Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step120/zero/16.mlp.dense_h_to_4h.weight/fp32.pt +3 -0
- ckpts/universal/global_step120/zero/16.mlp.dense_h_to_4h_swiglu.weight/fp32.pt +3 -0
- ckpts/universal/global_step120/zero/4.attention.dense.weight/fp32.pt +3 -0
- venv/lib/python3.10/site-packages/torch/_logging/__init__.py +16 -0
- venv/lib/python3.10/site-packages/torch/_logging/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_logging/__pycache__/_internal.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_logging/__pycache__/_registrations.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_logging/__pycache__/structured.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_logging/_internal.py +1085 -0
- venv/lib/python3.10/site-packages/torch/_logging/_registrations.py +134 -0
- venv/lib/python3.10/site-packages/torch/_logging/structured.py +37 -0
- venv/lib/python3.10/site-packages/torch/_numpy/__init__.py +30 -0
- venv/lib/python3.10/site-packages/torch/_numpy/__pycache__/_binary_ufuncs_impl.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_numpy/__pycache__/_normalizations.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_numpy/__pycache__/_reductions_impl.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_numpy/__pycache__/_unary_ufuncs_impl.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_numpy/__pycache__/_util.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_numpy/__pycache__/linalg.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_numpy/__pycache__/random.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_numpy/_binary_ufuncs_impl.py +86 -0
- venv/lib/python3.10/site-packages/torch/_numpy/_casting_dicts.py +881 -0
- venv/lib/python3.10/site-packages/torch/_numpy/_dtypes.py +434 -0
- venv/lib/python3.10/site-packages/torch/_numpy/_dtypes_impl.py +216 -0
- venv/lib/python3.10/site-packages/torch/_numpy/_funcs.py +75 -0
- venv/lib/python3.10/site-packages/torch/_numpy/_funcs_impl.py +2053 -0
- venv/lib/python3.10/site-packages/torch/_numpy/_getlimits.py +15 -0
- venv/lib/python3.10/site-packages/torch/_numpy/_ndarray.py +591 -0
- venv/lib/python3.10/site-packages/torch/_numpy/_normalizations.py +258 -0
- venv/lib/python3.10/site-packages/torch/_numpy/_reductions_impl.py +456 -0
- venv/lib/python3.10/site-packages/torch/_numpy/_ufuncs.py +334 -0
- venv/lib/python3.10/site-packages/torch/_numpy/_unary_ufuncs_impl.py +73 -0
- venv/lib/python3.10/site-packages/torch/_numpy/_util.py +261 -0
- venv/lib/python3.10/site-packages/torch/_numpy/fft.py +130 -0
- venv/lib/python3.10/site-packages/torch/_numpy/linalg.py +239 -0
- venv/lib/python3.10/site-packages/torch/_numpy/random.py +191 -0
- venv/lib/python3.10/site-packages/torch/nn/backends/__init__.py +0 -0
- venv/lib/python3.10/site-packages/torch/nn/backends/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/nn/backends/__pycache__/thnn.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/nn/backends/thnn.py +4 -0
- venv/lib/python3.10/site-packages/torch/nn/parallel/__init__.py +14 -0
- venv/lib/python3.10/site-packages/torch/nn/parallel/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/nn/parallel/__pycache__/_functions.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/nn/parallel/__pycache__/comm.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/nn/parallel/__pycache__/data_parallel.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/nn/parallel/__pycache__/distributed.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/nn/parallel/__pycache__/parallel_apply.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/nn/parallel/__pycache__/replicate.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/nn/parallel/__pycache__/scatter_gather.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/nn/parallel/_functions.py +126 -0
- venv/lib/python3.10/site-packages/torch/nn/parallel/comm.py +236 -0
ckpts/universal/global_step120/zero/16.mlp.dense_h_to_4h.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fb85a7743d2d09da9ec7f26db1767aaaeef955d4077692bd576c4ecd86c262da
|
3 |
+
size 33555533
|
ckpts/universal/global_step120/zero/16.mlp.dense_h_to_4h_swiglu.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d3fc099776710bd3754d0c00898989896ebfccd8bfc8166db8f399c0b25a1582
|
3 |
+
size 33555533
|
ckpts/universal/global_step120/zero/4.attention.dense.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:68d950b662024ae4be69b37e2feeb330719bc7a596c4452c5a3eeab689f31ba4
|
3 |
+
size 16778317
|
venv/lib/python3.10/site-packages/torch/_logging/__init__.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Top level logging module for torch logging
|
2 |
+
# Design doc: https://docs.google.com/document/d/1ZRfTWKa8eaPq1AxaiHrq4ASTPouzzlPiuquSBEJYwS8/edit#
|
3 |
+
# Simple setup for onboarding (see above doc for more detail):
|
4 |
+
# 1. register any top-level log qualified name for your module in torch._logging._registrations (see there for examples)
|
5 |
+
# 2. register any artifacts (<artifact_name> below) in torch._logging._registrations
|
6 |
+
# a. call getArtifactLogger(__name__, <artifact_name>) at your logging site instead of the standard logger to log your artifact
|
7 |
+
import torch._logging._registrations
|
8 |
+
from ._internal import (
|
9 |
+
_init_logs,
|
10 |
+
DEFAULT_LOGGING,
|
11 |
+
getArtifactLogger,
|
12 |
+
LazyString,
|
13 |
+
set_logs,
|
14 |
+
trace_structured,
|
15 |
+
warning_once,
|
16 |
+
)
|
venv/lib/python3.10/site-packages/torch/_logging/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (423 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/_logging/__pycache__/_internal.cpython-310.pyc
ADDED
Binary file (31.5 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_logging/__pycache__/_registrations.cpython-310.pyc
ADDED
Binary file (4.24 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_logging/__pycache__/structured.cpython-310.pyc
ADDED
Binary file (1.15 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_logging/_internal.py
ADDED
@@ -0,0 +1,1085 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools
|
2 |
+
import hashlib
|
3 |
+
import itertools
|
4 |
+
import json
|
5 |
+
import logging
|
6 |
+
import os
|
7 |
+
import os.path
|
8 |
+
import re
|
9 |
+
import tempfile
|
10 |
+
from dataclasses import dataclass, field
|
11 |
+
from importlib import __import__
|
12 |
+
from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Union
|
13 |
+
from weakref import WeakSet
|
14 |
+
|
15 |
+
log = logging.getLogger(__name__)
|
16 |
+
|
17 |
+
# This is a synthetic logger which doesn't correspond to an actual logger,
|
18 |
+
# but handles all of our "tracing" logging, which is structured and doesn't go
|
19 |
+
# to stderr but always goes to a dedicated log file. We don't put these
|
20 |
+
# loggers in the classic module hierarchy, because we don't want a suppression
|
21 |
+
# of logs to also cause a trace to get suppressed (traces typically are not
|
22 |
+
# collected, unless we are in prod, in which case they always are collected.)
|
23 |
+
#
|
24 |
+
# TODO: Maybe we should allow for some sub-hierarchy so you can control which
|
25 |
+
# traces you want to collect, for performance reasons.
|
26 |
+
#
|
27 |
+
# See https://docs.google.com/document/d/1CX_hJ0PNy9f3R1y8TJrfkSeLkvGjjjLU84BSXgS2AZ8/edit
|
28 |
+
trace_log = logging.getLogger("torch.__trace")
|
29 |
+
|
30 |
+
DEFAULT_LOG_LEVEL = logging.WARNING
|
31 |
+
LOG_ENV_VAR = "TORCH_LOGS"
|
32 |
+
LOG_OUT_ENV_VAR = "TORCH_LOGS_OUT"
|
33 |
+
LOG_FORMAT_ENV_VAR = "TORCH_LOGS_FORMAT"
|
34 |
+
TRACE_ENV_VAR = "TORCH_TRACE"
|
35 |
+
|
36 |
+
|
37 |
+
@dataclass
|
38 |
+
class LogRegistry:
|
39 |
+
# shorthand name to log qualified name
|
40 |
+
# Note: this only contains loggers registered
|
41 |
+
# from register_log
|
42 |
+
# e.g. "dynamo" -> "torch._dynamo"
|
43 |
+
log_alias_to_log_qnames: Dict[str, List[str]] = field(default_factory=dict)
|
44 |
+
|
45 |
+
# artifact logger qualified names,
|
46 |
+
# this is populated lazily, as calls to getArtifactLogger
|
47 |
+
# currently formatted as <module>.__<artifact_name>
|
48 |
+
# e.g. "torch._dynamo.convert_frame.__guards"
|
49 |
+
artifact_log_qnames: Set[str] = field(default_factory=set)
|
50 |
+
|
51 |
+
# child logs of registered logs if specified via open
|
52 |
+
# registration by the user (ie placing "torch._dynamo.output_graph" in the env var)
|
53 |
+
# these need to be tracked so their levels can be reset properly
|
54 |
+
# e.g. "torch._dynamo.output_graph"
|
55 |
+
child_log_qnames: Set[str] = field(default_factory=set)
|
56 |
+
|
57 |
+
# artifact names, populated by register_artifact
|
58 |
+
# e.g. "guards"
|
59 |
+
artifact_names: Set[str] = field(default_factory=set)
|
60 |
+
|
61 |
+
# Artifacts that should be visible by default in the error message
|
62 |
+
visible_artifacts: Set[str] = field(default_factory=set)
|
63 |
+
|
64 |
+
# A short description of each artifact
|
65 |
+
artifact_descriptions: Dict[str, str] = field(default_factory=dict)
|
66 |
+
|
67 |
+
# artifacts which are not displayed unless explicitly named in the
|
68 |
+
# settings. Ex. output_code is NOT displayed even if the inductor
|
69 |
+
# log level is set to DEBUG. It must be explicitly named in the settings
|
70 |
+
off_by_default_artifact_names: Set[str] = field(default_factory=set)
|
71 |
+
|
72 |
+
# logging format string for artifacts
|
73 |
+
artifact_log_formatters: Dict[str, logging.Formatter] = field(default_factory=dict)
|
74 |
+
|
75 |
+
def is_artifact(self, name):
|
76 |
+
return name in self.artifact_names
|
77 |
+
|
78 |
+
def is_log(self, alias):
|
79 |
+
return alias in self.log_alias_to_log_qnames
|
80 |
+
|
81 |
+
# register a log with an alias
|
82 |
+
def register_log(self, alias, log_qnames: Union[str, List[str]]):
|
83 |
+
if isinstance(log_qnames, str):
|
84 |
+
log_qnames = [log_qnames]
|
85 |
+
self.log_alias_to_log_qnames[alias] = log_qnames
|
86 |
+
|
87 |
+
# register an artifact name
|
88 |
+
def register_artifact_name(
|
89 |
+
self, name, description, visible, off_by_default, log_format
|
90 |
+
):
|
91 |
+
self.artifact_names.add(name)
|
92 |
+
if visible:
|
93 |
+
self.visible_artifacts.add(name)
|
94 |
+
self.artifact_descriptions[name] = description
|
95 |
+
|
96 |
+
# if off by default, don't enable it
|
97 |
+
# when log_name's log_level is set to DEBUG
|
98 |
+
if off_by_default:
|
99 |
+
self.off_by_default_artifact_names.add(name)
|
100 |
+
|
101 |
+
if log_format is not None:
|
102 |
+
self.artifact_log_formatters[name] = logging.Formatter(log_format)
|
103 |
+
|
104 |
+
# register the qualified name of an artifact log
|
105 |
+
# this is needed to know which logs need to be reset
|
106 |
+
# whenever the log_state is changed
|
107 |
+
def register_artifact_log(self, artifact_log_qname):
|
108 |
+
self.artifact_log_qnames.add(artifact_log_qname)
|
109 |
+
|
110 |
+
def register_child_log(self, log_qname):
|
111 |
+
self.child_log_qnames.add(log_qname)
|
112 |
+
|
113 |
+
# flattens all the qnames together (TODO: consider memoizing?)
|
114 |
+
def get_log_qnames(self) -> Set[str]:
|
115 |
+
return {
|
116 |
+
qname
|
117 |
+
for qnames in self.log_alias_to_log_qnames.values()
|
118 |
+
for qname in qnames
|
119 |
+
}
|
120 |
+
|
121 |
+
def get_artifact_log_qnames(self):
|
122 |
+
return set(self.artifact_log_qnames)
|
123 |
+
|
124 |
+
def get_child_log_qnames(self):
|
125 |
+
return set(self.child_log_qnames)
|
126 |
+
|
127 |
+
def is_off_by_default(self, artifact_qname):
|
128 |
+
return artifact_qname in self.off_by_default_artifact_names
|
129 |
+
|
130 |
+
|
131 |
+
@dataclass
|
132 |
+
class LogState:
|
133 |
+
# qualified log names -> currently set log level
|
134 |
+
log_qname_to_level: Dict[str, str] = field(default_factory=dict)
|
135 |
+
|
136 |
+
# the set of currently enabled artifacts
|
137 |
+
artifact_names: Set[str] = field(default_factory=set)
|
138 |
+
|
139 |
+
def enable_artifact(self, artifact_name):
|
140 |
+
self.artifact_names.add(artifact_name)
|
141 |
+
|
142 |
+
def is_artifact_enabled(self, name):
|
143 |
+
return name in self.artifact_names
|
144 |
+
|
145 |
+
def enable_log(self, log_qnames, log_level):
|
146 |
+
if isinstance(log_qnames, str):
|
147 |
+
log_qnames = [log_qnames]
|
148 |
+
for log_qname in log_qnames:
|
149 |
+
self.log_qname_to_level[log_qname] = log_level
|
150 |
+
|
151 |
+
def get_log_level_pairs(self):
|
152 |
+
"""Returns all qualified module names for which the user requested
|
153 |
+
explicit logging settings.
|
154 |
+
|
155 |
+
.. warning:
|
156 |
+
|
157 |
+
This function used to return all loggers, regardless of whether
|
158 |
+
or not the user specified them or not; it now only returns logs
|
159 |
+
which were explicitly mentioned by the user (and torch, which
|
160 |
+
always is implicitly requested when we initialize our logging
|
161 |
+
subsystem.)
|
162 |
+
"""
|
163 |
+
return self.log_qname_to_level.items()
|
164 |
+
|
165 |
+
def clear(self):
|
166 |
+
self.log_qname_to_level.clear()
|
167 |
+
self.artifact_names.clear()
|
168 |
+
|
169 |
+
|
170 |
+
log_registry = LogRegistry()
|
171 |
+
log_state = LogState()
|
172 |
+
|
173 |
+
# sample usage: torch._logging.set_logs(**torch._logging.DEFAULT_LOGGING)
|
174 |
+
DEFAULT_LOGGING = {
|
175 |
+
"dynamo": logging.DEBUG,
|
176 |
+
"aot": logging.DEBUG,
|
177 |
+
"inductor": logging.DEBUG,
|
178 |
+
"ddp_graphs": True,
|
179 |
+
"graph_breaks": True,
|
180 |
+
"guards": True,
|
181 |
+
"recompiles": True,
|
182 |
+
"dynamic": logging.INFO,
|
183 |
+
}
|
184 |
+
|
185 |
+
|
186 |
+
def set_logs(
|
187 |
+
*,
|
188 |
+
all: Optional[int] = None,
|
189 |
+
dynamo: Optional[int] = None,
|
190 |
+
aot: Optional[int] = None,
|
191 |
+
autograd: Optional[int] = None,
|
192 |
+
dynamic: Optional[int] = None,
|
193 |
+
inductor: Optional[int] = None,
|
194 |
+
distributed: Optional[int] = None,
|
195 |
+
dist_c10d: Optional[int] = None,
|
196 |
+
dist_ddp: Optional[int] = None,
|
197 |
+
dist_fsdp: Optional[int] = None,
|
198 |
+
onnx: Optional[int] = None,
|
199 |
+
bytecode: bool = False,
|
200 |
+
aot_graphs: bool = False,
|
201 |
+
aot_joint_graph: bool = False,
|
202 |
+
ddp_graphs: bool = False,
|
203 |
+
graph: bool = False,
|
204 |
+
graph_code: bool = False,
|
205 |
+
graph_breaks: bool = False,
|
206 |
+
graph_sizes: bool = False,
|
207 |
+
guards: bool = False,
|
208 |
+
recompiles: bool = False,
|
209 |
+
recompiles_verbose: bool = False,
|
210 |
+
trace_source: bool = False,
|
211 |
+
trace_call: bool = False,
|
212 |
+
output_code: bool = False,
|
213 |
+
schedule: bool = False,
|
214 |
+
perf_hints: bool = False,
|
215 |
+
post_grad_graphs: bool = False,
|
216 |
+
onnx_diagnostics: bool = False,
|
217 |
+
fusion: bool = False,
|
218 |
+
overlap: bool = False,
|
219 |
+
export: Optional[int] = None,
|
220 |
+
modules: Optional[Dict[str, Union[int, bool]]] = None,
|
221 |
+
cudagraphs: bool = False,
|
222 |
+
sym_node: bool = False,
|
223 |
+
):
|
224 |
+
"""
|
225 |
+
Sets the log level for individual components and toggles individual log
|
226 |
+
artifact types.
|
227 |
+
|
228 |
+
.. warning:: This feature is a prototype and may have compatibility
|
229 |
+
breaking changes in the future.
|
230 |
+
|
231 |
+
.. note:: The ``TORCH_LOGS`` environment variable has complete precedence
|
232 |
+
over this function, so if it was set, this function does nothing.
|
233 |
+
|
234 |
+
A component is a set of related features in PyTorch. All of the log
|
235 |
+
messages emitted from a given component have their own log levels. If the
|
236 |
+
log level of a particular message has priority greater than or equal to its
|
237 |
+
component's log level setting, it is emitted. Otherwise, it is suppressed.
|
238 |
+
This allows you to, for instance, silence large groups of log messages that
|
239 |
+
are not relevant to you and increase verbosity of logs for components that
|
240 |
+
are relevant. The expected log level values, ordered from highest to lowest
|
241 |
+
priority, are:
|
242 |
+
|
243 |
+
* ``logging.CRITICAL``
|
244 |
+
* ``logging.ERROR``
|
245 |
+
* ``logging.WARNING``
|
246 |
+
* ``logging.INFO``
|
247 |
+
* ``logging.DEBUG``
|
248 |
+
* ``logging.NOTSET``
|
249 |
+
|
250 |
+
See documentation for the Python ``logging`` module for more information on
|
251 |
+
log levels: `<https://docs.python.org/3/library/logging.html#logging-levels>`_
|
252 |
+
|
253 |
+
An artifact is a particular type of log message. Each artifact is assigned
|
254 |
+
to a parent component. A component can emit many different kinds of
|
255 |
+
artifacts. In general, an artifact is emitted if either its corresponding
|
256 |
+
setting in the argument list below is turned on or if its parent component
|
257 |
+
is set to a log level less than or equal to the log level of the artifact.
|
258 |
+
|
259 |
+
Keyword args:
|
260 |
+
all (:class:`Optional[int]`):
|
261 |
+
The default log level for all components. Default: ``logging.WARN``
|
262 |
+
|
263 |
+
dynamo (:class:`Optional[int]`):
|
264 |
+
The log level for the TorchDynamo component. Default: ``logging.WARN``
|
265 |
+
|
266 |
+
aot (:class:`Optional[int]`):
|
267 |
+
The log level for the AOTAutograd component. Default: ``logging.WARN``
|
268 |
+
|
269 |
+
autograd (:class:`Optional[int]`):
|
270 |
+
The log level for autograd. Default: ``logging.WARN``
|
271 |
+
|
272 |
+
inductor (:class:`Optional[int]`):
|
273 |
+
The log level for the TorchInductor component. Default: ``logging.WARN``
|
274 |
+
|
275 |
+
dynamic (:class:`Optional[int]`):
|
276 |
+
The log level for dynamic shapes. Default: ``logging.WARN``
|
277 |
+
|
278 |
+
distributed (:class:`Optional[int]`):
|
279 |
+
Whether to log c10d communication operations and other debug info from PyTorch Distributed components.
|
280 |
+
Default: ``logging.WARN``
|
281 |
+
|
282 |
+
dist_c10d (:class:`Optional[int]`):
|
283 |
+
Whether to log c10d communication operations related debug info in PyTorch Distributed components.
|
284 |
+
Default: ``logging.WARN``
|
285 |
+
|
286 |
+
dist_ddp (:class:`Optional[int]`):
|
287 |
+
Whether to log debug info related to ``DistributedDataParallel``(DDP) from PyTorch Distributed components.
|
288 |
+
Default: ``logging.WARN``
|
289 |
+
|
290 |
+
dist_fsdp (:class:`Optional[int]`):
|
291 |
+
Whether to log debug info related to ``FullyShardedDataParallel``(FSDP) in PyTorch Distributed components.
|
292 |
+
Default: ``logging.WARN``
|
293 |
+
|
294 |
+
onnx (:class:`Optional[int]`):
|
295 |
+
The log level for the ONNX exporter component. Default: ``logging.WARN``
|
296 |
+
|
297 |
+
bytecode (:class:`bool`):
|
298 |
+
Whether to emit the original and generated bytecode from TorchDynamo.
|
299 |
+
Default: ``False``
|
300 |
+
|
301 |
+
aot_graphs (:class:`bool`):
|
302 |
+
Whether to emit the graphs generated by AOTAutograd. Default: ``False``
|
303 |
+
|
304 |
+
aot_joint_graph (:class:`bool`):
|
305 |
+
Whether to emit the joint forward-backward graph generated by AOTAutograd. Default: ``False``
|
306 |
+
|
307 |
+
inductor (:class:`Optional[int]`):
|
308 |
+
Whether to log information from inductor cudagraphs. Default: ``logging.WARN``
|
309 |
+
|
310 |
+
ddp_graphs (:class:`bool`):
|
311 |
+
Whether to emit graphs generated by DDPOptimizer. Default: ``False``
|
312 |
+
|
313 |
+
graph (:class:`bool`):
|
314 |
+
Whether to emit the graph captured by TorchDynamo in tabular format.
|
315 |
+
Default: ``False``
|
316 |
+
|
317 |
+
graph_code (:class:`bool`):
|
318 |
+
Whether to emit the python source of the graph captured by TorchDynamo.
|
319 |
+
Default: ``False``
|
320 |
+
|
321 |
+
graph_breaks (:class:`bool`):
|
322 |
+
Whether to emit the graph breaks encountered by TorchDynamo.
|
323 |
+
Default: ``False``
|
324 |
+
|
325 |
+
graph_sizes (:class:`bool`):
|
326 |
+
Whether to emit tensor sizes of the graph captured by TorchDynamo.
|
327 |
+
Default: ``False``
|
328 |
+
|
329 |
+
guards (:class:`bool`):
|
330 |
+
Whether to emit the guards generated by TorchDynamo for each compiled
|
331 |
+
function. Default: ``False``
|
332 |
+
|
333 |
+
recompiles (:class:`bool`):
|
334 |
+
Whether to emit a guard failure reason and message every time
|
335 |
+
TorchDynamo recompiles a function. Default: ``False``
|
336 |
+
|
337 |
+
recompiles_verbose (:class:`bool`):
|
338 |
+
Whether to emit all guard failure reasons when TorchDynamo recompiles
|
339 |
+
a function, even those that are not actually run. Default: ``False``
|
340 |
+
|
341 |
+
trace_source (:class:`bool`):
|
342 |
+
Whether to emit when TorchDynamo begins tracing a new line. Default: ``False``
|
343 |
+
|
344 |
+
trace_call (:class:`bool`):
|
345 |
+
Whether to emit detailed line location when TorchDynamo creates an FX node
|
346 |
+
corresponding to function call. Python 3.11+ only. Default: ``False``
|
347 |
+
|
348 |
+
output_code (:class:`bool`):
|
349 |
+
Whether to emit the TorchInductor output code. Default: ``False``
|
350 |
+
|
351 |
+
schedule (:class:`bool`):
|
352 |
+
Whether to emit the TorchInductor schedule. Default: ``False``
|
353 |
+
|
354 |
+
perf_hints (:class:`bool`):
|
355 |
+
Whether to emit the TorchInductor perf hints. Default: ``False``
|
356 |
+
|
357 |
+
post_grad_graphs (:class:`bool`):
|
358 |
+
Whether to emit the graphs generated by after post grad passes. Default: ``False``
|
359 |
+
|
360 |
+
onnx_diagnostics (:class:`bool`):
|
361 |
+
Whether to emit the ONNX exporter diagnostics in logging. Default: ``False``
|
362 |
+
|
363 |
+
fusion (:class:`bool`):
|
364 |
+
Whether to emit detailed Inductor fusion decisions. Default: ``False``
|
365 |
+
|
366 |
+
overlap (:class:`bool`):
|
367 |
+
Whether to emit detailed Inductor compute/comm overlap decisions. Default: ``False``
|
368 |
+
|
369 |
+
sym_node (:class:`bool`):
|
370 |
+
Whether to emit debug info for various SymNode opterations. Default: ``False``
|
371 |
+
|
372 |
+
export (:class:`Optional[int]`):
|
373 |
+
The log level for export. Default: ``logging.WARN``
|
374 |
+
|
375 |
+
modules (dict):
|
376 |
+
This argument provides an alternate way to specify the above log
|
377 |
+
component and artifact settings, in the format of a keyword args
|
378 |
+
dictionary given as a single argument. There are two cases
|
379 |
+
where this is useful (1) if a new log component or artifact has
|
380 |
+
been registered but a keyword argument for it has not been added
|
381 |
+
to this function and (2) if the log level for an unregistered module
|
382 |
+
needs to be set. This can be done by providing the fully-qualified module
|
383 |
+
name as the key, with the log level as the value. Default: ``None``
|
384 |
+
|
385 |
+
|
386 |
+
Example::
|
387 |
+
|
388 |
+
>>> # xdoctest: +SKIP
|
389 |
+
>>> import logging
|
390 |
+
|
391 |
+
# The following changes the "dynamo" component to emit DEBUG-level
|
392 |
+
# logs, and to emit "graph_code" artifacts.
|
393 |
+
|
394 |
+
>>> torch._logging.set_logs(dynamo=logging.DEBUG, graph_code=True)
|
395 |
+
|
396 |
+
# The following enables the logs for a different module
|
397 |
+
|
398 |
+
>>> torch._logging.set_logs(modules={"unregistered.module.name": logging.DEBUG})
|
399 |
+
"""
|
400 |
+
# ignore if env var is set
|
401 |
+
if LOG_ENV_VAR in os.environ:
|
402 |
+
log.warning(
|
403 |
+
"Using TORCH_LOGS environment variable for log settings, ignoring call to set_logs"
|
404 |
+
)
|
405 |
+
return
|
406 |
+
|
407 |
+
log_state.clear()
|
408 |
+
|
409 |
+
modules = modules or {}
|
410 |
+
|
411 |
+
def _set_logs(**kwargs):
|
412 |
+
for alias, val in itertools.chain(kwargs.items(), modules.items()): # type: ignore[union-attr]
|
413 |
+
if val is None:
|
414 |
+
continue
|
415 |
+
|
416 |
+
if log_registry.is_artifact(alias):
|
417 |
+
if not isinstance(val, bool):
|
418 |
+
raise ValueError(
|
419 |
+
f"Expected bool to enable artifact {alias}, received {val}"
|
420 |
+
)
|
421 |
+
|
422 |
+
if val:
|
423 |
+
log_state.enable_artifact(alias)
|
424 |
+
elif log_registry.is_log(alias) or alias in log_registry.child_log_qnames:
|
425 |
+
if val not in logging._levelToName:
|
426 |
+
raise ValueError(
|
427 |
+
f"Unrecognized log level for log {alias}: {val}, valid level values "
|
428 |
+
f"are: {','.join([str(k) for k in logging._levelToName.keys()])}"
|
429 |
+
)
|
430 |
+
|
431 |
+
log_state.enable_log(
|
432 |
+
log_registry.log_alias_to_log_qnames.get(alias, alias), val
|
433 |
+
)
|
434 |
+
else:
|
435 |
+
raise ValueError(
|
436 |
+
f"Unrecognized log or artifact name passed to set_logs: {alias}"
|
437 |
+
)
|
438 |
+
|
439 |
+
_init_logs()
|
440 |
+
|
441 |
+
_set_logs(
|
442 |
+
torch=all,
|
443 |
+
dynamo=dynamo,
|
444 |
+
aot=aot,
|
445 |
+
autograd=autograd,
|
446 |
+
inductor=inductor,
|
447 |
+
dynamic=dynamic,
|
448 |
+
bytecode=bytecode,
|
449 |
+
aot_graphs=aot_graphs,
|
450 |
+
aot_joint_graph=aot_joint_graph,
|
451 |
+
ddp_graphs=ddp_graphs,
|
452 |
+
distributed=distributed,
|
453 |
+
dist_c10d=dist_c10d,
|
454 |
+
dist_ddp=dist_ddp,
|
455 |
+
dist_fsdp=dist_fsdp,
|
456 |
+
graph=graph,
|
457 |
+
graph_code=graph_code,
|
458 |
+
graph_breaks=graph_breaks,
|
459 |
+
graph_sizes=graph_sizes,
|
460 |
+
guards=guards,
|
461 |
+
recompiles=recompiles,
|
462 |
+
recompiles_verbose=recompiles_verbose,
|
463 |
+
trace_source=trace_source,
|
464 |
+
trace_call=trace_call,
|
465 |
+
output_code=output_code,
|
466 |
+
schedule=schedule,
|
467 |
+
perf_hints=perf_hints,
|
468 |
+
post_grad_graphs=post_grad_graphs,
|
469 |
+
onnx=onnx,
|
470 |
+
onnx_diagnostics=onnx_diagnostics,
|
471 |
+
fusion=fusion,
|
472 |
+
overlap=overlap,
|
473 |
+
sym_node=sym_node,
|
474 |
+
export=export,
|
475 |
+
cudagraphs=cudagraphs,
|
476 |
+
)
|
477 |
+
|
478 |
+
|
479 |
+
def get_loggers():
|
480 |
+
"""
|
481 |
+
Returns: a list of all registered loggers
|
482 |
+
"""
|
483 |
+
return [logging.getLogger(qname) for qname in log_registry.get_log_qnames()]
|
484 |
+
|
485 |
+
|
486 |
+
def register_log(setting_name, log_name):
|
487 |
+
"""
|
488 |
+
Enables a log to be controlled by the env var and user API with the setting_name
|
489 |
+
Args:
|
490 |
+
setting_name: the shorthand name used in the env var and user API
|
491 |
+
log_name: the log name that the setting_name is associated with
|
492 |
+
"""
|
493 |
+
log_registry.register_log(setting_name, log_name)
|
494 |
+
|
495 |
+
|
496 |
+
def register_artifact(
|
497 |
+
setting_name, description, visible=False, off_by_default=False, log_format=None
|
498 |
+
):
|
499 |
+
"""
|
500 |
+
Enables an artifact to be controlled by the env var and user API with name
|
501 |
+
Args:
|
502 |
+
setting_name: the shorthand name used in the env var and user API
|
503 |
+
description: A description of what this outputs
|
504 |
+
visible: Whether it gets suggested to users by default
|
505 |
+
off_by_default: whether this artifact should be logged when the ancestor loggers
|
506 |
+
are enabled at level DEBUG
|
507 |
+
"""
|
508 |
+
log_registry.register_artifact_name(
|
509 |
+
setting_name, description, visible, off_by_default, log_format
|
510 |
+
)
|
511 |
+
|
512 |
+
|
513 |
+
def getArtifactLogger(module_qname, artifact_name):
|
514 |
+
if artifact_name not in log_registry.artifact_names:
|
515 |
+
raise ValueError(
|
516 |
+
f"Artifact name: {repr(artifact_name)} not registered,"
|
517 |
+
f"please call register_artifact({repr(artifact_name)}) in torch._logging.registrations."
