attention_mask)
|
2123 |
+
|
2124 |
+
if masking_pattern is not None:
|
2125 |
+
masked_aa, esmaa, mlm_targets = self.bert_mask(aa, esmaa, attention_mask, masking_pattern)
|
2126 |
+
else:
|
2127 |
+
masked_aa = aa
|
2128 |
+
mlm_targets = None
|
2129 |
+
|
2130 |
+
# We get sequence and pair representations from whatever version of ESM /
|
2131 |
+
# configuration we are using. The sequence representation esm_s is always
|
2132 |
+
# present. The pair embedding esm_z may be present depending on the
|
2133 |
+
# configuration of the model. If esm_z is not used by the model then it
|
2134 |
+
# is returned as None here.
|
2135 |
+
esm_s = self.compute_language_model_representations(esmaa)
|
2136 |
+
|
2137 |
+
# Convert esm_s and esm_z, if present, to the precision used by the trunk and
|
2138 |
+
# the structure module. These tensors may be a lower precision if, for example,
|
2139 |
+
# we're running the language model in fp16 precision.
|
2140 |
+
esm_s = esm_s.to(self.esm_s_combine.dtype)
|
2141 |
+
|
2142 |
+
if cfg.esm_ablate_sequence:
|
2143 |
+
esm_s = esm_s * 0
|
2144 |
+
|
2145 |
+
esm_s = esm_s.detach()
|
2146 |
+
|
2147 |
+
# === preprocessing ===
|
2148 |
+
esm_s = (self.esm_s_combine.softmax(0).unsqueeze(0) @ esm_s).squeeze(2)
|
2149 |
+
s_s_0 = self.esm_s_mlp(esm_s)
|
2150 |
+
|
2151 |
+
s_z_0 = s_s_0.new_zeros(B, L, L, cfg.trunk.pairwise_state_dim)
|
2152 |
+
|
2153 |
+
if self.config.esmfold_config.embed_aa:
|
2154 |
+
s_s_0 += self.embedding(masked_aa)
|
2155 |
+
|
2156 |
+
structure: dict = self.trunk(s_s_0, s_z_0, aa, position_ids, attention_mask, no_recycles=num_recycles)
|
2157 |
+
# Documenting what we expect:
|
2158 |
+
structure = {
|
2159 |
+
k: v
|
2160 |
+
for k, v in structure.items()
|
2161 |
+
if k
|
2162 |
+
in [
|
2163 |
+
"s_z",
|
2164 |
+
"s_s",
|
2165 |
+
"frames",
|
2166 |
+
"sidechain_frames",
|
2167 |
+
"unnormalized_angles",
|
2168 |
+
"angles",
|
2169 |
+
"positions",
|
2170 |
+
"states",
|
2171 |
+
]
|
2172 |
+
}
|
2173 |
+
|
2174 |
+
# Add BERT mask for the loss to use, if available.
|
2175 |
+
if mlm_targets:
|
2176 |
+
structure["mlm_targets"] = mlm_targets
|
2177 |
+
|
2178 |
+
disto_logits = self.distogram_head(structure["s_z"])
|
2179 |
+
disto_logits = (disto_logits + disto_logits.transpose(1, 2)) / 2
|
2180 |
+
structure["distogram_logits"] = disto_logits
|
2181 |
+
|
2182 |
+
lm_logits = self.lm_head(structure["s_s"])
|
2183 |
+
structure["lm_logits"] = lm_logits
|
2184 |
+
|
2185 |
+
structure["aatype"] = aa
|
2186 |
+
make_atom14_masks(structure)
|
2187 |
+
# Of course, this doesn't respect the true mask because it doesn't know about it...
|
2188 |
+
# We're not going to properly mask change of index tensors:
|
2189 |
+
# "residx_atom14_to_atom37",
|
2190 |
+
# "residx_atom37_to_atom14",
|
2191 |
+
for k in [
|
2192 |
+
"atom14_atom_exists",
|
2193 |
+
"atom37_atom_exists",
|
2194 |
+
]:
|
2195 |
+
structure[k] *= attention_mask.unsqueeze(-1)
|
2196 |
+
structure["residue_index"] = position_ids
|
2197 |
+
|
2198 |
+
lddt_head = self.lddt_head(structure["states"]).reshape(structure["states"].shape[0], B, L, -1, self.lddt_bins)
|
2199 |
+
structure["lddt_head"] = lddt_head
|
2200 |
+
plddt = categorical_lddt(lddt_head[-1], bins=self.lddt_bins)
|
2201 |
+
structure["plddt"] = plddt
|
2202 |
+
|
2203 |
+
ptm_logits = self.ptm_head(structure["s_z"])
|
2204 |
+
structure["ptm_logits"] = ptm_logits
|
2205 |
+
structure["ptm"] = compute_tm(ptm_logits, max_bin=31, no_bins=self.distogram_bins)
|
2206 |
+
structure.update(compute_predicted_aligned_error(ptm_logits, max_bin=31, no_bins=self.distogram_bins))
|
2207 |
+
|
2208 |
+
return EsmForProteinFoldingOutput(**structure)
|
2209 |
+
|
2210 |
+
def af2_idx_to_esm_idx(self, aa, mask):
|
2211 |
+
# avoid indexing on different devices
|
2212 |
+
if self.af2_to_esm.device != aa.device:
|
2213 |
+
self.af2_to_esm = self.af2_to_esm.to(aa.device)
|
2214 |
+
aa = (aa + 1).masked_fill(mask != 1, 0)
|
2215 |
+
return self.af2_to_esm[aa]
|
2216 |
+
|
2217 |
+
def compute_language_model_representations(self, esmaa: torch.Tensor) -> torch.Tensor:
|
2218 |
+
device = next(self.parameters()).device
|
2219 |
+
B, L = esmaa.shape # B = batch size, L = sequence length.
|
2220 |
+
|
2221 |
+
if self.config.esmfold_config.bypass_lm:
|
2222 |
+
esm_s = torch.zeros(B, L, self.esm_s_combine.size[0], -1, self.esm_feats, device=device)
|
2223 |
+
return esm_s
|
2224 |
+
|
2225 |
+
bosi, eosi = self.esm_dict_cls_idx, self.esm_dict_eos_idx
|
2226 |
+
bos = esmaa.new_full((B, 1), bosi)
|
2227 |
+
eos = esmaa.new_full((B, 1), self.esm_dict_padding_idx)
|
2228 |
+
esmaa = torch.cat([bos, esmaa, eos], dim=1)
|
2229 |
+
# Use the first padding index as eos during inference.
|
2230 |
+
esmaa[range(B), (esmaa != 1).sum(1)] = eosi
|
2231 |
+
|
2232 |
+
# _, esm_z, esm_s = self.esm(esmaa, return_pairs=self.config.esmfold_config.use_esm_attn_map)
|
2233 |
+
# Because we do not support use_esm_attn_map in the HF port as it is not used in any public models,
|
2234 |
+
# esm_z is always None
|
2235 |
+
esm_hidden_states = self.esm(esmaa, attention_mask=esmaa != 1, output_hidden_states=True)["hidden_states"]
|
2236 |
+
esm_s = torch.stack(esm_hidden_states, dim=2)
|
2237 |
+
|
2238 |
+
esm_s = esm_s[:, 1:-1] # B, L, nLayers, C
|
2239 |
+
|
2240 |
+
return esm_s
|
2241 |
+
|
2242 |
+
def bert_mask(self, aa, esmaa, mask, pattern):
|
2243 |
+
new_aa = aa.clone()
|
2244 |
+
target = aa.clone()
|
2245 |
+
new_esmaa = esmaa.clone()
|
2246 |
+
new_aa[pattern == 1] = self.mask_idx
|
2247 |
+
target[pattern != 1] = 0
|
2248 |
+
new_esmaa[pattern == 1] = self.esm_dict_mask_idx
|
2249 |
+
return new_aa, new_esmaa, target
|
2250 |
+
|
2251 |
+
@torch.no_grad()
|
2252 |
+
def infer(
|
2253 |
+
self,
|
2254 |
+
seqs: Union[str, List[str]],
|
2255 |
+
position_ids=None,
|
2256 |
+
):
|
2257 |
+
if isinstance(seqs, str):
|
2258 |
+
lst = [seqs]
|
2259 |
+
else:
|
2260 |
+
lst = seqs
|
2261 |
+
# Returns the raw outputs of the model given an input sequence.
|
2262 |
+
device = next(self.parameters()).device
|
2263 |
+
aatype = collate_dense_tensors(
|
2264 |
+
[
|
2265 |
+
torch.from_numpy(
|
2266 |
+
residue_constants.sequence_to_onehot(
|
2267 |
+
sequence=seq,
|
2268 |
+
mapping=residue_constants.restype_order_with_x,
|
2269 |
+
map_unknown_to_x=True,
|
2270 |
+
)
|
2271 |
+
)
|
2272 |
+
.to(device)
|
2273 |
+
.argmax(dim=1)
|
2274 |
+
for seq in lst
|
2275 |
+
]
|
2276 |
+
) # B=1 x L
|
2277 |
+
mask = collate_dense_tensors([aatype.new_ones(len(seq)) for seq in lst])
|
2278 |
+
position_ids = (
|
2279 |
+
torch.arange(aatype.shape[1], device=device).expand(len(lst), -1)
|
2280 |
+
if position_ids is None
|
2281 |
+
else position_ids.to(device)
|
2282 |
+
)
|
2283 |
+
if position_ids.ndim == 1:
|
2284 |
+
position_ids = position_ids.unsqueeze(0)
|
2285 |
+
return self.forward(
|
2286 |
+
aatype,
|
2287 |
+
mask,
|
2288 |
+
position_ids=position_ids,
|
2289 |
+
)
|
2290 |
+
|
2291 |
+
@staticmethod
|
2292 |
+
def output_to_pdb(output: Dict) -> List[str]:
|
2293 |
+
"""Returns the pbd (file) string from the model given the model output."""
|
2294 |
+
output = {k: v.to("cpu").numpy() for k, v in output.items()}
|
2295 |
+
pdbs = []
|
2296 |
+
final_atom_positions = atom14_to_atom37(output["positions"][-1], output)
|
2297 |
+
final_atom_mask = output["atom37_atom_exists"]
|
2298 |
+
for i in range(output["aatype"].shape[0]):
|
2299 |
+
aa = output["aatype"][i]
|
2300 |
+
pred_pos = final_atom_positions[i]
|
2301 |
+
mask = final_atom_mask[i]
|
2302 |
+
resid = output["residue_index"][i] + 1
|
2303 |
+
pred = OFProtein(
|
2304 |
+
aatype=aa,
|
2305 |
+
atom_positions=pred_pos,
|
2306 |
+
atom_mask=mask,
|
2307 |
+
residue_index=resid,
|
2308 |
+
b_factors=output["plddt"][i],
|
2309 |
+
)
|
2310 |
+
pdbs.append(to_pdb(pred))
|
2311 |
+
return pdbs
|
2312 |
+
|
2313 |
+
def infer_pdb(self, seqs, *args, **kwargs) -> str:
|
2314 |
+
"""Returns the pdb (file) string from the model given an input sequence."""
|
2315 |
+
assert isinstance(seqs, str)
|
2316 |
+
output = self.infer(seqs, *args, **kwargs)
|
2317 |
+
return self.output_to_pdb(output)[0]
|
2318 |
+
|
2319 |
+
def infer_pdbs(self, seqs: List[str], *args, **kwargs) -> List[str]:
|
2320 |
+
"""Returns the pdb (file) string from the model given an input sequence."""
|
2321 |
+
output = self.infer(seqs, *args, **kwargs)
|
2322 |
+
return self.output_to_pdb(output)
|
venv/lib/python3.10/site-packages/transformers/models/esm/modeling_tf_esm.py
ADDED
@@ -0,0 +1,1567 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 Meta and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch ESM model."""
|
16 |
+
|
17 |
+
|
18 |
+
from __future__ import annotations
|
19 |
+
|
20 |
+
import os
|
21 |
+
from typing import Optional, Tuple, Union
|
22 |
+
|
23 |
+
import numpy as np
|
24 |
+
import tensorflow as tf
|
25 |
+
|
26 |
+
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
|
27 |
+
from ...modeling_tf_outputs import (
|
28 |
+
TFBaseModelOutputWithPastAndCrossAttentions,
|
29 |
+
TFBaseModelOutputWithPoolingAndCrossAttentions,
|
30 |
+
TFMaskedLMOutput,
|
31 |
+
TFSequenceClassifierOutput,
|
32 |
+
TFTokenClassifierOutput,
|
33 |
+
)
|
34 |
+
from ...modeling_tf_utils import (
|
35 |
+
TFMaskedLanguageModelingLoss,
|
36 |
+
TFModelInputType,
|
37 |
+
TFPreTrainedModel,
|
38 |
+
TFSequenceClassificationLoss,
|
39 |
+
TFTokenClassificationLoss,
|
40 |
+
get_initializer,
|
41 |
+
keras,
|
42 |
+
shape_list,
|
43 |
+
unpack_inputs,
|
44 |
+
)
|
45 |
+
from ...tf_utils import check_embeddings_within_bounds, stable_softmax
|
46 |
+
from ...utils import logging
|
47 |
+
from .configuration_esm import EsmConfig
|
48 |
+
|
49 |
+
|
50 |
+
logger = logging.get_logger(__name__)
|
51 |
+
|
52 |
+
_CHECKPOINT_FOR_DOC = "facebook/esm2_t6_8M_UR50D"
|
53 |
+
_CONFIG_FOR_DOC = "EsmConfig"
|
54 |
+
|
55 |
+
|
56 |
+
def rotate_half(x):
|
57 |
+
x1, x2 = tf.split(x, 2, axis=-1)
|
58 |
+
return tf.concat((-x2, x1), axis=-1)
|
59 |
+
|
60 |
+
|
61 |
+
def apply_rotary_pos_emb(x, cos, sin):
|
62 |
+
cos = cos[:, :, : tf.shape(x)[-2], :]
|
63 |
+
sin = sin[:, :, : tf.shape(x)[-2], :]
|
64 |
+
|
65 |
+
return (x * cos) + (rotate_half(x) * sin)
|
66 |
+
|
67 |
+
|
68 |
+
def symmetrize(x):
|
69 |
+
"Make layer symmetric in final two dimensions, used for contact prediction."
|
70 |
+
return x + tf.linalg.matrix_transpose(x) # Transposes last two dimensions only
|
71 |
+
|
72 |
+
|
73 |
+
def average_product_correct(x):
|
74 |
+
"Perform average product correct, used for contact prediction."
|
75 |
+
a1 = tf.reduce_sum(x, -1, keepdims=True)
|
76 |
+
a2 = tf.reduce_sum(x, -2, keepdims=True)
|
77 |
+
a12 = tf.reduce_sum(x, (-1, -2), keepdims=True)
|
78 |
+
|
79 |
+
avg = a1 * a2
|
80 |
+
avg = avg / a12
|
81 |
+
normalized = x - avg
|
82 |
+
return normalized
|
83 |
+
|
84 |
+
|
85 |
+
class TFRotaryEmbedding(keras.layers.Layer):
|
86 |
+
"""
|
87 |
+
Rotary position embeddings based on those in
|
88 |
+
[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer). Query and keys are transformed by rotation
|
89 |
+
matrices which depend on their relative positions.
|
90 |
+
"""
|
91 |
+
|
92 |
+
def __init__(self, dim: int, name=None):
|
93 |
+
super().__init__(name=name)
|
94 |
+
# Matt: The PyTorch version of this layer does a lot of work to cache values, but we just rely on TF compilation
|
95 |
+
# and/or XLA to sort out constants like that. It actually may not seem like this layer needs to be stateful at
|
96 |
+
# all when we benefit from TF compilation, but it does. The reason is that self.inv_freq is a buffer in the
|
97 |
+
# original implementation, but all the shared ESM checkpoints were trained with fp16 params. This means that
|
98 |
+
# the inv_freq tensor was stored as a float16, and we need to replicate those lower-precision values or our
|
99 |
+
# models give different outputs from the original.
|
100 |
+
self.dim = dim
|
101 |
+
|
102 |
+
def build(self, input_shape):
|
103 |
+
super().build(input_shape)
|
104 |
+
self.inv_freq = self.add_weight(
|
105 |
+
"inv_freq", shape=(self.dim // 2,), dtype=tf.float32, initializer=get_initializer(1.0), trainable=False
|
106 |
+
)
|
107 |
+
self.inv_freq.assign(
|
108 |
+
1.0 / (10000 ** (tf.range(start=0, limit=self.dim, delta=2, dtype=tf.float32) / self.dim))
|
109 |
+
)
|
110 |
+
|
111 |
+
def _compute_cos_sin(self, x, seq_dimension=2):
|
112 |
+
seq_len = tf.shape(x)[seq_dimension]
|
113 |
+
|
114 |
+
t = tf.range(seq_len, dtype=self.inv_freq.dtype)
|
115 |
+
freqs = tf.einsum("i, j -> ij", t, self.inv_freq) # Outer multiplication
|
116 |
+
emb = tf.concat((freqs, freqs), axis=-1)[None, None, :, :]
|
117 |
+
|
118 |
+
return tf.cos(emb), tf.sin(emb)
|
119 |
+
|
120 |
+
def call(self, q: tf.Tensor, k: tf.Tensor) -> Tuple[tf.Tensor, tf.Tensor]:
|
121 |
+
cos_emb, sin_emb = self._compute_cos_sin(k, seq_dimension=-2)
|
122 |
+
|
123 |
+
return (
|
124 |
+
apply_rotary_pos_emb(q, cos_emb, sin_emb),
|
125 |
+
apply_rotary_pos_emb(k, cos_emb, sin_emb),
|
126 |
+
)
|
127 |
+
|
128 |
+
|
129 |
+
class TFEsmContactPredictionHead(keras.layers.Layer):
|
130 |
+
"""Performs symmetrization, apc, and computes a logistic regression on the output features"""
|
131 |
+
|
132 |
+
def __init__(
|
133 |
+
self,
|
134 |
+
in_features: int,
|
135 |
+
bias=True,
|
136 |
+
eos_idx: int = 2,
|
137 |
+
name=None,
|
138 |
+
):
|
139 |
+
super().__init__(name=name)
|
140 |
+
self.eos_idx = eos_idx
|
141 |
+
self.in_features = in_features
|
142 |
+
self.regression = keras.layers.Dense(1, use_bias=bias, activation="sigmoid", name="regression")
|
143 |
+
|
144 |
+
def build(self, input_shape=None):
|
145 |
+
if self.built:
|
146 |
+
return
|
147 |
+
self.built = True
|
148 |
+
if getattr(self, "regression", None) is not None:
|
149 |
+
with tf.name_scope(self.regression.name):
|
150 |
+
self.regression.build((None, self.in_features))
|
151 |
+
|
152 |
+
def call(self, tokens, attentions):
|
153 |
+
# remove eos token attentions
|
154 |
+
eos_mask = tf.cast(tokens != self.eos_idx, attentions.dtype)
|
155 |
+
eos_mask = tf.expand_dims(eos_mask, 1) * tf.expand_dims(eos_mask, 2)
|
156 |
+
attentions = attentions * eos_mask[:, None, None, :, :]
|
157 |
+
attentions = attentions[..., :-1, :-1]
|
158 |
+
# remove cls token attentions
|
159 |
+
attentions = attentions[..., 1:, 1:]
|
160 |
+
batch_size, layers, heads, seqlen, _ = shape_list(attentions)
|
161 |
+
attentions = tf.reshape(attentions, (batch_size, layers * heads, seqlen, seqlen))
|
162 |
+
|
163 |
+
# features: batch x channels x tokens x tokens (symmetric)
|
164 |
+
attentions = average_product_correct(symmetrize(attentions))
|
165 |
+
attentions = tf.transpose(attentions, perm=(0, 2, 3, 1))
|
166 |
+
return tf.squeeze(self.regression(attentions), 3)
|
167 |
+
|
168 |
+
|
169 |
+
class TFEsmEmbeddings(keras.layers.Layer):
|
170 |
+
"""
|
171 |
+
Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
|
172 |
+
"""
|
173 |
+
|
174 |
+
def __init__(self, config, name=None):
|
175 |
+
super().__init__(name=name)
|
176 |
+
self.word_embeddings = keras.layers.Embedding(
|
177 |
+
config.vocab_size,
|
178 |
+
config.hidden_size,
|
179 |
+
embeddings_initializer=get_initializer(config.initializer_range),
|
180 |
+
name="word_embeddings",
|
181 |
+
)
|
182 |
+
self.position_embeddings = keras.layers.Embedding(
|
183 |
+
config.max_position_embeddings,
|
184 |
+
config.hidden_size,
|
185 |
+
embeddings_initializer=get_initializer(config.initializer_range),
|
186 |
+
name="position_embeddings",
|
187 |
+
)
|
188 |
+
|
189 |
+
if config.emb_layer_norm_before:
|
190 |
+
self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm")
|
191 |
+
else:
|
192 |
+
self.layer_norm = None
|
193 |
+
# Matt: I think this line was copied incorrectly from BERT, disabling for now
|
194 |
+
# self.dropout = Dropout(config.hidden_dropout_prob)
|
195 |
+
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
196 |
+
|
197 |
+
self.position_ids = tf.range(config.max_position_embeddings)[None, :]
|
198 |
+
|
199 |
+
self.padding_idx = config.pad_token_id
|
200 |
+
self.token_dropout = config.token_dropout
|
201 |
+
self.mask_token_id = config.mask_token_id
|
202 |
+
self.config = config
|
203 |
+
|
204 |
+
def call(
|
205 |
+
self, input_ids=None, attention_mask=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
|
206 |
+
):
|
207 |
+
if position_ids is None:
|
208 |
+
if input_ids is not None:
|
209 |
+
# Create the position ids from the input token ids. Any padded tokens remain padded.
|
210 |
+
position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length)
|
211 |
+
else:
|
212 |
+
position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds)
|
213 |
+
|
214 |
+
if inputs_embeds is None:
|
215 |
+
check_embeddings_within_bounds(input_ids, self.config.vocab_size)
|
216 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
217 |
+
|
218 |
+
# Note that if we want to support ESM-1 (not 1b!) in future then we need to support an
|
219 |
+
# embedding_scale factor here.
|
220 |
+
embeddings = inputs_embeds
|
221 |
+
|
222 |
+
# Matt: ESM has the option to handle masking in MLM in a slightly unusual way. If the token_dropout
|
223 |
+
# flag is False then it is handled in the same was as BERT/RoBERTa. If it is set to True, however,
|
224 |
+
# masked tokens are treated as if they were selected for input dropout and zeroed out.
|
225 |
+
# This "mask-dropout" is compensated for when masked tokens are not present, by scaling embeddings by
|
226 |
+
# a factor of (fraction of unmasked tokens during training) / (fraction of unmasked tokens in sample).
|
227 |
+
# This is analogous to the way that dropout layers scale down outputs during evaluation when not
|
228 |
+
# actually dropping out values (or, equivalently, scale up their un-dropped outputs in training).
|
229 |
+
if self.token_dropout:
|
230 |
+
embeddings = tf.where((input_ids == self.mask_token_id)[:, :, None], 0.0, embeddings)
|
231 |
+
mask_ratio_train = 0.15 * 0.8 # Hardcoded as the ratio used in all ESM model training runs
|
232 |
+
src_lengths = tf.cast(tf.reduce_sum(attention_mask, axis=-1), tf.float32)
|
233 |
+
masked_tokens = input_ids == self.mask_token_id
|
234 |
+
mask_ratio_observed = tf.math.count_nonzero(masked_tokens, dtype=tf.float32, axis=-1) / src_lengths
|
235 |
+
embeddings = embeddings * (1 - mask_ratio_train) / (1 - mask_ratio_observed)[:, None, None]
|
236 |
+
|
237 |
+
if self.position_embedding_type == "absolute":
|
238 |
+
position_embeddings = self.position_embeddings(position_ids)
|
239 |
+
embeddings += position_embeddings
|
240 |
+
|
241 |
+
if self.layer_norm is not None:
|
242 |
+
embeddings = self.layer_norm(embeddings)
|
243 |
+
if attention_mask is not None:
|
244 |
+
embeddings = embeddings * tf.cast(tf.expand_dims(attention_mask, -1), embeddings.dtype)
|
245 |
+
# Matt: I think this line was copied incorrectly from BERT, disabling it for now.
|
246 |
+
# embeddings = self.dropout(embeddings)
|
247 |
+
return embeddings
|
248 |
+
|
249 |
+
def create_position_ids_from_inputs_embeds(self, inputs_embeds):
|
250 |
+
"""
|
251 |
+
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
|
252 |
+
|
253 |
+
Args:
|
254 |
+
inputs_embeds: tf.Tensor
|
255 |
+
|
256 |
+
Returns: tf.Tensor
|
257 |
+
"""
|
258 |
+
input_shape = shape_list(inputs_embeds)[:-1]
|
259 |
+
sequence_length = input_shape[1]
|
260 |
+
|
261 |
+
position_ids = tf.range(
|
262 |
+
start=self.padding_idx + 1, limit=sequence_length + self.padding_idx + 1, dtype=tf.int64
|
263 |
+
)
|
264 |
+
return tf.broadcast_to(tf.expand_dims(position_ids, 0), input_shape)
|
265 |
+
|
266 |
+
def build(self, input_shape=None):
|
267 |
+
if self.built:
|
268 |
+
return
|
269 |
+
self.built = True
|
270 |
+
if getattr(self, "word_embeddings", None) is not None:
|
271 |
+
with tf.name_scope(self.word_embeddings.name):
|
272 |
+
self.word_embeddings.build(None)
|
273 |
+
if getattr(self, "position_embeddings", None) is not None:
|
274 |
+
with tf.name_scope(self.position_embeddings.name):
|
275 |
+
self.position_embeddings.build(None)
|
276 |
+
if getattr(self, "layer_norm", None) is not None:
|
277 |
+
with tf.name_scope(self.layer_norm.name):
|
278 |
+
self.layer_norm.build([None, None, self.config.hidden_size])
|
279 |
+
|
280 |
+
|
281 |
+
class TFEsmSelfAttention(keras.layers.Layer):
|
282 |
+
def __init__(self, config, position_embedding_type=None, name=None):
|
283 |
+
super().__init__(name=name)
|
284 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
285 |
+
raise ValueError(
|
286 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
287 |
+
f"heads ({config.num_attention_heads})"
|
288 |
+
)
|
289 |
+
|
290 |
+
self.num_attention_heads = config.num_attention_heads
|
291 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
292 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
293 |
+
|
294 |
+
self.query = keras.layers.Dense(
|
295 |
+
self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query"
|
296 |
+
)
|
297 |
+
self.key = keras.layers.Dense(
|
298 |
+
self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key"
|
299 |
+
)
|
300 |
+
self.value = keras.layers.Dense(
|
301 |
+
self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value"
|
302 |
+
)
|
303 |
+
|
304 |
+
self.dropout = keras.layers.Dropout(config.attention_probs_dropout_prob)
|
305 |
+
self.position_embedding_type = position_embedding_type or getattr(
|
306 |
+
config, "position_embedding_type", "absolute"
|
307 |
+
)
|
308 |
+
self.rotary_embeddings = None
|
309 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
310 |
+
self.max_position_embeddings = config.max_position_embeddings
|
311 |
+
self.distance_embedding = keras.layers.Embedding(
|
312 |
+
2 * config.max_position_embeddings - 1,
|
313 |
+
self.attention_head_size,
|
314 |
+
embeddings_initializer=get_initializer(config.initializer_range),
|
315 |
+
)
|
316 |
+
elif self.position_embedding_type == "rotary":
|
317 |
+
self.rotary_embeddings = TFRotaryEmbedding(dim=self.attention_head_size, name="rotary_embeddings")
|
318 |
+
|
319 |
+
self.is_decoder = config.is_decoder
|
320 |
+
self.config = config
|
321 |
+
|
322 |
+
def transpose_for_scores(self, x: tf.Tensor) -> tf.Tensor:
|
323 |
+
new_x_shape = shape_list(x)[:-1] + [self.num_attention_heads, self.attention_head_size]
|
324 |
+
x = tf.reshape(x, new_x_shape)
|
325 |
+
return tf.transpose(x, perm=(0, 2, 1, 3))
|
326 |
+
|
327 |
+
def call(
|
328 |
+
self,
|
329 |
+
hidden_states: tf.Tensor,
|
330 |
+
attention_mask: tf.Tensor | None = None,
|
331 |
+
head_mask: tf.Tensor | None = None,
|
332 |
+
encoder_hidden_states: tf.Tensor | None = None,
|
333 |
+
encoder_attention_mask: tf.Tensor | None = None,
|
334 |
+
past_key_value: Tuple[Tuple[tf.Tensor]] | None = None,
|
335 |
+
output_attentions: Optional[bool] = False,
|
336 |
+
training: bool = False,
|
337 |
+
) -> Tuple[tf.Tensor]:
|
338 |
+
mixed_query_layer = self.query(hidden_states)
|
339 |
+
|
340 |
+
# If this is instantiated as a cross-attention module, the keys
|
341 |
+
# and values come from an encoder; the attention mask needs to be
|
342 |
+
# such that the encoder's padding tokens are not attended to.
|
343 |
+
is_cross_attention = encoder_hidden_states is not None
|
344 |
+
|
345 |
+
if is_cross_attention and past_key_value is not None:
|
346 |
+
# reuse k,v, cross_attentions
|
347 |
+
key_layer = past_key_value[0]
|
348 |
+
value_layer = past_key_value[1]
|
349 |
+
attention_mask = encoder_attention_mask
|
350 |
+
elif is_cross_attention:
|
351 |
+
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
|
352 |
+
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
353 |
+
attention_mask = encoder_attention_mask
|
354 |
+
elif past_key_value is not None:
|
355 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
356 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
357 |
+
key_layer = tf.concat([past_key_value[0], key_layer], axis=2)
|
358 |
+
value_layer = tf.concat([past_key_value[1], value_layer], axis=2)
|
359 |
+
else:
|
360 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
361 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
362 |
+
|
363 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
364 |
+
|
365 |
+
# Matt: Our BERT model (which this code was derived from) scales attention logits down by sqrt(head_dim).
|
366 |
+
# ESM scales the query down by the same factor instead. Modulo numerical stability these are equivalent,
|
367 |
+
# but not when rotary embeddings get involved. Therefore, we scale the query here to match the original
|
368 |
+
# ESM code and fix rotary embeddings.
|
369 |
+
query_layer = query_layer * self.attention_head_size**-0.5
|
370 |
+
|
371 |
+
if self.is_decoder:
|
372 |
+
# if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states.
|
373 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
374 |
+
# key/value_states (first "if" case)
|
375 |
+
# if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of
|
376 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
377 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
378 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
379 |
+
past_key_value = (key_layer, value_layer)
|
380 |
+
|
381 |
+
if self.position_embedding_type == "rotary":
|
382 |
+
query_layer, key_layer = self.rotary_embeddings(query_layer, key_layer)
|
383 |
+
|
384 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
385 |
+
attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True)
|
386 |
+
|
387 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
388 |
+
seq_length = shape_list(hidden_states)[1]
|
389 |
+
position_ids_l = tf.expand_dims(tf.range(seq_length, dtype=tf.int64), -1)
|
390 |
+
position_ids_r = tf.expand_dims(tf.range(seq_length, dtype=tf.int64), 0)
|
391 |
+
distance = position_ids_l - position_ids_r
|
392 |
+
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
|
393 |
+
positional_embedding = tf.cast(positional_embedding, query_layer.dtype) # fp16 compatibility
|
394 |
+
|
395 |
+
if self.position_embedding_type == "relative_key":
|
396 |
+
relative_position_scores = tf.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
397 |
+
attention_scores = attention_scores + relative_position_scores
|
398 |
+
elif self.position_embedding_type == "relative_key_query":
|
399 |
+
relative_position_scores_query = tf.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
400 |
+
relative_position_scores_key = tf.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
|
401 |
+
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
|
402 |
+
|
403 |
+
if attention_mask is not None:
|
404 |
+
# Apply the attention mask is (precomputed for all layers in EsmModel forward() function)
|
405 |
+
attention_scores = attention_scores + attention_mask
|
406 |
+
|
407 |
+
# Normalize the attention scores to probabilities.
|
408 |
+
attention_probs = stable_softmax(attention_scores, axis=-1)
|
409 |
+
|
410 |
+
# This is actually dropping out entire tokens to attend to, which might
|
411 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
412 |
+
attention_probs = self.dropout(attention_probs, training=training)
|
413 |
+
|
414 |
+
# Mask heads if we want to
|
415 |
+
if head_mask is not None:
|
416 |
+
attention_probs = attention_probs * head_mask
|
417 |
+
|
418 |
+
context_layer = attention_probs @ value_layer
|
419 |
+
|
420 |
+
context_layer = tf.transpose(context_layer, perm=(0, 2, 1, 3))
|
421 |
+
new_context_layer_shape = shape_list(context_layer)[:-2] + [self.all_head_size]
|
422 |
+
context_layer = tf.reshape(context_layer, new_context_layer_shape)
|
423 |
+
|
424 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
425 |
+
|
426 |
+
if self.is_decoder:
|
427 |
+
outputs = outputs + (past_key_value,)
|
428 |
+
return outputs
|
429 |
+
|
430 |
+
def build(self, input_shape=None):
|
431 |
+
if self.built:
|
432 |
+
return
|
433 |
+
self.built = True
|
434 |
+
if getattr(self, "query", None) is not None:
|
435 |
+
with tf.name_scope(self.query.name):
|
436 |
+
self.query.build([None, None, self.config.hidden_size])
|
437 |
+
if getattr(self, "key", None) is not None:
|
438 |
+
with tf.name_scope(self.key.name):
|
439 |
+
self.key.build([None, None, self.config.hidden_size])
|
440 |
+
if getattr(self, "value", None) is not None:
|
441 |
+
with tf.name_scope(self.value.name):
|
442 |
+
self.value.build([None, None, self.config.hidden_size])
|
443 |
+
if getattr(self, "rotary_embeddings", None) is not None:
|
444 |
+
with tf.name_scope(self.rotary_embeddings.name):
|
445 |
+
self.rotary_embeddings.build(None)
|
446 |
+
|
447 |
+
|
448 |
+
class TFEsmSelfOutput(keras.layers.Layer):
|
449 |
+
def __init__(self, config, name=None):
|
450 |
+
super().__init__(name=name)
|
451 |
+
self.dense = keras.layers.Dense(
|
452 |
+
config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
|
453 |
+
)
|
454 |
+
self.dropout = keras.layers.Dropout(config.hidden_dropout_prob)
|
455 |
+
self.config = config
|
456 |
+
|
457 |
+
def call(self, hidden_states, input_tensor, training=False):
|
458 |
+
hidden_states = self.dense(hidden_states)
|
459 |
+
hidden_states = self.dropout(hidden_states, training=training)
|
460 |
+
hidden_states += input_tensor
|
461 |
+
return hidden_states
|
462 |
+
|
463 |
+
def build(self, input_shape=None):
|
464 |
+
if self.built:
|
465 |
+
return
|
466 |
+
self.built = True
|
467 |
+
if getattr(self, "dense", None) is not None:
|
468 |
+
with tf.name_scope(self.dense.name):
|
469 |
+
self.dense.build([None, None, self.config.hidden_size])
|
470 |
+
|
471 |
+
|
472 |
+
class TFEsmAttention(keras.layers.Layer):
|
473 |
+
def __init__(self, config, name=None):
|
474 |
+
super().__init__(name=name)
|
475 |
+
self.self = TFEsmSelfAttention(config, name="self")
|
476 |
+
self.output_layer = TFEsmSelfOutput(config, name="output")
|
477 |
+
self.pruned_heads = set()
|
478 |
+
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
|
479 |
+
self.config = config
|
480 |
+
|
481 |
+
def prune_heads(self, heads):
|
482 |
+
raise NotImplementedError
|
483 |
+
|
484 |
+
def call(
|
485 |
+
self,
|
486 |
+
hidden_states,
|
487 |
+
attention_mask=None,
|
488 |
+
head_mask=None,
|
489 |
+
encoder_hidden_states=None,
|
490 |
+
encoder_attention_mask=None,
|
491 |
+
past_key_value=None,
|
492 |
+
output_attentions=False,
|
493 |
+
training=False,
|
494 |
+
):
|
495 |
+
hidden_states_ln = self.LayerNorm(hidden_states)
|
496 |
+
self_outputs = self.self(
|
497 |
+
hidden_states_ln,
|
498 |
+
attention_mask,
|
499 |
+
head_mask,
|
500 |
+
encoder_hidden_states,
|
501 |
+
encoder_attention_mask,
|
502 |
+
past_key_value,
|
503 |
+
output_attentions,
|
504 |
+
training,
|
505 |
+
)
|
506 |
+
attention_output = self.output_layer(self_outputs[0], hidden_states)
|
507 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
508 |
+
return outputs
|
509 |
+
|
510 |
+
def build(self, input_shape=None):
|
511 |
+
if self.built:
|
512 |
+
return
|
513 |
+
self.built = True
|
514 |
+
if getattr(self, "self", None) is not None:
|
515 |
+
with tf.name_scope(self.self.name):
|
516 |
+
self.self.build(None)
|
517 |
+
if getattr(self, "output_layer", None) is not None:
|
518 |
+
with tf.name_scope(self.output_layer.name):
|
519 |
+
self.output_layer.build(None)
|
520 |
+
if getattr(self, "LayerNorm", None) is not None:
|
521 |
+
with tf.name_scope(self.LayerNorm.name):
|
522 |
+
self.LayerNorm.build([None, None, self.config.hidden_size])
|
523 |
+
|
524 |
+
|
525 |
+
class TFEsmIntermediate(keras.layers.Layer):
|
526 |
+
def __init__(self, config: EsmConfig, **kwargs):
|
527 |
+
super().__init__(**kwargs)
|
528 |
+
|
529 |
+
self.dense = keras.layers.Dense(
|
530 |
+
units=config.intermediate_size,
|
531 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
532 |
+
name="dense",
|
533 |
+
)
|
534 |
+
self.config = config
|
535 |
+
|
536 |
+
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
|
537 |
+
hidden_states = self.dense(inputs=hidden_states)
|
538 |
+
hidden_states = tf.nn.gelu(hidden_states)
|
539 |
+
return hidden_states
|
540 |
+
|
541 |
+
def build(self, input_shape=None):
|
542 |
+
if self.built:
|
543 |
+
return
|
544 |
+
self.built = True
|
545 |
+
if getattr(self, "dense", None) is not None:
|
546 |
+
with tf.name_scope(self.dense.name):
|
547 |
+
self.dense.build([None, None, self.config.hidden_size])
|
548 |
+
|
549 |
+
|
550 |
+
class TFEsmOutput(keras.layers.Layer):
|
551 |
+
def __init__(self, config, name=None):
|
552 |
+
super().__init__(name=name)
|
553 |
+
self.dense = keras.layers.Dense(
|
554 |
+
config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
|
555 |
+
)
|
556 |
+
self.dropout = keras.layers.Dropout(config.hidden_dropout_prob)
|
557 |
+
self.config = config
|
558 |
+
|
559 |
+
def call(self, hidden_states, input_tensor, training=False):
|
560 |
+
hidden_states = self.dense(hidden_states)
|
561 |
+
hidden_states = self.dropout(hidden_states, training=training)
|
562 |
+
hidden_states += input_tensor
|
563 |
+
return hidden_states
|
564 |
+
|
565 |
+
def build(self, input_shape=None):
|
566 |
+
if self.built:
|
567 |
+
return
|
568 |
+
self.built = True
|
569 |
+
if getattr(self, "dense", None) is not None:
|
570 |
+
with tf.name_scope(self.dense.name):
|
571 |
+
self.dense.build([None, None, self.config.intermediate_size])
|
572 |
+
|
573 |
+
|
574 |
+
class TFEsmLayer(keras.layers.Layer):
|
575 |
+
def __init__(self, config, name=None):
|
576 |
+
super().__init__(name=name)
|
577 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
578 |
+
self.seq_len_dim = 1
|
579 |
+
self.attention = TFEsmAttention(config, name="attention")
|
580 |
+
self.is_decoder = config.is_decoder
|
581 |
+
self.add_cross_attention = config.add_cross_attention
|
582 |
+
if self.add_cross_attention:
|
583 |
+
if not self.is_decoder:
|
584 |
+
raise RuntimeError(f"{self} should be used as a decoder model if cross attention is added")
|
585 |
+
self.crossattention = TFEsmAttention(config)
|
586 |
+
self.intermediate = TFEsmIntermediate(config, name="intermediate")
|
587 |
+
self.output_layer = TFEsmOutput(config, name="output")
|
588 |
+
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
|
589 |
+
self.config = config
|
590 |
+
|
591 |
+
def call(
|
592 |
+
self,
|
593 |
+
hidden_states,
|
594 |
+
attention_mask=None,
|
595 |
+
head_mask=None,
|
596 |
+
encoder_hidden_states=None,
|
597 |
+
encoder_attention_mask=None,
|
598 |
+
past_key_value=None,
|
599 |
+
output_attentions=False,
|
600 |
+
training=False,
|
601 |
+
):
|
602 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
603 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
604 |
+
self_attention_outputs = self.attention(
|
605 |
+
hidden_states,
|
606 |
+
attention_mask,
|
607 |
+
head_mask,
|
608 |
+
output_attentions=output_attentions,
|
609 |
+
past_key_value=self_attn_past_key_value,
|
610 |
+
training=training,
|
611 |
+
)
|
612 |
+
attention_output = self_attention_outputs[0]
|
613 |
+
|
614 |
+
# if decoder, the last output is tuple of self-attn cache
|
615 |
+
if self.is_decoder:
|
616 |
+
outputs = self_attention_outputs[1:-1]
|
617 |
+
present_key_value = self_attention_outputs[-1]
|
618 |
+
else:
|
619 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
620 |
+
|
621 |
+
cross_attn_present_key_value = None
|
622 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
623 |
+
if not hasattr(self, "crossattention"):
|
624 |
+
raise AttributeError(
|
625 |
+
f"If `encoder_hidden_states` are passed, {self} has to be instantiated"
|
626 |
+
" with cross-attention layers by setting `config.add_cross_attention=True`"
|
627 |
+
)
|
628 |
+
|
629 |
+
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
|
630 |
+
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
|
631 |
+
cross_attention_outputs = self.crossattention(
|
632 |
+
attention_output,
|
633 |
+
attention_mask,
|
634 |
+
head_mask,
|
635 |
+
encoder_hidden_states,
|
636 |
+
encoder_attention_mask,
|
637 |
+
cross_attn_past_key_value,
|
638 |
+
output_attentions,
|
639 |
+
training=training,
|
640 |
+
)
|
641 |
+
attention_output = cross_attention_outputs[0]
|
642 |
+
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
|
643 |
+
|
644 |
+
# add cross-attn cache to positions 3,4 of present_key_value tuple
|
645 |
+
cross_attn_present_key_value = cross_attention_outputs[-1]
|
646 |
+
present_key_value = present_key_value + cross_attn_present_key_value
|
647 |
+
|
648 |
+
layernorm_output = self.LayerNorm(attention_output)
|
649 |
+
intermediate_output = self.intermediate(hidden_states=layernorm_output)
|
650 |
+
layer_output = self.output_layer(
|
651 |
+
hidden_states=intermediate_output, input_tensor=attention_output, training=training
|
652 |
+
)
|
653 |
+
outputs = (layer_output,) + outputs # add attentions if we output them
|
654 |
+
|
655 |
+
# if decoder, return the attn key/values as the last output
|
656 |
+
if self.is_decoder:
|
657 |
+
outputs = outputs + (present_key_value,)
|
658 |
+
|
659 |
+
return outputs
|
660 |
+
|
661 |
+
def build(self, input_shape=None):
|
662 |
+
if self.built:
|
663 |
+
return
|
664 |
+
self.built = True
|
665 |
+
if getattr(self, "attention", None) is not None:
|
666 |
+
with tf.name_scope(self.attention.name):
|
667 |
+
self.attention.build(None)
|
668 |
+
if getattr(self, "intermediate", None) is not None:
|
669 |
+
with tf.name_scope(self.intermediate.name):
|
670 |
+
self.intermediate.build(None)
|
671 |
+
if getattr(self, "output_layer", None) is not None:
|
672 |
+
with tf.name_scope(self.output_layer.name):
|
673 |
+
self.output_layer.build(None)
|
674 |
+
if getattr(self, "LayerNorm", None) is not None:
|
675 |
+
with tf.name_scope(self.LayerNorm.name):
|
676 |
+
self.LayerNorm.build([None, None, self.config.hidden_size])
|
677 |
+
|
678 |
+
|
679 |
+
class TFEsmEncoder(keras.layers.Layer):
|
680 |
+
def __init__(self, config, name=None):
|
681 |
+
super().__init__(name=name)
|
682 |
+
self.config = config
|
683 |
+
self.layer = [TFEsmLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)]
|
684 |
+
self.emb_layer_norm_after = keras.layers.LayerNormalization(
|
685 |
+
epsilon=config.layer_norm_eps, name="emb_layer_norm_after"
|
686 |
+
)
|
687 |
+
|
688 |
+
def call(
|
689 |
+
self,
|
690 |
+
hidden_states,
|
691 |
+
attention_mask=None,
|
692 |
+
head_mask=None,
|
693 |
+
encoder_hidden_states=None,
|
694 |
+
encoder_attention_mask=None,
|
695 |
+
past_key_values=None,
|
696 |
+
use_cache=None,
|
697 |
+
output_attentions=False,
|
698 |
+
output_hidden_states=False,
|
699 |
+
return_dict=True,
|
700 |
+
training=False,
|
701 |
+
):
|
702 |
+
all_hidden_states = () if output_hidden_states else None
|
703 |
+
all_self_attentions = () if output_attentions else None
|
704 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
705 |
+
|
706 |
+
next_decoder_cache = () if use_cache else None
|
707 |
+
for i, layer_module in enumerate(self.layer):
|
708 |
+
if output_hidden_states:
|
709 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
710 |
+
|
711 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
712 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
713 |
+
|
714 |
+
layer_outputs = layer_module(
|
715 |
+
hidden_states,
|
716 |
+
attention_mask,
|
717 |
+
layer_head_mask,
|
718 |
+
encoder_hidden_states,
|
719 |
+
encoder_attention_mask,
|
720 |
+
past_key_value,
|
721 |
+
output_attentions,
|
722 |
+
training,
|
723 |
+
)
|
724 |
+
|
725 |
+
hidden_states = layer_outputs[0]
|
726 |
+
if use_cache:
|
727 |
+
next_decoder_cache += (layer_outputs[-1],)
|
728 |
+
if output_attentions:
|
729 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
730 |
+
if self.config.add_cross_attention:
|
731 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
|
732 |
+
|
733 |
+
if self.emb_layer_norm_after:
|
734 |
+
hidden_states = self.emb_layer_norm_after(hidden_states)
|
735 |
+
|
736 |
+
if output_hidden_states:
|
737 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
738 |
+
|
739 |
+
if not return_dict:
|
740 |
+
return tuple(
|
741 |
+
v
|
742 |
+
for v in [
|
743 |
+
hidden_states,
|
744 |
+
next_decoder_cache,
|
745 |
+
all_hidden_states,
|
746 |
+
all_self_attentions,
|
747 |
+
all_cross_attentions,
|
748 |
+
]
|
749 |
+
if v is not None
|
750 |
+
)
|
751 |
+
return TFBaseModelOutputWithPastAndCrossAttentions(
|
752 |
+
last_hidden_state=hidden_states,
|
753 |
+
past_key_values=next_decoder_cache,
|
754 |
+
hidden_states=all_hidden_states,
|
755 |
+
attentions=all_self_attentions,
|
756 |
+
cross_attentions=all_cross_attentions,
|
757 |
+
)
|
758 |
+
|
759 |
+
def build(self, input_shape=None):
|
760 |
+
if self.built:
|
761 |
+
return
|
762 |
+
self.built = True
|
763 |
+
if getattr(self, "emb_layer_norm_after", None) is not None:
|
764 |
+
with tf.name_scope(self.emb_layer_norm_after.name):
|
765 |
+
self.emb_layer_norm_after.build([None, None, self.config.hidden_size])
|
766 |
+
if getattr(self, "layer", None) is not None:
|
767 |
+
for layer in self.layer:
|
768 |
+
with tf.name_scope(layer.name):
|
769 |
+
layer.build(None)
|
770 |
+
|
771 |
+
|
772 |
+
# Copied from transformers.models.bert.modeling_tf_bert.TFBertPooler with Bert->Esm
|
773 |
+
class TFEsmPooler(keras.layers.Layer):
|
774 |
+
def __init__(self, config: EsmConfig, **kwargs):
|
775 |
+
super().__init__(**kwargs)
|
776 |
+
|
777 |
+
self.dense = keras.layers.Dense(
|
778 |
+
units=config.hidden_size,
|
779 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
780 |
+
activation="tanh",
|
781 |
+
name="dense",
|
782 |
+
)
|
783 |
+
self.config = config
|
784 |
+
|
785 |
+
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
|
786 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
787 |
+
# to the first token.
|
788 |
+
first_token_tensor = hidden_states[:, 0]
|
789 |
+
pooled_output = self.dense(inputs=first_token_tensor)
|
790 |
+
|
791 |
+
return pooled_output
|
792 |
+
|
793 |
+
def build(self, input_shape=None):
|
794 |
+
if self.built:
|
795 |
+
return
|
796 |
+
self.built = True
|
797 |
+
if getattr(self, "dense", None) is not None:
|
798 |
+
with tf.name_scope(self.dense.name):
|
799 |
+
self.dense.build([None, None, self.config.hidden_size])
|
800 |
+
|
801 |
+
|
802 |
+
class TFEsmPreTrainedModel(TFPreTrainedModel):
|
803 |
+
"""
|
804 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
805 |
+
models.
|
806 |
+
"""
|
807 |
+
|
808 |
+
config_class = EsmConfig
|
809 |
+
base_model_prefix = "esm"
|
810 |
+
|
811 |
+
|
812 |
+
ESM_START_DOCSTRING = r"""
|
813 |
+
|
814 |
+
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
|
815 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
816 |
+
etc.)
|
817 |
+
|
818 |
+
This model is also a Keras [Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a
|
819 |
+
regular Keras model and refer to the TF/Keras documentation for all matters related to general usage and behavior.
|
820 |
+
|
821 |
+
Parameters:
|
822 |
+
config ([`EsmConfig`]): Model configuration class with all the parameters of the
|
823 |
+
model. Initializing with a config file does not load the weights associated with the model, only the
|
824 |
+
configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
|
825 |
+
"""
|
826 |
+
|
827 |
+
ESM_INPUTS_DOCSTRING = r"""
|
828 |
+
Args:
|
829 |
+
input_ids (`tf.Tensor` of shape `({0})`):
|
830 |
+
Indices of input sequence tokens in the vocabulary.
|
831 |
+
|
832 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
833 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
834 |
+
|
835 |
+
[What are input IDs?](../glossary#input-ids)
|
836 |
+
attention_mask (`tf.Tensor` of shape `({0})`, *optional*):
|
837 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
838 |
+
|
839 |
+
- 1 for tokens that are **not masked**,
|
840 |
+
- 0 for tokens that are **masked**.
|
841 |
+
|
842 |
+
[What are attention masks?](../glossary#attention-mask)
|
843 |
+
position_ids (`tf.Tensor` of shape `({0})`, *optional*):
|
844 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
845 |
+
config.max_position_embeddings - 1]`.
|
846 |
+
|
847 |
+
[What are position IDs?](../glossary#position-ids)
|
848 |
+
head_mask (`tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
849 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
850 |
+
|
851 |
+
- 1 indicates the head is **not masked**,
|
852 |
+
- 0 indicates the head is **masked**.
|
853 |
+
|
854 |
+
inputs_embeds (`tf.Tensor` of shape `({0}, hidden_size)`, *optional*):
|
855 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
856 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
857 |
+
model's internal embedding lookup matrix.
|
858 |
+
output_attentions (`bool`, *optional*):
|
859 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
860 |
+
tensors for more detail.
|
861 |
+
output_hidden_states (`bool`, *optional*):
|
862 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
863 |
+
more detail.
|
864 |
+
return_dict (`bool`, *optional*):
|
865 |
+
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
|
866 |
+
"""
|
867 |
+
|
868 |
+
|
869 |
+
@add_start_docstrings(
|
870 |
+
"The bare ESM Model transformer outputting raw hidden-states without any specific head on top.",
|
871 |
+
ESM_START_DOCSTRING,
|
872 |
+
)
|
873 |
+
class TFEsmMainLayer(keras.layers.Layer):
|
874 |
+
"""
|
875 |
+
|
876 |
+
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
|
877 |
+
cross-attention is added between the self-attention layers, following the architecture described in [Attention is
|
878 |
+
all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
|
879 |
+
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
|
880 |
+
|
881 |
+
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
|
882 |
+
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
|
883 |
+
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
|
884 |
+
"""
|
885 |
+
|
886 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
887 |
+
|
888 |
+
def __init__(self, config, add_pooling_layer=True, name=None, **kwargs):
|
889 |
+
super().__init__(name=name, **kwargs)
|
890 |
+
|
891 |
+
self.config = config
|
892 |
+
self.is_decoder = config.is_decoder
|
893 |
+
|
894 |
+
self.embeddings = TFEsmEmbeddings(config, name="embeddings")
|
895 |
+
self.encoder = TFEsmEncoder(config, name="encoder")
|
896 |
+
self.pooler = TFEsmPooler(config, name="pooler") if add_pooling_layer else None
|
897 |
+
|
898 |
+
self.contact_head = TFEsmContactPredictionHead(
|
899 |
+
in_features=self.config.num_hidden_layers * self.config.num_attention_heads, bias=True, name="contact_head"
|
900 |
+
)
|
901 |
+
|
902 |
+
def build(self, input_shape=None):
|
903 |
+
if self.built:
|
904 |
+
return
|
905 |
+
self.built = True
|
906 |
+
if getattr(self, "embeddings", None) is not None:
|
907 |
+
with tf.name_scope(self.embeddings.name):
|
908 |
+
self.embeddings.build(None)
|
909 |
+
if getattr(self, "encoder", None) is not None:
|
910 |
+
with tf.name_scope(self.encoder.name):
|
911 |
+
self.encoder.build(None)
|
912 |
+
if getattr(self, "pooler", None) is not None:
|
913 |
+
with tf.name_scope(self.pooler.name):
|
914 |
+
self.pooler.build(None)
|
915 |
+
if getattr(self, "contact_head", None) is not None:
|
916 |
+
with tf.name_scope(self.contact_head.name):
|
917 |
+
self.contact_head.build(None)
|
918 |
+
|
919 |
+
def get_input_embeddings(self):
|
920 |
+
return self.embeddings.word_embeddings
|
921 |
+
|
922 |
+
def set_input_embeddings(self, value: tf.Variable):
|
923 |
+
self.embeddings.word_embeddings.weight = value
|
924 |
+
self.embeddings.vocab_size = shape_list(value)[0]
|
925 |
+
|
926 |
+
def _prune_heads(self, heads_to_prune):
|
927 |
+
raise NotImplementedError
|
928 |
+
|
929 |
+
def call(
|
930 |
+
self,
|
931 |
+
input_ids: TFModelInputType | None = None,
|
932 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
933 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
934 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
935 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
936 |
+
encoder_hidden_states: np.ndarray | tf.Tensor | None = None,
|
937 |
+
encoder_attention_mask: np.ndarray | tf.Tensor | None = None,
|
938 |
+
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
|
939 |
+
use_cache: Optional[bool] = None,
|
940 |
+
output_attentions: Optional[bool] = None,
|
941 |
+
output_hidden_states: Optional[bool] = None,
|
942 |
+
return_dict: Optional[bool] = None,
|
943 |
+
training: bool = False,
|
944 |
+
) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]:
|
945 |
+
if not self.config.is_decoder:
|
946 |
+
use_cache = False
|
947 |
+
|
948 |
+
if input_ids is not None and inputs_embeds is not None:
|
949 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
950 |
+
elif input_ids is not None:
|
951 |
+
input_shape = shape_list(input_ids)
|
952 |
+
elif inputs_embeds is not None:
|
953 |
+
input_shape = shape_list(inputs_embeds)[:-1]
|
954 |
+
else:
|
955 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
956 |
+
|
957 |
+
batch_size, seq_length = input_shape
|
958 |
+
|
959 |
+
if past_key_values is None:
|
960 |
+
past_key_values_length = 0
|
961 |
+
past_key_values = [None] * len(self.encoder.layer)
|
962 |
+
else:
|
963 |
+
past_key_values_length = shape_list(past_key_values[0][0])[-2]
|
964 |
+
|
965 |
+
if attention_mask is None:
|
966 |
+
attention_mask = tf.fill(dims=(batch_size, seq_length + past_key_values_length), value=1)
|
967 |
+
|
968 |
+
embedding_output = self.embeddings(
|
969 |
+
input_ids=input_ids,
|
970 |
+
attention_mask=attention_mask,
|
971 |
+
position_ids=position_ids,
|
972 |
+
inputs_embeds=inputs_embeds,
|
973 |
+
past_key_values_length=past_key_values_length,
|
974 |
+
training=training,
|
975 |
+
)
|
976 |
+
|
977 |
+
# We create a 3D attention mask from a 2D tensor mask.
|
978 |
+
# Sizes are [batch_size, 1, 1, to_seq_length]
|
979 |
+
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
980 |
+
# this attention mask is more simple than the triangular masking of causal attention
|
981 |
+
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
982 |
+
attention_mask_shape = shape_list(attention_mask)
|
983 |
+
|
984 |
+
mask_seq_length = seq_length + past_key_values_length
|
985 |
+
# Copied from `modeling_tf_t5.py`
|
986 |
+
# Provided a padding mask of dimensions [batch_size, mask_seq_length]
|
987 |
+
# - if the model is a decoder, apply a causal mask in addition to the padding mask
|
988 |
+
# - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length]
|
989 |
+
if self.is_decoder:
|
990 |
+
seq_ids = tf.range(mask_seq_length)
|
991 |
+
causal_mask = tf.less_equal(
|
992 |
+
tf.tile(seq_ids[None, None, :], (batch_size, mask_seq_length, 1)),
|
993 |
+
seq_ids[None, :, None],
|
994 |
+
)
|
995 |
+
causal_mask = tf.cast(causal_mask, dtype=attention_mask.dtype)
|
996 |
+
extended_attention_mask = causal_mask * attention_mask[:, None, :]
|
997 |
+
attention_mask_shape = shape_list(extended_attention_mask)
|
998 |
+
extended_attention_mask = tf.reshape(
|
999 |
+
extended_attention_mask, (attention_mask_shape[0], 1, attention_mask_shape[1], attention_mask_shape[2])
|
1000 |
+
)
|
1001 |
+
if past_key_values[0] is not None:
|
1002 |
+
# attention_mask needs to be sliced to the shape `[batch_size, 1, from_seq_length - cached_seq_length, to_seq_length]
|
1003 |
+
extended_attention_mask = extended_attention_mask[:, :, -seq_length:, :]
|
1004 |
+
else:
|
1005 |
+
extended_attention_mask = tf.reshape(
|
1006 |
+
attention_mask, (attention_mask_shape[0], 1, 1, attention_mask_shape[1])
|
1007 |
+
)
|
1008 |
+
|
1009 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
1010 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
1011 |
+
# positions we want to attend and -10000.0 for masked positions.
|
1012 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
1013 |
+
# effectively the same as removing these entirely.
|
1014 |
+
extended_attention_mask = tf.cast(extended_attention_mask, dtype=embedding_output.dtype)
|
1015 |
+
one_cst = tf.constant(1.0, dtype=embedding_output.dtype)
|
1016 |
+
ten_thousand_cst = tf.constant(-10000.0, dtype=embedding_output.dtype)
|
1017 |
+
extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst)
|
1018 |
+
|
1019 |
+
# Copied from `modeling_tf_t5.py` with -1e9 -> -10000
|
1020 |
+
if self.is_decoder and encoder_attention_mask is not None:
|
1021 |
+
# If a 2D ou 3D attention mask is provided for the cross-attention
|
1022 |
+
# we need to make broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length]
|
1023 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
1024 |
+
encoder_attention_mask = tf.cast(encoder_attention_mask, dtype=extended_attention_mask.dtype)
|
1025 |
+
num_dims_encoder_attention_mask = len(shape_list(encoder_attention_mask))
|
1026 |
+
if num_dims_encoder_attention_mask == 3:
|
1027 |
+
encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :]
|
1028 |
+
if num_dims_encoder_attention_mask == 2:
|
1029 |
+
encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :]
|
1030 |
+
|
1031 |
+
# T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
|
1032 |
+
# Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow/transformer/transformer_layers.py#L270
|
1033 |
+
# encoder_extended_attention_mask = tf.math.equal(encoder_extended_attention_mask,
|
1034 |
+
# tf.transpose(encoder_extended_attention_mask, perm=(-1, -2)))
|
1035 |
+
|
1036 |
+
encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -10000.0
|
1037 |
+
else:
|
1038 |
+
encoder_extended_attention_mask = None
|
1039 |
+
|
1040 |
+
# Prepare head mask if needed
|
1041 |
+
# 1.0 in head_mask indicate we keep the head
|
1042 |
+
# attention_probs has shape bsz x n_heads x N x N
|
1043 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
1044 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
1045 |
+
if head_mask is not None:
|
1046 |
+
raise NotImplementedError
|
1047 |
+
else:
|
1048 |
+
head_mask = [None] * self.config.num_hidden_layers
|
1049 |
+
|
1050 |
+
encoder_outputs = self.encoder(
|
1051 |
+
hidden_states=embedding_output,
|
1052 |
+
attention_mask=extended_attention_mask,
|
1053 |
+
head_mask=head_mask,
|
1054 |
+
encoder_hidden_states=encoder_hidden_states,
|
1055 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
1056 |
+
past_key_values=past_key_values,
|
1057 |
+
use_cache=use_cache,
|
1058 |
+
output_attentions=output_attentions,
|
1059 |
+
output_hidden_states=output_hidden_states,
|
1060 |
+
return_dict=return_dict,
|
1061 |
+
training=training,
|
1062 |
+
)
|
1063 |
+
|
1064 |
+
sequence_output = encoder_outputs[0]
|
1065 |
+
pooled_output = self.pooler(hidden_states=sequence_output) if self.pooler is not None else None
|
1066 |
+
|
1067 |
+
if not return_dict:
|
1068 |
+
return (
|
1069 |
+
sequence_output,
|
1070 |
+
pooled_output,
|
1071 |
+
) + encoder_outputs[1:]
|
1072 |
+
|
1073 |
+
return TFBaseModelOutputWithPoolingAndCrossAttentions(
|
1074 |
+
last_hidden_state=sequence_output,
|
1075 |
+
pooler_output=pooled_output,
|
1076 |
+
past_key_values=encoder_outputs.past_key_values,
|
1077 |
+
hidden_states=encoder_outputs.hidden_states,
|
1078 |
+
attentions=encoder_outputs.attentions,
|
1079 |
+
cross_attentions=encoder_outputs.cross_attentions,
|
1080 |
+
)
|
1081 |
+
|
1082 |
+
def predict_contacts(self, tokens, attention_mask):
|
1083 |
+
attns = self(tokens, attention_mask=attention_mask, return_dict=True, output_attentions=True).attentions
|
1084 |
+
attns = tf.stack(attns, axis=1) # Matches the original model layout
|
1085 |
+
# In the original model, attentions for padding tokens are completely zeroed out.
|
1086 |
+
# This makes no difference most of the time because the other tokens won't attend to them,
|
1087 |
+
# but it does for the contact prediction task, which takes attentions as input,
|
1088 |
+
# so we have to mimic that here.
|
1089 |
+
attention_mask = tf.cast(attention_mask, attns.dtype)
|
1090 |
+
attns *= attention_mask[:, None, None, None]
|
1091 |
+
attns *= attention_mask[:, None, None, :, None]
|
1092 |
+
return self.contact_head(tokens, attns)
|
1093 |
+
|
1094 |
+
|
1095 |
+
@add_start_docstrings(
|
1096 |
+
"The bare ESM Model transformer outputting raw hidden-states without any specific head on top.",
|
1097 |
+
ESM_START_DOCSTRING,
|
1098 |
+
)
|
1099 |
+
class TFEsmModel(TFEsmPreTrainedModel):
|
1100 |
+
def __init__(self, config: EsmConfig, add_pooling_layer=True, *inputs, **kwargs):
|
1101 |
+
super().__init__(config, *inputs, **kwargs)
|
1102 |
+
|
1103 |
+
self.esm = TFEsmMainLayer(config, add_pooling_layer=add_pooling_layer, name="esm")
|
1104 |
+
|
1105 |
+
@unpack_inputs
|
1106 |
+
@add_start_docstrings_to_model_forward(ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1107 |
+
@add_code_sample_docstrings(
|
1108 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1109 |
+
output_type=TFBaseModelOutputWithPoolingAndCrossAttentions,
|
1110 |
+
config_class=_CONFIG_FOR_DOC,
|
1111 |
+
)
|
1112 |
+
def call(
|
1113 |
+
self,
|
1114 |
+
input_ids: TFModelInputType | None = None,
|
1115 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1116 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1117 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1118 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1119 |
+
encoder_hidden_states: np.ndarray | tf.Tensor | None = None,
|
1120 |
+
encoder_attention_mask: np.ndarray | tf.Tensor | None = None,
|
1121 |
+
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
|
1122 |
+
use_cache: Optional[bool] = None,
|
1123 |
+
output_attentions: Optional[bool] = None,
|
1124 |
+
output_hidden_states: Optional[bool] = None,
|
1125 |
+
return_dict: Optional[bool] = None,
|
1126 |
+
training: Optional[bool] = False,
|
1127 |
+
) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]:
|
1128 |
+
r"""
|
1129 |
+
encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
1130 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
1131 |
+
the model is configured as a decoder.
|
1132 |
+
encoder_attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1133 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
1134 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
1135 |
+
|
1136 |
+
- 1 for tokens that are **not masked**,
|
1137 |
+
- 0 for tokens that are **masked**.
|
1138 |
+
|
1139 |
+
past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`)
|
1140 |
+
contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
1141 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
1142 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
1143 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
1144 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
1145 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
1146 |
+
`past_key_values`). Set to `False` during training, `True` during generation
|
1147 |
+
"""
|
1148 |
+
outputs = self.esm(
|
1149 |
+
input_ids=input_ids,
|
1150 |
+
attention_mask=attention_mask,
|
1151 |
+
position_ids=position_ids,
|
1152 |
+
head_mask=head_mask,
|
1153 |
+
inputs_embeds=inputs_embeds,
|
1154 |
+
encoder_hidden_states=encoder_hidden_states,
|
1155 |
+
encoder_attention_mask=encoder_attention_mask,
|
1156 |
+
past_key_values=past_key_values,
|
1157 |
+
use_cache=use_cache,
|
1158 |
+
output_attentions=output_attentions,
|
1159 |
+
output_hidden_states=output_hidden_states,
|
1160 |
+
return_dict=return_dict,
|
1161 |
+
training=training,
|
1162 |
+
)
|
1163 |
+
return outputs
|
1164 |
+
|
1165 |
+
def predict_contacts(self, tokens, attention_mask):
|
1166 |
+
return self.esm.predict_contacts(tokens, attention_mask)
|
1167 |
+
|
1168 |
+
def build(self, input_shape=None):
|
1169 |
+
if self.built:
|
1170 |
+
return
|
1171 |
+
self.built = True
|
1172 |
+
if getattr(self, "esm", None) is not None:
|
1173 |
+
with tf.name_scope(self.esm.name):
|
1174 |
+
self.esm.build(None)
|
1175 |
+
|
1176 |
+
|
1177 |
+
@add_start_docstrings("""ESM Model with a `language modeling` head on top.""", ESM_START_DOCSTRING)
|
1178 |
+
class TFEsmForMaskedLM(TFEsmPreTrainedModel, TFMaskedLanguageModelingLoss):
|
1179 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
1180 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
1181 |
+
|
1182 |
+
def __init__(self, config):
|
1183 |
+
super().__init__(config)
|
1184 |
+
|
1185 |
+
if config.is_decoder:
|
1186 |
+
logger.warning(
|
1187 |
+
"If you want to use `EsmForMaskedLM` make sure `config.is_decoder=False` for "
|
1188 |
+
"bi-directional self-attention."