|
518 |
+
)
|
519 |
+
qname = module_qname + f".__{artifact_name}"
|
520 |
+
log = logging.getLogger(qname)
|
521 |
+
log.artifact_name = artifact_name # type: ignore[attr-defined]
|
522 |
+
log_registry.register_artifact_log(qname)
|
523 |
+
configure_artifact_log(log)
|
524 |
+
return log
|
525 |
+
|
526 |
+
|
527 |
+
INCR_VERBOSITY_CHAR = "+"
|
528 |
+
DECR_VERBOSITY_CHAR = "-"
|
529 |
+
VERBOSITY_REGEX = (
|
530 |
+
"("
|
531 |
+
+ "|".join([re.escape(INCR_VERBOSITY_CHAR), re.escape(DECR_VERBOSITY_CHAR)])
|
532 |
+
+ "?)"
|
533 |
+
)
|
534 |
+
|
535 |
+
|
536 |
+
def configure_artifact_log(log):
|
537 |
+
# If the artifact is off by default, then it should only be logged when explicitly
|
538 |
+
# enabled; set propagate to False so that this artifact is not propagated
|
539 |
+
# to its ancestor logger
|
540 |
+
if log_registry.is_off_by_default(log.artifact_name):
|
541 |
+
log.propagate = False
|
542 |
+
|
543 |
+
# enable artifact logging when explicitly enabled
|
544 |
+
if log_state.is_artifact_enabled(log.artifact_name):
|
545 |
+
log.setLevel(logging.DEBUG)
|
546 |
+
log.propagate = True
|
547 |
+
|
548 |
+
|
549 |
+
# match a comma separated list of loggable names (whitespace allowed after commas)
|
550 |
+
def _gen_settings_regex():
|
551 |
+
return re.compile(r"((\+|-)?[\w\.]+,\s*)*(\+|-)?[\w\.]+?")
|
552 |
+
|
553 |
+
|
554 |
+
def _validate_settings(settings):
|
555 |
+
return re.fullmatch(_gen_settings_regex(), settings) is not None
|
556 |
+
|
557 |
+
|
558 |
+
def help_message(verbose=False):
|
559 |
+
def pad_to(s, length=30):
|
560 |
+
assert len(s) <= length
|
561 |
+
return s + " " * (length - len(s))
|
562 |
+
|
563 |
+
if verbose:
|
564 |
+
printed_artifacts = log_registry.artifact_names
|
565 |
+
else:
|
566 |
+
printed_artifacts = log_registry.visible_artifacts
|
567 |
+
|
568 |
+
if verbose:
|
569 |
+
heading = "All registered names"
|
570 |
+
else:
|
571 |
+
heading = "Visible registered names (use TORCH_LOGS='+help' for full list)"
|
572 |
+
lines = (
|
573 |
+
["all"]
|
574 |
+
+ sorted(log_registry.log_alias_to_log_qnames.keys())
|
575 |
+
+ sorted(
|
576 |
+
[
|
577 |
+
f"{pad_to(name)}\t{log_registry.artifact_descriptions[name]}"
|
578 |
+
for name in printed_artifacts
|
579 |
+
]
|
580 |
+
)
|
581 |
+
)
|
582 |
+
setting_info = " " + "\n ".join(lines)
|
583 |
+
examples = """
|
584 |
+
Examples:
|
585 |
+
TORCH_LOGS="+dynamo,aot" will set the log level of TorchDynamo to
|
586 |
+
logging.DEBUG and AOT to logging.INFO
|
587 |
+
|
588 |
+
TORCH_LOGS="-dynamo,+inductor" will set the log level of TorchDynamo to
|
589 |
+
logging.ERROR and TorchInductor to logging.DEBUG
|
590 |
+
|
591 |
+
TORCH_LOGS="aot_graphs" will enable the aot_graphs artifact
|
592 |
+
|
593 |
+
TORCH_LOGS="+dynamo,schedule" will enable set the log level of TorchDynamo
|
594 |
+
to logging.DEBUG and enable the schedule artifact
|
595 |
+
|
596 |
+
TORCH_LOGS="+some.random.module,schedule" will set the log level of
|
597 |
+
some.random.module to logging.DEBUG and enable the schedule artifact
|
598 |
+
|
599 |
+
TORCH_LOGS_FORMAT="%(levelname)s: %(message)s" or any provided format
|
600 |
+
string will set the output format
|
601 |
+
Valid keys are "levelname", "message", "pathname", "levelno", "lineno",
|
602 |
+
"filename" and "name".
|
603 |
+
|
604 |
+
TORCH_LOGS_OUT=/tmp/output.txt will output the logs to /tmp/output.txt as
|
605 |
+
well. This is useful when the output is long.
|
606 |
+
""" # flake8: noqa: B950
|
607 |
+
msg = f"""
|
608 |
+
TORCH_LOGS Info
|
609 |
+
{examples}
|
610 |
+
|
611 |
+
{heading}
|
612 |
+
{setting_info}
|
613 |
+
"""
|
614 |
+
return msg
|
615 |
+
|
616 |
+
|
617 |
+
def _invalid_settings_err_msg(settings, verbose=False):
|
618 |
+
valid_settings = ", ".join(
|
619 |
+
["all"]
|
620 |
+
+ list(log_registry.log_alias_to_log_qnames.keys())
|
621 |
+
+ list(log_registry.artifact_names)
|
622 |
+
)
|
623 |
+
msg = f"""
|
624 |
+
Invalid log settings: {settings}, must be a comma separated list of fully
|
625 |
+
qualified module names, registered log names or registered artifact names.
|
626 |
+
For more info on various settings, try TORCH_LOGS="help"
|
627 |
+
Valid settings:
|
628 |
+
{valid_settings}
|
629 |
+
"""
|
630 |
+
return msg
|
631 |
+
|
632 |
+
|
633 |
+
@functools.lru_cache
|
634 |
+
def _parse_log_settings(settings):
|
635 |
+
if settings == "":
|
636 |
+
return dict()
|
637 |
+
|
638 |
+
if settings == "help":
|
639 |
+
raise ValueError(help_message(verbose=False))
|
640 |
+
elif settings == "+help":
|
641 |
+
raise ValueError(help_message(verbose=True))
|
642 |
+
if not _validate_settings(settings):
|
643 |
+
raise ValueError(_invalid_settings_err_msg(settings))
|
644 |
+
|
645 |
+
settings = re.sub(r"\s+", "", settings)
|
646 |
+
log_names = settings.split(",")
|
647 |
+
|
648 |
+
def get_name_level_pair(name):
|
649 |
+
clean_name = name.replace(INCR_VERBOSITY_CHAR, "")
|
650 |
+
clean_name = clean_name.replace(DECR_VERBOSITY_CHAR, "")
|
651 |
+
|
652 |
+
if name[0] == INCR_VERBOSITY_CHAR:
|
653 |
+
level = logging.DEBUG
|
654 |
+
elif name[0] == DECR_VERBOSITY_CHAR:
|
655 |
+
level = logging.ERROR
|
656 |
+
else:
|
657 |
+
level = logging.INFO
|
658 |
+
|
659 |
+
return clean_name, level
|
660 |
+
|
661 |
+
log_state = LogState()
|
662 |
+
|
663 |
+
for name in log_names:
|
664 |
+
name, level = get_name_level_pair(name)
|
665 |
+
|
666 |
+
if name == "all":
|
667 |
+
name = "torch"
|
668 |
+
|
669 |
+
if log_registry.is_log(name):
|
670 |
+
assert level is not None
|
671 |
+
log_qnames = log_registry.log_alias_to_log_qnames[name]
|
672 |
+
log_state.enable_log(log_qnames, level)
|
673 |
+
elif log_registry.is_artifact(name):
|
674 |
+
log_state.enable_artifact(name)
|
675 |
+
elif _is_valid_module(name):
|
676 |
+
if not _has_registered_parent(name):
|
677 |
+
log_registry.register_log(name, name)
|
678 |
+
else:
|
679 |
+
log_registry.register_child_log(name)
|
680 |
+
log_state.enable_log(name, level)
|
681 |
+
else:
|
682 |
+
raise ValueError(_invalid_settings_err_msg(settings))
|
683 |
+
|
684 |
+
return log_state
|
685 |
+
|
686 |
+
|
687 |
+
def _is_valid_module(qname):
|
688 |
+
try:
|
689 |
+
__import__(qname)
|
690 |
+
return True
|
691 |
+
except ImportError:
|
692 |
+
return False
|
693 |
+
|
694 |
+
|
695 |
+
def _update_log_state_from_env():
|
696 |
+
global log_state
|
697 |
+
log_setting = os.environ.get(LOG_ENV_VAR, None)
|
698 |
+
if log_setting is not None:
|
699 |
+
log_state = _parse_log_settings(log_setting)
|
700 |
+
|
701 |
+
|
702 |
+
def _has_registered_parent(log_qname):
|
703 |
+
cur_log = logging.getLogger(log_qname)
|
704 |
+
|
705 |
+
registered_log_qnames = log_registry.get_log_qnames()
|
706 |
+
|
707 |
+
while cur_log.parent:
|
708 |
+
if cur_log.name in registered_log_qnames:
|
709 |
+
return True
|
710 |
+
cur_log = cur_log.parent
|
711 |
+
|
712 |
+
return False
|
713 |
+
|
714 |
+
|
715 |
+
# apply custom formats to artifacts when necessary
|
716 |
+
class TorchLogsFormatter(logging.Formatter):
|
717 |
+
def __init__(self, *, trace: bool = False):
|
718 |
+
super().__init__()
|
719 |
+
self._is_trace = trace
|
720 |
+
|
721 |
+
def format(self, record):
|
722 |
+
artifact_name = getattr(logging.getLogger(record.name), "artifact_name", None)
|
723 |
+
if artifact_name is not None:
|
724 |
+
artifact_formatter = log_registry.artifact_log_formatters.get(
|
725 |
+
artifact_name, None
|
726 |
+
)
|
727 |
+
if artifact_formatter is not None:
|
728 |
+
return artifact_formatter.format(record)
|
729 |
+
|
730 |
+
record.message = record.getMessage()
|
731 |
+
record.asctime = self.formatTime(record, "%m%d %H:%M:%S")
|
732 |
+
|
733 |
+
# exception handling - copied from logging.Formatter.format
|
734 |
+
s = record.message
|
735 |
+
if record.exc_info:
|
736 |
+
# Cache the traceback text to avoid converting it multiple times
|
737 |
+
# (it's constant anyway)
|
738 |
+
if not record.exc_text:
|
739 |
+
record.exc_text = self.formatException(record.exc_info)
|
740 |
+
if record.exc_text:
|
741 |
+
if s[-1:] != "\n":
|
742 |
+
s = s + "\n"
|
743 |
+
s = s + record.exc_text
|
744 |
+
if record.stack_info:
|
745 |
+
if s[-1:] != "\n":
|
746 |
+
s = s + "\n"
|
747 |
+
s = s + self.formatStack(record.stack_info)
|
748 |
+
|
749 |
+
record.rankprefix = ""
|
750 |
+
if not self._is_trace and dist.is_available() and dist.is_initialized():
|
751 |
+
record.rankprefix = f"[rank{dist.get_rank()}]:"
|
752 |
+
|
753 |
+
record.traceid = ""
|
754 |
+
if (
|
755 |
+
not self._is_trace
|
756 |
+
and (trace_id := torch._guards.CompileContext.current_trace_id())
|
757 |
+
is not None
|
758 |
+
):
|
759 |
+
record.traceid = f" [{trace_id}]"
|
760 |
+
|
761 |
+
glog_level_to_abbr = {
|
762 |
+
"DEBUG": "V", # V is for VERBOSE in glog
|
763 |
+
"INFO": "I",
|
764 |
+
"WARNING": "W",
|
765 |
+
"ERROR": "E",
|
766 |
+
"CRITICAL": "C",
|
767 |
+
}
|
768 |
+
|
769 |
+
shortlevel = glog_level_to_abbr.get(record.levelname, record.levelname)
|
770 |
+
|
771 |
+
record.artifactprefix = ""
|
772 |
+
if artifact_name is not None:
|
773 |
+
record.artifactprefix = f" [__{artifact_name}]"
|
774 |
+
|
775 |
+
prefix = (
|
776 |
+
f"{record.rankprefix}{shortlevel}{record.asctime}.{int(record.msecs*1000):06d} {record.thread} "
|
777 |
+
f"{os.path.relpath(record.pathname, os.path.dirname(os.path.dirname(torch.__file__)))}:"
|
778 |
+
f"{record.lineno}]{record.traceid}{record.artifactprefix}"
|
779 |
+
)
|
780 |
+
if self._is_trace:
|
781 |
+
assert s == ""
|
782 |
+
r = f"{prefix} {json.dumps(record.metadata)}"
|
783 |
+
if record.payload is not None:
|
784 |
+
r += "".join(f"\n\t{l}" for l in record.payload.split("\n"))
|
785 |
+
return r
|
786 |
+
else:
|
787 |
+
lines = s.split("\n")
|
788 |
+
return "\n".join(f"{prefix} {l}" for l in lines)
|
789 |
+
|
790 |
+
|
791 |
+
def _default_formatter():
|
792 |
+
fmt = os.environ.get(LOG_FORMAT_ENV_VAR, None)
|
793 |
+
if fmt is None:
|
794 |
+
return TorchLogsFormatter()
|
795 |
+
else:
|
796 |
+
if fmt in ("short", "basic"):
|
797 |
+
fmt = logging.BASIC_FORMAT
|
798 |
+
return logging.Formatter(fmt)
|
799 |
+
|
800 |
+
|
801 |
+
DEFAULT_FORMATTER = _default_formatter()
|
802 |
+
|
803 |
+
|
804 |
+
def _setup_handlers(create_handler_fn, log):
|
805 |
+
debug_handler = _track_handler(create_handler_fn())
|
806 |
+
debug_handler.setFormatter(DEFAULT_FORMATTER)
|
807 |
+
debug_handler.setLevel(logging.DEBUG)
|
808 |
+
log.addHandler(debug_handler)
|
809 |
+
|
810 |
+
|
811 |
+
handlers = WeakSet() # type: ignore[var-annotated]
|
812 |
+
|
813 |
+
|
814 |
+
# mark handlers that we've created
|
815 |
+
# so we don't modify user handlers
|
816 |
+
def _track_handler(handler):
|
817 |
+
handlers.add(handler)
|
818 |
+
return handler
|
819 |
+
|
820 |
+
|
821 |
+
def _is_torch_handler(handler):
|
822 |
+
return handler in handlers
|
823 |
+
|
824 |
+
|
825 |
+
# clears all torch handlers on specified loggers
|
826 |
+
def _clear_handlers(log):
|
827 |
+
to_remove = [handler for handler in log.handlers if _is_torch_handler(handler)]
|
828 |
+
for handler in to_remove:
|
829 |
+
log.removeHandler(handler)
|
830 |
+
|
831 |
+
|
832 |
+
def _reset_logs():
|
833 |
+
# reset all registered logs
|
834 |
+
for log_qname in log_registry.get_log_qnames():
|
835 |
+
log = logging.getLogger(log_qname)
|
836 |
+
log.setLevel(logging.WARNING)
|
837 |
+
log.propagate = False
|
838 |
+
_clear_handlers(log)
|
839 |
+
|
840 |
+
# reset all artifact and child logs
|
841 |
+
for artifact_log_qname in itertools.chain(
|
842 |
+
log_registry.get_artifact_log_qnames(), log_registry.get_child_log_qnames()
|
843 |
+
):
|
844 |
+
log = logging.getLogger(artifact_log_qname)
|
845 |
+
log.setLevel(logging.NOTSET)
|
846 |
+
log.propagate = True
|
847 |
+
|
848 |
+
trace_log.propagate = False
|
849 |
+
_clear_handlers(trace_log)
|
850 |
+
|
851 |
+
|
852 |
+
def _get_log_state():
|
853 |
+
return log_state
|
854 |
+
|
855 |
+
|
856 |
+
def _set_log_state(state):
|
857 |
+
global log_state
|
858 |
+
log_state = state
|
859 |
+
|
860 |
+
|
861 |
+
def _init_logs(log_file_name=None):
|
862 |
+
_reset_logs()
|
863 |
+
_update_log_state_from_env()
|
864 |
+
|
865 |
+
out = os.environ.get(LOG_OUT_ENV_VAR, None)
|
866 |
+
if out is not None:
|
867 |
+
log_file_name = out
|
868 |
+
|
869 |
+
# First, reset all known (registered) loggers to NOTSET, so that they
|
870 |
+
# respect their parent log level
|
871 |
+
for log_qname in log_registry.get_log_qnames():
|
872 |
+
# But not the top level torch level: this defaults to WARNING so
|
873 |
+
# that our log messages don't leak to the lower levels
|
874 |
+
if log_qname == "torch":
|
875 |
+
continue
|
876 |
+
log = logging.getLogger(log_qname)
|
877 |
+
log.setLevel(logging.NOTSET)
|
878 |
+
|
879 |
+
# Now, for all loggers which the user requested to have non-standard
|
880 |
+
# logging behavior, modify their log levels
|
881 |
+
for log_qname, level in log_state.get_log_level_pairs():
|
882 |
+
log = logging.getLogger(log_qname)
|
883 |
+
log.setLevel(level)
|
884 |
+
|
885 |
+
# Finally, setup handlers for all registered loggers
|
886 |
+
for log_qname in log_registry.get_log_qnames():
|
887 |
+
log = logging.getLogger(log_qname)
|
888 |
+
_setup_handlers(
|
889 |
+
logging.StreamHandler,
|
890 |
+
log,
|
891 |
+
)
|
892 |
+
|
893 |
+
if log_file_name is not None:
|
894 |
+
_setup_handlers(
|
895 |
+
lambda: logging.FileHandler(log_file_name),
|
896 |
+
log,
|
897 |
+
)
|
898 |
+
|
899 |
+
# configure artifact loggers, note: this must happen last
|
900 |
+
# since the levels of ancestor loggers are taken into account
|
901 |
+
for artifact_log_qname in log_registry.get_artifact_log_qnames():
|
902 |
+
log = logging.getLogger(artifact_log_qname)
|
903 |
+
configure_artifact_log(log)
|
904 |
+
|
905 |
+
# Setup handler for the special trace_log, with different default
|
906 |
+
# configuration
|
907 |
+
trace_dir_name = os.environ.get(TRACE_ENV_VAR, None)
|
908 |
+
# This handler may remove itself if trace_dir_name is None and we are not
|
909 |
+
# actually in an FB environment. This allows us to defer actually
|
910 |
+
# initializing it until we actually need to log anything. This is
|
911 |
+
# important because JK initializes a C++ singleton, which will pork our
|
912 |
+
# process if we subsequently fork.
|
913 |
+
handler = LazyTraceHandler(trace_dir_name)
|
914 |
+
# This log is ALWAYS at debug level. We will additionally test if there
|
915 |
+
# are any handlers before deciding to actually call logging on this. Do
|
916 |
+
# not manually call
|
917 |
+
trace_log.setLevel(logging.DEBUG)
|
918 |
+
trace_log_handler = _track_handler(handler)
|
919 |
+
trace_log_handler.setFormatter(TorchLogsFormatter(trace=True))
|
920 |
+
trace_log.addHandler(trace_log_handler)
|
921 |
+
|
922 |
+
|
923 |
+
class LazyTraceHandler(logging.StreamHandler):
|
924 |
+
"""Like FileHandler, but the file is allocated lazily only upon the first log message"""
|
925 |
+
|
926 |
+
def __init__(self, root_dir: Optional[str]):
|
927 |
+
# This is implemented in the same way that delay is implemented on
|
928 |
+
# FileHandler
|
929 |
+
self.root_dir = root_dir
|
930 |
+
logging.Handler.__init__(self)
|
931 |
+
self.stream = None
|
932 |
+
self._builtin_open = open
|
933 |
+
|
934 |
+
# cloned from FileHandler in cpython
|
935 |
+
def close(self):
|
936 |
+
self.acquire()
|
937 |
+
try:
|
938 |
+
try:
|
939 |
+
if self.stream:
|
940 |
+
try:
|
941 |
+
self.flush()
|
942 |
+
finally:
|
943 |
+
stream = self.stream
|
944 |
+
self.stream = None
|
945 |
+
if hasattr(stream, "close"):
|
946 |
+
stream.close()
|
947 |
+
finally:
|
948 |
+
# Issue #19523: call unconditionally to
|
949 |
+
# prevent a handler leak when delay is set
|
950 |
+
# Also see Issue #42378: we also rely on
|
951 |
+
# self._closed being set to True there
|
952 |
+
logging.StreamHandler.close(self)
|
953 |
+
finally:
|
954 |
+
self.release()
|
955 |
+
|
956 |
+
def emit(self, record):
|
957 |
+
if self.stream is None:
|
958 |
+
ok = False
|
959 |
+
if self.root_dir is None:
|
960 |
+
TRACE_LOG_DIR = "/logs"
|
961 |
+
open_func = self._builtin_open
|
962 |
+
|
963 |
+
import torch.version as torch_version
|
964 |
+
|
965 |
+
if hasattr(torch_version, "git_version"):
|
966 |
+
log.info("LazyTraceHandler: disabled because not fbcode")
|
967 |
+
elif not torch._utils_internal.justknobs_check("pytorch/trace:enable"):
|
968 |
+
log.info(
|
969 |
+
"LazyTraceHandler: disabled because justknobs_check('pytorch/trace:enable') returned False"
|
970 |
+
)
|
971 |
+
elif not os.path.exists(TRACE_LOG_DIR):
|
972 |
+
log.info(
|
973 |
+
"LazyTraceHandler: disabled because %s does not exist",
|
974 |
+
TRACE_LOG_DIR,
|
975 |
+
)
|
976 |
+
elif not os.access(TRACE_LOG_DIR, os.W_OK):
|
977 |
+
log.info(
|
978 |
+
"LazyTraceHandler: disabled because %s is not writeable",
|
979 |
+
TRACE_LOG_DIR,
|
980 |
+
)
|
981 |
+
else:
|
982 |
+
self.root_dir = TRACE_LOG_DIR
|
983 |
+
|
984 |
+
if self.root_dir is not None:
|
985 |
+
os.makedirs(self.root_dir, exist_ok=True)
|
986 |
+
ranksuffix = ""
|
987 |
+
if dist.is_available() and dist.is_initialized():
|
988 |
+
ranksuffix = f"rank_{dist.get_rank()}_"
|
989 |
+
self.stream = tempfile.NamedTemporaryFile(
|
990 |
+
mode="w+",
|
991 |
+
suffix=".log",
|
992 |
+
prefix=f"dedicated_log_torch_trace_{ranksuffix}",
|
993 |
+
dir=self.root_dir,
|
994 |
+
delete=False,
|
995 |
+
)
|
996 |
+
log.info("LazyTraceHandler: logging to %s", self.stream.name)
|
997 |
+
else:
|
998 |
+
# We go poof, remove and no-op
|
999 |
+
trace_log.removeHandler(self)
|
1000 |
+
return
|
1001 |
+
if self.stream:
|
1002 |
+
super().emit(record)
|
1003 |
+
|
1004 |
+
|
1005 |
+
@functools.lru_cache(None)
|
1006 |
+
def warning_once(logger_obj, *args, **kwargs):
|
1007 |
+
"""
|
1008 |
+
This function is similar to `logger.warning()`, but will emit the warning with the same message only once
|
1009 |
+
Note: The cache is for the function arguments, so 2 different callers using the same arguments will hit the cache.
|
1010 |
+
The assumption here is that all warning messages are unique across the code. If they aren't then need to switch to
|
1011 |
+
another type of cache that includes the caller frame information in the hashing function.
|
1012 |
+
"""
|
1013 |
+
logger_obj.warning(*args, **kwargs)
|
1014 |
+
|
1015 |
+
|
1016 |
+
class LazyString:
|
1017 |
+
def __init__(self, func, *args, **kwargs):
|
1018 |
+
self.func = func
|
1019 |
+
self.args = args
|
1020 |
+
self.kwargs = kwargs
|
1021 |
+
|
1022 |
+
def __str__(self):
|
1023 |
+
return self.func(*self.args, **self.kwargs)
|
1024 |
+
|
1025 |
+
|
1026 |
+
def trace_structured(
|
1027 |
+
name: str,
|
1028 |
+
# NB: metadata expected to be dict so adding more info is forward compatible
|
1029 |
+
# Tuple[str, int] is a special case for string interning
|
1030 |
+
metadata_fn: Callable[[], Union[Dict[str, Any], Tuple[str, int]]] = dict,
|
1031 |
+
*,
|
1032 |
+
payload_fn: Callable[[], Optional[Union[str, object]]] = lambda: None,
|
1033 |
+
suppress_context: bool = False,
|
1034 |
+
):
|
1035 |
+
"""
|
1036 |
+
metadata is an arbitrary JSON compatible struct, but it's expected to not be
|
1037 |
+
too long (e.g., less than 1MB)
|
1038 |
+
|
1039 |
+
payload is an arbitrary string, which can be arbitrarily long (but expected to have
|
1040 |
+
newlines so no lines are too long)
|
1041 |
+
"""
|
1042 |
+
assert "name" not in ["rank", "frame_id", "frame_compile_id", "attempt"]
|
1043 |
+
assert callable(
|
1044 |
+
metadata_fn
|
1045 |
+
), f"metadata_fn should be callable, but got {type(metadata_fn)}"
|
1046 |
+
assert callable(
|
1047 |
+
payload_fn
|
1048 |
+
), f"payload_fn should be callable, but got {type(payload_fn)}"
|
1049 |
+
# trace_log never propagates and is ALWAYS DEBUG, so also check that there
|
1050 |
+
# are handlers instead of checking the log level
|
1051 |
+
if trace_log.handlers:
|
1052 |
+
record: Dict[str, object] = {}
|
1053 |
+
record[name] = metadata_fn()
|
1054 |
+
if not suppress_context:
|
1055 |
+
# TODO: Actually, the rank probably should just be emitted once at
|
1056 |
+
# the top, and not repeatedly spammed in all the logs, since it
|
1057 |
+
# never changes and we assume no interleaving
|
1058 |
+
if dist.is_available() and dist.is_initialized():
|
1059 |
+
record["rank"] = dist.get_rank()
|
1060 |
+
if (
|
1061 |
+
trace_id := torch._guards.CompileContext.current_trace_id()
|
1062 |
+
) is not None:
|
1063 |
+
record["frame_id"] = trace_id.compile_id.frame_id
|
1064 |
+
record["frame_compile_id"] = trace_id.compile_id.frame_compile_id
|
1065 |
+
record["attempt"] = trace_id.attempt
|
1066 |
+
payload = payload_fn()
|
1067 |
+
if payload is not None:
|
1068 |
+
if not isinstance(payload, str):
|
1069 |
+
if isinstance(payload, list):
|
1070 |
+
# special case to look better
|
1071 |
+
payload = "[\n" + ",\n".join(json.dumps(i) for i in payload) + "\n]"
|
1072 |
+
else:
|
1073 |
+
# force newlines so we are unlikely to overflow line limit
|
1074 |
+
payload = json.dumps(payload, indent=0)
|
1075 |
+
h = hashlib.md5()
|
1076 |
+
h.update(payload.encode("utf-8"))
|
1077 |
+
record["has_payload"] = h.hexdigest()
|
1078 |
+
trace_log.debug(
|
1079 |
+
"", extra={"metadata": record, "payload": payload}, stacklevel=2
|
1080 |
+
)
|
1081 |
+
|
1082 |
+
|
1083 |
+
import torch._guards
|
1084 |
+
import torch._utils_internal
|
1085 |
+
import torch.distributed as dist
|
venv/lib/python3.10/site-packages/torch/_logging/_registrations.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# flake8: noqa: B950
|
2 |
+
from ._internal import register_artifact, register_log
|
3 |
+
|
4 |
+
DYNAMIC = ["torch.fx.experimental.symbolic_shapes", "torch.fx.experimental.sym_node"]
|
5 |
+
DISTRIBUTED = [
|
6 |
+
"torch.distributed",
|
7 |
+
"torch._dynamo.backends.distributed",
|
8 |
+
"torch.nn.parallel.distributed",
|
9 |
+
]
|
10 |
+
|
11 |
+
register_log("dynamo", ["torch._dynamo", *DYNAMIC])
|
12 |
+
register_log("aot", ["torch._functorch.aot_autograd", "torch._functorch._aot_autograd"])
|
13 |
+
register_log("autograd", "torch.autograd")
|
14 |
+
register_log("inductor", ["torch._inductor", "torch._inductor.cudagraph_trees"])
|
15 |
+
|
16 |
+
register_artifact(
|
17 |
+
"cudagraphs",
|
18 |
+
"Logs information from wrapping inductor generated code with cudagraphs.",
|
19 |
+
)
|
20 |
+
|
21 |
+
register_log("dynamic", DYNAMIC)
|
22 |
+
register_log("torch", "torch")
|
23 |
+
register_log("distributed", DISTRIBUTED)
|
24 |
+
register_log(
|
25 |
+
"dist_c10d", ["torch.distributed.distributed_c10d", "torch.distributed.rendezvous"]
|
26 |
+
)
|
27 |
+
register_log(
|
28 |
+
"dist_ddp", ["torch.nn.parallel.distributed", "torch._dynamo.backends.distributed"]
|
29 |
+
)
|
30 |
+
register_log("dist_fsdp", ["torch.distributed.fsdp"])
|
31 |
+
register_log("onnx", "torch.onnx")
|
32 |
+
register_log("export", ["torch._dynamo", "torch.export", *DYNAMIC])
|
33 |
+
|
34 |
+
register_artifact(
|
35 |
+
"guards",
|
36 |
+
"This prints the guards for every compiled Dynamo frame. It does not tell you where the guards come from.",
|
37 |
+
visible=True,
|
38 |
+
)
|
39 |
+
register_artifact("verbose_guards", "", off_by_default=True)
|
40 |
+
register_artifact(
|
41 |
+
"bytecode",
|
42 |
+
"Prints the original and modified bytecode from Dynamo. Mostly useful if you're debugging our bytecode generation in Dynamo.",
|
43 |
+
off_by_default=True,
|
44 |
+
)
|
45 |
+
register_artifact(
|
46 |
+
"graph",
|
47 |
+
"Prints the dynamo traced graph (prior to AOTDispatch) in a table. If you prefer python code use `graph_code` instead. ",
|
48 |
+
)
|
49 |
+
register_artifact("graph_code", "Like `graph`, but gives you the Python code instead.")
|
50 |
+
register_artifact(
|
51 |
+
"graph_sizes", "Prints the sizes of all FX nodes in the dynamo graph."
|
52 |
+
)
|
53 |
+
register_artifact(
|
54 |
+
"trace_source",
|
55 |
+
"As we execute bytecode, prints the file name / line number we are processing and the actual source code. Useful with `bytecode`",
|
56 |
+
)
|
57 |
+
register_artifact(
|
58 |
+
"trace_call",
|
59 |
+
"Like trace_source, but it will give you the per-expression blow-by-blow if your Python is recent enough.",
|
60 |
+
)
|
61 |
+
register_artifact(
|
62 |
+
"aot_graphs",
|
63 |
+
"Prints the FX forward and backward graph generated by AOTDispatch, after partitioning. Useful to understand what's being given to Inductor",
|
64 |
+
visible=True,
|
65 |
+
)
|
66 |
+
register_artifact(
|
67 |
+
"aot_joint_graph",
|
68 |
+
"Print FX joint graph from AOTAutograd, prior to partitioning. Useful for debugging partitioning",
|
69 |
+
)
|
70 |
+
register_artifact(
|
71 |
+
"post_grad_graphs",
|
72 |
+
"Prints the FX graph generated by post grad passes. Useful to understand what's being given to Inductor after post grad passes",
|
73 |
+
)
|
74 |
+
register_artifact(
|
75 |
+
"compiled_autograd",
|
76 |
+
"Prints various logs in compiled_autograd, including but not limited to the graphs. Useful for debugging compiled_autograd.",
|
77 |
+
visible=True,
|
78 |
+
)
|
79 |
+
register_artifact(
|
80 |
+
"ddp_graphs",
|
81 |
+
"Only relevant for compiling DDP. DDP splits into multiple graphs to trigger comms early. This will print each individual graph here.",
|
82 |
+
)
|
83 |
+
register_artifact(
|
84 |
+
"recompiles",
|
85 |
+
"Prints the reason why we recompiled a graph. Very, very useful.",
|
86 |
+
visible=True,
|
87 |
+
)
|
88 |
+
register_artifact(
|
89 |
+
"recompiles_verbose",
|
90 |
+
"Prints all guard checks that fail during a recompilation. "
|
91 |
+
"At runtime, Dynamo will stop at the first failed check for each failing guard. "
|
92 |
+
"So not all logged failing checks are actually ran by Dynamo.",
|
93 |
+
visible=True,
|
94 |
+
off_by_default=True,
|
95 |
+
)
|
96 |
+
register_artifact(
|
97 |
+
"graph_breaks",
|
98 |
+
"Prints whenever Dynamo decides that it needs to graph break (i.e. create a new graph). Useful for debugging why torch.compile has poor performance",
|
99 |
+
visible=True,
|
100 |
+
)
|
101 |
+
register_artifact(
|
102 |
+
"not_implemented",
|
103 |
+
"Prints log messages whenever we return NotImplemented in a multi-dispatch, letting you trace through each object we attempted to dispatch to",
|
104 |
+
)
|
105 |
+
register_artifact(
|
106 |
+
"output_code",
|
107 |
+
"Prints the code that Inductor generates (either Triton or C++)",
|
108 |
+
off_by_default=True,
|
109 |
+
visible=True,
|
110 |
+
)
|
111 |
+
register_artifact(
|
112 |
+
"schedule",
|
113 |
+
"Inductor scheduler information. Useful if working on Inductor fusion algo",
|
114 |
+
off_by_default=True,
|
115 |
+
)
|
116 |
+
register_artifact("perf_hints", "", off_by_default=True)
|
117 |
+
register_artifact("onnx_diagnostics", "", off_by_default=True)
|
118 |
+
register_artifact(
|
119 |
+
"fusion",
|
120 |
+
"Detailed Inductor fusion decisions. More detailed than 'schedule'",
|
121 |
+
off_by_default=True,
|
122 |
+
)
|
123 |
+
register_artifact(
|
124 |
+
"overlap",
|
125 |
+
"Detailed Inductor compute/comm overlap decisions",
|
126 |
+
off_by_default=True,
|
127 |
+
)
|
128 |
+
register_artifact(
|
129 |
+
"sym_node",
|
130 |
+
"Logs extra info for various SymNode operations",
|
131 |
+
off_by_default=True,
|
132 |
+
)
|
133 |
+
|
134 |
+
register_artifact("custom_format_test_artifact", "Testing only", log_format="")
|
venv/lib/python3.10/site-packages/torch/_logging/structured.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Utilities for converting data types into structured JSON for dumping.
|
3 |
+
"""
|
4 |
+
|
5 |
+
import traceback
|
6 |
+
from typing import Dict, Sequence
|
7 |
+
|
8 |
+
import torch._logging._internal
|
9 |
+
|
10 |
+
|
11 |
+
INTERN_TABLE: Dict[str, int] = {}
|
12 |
+
|
13 |
+
|
14 |
+
def intern_string(s: str) -> int:
|
15 |
+
r = INTERN_TABLE.get(s, None)
|
16 |
+
if r is None:
|
17 |
+
r = len(INTERN_TABLE)
|
18 |
+
INTERN_TABLE[s] = r
|
19 |
+
torch._logging._internal.trace_structured(
|
20 |
+
"str", lambda: (s, r), suppress_context=True
|
21 |
+
)
|
22 |
+
return r
|
23 |
+
|
24 |
+
|
25 |
+
def from_traceback(tb: Sequence[traceback.FrameSummary]) -> object:
|
26 |
+
r = []
|
27 |
+
for frame in tb:
|
28 |
+
# dict naming convention here coincides with
|
29 |
+
# python/combined_traceback.cpp
|
30 |
+
r.append(
|
31 |
+
{
|
32 |
+
"line": frame.lineno,
|
33 |
+
"name": frame.name,
|
34 |
+
"filename": intern_string(frame.filename),
|
35 |
+
}
|
36 |
+
)
|
37 |
+
return r
|
venv/lib/python3.10/site-packages/torch/_numpy/__init__.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
from . import fft, linalg, random
|
4 |
+
from ._dtypes import * # noqa: F403
|
5 |
+
from ._funcs import * # noqa: F403
|
6 |
+
from ._getlimits import finfo, iinfo
|
7 |
+
from ._ndarray import (
|
8 |
+
array,
|
9 |
+
asarray,
|
10 |
+
ascontiguousarray,
|
11 |
+
can_cast,
|
12 |
+
from_dlpack,
|
13 |
+
ndarray,
|
14 |
+
newaxis,
|
15 |
+
result_type,
|
16 |
+
)
|
17 |
+
from ._ufuncs import * # noqa: F403
|
18 |
+
from ._util import AxisError, UFuncTypeError
|
19 |
+
|
20 |
+
# from . import testing
|
21 |
+
|
22 |
+
alltrue = all
|
23 |
+
sometrue = any
|
24 |
+
|
25 |
+
inf = float("inf")
|
26 |
+
nan = float("nan")
|
27 |
+
from math import pi, e # isort: skip
|
28 |
+
|
29 |
+
False_ = False
|
30 |
+
True_ = True
|
venv/lib/python3.10/site-packages/torch/_numpy/__pycache__/_binary_ufuncs_impl.cpython-310.pyc
ADDED
Binary file (1.78 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_numpy/__pycache__/_normalizations.cpython-310.pyc
ADDED
Binary file (6.69 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_numpy/__pycache__/_reductions_impl.cpython-310.pyc
ADDED
Binary file (7.95 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_numpy/__pycache__/_unary_ufuncs_impl.cpython-310.pyc
ADDED
Binary file (1.52 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_numpy/__pycache__/_util.cpython-310.pyc
ADDED
Binary file (7.34 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_numpy/__pycache__/linalg.cpython-310.pyc
ADDED
Binary file (5.6 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_numpy/__pycache__/random.cpython-310.pyc
ADDED
Binary file (4.36 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_numpy/_binary_ufuncs_impl.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
"""Export torch work functions for binary ufuncs, rename/tweak to match numpy.
|
4 |
+
This listing is further exported to public symbols in the `torch._numpy/_ufuncs.py` module.
|
5 |
+
"""
|
6 |
+
|
7 |
+
import torch
|
8 |
+
|
9 |
+
from torch import ( # noqa: F401
|
10 |
+
add, # noqa: F401
|
11 |
+
arctan2, # noqa: F401
|
12 |
+
bitwise_and, # noqa: F401
|
13 |
+
bitwise_left_shift as left_shift, # noqa: F401
|
14 |
+
bitwise_or, # noqa: F401
|
15 |
+
bitwise_right_shift as right_shift, # noqa: F401
|
16 |
+
bitwise_xor, # noqa: F401
|
17 |
+
copysign, # noqa: F401
|
18 |
+
divide, # noqa: F401
|
19 |
+
eq as equal, # noqa: F401
|
20 |
+
float_power, # noqa: F401
|
21 |
+
floor_divide, # noqa: F401
|
22 |
+
fmax, # noqa: F401
|
23 |
+
fmin, # noqa: F401
|
24 |
+
fmod, # noqa: F401
|
25 |
+
gcd, # noqa: F401
|
26 |
+
greater, # noqa: F401
|
27 |
+
greater_equal, # noqa: F401
|
28 |
+
heaviside, # noqa: F401
|
29 |
+
hypot, # noqa: F401
|
30 |
+
lcm, # noqa: F401
|
31 |
+
ldexp, # noqa: F401
|
32 |
+
less, # noqa: F401
|
33 |
+
less_equal, # noqa: F401
|
34 |
+
logaddexp, # noqa: F401
|
35 |
+
logaddexp2, # noqa: F401
|
36 |
+
logical_and, # noqa: F401
|
37 |
+
logical_or, # noqa: F401
|
38 |
+
logical_xor, # noqa: F401
|
39 |
+
maximum, # noqa: F401
|
40 |
+
minimum, # noqa: F401
|
41 |
+
multiply, # noqa: F401
|
42 |
+
nextafter, # noqa: F401
|
43 |
+
not_equal, # noqa: F401
|
44 |
+
pow as power, # noqa: F401
|
45 |
+
remainder, # noqa: F401
|
46 |
+
remainder as mod, # noqa: F401
|
47 |
+
subtract, # noqa: F401
|
48 |
+
true_divide, # noqa: F401
|
49 |
+
)
|
50 |
+
|
51 |
+
from . import _dtypes_impl, _util
|
52 |
+
|
53 |
+
|
54 |
+
# work around torch limitations w.r.t. numpy
|
55 |
+
def matmul(x, y):
|
56 |
+
# work around:
|
57 |
+
# - RuntimeError: expected scalar type Int but found Double
|
58 |
+
# - RuntimeError: "addmm_impl_cpu_" not implemented for 'Bool'
|
59 |
+
# - RuntimeError: "addmm_impl_cpu_" not implemented for 'Half'
|
60 |
+
dtype = _dtypes_impl.result_type_impl(x, y)
|
61 |
+
is_bool = dtype == torch.bool
|
62 |
+
is_half = (x.dtype == torch.float16 or y.dtype == torch.float16) and (
|
63 |
+
x.is_cpu or y.is_cpu
|
64 |
+
)
|
65 |
+
|
66 |
+
work_dtype = dtype
|
67 |
+
if is_bool:
|
68 |
+
work_dtype = torch.uint8
|
69 |
+
if is_half:
|
70 |
+
work_dtype = torch.float32
|
71 |
+
|
72 |
+
x = _util.cast_if_needed(x, work_dtype)
|
73 |
+
y = _util.cast_if_needed(y, work_dtype)
|
74 |
+
|
75 |
+
result = torch.matmul(x, y)
|
76 |
+
|
77 |
+
if work_dtype != dtype:
|
78 |
+
result = result.to(dtype)
|
79 |
+
|
80 |
+
return result
|
81 |
+
|
82 |
+
|
83 |
+
# a stub implementation of divmod, should be improved after
|
84 |
+
# https://github.com/pytorch/pytorch/issues/90820 is fixed in pytorch
|
85 |
+
def divmod(x, y):
|
86 |
+
return x // y, x % y
|
venv/lib/python3.10/site-packages/torch/_numpy/_casting_dicts.py
ADDED
@@ -0,0 +1,881 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# These two dicts are autogenerated with autogen/gen_dtypes.py,
|
6 |
+
# using numpy version 1.23.5.
|
7 |
+
|
8 |
+
_can_cast_dict = {
|
9 |
+
"no": {
|
10 |
+
torch.float16: {
|
11 |
+
torch.float16: True,
|
12 |
+
torch.float32: False,
|
13 |
+
torch.float64: False,
|
14 |
+
torch.complex64: False,
|
15 |
+
torch.complex128: False,
|
16 |
+
torch.uint8: False,
|
17 |
+
torch.int8: False,
|
18 |
+
torch.int16: False,
|
19 |
+
torch.int32: False,
|
20 |
+
torch.int64: False,
|
21 |
+
torch.bool: False,
|
22 |
+
},
|
23 |
+
torch.float32: {
|
24 |
+
torch.float16: False,
|
25 |
+
torch.float32: True,
|
26 |
+
torch.float64: False,
|
27 |
+
torch.complex64: False,
|
28 |
+
torch.complex128: False,
|
29 |
+
torch.uint8: False,
|
30 |
+
torch.int8: False,
|
31 |
+
torch.int16: False,
|
32 |
+
torch.int32: False,
|
33 |
+
torch.int64: False,
|
34 |
+
torch.bool: False,
|
35 |
+
},
|
36 |
+
torch.float64: {
|
37 |
+
torch.float16: False,
|
38 |
+
torch.float32: False,
|
39 |
+
torch.float64: True,
|
40 |
+
torch.complex64: False,
|
41 |
+
torch.complex128: False,
|
42 |
+
torch.uint8: False,
|
43 |
+
torch.int8: False,
|
44 |
+
torch.int16: False,
|
45 |
+
torch.int32: False,
|
46 |
+
torch.int64: False,
|
47 |
+
torch.bool: False,
|
48 |
+
},
|
49 |
+
torch.complex64: {
|
50 |
+
torch.float16: False,
|
51 |
+
torch.float32: False,
|
52 |
+
torch.float64: False,
|
53 |
+
torch.complex64: True,
|
54 |
+
torch.complex128: False,
|
55 |
+
torch.uint8: False,
|
56 |
+
torch.int8: False,
|
57 |
+
torch.int16: False,
|
58 |
+
torch.int32: False,
|
59 |
+
torch.int64: False,
|
60 |
+
torch.bool: False,
|
61 |
+
},
|
62 |
+
torch.complex128: {
|
63 |
+
torch.float16: False,
|
64 |
+
torch.float32: False,
|
65 |
+
torch.float64: False,
|
66 |
+
torch.complex64: False,
|
67 |
+
torch.complex128: True,
|
68 |
+
torch.uint8: False,
|
69 |
+
torch.int8: False,
|
70 |
+
torch.int16: False,
|
71 |
+
torch.int32: False,
|
72 |
+
torch.int64: False,
|
73 |
+
torch.bool: False,
|
74 |
+
},
|
75 |
+
torch.uint8: {
|
76 |
+
torch.float16: False,
|
77 |
+
torch.float32: False,
|
78 |
+
torch.float64: False,
|
79 |
+
torch.complex64: False,
|
80 |
+
torch.complex128: False,
|
81 |
+
torch.uint8: True,
|
82 |
+
torch.int8: False,
|
83 |
+
torch.int16: False,
|
84 |
+
torch.int32: False,
|
85 |
+
torch.int64: False,
|
86 |
+
torch.bool: False,
|
87 |
+
},
|
88 |
+
torch.int8: {
|
89 |
+
torch.float16: False,
|
90 |
+
torch.float32: False,
|
91 |
+
torch.float64: False,
|
92 |
+
torch.complex64: False,
|
93 |
+
torch.complex128: False,
|
94 |
+
torch.uint8: False,
|
95 |
+
torch.int8: True,
|
96 |
+
torch.int16: False,
|
97 |
+
torch.int32: False,
|
98 |
+
torch.int64: False,
|
99 |
+
torch.bool: False,
|
100 |
+
},
|
101 |
+
torch.int16: {
|
102 |
+
torch.float16: False,
|
103 |
+
torch.float32: False,
|
104 |
+
torch.float64: False,
|
105 |
+
torch.complex64: False,
|
106 |
+
torch.complex128: False,
|
107 |
+
torch.uint8: False,
|
108 |
+
torch.int8: False,
|
109 |
+
torch.int16: True,
|
110 |
+
torch.int32: False,
|
111 |
+
torch.int64: False,
|
112 |
+
torch.bool: False,
|
113 |
+
},
|
114 |
+
torch.int32: {
|
115 |
+
torch.float16: False,
|
116 |
+
torch.float32: False,
|
117 |
+
torch.float64: False,
|
118 |
+
torch.complex64: False,
|
119 |
+
torch.complex128: False,
|
120 |
+
torch.uint8: False,
|
121 |
+
torch.int8: False,
|
122 |
+
torch.int16: False,
|
123 |
+
torch.int32: True,
|
124 |
+
torch.int64: False,
|
125 |
+
torch.bool: False,
|
126 |
+
},
|
127 |
+
torch.int64: {
|
128 |
+
torch.float16: False,
|
129 |
+
torch.float32: False,
|
130 |
+
torch.float64: False,
|
131 |
+
torch.complex64: False,
|
132 |
+
torch.complex128: False,
|
133 |
+
torch.uint8: False,
|
134 |
+
torch.int8: False,
|
135 |
+
torch.int16: False,
|
136 |
+
torch.int32: False,
|
137 |
+
torch.int64: True,
|
138 |
+
torch.bool: False,
|
139 |
+
},
|
140 |
+
torch.bool: {
|
141 |
+
torch.float16: False,
|
142 |
+
torch.float32: False,
|
143 |
+
torch.float64: False,
|
144 |
+
torch.complex64: False,
|
145 |
+
torch.complex128: False,
|
146 |
+
torch.uint8: False,
|
147 |
+
torch.int8: False,
|
148 |
+
torch.int16: False,
|
149 |
+
torch.int32: False,
|
150 |
+
torch.int64: False,
|
151 |
+
torch.bool: True,
|
152 |
+
},
|
153 |
+
},
|
154 |
+
"equiv": {
|
155 |
+
torch.float16: {
|
156 |
+
torch.float16: True,
|
157 |
+
torch.float32: False,
|
158 |
+
torch.float64: False,
|
159 |
+
torch.complex64: False,
|
160 |
+
torch.complex128: False,
|
161 |
+
torch.uint8: False,
|
162 |
+
torch.int8: False,
|
163 |
+
torch.int16: False,
|
164 |
+
torch.int32: False,
|
165 |
+
torch.int64: False,
|
166 |
+
torch.bool: False,
|
167 |
+
},
|
168 |
+
torch.float32: {
|
169 |
+
torch.float16: False,
|
170 |
+
torch.float32: True,
|
171 |
+
torch.float64: False,
|
172 |
+
torch.complex64: False,
|
173 |
+
torch.complex128: False,
|
174 |
+
torch.uint8: False,
|
175 |
+
torch.int8: False,
|
176 |
+
torch.int16: False,
|
177 |
+
torch.int32: False,
|
178 |
+
torch.int64: False,
|
179 |
+
torch.bool: False,
|
180 |
+
},
|
181 |
+
torch.float64: {
|
182 |
+
torch.float16: False,
|
183 |
+
torch.float32: False,
|
184 |
+
torch.float64: True,
|
185 |
+
torch.complex64: False,
|
186 |
+
torch.complex128: False,
|
187 |
+
torch.uint8: False,
|
188 |
+
torch.int8: False,
|
189 |
+
torch.int16: False,
|
190 |
+
torch.int32: False,
|
191 |
+
torch.int64: False,
|
192 |
+
torch.bool: False,
|
193 |
+
},
|
194 |
+
torch.complex64: {
|
195 |
+
torch.float16: False,
|
196 |
+
torch.float32: False,
|
197 |
+
torch.float64: False,
|
198 |
+
torch.complex64: True,
|
199 |
+
torch.complex128: False,
|
200 |
+
torch.uint8: False,
|
201 |
+
torch.int8: False,
|
202 |
+
torch.int16: False,
|
203 |
+
torch.int32: False,
|
204 |
+
torch.int64: False,
|
205 |
+
torch.bool: False,
|
206 |
+
},
|
207 |
+
torch.complex128: {
|
208 |
+
torch.float16: False,
|
209 |
+
torch.float32: False,
|
210 |
+
torch.float64: False,
|
211 |
+
torch.complex64: False,
|
212 |
+
torch.complex128: True,
|
213 |
+
torch.uint8: False,
|
214 |
+
torch.int8: False,
|
215 |
+
torch.int16: False,
|
216 |
+
torch.int32: False,
|
217 |
+
torch.int64: False,
|
218 |
+
torch.bool: False,
|
219 |
+
},
|
220 |
+
torch.uint8: {
|
221 |
+
torch.float16: False,
|
222 |
+
torch.float32: False,
|
223 |
+
torch.float64: False,
|
224 |
+
torch.complex64: False,
|
225 |
+
torch.complex128: False,
|
226 |
+
torch.uint8: True,
|
227 |
+
torch.int8: False,
|
228 |
+
torch.int16: False,
|
229 |
+
torch.int32: False,
|
230 |
+
torch.int64: False,
|
231 |
+
torch.bool: False,
|
232 |
+
},
|
233 |
+
torch.int8: {
|
234 |
+
torch.float16: False,
|
235 |
+
torch.float32: False,
|
236 |
+
torch.float64: False,
|
237 |
+
torch.complex64: False,
|
238 |
+
torch.complex128: False,
|
239 |
+
torch.uint8: False,
|
240 |
+
torch.int8: True,
|
241 |
+
torch.int16: False,
|
242 |
+
torch.int32: False,
|
243 |
+
torch.int64: False,
|
244 |
+
torch.bool: False,
|
245 |
+
},
|
246 |
+
torch.int16: {
|
247 |
+
torch.float16: False,
|
248 |
+
torch.float32: False,
|
249 |
+
torch.float64: False,
|
250 |
+
torch.complex64: False,
|
251 |
+
torch.complex128: False,
|
252 |
+
torch.uint8: False,
|
253 |
+
torch.int8: False,
|
254 |
+
torch.int16: True,
|
255 |
+
torch.int32: False,
|
256 |
+
torch.int64: False,
|
257 |
+
torch.bool: False,
|
258 |
+
},
|
259 |
+
torch.int32: {
|
260 |
+
torch.float16: False,
|
261 |
+
torch.float32: False,
|
262 |
+
torch.float64: False,
|
263 |
+
torch.complex64: False,
|
264 |
+
torch.complex128: False,
|
265 |
+
torch.uint8: False,
|
266 |
+
torch.int8: False,
|
267 |
+
torch.int16: False,
|
268 |
+
torch.int32: True,
|
269 |
+
torch.int64: False,
|
270 |
+
torch.bool: False,
|
271 |
+
},
|
272 |
+
torch.int64: {
|
273 |
+
torch.float16: False,
|
274 |
+
torch.float32: False,
|
275 |
+
torch.float64: False,
|
276 |
+
torch.complex64: False,
|
277 |
+
torch.complex128: False,
|
278 |
+
torch.uint8: False,
|
279 |
+
torch.int8: False,
|
280 |
+
torch.int16: False,
|
281 |
+
torch.int32: False,
|
282 |
+
torch.int64: True,
|
283 |
+
torch.bool: False,
|
284 |
+
},
|
285 |
+
torch.bool: {
|
286 |
+
torch.float16: False,
|
287 |
+
torch.float32: False,
|
288 |
+
torch.float64: False,
|
289 |
+
torch.complex64: False,
|
290 |
+
torch.complex128: False,
|
291 |
+
torch.uint8: False,
|
292 |
+
torch.int8: False,
|
293 |
+
torch.int16: False,
|
294 |
+
torch.int32: False,
|
295 |
+
torch.int64: False,
|
296 |
+
torch.bool: True,
|
297 |
+
},
|
298 |
+
},
|
299 |
+
"safe": {
|
300 |
+
torch.float16: {
|
301 |
+
torch.float16: True,
|
302 |
+
torch.float32: True,
|
303 |
+
torch.float64: True,
|
304 |
+
torch.complex64: True,
|
305 |
+
torch.complex128: True,
|
306 |
+
torch.uint8: False,
|
307 |
+
torch.int8: False,
|
308 |
+
torch.int16: False,
|
309 |
+
torch.int32: False,
|
310 |
+
torch.int64: False,
|
311 |
+
torch.bool: False,
|
312 |
+
},
|
313 |
+
torch.float32: {
|
314 |
+
torch.float16: False,
|
315 |
+
torch.float32: True,
|
316 |
+
torch.float64: True,
|
317 |
+
torch.complex64: True,
|
318 |
+
torch.complex128: True,
|
319 |
+
torch.uint8: False,
|
320 |
+
torch.int8: False,
|
321 |
+
torch.int16: False,
|
322 |
+
torch.int32: False,
|
323 |
+
torch.int64: False,
|
324 |
+
torch.bool: False,
|
325 |
+
},
|
326 |
+
torch.float64: {
|
327 |
+
torch.float16: False,
|
328 |
+
torch.float32: False,
|
329 |
+
torch.float64: True,
|
330 |
+
torch.complex64: False,
|
331 |
+
torch.complex128: True,
|
332 |
+
torch.uint8: False,
|
333 |
+
torch.int8: False,
|
334 |
+
torch.int16: False,
|
335 |
+
torch.int32: False,
|
336 |
+
torch.int64: False,
|
337 |
+
torch.bool: False,
|
338 |
+
},
|
339 |
+
torch.complex64: {
|
340 |
+
torch.float16: False,
|
341 |
+
torch.float32: False,
|
342 |
+
torch.float64: False,
|
343 |
+
torch.complex64: True,
|
344 |
+
torch.complex128: True,
|
345 |
+
torch.uint8: False,
|
346 |
+
torch.int8: False,
|
347 |
+
torch.int16: False,
|
348 |
+
torch.int32: False,
|
349 |
+
torch.int64: False,
|
350 |
+
torch.bool: False,
|
351 |
+
},
|
352 |
+
torch.complex128: {
|
353 |
+
torch.float16: False,
|
354 |
+
torch.float32: False,
|
355 |
+
torch.float64: False,
|
356 |
+
torch.complex64: False,
|
357 |
+
torch.complex128: True,
|
358 |
+
torch.uint8: False,
|
359 |
+
torch.int8: False,
|
360 |
+
torch.int16: False,
|
361 |
+
torch.int32: False,
|
362 |
+
torch.int64: False,
|
363 |
+
torch.bool: False,
|
364 |
+
},
|
365 |
+
torch.uint8: {
|
366 |
+
torch.float16: True,
|
367 |
+
torch.float32: True,
|
368 |
+
torch.float64: True,
|
369 |
+
torch.complex64: True,
|
370 |
+
torch.complex128: True,
|
371 |
+
torch.uint8: True,
|
372 |
+
torch.int8: False,
|
373 |
+
torch.int16: True,
|
374 |
+
torch.int32: True,
|
375 |
+
torch.int64: True,
|
376 |
+
torch.bool: False,
|
377 |
+
},
|
378 |
+
torch.int8: {
|
379 |
+
torch.float16: True,
|
380 |
+
torch.float32: True,
|
381 |
+
torch.float64: True,
|
382 |
+
torch.complex64: True,
|
383 |
+
torch.complex128: True,
|
384 |
+
torch.uint8: False,
|
385 |
+
torch.int8: True,
|
386 |
+
torch.int16: True,
|
387 |
+
torch.int32: True,
|
388 |
+
torch.int64: True,
|
389 |
+
torch.bool: False,
|
390 |
+
},
|
391 |
+
torch.int16: {
|
392 |
+
torch.float16: False,
|
393 |
+
torch.float32: True,
|
394 |
+
torch.float64: True,
|
395 |
+
torch.complex64: True,
|
396 |
+
torch.complex128: True,
|
397 |
+
torch.uint8: False,
|
398 |
+
torch.int8: False,
|
399 |
+
torch.int16: True,
|
400 |
+
torch.int32: True,
|
401 |
+
torch.int64: True,
|
402 |
+
torch.bool: False,
|
403 |
+
},
|
404 |
+
torch.int32: {
|
405 |
+
torch.float16: False,
|
406 |
+
torch.float32: False,
|
407 |
+
torch.float64: True,
|
408 |
+
torch.complex64: False,
|
409 |
+
torch.complex128: True,
|
410 |
+
torch.uint8: False,
|
411 |
+
torch.int8: False,
|
412 |
+
torch.int16: False,
|
413 |
+
torch.int32: True,
|
414 |
+
torch.int64: True,
|
415 |
+
torch.bool: False,
|
416 |
+
},
|
417 |
+
torch.int64: {
|
418 |
+
torch.float16: False,
|
419 |
+
torch.float32: False,
|
420 |
+
torch.float64: True,
|
421 |
+
torch.complex64: False,
|
422 |
+
torch.complex128: True,
|
423 |
+
torch.uint8: False,
|
424 |
+
torch.int8: False,
|
425 |
+
torch.int16: False,
|
426 |
+
torch.int32: False,
|
427 |
+
torch.int64: True,
|
428 |
+
torch.bool: False,
|
429 |
+
},
|
430 |
+
torch.bool: {
|
431 |
+
torch.float16: True,
|
432 |
+
torch.float32: True,
|
433 |
+
torch.float64: True,
|
434 |
+
torch.complex64: True,
|
435 |
+
torch.complex128: True,
|
436 |
+
torch.uint8: True,
|
437 |
+
torch.int8: True,
|
438 |
+
torch.int16: True,
|
439 |
+
torch.int32: True,
|
440 |
+
torch.int64: True,
|
441 |
+
torch.bool: True,
|
442 |
+
},
|
443 |
+
},
|
444 |
+
"same_kind": {
|
445 |
+
torch.float16: {
|
446 |
+
torch.float16: True,
|
447 |
+
torch.float32: True,
|
448 |
+
torch.float64: True,
|
449 |
+
torch.complex64: True,
|
450 |
+
torch.complex128: True,
|
451 |
+
torch.uint8: False,
|
452 |
+
torch.int8: False,
|
453 |
+
torch.int16: False,
|
454 |
+