|
1189 |
+
)
|
1190 |
+
|
1191 |
+
self.esm = TFEsmMainLayer(config, add_pooling_layer=False, name="esm")
|
1192 |
+
self.lm_head = TFEsmLMHead(config, name="lm_head")
|
1193 |
+
if config.tie_word_embeddings:
|
1194 |
+
# Ensure word embeddings are built so that we actually have something to tie
|
1195 |
+
with tf.name_scope(os.path.join(self._name_scope(), "esm", "embeddings", "word_embeddings")):
|
1196 |
+
self.esm.embeddings.word_embeddings.build((None, None))
|
1197 |
+
self.lm_head.decoder = self.esm.embeddings.word_embeddings.weights[0]
|
1198 |
+
|
1199 |
+
def get_output_embeddings(self):
|
1200 |
+
return self.lm_head.decoder
|
1201 |
+
|
1202 |
+
def set_output_embeddings(self, new_embeddings):
|
1203 |
+
self.lm_head.decoder = new_embeddings
|
1204 |
+
|
1205 |
+
def get_lm_head(self):
|
1206 |
+
return self.lm_head
|
1207 |
+
|
1208 |
+
@unpack_inputs
|
1209 |
+
@add_start_docstrings_to_model_forward(ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1210 |
+
@add_code_sample_docstrings(
|
1211 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1212 |
+
output_type=TFMaskedLMOutput,
|
1213 |
+
config_class=_CONFIG_FOR_DOC,
|
1214 |
+
mask="<mask>",
|
1215 |
+
)
|
1216 |
+
def call(
|
1217 |
+
self,
|
1218 |
+
input_ids: TFModelInputType | None = None,
|
1219 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1220 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1221 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1222 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1223 |
+
encoder_hidden_states: np.ndarray | tf.Tensor | None = None,
|
1224 |
+
encoder_attention_mask: np.ndarray | tf.Tensor | None = None,
|
1225 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
1226 |
+
output_attentions: Optional[bool] = None,
|
1227 |
+
output_hidden_states: Optional[bool] = None,
|
1228 |
+
return_dict: Optional[bool] = None,
|
1229 |
+
training: bool = False,
|
1230 |
+
) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]:
|
1231 |
+
r"""
|
1232 |
+
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1233 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
1234 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
1235 |
+
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
1236 |
+
kwargs (`Dict[str, any]`, optional, defaults to *{}*):
|
1237 |
+
Used to hide legacy arguments that have been deprecated.
|
1238 |
+
"""
|
1239 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1240 |
+
|
1241 |
+
outputs = self.esm(
|
1242 |
+
input_ids,
|
1243 |
+
attention_mask=attention_mask,
|
1244 |
+
position_ids=position_ids,
|
1245 |
+
head_mask=head_mask,
|
1246 |
+
inputs_embeds=inputs_embeds,
|
1247 |
+
encoder_hidden_states=encoder_hidden_states,
|
1248 |
+
encoder_attention_mask=encoder_attention_mask,
|
1249 |
+
output_attentions=output_attentions,
|
1250 |
+
output_hidden_states=output_hidden_states,
|
1251 |
+
return_dict=return_dict,
|
1252 |
+
training=training,
|
1253 |
+
)
|
1254 |
+
sequence_output = outputs[0]
|
1255 |
+
prediction_scores = self.lm_head(sequence_output)
|
1256 |
+
|
1257 |
+
masked_lm_loss = None
|
1258 |
+
if labels is not None:
|
1259 |
+
masked_lm_loss = self.hf_compute_loss(labels=labels, logits=prediction_scores)
|
1260 |
+
|
1261 |
+
if not return_dict:
|
1262 |
+
output = (prediction_scores,) + outputs[2:]
|
1263 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
1264 |
+
|
1265 |
+
return TFMaskedLMOutput(
|
1266 |
+
loss=masked_lm_loss,
|
1267 |
+
logits=prediction_scores,
|
1268 |
+
hidden_states=outputs.hidden_states,
|
1269 |
+
attentions=outputs.attentions,
|
1270 |
+
)
|
1271 |
+
|
1272 |
+
def predict_contacts(self, tokens, attention_mask):
|
1273 |
+
return self.esm.predict_contacts(tokens, attention_mask)
|
1274 |
+
|
1275 |
+
def build(self, input_shape=None):
|
1276 |
+
if self.built:
|
1277 |
+
return
|
1278 |
+
self.built = True
|
1279 |
+
if getattr(self, "esm", None) is not None:
|
1280 |
+
with tf.name_scope(self.esm.name):
|
1281 |
+
self.esm.build(None)
|
1282 |
+
if getattr(self, "lm_head", None) is not None:
|
1283 |
+
with tf.name_scope(self.lm_head.name):
|
1284 |
+
self.lm_head.build(None)
|
1285 |
+
|
1286 |
+
|
1287 |
+
class TFEsmLMHead(keras.layers.Layer):
|
1288 |
+
"""ESM Head for masked language modeling."""
|
1289 |
+
|
1290 |
+
def __init__(self, config, name=None):
|
1291 |
+
super().__init__(name=name)
|
1292 |
+
self.dense = keras.layers.Dense(
|
1293 |
+
config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
|
1294 |
+
)
|
1295 |
+
|
1296 |
+
self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm")
|
1297 |
+
if config.tie_word_embeddings:
|
1298 |
+
self.decoder = None
|
1299 |
+
else:
|
1300 |
+
self.decoder = keras.layers.Dense(
|
1301 |
+
config.vocab_size,
|
1302 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
1303 |
+
name="decoder",
|
1304 |
+
use_bias=False,
|
1305 |
+
)
|
1306 |
+
self.config = config
|
1307 |
+
|
1308 |
+
def build(self, input_shape=None):
|
1309 |
+
# Separate bias to match the PT model and allow weight cross-loading to work
|
1310 |
+
# Put it in the build so it gets the right name when adding it as a weight
|
1311 |
+
if self.built:
|
1312 |
+
return
|
1313 |
+
self.built = True
|
1314 |
+
self.bias = self.add_weight("bias", shape=(self.config.vocab_size,), initializer="zeros", trainable=True)
|
1315 |
+
if getattr(self, "dense", None) is not None:
|
1316 |
+
with tf.name_scope(self.dense.name):
|
1317 |
+
self.dense.build([None, None, self.config.hidden_size])
|
1318 |
+
if getattr(self, "layer_norm", None) is not None:
|
1319 |
+
with tf.name_scope(self.layer_norm.name):
|
1320 |
+
self.layer_norm.build([None, None, self.config.hidden_size])
|
1321 |
+
if getattr(self, "decoder", None) is not None and not self.config.tie_word_embeddings:
|
1322 |
+
with tf.name_scope(self.decoder.name):
|
1323 |
+
self.decoder.build([None, None, self.config.hidden_size])
|
1324 |
+
|
1325 |
+
def get_bias(self):
|
1326 |
+
return {"bias": self.bias}
|
1327 |
+
|
1328 |
+
def call(self, features):
|
1329 |
+
x = self.dense(features)
|
1330 |
+
x = tf.nn.gelu(x)
|
1331 |
+
x = self.layer_norm(x)
|
1332 |
+
|
1333 |
+
# project back to size of vocabulary with bias
|
1334 |
+
if self.config.tie_word_embeddings:
|
1335 |
+
x = tf.matmul(x, self.decoder, transpose_b=True) + self.bias
|
1336 |
+
else:
|
1337 |
+
x = self.decoder(x) + self.bias
|
1338 |
+
return x
|
1339 |
+
|
1340 |
+
|
1341 |
+
@add_start_docstrings(
|
1342 |
+
"""
|
1343 |
+
ESM Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
|
1344 |
+
output) e.g. for GLUE tasks.
|
1345 |
+
""",
|
1346 |
+
ESM_START_DOCSTRING,
|
1347 |
+
)
|
1348 |
+
class TFEsmForSequenceClassification(TFEsmPreTrainedModel, TFSequenceClassificationLoss):
|
1349 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
1350 |
+
|
1351 |
+
def __init__(self, config):
|
1352 |
+
super().__init__(config)
|
1353 |
+
self.num_labels = config.num_labels
|
1354 |
+
self.config = config
|
1355 |
+
|
1356 |
+
self.esm = TFEsmMainLayer(config, add_pooling_layer=False, name="esm")
|
1357 |
+
self.classifier = TFEsmClassificationHead(config, name="classifier")
|
1358 |
+
|
1359 |
+
@unpack_inputs
|
1360 |
+
@add_start_docstrings_to_model_forward(ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1361 |
+
@add_code_sample_docstrings(
|
1362 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1363 |
+
output_type=TFSequenceClassifierOutput,
|
1364 |
+
config_class=_CONFIG_FOR_DOC,
|
1365 |
+
)
|
1366 |
+
def call(
|
1367 |
+
self,
|
1368 |
+
input_ids: TFModelInputType | None = None,
|
1369 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1370 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1371 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1372 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1373 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
1374 |
+
output_attentions: Optional[bool] = None,
|
1375 |
+
output_hidden_states: Optional[bool] = None,
|
1376 |
+
return_dict: Optional[bool] = None,
|
1377 |
+
training: bool = False,
|
1378 |
+
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
|
1379 |
+
r"""
|
1380 |
+
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
|
1381 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1382 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1383 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1384 |
+
"""
|
1385 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1386 |
+
|
1387 |
+
outputs = self.esm(
|
1388 |
+
input_ids,
|
1389 |
+
attention_mask=attention_mask,
|
1390 |
+
position_ids=position_ids,
|
1391 |
+
head_mask=head_mask,
|
1392 |
+
inputs_embeds=inputs_embeds,
|
1393 |
+
output_attentions=output_attentions,
|
1394 |
+
output_hidden_states=output_hidden_states,
|
1395 |
+
return_dict=return_dict,
|
1396 |
+
training=training,
|
1397 |
+
)
|
1398 |
+
sequence_output = outputs[0]
|
1399 |
+
logits = self.classifier(sequence_output)
|
1400 |
+
|
1401 |
+
loss = None if labels is None else self.hf_compute_loss(labels, logits)
|
1402 |
+
|
1403 |
+
if not return_dict:
|
1404 |
+
output = (logits,) + outputs[2:]
|
1405 |
+
return ((loss,) + output) if loss is not None else output
|
1406 |
+
|
1407 |
+
return TFSequenceClassifierOutput(
|
1408 |
+
loss=loss,
|
1409 |
+
logits=logits,
|
1410 |
+
hidden_states=outputs.hidden_states,
|
1411 |
+
attentions=outputs.attentions,
|
1412 |
+
)
|
1413 |
+
|
1414 |
+
def build(self, input_shape=None):
|
1415 |
+
if self.built:
|
1416 |
+
return
|
1417 |
+
self.built = True
|
1418 |
+
if getattr(self, "esm", None) is not None:
|
1419 |
+
with tf.name_scope(self.esm.name):
|
1420 |
+
self.esm.build(None)
|
1421 |
+
if getattr(self, "classifier", None) is not None:
|
1422 |
+
with tf.name_scope(self.classifier.name):
|
1423 |
+
self.classifier.build(None)
|
1424 |
+
|
1425 |
+
|
1426 |
+
@add_start_docstrings(
|
1427 |
+
"""
|
1428 |
+
ESM Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
1429 |
+
Named-Entity-Recognition (NER) tasks.
|
1430 |
+
""",
|
1431 |
+
ESM_START_DOCSTRING,
|
1432 |
+
)
|
1433 |
+
class TFEsmForTokenClassification(TFEsmPreTrainedModel, TFTokenClassificationLoss):
|
1434 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
1435 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
1436 |
+
|
1437 |
+
def __init__(self, config):
|
1438 |
+
super().__init__(config)
|
1439 |
+
self.num_labels = config.num_labels
|
1440 |
+
|
1441 |
+
self.esm = TFEsmMainLayer(config, add_pooling_layer=False, name="esm")
|
1442 |
+
self.dropout = keras.layers.Dropout(config.hidden_dropout_prob)
|
1443 |
+
self.classifier = keras.layers.Dense(config.num_labels, name="classifier")
|
1444 |
+
self.config = config
|
1445 |
+
|
1446 |
+
@unpack_inputs
|
1447 |
+
@add_start_docstrings_to_model_forward(ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1448 |
+
@add_code_sample_docstrings(
|
1449 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1450 |
+
output_type=TFTokenClassifierOutput,
|
1451 |
+
config_class=_CONFIG_FOR_DOC,
|
1452 |
+
)
|
1453 |
+
def call(
|
1454 |
+
self,
|
1455 |
+
input_ids: TFModelInputType | None = None,
|
1456 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1457 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1458 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1459 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1460 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
1461 |
+
output_attentions: Optional[bool] = None,
|
1462 |
+
output_hidden_states: Optional[bool] = None,
|
1463 |
+
return_dict: Optional[bool] = None,
|
1464 |
+
training: bool = False,
|
1465 |
+
) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]:
|
1466 |
+
r"""
|
1467 |
+
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1468 |
+
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
1469 |
+
"""
|
1470 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1471 |
+
|
1472 |
+
outputs = self.esm(
|
1473 |
+
input_ids,
|
1474 |
+
attention_mask=attention_mask,
|
1475 |
+
position_ids=position_ids,
|
1476 |
+
head_mask=head_mask,
|
1477 |
+
inputs_embeds=inputs_embeds,
|
1478 |
+
output_attentions=output_attentions,
|
1479 |
+
output_hidden_states=output_hidden_states,
|
1480 |
+
return_dict=return_dict,
|
1481 |
+
training=training,
|
1482 |
+
)
|
1483 |
+
|
1484 |
+
sequence_output = outputs[0]
|
1485 |
+
|
1486 |
+
sequence_output = self.dropout(sequence_output, training=training)
|
1487 |
+
logits = self.classifier(sequence_output)
|
1488 |
+
|
1489 |
+
loss = None if labels is None else self.hf_compute_loss(labels, logits)
|
1490 |
+
|
1491 |
+
if not return_dict:
|
1492 |
+
output = (logits,) + outputs[2:]
|
1493 |
+
return ((loss,) + output) if loss is not None else output
|
1494 |
+
|
1495 |
+
return TFTokenClassifierOutput(
|
1496 |
+
loss=loss,
|
1497 |
+
logits=logits,
|
1498 |
+
hidden_states=outputs.hidden_states,
|
1499 |
+
attentions=outputs.attentions,
|
1500 |
+
)
|
1501 |
+
|
1502 |
+
def build(self, input_shape=None):
|
1503 |
+
if self.built:
|
1504 |
+
return
|
1505 |
+
self.built = True
|
1506 |
+
if getattr(self, "esm", None) is not None:
|
1507 |
+
with tf.name_scope(self.esm.name):
|
1508 |
+
self.esm.build(None)
|
1509 |
+
if getattr(self, "classifier", None) is not None:
|
1510 |
+
with tf.name_scope(self.classifier.name):
|
1511 |
+
self.classifier.build([None, None, self.config.hidden_size])
|
1512 |
+
|
1513 |
+
|
1514 |
+
class TFEsmClassificationHead(keras.layers.Layer):
|
1515 |
+
"""Head for sentence-level classification tasks."""
|
1516 |
+
|
1517 |
+
def __init__(self, config, name=None):
|
1518 |
+
super().__init__(name=name)
|
1519 |
+
self.dense = keras.layers.Dense(
|
1520 |
+
config.hidden_size,
|
1521 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
1522 |
+
activation="tanh",
|
1523 |
+
name="dense",
|
1524 |
+
)
|
1525 |
+
self.dropout = keras.layers.Dropout(config.hidden_dropout_prob)
|
1526 |
+
self.out_proj = keras.layers.Dense(
|
1527 |
+
config.num_labels,
|
1528 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
1529 |
+
activation="linear",
|
1530 |
+
name="out_proj",
|
1531 |
+
)
|
1532 |
+
self.config = config
|
1533 |
+
|
1534 |
+
def call(self, features, training=False):
|
1535 |
+
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
|
1536 |
+
x = self.dropout(x, training=training)
|
1537 |
+
x = self.dense(x)
|
1538 |
+
x = self.dropout(x, training=training)
|
1539 |
+
x = self.out_proj(x)
|
1540 |
+
return x
|
1541 |
+
|
1542 |
+
def build(self, input_shape=None):
|
1543 |
+
if self.built:
|
1544 |
+
return
|
1545 |
+
self.built = True
|
1546 |
+
if getattr(self, "dense", None) is not None:
|
1547 |
+
with tf.name_scope(self.dense.name):
|
1548 |
+
self.dense.build([None, None, self.config.hidden_size])
|
1549 |
+
if getattr(self, "out_proj", None) is not None:
|
1550 |
+
with tf.name_scope(self.out_proj.name):
|
1551 |
+
self.out_proj.build([None, None, self.config.hidden_size])
|
1552 |
+
|
1553 |
+
|
1554 |
+
def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0):
|
1555 |
+
"""
|
1556 |
+
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
|
1557 |
+
are ignored. This is modified from fairseq's `utils.make_positions`.
|
1558 |
+
|
1559 |
+
Args:
|
1560 |
+
x: tf.Tensor x:
|
1561 |
+
|
1562 |
+
Returns: tf.Tensor
|
1563 |
+
"""
|
1564 |
+
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
|
1565 |
+
mask = tf.cast(input_ids != padding_idx, tf.int64)
|
1566 |
+
incremental_indices = (tf.cumsum(mask, axis=1) + past_key_values_length) * mask
|
1567 |
+
return incremental_indices + padding_idx
|
venv/lib/python3.10/site-packages/transformers/models/esm/openfold_utils/__init__.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .chunk_utils import chunk_layer
|
2 |
+
from .data_transforms import make_atom14_masks
|
3 |
+
from .feats import atom14_to_atom37, frames_and_literature_positions_to_atom14_pos, torsion_angles_to_frames
|
4 |
+
from .loss import compute_predicted_aligned_error, compute_tm
|
5 |
+
from .protein import Protein as OFProtein
|
6 |
+
from .protein import to_pdb
|
7 |
+
from .rigid_utils import Rigid, Rotation
|
8 |
+
from .tensor_utils import dict_multimap, flatten_final_dims, permute_final_dims
|
venv/lib/python3.10/site-packages/transformers/models/esm/openfold_utils/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (775 Bytes). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/esm/openfold_utils/__pycache__/chunk_utils.cpython-310.pyc
ADDED
Binary file (12.7 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/esm/openfold_utils/__pycache__/data_transforms.cpython-310.pyc
ADDED
Binary file (2.86 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/esm/openfold_utils/__pycache__/feats.cpython-310.pyc
ADDED
Binary file (6.22 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/esm/openfold_utils/__pycache__/loss.cpython-310.pyc
ADDED
Binary file (2.83 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/esm/openfold_utils/__pycache__/protein.cpython-310.pyc
ADDED
Binary file (7.97 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/esm/openfold_utils/__pycache__/residue_constants.cpython-310.pyc
ADDED
Binary file (24.3 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/esm/openfold_utils/__pycache__/rigid_utils.cpython-310.pyc
ADDED
Binary file (38.7 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/esm/openfold_utils/__pycache__/tensor_utils.cpython-310.pyc
ADDED
Binary file (4.96 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/esm/openfold_utils/chunk_utils.py
ADDED
@@ -0,0 +1,397 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2021 AlQuraishi Laboratory
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import logging
|
15 |
+
import math
|
16 |
+
from functools import partial
|
17 |
+
from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union
|
18 |
+
|
19 |
+
import torch
|
20 |
+
|
21 |
+
from .tensor_utils import tensor_tree_map, tree_map
|
22 |
+
|
23 |
+
|
24 |
+
def _fetch_dims(tree: Union[dict, list, tuple, torch.Tensor]) -> List[Tuple[int, ...]]:
|
25 |
+
shapes = []
|
26 |
+
if isinstance(tree, dict):
|
27 |
+
for v in tree.values():
|
28 |
+
shapes.extend(_fetch_dims(v))
|
29 |
+
elif isinstance(tree, (list, tuple)):
|
30 |
+
for t in tree:
|
31 |
+
shapes.extend(_fetch_dims(t))
|
32 |
+
elif isinstance(tree, torch.Tensor):
|
33 |
+
shapes.append(tree.shape)
|
34 |
+
else:
|
35 |
+
raise ValueError("Not supported")
|
36 |
+
|
37 |
+
return shapes
|
38 |
+
|
39 |
+
|
40 |
+
@torch.jit.ignore
|
41 |
+
def _flat_idx_to_idx(flat_idx: int, dims: Tuple[int, ...]) -> Tuple[int, ...]:
|
42 |
+
idx = []
|
43 |
+
for d in reversed(dims):
|
44 |
+
idx.append(flat_idx % d)
|
45 |
+
flat_idx = flat_idx // d
|
46 |
+
|
47 |
+
return tuple(reversed(idx))
|
48 |
+
|
49 |
+
|
50 |
+
@torch.jit.ignore
|
51 |
+
def _get_minimal_slice_set(
|
52 |
+
start: Sequence[int],
|
53 |
+
end: Sequence[int],
|
54 |
+
dims: Sequence[int],
|
55 |
+
start_edges: Optional[Sequence[bool]] = None,
|
56 |
+
end_edges: Optional[Sequence[bool]] = None,
|
57 |
+
) -> List[Tuple[slice, ...]]:
|
58 |
+
"""
|
59 |
+
Produces an ordered sequence of tensor slices that, when used in sequence on a tensor with shape dims, yields
|
60 |
+
tensors that contain every leaf in the contiguous range [start, end]. Care is taken to yield a short sequence of
|
61 |
+
slices, and perhaps even the shortest possible (I'm pretty sure it's the latter).
|
62 |
+
|
63 |
+
end is INCLUSIVE.
|
64 |
+
"""
|
65 |
+
|
66 |
+
# start_edges and end_edges both indicate whether, starting from any given
|
67 |
+
# dimension, the start/end index is at the top/bottom edge of the
|
68 |
+
# corresponding tensor, modeled as a tree
|
69 |
+
def reduce_edge_list(l: List[bool]) -> None:
|
70 |
+
tally = True
|
71 |
+
for i in range(len(l)):
|
72 |
+
reversed_idx = -1 * (i + 1)
|
73 |
+
l[reversed_idx] &= tally
|
74 |
+
tally = l[reversed_idx]
|
75 |
+
|
76 |
+
if start_edges is None:
|
77 |
+
start_edges = [s == 0 for s in start]
|
78 |
+
reduce_edge_list(start_edges)
|
79 |
+
if end_edges is None:
|
80 |
+
end_edges = [e == (d - 1) for e, d in zip(end, dims)]
|
81 |
+
reduce_edge_list(end_edges)
|
82 |
+
|
83 |
+
# Base cases. Either start/end are empty and we're done, or the final,
|
84 |
+
# one-dimensional tensor can be simply sliced
|
85 |
+
if len(start) == 0:
|
86 |
+
return [()]
|
87 |
+
elif len(start) == 1:
|
88 |
+
return [(slice(start[0], end[0] + 1),)]
|
89 |
+
|
90 |
+
slices: List[Tuple[slice, ...]] = []
|
91 |
+
path_list: List[slice] = []
|
92 |
+
|
93 |
+
# Dimensions common to start and end can be selected directly
|
94 |
+
for s, e in zip(start, end):
|
95 |
+
if s == e:
|
96 |
+
path_list.append(slice(s, s + 1))
|
97 |
+
else:
|
98 |
+
break
|
99 |
+
|
100 |
+
path: Tuple[slice, ...] = tuple(path_list)
|
101 |
+
divergence_idx = len(path)
|
102 |
+
|
103 |
+
# start == end, and we're done
|
104 |
+
if divergence_idx == len(dims):
|
105 |
+
return [path]
|
106 |
+
|
107 |
+
def upper() -> Tuple[Tuple[slice, ...], ...]:
|
108 |
+
assert start_edges is not None
|
109 |
+
assert end_edges is not None
|
110 |
+
|
111 |
+
sdi = start[divergence_idx]
|
112 |
+
return tuple(
|
113 |
+
path + (slice(sdi, sdi + 1),) + s
|
114 |
+
for s in _get_minimal_slice_set(
|
115 |
+
start[divergence_idx + 1 :],
|
116 |
+
[d - 1 for d in dims[divergence_idx + 1 :]],
|
117 |
+
dims[divergence_idx + 1 :],
|
118 |
+
start_edges=start_edges[divergence_idx + 1 :],
|
119 |
+
end_edges=[True for _ in end_edges[divergence_idx + 1 :]],
|
120 |
+
)
|
121 |
+
)
|
122 |
+
|
123 |
+
def lower() -> Tuple[Tuple[slice, ...], ...]:
|
124 |
+
assert start_edges is not None
|
125 |
+
assert end_edges is not None
|
126 |
+
|
127 |
+
edi = end[divergence_idx]
|
128 |
+
return tuple(
|
129 |
+
path + (slice(edi, edi + 1),) + s
|
130 |
+
for s in _get_minimal_slice_set(
|
131 |
+
[0 for _ in start[divergence_idx + 1 :]],
|
132 |
+
end[divergence_idx + 1 :],
|
133 |
+
dims[divergence_idx + 1 :],
|
134 |
+
start_edges=[True for _ in start_edges[divergence_idx + 1 :]],
|
135 |
+
end_edges=end_edges[divergence_idx + 1 :],
|
136 |
+
)
|
137 |
+
)
|
138 |
+
|
139 |
+
# If both start and end are at the edges of the subtree rooted at
|
140 |
+
# divergence_idx, we can just select the whole subtree at once
|
141 |
+
if start_edges[divergence_idx] and end_edges[divergence_idx]:
|
142 |
+
slices.append(path + (slice(start[divergence_idx], end[divergence_idx] + 1),))
|
143 |
+
# If just start is at the edge, we can grab almost all of the subtree,
|
144 |
+
# treating only the ragged bottom edge as an edge case
|
145 |
+
elif start_edges[divergence_idx]:
|
146 |
+
slices.append(path + (slice(start[divergence_idx], end[divergence_idx]),))
|
147 |
+
slices.extend(lower())
|
148 |
+
# Analogous to the previous case, but the top is ragged this time
|
149 |
+
elif end_edges[divergence_idx]:
|
150 |
+
slices.extend(upper())
|
151 |
+
slices.append(path + (slice(start[divergence_idx] + 1, end[divergence_idx] + 1),))
|
152 |
+
# If both sides of the range are ragged, we need to handle both sides
|
153 |
+
# separately. If there's contiguous meat in between them, we can index it
|
154 |
+
# in one big chunk
|
155 |
+
else:
|
156 |
+
slices.extend(upper())
|
157 |
+
middle_ground = end[divergence_idx] - start[divergence_idx]
|
158 |
+
if middle_ground > 1:
|
159 |
+
slices.append(path + (slice(start[divergence_idx] + 1, end[divergence_idx]),))
|
160 |
+
slices.extend(lower())
|
161 |
+
|
162 |
+
return slices
|
163 |
+
|
164 |
+
|
165 |
+
@torch.jit.ignore
|
166 |
+
def _chunk_slice(t: torch.Tensor, flat_start: int, flat_end: int, no_batch_dims: int) -> torch.Tensor:
|
167 |
+
"""
|
168 |
+
Equivalent to
|
169 |
+
|
170 |
+
t.reshape((-1,) + t.shape[no_batch_dims:])[flat_start:flat_end]
|
171 |
+
|
172 |
+
but without the need for the initial reshape call, which can be memory-intensive in certain situations. The only
|
173 |
+
reshape operations in this function are performed on sub-tensors that scale with (flat_end - flat_start), the chunk
|
174 |
+
size.
|
175 |
+
"""
|
176 |
+
|
177 |
+
batch_dims = t.shape[:no_batch_dims]
|
178 |
+
start_idx = list(_flat_idx_to_idx(flat_start, batch_dims))
|
179 |
+
# _get_minimal_slice_set is inclusive
|
180 |
+
end_idx = list(_flat_idx_to_idx(flat_end - 1, batch_dims))
|
181 |
+
|
182 |
+
# Get an ordered list of slices to perform
|
183 |
+
slices = _get_minimal_slice_set(
|
184 |
+
start_idx,
|
185 |
+
end_idx,
|
186 |
+
batch_dims,
|
187 |
+
)
|
188 |
+
|
189 |
+
sliced_tensors = [t[s] for s in slices]
|
190 |
+
|
191 |
+
return torch.cat([s.view((-1,) + t.shape[no_batch_dims:]) for s in sliced_tensors])
|
192 |
+
|
193 |
+
|
194 |
+
def chunk_layer(
|
195 |
+
layer: Callable,
|
196 |
+
inputs: Dict[str, Any],
|
197 |
+
chunk_size: int,
|
198 |
+
no_batch_dims: int,
|
199 |
+
low_mem: bool = False,
|
200 |
+
_out: Any = None,
|
201 |
+
_add_into_out: bool = False,
|
202 |
+
) -> Any:
|
203 |
+
"""
|
204 |
+
Implements the "chunking" procedure described in section 1.11.8.
|
205 |
+
|
206 |
+
Layer outputs and inputs are assumed to be simple "pytrees," consisting only of (arbitrarily nested) lists, tuples,
|
207 |
+
and dicts with torch.Tensor leaves.
|
208 |
+
|
209 |
+
Args:
|
210 |
+
layer:
|
211 |
+
The layer to be applied chunk-wise
|
212 |
+
inputs:
|
213 |
+
A (non-nested) dictionary of keyworded inputs. All leaves must be tensors and must share the same batch
|
214 |
+
dimensions.
|
215 |
+
chunk_size:
|
216 |
+
The number of sub-batches per chunk. If multiple batch dimensions are specified, a "sub-batch" is defined
|
217 |
+
as a single indexing of all batch dimensions simultaneously (s.t. the number of sub-batches is the product
|
218 |
+
of the batch dimensions).
|
219 |
+
no_batch_dims:
|
220 |
+
How many of the initial dimensions of each input tensor can be considered batch dimensions.
|
221 |
+
low_mem:
|
222 |
+
Avoids flattening potentially large input tensors. Unnecessary in most cases, and is ever so slightly
|
223 |
+
slower than the default setting.
|
224 |
+
Returns:
|
225 |
+
The reassembled output of the layer on the inputs.
|
226 |
+
"""
|
227 |
+
if not (len(inputs) > 0):
|
228 |
+
raise ValueError("Must provide at least one input")
|
229 |
+
|
230 |
+
initial_dims = [shape[:no_batch_dims] for shape in _fetch_dims(inputs)]
|
231 |
+
orig_batch_dims = tuple([max(s) for s in zip(*initial_dims)])
|
232 |
+
|
233 |
+
def _prep_inputs(t: torch.Tensor) -> torch.Tensor:
|
234 |
+
if not low_mem:
|
235 |
+
if not sum(t.shape[:no_batch_dims]) == no_batch_dims:
|
236 |
+
t = t.expand(orig_batch_dims + t.shape[no_batch_dims:])
|
237 |
+
t = t.reshape(-1, *t.shape[no_batch_dims:])
|
238 |
+
else:
|
239 |
+
t = t.expand(orig_batch_dims + t.shape[no_batch_dims:])
|
240 |
+
return t
|
241 |
+
|
242 |
+
prepped_inputs: Dict[str, Any] = tensor_tree_map(_prep_inputs, inputs)
|
243 |
+
prepped_outputs = None
|
244 |
+
if _out is not None:
|
245 |
+
prepped_outputs = tensor_tree_map(lambda t: t.view([-1] + list(t.shape[no_batch_dims:])), _out)
|
246 |
+
|
247 |
+
flat_batch_dim = 1
|
248 |
+
for d in orig_batch_dims:
|
249 |
+
flat_batch_dim *= d
|
250 |
+
|
251 |
+
no_chunks = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0)
|
252 |
+
|
253 |
+
def _select_chunk(t: torch.Tensor) -> torch.Tensor:
|
254 |
+
return t[i : i + chunk_size] if t.shape[0] != 1 else t
|
255 |
+
|
256 |
+
i = 0
|
257 |
+
out = prepped_outputs
|
258 |
+
for _ in range(no_chunks):
|
259 |
+
# Chunk the input
|
260 |
+
if not low_mem:
|
261 |
+
select_chunk = _select_chunk
|
262 |
+
else:
|
263 |
+
select_chunk = partial(
|
264 |
+
_chunk_slice,
|
265 |
+
flat_start=i,
|
266 |
+
flat_end=min(flat_batch_dim, i + chunk_size),
|
267 |
+
no_batch_dims=len(orig_batch_dims),
|
268 |
+
)
|
269 |
+
|
270 |
+
chunks: Dict[str, Any] = tensor_tree_map(select_chunk, prepped_inputs)
|
271 |
+
|
272 |
+
# Run the layer on the chunk
|
273 |
+
output_chunk = layer(**chunks)
|
274 |
+
|
275 |
+
# Allocate space for the output
|
276 |
+
if out is None:
|
277 |
+
out = tensor_tree_map(lambda t: t.new_zeros((flat_batch_dim,) + t.shape[1:]), output_chunk)
|
278 |
+
|
279 |
+
# Put the chunk in its pre-allocated space
|
280 |
+
if isinstance(output_chunk, dict):
|
281 |
+
|
282 |
+
def assign(d1: dict, d2: dict) -> None:
|
283 |
+
for k, v in d1.items():
|
284 |
+
if isinstance(v, dict):
|
285 |
+
assign(v, d2[k])
|
286 |
+
else:
|
287 |
+
if _add_into_out:
|
288 |
+
v[i : i + chunk_size] += d2[k]
|
289 |
+
else:
|
290 |
+
v[i : i + chunk_size] = d2[k]
|
291 |
+
|
292 |
+
assign(out, output_chunk)
|
293 |
+
elif isinstance(output_chunk, tuple):
|
294 |
+
for x1, x2 in zip(out, output_chunk):
|
295 |
+
if _add_into_out:
|
296 |
+
x1[i : i + chunk_size] += x2
|
297 |
+
else:
|
298 |
+
x1[i : i + chunk_size] = x2
|
299 |
+
elif isinstance(output_chunk, torch.Tensor):
|
300 |
+
if _add_into_out:
|
301 |
+
out[i : i + chunk_size] += output_chunk
|
302 |
+
else:
|
303 |
+
out[i : i + chunk_size] = output_chunk
|
304 |
+
else:
|
305 |
+
raise ValueError("Not supported")
|
306 |
+
|
307 |
+
i += chunk_size
|
308 |
+
|
309 |
+
out = tensor_tree_map(lambda t: t.view(orig_batch_dims + t.shape[1:]), out)
|
310 |
+
|
311 |
+
return out
|
312 |
+
|
313 |
+
|
314 |
+
class ChunkSizeTuner:
|
315 |
+
def __init__(
|
316 |
+
self,
|
317 |
+
# Heuristically, runtimes for most of the modules in the network
|
318 |
+
# plateau earlier than this on all GPUs I've run the model on.
|
319 |
+
max_chunk_size: int = 512,
|
320 |
+
):
|
321 |
+
self.max_chunk_size = max_chunk_size
|
322 |
+
self.cached_chunk_size: Optional[int] = None
|
323 |
+
self.cached_arg_data: Optional[tuple] = None
|
324 |
+
|
325 |
+
def _determine_favorable_chunk_size(self, fn: Callable, args: tuple, min_chunk_size: int) -> int:
|
326 |
+
logging.info("Tuning chunk size...")