torch.int32: False,
|
455 |
+
torch.int64: False,
|
456 |
+
torch.bool: False,
|
457 |
+
},
|
458 |
+
torch.float32: {
|
459 |
+
torch.float16: True,
|
460 |
+
torch.float32: True,
|
461 |
+
torch.float64: True,
|
462 |
+
torch.complex64: True,
|
463 |
+
torch.complex128: True,
|
464 |
+
torch.uint8: False,
|
465 |
+
torch.int8: False,
|
466 |
+
torch.int16: False,
|
467 |
+
torch.int32: False,
|
468 |
+
torch.int64: False,
|
469 |
+
torch.bool: False,
|
470 |
+
},
|
471 |
+
torch.float64: {
|
472 |
+
torch.float16: True,
|
473 |
+
torch.float32: True,
|
474 |
+
torch.float64: True,
|
475 |
+
torch.complex64: True,
|
476 |
+
torch.complex128: True,
|
477 |
+
torch.uint8: False,
|
478 |
+
torch.int8: False,
|
479 |
+
torch.int16: False,
|
480 |
+
torch.int32: False,
|
481 |
+
torch.int64: False,
|
482 |
+
torch.bool: False,
|
483 |
+
},
|
484 |
+
torch.complex64: {
|
485 |
+
torch.float16: False,
|
486 |
+
torch.float32: False,
|
487 |
+
torch.float64: False,
|
488 |
+
torch.complex64: True,
|
489 |
+
torch.complex128: True,
|
490 |
+
torch.uint8: False,
|
491 |
+
torch.int8: False,
|
492 |
+
torch.int16: False,
|
493 |
+
torch.int32: False,
|
494 |
+
torch.int64: False,
|
495 |
+
torch.bool: False,
|
496 |
+
},
|
497 |
+
torch.complex128: {
|
498 |
+
torch.float16: False,
|
499 |
+
torch.float32: False,
|
500 |
+
torch.float64: False,
|
501 |
+
torch.complex64: True,
|
502 |
+
torch.complex128: True,
|
503 |
+
torch.uint8: False,
|
504 |
+
torch.int8: False,
|
505 |
+
torch.int16: False,
|
506 |
+
torch.int32: False,
|
507 |
+
torch.int64: False,
|
508 |
+
torch.bool: False,
|
509 |
+
},
|
510 |
+
torch.uint8: {
|
511 |
+
torch.float16: True,
|
512 |
+
torch.float32: True,
|
513 |
+
torch.float64: True,
|
514 |
+
torch.complex64: True,
|
515 |
+
torch.complex128: True,
|
516 |
+
torch.uint8: True,
|
517 |
+
torch.int8: True,
|
518 |
+
torch.int16: True,
|
519 |
+
torch.int32: True,
|
520 |
+
torch.int64: True,
|
521 |
+
torch.bool: False,
|
522 |
+
},
|
523 |
+
torch.int8: {
|
524 |
+
torch.float16: True,
|
525 |
+
torch.float32: True,
|
526 |
+
torch.float64: True,
|
527 |
+
torch.complex64: True,
|
528 |
+
torch.complex128: True,
|
529 |
+
torch.uint8: False,
|
530 |
+
torch.int8: True,
|
531 |
+
torch.int16: True,
|
532 |
+
torch.int32: True,
|
533 |
+
torch.int64: True,
|
534 |
+
torch.bool: False,
|
535 |
+
},
|
536 |
+
torch.int16: {
|
537 |
+
torch.float16: True,
|
538 |
+
torch.float32: True,
|
539 |
+
torch.float64: True,
|
540 |
+
torch.complex64: True,
|
541 |
+
torch.complex128: True,
|
542 |
+
torch.uint8: False,
|
543 |
+
torch.int8: True,
|
544 |
+
torch.int16: True,
|
545 |
+
torch.int32: True,
|
546 |
+
torch.int64: True,
|
547 |
+
torch.bool: False,
|
548 |
+
},
|
549 |
+
torch.int32: {
|
550 |
+
torch.float16: True,
|
551 |
+
torch.float32: True,
|
552 |
+
torch.float64: True,
|
553 |
+
torch.complex64: True,
|
554 |
+
torch.complex128: True,
|
555 |
+
torch.uint8: False,
|
556 |
+
torch.int8: True,
|
557 |
+
torch.int16: True,
|
558 |
+
torch.int32: True,
|
559 |
+
torch.int64: True,
|
560 |
+
torch.bool: False,
|
561 |
+
},
|
562 |
+
torch.int64: {
|
563 |
+
torch.float16: True,
|
564 |
+
torch.float32: True,
|
565 |
+
torch.float64: True,
|
566 |
+
torch.complex64: True,
|
567 |
+
torch.complex128: True,
|
568 |
+
torch.uint8: False,
|
569 |
+
torch.int8: True,
|
570 |
+
torch.int16: True,
|
571 |
+
torch.int32: True,
|
572 |
+
torch.int64: True,
|
573 |
+
torch.bool: False,
|
574 |
+
},
|
575 |
+
torch.bool: {
|
576 |
+
torch.float16: True,
|
577 |
+
torch.float32: True,
|
578 |
+
torch.float64: True,
|
579 |
+
torch.complex64: True,
|
580 |
+
torch.complex128: True,
|
581 |
+
torch.uint8: True,
|
582 |
+
torch.int8: True,
|
583 |
+
torch.int16: True,
|
584 |
+
torch.int32: True,
|
585 |
+
torch.int64: True,
|
586 |
+
torch.bool: True,
|
587 |
+
},
|
588 |
+
},
|
589 |
+
"unsafe": {
|
590 |
+
torch.float16: {
|
591 |
+
torch.float16: True,
|
592 |
+
torch.float32: True,
|
593 |
+
torch.float64: True,
|
594 |
+
torch.complex64: True,
|
595 |
+
torch.complex128: True,
|
596 |
+
torch.uint8: True,
|
597 |
+
torch.int8: True,
|
598 |
+
torch.int16: True,
|
599 |
+
torch.int32: True,
|
600 |
+
torch.int64: True,
|
601 |
+
torch.bool: True,
|
602 |
+
},
|
603 |
+
torch.float32: {
|
604 |
+
torch.float16: True,
|
605 |
+
torch.float32: True,
|
606 |
+
torch.float64: True,
|
607 |
+
torch.complex64: True,
|
608 |
+
torch.complex128: True,
|
609 |
+
torch.uint8: True,
|
610 |
+
torch.int8: True,
|
611 |
+
torch.int16: True,
|
612 |
+
torch.int32: True,
|
613 |
+
torch.int64: True,
|
614 |
+
torch.bool: True,
|
615 |
+
},
|
616 |
+
torch.float64: {
|
617 |
+
torch.float16: True,
|
618 |
+
torch.float32: True,
|
619 |
+
torch.float64: True,
|
620 |
+
torch.complex64: True,
|
621 |
+
torch.complex128: True,
|
622 |
+
torch.uint8: True,
|
623 |
+
torch.int8: True,
|
624 |
+
torch.int16: True,
|
625 |
+
torch.int32: True,
|
626 |
+
torch.int64: True,
|
627 |
+
torch.bool: True,
|
628 |
+
},
|
629 |
+
torch.complex64: {
|
630 |
+
torch.float16: True,
|
631 |
+
torch.float32: True,
|
632 |
+
torch.float64: True,
|
633 |
+
torch.complex64: True,
|
634 |
+
torch.complex128: True,
|
635 |
+
torch.uint8: True,
|
636 |
+
torch.int8: True,
|
637 |
+
torch.int16: True,
|
638 |
+
torch.int32: True,
|
639 |
+
torch.int64: True,
|
640 |
+
torch.bool: True,
|
641 |
+
},
|
642 |
+
torch.complex128: {
|
643 |
+
torch.float16: True,
|
644 |
+
torch.float32: True,
|
645 |
+
torch.float64: True,
|
646 |
+
torch.complex64: True,
|
647 |
+
torch.complex128: True,
|
648 |
+
torch.uint8: True,
|
649 |
+
torch.int8: True,
|
650 |
+
torch.int16: True,
|
651 |
+
torch.int32: True,
|
652 |
+
torch.int64: True,
|
653 |
+
torch.bool: True,
|
654 |
+
},
|
655 |
+
torch.uint8: {
|
656 |
+
torch.float16: True,
|
657 |
+
torch.float32: True,
|
658 |
+
torch.float64: True,
|
659 |
+
torch.complex64: True,
|
660 |
+
torch.complex128: True,
|
661 |
+
torch.uint8: True,
|
662 |
+
torch.int8: True,
|
663 |
+
torch.int16: True,
|
664 |
+
torch.int32: True,
|
665 |
+
torch.int64: True,
|
666 |
+
torch.bool: True,
|
667 |
+
},
|
668 |
+
torch.int8: {
|
669 |
+
torch.float16: True,
|
670 |
+
torch.float32: True,
|
671 |
+
torch.float64: True,
|
672 |
+
torch.complex64: True,
|
673 |
+
torch.complex128: True,
|
674 |
+
torch.uint8: True,
|
675 |
+
torch.int8: True,
|
676 |
+
torch.int16: True,
|
677 |
+
torch.int32: True,
|
678 |
+
torch.int64: True,
|
679 |
+
torch.bool: True,
|
680 |
+
},
|
681 |
+
torch.int16: {
|
682 |
+
torch.float16: True,
|
683 |
+
torch.float32: True,
|
684 |
+
torch.float64: True,
|
685 |
+
torch.complex64: True,
|
686 |
+
torch.complex128: True,
|
687 |
+
torch.uint8: True,
|
688 |
+
torch.int8: True,
|
689 |
+
torch.int16: True,
|
690 |
+
torch.int32: True,
|
691 |
+
torch.int64: True,
|
692 |
+
torch.bool: True,
|
693 |
+
},
|
694 |
+
torch.int32: {
|
695 |
+
torch.float16: True,
|
696 |
+
torch.float32: True,
|
697 |
+
torch.float64: True,
|
698 |
+
torch.complex64: True,
|
699 |
+
torch.complex128: True,
|
700 |
+
torch.uint8: True,
|
701 |
+
torch.int8: True,
|
702 |
+
torch.int16: True,
|
703 |
+
torch.int32: True,
|
704 |
+
torch.int64: True,
|
705 |
+
torch.bool: True,
|
706 |
+
},
|
707 |
+
torch.int64: {
|
708 |
+
torch.float16: True,
|
709 |
+
torch.float32: True,
|
710 |
+
torch.float64: True,
|
711 |
+
torch.complex64: True,
|
712 |
+
torch.complex128: True,
|
713 |
+
torch.uint8: True,
|
714 |
+
torch.int8: True,
|
715 |
+
torch.int16: True,
|
716 |
+
torch.int32: True,
|
717 |
+
torch.int64: True,
|
718 |
+
torch.bool: True,
|
719 |
+
},
|
720 |
+
torch.bool: {
|
721 |
+
torch.float16: True,
|
722 |
+
torch.float32: True,
|
723 |
+
torch.float64: True,
|
724 |
+
torch.complex64: True,
|
725 |
+
torch.complex128: True,
|
726 |
+
torch.uint8: True,
|
727 |
+
torch.int8: True,
|
728 |
+
torch.int16: True,
|
729 |
+
torch.int32: True,
|
730 |
+
torch.int64: True,
|
731 |
+
torch.bool: True,
|
732 |
+
},
|
733 |
+
},
|
734 |
+
}
|
735 |
+
|
736 |
+
|
737 |
+
_result_type_dict = {
|
738 |
+
torch.float16: {
|
739 |
+
torch.float16: torch.float16,
|
740 |
+
torch.float32: torch.float32,
|
741 |
+
torch.float64: torch.float64,
|
742 |
+
torch.complex64: torch.complex64,
|
743 |
+
torch.complex128: torch.complex128,
|
744 |
+
torch.uint8: torch.float16,
|
745 |
+
torch.int8: torch.float16,
|
746 |
+
torch.int16: torch.float32,
|
747 |
+
torch.int32: torch.float64,
|
748 |
+
torch.int64: torch.float64,
|
749 |
+
torch.bool: torch.float16,
|
750 |
+
},
|
751 |
+
torch.float32: {
|
752 |
+
torch.float16: torch.float32,
|
753 |
+
torch.float32: torch.float32,
|
754 |
+
torch.float64: torch.float64,
|
755 |
+
torch.complex64: torch.complex64,
|
756 |
+
torch.complex128: torch.complex128,
|
757 |
+
torch.uint8: torch.float32,
|
758 |
+
torch.int8: torch.float32,
|
759 |
+
torch.int16: torch.float32,
|
760 |
+
torch.int32: torch.float64,
|
761 |
+
torch.int64: torch.float64,
|
762 |
+
torch.bool: torch.float32,
|
763 |
+
},
|
764 |
+
torch.float64: {
|
765 |
+
torch.float16: torch.float64,
|
766 |
+
torch.float32: torch.float64,
|
767 |
+
torch.float64: torch.float64,
|
768 |
+
torch.complex64: torch.complex128,
|
769 |
+
torch.complex128: torch.complex128,
|
770 |
+
torch.uint8: torch.float64,
|
771 |
+
torch.int8: torch.float64,
|
772 |
+
torch.int16: torch.float64,
|
773 |
+
torch.int32: torch.float64,
|
774 |
+
torch.int64: torch.float64,
|
775 |
+
torch.bool: torch.float64,
|
776 |
+
},
|
777 |
+
torch.complex64: {
|
778 |
+
torch.float16: torch.complex64,
|
779 |
+
torch.float32: torch.complex64,
|
780 |
+
torch.float64: torch.complex128,
|
781 |
+
torch.complex64: torch.complex64,
|
782 |
+
torch.complex128: torch.complex128,
|
783 |
+
torch.uint8: torch.complex64,
|
784 |
+
torch.int8: torch.complex64,
|
785 |
+
torch.int16: torch.complex64,
|
786 |
+
torch.int32: torch.complex128,
|
787 |
+
torch.int64: torch.complex128,
|
788 |
+
torch.bool: torch.complex64,
|
789 |
+
},
|
790 |
+
torch.complex128: {
|
791 |
+
torch.float16: torch.complex128,
|
792 |
+
torch.float32: torch.complex128,
|
793 |
+
torch.float64: torch.complex128,
|
794 |
+
torch.complex64: torch.complex128,
|
795 |
+
torch.complex128: torch.complex128,
|
796 |
+
torch.uint8: torch.complex128,
|
797 |
+
torch.int8: torch.complex128,
|
798 |
+
torch.int16: torch.complex128,
|
799 |
+
torch.int32: torch.complex128,
|
800 |
+
torch.int64: torch.complex128,
|
801 |
+
torch.bool: torch.complex128,
|
802 |
+
},
|
803 |
+
torch.uint8: {
|
804 |
+
torch.float16: torch.float16,
|
805 |
+
torch.float32: torch.float32,
|
806 |
+
torch.float64: torch.float64,
|
807 |
+
torch.complex64: torch.complex64,
|
808 |
+
torch.complex128: torch.complex128,
|
809 |
+
torch.uint8: torch.uint8,
|
810 |
+
torch.int8: torch.int16,
|
811 |
+
torch.int16: torch.int16,
|
812 |
+
torch.int32: torch.int32,
|
813 |
+
torch.int64: torch.int64,
|
814 |
+
torch.bool: torch.uint8,
|
815 |
+
},
|
816 |
+
torch.int8: {
|
817 |
+
torch.float16: torch.float16,
|
818 |
+
torch.float32: torch.float32,
|
819 |
+
torch.float64: torch.float64,
|
820 |
+
torch.complex64: torch.complex64,
|
821 |
+
torch.complex128: torch.complex128,
|
822 |
+
torch.uint8: torch.int16,
|
823 |
+
torch.int8: torch.int8,
|
824 |
+
torch.int16: torch.int16,
|
825 |
+
torch.int32: torch.int32,
|
826 |
+
torch.int64: torch.int64,
|
827 |
+
torch.bool: torch.int8,
|
828 |
+
},
|
829 |
+
torch.int16: {
|
830 |
+
torch.float16: torch.float32,
|
831 |
+
torch.float32: torch.float32,
|
832 |
+
torch.float64: torch.float64,
|
833 |
+
torch.complex64: torch.complex64,
|
834 |
+
torch.complex128: torch.complex128,
|
835 |
+
torch.uint8: torch.int16,
|
836 |
+
torch.int8: torch.int16,
|
837 |
+
torch.int16: torch.int16,
|
838 |
+
torch.int32: torch.int32,
|
839 |
+
torch.int64: torch.int64,
|
840 |
+
torch.bool: torch.int16,
|
841 |
+
},
|
842 |
+
torch.int32: {
|
843 |
+
torch.float16: torch.float64,
|
844 |
+
torch.float32: torch.float64,
|
845 |
+
torch.float64: torch.float64,
|
846 |
+
torch.complex64: torch.complex128,
|
847 |
+
torch.complex128: torch.complex128,
|
848 |
+
torch.uint8: torch.int32,
|
849 |
+
torch.int8: torch.int32,
|
850 |
+
torch.int16: torch.int32,
|
851 |
+
torch.int32: torch.int32,
|
852 |
+
torch.int64: torch.int64,
|
853 |
+
torch.bool: torch.int32,
|
854 |
+
},
|
855 |
+
torch.int64: {
|
856 |
+
torch.float16: torch.float64,
|
857 |
+
torch.float32: torch.float64,
|
858 |
+
torch.float64: torch.float64,
|
859 |
+
torch.complex64: torch.complex128,
|
860 |
+
torch.complex128: torch.complex128,
|
861 |
+
torch.uint8: torch.int64,
|
862 |
+
torch.int8: torch.int64,
|
863 |
+
torch.int16: torch.int64,
|
864 |
+
torch.int32: torch.int64,
|
865 |
+
torch.int64: torch.int64,
|
866 |
+
torch.bool: torch.int64,
|
867 |
+
},
|
868 |
+
torch.bool: {
|
869 |
+
torch.float16: torch.float16,
|
870 |
+
torch.float32: torch.float32,
|
871 |
+
torch.float64: torch.float64,
|
872 |
+
torch.complex64: torch.complex64,
|
873 |
+
torch.complex128: torch.complex128,
|
874 |
+
torch.uint8: torch.uint8,
|
875 |
+
torch.int8: torch.int8,
|
876 |
+
torch.int16: torch.int16,
|
877 |
+
torch.int32: torch.int32,
|
878 |
+
torch.int64: torch.int64,
|
879 |
+
torch.bool: torch.bool,
|
880 |
+
},
|
881 |
+
}
|
venv/lib/python3.10/site-packages/torch/_numpy/_dtypes.py
ADDED
@@ -0,0 +1,434 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
""" Define analogs of numpy dtypes supported by pytorch.
|
4 |
+
Define the scalar types and supported dtypes and numpy <--> torch dtype mappings.
|
5 |
+
"""
|
6 |
+
import builtins
|
7 |
+
|
8 |
+
import torch
|
9 |
+
|
10 |
+
from . import _dtypes_impl
|
11 |
+
|
12 |
+
|
13 |
+
# ### Scalar types ###
|
14 |
+
|
15 |
+
|
16 |
+
class generic:
|
17 |
+
name = "generic"
|
18 |
+
|
19 |
+
def __new__(cls, value):
|
20 |
+
# NumPy scalars are modelled as 0-D arrays
|
21 |
+
# so a call to np.float32(4) produces a 0-D array.
|
22 |
+
|
23 |
+
from ._ndarray import asarray, ndarray
|
24 |
+
|
25 |
+
if isinstance(value, str) and value in ["inf", "nan"]:
|
26 |
+
value = {"inf": torch.inf, "nan": torch.nan}[value]
|
27 |
+
|
28 |
+
if isinstance(value, ndarray):
|
29 |
+
return value.astype(cls)
|
30 |
+
else:
|
31 |
+
return asarray(value, dtype=cls)
|
32 |
+
|
33 |
+
|
34 |
+
##################
|
35 |
+
# abstract types #
|
36 |
+
##################
|
37 |
+
|
38 |
+
|
39 |
+
class number(generic):
|
40 |
+
name = "number"
|
41 |
+
|
42 |
+
|
43 |
+
class integer(number):
|
44 |
+
name = "integer"
|
45 |
+
|
46 |
+
|
47 |
+
class inexact(number):
|
48 |
+
name = "inexact"
|
49 |
+
|
50 |
+
|
51 |
+
class signedinteger(integer):
|
52 |
+
name = "signedinteger"
|
53 |
+
|
54 |
+
|
55 |
+
class unsignedinteger(integer):
|
56 |
+
name = "unsignedinteger"
|
57 |
+
|
58 |
+
|
59 |
+
class floating(inexact):
|
60 |
+
name = "floating"
|
61 |
+
|
62 |
+
|
63 |
+
class complexfloating(inexact):
|
64 |
+
name = "complexfloating"
|
65 |
+
|
66 |
+
|
67 |
+
_abstract_dtypes = [
|
68 |
+
"generic",
|
69 |
+
"number",
|
70 |
+
"integer",
|
71 |
+
"signedinteger",
|
72 |
+
"unsignedinteger",
|
73 |
+
"inexact",
|
74 |
+
"floating",
|
75 |
+
"complexfloating",
|
76 |
+
]
|
77 |
+
|
78 |
+
# ##### concrete types
|
79 |
+
|
80 |
+
# signed integers
|
81 |
+
|
82 |
+
|
83 |
+
class int8(signedinteger):
|
84 |
+
name = "int8"
|
85 |
+
typecode = "b"
|
86 |
+
torch_dtype = torch.int8
|
87 |
+
|
88 |
+
|
89 |
+
class int16(signedinteger):
|
90 |
+
name = "int16"
|
91 |
+
typecode = "h"
|
92 |
+
torch_dtype = torch.int16
|
93 |
+
|
94 |
+
|
95 |
+
class int32(signedinteger):
|
96 |
+
name = "int32"
|
97 |
+
typecode = "i"
|
98 |
+
torch_dtype = torch.int32
|
99 |
+
|
100 |
+
|
101 |
+
class int64(signedinteger):
|
102 |
+
name = "int64"
|
103 |
+
typecode = "l"
|
104 |
+
torch_dtype = torch.int64
|
105 |
+
|
106 |
+
|
107 |
+
# unsigned integers
|
108 |
+
|
109 |
+
|
110 |
+
class uint8(unsignedinteger):
|
111 |
+
name = "uint8"
|
112 |
+
typecode = "B"
|
113 |
+
torch_dtype = torch.uint8
|
114 |
+
|
115 |
+
|
116 |
+
# floating point
|
117 |
+
|
118 |
+
|
119 |
+
class float16(floating):
|
120 |
+
name = "float16"
|
121 |
+
typecode = "e"
|
122 |
+
torch_dtype = torch.float16
|
123 |
+
|
124 |
+
|
125 |
+
class float32(floating):
|
126 |
+
name = "float32"
|
127 |
+
typecode = "f"
|
128 |
+
torch_dtype = torch.float32
|
129 |
+
|
130 |
+
|
131 |
+
class float64(floating):
|
132 |
+
name = "float64"
|
133 |
+
typecode = "d"
|
134 |
+
torch_dtype = torch.float64
|
135 |
+
|
136 |
+
|
137 |
+
class complex64(complexfloating):
|
138 |
+
name = "complex64"
|
139 |
+
typecode = "F"
|
140 |
+
torch_dtype = torch.complex64
|
141 |
+
|
142 |
+
|
143 |
+
class complex128(complexfloating):
|
144 |
+
name = "complex128"
|
145 |
+
typecode = "D"
|
146 |
+
torch_dtype = torch.complex128
|
147 |
+
|
148 |
+
|
149 |
+
class bool_(generic):
|
150 |
+
name = "bool_"
|
151 |
+
typecode = "?"
|
152 |
+
torch_dtype = torch.bool
|
153 |
+
|
154 |
+
|
155 |
+
# name aliases
|
156 |
+
_name_aliases = {
|
157 |
+
"intp": int64,
|
158 |
+
"int_": int64,
|
159 |
+
"intc": int32,
|
160 |
+
"byte": int8,
|
161 |
+
"short": int16,
|
162 |
+
"longlong": int64, # XXX: is this correct?
|
163 |
+
"ubyte": uint8,
|
164 |
+
"half": float16,
|
165 |
+
"single": float32,
|
166 |
+
"double": float64,
|
167 |
+
"float_": float64,
|
168 |
+
"csingle": complex64,
|
169 |
+
"singlecomplex": complex64,
|
170 |
+
"cdouble": complex128,
|
171 |
+
"cfloat": complex128,
|
172 |
+
"complex_": complex128,
|
173 |
+
}
|
174 |
+
# We register float_ = float32 and so on
|
175 |
+
for name, obj in _name_aliases.items():
|
176 |
+
vars()[name] = obj
|
177 |
+
|
178 |
+
|
179 |
+
# Replicate this NumPy-defined way of grouping scalar types,
|
180 |
+
# cf tests/core/test_scalar_methods.py
|
181 |
+
sctypes = {
|
182 |
+
"int": [int8, int16, int32, int64],
|
183 |
+
"uint": [uint8],
|
184 |
+
"float": [float16, float32, float64],
|
185 |
+
"complex": [complex64, complex128],
|
186 |
+
"others": [bool_],
|
187 |
+
}
|
188 |
+
|
189 |
+
|
190 |
+
# Support mappings/functions
|
191 |
+
|
192 |
+
_names = {st.name: st for cat in sctypes for st in sctypes[cat]}
|
193 |
+
_typecodes = {st.typecode: st for cat in sctypes for st in sctypes[cat]}
|
194 |
+
_torch_dtypes = {st.torch_dtype: st for cat in sctypes for st in sctypes[cat]}
|
195 |
+
|
196 |
+
|
197 |
+
_aliases = {
|
198 |
+
"u1": uint8,
|
199 |
+
"i1": int8,
|
200 |
+
"i2": int16,
|
201 |
+
"i4": int32,
|
202 |
+
"i8": int64,
|
203 |
+
"b": int8, # XXX: srsly?
|
204 |
+
"f2": float16,
|
205 |
+
"f4": float32,
|
206 |
+
"f8": float64,
|
207 |
+
"c8": complex64,
|
208 |
+
"c16": complex128,
|
209 |
+
# numpy-specific trailing underscore
|
210 |
+
"bool_": bool_,
|
211 |
+
}
|
212 |
+
|
213 |
+
|
214 |
+
_python_types = {
|
215 |
+
int: int64,
|
216 |
+
float: float64,
|
217 |
+
complex: complex128,
|
218 |
+
builtins.bool: bool_,
|
219 |
+
# also allow stringified names of python types
|
220 |
+
int.__name__: int64,
|
221 |
+
float.__name__: float64,
|
222 |
+
complex.__name__: complex128,
|
223 |
+
builtins.bool.__name__: bool_,
|
224 |
+
}
|
225 |
+
|
226 |
+
|
227 |
+
def sctype_from_string(s):
|
228 |
+
"""Normalize a string value: a type 'name' or a typecode or a width alias."""
|
229 |
+
if s in _names:
|
230 |
+
return _names[s]
|
231 |
+
if s in _name_aliases.keys():
|
232 |
+
return _name_aliases[s]
|
233 |
+
if s in _typecodes:
|
234 |
+
return _typecodes[s]
|
235 |
+
if s in _aliases:
|
236 |
+
return _aliases[s]
|
237 |
+
if s in _python_types:
|
238 |
+
return _python_types[s]
|
239 |
+
raise TypeError(f"data type {s!r} not understood")
|
240 |
+
|
241 |
+
|
242 |
+
def sctype_from_torch_dtype(torch_dtype):
|
243 |
+
return _torch_dtypes[torch_dtype]
|
244 |
+
|
245 |
+
|
246 |
+
# ### DTypes. ###
|
247 |
+
|
248 |
+
|
249 |
+
def dtype(arg):
|
250 |
+
if arg is None:
|
251 |
+
arg = _dtypes_impl.default_dtypes().float_dtype
|
252 |
+
return DType(arg)
|
253 |
+
|
254 |
+
|
255 |
+
class DType:
|
256 |
+
def __init__(self, arg):
|
257 |
+
# a pytorch object?
|
258 |
+
if isinstance(arg, torch.dtype):
|
259 |
+
sctype = _torch_dtypes[arg]
|
260 |
+
elif isinstance(arg, torch.Tensor):
|
261 |
+
sctype = _torch_dtypes[arg.dtype]
|
262 |
+
# a scalar type?
|
263 |
+
elif issubclass_(arg, generic):
|
264 |
+
sctype = arg
|
265 |
+
# a dtype already?
|
266 |
+
elif isinstance(arg, DType):
|
267 |
+
sctype = arg._scalar_type
|
268 |
+
# a has a right attribute?
|
269 |
+
elif hasattr(arg, "dtype"):
|
270 |
+
sctype = arg.dtype._scalar_type
|
271 |
+
else:
|
272 |
+
sctype = sctype_from_string(arg)
|
273 |
+
self._scalar_type = sctype
|
274 |
+
|
275 |
+
@property
|
276 |
+
def name(self):
|
277 |
+
return self._scalar_type.name
|
278 |
+
|
279 |
+
@property
|
280 |
+
def type(self):
|
281 |
+
return self._scalar_type
|
282 |
+
|
283 |
+
@property
|
284 |
+
def kind(self):
|
285 |
+
# https://numpy.org/doc/stable/reference/generated/numpy.dtype.kind.html
|
286 |
+
return _torch_dtypes[self.torch_dtype].name[0]
|
287 |
+
|
288 |
+
@property
|
289 |
+
def typecode(self):
|
290 |
+
return self._scalar_type.typecode
|
291 |
+
|
292 |
+
def __eq__(self, other):
|
293 |
+
if isinstance(other, DType):
|
294 |
+
return self._scalar_type == other._scalar_type
|
295 |
+
try:
|
296 |
+
other_instance = DType(other)
|
297 |
+
except TypeError:
|
298 |
+
return False
|
299 |
+
return self._scalar_type == other_instance._scalar_type
|
300 |
+
|
301 |
+
@property
|
302 |
+
def torch_dtype(self):
|
303 |
+
return self._scalar_type.torch_dtype
|
304 |
+
|
305 |
+
def __hash__(self):
|
306 |
+
return hash(self._scalar_type.name)
|
307 |
+
|
308 |
+
def __repr__(self):
|
309 |
+
return f'dtype("{self.name}")'
|
310 |
+
|
311 |
+
__str__ = __repr__
|
312 |
+
|
313 |
+
@property
|
314 |
+
def itemsize(self):
|
315 |
+
elem = self.type(1)
|
316 |
+
return elem.tensor.element_size()
|
317 |
+
|
318 |
+
def __getstate__(self):
|
319 |
+
return self._scalar_type
|
320 |
+
|
321 |
+
def __setstate__(self, value):
|
322 |
+
self._scalar_type = value
|
323 |
+
|
324 |
+
|
325 |
+
typecodes = {
|
326 |
+
"All": "efdFDBbhil?",
|
327 |
+
"AllFloat": "efdFD",
|
328 |
+
"AllInteger": "Bbhil",
|
329 |
+
"Integer": "bhil",
|
330 |
+
"UnsignedInteger": "B",
|
331 |
+
"Float": "efd",
|
332 |
+
"Complex": "FD",
|
333 |
+
}
|
334 |
+
|
335 |
+
|
336 |
+
# ### Defaults and dtype discovery
|
337 |
+
|
338 |
+
|
339 |
+
def set_default_dtype(fp_dtype="numpy", int_dtype="numpy"):
|
340 |
+
"""Set the (global) defaults for fp, complex, and int dtypes.
|
341 |
+
|
342 |
+
The complex dtype is inferred from the float (fp) dtype. It has
|
343 |
+
a width at least twice the width of the float dtype,
|
344 |
+
i.e., it's complex128 for float64 and complex64 for float32.
|
345 |
+
|
346 |
+
Parameters
|
347 |
+
----------
|
348 |
+
fp_dtype
|
349 |
+
Allowed values are "numpy", "pytorch" or dtype_like things which
|
350 |
+
can be converted into a DType instance.
|
351 |
+
Default is "numpy" (i.e. float64).
|
352 |
+
int_dtype
|
353 |
+
Allowed values are "numpy", "pytorch" or dtype_like things which
|
354 |
+
can be converted into a DType instance.
|
355 |
+
Default is "numpy" (i.e. int64).
|
356 |
+
|
357 |
+
Returns
|
358 |
+
-------
|
359 |
+
The old default dtype state: a namedtuple with attributes ``float_dtype``,
|
360 |
+
``complex_dtypes`` and ``int_dtype``. These attributes store *pytorch*
|
361 |
+
dtypes.
|
362 |
+
|
363 |
+
Notes
|
364 |
+
------------
|
365 |
+
This functions has a side effect: it sets the global state with the provided dtypes.
|
366 |
+
|
367 |
+
The complex dtype has bit width of at least twice the width of the float
|
368 |
+
dtype, i.e. it's complex128 for float64 and complex64 for float32.
|
369 |
+
|
370 |
+
"""
|
371 |
+
if fp_dtype not in ["numpy", "pytorch"]:
|
372 |
+
fp_dtype = dtype(fp_dtype).torch_dtype
|
373 |
+
if int_dtype not in ["numpy", "pytorch"]:
|
374 |
+
int_dtype = dtype(int_dtype).torch_dtype
|
375 |
+
|
376 |
+
if fp_dtype == "numpy":
|
377 |
+
float_dtype = torch.float64
|
378 |
+
elif fp_dtype == "pytorch":
|
379 |
+
float_dtype = torch.float32
|
380 |
+
else:
|
381 |
+
float_dtype = fp_dtype
|
382 |
+
|
383 |
+
complex_dtype = {
|
384 |
+
torch.float64: torch.complex128,
|
385 |
+
torch.float32: torch.complex64,
|
386 |
+
torch.float16: torch.complex64,
|
387 |
+
}[float_dtype]
|
388 |
+
|
389 |
+
if int_dtype in ["numpy", "pytorch"]:
|
390 |
+
int_dtype = torch.int64
|
391 |
+
else:
|
392 |
+
int_dtype = int_dtype
|
393 |
+
|
394 |
+
new_defaults = _dtypes_impl.DefaultDTypes(
|
395 |
+
float_dtype=float_dtype, complex_dtype=complex_dtype, int_dtype=int_dtype
|
396 |
+
)
|
397 |
+
|
398 |
+
# set the new global state and return the old state
|
399 |
+
old_defaults = _dtypes_impl.default_dtypes
|
400 |
+
_dtypes_impl._default_dtypes = new_defaults
|
401 |
+
return old_defaults
|
402 |
+
|
403 |
+
|
404 |
+
def issubclass_(arg, klass):
|
405 |
+
try:
|
406 |
+
return issubclass(arg, klass)
|
407 |
+
except TypeError:
|
408 |
+
return False
|
409 |
+
|
410 |
+
|
411 |
+
def issubdtype(arg1, arg2):
|
412 |
+
# cf https://github.com/numpy/numpy/blob/v1.24.0/numpy/core/numerictypes.py#L356-L420
|
413 |
+
|
414 |
+
# We also accept strings even if NumPy doesn't as dtypes are serialized as their
|
415 |
+
# string representation in dynamo's graph
|
416 |
+
def str_to_abstract(t):
|
417 |
+
if isinstance(t, str) and t in _abstract_dtypes:
|
418 |
+
return globals()[t]
|
419 |
+
return t
|
420 |
+
|
421 |
+
arg1 = str_to_abstract(arg1)
|
422 |
+
arg2 = str_to_abstract(arg2)
|
423 |
+
|
424 |
+
if not issubclass_(arg1, generic):
|
425 |
+
arg1 = dtype(arg1).type
|
426 |
+
if not issubclass_(arg2, generic):
|
427 |
+
arg2 = dtype(arg2).type
|
428 |
+
return issubclass(arg1, arg2)
|
429 |
+
|
430 |
+
|
431 |
+
__all__ = ["dtype", "DType", "typecodes", "issubdtype", "set_default_dtype", "sctypes"]
|
432 |
+
__all__ += list(_names.keys()) # noqa: PLE0605
|
433 |
+
__all__ += list(_name_aliases.keys()) # noqa: PLE0605
|
434 |
+
__all__ += _abstract_dtypes # noqa: PLE0605
|
venv/lib/python3.10/site-packages/torch/_numpy/_dtypes_impl.py
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
"""Dtypes/scalar type implementaions with torch dtypes.
|
4 |
+
|
5 |
+
Here `dtype` is always a torch.dtype, this module knows nothing about
|
6 |
+
scalar types, wrapper dtypes or anything like that. PyTorch only.
|
7 |
+
"""
|
8 |
+
from collections import namedtuple
|
9 |
+
|
10 |
+
import torch
|
11 |
+
|
12 |
+
# defaults : mimic NumPy, allow user control
|
13 |
+
DefaultDTypes = namedtuple(
|
14 |
+
"DefaultDTypes", ["float_dtype", "complex_dtype", "int_dtype"]
|
15 |
+
)
|
16 |
+
|
17 |
+
# a global state
|
18 |
+
# We set it the first time we call default_dtypes() to avoid importing
|
19 |
+
# torch._dynamo.config and create a circular reference
|
20 |
+
_default_dtypes = None
|
21 |
+
|
22 |
+
|
23 |
+
def default_dtypes():
|
24 |
+
global _default_dtypes
|
25 |
+
if _default_dtypes is None:
|
26 |
+
import torch._dynamo.config as config
|
27 |
+
|
28 |
+
_default_dtypes = DefaultDTypes(
|
29 |
+
float_dtype=getattr(torch, config.numpy_default_float),
|
30 |
+
complex_dtype=getattr(torch, config.numpy_default_complex),
|
31 |
+
int_dtype=getattr(torch, config.numpy_default_int),
|
32 |
+
)
|
33 |
+
assert isinstance(_default_dtypes.float_dtype, torch.dtype)
|
34 |
+
assert isinstance(_default_dtypes.complex_dtype, torch.dtype)
|
35 |
+
assert isinstance(_default_dtypes.int_dtype, torch.dtype)
|
36 |
+
return _default_dtypes
|
37 |
+
|
38 |
+
|
39 |
+
def get_default_dtype_for(dtype):
|
40 |
+
"""Default scalar type given sctype category."""
|
41 |
+
if dtype == torch.bool:
|
42 |
+
return dtype
|
43 |
+
if dtype.is_complex:
|
44 |
+
return default_dtypes().complex_dtype
|
45 |
+
if dtype.is_floating_point:
|
46 |
+
return default_dtypes().float_dtype
|
47 |
+
# else, it must be (some) integer
|
48 |
+
return default_dtypes().int_dtype
|
49 |
+
|
50 |
+
|
51 |
+
from . import _casting_dicts as _cd
|
52 |
+
|
53 |
+
|
54 |
+
def can_cast_impl(from_torch_dtype, to_torch_dtype, casting):
|
55 |
+
return _cd._can_cast_dict[casting][from_torch_dtype][to_torch_dtype]
|
56 |
+
|
57 |
+
|
58 |
+
def result_type_impl(*tensors):
|
59 |
+
# NB: torch dtypes here
|
60 |
+
dtyp = tensors[0].dtype
|
61 |
+
if len(tensors) == 1:
|
62 |
+
return dtyp
|
63 |
+
|
64 |
+
for curr in tensors[1:]:
|
65 |
+
dtyp = _cd._result_type_dict[dtyp][curr.dtype]
|
66 |
+
|
67 |
+
return dtyp
|
68 |
+
|
69 |
+
|
70 |
+
def python_type_for_torch(dtyp):
|
71 |
+
"""Get a python scalar type a torch dtype"""
|
72 |
+
if dtyp.is_floating_point:
|
73 |
+
typ = float
|
74 |
+
elif dtyp.is_complex:
|
75 |
+
typ = complex
|
76 |
+
elif dtyp == torch.bool:
|
77 |
+
typ = bool
|
78 |
+
else:
|
79 |
+
typ = int
|
80 |
+
return typ
|
81 |
+
|
82 |
+
|
83 |
+
# ### NEP 50 helpers ###
|
84 |
+
|
85 |
+
_SCALAR_TYPES = (int, bool, float, complex)
|
86 |
+
|
87 |
+
_SCALAR_AND_SYMBOLIC_TYPES = (
|
88 |
+
*_SCALAR_TYPES,
|
89 |
+
torch.SymInt,
|
90 |
+
torch.SymFloat,
|
91 |
+
torch.SymBool,
|
92 |
+
)
|
93 |
+
|
94 |
+
_NEP50_FUNCS_TENSOR_ONLY = (
|
95 |
+
"minimum",
|
96 |
+
"maximum",
|
97 |
+
"logaddexp",
|
98 |
+
"logaddexp2",
|
99 |
+
"lcm",
|
100 |
+
"gcd",
|
101 |
+
"hypot",
|
102 |
+
"heaviside",
|
103 |
+
"fmod",
|
104 |
+
"fmin",
|
105 |
+
"fmax",
|
106 |
+
"copysign",
|
107 |
+
"arctan2",
|
108 |
+
)
|
109 |
+
|
110 |
+
|
111 |
+
def is_scalar(x):
|
112 |
+
return isinstance(x, _SCALAR_TYPES)
|
113 |
+
|
114 |
+
|
115 |
+
def is_scalar_or_symbolic(x):
|
116 |
+
return isinstance(x, _SCALAR_AND_SYMBOLIC_TYPES)
|
117 |
+
|
118 |
+
|
119 |
+
def _dtype_for_scalar(py_type):
|
120 |
+
return {
|
121 |
+
bool: torch.bool,
|
122 |
+
torch.SymBool: torch.bool,
|
123 |
+
int: torch.int64,
|
124 |
+
torch.SymInt: torch.int64,
|
125 |
+
float: torch.float64,
|
126 |
+
torch.SymFloat: torch.float64,
|
127 |
+
complex: torch.complex128,
|
128 |
+
}[py_type]
|
129 |
+
|
130 |
+
|
131 |
+
def _dtype_for_scalar_or_tensor(x):
|
132 |
+
return x.dtype if isinstance(x, torch.Tensor) else _dtype_for_scalar(type(x))
|
133 |
+
|
134 |
+
|
135 |
+
def is_float_or_fp_tensor(x):
|
136 |
+
return _dtype_for_scalar_or_tensor(x).is_floating_point
|
137 |
+
|
138 |
+
|
139 |
+
def is_complex_or_complex_tensor(x):
|
140 |
+
return _dtype_for_scalar_or_tensor(x).is_complex
|
141 |
+
|
142 |
+
|
143 |
+
def _category(dtype):
|
144 |
+
return {
|
145 |
+
torch.bool: 0,
|
146 |
+
torch.SymBool: 0,
|
147 |
+
# int
|
148 |
+
torch.uint8: 1,
|
149 |
+
torch.int8: 1,
|
150 |
+
torch.int16: 1,
|
151 |
+
torch.int32: 1,
|
152 |
+
torch.int64: 1,
|
153 |
+
torch.SymInt: 1,
|
154 |
+
# float
|
155 |
+
torch.float16: 2,
|
156 |
+
torch.float32: 2,
|
157 |
+
torch.float64: 2,
|
158 |
+
torch.SymFloat: 2,
|
159 |
+
# complex
|
160 |
+
torch.complex64: 3,
|
161 |
+
torch.complex128: 3,
|
162 |
+
}[dtype]
|
163 |
+
|
164 |
+
|
165 |
+
def nep50_to_tensors(x1, x2, handle_weaks, function_name):
|
166 |
+
"""If either of inputs is a python scalar, type-promote with NEP 50."""
|
167 |
+
|
168 |
+
def to_tensor(scalar, dtype=None):
|
169 |
+
if dtype is None:
|
170 |
+
dtype = _dtype_for_scalar(type(scalar))
|
171 |
+
dtype = get_default_dtype_for(dtype)
|
172 |
+
return torch.as_tensor(scalar, dtype=dtype)
|
173 |
+
|
174 |
+
x1_is_weak = not isinstance(x1, torch.Tensor)
|
175 |
+
x2_is_weak = not isinstance(x2, torch.Tensor)
|
176 |
+
if not handle_weaks or (x1_is_weak and x2_is_weak):
|
177 |
+
x1 = to_tensor(x1) if x1_is_weak else x1
|
178 |
+
x2 = to_tensor(x2) if x2_is_weak else x2
|
179 |
+
return x1, x2
|
180 |
+
|
181 |
+
# scalar <op> tensor: NEP 50
|
182 |
+
assert x1_is_weak != x2_is_weak
|
183 |
+
|
184 |
+
weak, not_weak = (x1, x2) if x1_is_weak else (x2, x1)
|
185 |
+
|
186 |
+
# find the dtype for the weak's type
|
187 |
+
weak_dtype = _dtype_for_scalar(type(weak))
|
188 |
+
|
189 |
+
cat_weak = _category(weak_dtype)
|
190 |
+
cat_not_weak = _category(not_weak.dtype)
|
191 |
+
|
192 |
+
dt = not_weak.dtype if cat_weak <= cat_not_weak else None
|
193 |
+
|
194 |
+
# special-case complex + float32
|
195 |
+
if weak_dtype.is_complex and not_weak.dtype == torch.float32:
|
196 |
+
dt = torch.complex64
|
197 |
+
|
198 |
+
# detect overflows: in PyTorch, uint8(-1) wraps around to 255,
|
199 |
+
# while NEP50 mandates an exception.
|
200 |
+
#
|
201 |
+
# Note that we only check if each element of the binop overflows,
|
202 |
+
# not the result. Consider, e.g. `uint8(100) + 200`. Operands are OK
|
203 |
+
# in uint8, but the result overflows and wrap around 255.
|
204 |
+
# Numpy emits a RuntimeWarning, PyTorch does not, and we do not either.
|
205 |
+
if cat_weak == 1 and cat_not_weak == 1:
|
206 |
+
# integers
|
207 |
+
iinfo = torch.iinfo(not_weak.dtype)
|
208 |
+
if not (iinfo.min <= weak <= iinfo.max):
|
209 |
+
raise OverflowError(
|
210 |
+
f"Python integer {weak} out of bounds for {not_weak.dtype}"
|
211 |
+
)
|
212 |
+
if weak_dtype != dt or function_name in _NEP50_FUNCS_TENSOR_ONLY:
|
213 |
+
# finally, can make `weak` into a 0D tensor, if both parameters are required to be tensor.
|
214 |
+
weak = to_tensor(weak, dt)
|
215 |
+
|
216 |
+
return (weak, not_weak) if x1_is_weak else (not_weak, weak)
|
venv/lib/python3.10/site-packages/torch/_numpy/_funcs.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
import inspect
|
4 |
+
import itertools
|
5 |
+
|
6 |
+
from . import _funcs_impl, _reductions_impl
|
7 |
+
from ._normalizations import normalizer
|
8 |
+
|
9 |
+
# _funcs_impl.py contains functions which mimic NumPy's eponymous equivalents,
|
10 |
+
# and consume/return PyTorch tensors/dtypes.
|
11 |
+
# They are also type annotated.
|
12 |
+
# Pull these functions from _funcs_impl and decorate them with @normalizer, which
|
13 |
+
# - Converts any input `np.ndarray`, `torch._numpy.ndarray`, list of lists, Python scalars, etc into a `torch.Tensor`.
|
14 |
+
# - Maps NumPy dtypes to PyTorch dtypes
|
15 |
+
# - If the input to the `axis` kwarg is an ndarray, it maps it into a tuple
|
16 |
+
# - Implements the semantics for the `out=` arg
|
17 |
+
# - Wraps back the outputs into `torch._numpy.ndarrays`
|
18 |
+
|
19 |
+
|
20 |
+
def _public_functions(mod):
|
21 |
+
def is_public_function(f):
|
22 |
+
return inspect.isfunction(f) and not f.__name__.startswith("_")
|
23 |
+
|
24 |
+
return inspect.getmembers(mod, is_public_function)
|
25 |
+
|
26 |
+
|
27 |
+
# We fill in __all__ in the loop below
|
28 |
+
__all__ = []
|
29 |
+
|
30 |
+
# decorate implementer functions with argument normalizers and export to the top namespace
|
31 |
+
for name, func in itertools.chain(
|
32 |
+
_public_functions(_funcs_impl), _public_functions(_reductions_impl)
|
33 |
+
):
|
34 |
+
if name in ["percentile", "quantile", "median"]:
|
35 |
+
decorated = normalizer(func, promote_scalar_result=True)
|
36 |
+
elif name == "einsum":
|
37 |
+
# normalized manually
|
38 |
+
decorated = func
|
39 |
+
else:
|
40 |
+
decorated = normalizer(func)
|
41 |
+
|
42 |
+
decorated.__qualname__ = name
|
43 |
+
decorated.__name__ = name
|
44 |
+
vars()[name] = decorated
|
45 |
+
__all__.append(name)
|
46 |
+
|
47 |
+
|
48 |
+
"""
|
49 |
+
Vendored objects from numpy.lib.index_tricks
|
50 |
+
"""
|
51 |
+
|
52 |
+
|
53 |
+
class IndexExpression:
|
54 |
+
"""
|
55 |
+
Written by Konrad Hinsen <[email protected]>
|
56 |
+
last revision: 1999-7-23
|
57 |
+
|
58 |
+
Cosmetic changes by T. Oliphant 2001
|
59 |
+
"""
|
60 |
+
|
61 |
+
def __init__(self, maketuple):
|
62 |
+
self.maketuple = maketuple
|
63 |
+
|
64 |
+
def __getitem__(self, item):
|
65 |
+
if self.maketuple and not isinstance(item, tuple):
|
66 |
+
return (item,)
|
67 |
+
else:
|
68 |
+
return item
|
69 |
+
|
70 |
+
|
71 |
+
index_exp = IndexExpression(maketuple=True)
|
72 |
+
s_ = IndexExpression(maketuple=False)
|
73 |
+
|
74 |
+
|
75 |
+
__all__ += ["index_exp", "s_"]
|
venv/lib/python3.10/site-packages/torch/_numpy/_funcs_impl.py
ADDED
@@ -0,0 +1,2053 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
"""A thin pytorch / numpy compat layer.
|
4 |
+
|
5 |
+
Things imported from here have numpy-compatible signatures but operate on
|
6 |
+
pytorch tensors.
|
7 |
+
"""
|
8 |
+
# Contents of this module ends up in the main namespace via _funcs.py
|
9 |
+
# where type annotations are used in conjunction with the @normalizer decorator.
|
10 |
+
from __future__ import annotations
|
11 |
+
|
12 |
+
import builtins
|
13 |
+
import itertools
|
14 |
+
import operator
|
15 |
+
from typing import Optional, Sequence
|
16 |
+
|
17 |
+
import torch
|
18 |
+
|
19 |
+
from . import _dtypes_impl, _util
|
20 |
+
from ._normalizations import (
|
21 |
+
ArrayLike,
|
22 |
+
ArrayLikeOrScalar,
|
23 |
+
CastingModes,
|
24 |
+
DTypeLike,
|
25 |
+
NDArray,
|
26 |
+
NotImplementedType,
|
27 |
+
OutArray,
|
28 |
+
)
|
29 |
+
|
30 |
+
|
31 |
+
def copy(
|
32 |
+
a: ArrayLike, order: NotImplementedType = "K", subok: NotImplementedType = False
|
33 |
+
):
|
34 |
+
return a.clone()
|
35 |
+
|
36 |
+
|
37 |
+
def copyto(
|
38 |
+
dst: NDArray,
|
39 |
+
src: ArrayLike,
|
40 |
+
casting: Optional[CastingModes] = "same_kind",
|
41 |
+
where: NotImplementedType = None,
|
42 |
+
):
|
43 |
+
(src,) = _util.typecast_tensors((src,), dst.dtype, casting=casting)
|
44 |
+
dst.copy_(src)
|
45 |
+
|
46 |
+
|
47 |
+
def atleast_1d(*arys: ArrayLike):
|
48 |
+
res = torch.atleast_1d(*arys)
|
49 |
+
if isinstance(res, tuple):
|
50 |
+
return list(res)
|
51 |
+
else:
|
52 |
+
return res
|
53 |
+
|
54 |
+
|
55 |
+
def atleast_2d(*arys: ArrayLike):
|
56 |
+
res = torch.atleast_2d(*arys)
|
57 |
+
if isinstance(res, tuple):
|
58 |
+
return list(res)
|
59 |
+
else:
|
60 |
+
return res
|
61 |
+
|
62 |
+
|
63 |
+
def atleast_3d(*arys: ArrayLike):
|
64 |
+
res = torch.atleast_3d(*arys)
|
65 |
+
if isinstance(res, tuple):
|
66 |
+
return list(res)
|
67 |
+
else:
|
68 |
+
return res
|
69 |
+
|
70 |
+
|
71 |
+
def _concat_check(tup, dtype, out):
|
72 |
+
if tup == ():
|
73 |
+
raise ValueError("need at least one array to concatenate")
|
74 |
+
|
75 |
+
"""Check inputs in concatenate et al."""
|
76 |
+
if out is not None and dtype is not None:
|
77 |
+
# mimic numpy
|
78 |
+
raise TypeError(
|
79 |
+
"concatenate() only takes `out` or `dtype` as an "
|
80 |
+
"argument, but both were provided."
|
81 |
+
)
|
82 |
+
|
83 |
+
|
84 |
+
def _concat_cast_helper(tensors, out=None, dtype=None, casting="same_kind"):
|
85 |
+
"""Figure out dtypes, cast if necessary."""
|
86 |
+
|
87 |
+
if out is not None or dtype is not None:
|
88 |
+
# figure out the type of the inputs and outputs
|
89 |
+
out_dtype = out.dtype.torch_dtype if dtype is None else dtype
|
90 |
+
else:
|
91 |
+
out_dtype = _dtypes_impl.result_type_impl(*tensors)
|
92 |
+
|
93 |
+
# cast input arrays if necessary; do not broadcast them agains `out`
|
94 |
+
tensors = _util.typecast_tensors(tensors, out_dtype, casting)
|
95 |
+
|
96 |
+
return tensors
|
97 |
+
|
98 |
+
|
99 |
+
def _concatenate(
|
100 |
+
tensors, axis=0, out=None, dtype=None, casting: Optional[CastingModes] = "same_kind"
|
101 |
+
):
|
102 |
+
# pure torch implementation, used below and in cov/corrcoef below
|
103 |
+
tensors, axis = _util.axis_none_flatten(*tensors, axis=axis)
|
104 |
+
tensors = _concat_cast_helper(tensors, out, dtype, casting)
|
105 |
+
return torch.cat(tensors, axis)
|
106 |
+
|
107 |
+
|
108 |
+
def concatenate(
|
109 |
+
ar_tuple: Sequence[ArrayLike],
|
110 |
+
axis=0,
|
111 |
+
out: Optional[OutArray] = None,
|
112 |
+
dtype: Optional[DTypeLike] = None,
|
113 |
+
casting: Optional[CastingModes] = "same_kind",
|
114 |
+
):
|
115 |
+
_concat_check(ar_tuple, dtype, out=out)
|
116 |
+
result = _concatenate(ar_tuple, axis=axis, out=out, dtype=dtype, casting=casting)
|
117 |
+
return result
|
118 |
+
|
119 |
+
|
120 |
+
def vstack(
|
121 |
+
tup: Sequence[ArrayLike],
|
122 |
+
*,
|
123 |
+
dtype: Optional[DTypeLike] = None,
|
124 |
+
casting: Optional[CastingModes] = "same_kind",
|
125 |
+
):
|
126 |
+
_concat_check(tup, dtype, out=None)
|
127 |
+
tensors = _concat_cast_helper(tup, dtype=dtype, casting=casting)
|
128 |
+
return torch.vstack(tensors)
|
129 |
+
|
130 |
+
|
131 |
+
row_stack = vstack
|
132 |
+
|
133 |
+
|
134 |
+
def hstack(
|
135 |
+
tup: Sequence[ArrayLike],
|
136 |
+
*,
|
137 |
+
dtype: Optional[DTypeLike] = None,
|
138 |
+
casting: Optional[CastingModes] = "same_kind",
|
139 |
+
):
|
140 |
+
_concat_check(tup, dtype, out=None)
|
141 |
+
tensors = _concat_cast_helper(tup, dtype=dtype, casting=casting)
|
142 |
+
return torch.hstack(tensors)
|
143 |
+
|
144 |
+
|
145 |
+
def dstack(
|
146 |
+
tup: Sequence[ArrayLike],
|
147 |
+
*,
|
148 |
+
dtype: Optional[DTypeLike] = None,
|
149 |
+
casting: Optional[CastingModes] = "same_kind",
|
150 |
+
):
|
151 |
+
# XXX: in numpy 1.24 dstack does not have dtype and casting keywords
|
152 |
+
# but {h,v}stack do. Hence add them here for consistency.
|
153 |
+
_concat_check(tup, dtype, out=None)
|
154 |
+
tensors = _concat_cast_helper(tup, dtype=dtype, casting=casting)
|
155 |
+
return torch.dstack(tensors)
|
156 |
+
|
157 |
+
|
158 |
+
def column_stack(
|
159 |
+
tup: Sequence[ArrayLike],
|
160 |
+
*,
|
161 |
+
dtype: Optional[DTypeLike] = None,
|
162 |
+
casting: Optional[CastingModes] = "same_kind",
|
163 |
+
):