|
327 |
+
|
328 |
+
if min_chunk_size >= self.max_chunk_size:
|
329 |
+
return min_chunk_size
|
330 |
+
|
331 |
+
candidates: List[int] = [2**l for l in range(int(math.log(self.max_chunk_size, 2)) + 1)]
|
332 |
+
candidates = [c for c in candidates if c > min_chunk_size]
|
333 |
+
candidates = [min_chunk_size] + candidates
|
334 |
+
candidates[-1] += 4
|
335 |
+
|
336 |
+
def test_chunk_size(chunk_size: int) -> bool:
|
337 |
+
try:
|
338 |
+
with torch.no_grad():
|
339 |
+
fn(*args, chunk_size=chunk_size)
|
340 |
+
return True
|
341 |
+
except RuntimeError:
|
342 |
+
return False
|
343 |
+
|
344 |
+
min_viable_chunk_size_index = 0
|
345 |
+
i = len(candidates) - 1
|
346 |
+
while i > min_viable_chunk_size_index:
|
347 |
+
viable = test_chunk_size(candidates[i])
|
348 |
+
if not viable:
|
349 |
+
i = (min_viable_chunk_size_index + i) // 2
|
350 |
+
else:
|
351 |
+
min_viable_chunk_size_index = i
|
352 |
+
i = (i + len(candidates) - 1) // 2
|
353 |
+
|
354 |
+
return candidates[min_viable_chunk_size_index]
|
355 |
+
|
356 |
+
def _compare_arg_caches(self, ac1: Iterable, ac2: Iterable) -> bool:
|
357 |
+
consistent = True
|
358 |
+
for a1, a2 in zip(ac1, ac2):
|
359 |
+
assert type(ac1) == type(ac2)
|
360 |
+
if isinstance(ac1, (list, tuple)):
|
361 |
+
consistent &= self._compare_arg_caches(a1, a2)
|
362 |
+
elif isinstance(ac1, dict):
|
363 |
+
a1_items = [v for _, v in sorted(a1.items(), key=lambda x: x[0])]
|
364 |
+
a2_items = [v for _, v in sorted(a2.items(), key=lambda x: x[0])]
|
365 |
+
consistent &= self._compare_arg_caches(a1_items, a2_items)
|
366 |
+
else:
|
367 |
+
consistent &= a1 == a2
|
368 |
+
|
369 |
+
return consistent
|
370 |
+
|
371 |
+
def tune_chunk_size(
|
372 |
+
self,
|
373 |
+
representative_fn: Callable,
|
374 |
+
args: tuple,
|
375 |
+
min_chunk_size: int,
|
376 |
+
) -> int:
|
377 |
+
consistent = True
|
378 |
+
arg_data: tuple = tree_map(lambda a: a.shape if isinstance(a, torch.Tensor) else a, args, object)
|
379 |
+
if self.cached_arg_data is not None:
|
380 |
+
# If args have changed shape/value, we need to re-tune
|
381 |
+
assert len(self.cached_arg_data) == len(arg_data)
|
382 |
+
consistent = self._compare_arg_caches(self.cached_arg_data, arg_data)
|
383 |
+
else:
|
384 |
+
# Otherwise, we can reuse the precomputed value
|
385 |
+
consistent = False
|
386 |
+
|
387 |
+
if not consistent:
|
388 |
+
self.cached_chunk_size = self._determine_favorable_chunk_size(
|
389 |
+
representative_fn,
|
390 |
+
args,
|
391 |
+
min_chunk_size,
|
392 |
+
)
|
393 |
+
self.cached_arg_data = arg_data
|
394 |
+
|
395 |
+
assert self.cached_chunk_size is not None
|
396 |
+
|
397 |
+
return self.cached_chunk_size
|
venv/lib/python3.10/site-packages/transformers/models/esm/openfold_utils/data_transforms.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2021 AlQuraishi Laboratory
|
2 |
+
# Copyright 2021 DeepMind Technologies Limited
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
from typing import Dict
|
17 |
+
|
18 |
+
import numpy as np
|
19 |
+
import torch
|
20 |
+
|
21 |
+
from . import residue_constants as rc
|
22 |
+
from .tensor_utils import tensor_tree_map, tree_map
|
23 |
+
|
24 |
+
|
25 |
+
def make_atom14_masks(protein: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
|
26 |
+
"""Construct denser atom positions (14 dimensions instead of 37)."""
|
27 |
+
restype_atom14_to_atom37_list = []
|
28 |
+
restype_atom37_to_atom14_list = []
|
29 |
+
restype_atom14_mask_list = []
|
30 |
+
|
31 |
+
for rt in rc.restypes:
|
32 |
+
atom_names = rc.restype_name_to_atom14_names[rc.restype_1to3[rt]]
|
33 |
+
restype_atom14_to_atom37_list.append([(rc.atom_order[name] if name else 0) for name in atom_names])
|
34 |
+
atom_name_to_idx14 = {name: i for i, name in enumerate(atom_names)}
|
35 |
+
restype_atom37_to_atom14_list.append(
|
36 |
+
[(atom_name_to_idx14[name] if name in atom_name_to_idx14 else 0) for name in rc.atom_types]
|
37 |
+
)
|
38 |
+
|
39 |
+
restype_atom14_mask_list.append([(1.0 if name else 0.0) for name in atom_names])
|
40 |
+
|
41 |
+
# Add dummy mapping for restype 'UNK'
|
42 |
+
restype_atom14_to_atom37_list.append([0] * 14)
|
43 |
+
restype_atom37_to_atom14_list.append([0] * 37)
|
44 |
+
restype_atom14_mask_list.append([0.0] * 14)
|
45 |
+
|
46 |
+
restype_atom14_to_atom37 = torch.tensor(
|
47 |
+
restype_atom14_to_atom37_list,
|
48 |
+
dtype=torch.int32,
|
49 |
+
device=protein["aatype"].device,
|
50 |
+
)
|
51 |
+
restype_atom37_to_atom14 = torch.tensor(
|
52 |
+
restype_atom37_to_atom14_list,
|
53 |
+
dtype=torch.int32,
|
54 |
+
device=protein["aatype"].device,
|
55 |
+
)
|
56 |
+
restype_atom14_mask = torch.tensor(
|
57 |
+
restype_atom14_mask_list,
|
58 |
+
dtype=torch.float32,
|
59 |
+
device=protein["aatype"].device,
|
60 |
+
)
|
61 |
+
protein_aatype = protein["aatype"].to(torch.long)
|
62 |
+
|
63 |
+
# create the mapping for (residx, atom14) --> atom37, i.e. an array
|
64 |
+
# with shape (num_res, 14) containing the atom37 indices for this protein
|
65 |
+
residx_atom14_to_atom37 = restype_atom14_to_atom37[protein_aatype]
|
66 |
+
residx_atom14_mask = restype_atom14_mask[protein_aatype]
|
67 |
+
|
68 |
+
protein["atom14_atom_exists"] = residx_atom14_mask
|
69 |
+
protein["residx_atom14_to_atom37"] = residx_atom14_to_atom37.long()
|
70 |
+
|
71 |
+
# create the gather indices for mapping back
|
72 |
+
residx_atom37_to_atom14 = restype_atom37_to_atom14[protein_aatype]
|
73 |
+
protein["residx_atom37_to_atom14"] = residx_atom37_to_atom14.long()
|
74 |
+
|
75 |
+
# create the corresponding mask
|
76 |
+
restype_atom37_mask = torch.zeros([21, 37], dtype=torch.float32, device=protein["aatype"].device)
|
77 |
+
for restype, restype_letter in enumerate(rc.restypes):
|
78 |
+
restype_name = rc.restype_1to3[restype_letter]
|
79 |
+
atom_names = rc.residue_atoms[restype_name]
|
80 |
+
for atom_name in atom_names:
|
81 |
+
atom_type = rc.atom_order[atom_name]
|
82 |
+
restype_atom37_mask[restype, atom_type] = 1
|
83 |
+
|
84 |
+
residx_atom37_mask = restype_atom37_mask[protein_aatype]
|
85 |
+
protein["atom37_atom_exists"] = residx_atom37_mask
|
86 |
+
|
87 |
+
return protein
|
88 |
+
|
89 |
+
|
90 |
+
def make_atom14_masks_np(batch: Dict[str, torch.Tensor]) -> Dict[str, np.ndarray]:
|
91 |
+
batch = tree_map(lambda n: torch.tensor(n, device=batch["aatype"].device), batch, np.ndarray)
|
92 |
+
out = tensor_tree_map(lambda t: np.array(t), make_atom14_masks(batch))
|
93 |
+
return out
|
venv/lib/python3.10/site-packages/transformers/models/esm/openfold_utils/feats.py
ADDED
@@ -0,0 +1,255 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2021 AlQuraishi Laboratory
|
2 |
+
# Copyright 2021 DeepMind Technologies Limited
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
from typing import Dict, Tuple, overload
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import torch.types
|
20 |
+
from torch import nn
|
21 |
+
|
22 |
+
from . import residue_constants as rc
|
23 |
+
from .rigid_utils import Rigid, Rotation
|
24 |
+
from .tensor_utils import batched_gather
|
25 |
+
|
26 |
+
|
27 |
+
@overload
|
28 |
+
def pseudo_beta_fn(aatype: torch.Tensor, all_atom_positions: torch.Tensor, all_atom_masks: None) -> torch.Tensor:
|
29 |
+
...
|
30 |
+
|
31 |
+
|
32 |
+
@overload
|
33 |
+
def pseudo_beta_fn(
|
34 |
+
aatype: torch.Tensor, all_atom_positions: torch.Tensor, all_atom_masks: torch.Tensor
|
35 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
36 |
+
...
|
37 |
+
|
38 |
+
|
39 |
+
def pseudo_beta_fn(aatype, all_atom_positions, all_atom_masks):
|
40 |
+
is_gly = aatype == rc.restype_order["G"]
|
41 |
+
ca_idx = rc.atom_order["CA"]
|
42 |
+
cb_idx = rc.atom_order["CB"]
|
43 |
+
pseudo_beta = torch.where(
|
44 |
+
is_gly[..., None].expand(*((-1,) * len(is_gly.shape)), 3),
|
45 |
+
all_atom_positions[..., ca_idx, :],
|
46 |
+
all_atom_positions[..., cb_idx, :],
|
47 |
+
)
|
48 |
+
|
49 |
+
if all_atom_masks is not None:
|
50 |
+
pseudo_beta_mask = torch.where(
|
51 |
+
is_gly,
|
52 |
+
all_atom_masks[..., ca_idx],
|
53 |
+
all_atom_masks[..., cb_idx],
|
54 |
+
)
|
55 |
+
return pseudo_beta, pseudo_beta_mask
|
56 |
+
else:
|
57 |
+
return pseudo_beta
|
58 |
+
|
59 |
+
|
60 |
+
def atom14_to_atom37(atom14: torch.Tensor, batch: Dict[str, torch.Tensor]) -> torch.Tensor:
|
61 |
+
atom37_data = batched_gather(
|
62 |
+
atom14,
|
63 |
+
batch["residx_atom37_to_atom14"],
|
64 |
+
dim=-2,
|
65 |
+
no_batch_dims=len(atom14.shape[:-2]),
|
66 |
+
)
|
67 |
+
|
68 |
+
atom37_data = atom37_data * batch["atom37_atom_exists"][..., None]
|
69 |
+
|
70 |
+
return atom37_data
|
71 |
+
|
72 |
+
|
73 |
+
def build_template_angle_feat(template_feats: Dict[str, torch.Tensor]) -> torch.Tensor:
|
74 |
+
template_aatype = template_feats["template_aatype"]
|
75 |
+
torsion_angles_sin_cos = template_feats["template_torsion_angles_sin_cos"]
|
76 |
+
alt_torsion_angles_sin_cos = template_feats["template_alt_torsion_angles_sin_cos"]
|
77 |
+
torsion_angles_mask = template_feats["template_torsion_angles_mask"]
|
78 |
+
template_angle_feat = torch.cat(
|
79 |
+
[
|
80 |
+
nn.functional.one_hot(template_aatype, 22),
|
81 |
+
torsion_angles_sin_cos.reshape(*torsion_angles_sin_cos.shape[:-2], 14),
|
82 |
+
alt_torsion_angles_sin_cos.reshape(*alt_torsion_angles_sin_cos.shape[:-2], 14),
|
83 |
+
torsion_angles_mask,
|
84 |
+
],
|
85 |
+
dim=-1,
|
86 |
+
)
|
87 |
+
|
88 |
+
return template_angle_feat
|
89 |
+
|
90 |
+
|
91 |
+
def build_template_pair_feat(
|
92 |
+
batch: Dict[str, torch.Tensor],
|
93 |
+
min_bin: torch.types.Number,
|
94 |
+
max_bin: torch.types.Number,
|
95 |
+
no_bins: int,
|
96 |
+
use_unit_vector: bool = False,
|
97 |
+
eps: float = 1e-20,
|
98 |
+
inf: float = 1e8,
|
99 |
+
) -> torch.Tensor:
|
100 |
+
template_mask = batch["template_pseudo_beta_mask"]
|
101 |
+
template_mask_2d = template_mask[..., None] * template_mask[..., None, :]
|
102 |
+
|
103 |
+
# Compute distogram (this seems to differ slightly from Alg. 5)
|
104 |
+
tpb = batch["template_pseudo_beta"]
|
105 |
+
dgram = torch.sum((tpb[..., None, :] - tpb[..., None, :, :]) ** 2, dim=-1, keepdim=True)
|
106 |
+
lower = torch.linspace(min_bin, max_bin, no_bins, device=tpb.device) ** 2
|
107 |
+
upper = torch.cat([lower[1:], lower.new_tensor([inf])], dim=-1)
|
108 |
+
dgram = ((dgram > lower) * (dgram < upper)).type(dgram.dtype)
|
109 |
+
|
110 |
+
to_concat = [dgram, template_mask_2d[..., None]]
|
111 |
+
|
112 |
+
aatype_one_hot: torch.LongTensor = nn.functional.one_hot(
|
113 |
+
batch["template_aatype"],
|
114 |
+
rc.restype_num + 2,
|
115 |
+
)
|
116 |
+
|
117 |
+
n_res = batch["template_aatype"].shape[-1]
|
118 |
+
to_concat.append(aatype_one_hot[..., None, :, :].expand(*aatype_one_hot.shape[:-2], n_res, -1, -1))
|
119 |
+
to_concat.append(aatype_one_hot[..., None, :].expand(*aatype_one_hot.shape[:-2], -1, n_res, -1))
|
120 |
+
|
121 |
+
n, ca, c = [rc.atom_order[a] for a in ["N", "CA", "C"]]
|
122 |
+
rigids = Rigid.make_transform_from_reference(
|
123 |
+
n_xyz=batch["template_all_atom_positions"][..., n, :],
|
124 |
+
ca_xyz=batch["template_all_atom_positions"][..., ca, :],
|
125 |
+
c_xyz=batch["template_all_atom_positions"][..., c, :],
|
126 |
+
eps=eps,
|
127 |
+
)
|
128 |
+
points = rigids.get_trans()[..., None, :, :]
|
129 |
+
rigid_vec = rigids[..., None].invert_apply(points)
|
130 |
+
|
131 |
+
inv_distance_scalar = torch.rsqrt(eps + torch.sum(rigid_vec**2, dim=-1))
|
132 |
+
|
133 |
+
t_aa_masks = batch["template_all_atom_mask"]
|
134 |
+
template_mask = t_aa_masks[..., n] * t_aa_masks[..., ca] * t_aa_masks[..., c]
|
135 |
+
template_mask_2d = template_mask[..., None] * template_mask[..., None, :]
|
136 |
+
|
137 |
+
inv_distance_scalar = inv_distance_scalar * template_mask_2d
|
138 |
+
unit_vector = rigid_vec * inv_distance_scalar[..., None]
|
139 |
+
|
140 |
+
if not use_unit_vector:
|
141 |
+
unit_vector = unit_vector * 0.0
|
142 |
+
|
143 |
+
to_concat.extend(torch.unbind(unit_vector[..., None, :], dim=-1))
|
144 |
+
to_concat.append(template_mask_2d[..., None])
|
145 |
+
|
146 |
+
act = torch.cat(to_concat, dim=-1)
|
147 |
+
act = act * template_mask_2d[..., None]
|
148 |
+
|
149 |
+
return act
|
150 |
+
|
151 |
+
|
152 |
+
def build_extra_msa_feat(batch: Dict[str, torch.Tensor]) -> torch.Tensor:
|
153 |
+
msa_1hot: torch.LongTensor = nn.functional.one_hot(batch["extra_msa"], 23)
|
154 |
+
msa_feat = [
|
155 |
+
msa_1hot,
|
156 |
+
batch["extra_has_deletion"].unsqueeze(-1),
|
157 |
+
batch["extra_deletion_value"].unsqueeze(-1),
|
158 |
+
]
|
159 |
+
return torch.cat(msa_feat, dim=-1)
|
160 |
+
|
161 |
+
|
162 |
+
def torsion_angles_to_frames(
|
163 |
+
r: Rigid,
|
164 |
+
alpha: torch.Tensor,
|
165 |
+
aatype: torch.Tensor,
|
166 |
+
rrgdf: torch.Tensor,
|
167 |
+
) -> Rigid:
|
168 |
+
# [*, N, 8, 4, 4]
|
169 |
+
default_4x4 = rrgdf[aatype, ...]
|
170 |
+
|
171 |
+
# [*, N, 8] transformations, i.e.
|
172 |
+
# One [*, N, 8, 3, 3] rotation matrix and
|
173 |
+
# One [*, N, 8, 3] translation matrix
|
174 |
+
default_r = r.from_tensor_4x4(default_4x4)
|
175 |
+
|
176 |
+
bb_rot = alpha.new_zeros((*((1,) * len(alpha.shape[:-1])), 2))
|
177 |
+
bb_rot[..., 1] = 1
|
178 |
+
|
179 |
+
# [*, N, 8, 2]
|
180 |
+
alpha = torch.cat([bb_rot.expand(*alpha.shape[:-2], -1, -1), alpha], dim=-2)
|
181 |
+
|
182 |
+
# [*, N, 8, 3, 3]
|
183 |
+
# Produces rotation matrices of the form:
|
184 |
+
# [
|
185 |
+
# [1, 0 , 0 ],
|
186 |
+
# [0, a_2,-a_1],
|
187 |
+
# [0, a_1, a_2]
|
188 |
+
# ]
|
189 |
+
# This follows the original code rather than the supplement, which uses
|
190 |
+
# different indices.
|
191 |
+
|
192 |
+
all_rots = alpha.new_zeros(default_r.get_rots().get_rot_mats().shape)
|
193 |
+
all_rots[..., 0, 0] = 1
|
194 |
+
all_rots[..., 1, 1] = alpha[..., 1]
|
195 |
+
all_rots[..., 1, 2] = -alpha[..., 0]
|
196 |
+
all_rots[..., 2, 1:] = alpha
|
197 |
+
|
198 |
+
all_frames = default_r.compose(Rigid(Rotation(rot_mats=all_rots), None))
|
199 |
+
|
200 |
+
chi2_frame_to_frame = all_frames[..., 5]
|
201 |
+
chi3_frame_to_frame = all_frames[..., 6]
|
202 |
+
chi4_frame_to_frame = all_frames[..., 7]
|
203 |
+
|
204 |
+
chi1_frame_to_bb = all_frames[..., 4]
|
205 |
+
chi2_frame_to_bb = chi1_frame_to_bb.compose(chi2_frame_to_frame)
|
206 |
+
chi3_frame_to_bb = chi2_frame_to_bb.compose(chi3_frame_to_frame)
|
207 |
+
chi4_frame_to_bb = chi3_frame_to_bb.compose(chi4_frame_to_frame)
|
208 |
+
|
209 |
+
all_frames_to_bb = Rigid.cat(
|
210 |
+
[
|
211 |
+
all_frames[..., :5],
|
212 |
+
chi2_frame_to_bb.unsqueeze(-1),
|
213 |
+
chi3_frame_to_bb.unsqueeze(-1),
|
214 |
+
chi4_frame_to_bb.unsqueeze(-1),
|
215 |
+
],
|
216 |
+
dim=-1,
|
217 |
+
)
|
218 |
+
|
219 |
+
all_frames_to_global = r[..., None].compose(all_frames_to_bb)
|
220 |
+
|
221 |
+
return all_frames_to_global
|
222 |
+
|
223 |
+
|
224 |
+
def frames_and_literature_positions_to_atom14_pos(
|
225 |
+
r: Rigid,
|
226 |
+
aatype: torch.Tensor,
|
227 |
+
default_frames: torch.Tensor,
|
228 |
+
group_idx: torch.Tensor,
|
229 |
+
atom_mask: torch.Tensor,
|
230 |
+
lit_positions: torch.Tensor,
|
231 |
+
) -> torch.Tensor:
|
232 |
+
# [*, N, 14]
|
233 |
+
group_mask = group_idx[aatype, ...]
|
234 |
+
|
235 |
+
# [*, N, 14, 8]
|
236 |
+
group_mask_one_hot: torch.LongTensor = nn.functional.one_hot(
|
237 |
+
group_mask,
|
238 |
+
num_classes=default_frames.shape[-3],
|
239 |
+
)
|
240 |
+
|
241 |
+
# [*, N, 14, 8]
|
242 |
+
t_atoms_to_global = r[..., None, :] * group_mask_one_hot
|
243 |
+
|
244 |
+
# [*, N, 14]
|
245 |
+
t_atoms_to_global = t_atoms_to_global.map_tensor_fn(lambda x: torch.sum(x, dim=-1))
|
246 |
+
|
247 |
+
# [*, N, 14, 1]
|
248 |
+
atom_mask = atom_mask[aatype, ...].unsqueeze(-1)
|
249 |
+
|
250 |
+
# [*, N, 14, 3]
|
251 |
+
lit_positions = lit_positions[aatype, ...]
|
252 |
+
pred_positions = t_atoms_to_global.apply(lit_positions)
|
253 |
+
pred_positions = pred_positions * atom_mask
|
254 |
+
|
255 |
+
return pred_positions
|
venv/lib/python3.10/site-packages/transformers/models/esm/openfold_utils/loss.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2021 AlQuraishi Laboratory
|
2 |
+
# Copyright 2021 DeepMind Technologies Limited
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
from typing import Dict, Optional, Tuple
|
17 |
+
|
18 |
+
import torch
|
19 |
+
|
20 |
+
|
21 |
+
def _calculate_bin_centers(boundaries: torch.Tensor) -> torch.Tensor:
|
22 |
+
step = boundaries[1] - boundaries[0]
|
23 |
+
bin_centers = boundaries + step / 2
|
24 |
+
bin_centers = torch.cat([bin_centers, (bin_centers[-1] + step).unsqueeze(-1)], dim=0)
|
25 |
+
return bin_centers
|
26 |
+
|
27 |
+
|
28 |
+
def _calculate_expected_aligned_error(
|
29 |
+
alignment_confidence_breaks: torch.Tensor,
|
30 |
+
aligned_distance_error_probs: torch.Tensor,
|
31 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
32 |
+
bin_centers = _calculate_bin_centers(alignment_confidence_breaks)
|
33 |
+
return (
|
34 |
+
torch.sum(aligned_distance_error_probs * bin_centers, dim=-1),
|
35 |
+
bin_centers[-1],
|
36 |
+
)
|
37 |
+
|
38 |
+
|
39 |
+
def compute_predicted_aligned_error(
|
40 |
+
logits: torch.Tensor,
|
41 |
+
max_bin: int = 31,
|
42 |
+
no_bins: int = 64,
|
43 |
+
**kwargs,
|
44 |
+
) -> Dict[str, torch.Tensor]:
|
45 |
+
"""Computes aligned confidence metrics from logits.
|
46 |
+
|
47 |
+
Args:
|
48 |
+
logits: [*, num_res, num_res, num_bins] the logits output from
|
49 |
+
PredictedAlignedErrorHead.
|
50 |
+
max_bin: Maximum bin value
|
51 |
+
no_bins: Number of bins
|
52 |
+
Returns:
|
53 |
+
aligned_confidence_probs: [*, num_res, num_res, num_bins] the predicted
|
54 |
+
aligned error probabilities over bins for each residue pair.
|
55 |
+
predicted_aligned_error: [*, num_res, num_res] the expected aligned distance
|
56 |
+
error for each pair of residues.
|
57 |
+
max_predicted_aligned_error: [*] the maximum predicted error possible.
|
58 |
+
"""
|
59 |
+
boundaries = torch.linspace(0, max_bin, steps=(no_bins - 1), device=logits.device)
|
60 |
+
|
61 |
+
aligned_confidence_probs = torch.nn.functional.softmax(logits, dim=-1)
|
62 |
+
predicted_aligned_error, max_predicted_aligned_error = _calculate_expected_aligned_error(
|
63 |
+
alignment_confidence_breaks=boundaries,
|
64 |
+
aligned_distance_error_probs=aligned_confidence_probs,
|
65 |
+
)
|
66 |
+
|
67 |
+
return {
|
68 |
+
"aligned_confidence_probs": aligned_confidence_probs,
|
69 |
+
"predicted_aligned_error": predicted_aligned_error,
|
70 |
+
"max_predicted_aligned_error": max_predicted_aligned_error,
|
71 |
+
}
|
72 |
+
|
73 |
+
|
74 |
+
def compute_tm(
|
75 |
+
logits: torch.Tensor,
|
76 |
+
residue_weights: Optional[torch.Tensor] = None,
|
77 |
+
max_bin: int = 31,
|
78 |
+
no_bins: int = 64,
|
79 |
+
eps: float = 1e-8,
|
80 |
+
**kwargs,
|
81 |
+
) -> torch.Tensor:
|
82 |
+
if residue_weights is None:
|
83 |
+
residue_weights = logits.new_ones(logits.shape[-2])
|
84 |
+
|
85 |
+
boundaries = torch.linspace(0, max_bin, steps=(no_bins - 1), device=logits.device)
|
86 |
+
|
87 |
+
bin_centers = _calculate_bin_centers(boundaries)
|
88 |
+
torch.sum(residue_weights)
|
89 |
+
n = logits.shape[-2]
|
90 |
+
clipped_n = max(n, 19)
|
91 |
+
|
92 |
+
d0 = 1.24 * (clipped_n - 15) ** (1.0 / 3) - 1.8
|
93 |
+
|
94 |
+
probs = torch.nn.functional.softmax(logits, dim=-1)
|
95 |
+
|
96 |
+
tm_per_bin = 1.0 / (1 + (bin_centers**2) / (d0**2))
|
97 |
+
predicted_tm_term = torch.sum(probs * tm_per_bin, dim=-1)
|
98 |
+
|
99 |
+
normed_residue_mask = residue_weights / (eps + residue_weights.sum())
|
100 |
+
per_alignment = torch.sum(predicted_tm_term * normed_residue_mask, dim=-1)
|
101 |
+
|
102 |
+
weighted = per_alignment * residue_weights
|
103 |
+
|
104 |
+
argmax = (weighted == torch.max(weighted)).nonzero()[0]
|
105 |
+
return per_alignment[tuple(argmax)]
|
venv/lib/python3.10/site-packages/transformers/models/esm/openfold_utils/protein.py
ADDED
@@ -0,0 +1,329 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2021 AlQuraishi Laboratory
|
2 |
+
# Copyright 2021 DeepMind Technologies Limited
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
"""Protein data type."""
|
17 |
+
import dataclasses
|
18 |
+
import re
|
19 |
+
import string
|
20 |
+
from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple
|
21 |
+
|
22 |
+
import numpy as np
|
23 |
+
|
24 |
+
from . import residue_constants
|
25 |
+
|
26 |
+
|
27 |
+
FeatureDict = Mapping[str, np.ndarray]
|
28 |
+
ModelOutput = Mapping[str, Any] # Is a nested dict.
|
29 |
+
PICO_TO_ANGSTROM = 0.01
|
30 |
+
|
31 |
+
|
32 |
+
@dataclasses.dataclass(frozen=True)
|
33 |
+
class Protein:
|
34 |
+
"""Protein structure representation."""
|
35 |
+
|
36 |
+
# Cartesian coordinates of atoms in angstroms. The atom types correspond to
|
37 |
+
# residue_constants.atom_types, i.e. the first three are N, CA, CB.
|
38 |
+
atom_positions: np.ndarray # [num_res, num_atom_type, 3]
|
39 |
+
|
40 |
+
# Amino-acid type for each residue represented as an integer between 0 and
|
41 |
+
# 20, where 20 is 'X'.
|
42 |
+
aatype: np.ndarray # [num_res]
|
43 |
+
|
44 |
+
# Binary float mask to indicate presence of a particular atom. 1.0 if an atom
|
45 |
+
# is present and 0.0 if not. This should be used for loss masking.
|
46 |
+
atom_mask: np.ndarray # [num_res, num_atom_type]
|
47 |
+
|
48 |
+
# Residue index as used in PDB. It is not necessarily continuous or 0-indexed.
|
49 |
+
residue_index: np.ndarray # [num_res]
|
50 |
+
|
51 |
+
# B-factors, or temperature factors, of each residue (in sq. angstroms units),
|
52 |
+
# representing the displacement of the residue from its ground truth mean
|
53 |
+
# value.
|
54 |
+
b_factors: np.ndarray # [num_res, num_atom_type]
|
55 |
+
|
56 |
+
# Chain indices for multi-chain predictions
|
57 |
+
chain_index: Optional[np.ndarray] = None
|
58 |
+
|
59 |
+
# Optional remark about the protein. Included as a comment in output PDB
|
60 |
+
# files
|
61 |
+
remark: Optional[str] = None
|
62 |
+
|
63 |
+
# Templates used to generate this protein (prediction-only)
|
64 |
+
parents: Optional[Sequence[str]] = None
|
65 |
+
|
66 |
+
# Chain corresponding to each parent
|
67 |
+
parents_chain_index: Optional[Sequence[int]] = None
|
68 |
+
|
69 |
+
|
70 |
+
def from_proteinnet_string(proteinnet_str: str) -> Protein:
|
71 |
+
tag_re = r"(\[[A-Z]+\]\n)"
|
72 |
+
tags: List[str] = [tag.strip() for tag in re.split(tag_re, proteinnet_str) if len(tag) > 0]
|
73 |
+
groups: Iterator[Tuple[str, List[str]]] = zip(tags[0::2], [l.split("\n") for l in tags[1::2]])
|
74 |
+
|
75 |
+
atoms: List[str] = ["N", "CA", "C"]
|
76 |
+
aatype = None
|
77 |
+
atom_positions = None
|
78 |
+
atom_mask = None
|
79 |
+
for g in groups:
|
80 |
+
if "[PRIMARY]" == g[0]:
|
81 |
+
seq = g[1][0].strip()
|
82 |
+
for i in range(len(seq)):
|
83 |
+
if seq[i] not in residue_constants.restypes:
|
84 |
+
seq[i] = "X" # FIXME: strings are immutable
|
85 |
+
aatype = np.array(
|
86 |
+
[residue_constants.restype_order.get(res_symbol, residue_constants.restype_num) for res_symbol in seq]
|
87 |
+
)
|
88 |
+
elif "[TERTIARY]" == g[0]:
|
89 |
+
tertiary: List[List[float]] = []
|
90 |
+
for axis in range(3):
|
91 |
+
tertiary.append(list(map(float, g[1][axis].split())))
|
92 |
+
tertiary_np = np.array(tertiary)
|
93 |
+
atom_positions = np.zeros((len(tertiary[0]) // 3, residue_constants.atom_type_num, 3)).astype(np.float32)
|
94 |
+
for i, atom in enumerate(atoms):
|
95 |
+
atom_positions[:, residue_constants.atom_order[atom], :] = np.transpose(tertiary_np[:, i::3])
|
96 |
+
atom_positions *= PICO_TO_ANGSTROM
|
97 |
+
elif "[MASK]" == g[0]:
|
98 |
+
mask = np.array(list(map({"-": 0, "+": 1}.get, g[1][0].strip())))
|
99 |
+
atom_mask = np.zeros(
|
100 |
+
(
|
101 |
+
len(mask),
|
102 |
+
residue_constants.atom_type_num,
|
103 |
+
)
|
104 |
+
).astype(np.float32)
|
105 |
+
for i, atom in enumerate(atoms):
|
106 |
+
atom_mask[:, residue_constants.atom_order[atom]] = 1
|
107 |
+
atom_mask *= mask[..., None]
|
108 |
+
|
109 |
+
assert aatype is not None
|
110 |
+
|
111 |
+
return Protein(
|
112 |
+
atom_positions=atom_positions,
|
113 |
+
atom_mask=atom_mask,
|
114 |
+
aatype=aatype,
|
115 |
+
residue_index=np.arange(len(aatype)),
|
116 |
+
b_factors=None,
|
117 |
+
)
|
118 |
+
|
119 |
+
|
120 |
+
def get_pdb_headers(prot: Protein, chain_id: int = 0) -> List[str]:
|
121 |
+
pdb_headers: List[str] = []
|
122 |
+
|
123 |
+
remark = prot.remark
|
124 |
+
if remark is not None:
|
125 |
+
pdb_headers.append(f"REMARK {remark}")
|
126 |
+
|
127 |
+
parents = prot.parents
|
128 |
+
parents_chain_index = prot.parents_chain_index
|
129 |
+
if parents is not None and parents_chain_index is not None:
|
130 |
+
parents = [p for i, p in zip(parents_chain_index, parents) if i == chain_id]
|
131 |
+
|
132 |
+
if parents is None or len(parents) == 0:
|
133 |
+
parents = ["N/A"]
|
134 |
+
|
135 |
+
pdb_headers.append(f"PARENT {' '.join(parents)}")
|
136 |
+
|
137 |
+
return pdb_headers
|
138 |
+
|
139 |
+
|
140 |
+
def add_pdb_headers(prot: Protein, pdb_str: str) -> str:
|
141 |
+
"""Add pdb headers to an existing PDB string. Useful during multi-chain
|
142 |
+
recycling
|
143 |
+
"""
|
144 |
+
out_pdb_lines: List[str] = []
|
145 |
+
lines = pdb_str.split("\n")
|
146 |
+
|
147 |
+
remark = prot.remark
|
148 |
+
if remark is not None:
|
149 |
+
out_pdb_lines.append(f"REMARK {remark}")
|
150 |
+
|
151 |
+
parents_per_chain: List[List[str]]
|
152 |
+
if prot.parents is not None and len(prot.parents) > 0:
|
153 |
+
parents_per_chain = []
|
154 |
+
if prot.parents_chain_index is not None:
|
155 |
+
parent_dict: Dict[str, List[str]] = {}
|
156 |
+
for p, i in zip(prot.parents, prot.parents_chain_index):
|
157 |
+
parent_dict.setdefault(str(i), [])
|
158 |
+
parent_dict[str(i)].append(p)
|
159 |
+
|
160 |
+
max_idx = max([int(chain_idx) for chain_idx in parent_dict])
|
161 |
+
for i in range(max_idx + 1):
|
162 |
+
chain_parents = parent_dict.get(str(i), ["N/A"])
|
163 |
+
parents_per_chain.append(chain_parents)
|
164 |
+
else:
|
165 |
+
parents_per_chain.append(list(prot.parents))
|
166 |
+
else:
|
167 |
+
parents_per_chain = [["N/A"]]
|
168 |
+
|
169 |
+
def make_parent_line(p: Sequence[str]) -> str:
|
170 |
+
return f"PARENT {' '.join(p)}"
|
171 |
+
|
172 |
+
out_pdb_lines.append(make_parent_line(parents_per_chain[0]))
|
173 |
+
|
174 |
+
chain_counter = 0
|
175 |
+
for i, l in enumerate(lines):
|
176 |
+
if "PARENT" not in l and "REMARK" not in l:
|
177 |
+
out_pdb_lines.append(l)
|
178 |
+
if "TER" in l and "END" not in lines[i + 1]:
|
179 |
+
chain_counter += 1
|
180 |
+
if not chain_counter >= len(parents_per_chain):
|
181 |
+
chain_parents = parents_per_chain[chain_counter]
|
182 |
+
else:
|
183 |
+
chain_parents = ["N/A"]
|
184 |
+
|
185 |
+
out_pdb_lines.append(make_parent_line(chain_parents))
|
186 |
+
|
187 |
+
return "\n".join(out_pdb_lines)
|
188 |
+
|
189 |
+
|
190 |
+
def to_pdb(prot: Protein) -> str:
|
191 |
+
"""Converts a `Protein` instance to a PDB string.