|
164 |
+
# XXX: in numpy 1.24 column_stack does not have dtype and casting keywords
|
165 |
+
# but row_stack does. (because row_stack is an alias for vstack, really).
|
166 |
+
# Hence add these keywords here for consistency.
|
167 |
+
_concat_check(tup, dtype, out=None)
|
168 |
+
tensors = _concat_cast_helper(tup, dtype=dtype, casting=casting)
|
169 |
+
return torch.column_stack(tensors)
|
170 |
+
|
171 |
+
|
172 |
+
def stack(
|
173 |
+
arrays: Sequence[ArrayLike],
|
174 |
+
axis=0,
|
175 |
+
out: Optional[OutArray] = None,
|
176 |
+
*,
|
177 |
+
dtype: Optional[DTypeLike] = None,
|
178 |
+
casting: Optional[CastingModes] = "same_kind",
|
179 |
+
):
|
180 |
+
_concat_check(arrays, dtype, out=out)
|
181 |
+
|
182 |
+
tensors = _concat_cast_helper(arrays, dtype=dtype, casting=casting)
|
183 |
+
result_ndim = tensors[0].ndim + 1
|
184 |
+
axis = _util.normalize_axis_index(axis, result_ndim)
|
185 |
+
return torch.stack(tensors, axis=axis)
|
186 |
+
|
187 |
+
|
188 |
+
def append(arr: ArrayLike, values: ArrayLike, axis=None):
|
189 |
+
if axis is None:
|
190 |
+
if arr.ndim != 1:
|
191 |
+
arr = arr.flatten()
|
192 |
+
values = values.flatten()
|
193 |
+
axis = arr.ndim - 1
|
194 |
+
return _concatenate((arr, values), axis=axis)
|
195 |
+
|
196 |
+
|
197 |
+
# ### split ###
|
198 |
+
|
199 |
+
|
200 |
+
def _split_helper(tensor, indices_or_sections, axis, strict=False):
|
201 |
+
if isinstance(indices_or_sections, int):
|
202 |
+
return _split_helper_int(tensor, indices_or_sections, axis, strict)
|
203 |
+
elif isinstance(indices_or_sections, (list, tuple)):
|
204 |
+
# NB: drop split=..., it only applies to split_helper_int
|
205 |
+
return _split_helper_list(tensor, list(indices_or_sections), axis)
|
206 |
+
else:
|
207 |
+
raise TypeError("split_helper: ", type(indices_or_sections))
|
208 |
+
|
209 |
+
|
210 |
+
def _split_helper_int(tensor, indices_or_sections, axis, strict=False):
|
211 |
+
if not isinstance(indices_or_sections, int):
|
212 |
+
raise NotImplementedError("split: indices_or_sections")
|
213 |
+
|
214 |
+
axis = _util.normalize_axis_index(axis, tensor.ndim)
|
215 |
+
|
216 |
+
# numpy: l%n chunks of size (l//n + 1), the rest are sized l//n
|
217 |
+
l, n = tensor.shape[axis], indices_or_sections
|
218 |
+
|
219 |
+
if n <= 0:
|
220 |
+
raise ValueError()
|
221 |
+
|
222 |
+
if l % n == 0:
|
223 |
+
num, sz = n, l // n
|
224 |
+
lst = [sz] * num
|
225 |
+
else:
|
226 |
+
if strict:
|
227 |
+
raise ValueError("array split does not result in an equal division")
|
228 |
+
|
229 |
+
num, sz = l % n, l // n + 1
|
230 |
+
lst = [sz] * num
|
231 |
+
|
232 |
+
lst += [sz - 1] * (n - num)
|
233 |
+
|
234 |
+
return torch.split(tensor, lst, axis)
|
235 |
+
|
236 |
+
|
237 |
+
def _split_helper_list(tensor, indices_or_sections, axis):
|
238 |
+
if not isinstance(indices_or_sections, list):
|
239 |
+
raise NotImplementedError("split: indices_or_sections: list")
|
240 |
+
# numpy expects indices, while torch expects lengths of sections
|
241 |
+
# also, numpy appends zero-size arrays for indices above the shape[axis]
|
242 |
+
lst = [x for x in indices_or_sections if x <= tensor.shape[axis]]
|
243 |
+
num_extra = len(indices_or_sections) - len(lst)
|
244 |
+
|
245 |
+
lst.append(tensor.shape[axis])
|
246 |
+
lst = [
|
247 |
+
lst[0],
|
248 |
+
] + [a - b for a, b in zip(lst[1:], lst[:-1])]
|
249 |
+
lst += [0] * num_extra
|
250 |
+
|
251 |
+
return torch.split(tensor, lst, axis)
|
252 |
+
|
253 |
+
|
254 |
+
def array_split(ary: ArrayLike, indices_or_sections, axis=0):
|
255 |
+
return _split_helper(ary, indices_or_sections, axis)
|
256 |
+
|
257 |
+
|
258 |
+
def split(ary: ArrayLike, indices_or_sections, axis=0):
|
259 |
+
return _split_helper(ary, indices_or_sections, axis, strict=True)
|
260 |
+
|
261 |
+
|
262 |
+
def hsplit(ary: ArrayLike, indices_or_sections):
|
263 |
+
if ary.ndim == 0:
|
264 |
+
raise ValueError("hsplit only works on arrays of 1 or more dimensions")
|
265 |
+
axis = 1 if ary.ndim > 1 else 0
|
266 |
+
return _split_helper(ary, indices_or_sections, axis, strict=True)
|
267 |
+
|
268 |
+
|
269 |
+
def vsplit(ary: ArrayLike, indices_or_sections):
|
270 |
+
if ary.ndim < 2:
|
271 |
+
raise ValueError("vsplit only works on arrays of 2 or more dimensions")
|
272 |
+
return _split_helper(ary, indices_or_sections, 0, strict=True)
|
273 |
+
|
274 |
+
|
275 |
+
def dsplit(ary: ArrayLike, indices_or_sections):
|
276 |
+
if ary.ndim < 3:
|
277 |
+
raise ValueError("dsplit only works on arrays of 3 or more dimensions")
|
278 |
+
return _split_helper(ary, indices_or_sections, 2, strict=True)
|
279 |
+
|
280 |
+
|
281 |
+
def kron(a: ArrayLike, b: ArrayLike):
|
282 |
+
return torch.kron(a, b)
|
283 |
+
|
284 |
+
|
285 |
+
def vander(x: ArrayLike, N=None, increasing=False):
|
286 |
+
return torch.vander(x, N, increasing)
|
287 |
+
|
288 |
+
|
289 |
+
# ### linspace, geomspace, logspace and arange ###
|
290 |
+
|
291 |
+
|
292 |
+
def linspace(
|
293 |
+
start: ArrayLike,
|
294 |
+
stop: ArrayLike,
|
295 |
+
num=50,
|
296 |
+
endpoint=True,
|
297 |
+
retstep=False,
|
298 |
+
dtype: Optional[DTypeLike] = None,
|
299 |
+
axis=0,
|
300 |
+
):
|
301 |
+
if axis != 0 or retstep or not endpoint:
|
302 |
+
raise NotImplementedError
|
303 |
+
if dtype is None:
|
304 |
+
dtype = _dtypes_impl.default_dtypes().float_dtype
|
305 |
+
# XXX: raises TypeError if start or stop are not scalars
|
306 |
+
return torch.linspace(start, stop, num, dtype=dtype)
|
307 |
+
|
308 |
+
|
309 |
+
def geomspace(
|
310 |
+
start: ArrayLike,
|
311 |
+
stop: ArrayLike,
|
312 |
+
num=50,
|
313 |
+
endpoint=True,
|
314 |
+
dtype: Optional[DTypeLike] = None,
|
315 |
+
axis=0,
|
316 |
+
):
|
317 |
+
if axis != 0 or not endpoint:
|
318 |
+
raise NotImplementedError
|
319 |
+
base = torch.pow(stop / start, 1.0 / (num - 1))
|
320 |
+
logbase = torch.log(base)
|
321 |
+
return torch.logspace(
|
322 |
+
torch.log(start) / logbase,
|
323 |
+
torch.log(stop) / logbase,
|
324 |
+
num,
|
325 |
+
base=base,
|
326 |
+
)
|
327 |
+
|
328 |
+
|
329 |
+
def logspace(
|
330 |
+
start,
|
331 |
+
stop,
|
332 |
+
num=50,
|
333 |
+
endpoint=True,
|
334 |
+
base=10.0,
|
335 |
+
dtype: Optional[DTypeLike] = None,
|
336 |
+
axis=0,
|
337 |
+
):
|
338 |
+
if axis != 0 or not endpoint:
|
339 |
+
raise NotImplementedError
|
340 |
+
return torch.logspace(start, stop, num, base=base, dtype=dtype)
|
341 |
+
|
342 |
+
|
343 |
+
def arange(
|
344 |
+
start: Optional[ArrayLikeOrScalar] = None,
|
345 |
+
stop: Optional[ArrayLikeOrScalar] = None,
|
346 |
+
step: Optional[ArrayLikeOrScalar] = 1,
|
347 |
+
dtype: Optional[DTypeLike] = None,
|
348 |
+
*,
|
349 |
+
like: NotImplementedType = None,
|
350 |
+
):
|
351 |
+
if step == 0:
|
352 |
+
raise ZeroDivisionError
|
353 |
+
if stop is None and start is None:
|
354 |
+
raise TypeError
|
355 |
+
if stop is None:
|
356 |
+
# XXX: this breaks if start is passed as a kwarg:
|
357 |
+
# arange(start=4) should raise (no stop) but doesn't
|
358 |
+
start, stop = 0, start
|
359 |
+
if start is None:
|
360 |
+
start = 0
|
361 |
+
|
362 |
+
# the dtype of the result
|
363 |
+
if dtype is None:
|
364 |
+
dtype = (
|
365 |
+
_dtypes_impl.default_dtypes().float_dtype
|
366 |
+
if any(_dtypes_impl.is_float_or_fp_tensor(x) for x in (start, stop, step))
|
367 |
+
else _dtypes_impl.default_dtypes().int_dtype
|
368 |
+
)
|
369 |
+
work_dtype = torch.float64 if dtype.is_complex else dtype
|
370 |
+
|
371 |
+
# RuntimeError: "lt_cpu" not implemented for 'ComplexFloat'. Fall back to eager.
|
372 |
+
if any(_dtypes_impl.is_complex_or_complex_tensor(x) for x in (start, stop, step)):
|
373 |
+
raise NotImplementedError
|
374 |
+
|
375 |
+
if (step > 0 and start > stop) or (step < 0 and start < stop):
|
376 |
+
# empty range
|
377 |
+
return torch.empty(0, dtype=dtype)
|
378 |
+
|
379 |
+
result = torch.arange(start, stop, step, dtype=work_dtype)
|
380 |
+
result = _util.cast_if_needed(result, dtype)
|
381 |
+
return result
|
382 |
+
|
383 |
+
|
384 |
+
# ### zeros/ones/empty/full ###
|
385 |
+
|
386 |
+
|
387 |
+
def empty(
|
388 |
+
shape,
|
389 |
+
dtype: Optional[DTypeLike] = None,
|
390 |
+
order: NotImplementedType = "C",
|
391 |
+
*,
|
392 |
+
like: NotImplementedType = None,
|
393 |
+
):
|
394 |
+
if dtype is None:
|
395 |
+
dtype = _dtypes_impl.default_dtypes().float_dtype
|
396 |
+
return torch.empty(shape, dtype=dtype)
|
397 |
+
|
398 |
+
|
399 |
+
# NB: *_like functions deliberately deviate from numpy: it has subok=True
|
400 |
+
# as the default; we set subok=False and raise on anything else.
|
401 |
+
|
402 |
+
|
403 |
+
def empty_like(
|
404 |
+
prototype: ArrayLike,
|
405 |
+
dtype: Optional[DTypeLike] = None,
|
406 |
+
order: NotImplementedType = "K",
|
407 |
+
subok: NotImplementedType = False,
|
408 |
+
shape=None,
|
409 |
+
):
|
410 |
+
result = torch.empty_like(prototype, dtype=dtype)
|
411 |
+
if shape is not None:
|
412 |
+
result = result.reshape(shape)
|
413 |
+
return result
|
414 |
+
|
415 |
+
|
416 |
+
def full(
|
417 |
+
shape,
|
418 |
+
fill_value: ArrayLike,
|
419 |
+
dtype: Optional[DTypeLike] = None,
|
420 |
+
order: NotImplementedType = "C",
|
421 |
+
*,
|
422 |
+
like: NotImplementedType = None,
|
423 |
+
):
|
424 |
+
if isinstance(shape, int):
|
425 |
+
shape = (shape,)
|
426 |
+
if dtype is None:
|
427 |
+
dtype = fill_value.dtype
|
428 |
+
if not isinstance(shape, (tuple, list)):
|
429 |
+
shape = (shape,)
|
430 |
+
return torch.full(shape, fill_value, dtype=dtype)
|
431 |
+
|
432 |
+
|
433 |
+
def full_like(
|
434 |
+
a: ArrayLike,
|
435 |
+
fill_value,
|
436 |
+
dtype: Optional[DTypeLike] = None,
|
437 |
+
order: NotImplementedType = "K",
|
438 |
+
subok: NotImplementedType = False,
|
439 |
+
shape=None,
|
440 |
+
):
|
441 |
+
# XXX: fill_value broadcasts
|
442 |
+
result = torch.full_like(a, fill_value, dtype=dtype)
|
443 |
+
if shape is not None:
|
444 |
+
result = result.reshape(shape)
|
445 |
+
return result
|
446 |
+
|
447 |
+
|
448 |
+
def ones(
|
449 |
+
shape,
|
450 |
+
dtype: Optional[DTypeLike] = None,
|
451 |
+
order: NotImplementedType = "C",
|
452 |
+
*,
|
453 |
+
like: NotImplementedType = None,
|
454 |
+
):
|
455 |
+
if dtype is None:
|
456 |
+
dtype = _dtypes_impl.default_dtypes().float_dtype
|
457 |
+
return torch.ones(shape, dtype=dtype)
|
458 |
+
|
459 |
+
|
460 |
+
def ones_like(
|
461 |
+
a: ArrayLike,
|
462 |
+
dtype: Optional[DTypeLike] = None,
|
463 |
+
order: NotImplementedType = "K",
|
464 |
+
subok: NotImplementedType = False,
|
465 |
+
shape=None,
|
466 |
+
):
|
467 |
+
result = torch.ones_like(a, dtype=dtype)
|
468 |
+
if shape is not None:
|
469 |
+
result = result.reshape(shape)
|
470 |
+
return result
|
471 |
+
|
472 |
+
|
473 |
+
def zeros(
|
474 |
+
shape,
|
475 |
+
dtype: Optional[DTypeLike] = None,
|
476 |
+
order: NotImplementedType = "C",
|
477 |
+
*,
|
478 |
+
like: NotImplementedType = None,
|
479 |
+
):
|
480 |
+
if dtype is None:
|
481 |
+
dtype = _dtypes_impl.default_dtypes().float_dtype
|
482 |
+
return torch.zeros(shape, dtype=dtype)
|
483 |
+
|
484 |
+
|
485 |
+
def zeros_like(
|
486 |
+
a: ArrayLike,
|
487 |
+
dtype: Optional[DTypeLike] = None,
|
488 |
+
order: NotImplementedType = "K",
|
489 |
+
subok: NotImplementedType = False,
|
490 |
+
shape=None,
|
491 |
+
):
|
492 |
+
result = torch.zeros_like(a, dtype=dtype)
|
493 |
+
if shape is not None:
|
494 |
+
result = result.reshape(shape)
|
495 |
+
return result
|
496 |
+
|
497 |
+
|
498 |
+
# ### cov & corrcoef ###
|
499 |
+
|
500 |
+
|
501 |
+
def _xy_helper_corrcoef(x_tensor, y_tensor=None, rowvar=True):
|
502 |
+
"""Prepare inputs for cov and corrcoef."""
|
503 |
+
|
504 |
+
# https://github.com/numpy/numpy/blob/v1.24.0/numpy/lib/function_base.py#L2636
|
505 |
+
if y_tensor is not None:
|
506 |
+
# make sure x and y are at least 2D
|
507 |
+
ndim_extra = 2 - x_tensor.ndim
|
508 |
+
if ndim_extra > 0:
|
509 |
+
x_tensor = x_tensor.view((1,) * ndim_extra + x_tensor.shape)
|
510 |
+
if not rowvar and x_tensor.shape[0] != 1:
|
511 |
+
x_tensor = x_tensor.mT
|
512 |
+
x_tensor = x_tensor.clone()
|
513 |
+
|
514 |
+
ndim_extra = 2 - y_tensor.ndim
|
515 |
+
if ndim_extra > 0:
|
516 |
+
y_tensor = y_tensor.view((1,) * ndim_extra + y_tensor.shape)
|
517 |
+
if not rowvar and y_tensor.shape[0] != 1:
|
518 |
+
y_tensor = y_tensor.mT
|
519 |
+
y_tensor = y_tensor.clone()
|
520 |
+
|
521 |
+
x_tensor = _concatenate((x_tensor, y_tensor), axis=0)
|
522 |
+
|
523 |
+
return x_tensor
|
524 |
+
|
525 |
+
|
526 |
+
def corrcoef(
|
527 |
+
x: ArrayLike,
|
528 |
+
y: Optional[ArrayLike] = None,
|
529 |
+
rowvar=True,
|
530 |
+
bias=None,
|
531 |
+
ddof=None,
|
532 |
+
*,
|
533 |
+
dtype: Optional[DTypeLike] = None,
|
534 |
+
):
|
535 |
+
if bias is not None or ddof is not None:
|
536 |
+
# deprecated in NumPy
|
537 |
+
raise NotImplementedError
|
538 |
+
xy_tensor = _xy_helper_corrcoef(x, y, rowvar)
|
539 |
+
|
540 |
+
is_half = (xy_tensor.dtype == torch.float16) and xy_tensor.is_cpu
|
541 |
+
if is_half:
|
542 |
+
# work around torch's "addmm_impl_cpu_" not implemented for 'Half'"
|
543 |
+
dtype = torch.float32
|
544 |
+
|
545 |
+
xy_tensor = _util.cast_if_needed(xy_tensor, dtype)
|
546 |
+
result = torch.corrcoef(xy_tensor)
|
547 |
+
|
548 |
+
if is_half:
|
549 |
+
result = result.to(torch.float16)
|
550 |
+
|
551 |
+
return result
|
552 |
+
|
553 |
+
|
554 |
+
def cov(
|
555 |
+
m: ArrayLike,
|
556 |
+
y: Optional[ArrayLike] = None,
|
557 |
+
rowvar=True,
|
558 |
+
bias=False,
|
559 |
+
ddof=None,
|
560 |
+
fweights: Optional[ArrayLike] = None,
|
561 |
+
aweights: Optional[ArrayLike] = None,
|
562 |
+
*,
|
563 |
+
dtype: Optional[DTypeLike] = None,
|
564 |
+
):
|
565 |
+
m = _xy_helper_corrcoef(m, y, rowvar)
|
566 |
+
|
567 |
+
if ddof is None:
|
568 |
+
ddof = 1 if bias == 0 else 0
|
569 |
+
|
570 |
+
is_half = (m.dtype == torch.float16) and m.is_cpu
|
571 |
+
if is_half:
|
572 |
+
# work around torch's "addmm_impl_cpu_" not implemented for 'Half'"
|
573 |
+
dtype = torch.float32
|
574 |
+
|
575 |
+
m = _util.cast_if_needed(m, dtype)
|
576 |
+
result = torch.cov(m, correction=ddof, aweights=aweights, fweights=fweights)
|
577 |
+
|
578 |
+
if is_half:
|
579 |
+
result = result.to(torch.float16)
|
580 |
+
|
581 |
+
return result
|
582 |
+
|
583 |
+
|
584 |
+
def _conv_corr_impl(a, v, mode):
|
585 |
+
dt = _dtypes_impl.result_type_impl(a, v)
|
586 |
+
a = _util.cast_if_needed(a, dt)
|
587 |
+
v = _util.cast_if_needed(v, dt)
|
588 |
+
|
589 |
+
padding = v.shape[0] - 1 if mode == "full" else mode
|
590 |
+
|
591 |
+
if padding == "same" and v.shape[0] % 2 == 0:
|
592 |
+
# UserWarning: Using padding='same' with even kernel lengths and odd
|
593 |
+
# dilation may require a zero-padded copy of the input be created
|
594 |
+
# (Triggered internally at pytorch/aten/src/ATen/native/Convolution.cpp:1010.)
|
595 |
+
raise NotImplementedError("mode='same' and even-length weights")
|
596 |
+
|
597 |
+
# NumPy only accepts 1D arrays; PyTorch requires 2D inputs and 3D weights
|
598 |
+
aa = a[None, :]
|
599 |
+
vv = v[None, None, :]
|
600 |
+
|
601 |
+
result = torch.nn.functional.conv1d(aa, vv, padding=padding)
|
602 |
+
|
603 |
+
# torch returns a 2D result, numpy returns a 1D array
|
604 |
+
return result[0, :]
|
605 |
+
|
606 |
+
|
607 |
+
def convolve(a: ArrayLike, v: ArrayLike, mode="full"):
|
608 |
+
# NumPy: if v is longer than a, the arrays are swapped before computation
|
609 |
+
if a.shape[0] < v.shape[0]:
|
610 |
+
a, v = v, a
|
611 |
+
|
612 |
+
# flip the weights since numpy does and torch does not
|
613 |
+
v = torch.flip(v, (0,))
|
614 |
+
|
615 |
+
return _conv_corr_impl(a, v, mode)
|
616 |
+
|
617 |
+
|
618 |
+
def correlate(a: ArrayLike, v: ArrayLike, mode="valid"):
|
619 |
+
v = torch.conj_physical(v)
|
620 |
+
return _conv_corr_impl(a, v, mode)
|
621 |
+
|
622 |
+
|
623 |
+
# ### logic & element selection ###
|
624 |
+
|
625 |
+
|
626 |
+
def bincount(x: ArrayLike, /, weights: Optional[ArrayLike] = None, minlength=0):
|
627 |
+
if x.numel() == 0:
|
628 |
+
# edge case allowed by numpy
|
629 |
+
x = x.new_empty(0, dtype=int)
|
630 |
+
|
631 |
+
int_dtype = _dtypes_impl.default_dtypes().int_dtype
|
632 |
+
(x,) = _util.typecast_tensors((x,), int_dtype, casting="safe")
|
633 |
+
|
634 |
+
return torch.bincount(x, weights, minlength)
|
635 |
+
|
636 |
+
|
637 |
+
def where(
|
638 |
+
condition: ArrayLike,
|
639 |
+
x: Optional[ArrayLikeOrScalar] = None,
|
640 |
+
y: Optional[ArrayLikeOrScalar] = None,
|
641 |
+
/,
|
642 |
+
):
|
643 |
+
if (x is None) != (y is None):
|
644 |
+
raise ValueError("either both or neither of x and y should be given")
|
645 |
+
|
646 |
+
if condition.dtype != torch.bool:
|
647 |
+
condition = condition.to(torch.bool)
|
648 |
+
|
649 |
+
if x is None and y is None:
|
650 |
+
result = torch.where(condition)
|
651 |
+
else:
|
652 |
+
result = torch.where(condition, x, y)
|
653 |
+
return result
|
654 |
+
|
655 |
+
|
656 |
+
# ###### module-level queries of object properties
|
657 |
+
|
658 |
+
|
659 |
+
def ndim(a: ArrayLike):
|
660 |
+
return a.ndim
|
661 |
+
|
662 |
+
|
663 |
+
def shape(a: ArrayLike):
|
664 |
+
return tuple(a.shape)
|
665 |
+
|
666 |
+
|
667 |
+
def size(a: ArrayLike, axis=None):
|
668 |
+
if axis is None:
|
669 |
+
return a.numel()
|
670 |
+
else:
|
671 |
+
return a.shape[axis]
|
672 |
+
|
673 |
+
|
674 |
+
# ###### shape manipulations and indexing
|
675 |
+
|
676 |
+
|
677 |
+
def expand_dims(a: ArrayLike, axis):
|
678 |
+
shape = _util.expand_shape(a.shape, axis)
|
679 |
+
return a.view(shape) # never copies
|
680 |
+
|
681 |
+
|
682 |
+
def flip(m: ArrayLike, axis=None):
|
683 |
+
# XXX: semantic difference: np.flip returns a view, torch.flip copies
|
684 |
+
if axis is None:
|
685 |
+
axis = tuple(range(m.ndim))
|
686 |
+
else:
|
687 |
+
axis = _util.normalize_axis_tuple(axis, m.ndim)
|
688 |
+
return torch.flip(m, axis)
|
689 |
+
|
690 |
+
|
691 |
+
def flipud(m: ArrayLike):
|
692 |
+
return torch.flipud(m)
|
693 |
+
|
694 |
+
|
695 |
+
def fliplr(m: ArrayLike):
|
696 |
+
return torch.fliplr(m)
|
697 |
+
|
698 |
+
|
699 |
+
def rot90(m: ArrayLike, k=1, axes=(0, 1)):
|
700 |
+
axes = _util.normalize_axis_tuple(axes, m.ndim)
|
701 |
+
return torch.rot90(m, k, axes)
|
702 |
+
|
703 |
+
|
704 |
+
# ### broadcasting and indices ###
|
705 |
+
|
706 |
+
|
707 |
+
def broadcast_to(array: ArrayLike, shape, subok: NotImplementedType = False):
|
708 |
+
return torch.broadcast_to(array, size=shape)
|
709 |
+
|
710 |
+
|
711 |
+
# This is a function from tuples to tuples, so we just reuse it
|
712 |
+
from torch import broadcast_shapes
|
713 |
+
|
714 |
+
|
715 |
+
def broadcast_arrays(*args: ArrayLike, subok: NotImplementedType = False):
|
716 |
+
return torch.broadcast_tensors(*args)
|
717 |
+
|
718 |
+
|
719 |
+
def meshgrid(*xi: ArrayLike, copy=True, sparse=False, indexing="xy"):
|
720 |
+
ndim = len(xi)
|
721 |
+
|
722 |
+
if indexing not in ["xy", "ij"]:
|
723 |
+
raise ValueError("Valid values for `indexing` are 'xy' and 'ij'.")
|
724 |
+
|
725 |
+
s0 = (1,) * ndim
|
726 |
+
output = [x.reshape(s0[:i] + (-1,) + s0[i + 1 :]) for i, x in enumerate(xi)]
|
727 |
+
|
728 |
+
if indexing == "xy" and ndim > 1:
|
729 |
+
# switch first and second axis
|
730 |
+
output[0] = output[0].reshape((1, -1) + s0[2:])
|
731 |
+
output[1] = output[1].reshape((-1, 1) + s0[2:])
|
732 |
+
|
733 |
+
if not sparse:
|
734 |
+
# Return the full N-D matrix (not only the 1-D vector)
|
735 |
+
output = torch.broadcast_tensors(*output)
|
736 |
+
|
737 |
+
if copy:
|
738 |
+
output = [x.clone() for x in output]
|
739 |
+
|
740 |
+
return list(output) # match numpy, return a list
|
741 |
+
|
742 |
+
|
743 |
+
def indices(dimensions, dtype: Optional[DTypeLike] = int, sparse=False):
|
744 |
+
# https://github.com/numpy/numpy/blob/v1.24.0/numpy/core/numeric.py#L1691-L1791
|
745 |
+
dimensions = tuple(dimensions)
|
746 |
+
N = len(dimensions)
|
747 |
+
shape = (1,) * N
|
748 |
+
if sparse:
|
749 |
+
res = tuple()
|
750 |
+
else:
|
751 |
+
res = torch.empty((N,) + dimensions, dtype=dtype)
|
752 |
+
for i, dim in enumerate(dimensions):
|
753 |
+
idx = torch.arange(dim, dtype=dtype).reshape(
|
754 |
+
shape[:i] + (dim,) + shape[i + 1 :]
|
755 |
+
)
|
756 |
+
if sparse:
|
757 |
+
res = res + (idx,)
|
758 |
+
else:
|
759 |
+
res[i] = idx
|
760 |
+
return res
|
761 |
+
|
762 |
+
|
763 |
+
# ### tri*-something ###
|
764 |
+
|
765 |
+
|
766 |
+
def tril(m: ArrayLike, k=0):
|
767 |
+
return torch.tril(m, k)
|
768 |
+
|
769 |
+
|
770 |
+
def triu(m: ArrayLike, k=0):
|
771 |
+
return torch.triu(m, k)
|
772 |
+
|
773 |
+
|
774 |
+
def tril_indices(n, k=0, m=None):
|
775 |
+
if m is None:
|
776 |
+
m = n
|
777 |
+
return torch.tril_indices(n, m, offset=k)
|
778 |
+
|
779 |
+
|
780 |
+
def triu_indices(n, k=0, m=None):
|
781 |
+
if m is None:
|
782 |
+
m = n
|
783 |
+
return torch.triu_indices(n, m, offset=k)
|
784 |
+
|
785 |
+
|
786 |
+
def tril_indices_from(arr: ArrayLike, k=0):
|
787 |
+
if arr.ndim != 2:
|
788 |
+
raise ValueError("input array must be 2-d")
|
789 |
+
# Return a tensor rather than a tuple to avoid a graphbreak
|
790 |
+
return torch.tril_indices(arr.shape[0], arr.shape[1], offset=k)
|
791 |
+
|
792 |
+
|
793 |
+
def triu_indices_from(arr: ArrayLike, k=0):
|
794 |
+
if arr.ndim != 2:
|
795 |
+
raise ValueError("input array must be 2-d")
|
796 |
+
# Return a tensor rather than a tuple to avoid a graphbreak
|
797 |
+
return torch.triu_indices(arr.shape[0], arr.shape[1], offset=k)
|
798 |
+
|
799 |
+
|
800 |
+
def tri(
|
801 |
+
N,
|
802 |
+
M=None,
|
803 |
+
k=0,
|
804 |
+
dtype: Optional[DTypeLike] = None,
|
805 |
+
*,
|
806 |
+
like: NotImplementedType = None,
|
807 |
+
):
|
808 |
+
if M is None:
|
809 |
+
M = N
|
810 |
+
tensor = torch.ones((N, M), dtype=dtype)
|
811 |
+
return torch.tril(tensor, diagonal=k)
|
812 |
+
|
813 |
+
|
814 |
+
# ### equality, equivalence, allclose ###
|
815 |
+
|
816 |
+
|
817 |
+
def isclose(a: ArrayLike, b: ArrayLike, rtol=1.0e-5, atol=1.0e-8, equal_nan=False):
|
818 |
+
dtype = _dtypes_impl.result_type_impl(a, b)
|
819 |
+
a = _util.cast_if_needed(a, dtype)
|
820 |
+
b = _util.cast_if_needed(b, dtype)
|
821 |
+
return torch.isclose(a, b, rtol=rtol, atol=atol, equal_nan=equal_nan)
|
822 |
+
|
823 |
+
|
824 |
+
def allclose(a: ArrayLike, b: ArrayLike, rtol=1e-05, atol=1e-08, equal_nan=False):
|
825 |
+
dtype = _dtypes_impl.result_type_impl(a, b)
|
826 |
+
a = _util.cast_if_needed(a, dtype)
|
827 |
+
b = _util.cast_if_needed(b, dtype)
|
828 |
+
return torch.allclose(a, b, rtol=rtol, atol=atol, equal_nan=equal_nan)
|
829 |
+
|
830 |
+
|
831 |
+
def _tensor_equal(a1, a2, equal_nan=False):
|
832 |
+
# Implementation of array_equal/array_equiv.
|
833 |
+
if a1.shape != a2.shape:
|
834 |
+
return False
|
835 |
+
cond = a1 == a2
|
836 |
+
if equal_nan:
|
837 |
+
cond = cond | (torch.isnan(a1) & torch.isnan(a2))
|
838 |
+
return cond.all().item()
|
839 |
+
|
840 |
+
|
841 |
+
def array_equal(a1: ArrayLike, a2: ArrayLike, equal_nan=False):
|
842 |
+
return _tensor_equal(a1, a2, equal_nan=equal_nan)
|
843 |
+
|
844 |
+
|
845 |
+
def array_equiv(a1: ArrayLike, a2: ArrayLike):
|
846 |
+
# *almost* the same as array_equal: _equiv tries to broadcast, _equal does not
|
847 |
+
try:
|
848 |
+
a1_t, a2_t = torch.broadcast_tensors(a1, a2)
|
849 |
+
except RuntimeError:
|
850 |
+
# failed to broadcast => not equivalent
|
851 |
+
return False
|
852 |
+
return _tensor_equal(a1_t, a2_t)
|
853 |
+
|
854 |
+
|
855 |
+
def nan_to_num(
|
856 |
+
x: ArrayLike, copy: NotImplementedType = True, nan=0.0, posinf=None, neginf=None
|
857 |
+
):
|
858 |
+
# work around RuntimeError: "nan_to_num" not implemented for 'ComplexDouble'
|
859 |
+
if x.is_complex():
|
860 |
+
re = torch.nan_to_num(x.real, nan=nan, posinf=posinf, neginf=neginf)
|
861 |
+
im = torch.nan_to_num(x.imag, nan=nan, posinf=posinf, neginf=neginf)
|
862 |
+
return re + 1j * im
|
863 |
+
else:
|
864 |
+
return torch.nan_to_num(x, nan=nan, posinf=posinf, neginf=neginf)
|
865 |
+
|
866 |
+
|
867 |
+
# ### put/take_along_axis ###
|
868 |
+
|
869 |
+
|
870 |
+
def take(
|
871 |
+
a: ArrayLike,
|
872 |
+
indices: ArrayLike,
|
873 |
+
axis=None,
|
874 |
+
out: Optional[OutArray] = None,
|
875 |
+
mode: NotImplementedType = "raise",
|
876 |
+
):
|
877 |
+
(a,), axis = _util.axis_none_flatten(a, axis=axis)
|
878 |
+
axis = _util.normalize_axis_index(axis, a.ndim)
|
879 |
+
idx = (slice(None),) * axis + (indices, ...)