|
192 |
+
|
193 |
+
Args:
|
194 |
+
prot: The protein to convert to PDB.
|
195 |
+
|
196 |
+
Returns:
|
197 |
+
PDB string.
|
198 |
+
"""
|
199 |
+
restypes = residue_constants.restypes + ["X"]
|
200 |
+
|
201 |
+
def res_1to3(r: int) -> str:
|
202 |
+
return residue_constants.restype_1to3.get(restypes[r], "UNK")
|
203 |
+
|
204 |
+
atom_types = residue_constants.atom_types
|
205 |
+
|
206 |
+
pdb_lines: List[str] = []
|
207 |
+
|
208 |
+
atom_mask = prot.atom_mask
|
209 |
+
aatype = prot.aatype
|
210 |
+
atom_positions = prot.atom_positions
|
211 |
+
residue_index = prot.residue_index.astype(np.int32)
|
212 |
+
b_factors = prot.b_factors
|
213 |
+
chain_index = prot.chain_index
|
214 |
+
|
215 |
+
if np.any(aatype > residue_constants.restype_num):
|
216 |
+
raise ValueError("Invalid aatypes.")
|
217 |
+
|
218 |
+
headers = get_pdb_headers(prot)
|
219 |
+
if len(headers) > 0:
|
220 |
+
pdb_lines.extend(headers)
|
221 |
+
|
222 |
+
n = aatype.shape[0]
|
223 |
+
atom_index = 1
|
224 |
+
prev_chain_index = 0
|
225 |
+
chain_tags = string.ascii_uppercase
|
226 |
+
chain_tag = None
|
227 |
+
# Add all atom sites.
|
228 |
+
for i in range(n):
|
229 |
+
res_name_3 = res_1to3(aatype[i])
|
230 |
+
for atom_name, pos, mask, b_factor in zip(atom_types, atom_positions[i], atom_mask[i], b_factors[i]):
|
231 |
+
if mask < 0.5:
|
232 |
+
continue
|
233 |
+
|
234 |
+
record_type = "ATOM"
|
235 |
+
name = atom_name if len(atom_name) == 4 else f" {atom_name}"
|
236 |
+
alt_loc = ""
|
237 |
+
insertion_code = ""
|
238 |
+
occupancy = 1.00
|
239 |
+
element = atom_name[0] # Protein supports only C, N, O, S, this works.
|
240 |
+
charge = ""
|
241 |
+
|
242 |
+
chain_tag = "A"
|
243 |
+
if chain_index is not None:
|
244 |
+
chain_tag = chain_tags[chain_index[i]]
|
245 |
+
|
246 |
+
# PDB is a columnar format, every space matters here!
|
247 |
+
atom_line = (
|
248 |
+
f"{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}"
|
249 |
+
f"{res_name_3:>3} {chain_tag:>1}"
|
250 |
+
f"{residue_index[i]:>4}{insertion_code:>1} "
|
251 |
+
f"{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}"
|
252 |
+
f"{occupancy:>6.2f}{b_factor:>6.2f} "
|
253 |
+
f"{element:>2}{charge:>2}"
|
254 |
+
)
|
255 |
+
pdb_lines.append(atom_line)
|
256 |
+
atom_index += 1
|
257 |
+
|
258 |
+
should_terminate = i == n - 1
|
259 |
+
if chain_index is not None:
|
260 |
+
if i != n - 1 and chain_index[i + 1] != prev_chain_index:
|
261 |
+
should_terminate = True
|
262 |
+
prev_chain_index = chain_index[i + 1]
|
263 |
+
|
264 |
+
if should_terminate:
|
265 |
+
# Close the chain.
|
266 |
+
chain_end = "TER"
|
267 |
+
chain_termination_line = (
|
268 |
+
f"{chain_end:<6}{atom_index:>5} {res_1to3(aatype[i]):>3} {chain_tag:>1}{residue_index[i]:>4}"
|
269 |
+
)
|
270 |
+
pdb_lines.append(chain_termination_line)
|
271 |
+
atom_index += 1
|
272 |
+
|
273 |
+
if i != n - 1:
|
274 |
+
# "prev" is a misnomer here. This happens at the beginning of
|
275 |
+
# each new chain.
|
276 |
+
pdb_lines.extend(get_pdb_headers(prot, prev_chain_index))
|
277 |
+
|
278 |
+
pdb_lines.append("END")
|
279 |
+
pdb_lines.append("")
|
280 |
+
return "\n".join(pdb_lines)
|
281 |
+
|
282 |
+
|
283 |
+
def ideal_atom_mask(prot: Protein) -> np.ndarray:
|
284 |
+
"""Computes an ideal atom mask.
|
285 |
+
|
286 |
+
`Protein.atom_mask` typically is defined according to the atoms that are reported in the PDB. This function
|
287 |
+
computes a mask according to heavy atoms that should be present in the given sequence of amino acids.
|
288 |
+
|
289 |
+
Args:
|
290 |
+
prot: `Protein` whose fields are `numpy.ndarray` objects.
|
291 |
+
|
292 |
+
Returns:
|
293 |
+
An ideal atom mask.
|
294 |
+
"""
|
295 |
+
return residue_constants.STANDARD_ATOM_MASK[prot.aatype]
|
296 |
+
|
297 |
+
|
298 |
+
def from_prediction(
|
299 |
+
features: FeatureDict,
|
300 |
+
result: ModelOutput,
|
301 |
+
b_factors: Optional[np.ndarray] = None,
|
302 |
+
chain_index: Optional[np.ndarray] = None,
|
303 |
+
remark: Optional[str] = None,
|
304 |
+
parents: Optional[Sequence[str]] = None,
|
305 |
+
parents_chain_index: Optional[Sequence[int]] = None,
|
306 |
+
) -> Protein:
|
307 |
+
"""Assembles a protein from a prediction.
|
308 |
+
|
309 |
+
Args:
|
310 |
+
features: Dictionary holding model inputs.
|
311 |
+
result: Dictionary holding model outputs.
|
312 |
+
b_factors: (Optional) B-factors to use for the protein.
|
313 |
+
chain_index: (Optional) Chain indices for multi-chain predictions
|
314 |
+
remark: (Optional) Remark about the prediction
|
315 |
+
parents: (Optional) List of template names
|
316 |
+
Returns:
|
317 |
+
A protein instance.
|
318 |
+
"""
|
319 |
+
return Protein(
|
320 |
+
aatype=features["aatype"],
|
321 |
+
atom_positions=result["final_atom_positions"],
|
322 |
+
atom_mask=result["final_atom_mask"],
|
323 |
+
residue_index=features["residue_index"] + 1,
|
324 |
+
b_factors=b_factors if b_factors is not None else np.zeros_like(result["final_atom_mask"]),
|
325 |
+
chain_index=chain_index,
|
326 |
+
remark=remark,
|
327 |
+
parents=parents,
|
328 |
+
parents_chain_index=parents_chain_index,
|
329 |
+
)
|
venv/lib/python3.10/site-packages/transformers/models/esm/openfold_utils/residue_constants.py
ADDED
@@ -0,0 +1,983 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2021 AlQuraishi Laboratory
|
2 |
+
# Copyright 2021 DeepMind Technologies Limited
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
"""Constants used in AlphaFold."""
|
17 |
+
|
18 |
+
import collections
|
19 |
+
import copy
|
20 |
+
import functools
|
21 |
+
from importlib import resources
|
22 |
+
from typing import Dict, List, Mapping, Sequence, Tuple
|
23 |
+
|
24 |
+
import numpy as np
|
25 |
+
|
26 |
+
|
27 |
+
# Internal import (35fd).
|
28 |
+
|
29 |
+
|
30 |
+
# Distance from one CA to next CA [trans configuration: omega = 180].
|
31 |
+
ca_ca = 3.80209737096
|
32 |
+
|
33 |
+
# Format: The list for each AA type contains chi1, chi2, chi3, chi4 in
|
34 |
+
# this order (or a relevant subset from chi1 onwards). ALA and GLY don't have
|
35 |
+
# chi angles so their chi angle lists are empty.
|
36 |
+
chi_angles_atoms: Dict[str, List[List[str]]] = {
|
37 |
+
"ALA": [],
|
38 |
+
# Chi5 in arginine is always 0 +- 5 degrees, so ignore it.
|
39 |
+
"ARG": [["N", "CA", "CB", "CG"], ["CA", "CB", "CG", "CD"], ["CB", "CG", "CD", "NE"], ["CG", "CD", "NE", "CZ"]],
|
40 |
+
"ASN": [["N", "CA", "CB", "CG"], ["CA", "CB", "CG", "OD1"]],
|
41 |
+
"ASP": [["N", "CA", "CB", "CG"], ["CA", "CB", "CG", "OD1"]],
|
42 |
+
"CYS": [["N", "CA", "CB", "SG"]],
|
43 |
+
"GLN": [["N", "CA", "CB", "CG"], ["CA", "CB", "CG", "CD"], ["CB", "CG", "CD", "OE1"]],
|
44 |
+
"GLU": [["N", "CA", "CB", "CG"], ["CA", "CB", "CG", "CD"], ["CB", "CG", "CD", "OE1"]],
|
45 |
+
"GLY": [],
|
46 |
+
"HIS": [["N", "CA", "CB", "CG"], ["CA", "CB", "CG", "ND1"]],
|
47 |
+
"ILE": [["N", "CA", "CB", "CG1"], ["CA", "CB", "CG1", "CD1"]],
|
48 |
+
"LEU": [["N", "CA", "CB", "CG"], ["CA", "CB", "CG", "CD1"]],
|
49 |
+
"LYS": [["N", "CA", "CB", "CG"], ["CA", "CB", "CG", "CD"], ["CB", "CG", "CD", "CE"], ["CG", "CD", "CE", "NZ"]],
|
50 |
+
"MET": [["N", "CA", "CB", "CG"], ["CA", "CB", "CG", "SD"], ["CB", "CG", "SD", "CE"]],
|
51 |
+
"PHE": [["N", "CA", "CB", "CG"], ["CA", "CB", "CG", "CD1"]],
|
52 |
+
"PRO": [["N", "CA", "CB", "CG"], ["CA", "CB", "CG", "CD"]],
|
53 |
+
"SER": [["N", "CA", "CB", "OG"]],
|
54 |
+
"THR": [["N", "CA", "CB", "OG1"]],
|
55 |
+
"TRP": [["N", "CA", "CB", "CG"], ["CA", "CB", "CG", "CD1"]],
|
56 |
+
"TYR": [["N", "CA", "CB", "CG"], ["CA", "CB", "CG", "CD1"]],
|
57 |
+
"VAL": [["N", "CA", "CB", "CG1"]],
|
58 |
+
}
|
59 |
+
|
60 |
+
# If chi angles given in fixed-length array, this matrix determines how to mask
|
61 |
+
# them for each AA type. The order is as per restype_order (see below).
|
62 |
+
chi_angles_mask: List[List[float]] = [
|
63 |
+
[0.0, 0.0, 0.0, 0.0], # ALA
|
64 |
+
[1.0, 1.0, 1.0, 1.0], # ARG
|
65 |
+
[1.0, 1.0, 0.0, 0.0], # ASN
|
66 |
+
[1.0, 1.0, 0.0, 0.0], # ASP
|
67 |
+
[1.0, 0.0, 0.0, 0.0], # CYS
|
68 |
+
[1.0, 1.0, 1.0, 0.0], # GLN
|
69 |
+
[1.0, 1.0, 1.0, 0.0], # GLU
|
70 |
+
[0.0, 0.0, 0.0, 0.0], # GLY
|
71 |
+
[1.0, 1.0, 0.0, 0.0], # HIS
|
72 |
+
[1.0, 1.0, 0.0, 0.0], # ILE
|
73 |
+
[1.0, 1.0, 0.0, 0.0], # LEU
|
74 |
+
[1.0, 1.0, 1.0, 1.0], # LYS
|
75 |
+
[1.0, 1.0, 1.0, 0.0], # MET
|
76 |
+
[1.0, 1.0, 0.0, 0.0], # PHE
|
77 |
+
[1.0, 1.0, 0.0, 0.0], # PRO
|
78 |
+
[1.0, 0.0, 0.0, 0.0], # SER
|
79 |
+
[1.0, 0.0, 0.0, 0.0], # THR
|
80 |
+
[1.0, 1.0, 0.0, 0.0], # TRP
|
81 |
+
[1.0, 1.0, 0.0, 0.0], # TYR
|
82 |
+
[1.0, 0.0, 0.0, 0.0], # VAL
|
83 |
+
]
|
84 |
+
|
85 |
+
# The following chi angles are pi periodic: they can be rotated by a multiple
|
86 |
+
# of pi without affecting the structure.
|
87 |
+
chi_pi_periodic: List[List[float]] = [
|
88 |
+
[0.0, 0.0, 0.0, 0.0], # ALA
|
89 |
+
[0.0, 0.0, 0.0, 0.0], # ARG
|
90 |
+
[0.0, 0.0, 0.0, 0.0], # ASN
|
91 |
+
[0.0, 1.0, 0.0, 0.0], # ASP
|
92 |
+
[0.0, 0.0, 0.0, 0.0], # CYS
|
93 |
+
[0.0, 0.0, 0.0, 0.0], # GLN
|
94 |
+
[0.0, 0.0, 1.0, 0.0], # GLU
|
95 |
+
[0.0, 0.0, 0.0, 0.0], # GLY
|
96 |
+
[0.0, 0.0, 0.0, 0.0], # HIS
|
97 |
+
[0.0, 0.0, 0.0, 0.0], # ILE
|
98 |
+
[0.0, 0.0, 0.0, 0.0], # LEU
|
99 |
+
[0.0, 0.0, 0.0, 0.0], # LYS
|
100 |
+
[0.0, 0.0, 0.0, 0.0], # MET
|
101 |
+
[0.0, 1.0, 0.0, 0.0], # PHE
|
102 |
+
[0.0, 0.0, 0.0, 0.0], # PRO
|
103 |
+
[0.0, 0.0, 0.0, 0.0], # SER
|
104 |
+
[0.0, 0.0, 0.0, 0.0], # THR
|
105 |
+
[0.0, 0.0, 0.0, 0.0], # TRP
|
106 |
+
[0.0, 1.0, 0.0, 0.0], # TYR
|
107 |
+
[0.0, 0.0, 0.0, 0.0], # VAL
|
108 |
+
[0.0, 0.0, 0.0, 0.0], # UNK
|
109 |
+
]
|
110 |
+
|
111 |
+
# Atoms positions relative to the 8 rigid groups, defined by the pre-omega, phi,
|
112 |
+
# psi and chi angles:
|
113 |
+
# 0: 'backbone group',
|
114 |
+
# 1: 'pre-omega-group', (empty)
|
115 |
+
# 2: 'phi-group', (currently empty, because it defines only hydrogens)
|
116 |
+
# 3: 'psi-group',
|
117 |
+
# 4,5,6,7: 'chi1,2,3,4-group'
|
118 |
+
# The atom positions are relative to the axis-end-atom of the corresponding
|
119 |
+
# rotation axis. The x-axis is in direction of the rotation axis, and the y-axis
|
120 |
+
# is defined such that the dihedral-angle-definiting atom (the last entry in
|
121 |
+
# chi_angles_atoms above) is in the xy-plane (with a positive y-coordinate).
|
122 |
+
# format: [atomname, group_idx, rel_position]
|
123 |
+
rigid_group_atom_positions: Dict[str, List[Tuple[str, int, Tuple[float, float, float]]]] = {
|
124 |
+
"ALA": [
|
125 |
+
("N", 0, (-0.525, 1.363, 0.000)),
|
126 |
+
("CA", 0, (0.000, 0.000, 0.000)),
|
127 |
+
("C", 0, (1.526, -0.000, -0.000)),
|
128 |
+
("CB", 0, (-0.529, -0.774, -1.205)),
|
129 |
+
("O", 3, (0.627, 1.062, 0.000)),
|
130 |
+
],
|
131 |
+
"ARG": [
|
132 |
+
("N", 0, (-0.524, 1.362, -0.000)),
|
133 |
+
("CA", 0, (0.000, 0.000, 0.000)),
|
134 |
+
("C", 0, (1.525, -0.000, -0.000)),
|
135 |
+
("CB", 0, (-0.524, -0.778, -1.209)),
|
136 |
+
("O", 3, (0.626, 1.062, 0.000)),
|
137 |
+
("CG", 4, (0.616, 1.390, -0.000)),
|
138 |
+
("CD", 5, (0.564, 1.414, 0.000)),
|
139 |
+
("NE", 6, (0.539, 1.357, -0.000)),
|
140 |
+
("NH1", 7, (0.206, 2.301, 0.000)),
|
141 |
+
("NH2", 7, (2.078, 0.978, -0.000)),
|
142 |
+
("CZ", 7, (0.758, 1.093, -0.000)),
|
143 |
+
],
|
144 |
+
"ASN": [
|
145 |
+
("N", 0, (-0.536, 1.357, 0.000)),
|
146 |
+
("CA", 0, (0.000, 0.000, 0.000)),
|
147 |
+
("C", 0, (1.526, -0.000, -0.000)),
|
148 |
+
("CB", 0, (-0.531, -0.787, -1.200)),
|
149 |
+
("O", 3, (0.625, 1.062, 0.000)),
|
150 |
+
("CG", 4, (0.584, 1.399, 0.000)),
|
151 |
+
("ND2", 5, (0.593, -1.188, 0.001)),
|
152 |
+
("OD1", 5, (0.633, 1.059, 0.000)),
|
153 |
+
],
|
154 |
+
"ASP": [
|
155 |
+
("N", 0, (-0.525, 1.362, -0.000)),
|
156 |
+
("CA", 0, (0.000, 0.000, 0.000)),
|
157 |
+
("C", 0, (1.527, 0.000, -0.000)),
|
158 |
+
("CB", 0, (-0.526, -0.778, -1.208)),
|
159 |
+
("O", 3, (0.626, 1.062, -0.000)),
|
160 |
+
("CG", 4, (0.593, 1.398, -0.000)),
|
161 |
+
("OD1", 5, (0.610, 1.091, 0.000)),
|
162 |
+
("OD2", 5, (0.592, -1.101, -0.003)),
|
163 |
+
],
|
164 |
+
"CYS": [
|
165 |
+
("N", 0, (-0.522, 1.362, -0.000)),
|
166 |
+
("CA", 0, (0.000, 0.000, 0.000)),
|
167 |
+
("C", 0, (1.524, 0.000, 0.000)),
|
168 |
+
("CB", 0, (-0.519, -0.773, -1.212)),
|
169 |
+
("O", 3, (0.625, 1.062, -0.000)),
|
170 |
+
("SG", 4, (0.728, 1.653, 0.000)),
|
171 |
+
],
|
172 |
+
"GLN": [
|
173 |
+
("N", 0, (-0.526, 1.361, -0.000)),
|
174 |
+
("CA", 0, (0.000, 0.000, 0.000)),
|
175 |
+
("C", 0, (1.526, 0.000, 0.000)),
|
176 |
+
("CB", 0, (-0.525, -0.779, -1.207)),
|
177 |
+
("O", 3, (0.626, 1.062, -0.000)),
|
178 |
+
("CG", 4, (0.615, 1.393, 0.000)),
|
179 |
+
("CD", 5, (0.587, 1.399, -0.000)),
|
180 |
+
("NE2", 6, (0.593, -1.189, -0.001)),
|
181 |
+
("OE1", 6, (0.634, 1.060, 0.000)),
|
182 |
+
],
|
183 |
+
"GLU": [
|
184 |
+
("N", 0, (-0.528, 1.361, 0.000)),
|
185 |
+
("CA", 0, (0.000, 0.000, 0.000)),
|
186 |
+
("C", 0, (1.526, -0.000, -0.000)),
|
187 |
+
("CB", 0, (-0.526, -0.781, -1.207)),
|
188 |
+
("O", 3, (0.626, 1.062, 0.000)),
|
189 |
+
("CG", 4, (0.615, 1.392, 0.000)),
|
190 |
+
("CD", 5, (0.600, 1.397, 0.000)),
|
191 |
+
("OE1", 6, (0.607, 1.095, -0.000)),
|
192 |
+
("OE2", 6, (0.589, -1.104, -0.001)),
|
193 |
+
],
|
194 |
+
"GLY": [
|
195 |
+
("N", 0, (-0.572, 1.337, 0.000)),
|
196 |
+
("CA", 0, (0.000, 0.000, 0.000)),
|
197 |
+
("C", 0, (1.517, -0.000, -0.000)),
|
198 |
+
("O", 3, (0.626, 1.062, -0.000)),
|
199 |
+
],
|
200 |
+
"HIS": [
|
201 |
+
("N", 0, (-0.527, 1.360, 0.000)),
|
202 |
+
("CA", 0, (0.000, 0.000, 0.000)),
|
203 |
+
("C", 0, (1.525, 0.000, 0.000)),
|
204 |
+
("CB", 0, (-0.525, -0.778, -1.208)),
|
205 |
+
("O", 3, (0.625, 1.063, 0.000)),
|
206 |
+
("CG", 4, (0.600, 1.370, -0.000)),
|
207 |
+
("CD2", 5, (0.889, -1.021, 0.003)),
|
208 |
+
("ND1", 5, (0.744, 1.160, -0.000)),
|
209 |
+
("CE1", 5, (2.030, 0.851, 0.002)),
|
210 |
+
("NE2", 5, (2.145, -0.466, 0.004)),
|
211 |
+
],
|
212 |
+
"ILE": [
|
213 |
+
("N", 0, (-0.493, 1.373, -0.000)),
|
214 |
+
("CA", 0, (0.000, 0.000, 0.000)),
|
215 |
+
("C", 0, (1.527, -0.000, -0.000)),
|
216 |
+
("CB", 0, (-0.536, -0.793, -1.213)),
|
217 |
+
("O", 3, (0.627, 1.062, -0.000)),
|
218 |
+
("CG1", 4, (0.534, 1.437, -0.000)),
|
219 |
+
("CG2", 4, (0.540, -0.785, -1.199)),
|
220 |
+
("CD1", 5, (0.619, 1.391, 0.000)),
|
221 |
+
],
|
222 |
+
"LEU": [
|
223 |
+
("N", 0, (-0.520, 1.363, 0.000)),
|
224 |
+
("CA", 0, (0.000, 0.000, 0.000)),
|
225 |
+
("C", 0, (1.525, -0.000, -0.000)),
|
226 |
+
("CB", 0, (-0.522, -0.773, -1.214)),
|
227 |
+
("O", 3, (0.625, 1.063, -0.000)),
|
228 |
+
("CG", 4, (0.678, 1.371, 0.000)),
|
229 |
+
("CD1", 5, (0.530, 1.430, -0.000)),
|
230 |
+
("CD2", 5, (0.535, -0.774, 1.200)),
|
231 |
+
],
|
232 |
+
"LYS": [
|
233 |
+
("N", 0, (-0.526, 1.362, -0.000)),
|
234 |
+
("CA", 0, (0.000, 0.000, 0.000)),
|
235 |
+
("C", 0, (1.526, 0.000, 0.000)),
|
236 |
+
("CB", 0, (-0.524, -0.778, -1.208)),
|
237 |
+
("O", 3, (0.626, 1.062, -0.000)),
|
238 |
+
("CG", 4, (0.619, 1.390, 0.000)),
|
239 |
+
("CD", 5, (0.559, 1.417, 0.000)),
|
240 |
+
("CE", 6, (0.560, 1.416, 0.000)),
|
241 |
+
("NZ", 7, (0.554, 1.387, 0.000)),
|
242 |
+
],
|
243 |
+
"MET": [
|
244 |
+
("N", 0, (-0.521, 1.364, -0.000)),
|
245 |
+
("CA", 0, (0.000, 0.000, 0.000)),
|
246 |
+
("C", 0, (1.525, 0.000, 0.000)),
|
247 |
+
("CB", 0, (-0.523, -0.776, -1.210)),
|
248 |
+
("O", 3, (0.625, 1.062, -0.000)),
|
249 |
+
("CG", 4, (0.613, 1.391, -0.000)),
|
250 |
+
("SD", 5, (0.703, 1.695, 0.000)),
|
251 |
+
("CE", 6, (0.320, 1.786, -0.000)),
|
252 |
+
],
|
253 |
+
"PHE": [
|
254 |
+
("N", 0, (-0.518, 1.363, 0.000)),
|
255 |
+
("CA", 0, (0.000, 0.000, 0.000)),
|
256 |
+
("C", 0, (1.524, 0.000, -0.000)),
|
257 |
+
("CB", 0, (-0.525, -0.776, -1.212)),
|
258 |
+
("O", 3, (0.626, 1.062, -0.000)),
|
259 |
+
("CG", 4, (0.607, 1.377, 0.000)),
|
260 |
+
("CD1", 5, (0.709, 1.195, -0.000)),
|
261 |
+
("CD2", 5, (0.706, -1.196, 0.000)),
|
262 |
+
("CE1", 5, (2.102, 1.198, -0.000)),
|
263 |
+
("CE2", 5, (2.098, -1.201, -0.000)),
|
264 |
+
("CZ", 5, (2.794, -0.003, -0.001)),
|
265 |
+
],
|
266 |
+
"PRO": [
|
267 |
+
("N", 0, (-0.566, 1.351, -0.000)),
|
268 |
+
("CA", 0, (0.000, 0.000, 0.000)),
|
269 |
+
("C", 0, (1.527, -0.000, 0.000)),
|
270 |
+
("CB", 0, (-0.546, -0.611, -1.293)),
|
271 |
+
("O", 3, (0.621, 1.066, 0.000)),
|
272 |
+
("CG", 4, (0.382, 1.445, 0.0)),
|
273 |
+
# ('CD', 5, (0.427, 1.440, 0.0)),
|
274 |
+
("CD", 5, (0.477, 1.424, 0.0)), # manually made angle 2 degrees larger
|
275 |
+
],
|
276 |
+
"SER": [
|
277 |
+
("N", 0, (-0.529, 1.360, -0.000)),
|
278 |
+
("CA", 0, (0.000, 0.000, 0.000)),
|
279 |
+
("C", 0, (1.525, -0.000, -0.000)),
|
280 |
+
("CB", 0, (-0.518, -0.777, -1.211)),
|
281 |
+
("O", 3, (0.626, 1.062, -0.000)),
|
282 |
+
("OG", 4, (0.503, 1.325, 0.000)),
|
283 |
+
],
|
284 |
+
"THR": [
|
285 |
+
("N", 0, (-0.517, 1.364, 0.000)),
|
286 |
+
("CA", 0, (0.000, 0.000, 0.000)),
|
287 |
+
("C", 0, (1.526, 0.000, -0.000)),
|
288 |
+
("CB", 0, (-0.516, -0.793, -1.215)),
|
289 |
+
("O", 3, (0.626, 1.062, 0.000)),
|
290 |
+
("CG2", 4, (0.550, -0.718, -1.228)),
|
291 |
+
("OG1", 4, (0.472, 1.353, 0.000)),
|
292 |
+
],
|
293 |
+
"TRP": [
|
294 |
+
("N", 0, (-0.521, 1.363, 0.000)),
|
295 |
+
("CA", 0, (0.000, 0.000, 0.000)),
|
296 |
+
("C", 0, (1.525, -0.000, 0.000)),
|
297 |
+
("CB", 0, (-0.523, -0.776, -1.212)),
|
298 |
+
("O", 3, (0.627, 1.062, 0.000)),
|
299 |
+
("CG", 4, (0.609, 1.370, -0.000)),
|
300 |
+
("CD1", 5, (0.824, 1.091, 0.000)),
|
301 |
+
("CD2", 5, (0.854, -1.148, -0.005)),
|
302 |
+
("CE2", 5, (2.186, -0.678, -0.007)),
|
303 |
+
("CE3", 5, (0.622, -2.530, -0.007)),
|
304 |
+
("NE1", 5, (2.140, 0.690, -0.004)),
|
305 |
+
("CH2", 5, (3.028, -2.890, -0.013)),
|
306 |
+
("CZ2", 5, (3.283, -1.543, -0.011)),
|
307 |
+
("CZ3", 5, (1.715, -3.389, -0.011)),
|
308 |
+
],
|
309 |
+
"TYR": [
|
310 |
+
("N", 0, (-0.522, 1.362, 0.000)),
|
311 |
+
("CA", 0, (0.000, 0.000, 0.000)),
|
312 |
+
("C", 0, (1.524, -0.000, -0.000)),
|
313 |
+
("CB", 0, (-0.522, -0.776, -1.213)),
|
314 |
+
("O", 3, (0.627, 1.062, -0.000)),
|
315 |
+
("CG", 4, (0.607, 1.382, -0.000)),
|
316 |
+
("CD1", 5, (0.716, 1.195, -0.000)),
|
317 |
+
("CD2", 5, (0.713, -1.194, -0.001)),
|
318 |
+
("CE1", 5, (2.107, 1.200, -0.002)),
|
319 |
+
("CE2", 5, (2.104, -1.201, -0.003)),
|
320 |
+
("OH", 5, (4.168, -0.002, -0.005)),
|
321 |
+
("CZ", 5, (2.791, -0.001, -0.003)),
|
322 |
+
],
|
323 |
+
"VAL": [
|
324 |
+
("N", 0, (-0.494, 1.373, -0.000)),
|
325 |
+
("CA", 0, (0.000, 0.000, 0.000)),
|
326 |
+
("C", 0, (1.527, -0.000, -0.000)),
|
327 |
+
("CB", 0, (-0.533, -0.795, -1.213)),
|
328 |
+
("O", 3, (0.627, 1.062, -0.000)),
|
329 |
+
("CG1", 4, (0.540, 1.429, -0.000)),
|
330 |
+
("CG2", 4, (0.533, -0.776, 1.203)),
|
331 |
+
],
|
332 |
+
}
|
333 |
+
|
334 |
+
# A list of atoms (excluding hydrogen) for each AA type. PDB naming convention.
|
335 |
+
residue_atoms: Dict[str, List[str]] = {
|
336 |
+
"ALA": ["C", "CA", "CB", "N", "O"],
|
337 |
+
"ARG": ["C", "CA", "CB", "CG", "CD", "CZ", "N", "NE", "O", "NH1", "NH2"],
|
338 |
+
"ASP": ["C", "CA", "CB", "CG", "N", "O", "OD1", "OD2"],
|
339 |
+
"ASN": ["C", "CA", "CB", "CG", "N", "ND2", "O", "OD1"],
|
340 |
+
"CYS": ["C", "CA", "CB", "N", "O", "SG"],
|
341 |
+
"GLU": ["C", "CA", "CB", "CG", "CD", "N", "O", "OE1", "OE2"],
|
342 |
+
"GLN": ["C", "CA", "CB", "CG", "CD", "N", "NE2", "O", "OE1"],
|
343 |
+
"GLY": ["C", "CA", "N", "O"],
|
344 |
+
"HIS": ["C", "CA", "CB", "CG", "CD2", "CE1", "N", "ND1", "NE2", "O"],
|
345 |
+
"ILE": ["C", "CA", "CB", "CG1", "CG2", "CD1", "N", "O"],
|
346 |
+
"LEU": ["C", "CA", "CB", "CG", "CD1", "CD2", "N", "O"],
|
347 |
+
"LYS": ["C", "CA", "CB", "CG", "CD", "CE", "N", "NZ", "O"],
|
348 |
+
"MET": ["C", "CA", "CB", "CG", "CE", "N", "O", "SD"],
|
349 |
+
"PHE": ["C", "CA", "CB", "CG", "CD1", "CD2", "CE1", "CE2", "CZ", "N", "O"],
|
350 |
+
"PRO": ["C", "CA", "CB", "CG", "CD", "N", "O"],
|
351 |
+
"SER": ["C", "CA", "CB", "N", "O", "OG"],
|
352 |
+
"THR": ["C", "CA", "CB", "CG2", "N", "O", "OG1"],
|
353 |
+
"TRP": ["C", "CA", "CB", "CG", "CD1", "CD2", "CE2", "CE3", "CZ2", "CZ3", "CH2", "N", "NE1", "O"],
|
354 |
+
"TYR": ["C", "CA", "CB", "CG", "CD1", "CD2", "CE1", "CE2", "CZ", "N", "O", "OH"],
|
355 |
+
"VAL": ["C", "CA", "CB", "CG1", "CG2", "N", "O"],
|
356 |
+
}
|
357 |
+
|
358 |
+
# Naming swaps for ambiguous atom names.
|
359 |
+
# Due to symmetries in the amino acids the naming of atoms is ambiguous in
|
360 |
+
# 4 of the 20 amino acids.
|
361 |
+
# (The LDDT paper lists 7 amino acids as ambiguous, but the naming ambiguities
|
362 |
+
# in LEU, VAL and ARG can be resolved by using the 3d constellations of
|
363 |
+
# the 'ambiguous' atoms and their neighbours)
|
364 |
+
# TODO: ^ interpret this
|
365 |
+
residue_atom_renaming_swaps: Dict[str, Dict[str, str]] = {
|
366 |
+
"ASP": {"OD1": "OD2"},
|
367 |
+
"GLU": {"OE1": "OE2"},
|
368 |
+
"PHE": {"CD1": "CD2", "CE1": "CE2"},
|
369 |
+
"TYR": {"CD1": "CD2", "CE1": "CE2"},
|
370 |
+
}
|
371 |
+
|
372 |
+
# Van der Waals radii [Angstroem] of the atoms (from Wikipedia)
|
373 |
+
van_der_waals_radius: Dict[str, float] = {
|
374 |
+
"C": 1.7,
|
375 |
+
"N": 1.55,
|
376 |
+
"O": 1.52,
|
377 |
+
"S": 1.8,
|
378 |
+
}
|
379 |
+
|
380 |
+
Bond = collections.namedtuple("Bond", ["atom1_name", "atom2_name", "length", "stddev"])
|
381 |
+
BondAngle = collections.namedtuple(
|
382 |
+
"BondAngle",
|
383 |
+
["atom1_name", "atom2_name", "atom3name", "angle_rad", "stddev"],
|
384 |
+
)
|
385 |
+
|
386 |
+
|
387 |
+
def map_structure_with_atom_order(in_list: list, first_call: bool = True) -> list:
|
388 |
+
# Maps strings in a nested list structure to their corresponding index in atom_order
|
389 |
+
if first_call:
|
390 |
+
in_list = copy.deepcopy(in_list)
|
391 |
+
for i in range(len(in_list)):
|
392 |
+
if isinstance(in_list[i], list):
|
393 |
+
in_list[i] = map_structure_with_atom_order(in_list[i], first_call=False)
|
394 |
+
elif isinstance(in_list[i], str):
|
395 |
+
in_list[i] = atom_order[in_list[i]]
|
396 |
+
else:
|
397 |
+
raise ValueError("Unexpected type when mapping nested lists!")
|
398 |
+
return in_list
|
399 |
+
|
400 |
+
|
401 |
+
@functools.lru_cache(maxsize=None)
|
402 |
+
def load_stereo_chemical_props() -> (
|
403 |
+
Tuple[
|
404 |
+
Mapping[str, List[Bond]],
|
405 |
+
Mapping[str, List[Bond]],
|
406 |
+
Mapping[str, List[BondAngle]],
|
407 |
+
]
|
408 |
+
):
|
409 |
+
"""Load stereo_chemical_props.txt into a nice structure.
|
410 |
+
|
411 |
+
Load literature values for bond lengths and bond angles and translate bond angles into the length of the opposite
|
412 |
+
edge of the triangle ("residue_virtual_bonds").
|
413 |
+
|
414 |
+
Returns:
|
415 |
+
residue_bonds: dict that maps resname --> list of Bond tuples residue_virtual_bonds: dict that maps resname -->
|
416 |
+
list of Bond tuples residue_bond_angles: dict that maps resname --> list of BondAngle tuples
|
417 |
+
"""
|
418 |
+
# TODO: this file should be downloaded in a setup script
|
419 |
+
stereo_chemical_props = resources.read_text("openfold.resources", "stereo_chemical_props.txt")
|
420 |
+
|
421 |
+
lines_iter = iter(stereo_chemical_props.splitlines())
|
422 |
+
# Load bond lengths.
|
423 |
+
residue_bonds: Dict[str, List[Bond]] = {}
|
424 |
+
next(lines_iter) # Skip header line.
|
425 |
+
for line in lines_iter:
|
426 |
+
if line.strip() == "-":
|
427 |
+
break
|
428 |
+
bond, resname, bond_length, stddev = line.split()
|
429 |
+
atom1, atom2 = bond.split("-")
|
430 |
+
if resname not in residue_bonds:
|
431 |
+
residue_bonds[resname] = []
|
432 |
+
residue_bonds[resname].append(Bond(atom1, atom2, float(bond_length), float(stddev)))
|
433 |
+
residue_bonds["UNK"] = []
|
434 |
+
|
435 |
+
# Load bond angles.
|
436 |
+
residue_bond_angles: Dict[str, List[BondAngle]] = {}
|
437 |
+
next(lines_iter) # Skip empty line.
|
438 |
+
next(lines_iter) # Skip header line.
|
439 |
+
for line in lines_iter:
|
440 |
+
if line.strip() == "-":
|
441 |
+
break
|
442 |
+
bond, resname, angle_degree, stddev_degree = line.split()
|
443 |
+
atom1, atom2, atom3 = bond.split("-")
|
444 |
+
if resname not in residue_bond_angles:
|
445 |
+
residue_bond_angles[resname] = []
|
446 |
+
residue_bond_angles[resname].append(
|
447 |
+
BondAngle(
|
448 |
+
atom1,
|
449 |
+
atom2,
|
450 |
+
atom3,
|
451 |
+
float(angle_degree) / 180.0 * np.pi,
|
452 |
+
float(stddev_degree) / 180.0 * np.pi,
|
453 |
+
)
|
454 |
+
)
|
455 |
+
residue_bond_angles["UNK"] = []
|
456 |
+
|
457 |
+
def make_bond_key(atom1_name: str, atom2_name: str) -> str:
|
458 |
+
"""Unique key to lookup bonds."""
|
459 |
+
return "-".join(sorted([atom1_name, atom2_name]))
|
460 |
+
|
461 |
+
# Translate bond angles into distances ("virtual bonds").
|
462 |
+
residue_virtual_bonds: Dict[str, List[Bond]] = {}
|
463 |
+
for resname, bond_angles in residue_bond_angles.items():
|
464 |
+
# Create a fast lookup dict for bond lengths.
|
465 |
+
bond_cache: Dict[str, Bond] = {}
|
466 |
+
for b in residue_bonds[resname]:
|
467 |
+
bond_cache[make_bond_key(b.atom1_name, b.atom2_name)] = b
|
468 |
+
residue_virtual_bonds[resname] = []
|
469 |
+
for ba in bond_angles:
|
470 |
+
bond1 = bond_cache[make_bond_key(ba.atom1_name, ba.atom2_name)]
|
471 |
+
bond2 = bond_cache[make_bond_key(ba.atom2_name, ba.atom3name)]
|
472 |
+
|
473 |
+
# Compute distance between atom1 and atom3 using the law of cosines
|
474 |
+
# c^2 = a^2 + b^2 - 2ab*cos(gamma).
|
475 |
+
gamma = ba.angle_rad
|
476 |
+
length = np.sqrt(bond1.length**2 + bond2.length**2 - 2 * bond1.length * bond2.length * np.cos(gamma))
|
477 |
+
|
478 |
+
# Propagation of uncertainty assuming uncorrelated errors.
|
479 |
+
dl_outer = 0.5 / length
|
480 |
+
dl_dgamma = (2 * bond1.length * bond2.length * np.sin(gamma)) * dl_outer
|
481 |
+
dl_db1 = (2 * bond1.length - 2 * bond2.length * np.cos(gamma)) * dl_outer
|
482 |
+
dl_db2 = (2 * bond2.length - 2 * bond1.length * np.cos(gamma)) * dl_outer
|
483 |
+
stddev = np.sqrt(
|
484 |
+
(dl_dgamma * ba.stddev) ** 2 + (dl_db1 * bond1.stddev) ** 2 + (dl_db2 * bond2.stddev) ** 2
|
485 |
+
)
|
486 |
+
residue_virtual_bonds[resname].append(Bond(ba.atom1_name, ba.atom3name, length, stddev))
|
487 |
+
|
488 |
+
return (residue_bonds, residue_virtual_bonds, residue_bond_angles)
|
489 |
+
|
490 |
+
|
491 |
+
# Between-residue bond lengths for general bonds (first element) and for Proline
|
492 |
+
# (second element).
|
493 |
+
between_res_bond_length_c_n: Tuple[float, float] = (1.329, 1.341)
|
494 |
+
between_res_bond_length_stddev_c_n: Tuple[float, float] = (0.014, 0.016)
|
495 |
+
|
496 |
+
# Between-residue cos_angles.
|
497 |
+
between_res_cos_angles_c_n_ca: Tuple[float, float] = (-0.5203, 0.0353) # degrees: 121.352 +- 2.315
|
498 |
+
between_res_cos_angles_ca_c_n: Tuple[float, float] = (-0.4473, 0.0311) # degrees: 116.568 +- 1.995
|
499 |
+
|
500 |
+
# This mapping is used when we need to store atom data in a format that requires
|
501 |
+
# fixed atom data size for every residue (e.g. a numpy array).
|
502 |
+
atom_types: List[str] = [
|
503 |
+
"N",
|
504 |
+
"CA",
|
505 |
+
"C",
|
506 |
+
"CB",
|
507 |
+
"O",
|
508 |
+
"CG",
|
509 |
+
"CG1",
|
510 |
+
"CG2",
|
511 |
+
"OG",
|
512 |
+
"OG1",
|
513 |
+
"SG",
|
514 |
+
"CD",
|
515 |
+
"CD1",
|
516 |
+
"CD2",
|
517 |
+
"ND1",
|
518 |
+
"ND2",
|
519 |
+
"OD1",
|
520 |
+
"OD2",
|
521 |
+
"SD",
|
522 |
+
"CE",
|
523 |
+
"CE1",
|
524 |
+
"CE2",
|
525 |
+
"CE3",
|
526 |
+
"NE",
|
527 |
+
"NE1",
|
528 |
+
"NE2",
|
529 |
+
"OE1",
|
530 |
+
"OE2",
|
531 |
+
"CH2",
|
532 |
+
"NH1",
|
533 |
+
"NH2",
|
534 |
+
"OH",
|
535 |
+
"CZ",
|
536 |
+
"CZ2",
|
537 |
+
"CZ3",
|
538 |
+
"NZ",
|
539 |
+
"OXT",
|
540 |
+
]
|
541 |
+
atom_order: Dict[str, int] = {atom_type: i for i, atom_type in enumerate(atom_types)}
|
542 |
+
atom_type_num = len(atom_types) # := 37.
|
543 |
+
|
544 |
+
# A compact atom encoding with 14 columns
|
545 |
+
# pylint: disable=line-too-long
|
546 |
+
# pylint: disable=bad-whitespace
|
547 |
+
restype_name_to_atom14_names: Dict[str, List[str]] = {
|
548 |
+
"ALA": ["N", "CA", "C", "O", "CB", "", "", "", "", "", "", "", "", ""],
|
549 |
+
"ARG": ["N", "CA", "C", "O", "CB", "CG", "CD", "NE", "CZ", "NH1", "NH2", "", "", ""],
|
550 |
+
"ASN": ["N", "CA", "C", "O", "CB", "CG", "OD1", "ND2", "", "", "", "", "", ""],
|
551 |
+
"ASP": ["N", "CA", "C", "O", "CB", "CG", "OD1", "OD2", "", "", "", "", "", ""],
|
552 |
+
"CYS": ["N", "CA", "C", "O", "CB", "SG", "", "", "", "", "", "", "", ""],
|
553 |
+
"GLN": ["N", "CA", "C", "O", "CB", "CG", "CD", "OE1", "NE2", "", "", "", "", ""],
|
554 |
+
"GLU": ["N", "CA", "C", "O", "CB", "CG", "CD", "OE1", "OE2", "", "", "", "", ""],
|
555 |
+
"GLY": ["N", "CA", "C", "O", "", "", "", "", "", "", "", "", "", ""],
|
556 |
+
"HIS": ["N", "CA", "C", "O", "CB", "CG", "ND1", "CD2", "CE1", "NE2", "", "", "", ""],
|
557 |
+
"ILE": ["N", "CA", "C", "O", "CB", "CG1", "CG2", "CD1", "", "", "", "", "", ""],
|
558 |
+
"LEU": ["N", "CA", "C", "O", "CB", "CG", "CD1", "CD2", "", "", "", "", "", ""],
|
559 |
+
"LYS": ["N", "CA", "C", "O", "CB", "CG", "CD", "CE", "NZ", "", "", "", "", ""],
|
560 |
+
"MET": ["N", "CA", "C", "O", "CB", "CG", "SD", "CE", "", "", "", "", "", ""],
|
561 |
+
"PHE": ["N", "CA", "C", "O", "CB", "CG", "CD1", "CD2", "CE1", "CE2", "CZ", "", "", ""],
|
562 |
+
"PRO": ["N", "CA", "C", "O", "CB", "CG", "CD", "", "", "", "", "", "", ""],
|
563 |
+
"SER": ["N", "CA", "C", "O", "CB", "OG", "", "", "", "", "", "", "", ""],
|
564 |
+
"THR": ["N", "CA", "C", "O", "CB", "OG1", "CG2", "", "", "", "", "", "", ""],
|
565 |
+
"TRP": ["N", "CA", "C", "O", "CB", "CG", "CD1", "CD2", "NE1", "CE2", "CE3", "CZ2", "CZ3", "CH2"],
|
566 |
+
"TYR": ["N", "CA", "C", "O", "CB", "CG", "CD1", "CD2", "CE1", "CE2", "CZ", "OH", "", ""],
|
567 |
+
"VAL": ["N", "CA", "C", "O", "CB", "CG1", "CG2", "", "", "", "", "", "", ""],
|
568 |
+
"UNK": ["", "", "", "", "", "", "", "", "", "", "", "", "", ""],
|
569 |
+
}
|
570 |
+
# pylint: enable=line-too-long
|
571 |
+
# pylint: enable=bad-whitespace
|
572 |
+
|
573 |
+
|
574 |
+
# This is the standard residue order when coding AA type as a number.
|
575 |
+
# Reproduce it by taking 3-letter AA codes and sorting them alphabetically.
|
576 |
+
restypes: List[str] = [
|
577 |
+
"A",
|
578 |
+
"R",
|
579 |
+
"N",
|
580 |
+
"D",
|
581 |
+
"C",
|
582 |
+
"Q",
|
583 |
+
"E",
|
584 |
+
"G",
|
585 |
+
"H",
|
586 |
+
"I",
|
587 |
+
"L",
|
588 |
+
"K",
|
589 |
+
"M",
|
590 |
+
"F",
|
591 |
+
"P",
|
592 |
+
"S",
|
593 |
+
"T",
|
594 |
+
"W",
|
595 |
+
"Y",
|
596 |
+
"V",
|
597 |
+
]
|
598 |
+
restype_order: Dict[str, int] = {restype: i for i, restype in enumerate(restypes)}
|
599 |
+
restype_num = len(restypes) # := 20.
|
600 |
+
unk_restype_index = restype_num # Catch-all index for unknown restypes.
|
601 |
+
|
602 |
+
restypes_with_x: List[str] = restypes + ["X"]
|
603 |
+
restype_order_with_x: Dict[str, int] = {restype: i for i, restype in enumerate(restypes_with_x)}
|
604 |
+
|
605 |
+
|
606 |
+
def sequence_to_onehot(sequence: str, mapping: Mapping[str, int], map_unknown_to_x: bool = False) -> np.ndarray:
|
607 |
+
"""Maps the given sequence into a one-hot encoded matrix.
|
608 |
+
|
609 |
+
Args:
|
610 |
+
sequence: An amino acid sequence.
|
611 |
+
mapping: A dictionary mapping amino acids to integers.
|
612 |
+
map_unknown_to_x: If True, any amino acid that is not in the mapping will be
|
613 |
+
mapped to the unknown amino acid 'X'. If the mapping doesn't contain amino acid 'X', an error will be thrown.
|
614 |
+
If False, any amino acid not in the mapping will throw an error.
|
615 |
+
|
616 |
+
Returns:
|
617 |
+
A numpy array of shape (seq_len, num_unique_aas) with one-hot encoding of the sequence.
|
618 |
+
|
619 |
+
Raises:
|
620 |
+
ValueError: If the mapping doesn't contain values from 0 to
|
621 |
+
num_unique_aas - 1 without any gaps.
|
622 |
+
"""
|
623 |
+
num_entries = max(mapping.values()) + 1
|
624 |
+
|
625 |
+
if sorted(set(mapping.values())) != list(range(num_entries)):
|
626 |
+
raise ValueError(
|
627 |
+
"The mapping must have values from 0 to num_unique_aas-1 without any gaps. Got: %s"
|
628 |
+
% sorted(mapping.values())
|
629 |
+
)
|
630 |
+
|
631 |
+
one_hot_arr = np.zeros((len(sequence), num_entries), dtype=np.int32)
|
632 |
+
|
633 |
+
for aa_index, aa_type in enumerate(sequence):
|
634 |
+
if map_unknown_to_x:
|
635 |
+
if aa_type.isalpha() and aa_type.isupper():
|
636 |
+
aa_id = mapping.get(aa_type, mapping["X"])
|
637 |
+
else:
|
638 |
+
raise ValueError(f"Invalid character in the sequence: {aa_type}")
|
639 |
+
else:
|
640 |
+
aa_id = mapping[aa_type]
|
641 |
+
one_hot_arr[aa_index, aa_id] = 1
|
642 |
+
|
643 |
+
return one_hot_arr
|
644 |
+
|
645 |
+
|
646 |
+
restype_1to3: Dict[str, str] = {
|
647 |
+
"A": "ALA",
|
648 |
+
"R": "ARG",
|
649 |
+
"N": "ASN",
|
650 |
+
"D": "ASP",
|
651 |
+
"C": "CYS",
|
652 |
+
"Q": "GLN",
|
653 |
+
"E": "GLU",
|
654 |
+
"G": "GLY",
|
655 |
+
"H": "HIS",
|
656 |
+
"I": "ILE",
|
657 |
+
"L": "LEU",
|
658 |
+
"K": "LYS",
|
659 |
+
"M": "MET",
|
660 |
+
"F": "PHE",
|
661 |
+
"P": "PRO",
|
662 |
+
"S": "SER",
|
663 |
+
"T": "THR",
|
664 |
+
"W": "TRP",
|
665 |
+
"Y": "TYR",
|
666 |
+
"V": "VAL",
|
667 |
+
}
|
668 |
+
|
669 |
+
|
670 |
+
# NB: restype_3to1 differs from Bio.PDB.protein_letters_3to1 by being a simple
|
671 |
+
# 1-to-1 mapping of 3 letter names to one letter names. The latter contains
|
672 |
+
# many more, and less common, three letter names as keys and maps many of these
|
673 |
+
# to the same one letter name (including 'X' and 'U' which we don't use here).
|
674 |
+
restype_3to1: Dict[str, str] = {v: k for k, v in restype_1to3.items()}
|
675 |
+
|
676 |
+
# Define a restype name for all unknown residues.
|
677 |
+
unk_restype = "UNK"
|
678 |
+
|
679 |
+
resnames: List[str] = [restype_1to3[r] for r in restypes] + [unk_restype]
|
680 |
+
resname_to_idx: Dict[str, int] = {resname: i for i, resname in enumerate(resnames)}
|
681 |
+
|
682 |
+
|
683 |
+
# The mapping here uses hhblits convention, so that B is mapped to D, J and O
|
684 |
+
# are mapped to X, U is mapped to C, and Z is mapped to E. Other than that the
|
685 |
+
# remaining 20 amino acids are kept in alphabetical order.
|
686 |
+
# There are 2 non-amino acid codes, X (representing any amino acid) and
|
687 |
+
# "-" representing a missing amino acid in an alignment. The id for these
|
688 |
+
# codes is put at the end (20 and 21) so that they can easily be ignored if
|
689 |
+
# desired.
|
690 |
+
HHBLITS_AA_TO_ID: Dict[str, int] = {
|
691 |
+
"A": 0,
|
692 |
+
"B": 2,
|
693 |
+
"C": 1,
|
694 |
+
"D": 2,
|
695 |
+
"E": 3,
|
696 |
+
"F": 4,
|
697 |
+
"G": 5,
|
698 |
+
"H": 6,
|
699 |
+
"I": 7,
|
700 |
+
"J": 20,
|
701 |
+
"K": 8,
|
702 |
+
"L": 9,
|
703 |
+
"M": 10,
|
704 |
+
"N": 11,
|
705 |
+
"O": 20,
|
706 |
+
"P": 12,
|
707 |
+
"Q": 13,
|
708 |
+
"R": 14,
|
709 |
+
"S": 15,
|
710 |
+
"T": 16,
|
711 |
+
"U": 1,
|
712 |
+
"V": 17,
|
713 |
+
"W": 18,
|
714 |
+
"X": 20,
|
715 |
+
"Y": 19,
|
716 |
+
"Z": 3,
|
717 |
+
"-": 21,
|
718 |
+
}
|
719 |
+
|
720 |
+
# Partial inversion of HHBLITS_AA_TO_ID.
|
721 |
+
ID_TO_HHBLITS_AA: Dict[int, str] = {
|
722 |
+
0: "A",
|
723 |
+
1: "C", # Also U.
|
724 |
+
2: "D", # Also B.
|
725 |
+
3: "E", # Also Z.
|
726 |
+
4: "F",
|
727 |
+
5: "G",
|
728 |
+
6: "H",
|
729 |
+
7: "I",
|
730 |
+
8: "K",
|
731 |
+
9: "L",
|
732 |
+
10: "M",
|
733 |
+
11: "N",
|
734 |
+
12: "P",
|
735 |
+
13: "Q",
|
736 |
+
14: "R",
|
737 |
+
15: "S",
|
738 |
+
16: "T",
|
739 |
+
17: "V",
|
740 |
+
18: "W",
|
741 |
+
19: "Y",
|
742 |
+
20: "X", # Includes J and O.
|
743 |
+
21: "-",
|
744 |
+
}
|
745 |
+
|
746 |
+
restypes_with_x_and_gap: List[str] = restypes + ["X", "-"]
|
747 |
+
MAP_HHBLITS_AATYPE_TO_OUR_AATYPE: Tuple[int, ...] = tuple(
|
748 |
+
restypes_with_x_and_gap.index(ID_TO_HHBLITS_AA[i]) for i in range(len(restypes_with_x_and_gap))
|
749 |
+
)
|
750 |
+
|
751 |
+
|
752 |
+
def _make_standard_atom_mask() -> np.ndarray:
|
753 |
+
"""Returns [num_res_types, num_atom_types] mask array."""
|
754 |
+
# +1 to account for unknown (all 0s).
|
755 |
+
mask = np.zeros([restype_num + 1, atom_type_num], dtype=np.int32)
|
756 |
+
for restype, restype_letter in enumerate(restypes):
|
757 |
+
restype_name = restype_1to3[restype_letter]
|
758 |
+
atom_names = residue_atoms[restype_name]
|
759 |
+
for atom_name in atom_names:
|
760 |
+
atom_type = atom_order[atom_name]
|
761 |
+
mask[restype, atom_type] = 1
|
762 |
+
return mask
|
763 |
+
|
764 |
+
|
765 |
+
STANDARD_ATOM_MASK = _make_standard_atom_mask()
|
766 |
+
|
767 |
+
|
768 |
+
# A one hot representation for the first and second atoms defining the axis
|
769 |
+
# of rotation for each chi-angle in each residue.
|
770 |
+
def chi_angle_atom(atom_index: int) -> np.ndarray:
|
771 |
+
"""Define chi-angle rigid groups via one-hot representations."""
|
772 |
+
chi_angles_index = {}
|
773 |
+
one_hots = []
|
774 |
+
|
775 |
+
for k, v in chi_angles_atoms.items():
|
776 |
+
indices = [atom_types.index(s[atom_index]) for s in v]
|
777 |
+
indices.extend([-1] * (4 - len(indices)))
|
778 |
+
chi_angles_index[k] = indices
|
779 |
+
|
780 |
+
for r in restypes:
|
781 |
+
res3 = restype_1to3[r]
|
782 |
+
one_hot = np.eye(atom_type_num)[chi_angles_index[res3]]
|
783 |
+
one_hots.append(one_hot)
|
784 |
+
|
785 |
+
one_hots.append(np.zeros([4, atom_type_num])) # Add zeros for residue `X`.
|
786 |
+
one_hot = np.stack(one_hots, axis=0)
|
787 |
+
one_hot = np.transpose(one_hot, [0, 2, 1])
|
788 |
+
|
789 |
+
return one_hot
|
790 |
+
|
791 |
+
|
792 |
+
chi_atom_1_one_hot = chi_angle_atom(1)
|
793 |
+
chi_atom_2_one_hot = chi_angle_atom(2)
|
794 |
+
|
795 |
+
# An array like chi_angles_atoms but using indices rather than names.
|
796 |
+
chi_angles_atom_indices_list: List[List[List[str]]] = [chi_angles_atoms[restype_1to3[r]] for r in restypes]
|
797 |
+
chi_angles_atom_indices_ours: list = map_structure_with_atom_order(chi_angles_atom_indices_list)
|
798 |
+
chi_angles_atom_indices = np.array(
|
799 |
+
[chi_atoms + ([[0, 0, 0, 0]] * (4 - len(chi_atoms))) for chi_atoms in chi_angles_atom_indices_list]
|
800 |
+
)
|
801 |
+
|
802 |
+
# Mapping from (res_name, atom_name) pairs to the atom's chi group index
|
803 |
+
# and atom index within that group.
|
804 |
+
chi_groups_for_atom: Dict[Tuple[str, str], List[Tuple[int, int]]] = collections.defaultdict(list)
|
805 |
+
for res_name, chi_angle_atoms_for_res in chi_angles_atoms.items():
|
806 |
+
for chi_group_i, chi_group in enumerate(chi_angle_atoms_for_res):
|
807 |
+
for atom_i, atom in enumerate(chi_group):
|
808 |
+
chi_groups_for_atom[(res_name, atom)].append((chi_group_i, atom_i))
|
809 |
+
chi_groups_for_atom = dict(chi_groups_for_atom)
|
810 |
+
|
811 |
+
|
812 |
+
def _make_rigid_transformation_4x4(ex: np.ndarray, ey: np.ndarray, translation: np.ndarray) -> np.ndarray:
|
813 |
+
"""Create a rigid 4x4 transformation matrix from two axes and transl."""
|
814 |
+
# Normalize ex.
|
815 |
+
ex_normalized = ex / np.linalg.norm(ex)
|
816 |
+
|
817 |
+
# make ey perpendicular to ex
|
818 |
+
ey_normalized = ey - np.dot(ey, ex_normalized) * ex_normalized
|
819 |
+
ey_normalized /= np.linalg.norm(ey_normalized)
|
820 |
+
|
821 |
+
# compute ez as cross product
|
822 |
+
eznorm = np.cross(ex_normalized, ey_normalized)
|
823 |
+
m = np.stack([ex_normalized, ey_normalized, eznorm, translation]).transpose()
|
824 |
+
m = np.concatenate([m, [[0.0, 0.0, 0.0, 1.0]]], axis=0)
|
825 |
+
return m
|
826 |
+
|
827 |
+
|
828 |
+
# create an array with (restype, atomtype) --> rigid_group_idx
|
829 |
+
# and an array with (restype, atomtype, coord) for the atom positions
|
830 |
+
# and compute affine transformation matrices (4,4) from one rigid group to the
|
831 |
+
# previous group
|
832 |
+
restype_atom37_to_rigid_group = np.zeros([21, 37], dtype=int)
|
833 |
+
restype_atom37_mask = np.zeros([21, 37], dtype=np.float32)
|
834 |
+
restype_atom37_rigid_group_positions = np.zeros([21, 37, 3], dtype=np.float32)
|
835 |
+
restype_atom14_to_rigid_group = np.zeros([21, 14], dtype=int)
|
836 |
+
restype_atom14_mask = np.zeros([21, 14], dtype=np.float32)
|
837 |
+
restype_atom14_rigid_group_positions = np.zeros([21, 14, 3], dtype=np.float32)
|
838 |
+
restype_rigid_group_default_frame = np.zeros([21, 8, 4, 4], dtype=np.float32)
|
839 |
+
|
840 |
+
|
841 |
+
def _make_rigid_group_constants() -> None:
|
842 |
+
"""Fill the arrays above."""
|
843 |
+
for restype, restype_letter in enumerate(restypes):
|
844 |
+
resname = restype_1to3[restype_letter]
|
845 |
+
for atomname, group_idx, atom_position in rigid_group_atom_positions[resname]:
|
846 |
+
atomtype = atom_order[atomname]
|
847 |
+
restype_atom37_to_rigid_group[restype, atomtype] = group_idx
|
848 |
+
restype_atom37_mask[restype, atomtype] = 1
|
849 |
+
restype_atom37_rigid_group_positions[restype, atomtype, :] = atom_position
|
850 |
+
|
851 |
+
atom14idx = restype_name_to_atom14_names[resname].index(atomname)
|
852 |
+
restype_atom14_to_rigid_group[restype, atom14idx] = group_idx
|
853 |
+
restype_atom14_mask[restype, atom14idx] = 1
|
854 |
+
restype_atom14_rigid_group_positions[restype, atom14idx, :] = atom_position
|
855 |
+
|
856 |
+
for restype, restype_letter in enumerate(restypes):
|
857 |
+
resname = restype_1to3[restype_letter]
|
858 |
+
atom_positions: Dict[str, np.ndarray] = {
|
859 |
+
name: np.array(pos) for name, _, pos in rigid_group_atom_positions[resname]
|
860 |
+
}
|
861 |
+
|
862 |
+
# backbone to backbone is the identity transform
|
863 |
+
restype_rigid_group_default_frame[restype, 0, :, :] = np.eye(4)
|
864 |
+
|
865 |
+
# pre-omega-frame to backbone (currently dummy identity matrix)
|
866 |
+
restype_rigid_group_default_frame[restype, 1, :, :] = np.eye(4)
|
867 |
+
|
868 |
+
# phi-frame to backbone
|
869 |
+
mat = _make_rigid_transformation_4x4(
|
870 |
+
ex=atom_positions["N"] - atom_positions["CA"],
|
871 |
+
ey=np.array([1.0, 0.0, 0.0]),
|
872 |
+
translation=atom_positions["N"],
|
873 |
+
)
|
874 |
+
restype_rigid_group_default_frame[restype, 2, :, :] = mat
|
875 |
+
|
876 |
+
# psi-frame to backbone
|
877 |
+
mat = _make_rigid_transformation_4x4(
|
878 |
+
ex=atom_positions["C"] - atom_positions["CA"],
|
879 |
+
ey=atom_positions["CA"] - atom_positions["N"],
|
880 |
+
translation=atom_positions["C"],
|
881 |
+
)
|
882 |
+
restype_rigid_group_default_frame[restype, 3, :, :] = mat
|
883 |
+
|
884 |
+
# chi1-frame to backbone
|
885 |
+
if chi_angles_mask[restype][0]:
|
886 |
+
base_atom_names = chi_angles_atoms[resname][0]
|
887 |
+
base_atom_positions = [atom_positions[name] for name in base_atom_names]
|
888 |
+
mat = _make_rigid_transformation_4x4(
|
889 |
+
ex=base_atom_positions[2] - base_atom_positions[1],
|
890 |
+
ey=base_atom_positions[0] - base_atom_positions[1],
|
891 |
+
translation=base_atom_positions[2],
|
892 |
+
)
|
893 |
+
restype_rigid_group_default_frame[restype, 4, :, :] = mat
|
894 |
+
|
895 |
+
# chi2-frame to chi1-frame
|
896 |
+
# chi3-frame to chi2-frame
|
897 |
+
# chi4-frame to chi3-frame
|
898 |
+
# luckily all rotation axes for the next frame start at (0,0,0) of the
|
899 |
+
# previous frame
|
900 |
+
for chi_idx in range(1, 4):
|
901 |
+
if chi_angles_mask[restype][chi_idx]:
|
902 |
+
axis_end_atom_name = chi_angles_atoms[resname][chi_idx][2]
|
903 |
+
axis_end_atom_position = atom_positions[axis_end_atom_name]
|
904 |
+
mat = _make_rigid_transformation_4x4(
|
905 |
+
ex=axis_end_atom_position,
|
906 |
+
ey=np.array([-1.0, 0.0, 0.0]),
|
907 |
+
translation=axis_end_atom_position,
|
908 |
+
)
|
909 |
+
restype_rigid_group_default_frame[restype, 4 + chi_idx, :, :] = mat
|
910 |
+
|
911 |
+
|
912 |
+
_make_rigid_group_constants()
|
913 |
+
|
914 |
+
|
915 |
+
def make_atom14_dists_bounds(
|
916 |
+
overlap_tolerance: float = 1.5,
|
917 |
+
bond_length_tolerance_factor: int = 15,
|
918 |
+
) -> Dict[str, np.ndarray]:
|
919 |
+
"""compute upper and lower bounds for bonds to assess violations."""
|
920 |
+
restype_atom14_bond_lower_bound = np.zeros([21, 14, 14], np.float32)
|
921 |
+
restype_atom14_bond_upper_bound = np.zeros([21, 14, 14], np.float32)
|
922 |
+
restype_atom14_bond_stddev = np.zeros([21, 14, 14], np.float32)
|
923 |
+
residue_bonds, residue_virtual_bonds, _ = load_stereo_chemical_props()
|
924 |
+
for restype, restype_letter in enumerate(restypes):
|
925 |
+
resname = restype_1to3[restype_letter]
|
926 |
+
atom_list = restype_name_to_atom14_names[resname]
|
927 |
+
|
928 |
+
# create lower and upper bounds for clashes
|
929 |
+
for atom1_idx, atom1_name in enumerate(atom_list):
|
930 |
+
if not atom1_name:
|
931 |
+
continue
|
932 |
+
atom1_radius = van_der_waals_radius[atom1_name[0]]
|
933 |
+
for atom2_idx, atom2_name in enumerate(atom_list):
|
934 |
+
if (not atom2_name) or atom1_idx == atom2_idx:
|
935 |
+
continue
|
936 |
+
atom2_radius = van_der_waals_radius[atom2_name[0]]
|
937 |
+
lower = atom1_radius + atom2_radius - overlap_tolerance
|
938 |
+
upper = 1e10
|
939 |
+
restype_atom14_bond_lower_bound[restype, atom1_idx, atom2_idx] = lower
|
940 |
+
restype_atom14_bond_lower_bound[restype, atom2_idx, atom1_idx] = lower
|
941 |
+
restype_atom14_bond_upper_bound[restype, atom1_idx, atom2_idx] = upper
|
942 |
+
restype_atom14_bond_upper_bound[restype, atom2_idx, atom1_idx] = upper
|
943 |
+
|
944 |
+
# overwrite lower and upper bounds for bonds and angles
|
945 |
+
for b in residue_bonds[resname] + residue_virtual_bonds[resname]:
|
946 |
+
atom1_idx = atom_list.index(b.atom1_name)
|
947 |
+
atom2_idx = atom_list.index(b.atom2_name)
|
948 |
+
lower = b.length - bond_length_tolerance_factor * b.stddev
|
949 |
+
upper = b.length + bond_length_tolerance_factor * b.stddev
|
950 |
+
restype_atom14_bond_lower_bound[restype, atom1_idx, atom2_idx] = lower
|
951 |
+
restype_atom14_bond_lower_bound[restype, atom2_idx, atom1_idx] = lower
|
952 |
+
restype_atom14_bond_upper_bound[restype, atom1_idx, atom2_idx] = upper
|
953 |
+
restype_atom14_bond_upper_bound[restype, atom2_idx, atom1_idx] = upper
|
954 |
+
restype_atom14_bond_stddev[restype, atom1_idx, atom2_idx] = b.stddev
|
955 |
+
restype_atom14_bond_stddev[restype, atom2_idx, atom1_idx] = b.stddev
|
956 |
+
return {
|
957 |
+
"lower_bound": restype_atom14_bond_lower_bound, # shape (21,14,14)
|
958 |
+
"upper_bound": restype_atom14_bond_upper_bound, # shape (21,14,14)
|
959 |
+
"stddev": restype_atom14_bond_stddev, # shape (21,14,14)
|
960 |
+
}
|
961 |
+
|
962 |
+
|
963 |
+
restype_atom14_ambiguous_atoms = np.zeros((21, 14), dtype=np.float32)
|
964 |
+
restype_atom14_ambiguous_atoms_swap_idx: np.ndarray = np.tile(np.arange(14, dtype=int), (21, 1))
|
965 |
+
|
966 |
+
|
967 |
+
def _make_atom14_ambiguity_feats() -> None:
|
968 |
+
for res, pairs in residue_atom_renaming_swaps.items():
|
969 |
+
res_idx = restype_order[restype_3to1[res]]
|
970 |
+
for atom1, atom2 in pairs.items():
|
971 |
+
atom1_idx = restype_name_to_atom14_names[res].index(atom1)
|
972 |
+
atom2_idx = restype_name_to_atom14_names[res].index(atom2)
|
973 |
+
restype_atom14_ambiguous_atoms[res_idx, atom1_idx] = 1
|
974 |
+
restype_atom14_ambiguous_atoms[res_idx, atom2_idx] = 1
|
975 |
+
restype_atom14_ambiguous_atoms_swap_idx[res_idx, atom1_idx] = atom2_idx
|
976 |
+
restype_atom14_ambiguous_atoms_swap_idx[res_idx, atom2_idx] = atom1_idx
|
977 |
+
|
978 |
+
|
979 |
+
_make_atom14_ambiguity_feats()
|
980 |
+
|
981 |
+
|
982 |
+
def aatype_to_str_sequence(aatype: Sequence[int]) -> str:
|
983 |
+
return "".join([restypes_with_x[aatype[i]] for i in range(len(aatype))])
|
venv/lib/python3.10/site-packages/transformers/models/esm/openfold_utils/rigid_utils.py
ADDED
@@ -0,0 +1,1242 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2021 AlQuraishi Laboratory
|
2 |
+
# Copyright 2021 DeepMind Technologies Limited
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
from __future__ import annotations
|
17 |
+
|
18 |
+
from functools import lru_cache
|
19 |
+
from typing import Any, Callable, Dict, List, Optional, Sequence, Tuple
|
20 |
+
|
21 |
+
import numpy as np
|
22 |
+
import torch
|
23 |
+
|
24 |
+
|
25 |
+
def rot_matmul(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor:
|
26 |
+
"""
|
27 |
+
Performs matrix multiplication of two rotation matrix tensors. Written out by hand to avoid AMP downcasting.
|
28 |
+
|
29 |
+
Args:
|
30 |
+
a: [*, 3, 3] left multiplicand
|
31 |
+
b: [*, 3, 3] right multiplicand
|
32 |
+
Returns:
|
33 |
+
The product ab
|
34 |
+
"""
|
35 |
+
|
36 |
+
def row_mul(i: int) -> torch.Tensor:
|
37 |
+
return torch.stack(
|
38 |
+
[
|
39 |
+
a[..., i, 0] * b[..., 0, 0] + a[..., i, 1] * b[..., 1, 0] + a[..., i, 2] * b[..., 2, 0],
|
40 |
+
a[..., i, 0] * b[..., 0, 1] + a[..., i, 1] * b[..., 1, 1] + a[..., i, 2] * b[..., 2, 1],
|
41 |
+
a[..., i, 0] * b[..., 0, 2] + a[..., i, 1] * b[..., 1, 2] + a[..., i, 2] * b[..., 2, 2],
|
42 |
+
],
|
43 |
+
dim=-1,
|
44 |
+
)
|
45 |
+
|
46 |
+
return torch.stack(
|
47 |
+
[
|
48 |
+
row_mul(0),
|
49 |
+
row_mul(1),
|
50 |
+
row_mul(2),
|
51 |
+
],
|
52 |
+
dim=-2,
|
53 |
+
)
|
54 |
+
|
55 |
+
|
56 |
+
def rot_vec_mul(r: torch.Tensor, t: torch.Tensor) -> torch.Tensor:
|
57 |
+
"""
|
58 |
+
Applies a rotation to a vector. Written out by hand to avoid transfer to avoid AMP downcasting.
|
59 |
+
|
60 |
+
Args:
|
61 |
+
r: [*, 3, 3] rotation matrices
|
62 |
+
t: [*, 3] coordinate tensors
|
63 |
+
Returns:
|
64 |
+
[*, 3] rotated coordinates
|
65 |
+
"""
|
66 |
+
x, y, z = torch.unbind(t, dim=-1)
|
67 |
+
return torch.stack(
|
68 |
+
[
|
69 |
+
r[..., 0, 0] * x + r[..., 0, 1] * y + r[..., 0, 2] * z,
|
70 |
+
r[..., 1, 0] * x + r[..., 1, 1] * y + r[..., 1, 2] * z,
|
71 |
+
r[..., 2, 0] * x + r[..., 2, 1] * y + r[..., 2, 2] * z,
|
72 |
+
],
|
73 |
+
dim=-1,
|
74 |
+
)
|
75 |
+
|
76 |
+
|
77 |
+
@lru_cache(maxsize=None)
|
78 |
+
def identity_rot_mats(
|
79 |
+
batch_dims: Tuple[int, ...],
|
80 |
+
dtype: Optional[torch.dtype] = None,
|
81 |
+
device: Optional[torch.device] = None,
|
82 |
+
requires_grad: bool = True,
|
83 |
+
) -> torch.Tensor:
|
84 |
+
rots = torch.eye(3, dtype=dtype, device=device, requires_grad=requires_grad)
|
85 |
+
rots = rots.view(*((1,) * len(batch_dims)), 3, 3)
|
86 |
+
rots = rots.expand(*batch_dims, -1, -1)
|
87 |
+
rots = rots.contiguous()
|
88 |
+
|
89 |
+
return rots
|
90 |
+
|
91 |
+
|
92 |
+
@lru_cache(maxsize=None)
|
93 |
+
def identity_trans(
|
94 |
+
batch_dims: Tuple[int, ...],
|
95 |
+
dtype: Optional[torch.dtype] = None,
|
96 |
+
device: Optional[torch.device] = None,
|
97 |
+
requires_grad: bool = True,
|
98 |
+
) -> torch.Tensor:
|
99 |
+
trans = torch.zeros((*batch_dims, 3), dtype=dtype, device=device, requires_grad=requires_grad)
|
100 |
+
return trans
|
101 |
+
|
102 |
+
|
103 |
+
@lru_cache(maxsize=None)
|
104 |
+
def identity_quats(
|
105 |
+
batch_dims: Tuple[int, ...],
|
106 |
+
dtype: Optional[torch.dtype] = None,
|
107 |
+
device: Optional[torch.device] = None,
|
108 |
+
requires_grad: bool = True,
|
109 |
+
) -> torch.Tensor:
|
110 |
+
quat = torch.zeros((*batch_dims, 4), dtype=dtype, device=device, requires_grad=requires_grad)
|
111 |
+
|
112 |
+
with torch.no_grad():
|
113 |
+
quat[..., 0] = 1
|
114 |
+
|
115 |
+
return quat
|
116 |
+
|
117 |
+
|
118 |
+
_quat_elements: List[str] = ["a", "b", "c", "d"]
|
119 |
+
_qtr_keys: List[str] = [l1 + l2 for l1 in _quat_elements for l2 in _quat_elements]
|
120 |
+
_qtr_ind_dict: Dict[str, int] = {key: ind for ind, key in enumerate(_qtr_keys)}
|
121 |
+
|
122 |
+
|
123 |
+
def _to_mat(pairs: List[Tuple[str, int]]) -> np.ndarray:
|
124 |
+
mat = np.zeros((4, 4))
|
125 |
+
for key, value in pairs:
|
126 |
+
ind = _qtr_ind_dict[key]
|
127 |
+
mat[ind // 4][ind % 4] = value
|
128 |
+
|
129 |
+
return mat
|
130 |
+
|
131 |
+
|
132 |
+
_QTR_MAT = np.zeros((4, 4, 3, 3))
|
133 |
+
_QTR_MAT[..., 0, 0] = _to_mat([("aa", 1), ("bb", 1), ("cc", -1), ("dd", -1)])
|
134 |
+
_QTR_MAT[..., 0, 1] = _to_mat([("bc", 2), ("ad", -2)])
|
135 |
+
_QTR_MAT[..., 0, 2] = _to_mat([("bd", 2), ("ac", 2)])
|
136 |
+
_QTR_MAT[..., 1, 0] = _to_mat([("bc", 2), ("ad", 2)])
|
137 |
+
_QTR_MAT[..., 1, 1] = _to_mat([("aa", 1), ("bb", -1), ("cc", 1), ("dd", -1)])
|
138 |
+
_QTR_MAT[..., 1, 2] = _to_mat([("cd", 2), ("ab", -2)])
|
139 |
+
_QTR_MAT[..., 2, 0] = _to_mat([("bd", 2), ("ac", -2)])
|
140 |
+
_QTR_MAT[..., 2, 1] = _to_mat([("cd", 2), ("ab", 2)])
|
141 |
+
_QTR_MAT[..., 2, 2] = _to_mat([("aa", 1), ("bb", -1), ("cc", -1), ("dd", 1)])
|
142 |
+
|
143 |
+
|
144 |
+
def quat_to_rot(quat: torch.Tensor) -> torch.Tensor:
|
145 |
+
"""
|
146 |
+
Converts a quaternion to a rotation matrix.
|
147 |
+
|
148 |
+
Args:
|
149 |
+
quat: [*, 4] quaternions
|
150 |
+
Returns:
|
151 |
+
[*, 3, 3] rotation matrices
|
152 |
+
"""
|
153 |
+
# [*, 4, 4]
|
154 |
+
quat = quat[..., None] * quat[..., None, :]
|
155 |
+
|
156 |
+
# [4, 4, 3, 3]
|
157 |
+
mat = _get_quat("_QTR_MAT", dtype=quat.dtype, device=quat.device)
|
158 |
+
|
159 |
+
# [*, 4, 4, 3, 3]
|
160 |
+
shaped_qtr_mat = mat.view((1,) * len(quat.shape[:-2]) + mat.shape)
|
161 |
+
quat = quat[..., None, None] * shaped_qtr_mat
|
162 |
+
|
163 |
+
# [*, 3, 3]
|
164 |
+
return torch.sum(quat, dim=(-3, -4))
|
165 |
+
|
166 |
+
|
167 |
+
def rot_to_quat(rot: torch.Tensor) -> torch.Tensor:
|
168 |
+
if rot.shape[-2:] != (3, 3):
|
169 |
+
raise ValueError("Input rotation is incorrectly shaped")
|
170 |
+
|
171 |
+
[[xx, xy, xz], [yx, yy, yz], [zx, zy, zz]] = [[rot[..., i, j] for j in range(3)] for i in range(3)]
|
172 |
+
|
173 |
+
k = [
|
174 |
+
[
|
175 |
+
xx + yy + zz,
|
176 |
+
zy - yz,
|
177 |
+
xz - zx,
|
178 |
+
yx - xy,
|
179 |
+
],
|
180 |
+
[
|
181 |
+
zy - yz,
|
182 |
+
xx - yy - zz,
|
183 |
+
xy + yx,
|
184 |
+
xz + zx,
|
185 |
+
],
|
186 |
+
[
|
187 |
+
xz - zx,
|
188 |
+
xy + yx,
|
189 |
+
yy - xx - zz,
|
190 |
+
yz + zy,
|
191 |
+
],
|
192 |
+
[
|
193 |
+
yx - xy,
|
194 |
+
xz + zx,
|
195 |
+
yz + zy,
|
196 |
+
zz - xx - yy,
|
197 |
+
],
|
198 |
+
]
|
199 |
+
|
200 |
+
_, vectors = torch.linalg.eigh((1.0 / 3.0) * torch.stack([torch.stack(t, dim=-1) for t in k], dim=-2))
|
201 |
+
return vectors[..., -1]
|
202 |
+
|
203 |
+
|
204 |
+
_QUAT_MULTIPLY = np.zeros((4, 4, 4))
|
205 |
+
_QUAT_MULTIPLY[:, :, 0] = [[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, -1]]
|
206 |
+
|
207 |
+
_QUAT_MULTIPLY[:, :, 1] = [[0, 1, 0, 0], [1, 0, 0, 0], [0, 0, 0, 1], [0, 0, -1, 0]]
|
208 |
+
|
209 |
+
_QUAT_MULTIPLY[:, :, 2] = [[0, 0, 1, 0], [0, 0, 0, -1], [1, 0, 0, 0], [0, 1, 0, 0]]
|
210 |
+
|
211 |
+
_QUAT_MULTIPLY[:, :, 3] = [[0, 0, 0, 1], [0, 0, 1, 0], [0, -1, 0, 0], [1, 0, 0, 0]]
|
212 |
+
|
213 |
+
_QUAT_MULTIPLY_BY_VEC = _QUAT_MULTIPLY[:, 1:, :]
|
214 |
+
|
215 |
+
_CACHED_QUATS: Dict[str, np.ndarray] = {
|
216 |
+
"_QTR_MAT": _QTR_MAT,
|
217 |
+
"_QUAT_MULTIPLY": _QUAT_MULTIPLY,
|
218 |
+
"_QUAT_MULTIPLY_BY_VEC": _QUAT_MULTIPLY_BY_VEC,
|
219 |
+
}
|
220 |
+
|
221 |
+
|
222 |
+
@lru_cache(maxsize=None)
|
223 |
+
def _get_quat(quat_key: str, dtype: torch.dtype, device: torch.device) -> torch.Tensor:
|
224 |
+
return torch.tensor(_CACHED_QUATS[quat_key], dtype=dtype, device=device)
|
225 |
+
|
226 |
+
|
227 |
+
def quat_multiply(quat1: torch.Tensor, quat2: torch.Tensor) -> torch.Tensor:
|
228 |
+
"""Multiply a quaternion by another quaternion."""
|
229 |
+
mat = _get_quat("_QUAT_MULTIPLY", dtype=quat1.dtype, device=quat1.device)
|
230 |
+
reshaped_mat = mat.view((1,) * len(quat1.shape[:-1]) + mat.shape)
|
231 |
+
return torch.sum(reshaped_mat * quat1[..., :, None, None] * quat2[..., None, :, None], dim=(-3, -2))
|
232 |
+
|
233 |
+
|
234 |
+
def quat_multiply_by_vec(quat: torch.Tensor, vec: torch.Tensor) -> torch.Tensor:
|
235 |
+
"""Multiply a quaternion by a pure-vector quaternion."""
|
236 |
+
mat = _get_quat("_QUAT_MULTIPLY_BY_VEC", dtype=quat.dtype, device=quat.device)
|
237 |
+
reshaped_mat = mat.view((1,) * len(quat.shape[:-1]) + mat.shape)
|
238 |
+
return torch.sum(reshaped_mat * quat[..., :, None, None] * vec[..., None, :, None], dim=(-3, -2))
|
239 |
+
|
240 |
+
|
241 |
+
def invert_rot_mat(rot_mat: torch.Tensor) -> torch.Tensor:
|
242 |
+
return rot_mat.transpose(-1, -2)
|
243 |
+
|
244 |
+
|
245 |
+
def invert_quat(quat: torch.Tensor) -> torch.Tensor:
|
246 |
+
quat_prime = quat.clone()
|
247 |
+
quat_prime[..., 1:] *= -1
|
248 |
+
inv = quat_prime / torch.sum(quat**2, dim=-1, keepdim=True)
|
249 |
+
return inv
|
250 |
+
|
251 |
+
|
252 |
+
class Rotation:
|
253 |
+
"""
|
254 |
+
A 3D rotation. Depending on how the object is initialized, the rotation is represented by either a rotation matrix
|
255 |
+
or a quaternion, though both formats are made available by helper functions. To simplify gradient computation, the
|
256 |
+
underlying format of the rotation cannot be changed in-place. Like Rigid, the class is designed to mimic the
|
257 |
+
behavior of a torch Tensor, almost as if each Rotation object were a tensor of rotations, in one format or another.
|
258 |
+
"""
|
259 |
+
|
260 |
+
def __init__(
|
261 |
+
self,
|
262 |
+
rot_mats: Optional[torch.Tensor] = None,
|
263 |
+
quats: Optional[torch.Tensor] = None,
|
264 |
+
normalize_quats: bool = True,
|
265 |
+
):
|
266 |
+
"""
|
267 |
+
Args:
|
268 |
+
rot_mats:
|
269 |
+
A [*, 3, 3] rotation matrix tensor. Mutually exclusive with quats
|
270 |
+
quats:
|
271 |
+
A [*, 4] quaternion. Mutually exclusive with rot_mats. If normalize_quats is not True, must be a unit
|
272 |
+
quaternion
|
273 |
+
normalize_quats:
|
274 |
+
If quats is specified, whether to normalize quats
|
275 |
+
"""
|
276 |
+
if (rot_mats is None and quats is None) or (rot_mats is not None and quats is not None):
|
277 |
+
raise ValueError("Exactly one input argument must be specified")
|
278 |
+
|
279 |
+
if (rot_mats is not None and rot_mats.shape[-2:] != (3, 3)) or (quats is not None and quats.shape[-1] != 4):
|
280 |
+
raise ValueError("Incorrectly shaped rotation matrix or quaternion")
|
281 |
+
|
282 |
+
# Force full-precision
|
283 |
+
if quats is not None:
|
284 |
+
quats = quats.to(dtype=torch.float32)
|
285 |
+
if rot_mats is not None:
|
286 |
+
rot_mats = rot_mats.to(dtype=torch.float32)
|
287 |
+
|
288 |
+
if quats is not None and normalize_quats:
|
289 |
+
quats = quats / torch.linalg.norm(quats, dim=-1, keepdim=True)
|
290 |
+
|
291 |
+
self._rot_mats = rot_mats
|
292 |
+
self._quats = quats
|
293 |
+
|
294 |
+
@staticmethod
|
295 |
+
def identity(
|
296 |
+
shape,
|
297 |
+
dtype: Optional[torch.dtype] = None,
|
298 |
+
device: Optional[torch.device] = None,
|
299 |
+
requires_grad: bool = True,
|
300 |
+
fmt: str = "quat",
|
301 |
+
) -> Rotation:
|
302 |
+
"""
|
303 |
+
Returns an identity Rotation.
|
304 |
+
|
305 |
+
Args:
|
306 |
+
shape:
|
307 |
+
The "shape" of the resulting Rotation object. See documentation for the shape property
|
308 |
+
dtype:
|
309 |
+
The torch dtype for the rotation
|
310 |
+
device:
|
311 |
+
The torch device for the new rotation
|
312 |
+
requires_grad:
|
313 |
+
Whether the underlying tensors in the new rotation object should require gradient computation
|
314 |
+
fmt:
|
315 |
+
One of "quat" or "rot_mat". Determines the underlying format of the new object's rotation
|
316 |
+
Returns:
|
317 |
+
A new identity rotation
|
318 |
+
"""
|
319 |
+
if fmt == "rot_mat":
|
320 |
+
rot_mats = identity_rot_mats(
|
321 |
+
shape,
|
322 |
+
dtype,
|
323 |
+
device,
|
324 |
+
requires_grad,
|
325 |
+
)
|
326 |
+
return Rotation(rot_mats=rot_mats, quats=None)
|
327 |
+
elif fmt == "quat":
|
328 |
+
quats = identity_quats(shape, dtype, device, requires_grad)
|
329 |
+
return Rotation(rot_mats=None, quats=quats, normalize_quats=False)
|
330 |
+
else:
|
331 |
+
raise ValueError(f"Invalid format: f{fmt}")
|
332 |
+
|
333 |
+
# Magic methods
|
334 |
+
|
335 |
+
def __getitem__(self, index: Any) -> Rotation:
|
336 |
+
"""
|
337 |
+
Allows torch-style indexing over the virtual shape of the rotation object. See documentation for the shape
|
338 |
+
property.
|
339 |
+
|
340 |
+
Args:
|
341 |
+
index:
|
342 |
+
A torch index. E.g. (1, 3, 2), or (slice(None,))
|
343 |
+
Returns:
|
344 |
+
The indexed rotation
|
345 |
+
"""
|
346 |
+
if type(index) != tuple:
|
347 |
+
index = (index,)
|
348 |
+
|
349 |
+
if self._rot_mats is not None:
|
350 |
+
rot_mats = self._rot_mats[index + (slice(None), slice(None))]
|
351 |
+
return Rotation(rot_mats=rot_mats)
|
352 |
+
elif self._quats is not None:
|
353 |
+
quats = self._quats[index + (slice(None),)]
|
354 |
+
return Rotation(quats=quats, normalize_quats=False)
|
355 |
+
else:
|
356 |
+
raise ValueError("Both rotations are None")
|
357 |
+
|
358 |
+
def __mul__(self, right: torch.Tensor) -> Rotation:
|
359 |
+
"""
|
360 |
+
Pointwise left multiplication of the rotation with a tensor. Can be used to e.g. mask the Rotation.
|
361 |
+
|
362 |
+
Args:
|
363 |
+
right:
|
364 |
+
The tensor multiplicand
|
365 |
+
Returns:
|
366 |
+
The product
|
367 |
+
"""
|
368 |
+
if not (isinstance(right, torch.Tensor)):
|
369 |
+
raise TypeError("The other multiplicand must be a Tensor")
|
370 |
+
|
371 |
+
if self._rot_mats is not None:
|
372 |
+
rot_mats = self._rot_mats * right[..., None, None]
|
373 |
+
return Rotation(rot_mats=rot_mats, quats=None)
|
374 |
+
elif self._quats is not None:
|
375 |
+
quats = self._quats * right[..., None]
|
376 |
+
return Rotation(rot_mats=None, quats=quats, normalize_quats=False)
|
377 |
+
else:
|
378 |
+
raise ValueError("Both rotations are None")
|
379 |
+
|
380 |
+
def __rmul__(self, left: torch.Tensor) -> Rotation:
|
381 |
+
"""
|
382 |
+
Reverse pointwise multiplication of the rotation with a tensor.
|
383 |
+
|
384 |
+
Args:
|
385 |
+
left:
|
386 |
+
The left multiplicand
|
387 |
+
Returns:
|
388 |
+
The product
|
389 |
+
"""
|
390 |
+
return self.__mul__(left)
|
391 |
+
|
392 |
+
# Properties
|
393 |
+
|
394 |
+
@property
|
395 |
+
def shape(self) -> torch.Size:
|
396 |
+
"""
|
397 |
+
Returns the virtual shape of the rotation object. This shape is defined as the batch dimensions of the
|
398 |
+
underlying rotation matrix or quaternion. If the Rotation was initialized with a [10, 3, 3] rotation matrix
|
399 |
+
tensor, for example, the resulting shape would be [10].
|
400 |
+
|
401 |
+
Returns:
|
402 |
+
The virtual shape of the rotation object
|
403 |
+
"""
|
404 |
+
if self._rot_mats is not None:
|
405 |
+
return self._rot_mats.shape[:-2]
|
406 |
+
elif self._quats is not None:
|
407 |
+
return self._quats.shape[:-1]
|
408 |
+
else:
|
409 |
+
raise ValueError("Both rotations are None")
|
410 |
+
|
411 |
+
@property
|
412 |
+
def dtype(self) -> torch.dtype:
|
413 |
+
"""
|
414 |
+
Returns the dtype of the underlying rotation.
|
415 |
+
|
416 |
+
Returns:
|
417 |
+
The dtype of the underlying rotation
|
418 |
+
"""
|
419 |
+
if self._rot_mats is not None:
|
420 |
+
return self._rot_mats.dtype
|
421 |
+
elif self._quats is not None:
|
422 |
+
return self._quats.dtype
|
423 |
+
else:
|
424 |
+
raise ValueError("Both rotations are None")
|
425 |
+
|
426 |
+
@property
|
427 |
+
def device(self) -> torch.device:
|
428 |
+
"""
|
429 |
+
The device of the underlying rotation
|
430 |
+
|
431 |
+
Returns:
|
432 |
+
The device of the underlying rotation
|
433 |
+
"""
|
434 |
+
if self._rot_mats is not None:
|
435 |
+
return self._rot_mats.device
|
436 |
+
elif self._quats is not None:
|
437 |
+
return self._quats.device
|
438 |
+
else:
|
439 |
+
raise ValueError("Both rotations are None")
|
440 |
+
|
441 |
+
@property
|
442 |
+
def requires_grad(self) -> bool:
|
443 |
+
"""
|
444 |
+
Returns the requires_grad property of the underlying rotation
|
445 |
+
|
446 |
+
Returns:
|
447 |
+
The requires_grad property of the underlying tensor
|
448 |
+
"""
|
449 |
+
if self._rot_mats is not None:
|
450 |
+
return self._rot_mats.requires_grad
|
451 |
+
elif self._quats is not None:
|
452 |
+
return self._quats.requires_grad
|
453 |
+
else:
|
454 |
+
raise ValueError("Both rotations are None")
|
455 |
+
|
456 |
+
def get_rot_mats(self) -> torch.Tensor:
|
457 |
+
"""
|
458 |
+
Returns the underlying rotation as a rotation matrix tensor.
|
459 |
+
|
460 |
+
Returns:
|
461 |
+
The rotation as a rotation matrix tensor
|
462 |
+
"""
|
463 |
+
if self._rot_mats is not None:
|
464 |
+
return self._rot_mats
|
465 |
+
elif self._quats is not None:
|
466 |
+
return quat_to_rot(self._quats)
|
467 |
+
else:
|
468 |
+
raise ValueError("Both rotations are None")
|
469 |
+
|
470 |
+
def get_quats(self) -> torch.Tensor:
|
471 |
+
"""
|
472 |
+
Returns the underlying rotation as a quaternion tensor.
|
473 |
+
|
474 |
+
Depending on whether the Rotation was initialized with a quaternion, this function may call torch.linalg.eigh.
|
475 |
+
|
476 |
+
Returns:
|
477 |
+
The rotation as a quaternion tensor.
|
478 |
+
"""
|
479 |
+
if self._rot_mats is not None:
|
480 |
+
return rot_to_quat(self._rot_mats)
|
481 |
+
elif self._quats is not None:
|
482 |
+
return self._quats
|
483 |
+
else:
|
484 |
+
raise ValueError("Both rotations are None")
|
485 |
+
|
486 |
+
def get_cur_rot(self) -> torch.Tensor:
|
487 |
+
"""
|
488 |
+
Return the underlying rotation in its current form
|
489 |
+
|
490 |
+
Returns:
|
491 |
+
The stored rotation
|
492 |
+
"""
|
493 |
+
if self._rot_mats is not None:
|
494 |
+
return self._rot_mats
|
495 |
+
elif self._quats is not None:
|
496 |
+
return self._quats
|
497 |
+
else:
|
498 |
+
raise ValueError("Both rotations are None")
|
499 |
+
|
500 |
+
# Rotation functions
|
501 |
+
|
502 |
+
def compose_q_update_vec(self, q_update_vec: torch.Tensor, normalize_quats: bool = True) -> Rotation:
|
503 |
+
"""
|
504 |
+
Returns a new quaternion Rotation after updating the current object's underlying rotation with a quaternion
|
505 |
+
update, formatted as a [*, 3] tensor whose final three columns represent x, y, z such that (1, x, y, z) is the
|
506 |
+
desired (not necessarily unit) quaternion update.
|
507 |
+
|
508 |
+
Args:
|
509 |
+
q_update_vec:
|
510 |
+
A [*, 3] quaternion update tensor
|
511 |
+
normalize_quats:
|
512 |
+
Whether to normalize the output quaternion
|
513 |
+
Returns:
|
514 |
+
An updated Rotation
|
515 |
+
"""
|
516 |
+
quats = self.get_quats()
|
517 |
+
new_quats = quats + quat_multiply_by_vec(quats, q_update_vec)
|
518 |
+
return Rotation(
|
519 |
+
rot_mats=None,
|
520 |
+
quats=new_quats,
|
521 |
+
normalize_quats=normalize_quats,
|
522 |
+
)
|
523 |
+
|
524 |
+
def compose_r(self, r: Rotation) -> Rotation:
|
525 |
+
"""
|
526 |
+
Compose the rotation matrices of the current Rotation object with those of another.
|
527 |
+
|
528 |
+
Args:
|
529 |
+
r:
|
530 |
+
An update rotation object
|
531 |
+
Returns:
|
532 |
+
An updated rotation object
|
533 |
+
"""
|
534 |
+
r1 = self.get_rot_mats()
|
535 |
+
r2 = r.get_rot_mats()
|
536 |
+
new_rot_mats = rot_matmul(r1, r2)
|
537 |
+
return Rotation(rot_mats=new_rot_mats, quats=None)
|
538 |
+
|
539 |
+
def compose_q(self, r: Rotation, normalize_quats: bool = True) -> Rotation:
|
540 |
+
"""
|
541 |
+
Compose the quaternions of the current Rotation object with those of another.
|
542 |
+
|
543 |
+
Depending on whether either Rotation was initialized with quaternions, this function may call
|
544 |
+
torch.linalg.eigh.
|
545 |
+
|
546 |
+
Args:
|
547 |
+
r:
|
548 |
+
An update rotation object
|
549 |
+
Returns:
|
550 |
+
An updated rotation object
|
551 |
+
"""
|
552 |
+
q1 = self.get_quats()
|
553 |
+
q2 = r.get_quats()
|
554 |
+
new_quats = quat_multiply(q1, q2)
|
555 |
+
return Rotation(rot_mats=None, quats=new_quats, normalize_quats=normalize_quats)
|
556 |
+
|
557 |
+
def apply(self, pts: torch.Tensor) -> torch.Tensor:
|
558 |
+
"""
|
559 |
+
Apply the current Rotation as a rotation matrix to a set of 3D coordinates.
|
560 |
+
|
561 |
+
Args:
|
562 |
+
pts:
|
563 |
+
A [*, 3] set of points
|
564 |
+
Returns:
|
565 |
+
[*, 3] rotated points
|
566 |
+
"""
|
567 |
+
rot_mats = self.get_rot_mats()
|
568 |
+
return rot_vec_mul(rot_mats, pts)
|
569 |
+
|
570 |
+
def invert_apply(self, pts: torch.Tensor) -> torch.Tensor:
|
571 |
+
"""
|
572 |
+
The inverse of the apply() method.
|
573 |
+
|
574 |
+
Args:
|
575 |
+
pts:
|
576 |
+
A [*, 3] set of points
|
577 |
+
Returns:
|
578 |
+
[*, 3] inverse-rotated points
|
579 |
+
"""
|
580 |
+
rot_mats = self.get_rot_mats()
|
581 |
+
inv_rot_mats = invert_rot_mat(rot_mats)
|
582 |
+
return rot_vec_mul(inv_rot_mats, pts)
|
583 |
+
|
584 |
+
def invert(self) -> Rotation:
|
585 |
+
"""
|
586 |
+
Returns the inverse of the current Rotation.
|
587 |
+
|
588 |
+
Returns:
|
589 |
+
The inverse of the current Rotation
|
590 |
+
"""
|
591 |
+
if self._rot_mats is not None:
|
592 |
+
return Rotation(rot_mats=invert_rot_mat(self._rot_mats), quats=None)
|
593 |
+
elif self._quats is not None:
|
594 |
+
return Rotation(
|
595 |
+
rot_mats=None,
|
596 |
+
quats=invert_quat(self._quats),
|
597 |
+
normalize_quats=False,
|
598 |
+
)
|
599 |
+
else:
|
600 |
+
raise ValueError("Both rotations are None")
|
601 |
+
|
602 |
+
# "Tensor" stuff
|
603 |
+
|
604 |
+
def unsqueeze(self, dim: int) -> Rotation:
|
605 |
+
"""
|
606 |
+
Analogous to torch.unsqueeze. The dimension is relative to the shape of the Rotation object.
|
607 |
+
|
608 |
+
Args:
|
609 |
+
dim: A positive or negative dimension index.
|
610 |
+
Returns:
|
611 |
+
The unsqueezed Rotation.
|
612 |
+
"""
|
613 |
+
if dim >= len(self.shape):
|
614 |
+
raise ValueError("Invalid dimension")
|
615 |
+
|
616 |
+
if self._rot_mats is not None:
|
617 |
+
rot_mats = self._rot_mats.unsqueeze(dim if dim >= 0 else dim - 2)
|
618 |
+
return Rotation(rot_mats=rot_mats, quats=None)
|
619 |
+
elif self._quats is not None:
|
620 |
+
quats = self._quats.unsqueeze(dim if dim >= 0 else dim - 1)
|
621 |
+
return Rotation(rot_mats=None, quats=quats, normalize_quats=False)
|
622 |
+
else:
|
623 |
+
raise ValueError("Both rotations are None")
|
624 |
+
|
625 |
+
@staticmethod
|
626 |
+
def cat(rs: Sequence[Rotation], dim: int) -> Rotation:
|
627 |
+
"""
|
628 |
+
Concatenates rotations along one of the batch dimensions. Analogous to torch.cat().
|
629 |
+
|
630 |
+
Note that the output of this operation is always a rotation matrix, regardless of the format of input
|
631 |
+
rotations.
|
632 |
+
|
633 |
+
Args:
|
634 |
+
rs:
|
635 |
+
A list of rotation objects
|
636 |
+
dim:
|
637 |
+
The dimension along which the rotations should be concatenated
|
638 |
+
Returns:
|
639 |
+
A concatenated Rotation object in rotation matrix format
|
640 |
+
"""
|
641 |
+
rot_mats = torch.cat(
|
642 |
+
[r.get_rot_mats() for r in rs],
|
643 |
+
dim=dim if dim >= 0 else dim - 2,
|
644 |
+
)
|
645 |
+
|
646 |
+
return Rotation(rot_mats=rot_mats, quats=None)
|
647 |
+
|
648 |
+
def map_tensor_fn(self, fn: Callable[[torch.Tensor], torch.Tensor]) -> Rotation:
|
649 |
+
"""
|
650 |
+
Apply a Tensor -> Tensor function to underlying rotation tensors, mapping over the rotation dimension(s). Can
|
651 |
+
be used e.g. to sum out a one-hot batch dimension.
|
652 |
+
|
653 |
+
Args:
|
654 |
+
fn:
|
655 |
+
A Tensor -> Tensor function to be mapped over the Rotation
|
656 |
+
Returns:
|
657 |
+
The transformed Rotation object
|
658 |
+
"""
|
659 |
+
if self._rot_mats is not None:
|
660 |
+
rot_mats = self._rot_mats.view(self._rot_mats.shape[:-2] + (9,))
|
661 |
+
rot_mats = torch.stack(list(map(fn, torch.unbind(rot_mats, dim=-1))), dim=-1)
|
662 |
+
rot_mats = rot_mats.view(rot_mats.shape[:-1] + (3, 3))
|
663 |
+
return Rotation(rot_mats=rot_mats, quats=None)
|
664 |
+
elif self._quats is not None:
|
665 |
+
quats = torch.stack(list(map(fn, torch.unbind(self._quats, dim=-1))), dim=-1)
|
666 |
+
return Rotation(rot_mats=None, quats=quats, normalize_quats=False)
|
667 |
+
else:
|
668 |
+
raise ValueError("Both rotations are None")
|
669 |
+
|
670 |
+
def cuda(self) -> Rotation:
|
671 |
+
"""
|
672 |
+
Analogous to the cuda() method of torch Tensors
|
673 |
+
|
674 |
+
Returns:
|
675 |
+
A copy of the Rotation in CUDA memory
|
676 |
+
"""
|
677 |
+
if self._rot_mats is not None:
|
678 |
+
return Rotation(rot_mats=self._rot_mats.cuda(), quats=None)
|
679 |
+
elif self._quats is not None:
|
680 |
+
return Rotation(rot_mats=None, quats=self._quats.cuda(), normalize_quats=False)
|
681 |
+
else:
|
682 |
+
raise ValueError("Both rotations are None")
|
683 |
+
|
684 |
+
def to(self, device: Optional[torch.device], dtype: Optional[torch.dtype]) -> Rotation:
|
685 |
+
"""
|
686 |
+
Analogous to the to() method of torch Tensors
|
687 |
+
|
688 |
+
Args:
|
689 |
+
device:
|
690 |
+
A torch device
|
691 |
+
dtype:
|
692 |
+
A torch dtype
|
693 |
+
Returns:
|
694 |
+
A copy of the Rotation using the new device and dtype
|
695 |
+
"""
|
696 |
+
if self._rot_mats is not None:
|
697 |
+
return Rotation(
|
698 |
+
rot_mats=self._rot_mats.to(device=device, dtype=dtype),
|
699 |
+
quats=None,
|
700 |
+
)
|
701 |
+
elif self._quats is not None:
|
702 |
+
return Rotation(
|
703 |
+
rot_mats=None,
|
704 |
+
quats=self._quats.to(device=device, dtype=dtype),
|
705 |
+
normalize_quats=False,
|
706 |
+
)
|
707 |
+
else:
|
708 |
+
raise ValueError("Both rotations are None")
|
709 |
+
|
710 |
+
def detach(self) -> Rotation:
|
711 |
+
"""
|
712 |
+
Returns a copy of the Rotation whose underlying Tensor has been detached from its torch graph.
|
713 |
+
|
714 |
+
Returns:
|
715 |
+
A copy of the Rotation whose underlying Tensor has been detached from its torch graph
|
716 |
+
"""
|
717 |
+
if self._rot_mats is not None:
|
718 |
+
return Rotation(rot_mats=self._rot_mats.detach(), quats=None)
|
719 |
+
elif self._quats is not None:
|
720 |
+
return Rotation(
|
721 |
+
rot_mats=None,
|
722 |
+
quats=self._quats.detach(),
|
723 |
+
normalize_quats=False,
|
724 |
+
)
|
725 |
+
else:
|
726 |
+
raise ValueError("Both rotations are None")
|
727 |
+
|
728 |
+
|
729 |
+
class Rigid:
|
730 |
+
"""
|
731 |
+
A class representing a rigid transformation. Little more than a wrapper around two objects: a Rotation object and a
|
732 |
+
[*, 3] translation Designed to behave approximately like a single torch tensor with the shape of the shared batch
|
733 |
+
dimensions of its component parts.
|
734 |
+
"""
|
735 |
+
|
736 |
+
def __init__(self, rots: Optional[Rotation], trans: Optional[torch.Tensor]):
|
737 |
+
"""
|
738 |
+
Args:
|
739 |
+
rots: A [*, 3, 3] rotation tensor
|
740 |
+
trans: A corresponding [*, 3] translation tensor
|
741 |
+
"""
|
742 |
+
# (we need device, dtype, etc. from at least one input)
|
743 |
+
|
744 |
+
batch_dims, dtype, device, requires_grad = None, None, None, None
|
745 |
+
if trans is not None:
|
746 |
+
batch_dims = trans.shape[:-1]
|
747 |
+
dtype = trans.dtype
|
748 |
+
device = trans.device
|
749 |
+
requires_grad = trans.requires_grad
|
750 |
+
elif rots is not None:
|
751 |
+
batch_dims = rots.shape
|
752 |
+
dtype = rots.dtype
|
753 |
+
device = rots.device
|
754 |
+
requires_grad = rots.requires_grad
|
755 |
+
else:
|
756 |
+
raise ValueError("At least one input argument must be specified")
|
757 |
+
|
758 |
+
if rots is None:
|
759 |
+
rots = Rotation.identity(
|
760 |
+
batch_dims,
|
761 |
+
dtype,
|
762 |
+
device,
|
763 |
+
requires_grad,
|
764 |
+
)
|
765 |
+
elif trans is None:
|
766 |
+
trans = identity_trans(
|
767 |
+
batch_dims,
|
768 |
+
dtype,
|
769 |
+
device,
|
770 |
+
requires_grad,
|
771 |
+
)
|
772 |
+
|
773 |
+
assert rots is not None
|
774 |
+
assert trans is not None
|
775 |
+
|
776 |
+
if (rots.shape != trans.shape[:-1]) or (rots.device != trans.device):
|
777 |
+
raise ValueError("Rots and trans incompatible")
|
778 |
+
|
779 |
+
# Force full precision. Happens to the rotations automatically.
|
780 |
+
trans = trans.to(dtype=torch.float32)
|
781 |
+
|
782 |
+
self._rots = rots
|
783 |
+
self._trans = trans
|
784 |
+
|
785 |
+
@staticmethod
|
786 |
+
def identity(
|
787 |
+
shape: Tuple[int, ...],
|
788 |
+
dtype: Optional[torch.dtype] = None,
|
789 |
+
device: Optional[torch.device] = None,
|
790 |
+
requires_grad: bool = True,
|
791 |
+
fmt: str = "quat",
|
792 |
+
) -> Rigid:
|
793 |
+
"""
|
794 |
+
Constructs an identity transformation.
|
795 |
+
|
796 |
+
Args:
|
797 |
+
shape:
|
798 |
+
The desired shape
|
799 |
+
dtype:
|
800 |
+
The dtype of both internal tensors
|
801 |
+
device:
|
802 |
+
The device of both internal tensors
|
803 |
+
requires_grad:
|
804 |
+
Whether grad should be enabled for the internal tensors
|
805 |
+
Returns:
|
806 |
+
The identity transformation
|
807 |
+
"""
|
808 |
+
return Rigid(
|
809 |
+
Rotation.identity(shape, dtype, device, requires_grad, fmt=fmt),
|
810 |
+
identity_trans(shape, dtype, device, requires_grad),
|
811 |
+
)
|
812 |
+
|
813 |
+
def __getitem__(self, index: Any) -> Rigid:
|
814 |
+
"""
|
815 |
+
Indexes the affine transformation with PyTorch-style indices. The index is applied to the shared dimensions of
|
816 |
+
both the rotation and the translation.
|
817 |
+
|
818 |
+
E.g.::
|
819 |
+
|
820 |
+
r = Rotation(rot_mats=torch.rand(10, 10, 3, 3), quats=None) t = Rigid(r, torch.rand(10, 10, 3)) indexed =
|
821 |
+
t[3, 4:6] assert(indexed.shape == (2,)) assert(indexed.get_rots().shape == (2,))
|
822 |
+
assert(indexed.get_trans().shape == (2, 3))
|
823 |
+
|
824 |
+
Args:
|
825 |
+
index: A standard torch tensor index. E.g. 8, (10, None, 3),
|
826 |
+
or (3, slice(0, 1, None))
|
827 |
+
Returns:
|
828 |
+
The indexed tensor
|
829 |
+
"""
|
830 |
+
if type(index) != tuple:
|
831 |
+
index = (index,)
|
832 |
+
|
833 |
+
return Rigid(
|
834 |
+
self._rots[index],
|
835 |
+
self._trans[index + (slice(None),)],
|
836 |
+
)
|
837 |
+
|
838 |
+
def __mul__(self, right: torch.Tensor) -> Rigid:
|
839 |
+
"""
|
840 |
+
Pointwise left multiplication of the transformation with a tensor. Can be used to e.g. mask the Rigid.
|
841 |
+
|
842 |
+
Args:
|
843 |
+
right:
|
844 |
+
The tensor multiplicand
|
845 |
+
Returns:
|
846 |
+
The product
|
847 |
+
"""
|
848 |
+
if not (isinstance(right, torch.Tensor)):
|
849 |
+
raise TypeError("The other multiplicand must be a Tensor")
|
850 |
+
|
851 |
+
new_rots = self._rots * right
|
852 |
+
new_trans = self._trans * right[..., None]
|
853 |
+
|
854 |
+
return Rigid(new_rots, new_trans)
|
855 |
+
|
856 |
+
def __rmul__(self, left: torch.Tensor) -> Rigid:
|
857 |
+
"""
|
858 |
+
Reverse pointwise multiplication of the transformation with a tensor.
|
859 |
+
|
860 |
+
Args:
|
861 |
+
left:
|
862 |
+
The left multiplicand
|
863 |
+
Returns:
|
864 |
+
The product
|
865 |
+
"""
|
866 |
+
return self.__mul__(left)
|
867 |
+
|
868 |
+
@property
|
869 |
+
def shape(self) -> torch.Size:
|
870 |
+
"""
|
871 |
+
Returns the shape of the shared dimensions of the rotation and the translation.
|
872 |
+
|
873 |
+
Returns:
|
874 |
+
The shape of the transformation
|
875 |
+
"""
|
876 |
+
return self._trans.shape[:-1]
|
877 |
+
|
878 |
+
@property
|
879 |
+
def device(self) -> torch.device:
|
880 |
+
"""
|
881 |
+
Returns the device on which the Rigid's tensors are located.
|
882 |
+
|
883 |
+
Returns:
|
884 |
+
The device on which the Rigid's tensors are located
|
885 |
+
"""
|
886 |
+
return self._trans.device
|
887 |
+
|
888 |
+
def get_rots(self) -> Rotation:
|
889 |
+
"""
|
890 |
+
Getter for the rotation.
|
891 |
+
|
892 |
+
Returns:
|
893 |
+
The rotation object
|
894 |
+
"""
|
895 |
+
return self._rots
|
896 |
+
|
897 |
+
def get_trans(self) -> torch.Tensor:
|
898 |
+
"""
|
899 |
+
Getter for the translation.
|
900 |
+
|
901 |
+
Returns:
|
902 |
+
The stored translation
|
903 |
+
"""
|
904 |
+
return self._trans
|
905 |
+
|
906 |
+
def compose_q_update_vec(self, q_update_vec: torch.Tensor) -> Rigid:
|
907 |
+
"""
|
908 |
+
Composes the transformation with a quaternion update vector of shape [*, 6], where the final 6 columns
|
909 |
+
represent the x, y, and z values of a quaternion of form (1, x, y, z) followed by a 3D translation.
|
910 |
+
|
911 |
+
Args:
|
912 |
+
q_vec: The quaternion update vector.
|
913 |
+
Returns:
|
914 |
+
The composed transformation.
|
915 |
+
"""
|
916 |
+
q_vec, t_vec = q_update_vec[..., :3], q_update_vec[..., 3:]
|
917 |
+
new_rots = self._rots.compose_q_update_vec(q_vec)
|
918 |
+
|
919 |
+
trans_update = self._rots.apply(t_vec)
|
920 |
+
new_translation = self._trans + trans_update
|
921 |
+
|
922 |
+
return Rigid(new_rots, new_translation)
|
923 |
+
|
924 |
+
def compose(self, r: Rigid) -> Rigid:
|
925 |
+
"""
|
926 |
+
Composes the current rigid object with another.
|
927 |
+
|
928 |
+
Args:
|
929 |
+
r:
|
930 |
+
Another Rigid object
|
931 |
+
Returns:
|
932 |
+
The composition of the two transformations
|
933 |
+
"""
|
934 |
+
new_rot = self._rots.compose_r(r._rots)
|
935 |
+
new_trans = self._rots.apply(r._trans) + self._trans
|
936 |
+
return Rigid(new_rot, new_trans)
|
937 |
+
|
938 |
+
def apply(self, pts: torch.Tensor) -> torch.Tensor:
|
939 |
+
"""
|
940 |
+
Applies the transformation to a coordinate tensor.
|
941 |
+
|
942 |
+
Args:
|
943 |
+
pts: A [*, 3] coordinate tensor.
|
944 |
+
Returns:
|
945 |
+
The transformed points.
|
946 |
+
"""
|
947 |
+
rotated = self._rots.apply(pts)
|
948 |
+
return rotated + self._trans
|
949 |
+
|
950 |
+
def invert_apply(self, pts: torch.Tensor) -> torch.Tensor:
|
951 |
+
"""
|
952 |
+
Applies the inverse of the transformation to a coordinate tensor.
|
953 |
+
|
954 |
+
Args:
|
955 |
+
pts: A [*, 3] coordinate tensor
|
956 |
+
Returns:
|
957 |
+
The transformed points.
|
958 |
+
"""
|
959 |
+
pts = pts - self._trans
|
960 |
+
return self._rots.invert_apply(pts)
|
961 |
+
|
962 |
+
def invert(self) -> Rigid:
|
963 |
+
"""
|
964 |
+
Inverts the transformation.
|
965 |
+
|
966 |
+
Returns:
|
967 |
+
The inverse transformation.
|
968 |
+
"""
|
969 |
+
rot_inv = self._rots.invert()
|
970 |
+
trn_inv = rot_inv.apply(self._trans)
|
971 |
+
|
972 |
+
return Rigid(rot_inv, -1 * trn_inv)
|
973 |
+
|
974 |
+
def map_tensor_fn(self, fn: Callable[[torch.Tensor], torch.Tensor]) -> Rigid:
|
975 |
+
"""
|
976 |
+
Apply a Tensor -> Tensor function to underlying translation and rotation tensors, mapping over the
|
977 |
+
translation/rotation dimensions respectively.
|
978 |
+
|
979 |
+
Args:
|
980 |
+
fn:
|
981 |
+
A Tensor -> Tensor function to be mapped over the Rigid
|
982 |
+
Returns:
|
983 |
+
The transformed Rigid object
|
984 |
+
"""
|
985 |
+
new_rots = self._rots.map_tensor_fn(fn)
|
986 |
+
new_trans = torch.stack(list(map(fn, torch.unbind(self._trans, dim=-1))), dim=-1)
|
987 |
+
|
988 |
+
return Rigid(new_rots, new_trans)
|
989 |
+
|
990 |
+
def to_tensor_4x4(self) -> torch.Tensor:
|
991 |
+
"""
|
992 |
+
Converts a transformation to a homogenous transformation tensor.
|
993 |
+
|
994 |
+
Returns:
|
995 |
+
A [*, 4, 4] homogenous transformation tensor
|
996 |
+
"""
|
997 |
+
tensor = self._trans.new_zeros((*self.shape, 4, 4))
|
998 |
+
tensor[..., :3, :3] = self._rots.get_rot_mats()
|
999 |
+
tensor[..., :3, 3] = self._trans
|
1000 |
+
tensor[..., 3, 3] = 1
|
1001 |
+
return tensor
|
1002 |
+
|
1003 |
+
@staticmethod
|
1004 |
+
def from_tensor_4x4(t: torch.Tensor) -> Rigid:
|
1005 |
+
"""
|
1006 |
+
Constructs a transformation from a homogenous transformation tensor.
|
1007 |
+
|
1008 |
+
Args:
|
1009 |
+
t: [*, 4, 4] homogenous transformation tensor
|
1010 |
+
Returns:
|
1011 |
+
T object with shape [*]
|
1012 |
+
"""
|
1013 |
+
if t.shape[-2:] != (4, 4):
|
1014 |
+
raise ValueError("Incorrectly shaped input tensor")
|
1015 |
+
|
1016 |
+
rots = Rotation(rot_mats=t[..., :3, :3], quats=None)
|
1017 |
+
trans = t[..., :3, 3]
|
1018 |
+
|
1019 |
+
return Rigid(rots, trans)
|
1020 |
+
|
1021 |
+
def to_tensor_7(self) -> torch.Tensor:
|
1022 |
+
"""
|
1023 |
+
Converts a transformation to a tensor with 7 final columns, four for the quaternion followed by three for the
|
1024 |
+
translation.
|
1025 |
+
|
1026 |
+
Returns:
|
1027 |
+
A [*, 7] tensor representation of the transformation
|
1028 |
+
"""
|
1029 |
+
tensor = self._trans.new_zeros((*self.shape, 7))
|
1030 |
+
tensor[..., :4] = self._rots.get_quats()
|
1031 |
+
tensor[..., 4:] = self._trans
|
1032 |
+
|
1033 |
+
return tensor
|
1034 |
+
|
1035 |
+
@staticmethod
|
1036 |
+
def from_tensor_7(t: torch.Tensor, normalize_quats: bool = False) -> Rigid:
|
1037 |
+
if t.shape[-1] != 7:
|
1038 |
+
raise ValueError("Incorrectly shaped input tensor")
|
1039 |
+
|
1040 |
+
quats, trans = t[..., :4], t[..., 4:]
|
1041 |
+
|
1042 |
+
rots = Rotation(rot_mats=None, quats=quats, normalize_quats=normalize_quats)
|
1043 |
+
|
1044 |
+
return Rigid(rots, trans)
|
1045 |
+
|
1046 |
+
@staticmethod
|
1047 |
+
def from_3_points(
|
1048 |
+
p_neg_x_axis: torch.Tensor, origin: torch.Tensor, p_xy_plane: torch.Tensor, eps: float = 1e-8
|
1049 |
+
) -> Rigid:
|
1050 |
+
"""
|
1051 |
+
Implements algorithm 21. Constructs transformations from sets of 3 points using the Gram-Schmidt algorithm.
|
1052 |
+
|
1053 |
+
Args:
|
1054 |
+
p_neg_x_axis: [*, 3] coordinates
|
1055 |
+
origin: [*, 3] coordinates used as frame origins
|
1056 |
+
p_xy_plane: [*, 3] coordinates
|
1057 |
+
eps: Small epsilon value
|
1058 |
+
Returns:
|
1059 |
+
A transformation object of shape [*]
|
1060 |
+
"""
|
1061 |
+
p_neg_x_axis_unbound = torch.unbind(p_neg_x_axis, dim=-1)
|
1062 |
+
origin_unbound = torch.unbind(origin, dim=-1)
|
1063 |
+
p_xy_plane_unbound = torch.unbind(p_xy_plane, dim=-1)
|
1064 |
+
|
1065 |
+
e0 = [c1 - c2 for c1, c2 in zip(origin_unbound, p_neg_x_axis_unbound)]
|
1066 |
+
e1 = [c1 - c2 for c1, c2 in zip(p_xy_plane_unbound, origin_unbound)]
|
1067 |
+
|
1068 |
+
denom = torch.sqrt(sum(c * c for c in e0) + eps * torch.ones_like(e0[0]))
|
1069 |
+
e0 = [c / denom for c in e0]
|
1070 |
+
dot = sum((c1 * c2 for c1, c2 in zip(e0, e1)))
|
1071 |
+
e1 = [c2 - c1 * dot for c1, c2 in zip(e0, e1)]
|
1072 |
+
denom = torch.sqrt(sum((c * c for c in e1)) + eps * torch.ones_like(e1[0]))
|
1073 |
+
e1 = [c / denom for c in e1]
|
1074 |
+
e2 = [
|
1075 |
+
e0[1] * e1[2] - e0[2] * e1[1],
|
1076 |
+
e0[2] * e1[0] - e0[0] * e1[2],
|
1077 |
+
e0[0] * e1[1] - e0[1] * e1[0],
|
1078 |
+
]
|
1079 |
+
|
1080 |
+
rots = torch.stack([c for tup in zip(e0, e1, e2) for c in tup], dim=-1)
|
1081 |
+
rots = rots.reshape(rots.shape[:-1] + (3, 3))
|
1082 |
+
|
1083 |
+
rot_obj = Rotation(rot_mats=rots, quats=None)
|
1084 |
+
|
1085 |
+
return Rigid(rot_obj, torch.stack(origin_unbound, dim=-1))
|
1086 |
+
|
1087 |
+
def unsqueeze(self, dim: int) -> Rigid:
|
1088 |
+
"""
|
1089 |
+
Analogous to torch.unsqueeze. The dimension is relative to the shared dimensions of the rotation/translation.
|
1090 |
+
|
1091 |
+
Args:
|
1092 |
+
dim: A positive or negative dimension index.
|
1093 |
+
Returns:
|
1094 |
+
The unsqueezed transformation.
|
1095 |
+
"""
|
1096 |
+
if dim >= len(self.shape):
|
1097 |
+
raise ValueError("Invalid dimension")
|
1098 |
+
rots = self._rots.unsqueeze(dim)
|
1099 |
+
trans = self._trans.unsqueeze(dim if dim >= 0 else dim - 1)
|
1100 |
+
|
1101 |
+
return Rigid(rots, trans)
|
1102 |
+
|
1103 |
+
@staticmethod
|
1104 |
+
def cat(ts: Sequence[Rigid], dim: int) -> Rigid:
|
1105 |
+
"""
|
1106 |
+
Concatenates transformations along a new dimension.
|
1107 |
+
|
1108 |
+
Args:
|
1109 |
+
ts:
|
1110 |
+
A list of T objects
|
1111 |
+
dim:
|
1112 |
+
The dimension along which the transformations should be concatenated
|
1113 |
+
Returns:
|
1114 |
+
A concatenated transformation object
|
1115 |
+
"""
|
1116 |
+
rots = Rotation.cat([t._rots for t in ts], dim)
|
1117 |
+
trans = torch.cat([t._trans for t in ts], dim=dim if dim >= 0 else dim - 1)
|
1118 |
+
|
1119 |
+
return Rigid(rots, trans)
|
1120 |
+
|
1121 |
+
def apply_rot_fn(self, fn: Callable[[Rotation], Rotation]) -> Rigid:
|
1122 |
+
"""
|
1123 |
+
Applies a Rotation -> Rotation function to the stored rotation object.
|
1124 |
+
|
1125 |
+
Args:
|
1126 |
+
fn: A function of type Rotation -> Rotation
|
1127 |
+
Returns:
|
1128 |
+
A transformation object with a transformed rotation.
|
1129 |
+
"""
|
1130 |
+
return Rigid(fn(self._rots), self._trans)
|
1131 |
+
|
1132 |
+
def apply_trans_fn(self, fn: Callable[[torch.Tensor], torch.Tensor]) -> Rigid:
|
1133 |
+
"""
|
1134 |
+
Applies a Tensor -> Tensor function to the stored translation.
|
1135 |
+
|
1136 |
+
Args:
|
1137 |
+
fn:
|
1138 |
+
A function of type Tensor -> Tensor to be applied to the translation
|
1139 |
+
Returns:
|
1140 |
+
A transformation object with a transformed translation.
|
1141 |
+
"""
|
1142 |
+
return Rigid(self._rots, fn(self._trans))
|
1143 |
+
|
1144 |
+
def scale_translation(self, trans_scale_factor: float) -> Rigid:
|
1145 |
+
"""
|
1146 |
+
Scales the translation by a constant factor.
|
1147 |
+
|
1148 |
+
Args:
|
1149 |
+
trans_scale_factor:
|
1150 |
+
The constant factor
|
1151 |
+
Returns:
|
1152 |
+
A transformation object with a scaled translation.
|
1153 |
+
"""
|
1154 |
+
return self.apply_trans_fn(lambda t: t * trans_scale_factor)
|
1155 |
+
|
1156 |
+
def stop_rot_gradient(self) -> Rigid:
|
1157 |
+
"""
|
1158 |
+
Detaches the underlying rotation object
|
1159 |
+
|
1160 |
+
Returns:
|
1161 |
+
A transformation object with detached rotations
|
1162 |
+
"""
|
1163 |
+
return self.apply_rot_fn(lambda r: r.detach())
|
1164 |
+
|
1165 |
+
@staticmethod
|
1166 |
+
def make_transform_from_reference(
|
1167 |
+
n_xyz: torch.Tensor, ca_xyz: torch.Tensor, c_xyz: torch.Tensor, eps: float = 1e-20
|
1168 |
+
) -> Rigid:
|
1169 |
+
"""
|
1170 |
+
Returns a transformation object from reference coordinates.
|
1171 |
+
|
1172 |
+
Note that this method does not take care of symmetries. If you provide the atom positions in the non-standard
|
1173 |
+
way, the N atom will end up not at [-0.527250, 1.359329, 0.0] but instead at [-0.527250, -1.359329, 0.0]. You
|
1174 |
+
need to take care of such cases in your code.
|
1175 |
+
|
1176 |
+
Args:
|
1177 |
+
n_xyz: A [*, 3] tensor of nitrogen xyz coordinates.
|
1178 |
+
ca_xyz: A [*, 3] tensor of carbon alpha xyz coordinates.
|
1179 |
+
c_xyz: A [*, 3] tensor of carbon xyz coordinates.
|
1180 |
+
Returns:
|
1181 |
+
A transformation object. After applying the translation and rotation to the reference backbone, the
|
1182 |
+
coordinates will approximately equal to the input coordinates.
|
1183 |
+
"""
|
1184 |
+
translation = -1 * ca_xyz
|
1185 |
+
n_xyz = n_xyz + translation
|
1186 |
+
c_xyz = c_xyz + translation
|
1187 |
+
|
1188 |
+
c_x, c_y, c_z = [c_xyz[..., i] for i in range(3)]
|
1189 |
+
norm = torch.sqrt(eps + c_x**2 + c_y**2)
|
1190 |
+
sin_c1 = -c_y / norm
|
1191 |
+
cos_c1 = c_x / norm
|
1192 |
+
|
1193 |
+
c1_rots = sin_c1.new_zeros((*sin_c1.shape, 3, 3))
|
1194 |
+
c1_rots[..., 0, 0] = cos_c1
|
1195 |
+
c1_rots[..., 0, 1] = -1 * sin_c1
|
1196 |
+
c1_rots[..., 1, 0] = sin_c1
|
1197 |
+
c1_rots[..., 1, 1] = cos_c1
|
1198 |
+
c1_rots[..., 2, 2] = 1
|
1199 |
+
|
1200 |
+
norm = torch.sqrt(eps + c_x**2 + c_y**2 + c_z**2)
|
1201 |
+
sin_c2 = c_z / norm
|
1202 |
+
cos_c2 = torch.sqrt(c_x**2 + c_y**2) / norm
|
1203 |
+
|
1204 |
+
c2_rots = sin_c2.new_zeros((*sin_c2.shape, 3, 3))
|
1205 |
+
c2_rots[..., 0, 0] = cos_c2
|
1206 |
+
c2_rots[..., 0, 2] = sin_c2
|
1207 |
+
c2_rots[..., 1, 1] = 1
|
1208 |
+
c2_rots[..., 2, 0] = -1 * sin_c2
|
1209 |
+
c2_rots[..., 2, 2] = cos_c2
|
1210 |
+
|
1211 |
+
c_rots = rot_matmul(c2_rots, c1_rots)
|
1212 |
+
n_xyz = rot_vec_mul(c_rots, n_xyz)
|
1213 |
+
|
1214 |
+
_, n_y, n_z = [n_xyz[..., i] for i in range(3)]
|
1215 |
+
norm = torch.sqrt(eps + n_y**2 + n_z**2)
|
1216 |
+
sin_n = -n_z / norm
|
1217 |
+
cos_n = n_y / norm
|
1218 |
+
|
1219 |
+
n_rots = sin_c2.new_zeros((*sin_c2.shape, 3, 3))
|
1220 |
+
n_rots[..., 0, 0] = 1
|
1221 |
+
n_rots[..., 1, 1] = cos_n
|
1222 |
+
n_rots[..., 1, 2] = -1 * sin_n
|
1223 |
+
n_rots[..., 2, 1] = sin_n
|
1224 |
+
n_rots[..., 2, 2] = cos_n
|
1225 |
+
|
1226 |
+
rots = rot_matmul(n_rots, c_rots)
|
1227 |
+
|
1228 |
+
rots = rots.transpose(-1, -2)
|
1229 |
+
translation = -1 * translation
|
1230 |
+
|
1231 |
+
rot_obj = Rotation(rot_mats=rots, quats=None)
|
1232 |
+
|
1233 |
+
return Rigid(rot_obj, translation)
|
1234 |
+
|
1235 |
+
def cuda(self) -> Rigid:
|
1236 |
+
"""
|
1237 |
+
Moves the transformation object to GPU memory
|
1238 |
+
|
1239 |
+
Returns:
|
1240 |
+
A version of the transformation on GPU
|
1241 |
+
"""
|
1242 |
+
return Rigid(self._rots.cuda(), self._trans.cuda())
|