|
880 |
+
result = a[idx]
|
881 |
+
return result
|
882 |
+
|
883 |
+
|
884 |
+
def take_along_axis(arr: ArrayLike, indices: ArrayLike, axis):
|
885 |
+
(arr,), axis = _util.axis_none_flatten(arr, axis=axis)
|
886 |
+
axis = _util.normalize_axis_index(axis, arr.ndim)
|
887 |
+
return torch.take_along_dim(arr, indices, axis)
|
888 |
+
|
889 |
+
|
890 |
+
def put(
|
891 |
+
a: NDArray,
|
892 |
+
indices: ArrayLike,
|
893 |
+
values: ArrayLike,
|
894 |
+
mode: NotImplementedType = "raise",
|
895 |
+
):
|
896 |
+
v = values.type(a.dtype)
|
897 |
+
# If indices is larger than v, expand v to at least the size of indices. Any
|
898 |
+
# unnecessary trailing elements are then trimmed.
|
899 |
+
if indices.numel() > v.numel():
|
900 |
+
ratio = (indices.numel() + v.numel() - 1) // v.numel()
|
901 |
+
v = v.unsqueeze(0).expand((ratio,) + v.shape)
|
902 |
+
# Trim unnecessary elements, regardless if v was expanded or not. Note
|
903 |
+
# np.put() trims v to match indices by default too.
|
904 |
+
if indices.numel() < v.numel():
|
905 |
+
v = v.flatten()
|
906 |
+
v = v[: indices.numel()]
|
907 |
+
a.put_(indices, v)
|
908 |
+
return None
|
909 |
+
|
910 |
+
|
911 |
+
def put_along_axis(arr: ArrayLike, indices: ArrayLike, values: ArrayLike, axis):
|
912 |
+
(arr,), axis = _util.axis_none_flatten(arr, axis=axis)
|
913 |
+
axis = _util.normalize_axis_index(axis, arr.ndim)
|
914 |
+
|
915 |
+
indices, values = torch.broadcast_tensors(indices, values)
|
916 |
+
values = _util.cast_if_needed(values, arr.dtype)
|
917 |
+
result = torch.scatter(arr, axis, indices, values)
|
918 |
+
arr.copy_(result.reshape(arr.shape))
|
919 |
+
return None
|
920 |
+
|
921 |
+
|
922 |
+
def choose(
|
923 |
+
a: ArrayLike,
|
924 |
+
choices: Sequence[ArrayLike],
|
925 |
+
out: Optional[OutArray] = None,
|
926 |
+
mode: NotImplementedType = "raise",
|
927 |
+
):
|
928 |
+
# First, broadcast elements of `choices`
|
929 |
+
choices = torch.stack(torch.broadcast_tensors(*choices))
|
930 |
+
|
931 |
+
# Use an analog of `gather(choices, 0, a)` which broadcasts `choices` vs `a`:
|
932 |
+
# (taken from https://github.com/pytorch/pytorch/issues/9407#issuecomment-1427907939)
|
933 |
+
idx_list = [
|
934 |
+
torch.arange(dim).view((1,) * i + (dim,) + (1,) * (choices.ndim - i - 1))
|
935 |
+
for i, dim in enumerate(choices.shape)
|
936 |
+
]
|
937 |
+
|
938 |
+
idx_list[0] = a
|
939 |
+
return choices[idx_list].squeeze(0)
|
940 |
+
|
941 |
+
|
942 |
+
# ### unique et al ###
|
943 |
+
|
944 |
+
|
945 |
+
def unique(
|
946 |
+
ar: ArrayLike,
|
947 |
+
return_index: NotImplementedType = False,
|
948 |
+
return_inverse=False,
|
949 |
+
return_counts=False,
|
950 |
+
axis=None,
|
951 |
+
*,
|
952 |
+
equal_nan: NotImplementedType = True,
|
953 |
+
):
|
954 |
+
(ar,), axis = _util.axis_none_flatten(ar, axis=axis)
|
955 |
+
axis = _util.normalize_axis_index(axis, ar.ndim)
|
956 |
+
|
957 |
+
result = torch.unique(
|
958 |
+
ar, return_inverse=return_inverse, return_counts=return_counts, dim=axis
|
959 |
+
)
|
960 |
+
|
961 |
+
return result
|
962 |
+
|
963 |
+
|
964 |
+
def nonzero(a: ArrayLike):
|
965 |
+
return torch.nonzero(a, as_tuple=True)
|
966 |
+
|
967 |
+
|
968 |
+
def argwhere(a: ArrayLike):
|
969 |
+
return torch.argwhere(a)
|
970 |
+
|
971 |
+
|
972 |
+
def flatnonzero(a: ArrayLike):
|
973 |
+
return torch.flatten(a).nonzero(as_tuple=True)[0]
|
974 |
+
|
975 |
+
|
976 |
+
def clip(
|
977 |
+
a: ArrayLike,
|
978 |
+
min: Optional[ArrayLike] = None,
|
979 |
+
max: Optional[ArrayLike] = None,
|
980 |
+
out: Optional[OutArray] = None,
|
981 |
+
):
|
982 |
+
return torch.clamp(a, min, max)
|
983 |
+
|
984 |
+
|
985 |
+
def repeat(a: ArrayLike, repeats: ArrayLikeOrScalar, axis=None):
|
986 |
+
return torch.repeat_interleave(a, repeats, axis)
|
987 |
+
|
988 |
+
|
989 |
+
def tile(A: ArrayLike, reps):
|
990 |
+
if isinstance(reps, int):
|
991 |
+
reps = (reps,)
|
992 |
+
return torch.tile(A, reps)
|
993 |
+
|
994 |
+
|
995 |
+
def resize(a: ArrayLike, new_shape=None):
|
996 |
+
# implementation vendored from
|
997 |
+
# https://github.com/numpy/numpy/blob/v1.24.0/numpy/core/fromnumeric.py#L1420-L1497
|
998 |
+
if new_shape is None:
|
999 |
+
return a
|
1000 |
+
|
1001 |
+
if isinstance(new_shape, int):
|
1002 |
+
new_shape = (new_shape,)
|
1003 |
+
|
1004 |
+
a = a.flatten()
|
1005 |
+
|
1006 |
+
new_size = 1
|
1007 |
+
for dim_length in new_shape:
|
1008 |
+
new_size *= dim_length
|
1009 |
+
if dim_length < 0:
|
1010 |
+
raise ValueError("all elements of `new_shape` must be non-negative")
|
1011 |
+
|
1012 |
+
if a.numel() == 0 or new_size == 0:
|
1013 |
+
# First case must zero fill. The second would have repeats == 0.
|
1014 |
+
return torch.zeros(new_shape, dtype=a.dtype)
|
1015 |
+
|
1016 |
+
repeats = -(-new_size // a.numel()) # ceil division
|
1017 |
+
a = concatenate((a,) * repeats)[:new_size]
|
1018 |
+
|
1019 |
+
return reshape(a, new_shape)
|
1020 |
+
|
1021 |
+
|
1022 |
+
# ### diag et al ###
|
1023 |
+
|
1024 |
+
|
1025 |
+
def diagonal(a: ArrayLike, offset=0, axis1=0, axis2=1):
|
1026 |
+
axis1 = _util.normalize_axis_index(axis1, a.ndim)
|
1027 |
+
axis2 = _util.normalize_axis_index(axis2, a.ndim)
|
1028 |
+
return torch.diagonal(a, offset, axis1, axis2)
|
1029 |
+
|
1030 |
+
|
1031 |
+
def trace(
|
1032 |
+
a: ArrayLike,
|
1033 |
+
offset=0,
|
1034 |
+
axis1=0,
|
1035 |
+
axis2=1,
|
1036 |
+
dtype: Optional[DTypeLike] = None,
|
1037 |
+
out: Optional[OutArray] = None,
|
1038 |
+
):
|
1039 |
+
result = torch.diagonal(a, offset, dim1=axis1, dim2=axis2).sum(-1, dtype=dtype)
|
1040 |
+
return result
|
1041 |
+
|
1042 |
+
|
1043 |
+
def eye(
|
1044 |
+
N,
|
1045 |
+
M=None,
|
1046 |
+
k=0,
|
1047 |
+
dtype: Optional[DTypeLike] = None,
|
1048 |
+
order: NotImplementedType = "C",
|
1049 |
+
*,
|
1050 |
+
like: NotImplementedType = None,
|
1051 |
+
):
|
1052 |
+
if dtype is None:
|
1053 |
+
dtype = _dtypes_impl.default_dtypes().float_dtype
|
1054 |
+
if M is None:
|
1055 |
+
M = N
|
1056 |
+
z = torch.zeros(N, M, dtype=dtype)
|
1057 |
+
z.diagonal(k).fill_(1)
|
1058 |
+
return z
|
1059 |
+
|
1060 |
+
|
1061 |
+
def identity(n, dtype: Optional[DTypeLike] = None, *, like: NotImplementedType = None):
|
1062 |
+
return torch.eye(n, dtype=dtype)
|
1063 |
+
|
1064 |
+
|
1065 |
+
def diag(v: ArrayLike, k=0):
|
1066 |
+
return torch.diag(v, k)
|
1067 |
+
|
1068 |
+
|
1069 |
+
def diagflat(v: ArrayLike, k=0):
|
1070 |
+
return torch.diagflat(v, k)
|
1071 |
+
|
1072 |
+
|
1073 |
+
def diag_indices(n, ndim=2):
|
1074 |
+
idx = torch.arange(n)
|
1075 |
+
return (idx,) * ndim
|
1076 |
+
|
1077 |
+
|
1078 |
+
def diag_indices_from(arr: ArrayLike):
|
1079 |
+
if not arr.ndim >= 2:
|
1080 |
+
raise ValueError("input array must be at least 2-d")
|
1081 |
+
# For more than d=2, the strided formula is only valid for arrays with
|
1082 |
+
# all dimensions equal, so we check first.
|
1083 |
+
s = arr.shape
|
1084 |
+
if s[1:] != s[:-1]:
|
1085 |
+
raise ValueError("All dimensions of input must be of equal length")
|
1086 |
+
return diag_indices(s[0], arr.ndim)
|
1087 |
+
|
1088 |
+
|
1089 |
+
def fill_diagonal(a: ArrayLike, val: ArrayLike, wrap=False):
|
1090 |
+
if a.ndim < 2:
|
1091 |
+
raise ValueError("array must be at least 2-d")
|
1092 |
+
if val.numel() == 0 and not wrap:
|
1093 |
+
a.fill_diagonal_(val)
|
1094 |
+
return a
|
1095 |
+
|
1096 |
+
if val.ndim == 0:
|
1097 |
+
val = val.unsqueeze(0)
|
1098 |
+
|
1099 |
+
# torch.Tensor.fill_diagonal_ only accepts scalars
|
1100 |
+
# If the size of val is too large, then val is trimmed
|
1101 |
+
if a.ndim == 2:
|
1102 |
+
tall = a.shape[0] > a.shape[1]
|
1103 |
+
# wrap does nothing for wide matrices...
|
1104 |
+
if not wrap or not tall:
|
1105 |
+
# Never wraps
|
1106 |
+
diag = a.diagonal()
|
1107 |
+
diag.copy_(val[: diag.numel()])
|
1108 |
+
else:
|
1109 |
+
# wraps and tall... leaving one empty line between diagonals?!
|
1110 |
+
max_, min_ = a.shape
|
1111 |
+
idx = torch.arange(max_ - max_ // (min_ + 1))
|
1112 |
+
mod = idx % min_
|
1113 |
+
div = idx // min_
|
1114 |
+
a[(div * (min_ + 1) + mod, mod)] = val[: idx.numel()]
|
1115 |
+
else:
|
1116 |
+
idx = diag_indices_from(a)
|
1117 |
+
# a.shape = (n, n, ..., n)
|
1118 |
+
a[idx] = val[: a.shape[0]]
|
1119 |
+
|
1120 |
+
return a
|
1121 |
+
|
1122 |
+
|
1123 |
+
def vdot(a: ArrayLike, b: ArrayLike, /):
|
1124 |
+
# 1. torch only accepts 1D arrays, numpy flattens
|
1125 |
+
# 2. torch requires matching dtype, while numpy casts (?)
|
1126 |
+
t_a, t_b = torch.atleast_1d(a, b)
|
1127 |
+
if t_a.ndim > 1:
|
1128 |
+
t_a = t_a.flatten()
|
1129 |
+
if t_b.ndim > 1:
|
1130 |
+
t_b = t_b.flatten()
|
1131 |
+
|
1132 |
+
dtype = _dtypes_impl.result_type_impl(t_a, t_b)
|
1133 |
+
is_half = dtype == torch.float16 and (t_a.is_cpu or t_b.is_cpu)
|
1134 |
+
is_bool = dtype == torch.bool
|
1135 |
+
|
1136 |
+
# work around torch's "dot" not implemented for 'Half', 'Bool'
|
1137 |
+
if is_half:
|
1138 |
+
dtype = torch.float32
|
1139 |
+
elif is_bool:
|
1140 |
+
dtype = torch.uint8
|
1141 |
+
|
1142 |
+
t_a = _util.cast_if_needed(t_a, dtype)
|
1143 |
+
t_b = _util.cast_if_needed(t_b, dtype)
|
1144 |
+
|
1145 |
+
result = torch.vdot(t_a, t_b)
|
1146 |
+
|
1147 |
+
if is_half:
|
1148 |
+
result = result.to(torch.float16)
|
1149 |
+
elif is_bool:
|
1150 |
+
result = result.to(torch.bool)
|
1151 |
+
|
1152 |
+
return result
|
1153 |
+
|
1154 |
+
|
1155 |
+
def tensordot(a: ArrayLike, b: ArrayLike, axes=2):
|
1156 |
+
if isinstance(axes, (list, tuple)):
|
1157 |
+
axes = [[ax] if isinstance(ax, int) else ax for ax in axes]
|
1158 |
+
|
1159 |
+
target_dtype = _dtypes_impl.result_type_impl(a, b)
|
1160 |
+
a = _util.cast_if_needed(a, target_dtype)
|
1161 |
+
b = _util.cast_if_needed(b, target_dtype)
|
1162 |
+
|
1163 |
+
return torch.tensordot(a, b, dims=axes)
|
1164 |
+
|
1165 |
+
|
1166 |
+
def dot(a: ArrayLike, b: ArrayLike, out: Optional[OutArray] = None):
|
1167 |
+
dtype = _dtypes_impl.result_type_impl(a, b)
|
1168 |
+
is_bool = dtype == torch.bool
|
1169 |
+
if is_bool:
|
1170 |
+
dtype = torch.uint8
|
1171 |
+
|
1172 |
+
a = _util.cast_if_needed(a, dtype)
|
1173 |
+
b = _util.cast_if_needed(b, dtype)
|
1174 |
+
|
1175 |
+
if a.ndim == 0 or b.ndim == 0:
|
1176 |
+
result = a * b
|
1177 |
+
else:
|
1178 |
+
result = torch.matmul(a, b)
|
1179 |
+
|
1180 |
+
if is_bool:
|
1181 |
+
result = result.to(torch.bool)
|
1182 |
+
|
1183 |
+
return result
|
1184 |
+
|
1185 |
+
|
1186 |
+
def inner(a: ArrayLike, b: ArrayLike, /):
|
1187 |
+
dtype = _dtypes_impl.result_type_impl(a, b)
|
1188 |
+
is_half = dtype == torch.float16 and (a.is_cpu or b.is_cpu)
|
1189 |
+
is_bool = dtype == torch.bool
|
1190 |
+
|
1191 |
+
if is_half:
|
1192 |
+
# work around torch's "addmm_impl_cpu_" not implemented for 'Half'"
|
1193 |
+
dtype = torch.float32
|
1194 |
+
elif is_bool:
|
1195 |
+
dtype = torch.uint8
|
1196 |
+
|
1197 |
+
a = _util.cast_if_needed(a, dtype)
|
1198 |
+
b = _util.cast_if_needed(b, dtype)
|
1199 |
+
|
1200 |
+
result = torch.inner(a, b)
|
1201 |
+
|
1202 |
+
if is_half:
|
1203 |
+
result = result.to(torch.float16)
|
1204 |
+
elif is_bool:
|
1205 |
+
result = result.to(torch.bool)
|
1206 |
+
return result
|
1207 |
+
|
1208 |
+
|
1209 |
+
def outer(a: ArrayLike, b: ArrayLike, out: Optional[OutArray] = None):
|
1210 |
+
return torch.outer(a, b)
|
1211 |
+
|
1212 |
+
|
1213 |
+
def cross(a: ArrayLike, b: ArrayLike, axisa=-1, axisb=-1, axisc=-1, axis=None):
|
1214 |
+
# implementation vendored from
|
1215 |
+
# https://github.com/numpy/numpy/blob/v1.24.0/numpy/core/numeric.py#L1486-L1685
|
1216 |
+
if axis is not None:
|
1217 |
+
axisa, axisb, axisc = (axis,) * 3
|
1218 |
+
|
1219 |
+
# Check axisa and axisb are within bounds
|
1220 |
+
axisa = _util.normalize_axis_index(axisa, a.ndim)
|
1221 |
+
axisb = _util.normalize_axis_index(axisb, b.ndim)
|
1222 |
+
|
1223 |
+
# Move working axis to the end of the shape
|
1224 |
+
a = torch.moveaxis(a, axisa, -1)
|
1225 |
+
b = torch.moveaxis(b, axisb, -1)
|
1226 |
+
msg = "incompatible dimensions for cross product\n(dimension must be 2 or 3)"
|
1227 |
+
if a.shape[-1] not in (2, 3) or b.shape[-1] not in (2, 3):
|
1228 |
+
raise ValueError(msg)
|
1229 |
+
|
1230 |
+
# Create the output array
|
1231 |
+
shape = broadcast_shapes(a[..., 0].shape, b[..., 0].shape)
|
1232 |
+
if a.shape[-1] == 3 or b.shape[-1] == 3:
|
1233 |
+
shape += (3,)
|
1234 |
+
# Check axisc is within bounds
|
1235 |
+
axisc = _util.normalize_axis_index(axisc, len(shape))
|
1236 |
+
dtype = _dtypes_impl.result_type_impl(a, b)
|
1237 |
+
cp = torch.empty(shape, dtype=dtype)
|
1238 |
+
|
1239 |
+
# recast arrays as dtype
|
1240 |
+
a = _util.cast_if_needed(a, dtype)
|
1241 |
+
b = _util.cast_if_needed(b, dtype)
|
1242 |
+
|
1243 |
+
# create local aliases for readability
|
1244 |
+
a0 = a[..., 0]
|
1245 |
+
a1 = a[..., 1]
|
1246 |
+
if a.shape[-1] == 3:
|
1247 |
+
a2 = a[..., 2]
|
1248 |
+
b0 = b[..., 0]
|
1249 |
+
b1 = b[..., 1]
|
1250 |
+
if b.shape[-1] == 3:
|
1251 |
+
b2 = b[..., 2]
|
1252 |
+
if cp.ndim != 0 and cp.shape[-1] == 3:
|
1253 |
+
cp0 = cp[..., 0]
|
1254 |
+
cp1 = cp[..., 1]
|
1255 |
+
cp2 = cp[..., 2]
|
1256 |
+
|
1257 |
+
if a.shape[-1] == 2:
|
1258 |
+
if b.shape[-1] == 2:
|
1259 |
+
# a0 * b1 - a1 * b0
|
1260 |
+
cp[...] = a0 * b1 - a1 * b0
|
1261 |
+
return cp
|
1262 |
+
else:
|
1263 |
+
assert b.shape[-1] == 3
|
1264 |
+
# cp0 = a1 * b2 - 0 (a2 = 0)
|
1265 |
+
# cp1 = 0 - a0 * b2 (a2 = 0)
|
1266 |
+
# cp2 = a0 * b1 - a1 * b0
|
1267 |
+
cp0[...] = a1 * b2
|
1268 |
+
cp1[...] = -a0 * b2
|
1269 |
+
cp2[...] = a0 * b1 - a1 * b0
|
1270 |
+
else:
|
1271 |
+
assert a.shape[-1] == 3
|
1272 |
+
if b.shape[-1] == 3:
|
1273 |
+
cp0[...] = a1 * b2 - a2 * b1
|
1274 |
+
cp1[...] = a2 * b0 - a0 * b2
|
1275 |
+
cp2[...] = a0 * b1 - a1 * b0
|
1276 |
+
else:
|
1277 |
+
assert b.shape[-1] == 2
|
1278 |
+
cp0[...] = -a2 * b1
|
1279 |
+
cp1[...] = a2 * b0
|
1280 |
+
cp2[...] = a0 * b1 - a1 * b0
|
1281 |
+
|
1282 |
+
return torch.moveaxis(cp, -1, axisc)
|
1283 |
+
|
1284 |
+
|
1285 |
+
def einsum(*operands, out=None, dtype=None, order="K", casting="safe", optimize=False):
|
1286 |
+
# Have to manually normalize *operands and **kwargs, following the NumPy signature
|
1287 |
+
# We have a local import to avoid poluting the global space, as it will be then
|
1288 |
+
# exported in funcs.py
|
1289 |
+
from ._ndarray import ndarray
|
1290 |
+
from ._normalizations import (
|
1291 |
+
maybe_copy_to,
|
1292 |
+
normalize_array_like,
|
1293 |
+
normalize_casting,
|
1294 |
+
normalize_dtype,
|
1295 |
+
wrap_tensors,
|
1296 |
+
)
|
1297 |
+
|
1298 |
+
dtype = normalize_dtype(dtype)
|
1299 |
+
casting = normalize_casting(casting)
|
1300 |
+
if out is not None and not isinstance(out, ndarray):
|
1301 |
+
raise TypeError("'out' must be an array")
|
1302 |
+
if order != "K":
|
1303 |
+
raise NotImplementedError("'order' parameter is not supported.")
|
1304 |
+
|
1305 |
+
# parse arrays and normalize them
|
1306 |
+
sublist_format = not isinstance(operands[0], str)
|
1307 |
+
if sublist_format:
|
1308 |
+
# op, str, op, str ... [sublistout] format: normalize every other argument
|
1309 |
+
|
1310 |
+
# - if sublistout is not given, the length of operands is even, and we pick
|
1311 |
+
# odd-numbered elements, which are arrays.
|
1312 |
+
# - if sublistout is given, the length of operands is odd, we peel off
|
1313 |
+
# the last one, and pick odd-numbered elements, which are arrays.
|
1314 |
+
# Without [:-1], we would have picked sublistout, too.
|
1315 |
+
array_operands = operands[:-1][::2]
|
1316 |
+
else:
|
1317 |
+
# ("ij->", arrays) format
|
1318 |
+
subscripts, array_operands = operands[0], operands[1:]
|
1319 |
+
|
1320 |
+
tensors = [normalize_array_like(op) for op in array_operands]
|
1321 |
+
target_dtype = _dtypes_impl.result_type_impl(*tensors) if dtype is None else dtype
|
1322 |
+
|
1323 |
+
# work around 'bmm' not implemented for 'Half' etc
|
1324 |
+
is_half = target_dtype == torch.float16 and all(t.is_cpu for t in tensors)
|
1325 |
+
if is_half:
|
1326 |
+
target_dtype = torch.float32
|
1327 |
+
|
1328 |
+
is_short_int = target_dtype in [torch.uint8, torch.int8, torch.int16, torch.int32]
|
1329 |
+
if is_short_int:
|
1330 |
+
target_dtype = torch.int64
|
1331 |
+
|
1332 |
+
tensors = _util.typecast_tensors(tensors, target_dtype, casting)
|
1333 |
+
|
1334 |
+
from torch.backends import opt_einsum
|
1335 |
+
|
1336 |
+
try:
|
1337 |
+
# set the global state to handle the optimize=... argument, restore on exit
|
1338 |
+
if opt_einsum.is_available():
|
1339 |
+
old_strategy = torch.backends.opt_einsum.strategy
|
1340 |
+
old_enabled = torch.backends.opt_einsum.enabled
|
1341 |
+
|
1342 |
+
# torch.einsum calls opt_einsum.contract_path, which runs into
|
1343 |
+
# https://github.com/dgasmith/opt_einsum/issues/219
|
1344 |
+
# for strategy={True, False}
|
1345 |
+
if optimize is True:
|
1346 |
+
optimize = "auto"
|
1347 |
+
elif optimize is False:
|
1348 |
+
torch.backends.opt_einsum.enabled = False
|
1349 |
+
|
1350 |
+
torch.backends.opt_einsum.strategy = optimize
|
1351 |
+
|
1352 |
+
if sublist_format:
|
1353 |
+
# recombine operands
|
1354 |
+
sublists = operands[1::2]
|
1355 |
+
has_sublistout = len(operands) % 2 == 1
|
1356 |
+
if has_sublistout:
|
1357 |
+
sublistout = operands[-1]
|
1358 |
+
operands = list(itertools.chain.from_iterable(zip(tensors, sublists)))
|
1359 |
+
if has_sublistout:
|
1360 |
+
operands.append(sublistout)
|
1361 |
+
|
1362 |
+
result = torch.einsum(*operands)
|
1363 |
+
else:
|
1364 |
+
result = torch.einsum(subscripts, *tensors)
|
1365 |
+
|
1366 |
+
finally:
|
1367 |
+
if opt_einsum.is_available():
|
1368 |
+
torch.backends.opt_einsum.strategy = old_strategy
|
1369 |
+
torch.backends.opt_einsum.enabled = old_enabled
|
1370 |
+
|
1371 |
+
result = maybe_copy_to(out, result)
|
1372 |
+
return wrap_tensors(result)
|
1373 |
+
|
1374 |
+
|
1375 |
+
# ### sort and partition ###
|
1376 |
+
|
1377 |
+
|
1378 |
+
def _sort_helper(tensor, axis, kind, order):
|
1379 |
+
if tensor.dtype.is_complex:
|
1380 |
+
raise NotImplementedError(f"sorting {tensor.dtype} is not supported")
|
1381 |
+
(tensor,), axis = _util.axis_none_flatten(tensor, axis=axis)
|
1382 |
+
axis = _util.normalize_axis_index(axis, tensor.ndim)
|
1383 |
+
|
1384 |
+
stable = kind == "stable"
|
1385 |
+
|
1386 |
+
return tensor, axis, stable
|
1387 |
+
|
1388 |
+
|
1389 |
+
def sort(a: ArrayLike, axis=-1, kind=None, order: NotImplementedType = None):
|
1390 |
+
# `order` keyword arg is only relevant for structured dtypes; so not supported here.
|
1391 |
+
a, axis, stable = _sort_helper(a, axis, kind, order)
|
1392 |
+
result = torch.sort(a, dim=axis, stable=stable)
|
1393 |
+
return result.values
|
1394 |
+
|
1395 |
+
|
1396 |
+
def argsort(a: ArrayLike, axis=-1, kind=None, order: NotImplementedType = None):
|
1397 |
+
a, axis, stable = _sort_helper(a, axis, kind, order)
|
1398 |
+
return torch.argsort(a, dim=axis, stable=stable)
|
1399 |
+
|
1400 |
+
|
1401 |
+
def searchsorted(
|
1402 |
+
a: ArrayLike, v: ArrayLike, side="left", sorter: Optional[ArrayLike] = None
|
1403 |
+
):
|
1404 |
+
if a.dtype.is_complex:
|
1405 |
+
raise NotImplementedError(f"searchsorted with dtype={a.dtype}")
|
1406 |
+
|
1407 |
+
return torch.searchsorted(a, v, side=side, sorter=sorter)
|
1408 |
+
|
1409 |
+
|
1410 |
+
# ### swap/move/roll axis ###
|
1411 |
+
|
1412 |
+
|
1413 |
+
def moveaxis(a: ArrayLike, source, destination):
|
1414 |
+
source = _util.normalize_axis_tuple(source, a.ndim, "source")
|
1415 |
+
destination = _util.normalize_axis_tuple(destination, a.ndim, "destination")
|
1416 |
+
return torch.moveaxis(a, source, destination)
|
1417 |
+
|
1418 |
+
|
1419 |
+
def swapaxes(a: ArrayLike, axis1, axis2):
|
1420 |
+
axis1 = _util.normalize_axis_index(axis1, a.ndim)
|
1421 |
+
axis2 = _util.normalize_axis_index(axis2, a.ndim)
|
1422 |
+
return torch.swapaxes(a, axis1, axis2)
|
1423 |
+
|
1424 |
+
|
1425 |
+
def rollaxis(a: ArrayLike, axis, start=0):
|
1426 |
+
# Straight vendor from:
|
1427 |
+
# https://github.com/numpy/numpy/blob/v1.24.0/numpy/core/numeric.py#L1259
|
1428 |
+
#
|
1429 |
+
# Also note this function in NumPy is mostly retained for backwards compat
|
1430 |
+
# (https://stackoverflow.com/questions/29891583/reason-why-numpy-rollaxis-is-so-confusing)
|
1431 |
+
# so let's not touch it unless hard pressed.
|
1432 |
+
n = a.ndim
|
1433 |
+
axis = _util.normalize_axis_index(axis, n)
|
1434 |
+
if start < 0:
|
1435 |
+
start += n
|
1436 |
+
msg = "'%s' arg requires %d <= %s < %d, but %d was passed in"
|
1437 |
+
if not (0 <= start < n + 1):
|
1438 |
+
raise _util.AxisError(msg % ("start", -n, "start", n + 1, start))
|
1439 |
+
if axis < start:
|
1440 |
+
# it's been removed
|
1441 |
+
start -= 1
|
1442 |
+
if axis == start:
|
1443 |
+
# numpy returns a view, here we try returning the tensor itself
|
1444 |
+
# return tensor[...]
|
1445 |
+
return a
|
1446 |
+
axes = list(range(0, n))
|
1447 |
+
axes.remove(axis)
|
1448 |
+
axes.insert(start, axis)
|
1449 |
+
return a.view(axes)
|
1450 |
+
|
1451 |
+
|
1452 |
+
def roll(a: ArrayLike, shift, axis=None):
|
1453 |
+
if axis is not None:
|
1454 |
+
axis = _util.normalize_axis_tuple(axis, a.ndim, allow_duplicate=True)
|
1455 |
+
if not isinstance(shift, tuple):
|
1456 |
+
shift = (shift,) * len(axis)
|
1457 |
+
return torch.roll(a, shift, axis)
|
1458 |
+
|
1459 |
+
|
1460 |
+
# ### shape manipulations ###
|
1461 |
+
|
1462 |
+
|
1463 |
+
def squeeze(a: ArrayLike, axis=None):
|
1464 |
+
if axis == ():
|
1465 |
+
result = a
|
1466 |
+
elif axis is None:
|
1467 |
+
result = a.squeeze()
|
1468 |
+
else:
|
1469 |
+
if isinstance(axis, tuple):
|
1470 |
+
result = a
|
1471 |
+
for ax in axis:
|
1472 |
+
result = a.squeeze(ax)
|
1473 |
+
else:
|
1474 |
+
result = a.squeeze(axis)
|
1475 |
+
return result
|
1476 |
+
|
1477 |
+
|
1478 |
+
def reshape(a: ArrayLike, newshape, order: NotImplementedType = "C"):
|
1479 |
+
# if sh = (1, 2, 3), numpy allows both .reshape(sh) and .reshape(*sh)
|
1480 |
+
newshape = newshape[0] if len(newshape) == 1 else newshape
|
1481 |
+
return a.reshape(newshape)
|
1482 |
+
|
1483 |
+
|
1484 |
+
# NB: cannot use torch.reshape(a, newshape) above, because of
|
1485 |
+
# (Pdb) torch.reshape(torch.as_tensor([1]), 1)
|
1486 |
+
# *** TypeError: reshape(): argument 'shape' (position 2) must be tuple of SymInts, not int
|
1487 |
+
|
1488 |
+
|
1489 |
+
def transpose(a: ArrayLike, axes=None):
|
1490 |
+
# numpy allows both .transpose(sh) and .transpose(*sh)
|
1491 |
+
# also older code uses axes being a list
|
1492 |
+
if axes in [(), None, (None,)]:
|
1493 |
+
axes = tuple(reversed(range(a.ndim)))
|
1494 |
+
elif len(axes) == 1:
|
1495 |
+
axes = axes[0]
|
1496 |
+
return a.permute(axes)
|
1497 |
+
|
1498 |
+
|
1499 |
+
def ravel(a: ArrayLike, order: NotImplementedType = "C"):
|
1500 |
+
return torch.flatten(a)
|
1501 |
+
|
1502 |
+
|
1503 |
+
def diff(
|
1504 |
+
a: ArrayLike,
|
1505 |
+
n=1,
|
1506 |
+
axis=-1,
|
1507 |
+
prepend: Optional[ArrayLike] = None,
|
1508 |
+
append: Optional[ArrayLike] = None,
|
1509 |
+
):
|
1510 |
+
axis = _util.normalize_axis_index(axis, a.ndim)
|
1511 |
+
|
1512 |
+
if n < 0:
|
1513 |
+
raise ValueError(f"order must be non-negative but got {n}")
|
1514 |
+
|
1515 |
+
if n == 0:
|
1516 |
+
# match numpy and return the input immediately
|
1517 |
+
return a
|
1518 |
+
|
1519 |
+
if prepend is not None:
|
1520 |
+
shape = list(a.shape)
|
1521 |
+
shape[axis] = prepend.shape[axis] if prepend.ndim > 0 else 1
|
1522 |
+
prepend = torch.broadcast_to(prepend, shape)
|
1523 |
+
|
1524 |
+
if append is not None:
|
1525 |
+
shape = list(a.shape)
|
1526 |
+
shape[axis] = append.shape[axis] if append.ndim > 0 else 1
|
1527 |
+
append = torch.broadcast_to(append, shape)
|
1528 |
+
|
1529 |
+
return torch.diff(a, n, axis=axis, prepend=prepend, append=append)
|
1530 |
+
|
1531 |
+
|
1532 |
+
# ### math functions ###
|
1533 |
+
|
1534 |
+
|
1535 |
+
def angle(z: ArrayLike, deg=False):
|
1536 |
+
result = torch.angle(z)
|
1537 |
+
if deg:
|
1538 |
+
result = result * (180 / torch.pi)
|
1539 |
+
return result
|
1540 |
+
|
1541 |
+
|
1542 |
+
def sinc(x: ArrayLike):
|
1543 |
+
return torch.sinc(x)
|
1544 |
+
|
1545 |
+
|
1546 |
+
# NB: have to normalize *varargs manually
|
1547 |
+
def gradient(f: ArrayLike, *varargs, axis=None, edge_order=1):
|
1548 |
+
N = f.ndim # number of dimensions
|
1549 |
+
|
1550 |
+
varargs = _util.ndarrays_to_tensors(varargs)
|
1551 |
+
|
1552 |
+
if axis is None:
|
1553 |
+
axes = tuple(range(N))
|
1554 |
+
else:
|
1555 |
+
axes = _util.normalize_axis_tuple(axis, N)
|
1556 |
+
|
1557 |
+
len_axes = len(axes)
|
1558 |
+
n = len(varargs)
|
1559 |
+
if n == 0:
|
1560 |
+
# no spacing argument - use 1 in all axes
|
1561 |
+
dx = [1.0] * len_axes
|
1562 |
+
elif n == 1 and (_dtypes_impl.is_scalar(varargs[0]) or varargs[0].ndim == 0):
|
1563 |
+
# single scalar or 0D tensor for all axes (np.ndim(varargs[0]) == 0)
|
1564 |
+
dx = varargs * len_axes
|
1565 |
+
elif n == len_axes:
|
1566 |
+
# scalar or 1d array for each axis
|
1567 |
+
dx = list(varargs)
|
1568 |
+
for i, distances in enumerate(dx):
|
1569 |
+
distances = torch.as_tensor(distances)
|
1570 |
+
if distances.ndim == 0:
|
1571 |
+
continue
|
1572 |
+
elif distances.ndim != 1:
|
1573 |
+
raise ValueError("distances must be either scalars or 1d")
|
1574 |
+
if len(distances) != f.shape[axes[i]]:
|
1575 |
+
raise ValueError(
|
1576 |
+
"when 1d, distances must match "
|
1577 |
+
"the length of the corresponding dimension"
|
1578 |
+
)
|
1579 |
+
if not (distances.dtype.is_floating_point or distances.dtype.is_complex):
|
1580 |
+
distances = distances.double()
|
1581 |
+
|
1582 |
+
diffx = torch.diff(distances)
|
1583 |
+
# if distances are constant reduce to the scalar case
|
1584 |
+
# since it brings a consistent speedup
|
1585 |
+
if (diffx == diffx[0]).all():
|
1586 |
+
diffx = diffx[0]
|
1587 |
+
dx[i] = diffx
|
1588 |
+
else:
|
1589 |
+
raise TypeError("invalid number of arguments")
|
1590 |
+
|
1591 |
+
if edge_order > 2:
|
1592 |
+
raise ValueError("'edge_order' greater than 2 not supported")
|
1593 |
+
|
1594 |
+
# use central differences on interior and one-sided differences on the
|
1595 |
+
# endpoints. This preserves second order-accuracy over the full domain.
|
1596 |
+
|
1597 |
+
outvals = []
|
1598 |
+
|
1599 |
+
# create slice objects --- initially all are [:, :, ..., :]
|
1600 |
+
slice1 = [slice(None)] * N
|
1601 |
+
slice2 = [slice(None)] * N
|
1602 |
+
slice3 = [slice(None)] * N
|
1603 |
+
slice4 = [slice(None)] * N
|
1604 |
+
|
1605 |
+
otype = f.dtype
|
1606 |
+
if _dtypes_impl.python_type_for_torch(otype) in (int, bool):
|
1607 |
+
# Convert to floating point.
|
1608 |
+
# First check if f is a numpy integer type; if so, convert f to float64
|
1609 |
+
# to avoid modular arithmetic when computing the changes in f.
|
1610 |
+
f = f.double()
|
1611 |
+
otype = torch.float64
|
1612 |
+
|
1613 |
+
for axis, ax_dx in zip(axes, dx):
|
1614 |
+
if f.shape[axis] < edge_order + 1:
|
1615 |
+
raise ValueError(
|
1616 |
+
"Shape of array too small to calculate a numerical gradient, "
|
1617 |
+
"at least (edge_order + 1) elements are required."
|
1618 |
+
)
|
1619 |
+
# result allocation
|
1620 |
+
out = torch.empty_like(f, dtype=otype)
|
1621 |
+
|
1622 |
+
# spacing for the current axis (NB: np.ndim(ax_dx) == 0)
|
1623 |
+
uniform_spacing = _dtypes_impl.is_scalar(ax_dx) or ax_dx.ndim == 0
|
1624 |
+
|
1625 |
+
# Numerical differentiation: 2nd order interior
|
1626 |
+
slice1[axis] = slice(1, -1)
|
1627 |
+
slice2[axis] = slice(None, -2)
|
1628 |
+
slice3[axis] = slice(1, -1)
|
1629 |
+
slice4[axis] = slice(2, None)
|
1630 |
+
|
1631 |
+
if uniform_spacing:
|
1632 |
+
out[tuple(slice1)] = (f[tuple(slice4)] - f[tuple(slice2)]) / (2.0 * ax_dx)
|
1633 |
+
else:
|
1634 |
+
dx1 = ax_dx[0:-1]
|
1635 |
+
dx2 = ax_dx[1:]
|
1636 |
+
a = -(dx2) / (dx1 * (dx1 + dx2))
|
1637 |
+
b = (dx2 - dx1) / (dx1 * dx2)
|
1638 |
+
c = dx1 / (dx2 * (dx1 + dx2))
|
1639 |
+
# fix the shape for broadcasting
|
1640 |
+
shape = [1] * N
|
1641 |
+
shape[axis] = -1
|
1642 |
+
a = a.reshape(shape)
|
1643 |
+
b = b.reshape(shape)
|
1644 |
+
c = c.reshape(shape)
|
1645 |
+
# 1D equivalent -- out[1:-1] = a * f[:-2] + b * f[1:-1] + c * f[2:]
|
1646 |
+
out[tuple(slice1)] = (
|
1647 |
+
a * f[tuple(slice2)] + b * f[tuple(slice3)] + c * f[tuple(slice4)]
|
1648 |
+
)
|
1649 |
+
|
1650 |
+
# Numerical differentiation: 1st order edges
|
1651 |
+
if edge_order == 1:
|
1652 |
+
slice1[axis] = 0
|
1653 |
+
slice2[axis] = 1
|
1654 |
+
slice3[axis] = 0
|
1655 |
+
dx_0 = ax_dx if uniform_spacing else ax_dx[0]
|
1656 |
+
# 1D equivalent -- out[0] = (f[1] - f[0]) / (x[1] - x[0])
|
1657 |
+
out[tuple(slice1)] = (f[tuple(slice2)] - f[tuple(slice3)]) / dx_0
|
1658 |
+
|
1659 |
+
slice1[axis] = -1
|
1660 |
+
slice2[axis] = -1
|
1661 |
+
slice3[axis] = -2
|
1662 |
+
dx_n = ax_dx if uniform_spacing else ax_dx[-1]
|
1663 |
+
# 1D equivalent -- out[-1] = (f[-1] - f[-2]) / (x[-1] - x[-2])
|
1664 |
+
out[tuple(slice1)] = (f[tuple(slice2)] - f[tuple(slice3)]) / dx_n
|
1665 |
+
|
1666 |
+
# Numerical differentiation: 2nd order edges
|
1667 |
+
else:
|
1668 |
+
slice1[axis] = 0
|
1669 |
+
slice2[axis] = 0
|
1670 |
+
slice3[axis] = 1
|
1671 |
+
slice4[axis] = 2
|
1672 |
+
if uniform_spacing:
|
1673 |
+
a = -1.5 / ax_dx
|
1674 |
+
b = 2.0 / ax_dx
|
1675 |
+
c = -0.5 / ax_dx
|
1676 |
+
else:
|
1677 |
+
dx1 = ax_dx[0]
|
1678 |
+
dx2 = ax_dx[1]
|
1679 |
+
a = -(2.0 * dx1 + dx2) / (dx1 * (dx1 + dx2))
|
1680 |
+
b = (dx1 + dx2) / (dx1 * dx2)
|
1681 |
+
c = -dx1 / (dx2 * (dx1 + dx2))
|
1682 |
+
# 1D equivalent -- out[0] = a * f[0] + b * f[1] + c * f[2]
|
1683 |
+
out[tuple(slice1)] = (
|
1684 |
+
a * f[tuple(slice2)] + b * f[tuple(slice3)] + c * f[tuple(slice4)]
|
1685 |
+
)
|
1686 |
+
|
1687 |
+
slice1[axis] = -1
|
1688 |
+
slice2[axis] = -3
|
1689 |
+
slice3[axis] = -2
|
1690 |
+
slice4[axis] = -1
|
1691 |
+
if uniform_spacing:
|
1692 |
+
a = 0.5 / ax_dx
|
1693 |
+
b = -2.0 / ax_dx
|
1694 |
+
c = 1.5 / ax_dx
|
1695 |
+
else:
|
1696 |
+
dx1 = ax_dx[-2]
|
1697 |
+
dx2 = ax_dx[-1]
|
1698 |
+
a = (dx2) / (dx1 * (dx1 + dx2))
|
1699 |
+
b = -(dx2 + dx1) / (dx1 * dx2)
|
1700 |
+
c = (2.0 * dx2 + dx1) / (dx2 * (dx1 + dx2))
|
1701 |
+
# 1D equivalent -- out[-1] = a * f[-3] + b * f[-2] + c * f[-1]
|
1702 |
+
out[tuple(slice1)] = (
|
1703 |
+
a * f[tuple(slice2)] + b * f[tuple(slice3)] + c * f[tuple(slice4)]
|
1704 |
+
)
|
1705 |
+
|
1706 |
+
outvals.append(out)
|
1707 |
+
|
1708 |
+
# reset the slice object in this dimension to ":"
|
1709 |
+
slice1[axis] = slice(None)
|
1710 |
+
slice2[axis] = slice(None)
|
1711 |
+
slice3[axis] = slice(None)
|
1712 |
+
slice4[axis] = slice(None)
|
1713 |
+
|
1714 |
+
if len_axes == 1:
|
1715 |
+
return outvals[0]
|
1716 |
+
else:
|
1717 |
+
return outvals
|
1718 |
+
|
1719 |
+
|
1720 |
+
# ### Type/shape etc queries ###
|
1721 |
+
|
1722 |
+
|
1723 |
+
def round(a: ArrayLike, decimals=0, out: Optional[OutArray] = None):
|
1724 |
+
if a.is_floating_point():
|
1725 |
+
result = torch.round(a, decimals=decimals)
|
1726 |
+
elif a.is_complex():
|
1727 |
+
# RuntimeError: "round_cpu" not implemented for 'ComplexFloat'
|
1728 |
+
result = torch.complex(
|
1729 |
+
torch.round(a.real, decimals=decimals),
|
1730 |
+
torch.round(a.imag, decimals=decimals),
|
1731 |
+
)
|
1732 |
+
else:
|
1733 |
+
# RuntimeError: "round_cpu" not implemented for 'int'
|
1734 |
+
result = a
|
1735 |
+
return result
|
1736 |
+
|
1737 |
+
|
1738 |
+
around = round
|
1739 |
+
round_ = round
|
1740 |
+
|
1741 |
+
|
1742 |
+
def real_if_close(a: ArrayLike, tol=100):
|
1743 |
+
if not torch.is_complex(a):
|
1744 |
+
return a
|
1745 |
+
if tol > 1:
|
1746 |
+
# Undocumented in numpy: if tol < 1, it's an absolute tolerance!
|
1747 |
+
# Otherwise, tol > 1 is relative tolerance, in units of the dtype epsilon
|
1748 |
+
# https://github.com/numpy/numpy/blob/v1.24.0/numpy/lib/type_check.py#L577
|
1749 |
+
tol = tol * torch.finfo(a.dtype).eps
|
1750 |
+
|
1751 |
+
mask = torch.abs(a.imag) < tol
|
1752 |
+
return a.real if mask.all() else a
|
1753 |
+
|
1754 |
+
|
1755 |
+
def real(a: ArrayLike):
|
1756 |
+
return torch.real(a)
|
1757 |
+
|
1758 |
+
|
1759 |
+
def imag(a: ArrayLike):
|
1760 |
+
if a.is_complex():
|
1761 |
+
return a.imag
|
1762 |
+
return torch.zeros_like(a)
|
1763 |
+
|
1764 |
+
|
1765 |
+
def iscomplex(x: ArrayLike):
|
1766 |
+
if torch.is_complex(x):
|
1767 |
+
return x.imag != 0
|
1768 |
+
return torch.zeros_like(x, dtype=torch.bool)
|
1769 |
+
|
1770 |
+
|
1771 |
+
def isreal(x: ArrayLike):
|
1772 |
+
if torch.is_complex(x):
|
1773 |
+
return x.imag == 0
|
1774 |
+
return torch.ones_like(x, dtype=torch.bool)
|
1775 |
+
|
1776 |
+
|
1777 |
+
def iscomplexobj(x: ArrayLike):
|
1778 |
+
return torch.is_complex(x)
|
1779 |
+
|
1780 |
+
|
1781 |
+
def isrealobj(x: ArrayLike):
|
1782 |
+
return not torch.is_complex(x)
|
1783 |
+
|
1784 |
+
|
1785 |
+
def isneginf(x: ArrayLike, out: Optional[OutArray] = None):
|
1786 |
+
return torch.isneginf(x)
|
1787 |
+
|
1788 |
+
|
1789 |
+
def isposinf(x: ArrayLike, out: Optional[OutArray] = None):
|
1790 |
+
return torch.isposinf(x)
|
1791 |
+
|
1792 |
+
|
1793 |
+
def i0(x: ArrayLike):
|
1794 |
+
return torch.special.i0(x)
|
1795 |
+
|
1796 |
+
|
1797 |
+
def isscalar(a):
|
1798 |
+
# We need to use normalize_array_like, but we don't want to export it in funcs.py
|
1799 |
+
from ._normalizations import normalize_array_like
|
1800 |
+
|
1801 |
+
try:
|
1802 |
+
t = normalize_array_like(a)
|
1803 |
+
return t.numel() == 1
|
1804 |
+
except Exception:
|
1805 |
+
return False
|
1806 |
+
|
1807 |
+
|
1808 |
+
# ### Filter windows ###
|
1809 |
+
|
1810 |
+
|
1811 |
+
def hamming(M):
|
1812 |
+
dtype = _dtypes_impl.default_dtypes().float_dtype
|
1813 |
+
return torch.hamming_window(M, periodic=False, dtype=dtype)
|
1814 |
+
|
1815 |
+
|
1816 |
+
def hanning(M):
|
1817 |
+
dtype = _dtypes_impl.default_dtypes().float_dtype
|
1818 |
+
return torch.hann_window(M, periodic=False, dtype=dtype)
|
1819 |
+
|
1820 |
+
|
1821 |
+
def kaiser(M, beta):
|
1822 |
+
dtype = _dtypes_impl.default_dtypes().float_dtype
|
1823 |
+
return torch.kaiser_window(M, beta=beta, periodic=False, dtype=dtype)
|
1824 |
+
|
1825 |
+
|
1826 |
+
def blackman(M):
|
1827 |
+
dtype = _dtypes_impl.default_dtypes().float_dtype
|
1828 |
+
return torch.blackman_window(M, periodic=False, dtype=dtype)
|
1829 |
+
|
1830 |
+
|
1831 |
+
def bartlett(M):
|
1832 |
+
dtype = _dtypes_impl.default_dtypes().float_dtype
|
1833 |
+
return torch.bartlett_window(M, periodic=False, dtype=dtype)
|
1834 |
+
|
1835 |
+
|
1836 |
+
# ### Dtype routines ###
|
1837 |
+
|
1838 |
+
# vendored from https://github.com/numpy/numpy/blob/v1.24.0/numpy/lib/type_check.py#L666
|
1839 |
+
|
1840 |
+
|
1841 |
+
array_type = [
|
1842 |
+
[torch.float16, torch.float32, torch.float64],
|
1843 |
+
[None, torch.complex64, torch.complex128],
|
1844 |
+
]
|
1845 |
+
array_precision = {
|
1846 |
+
torch.float16: 0,
|
1847 |
+
torch.float32: 1,
|
1848 |
+
torch.float64: 2,
|
1849 |
+
torch.complex64: 1,
|
1850 |
+
torch.complex128: 2,
|
1851 |
+
}
|
1852 |
+
|
1853 |
+
|
1854 |
+
def common_type(*tensors: ArrayLike):
|
1855 |
+
is_complex = False
|
1856 |
+
precision = 0
|
1857 |
+
for a in tensors:
|
1858 |
+
t = a.dtype
|
1859 |
+
if iscomplexobj(a):
|
1860 |
+
is_complex = True
|
1861 |
+
if not (t.is_floating_point or t.is_complex):
|
1862 |
+
p = 2 # array_precision[_nx.double]
|
1863 |
+
else:
|
1864 |
+
p = array_precision.get(t, None)
|
1865 |
+
if p is None:
|
1866 |
+
raise TypeError("can't get common type for non-numeric array")
|
1867 |
+
precision = builtins.max(precision, p)
|
1868 |
+
if is_complex:
|
1869 |
+
return array_type[1][precision]
|
1870 |
+
else:
|
1871 |
+
return array_type[0][precision]
|
1872 |
+
|
1873 |
+
|
1874 |
+
# ### histograms ###
|
1875 |
+
|
1876 |
+
|
1877 |
+
def histogram(
|
1878 |
+
a: ArrayLike,
|
1879 |
+
bins: ArrayLike = 10,
|
1880 |
+
range=None,
|
1881 |
+
normed=None,
|
1882 |
+
weights: Optional[ArrayLike] = None,
|
1883 |
+
density=None,
|
1884 |
+
):
|
1885 |
+
if normed is not None:
|
1886 |
+
raise ValueError("normed argument is deprecated, use density= instead")
|
1887 |
+
|
1888 |
+
if weights is not None and weights.dtype.is_complex:
|
1889 |
+
raise NotImplementedError("complex weights histogram.")
|
1890 |
+
|
1891 |
+
is_a_int = not (a.dtype.is_floating_point or a.dtype.is_complex)
|
1892 |
+
is_w_int = weights is None or not weights.dtype.is_floating_point
|
1893 |
+
if is_a_int:
|
1894 |
+
a = a.double()
|
1895 |
+
|
1896 |
+
if weights is not None:
|
1897 |
+
weights = _util.cast_if_needed(weights, a.dtype)
|
1898 |
+
|
1899 |
+
if isinstance(bins, torch.Tensor):
|
1900 |
+
if bins.ndim == 0:
|
1901 |
+
# bins was a single int
|
1902 |
+
bins = operator.index(bins)
|
1903 |
+
else:
|
1904 |
+
bins = _util.cast_if_needed(bins, a.dtype)
|
1905 |
+
|
1906 |
+
if range is None:
|
1907 |
+
h, b = torch.histogram(a, bins, weight=weights, density=bool(density))
|
1908 |
+
else:
|
1909 |
+
h, b = torch.histogram(
|
1910 |
+
a, bins, range=range, weight=weights, density=bool(density)
|
1911 |
+
)
|
1912 |
+
|
1913 |
+
if not density and is_w_int:
|
1914 |
+
h = h.long()
|
1915 |
+
if is_a_int:
|
1916 |
+
b = b.long()
|
1917 |
+
|
1918 |
+
return h, b
|
1919 |
+
|
1920 |
+
|
1921 |
+
def histogram2d(
|
1922 |
+
x,
|
1923 |
+
y,
|
1924 |
+
bins=10,
|
1925 |
+
range: Optional[ArrayLike] = None,
|
1926 |
+
normed=None,
|
1927 |
+
weights: Optional[ArrayLike] = None,
|
1928 |
+
density=None,
|
1929 |
+
):
|
1930 |
+
# vendored from https://github.com/numpy/numpy/blob/v1.24.0/numpy/lib/twodim_base.py#L655-L821
|
1931 |
+
if len(x) != len(y):
|
1932 |
+
raise ValueError("x and y must have the same length.")
|
1933 |
+
|
1934 |
+
try:
|
1935 |
+
N = len(bins)
|
1936 |
+
except TypeError:
|
1937 |
+
N = 1
|
1938 |
+
|
1939 |
+
if N != 1 and N != 2:
|
1940 |
+
bins = [bins, bins]
|
1941 |
+
|
1942 |
+
h, e = histogramdd((x, y), bins, range, normed, weights, density)
|
1943 |
+
|
1944 |
+
return h, e[0], e[1]
|
1945 |
+
|
1946 |
+
|
1947 |
+
def histogramdd(
|
1948 |
+
sample,
|
1949 |
+
bins=10,
|
1950 |
+
range: Optional[ArrayLike] = None,
|
1951 |
+
normed=None,
|
1952 |
+
weights: Optional[ArrayLike] = None,
|
1953 |
+
density=None,
|
1954 |
+
):
|
1955 |
+
# have to normalize manually because `sample` interpretation differs
|
1956 |
+
# for a list of lists and a 2D array
|
1957 |
+
if normed is not None:
|
1958 |
+
raise ValueError("normed argument is deprecated, use density= instead")
|
1959 |
+
|
1960 |
+
from ._normalizations import normalize_array_like, normalize_seq_array_like
|
1961 |
+
|
1962 |
+
if isinstance(sample, (list, tuple)):
|
1963 |
+
sample = normalize_array_like(sample).T
|
1964 |
+
else:
|
1965 |
+
sample = normalize_array_like(sample)
|
1966 |
+
|
1967 |
+
sample = torch.atleast_2d(sample)
|
1968 |
+
|
1969 |
+
if not (sample.dtype.is_floating_point or sample.dtype.is_complex):
|
1970 |
+
sample = sample.double()
|
1971 |
+
|
1972 |
+
# bins is either an int, or a sequence of ints or a sequence of arrays
|
1973 |
+
bins_is_array = not (
|
1974 |
+
isinstance(bins, int) or builtins.all(isinstance(b, int) for b in bins)
|
1975 |
+
)
|
1976 |
+
if bins_is_array:
|
1977 |
+
bins = normalize_seq_array_like(bins)
|
1978 |
+
bins_dtypes = [b.dtype for b in bins]
|
1979 |
+
bins = [_util.cast_if_needed(b, sample.dtype) for b in bins]
|
1980 |
+
|
1981 |
+
if range is not None:
|
1982 |
+
range = range.flatten().tolist()
|
1983 |
+
|
1984 |
+
if weights is not None:
|
1985 |
+
# range=... is required : interleave min and max values per dimension
|
1986 |
+
mm = sample.aminmax(dim=0)
|
1987 |
+
range = torch.cat(mm).reshape(2, -1).T.flatten()
|
1988 |
+
range = tuple(range.tolist())
|
1989 |
+
weights = _util.cast_if_needed(weights, sample.dtype)
|
1990 |
+
w_kwd = {"weight": weights}
|
1991 |
+
else:
|
1992 |
+
w_kwd = {}
|
1993 |
+
|
1994 |
+
h, b = torch.histogramdd(sample, bins, range, density=bool(density), **w_kwd)
|
1995 |
+
|
1996 |
+
if bins_is_array:
|
1997 |
+
b = [_util.cast_if_needed(bb, dtyp) for bb, dtyp in zip(b, bins_dtypes)]
|
1998 |
+
|
1999 |
+
return h, b
|
2000 |
+
|
2001 |
+
|
2002 |
+
# ### odds and ends
|
2003 |
+
|
2004 |
+
|
2005 |
+
def min_scalar_type(a: ArrayLike, /):
|
2006 |
+
# https://github.com/numpy/numpy/blob/maintenance/1.24.x/numpy/core/src/multiarray/convert_datatype.c#L1288
|
2007 |
+
|
2008 |
+
from ._dtypes import DType
|
2009 |
+
|
2010 |
+
if a.numel() > 1:
|
2011 |
+
# numpy docs: "For non-scalar array a, returns the vector’s dtype unmodified."
|
2012 |
+
return DType(a.dtype)
|
2013 |
+
|
2014 |
+
if a.dtype == torch.bool:
|
2015 |
+
dtype = torch.bool
|
2016 |
+
|
2017 |
+
elif a.dtype.is_complex:
|
2018 |
+
fi = torch.finfo(torch.float32)
|
2019 |
+
fits_in_single = a.dtype == torch.complex64 or (
|
2020 |
+
fi.min <= a.real <= fi.max and fi.min <= a.imag <= fi.max
|
2021 |
+
)
|
2022 |
+
dtype = torch.complex64 if fits_in_single else torch.complex128
|
2023 |
+
|
2024 |
+
elif a.dtype.is_floating_point:
|
2025 |
+
for dt in [torch.float16, torch.float32, torch.float64]:
|
2026 |
+
fi = torch.finfo(dt)
|
2027 |
+
if fi.min <= a <= fi.max:
|
2028 |
+
dtype = dt
|
2029 |
+
break
|
2030 |
+
else:
|
2031 |
+
# must be integer
|
2032 |
+
for dt in [torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64]:
|
2033 |
+
# Prefer unsigned int where possible, as numpy does.
|
2034 |
+
ii = torch.iinfo(dt)
|
2035 |
+
if ii.min <= a <= ii.max:
|
2036 |
+
dtype = dt
|
2037 |
+
break
|
2038 |
+
|
2039 |
+
return DType(dtype)
|
2040 |
+
|
2041 |
+
|
2042 |
+
def pad(array: ArrayLike, pad_width: ArrayLike, mode="constant", **kwargs):
|
2043 |
+
if mode != "constant":
|
2044 |
+
raise NotImplementedError
|
2045 |
+
value = kwargs.get("constant_values", 0)
|
2046 |
+
# `value` must be a python scalar for torch.nn.functional.pad
|
2047 |
+
typ = _dtypes_impl.python_type_for_torch(array.dtype)
|
2048 |
+
value = typ(value)
|
2049 |
+
|
2050 |
+
pad_width = torch.broadcast_to(pad_width, (array.ndim, 2))
|
2051 |
+
pad_width = torch.flip(pad_width, (0,)).flatten()
|
2052 |
+
|
2053 |
+
return torch.nn.functional.pad(array, tuple(pad_width), value=value)
|
venv/lib/python3.10/site-packages/torch/_numpy/_getlimits.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
import torch
|
4 |
+
|
5 |
+
from . import _dtypes
|
6 |
+
|
7 |
+
|
8 |
+
def finfo(dtyp):
|
9 |
+
torch_dtype = _dtypes.dtype(dtyp).torch_dtype
|
10 |
+
return torch.finfo(torch_dtype)
|
11 |
+
|
12 |
+
|
13 |
+
def iinfo(dtyp):
|
14 |
+
torch_dtype = _dtypes.dtype(dtyp).torch_dtype
|
15 |
+
return torch.iinfo(torch_dtype)
|
venv/lib/python3.10/site-packages/torch/_numpy/_ndarray.py
ADDED
@@ -0,0 +1,591 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
|
5 |
+
import builtins
|
6 |
+
import math
|
7 |
+
import operator
|
8 |
+
from typing import Sequence
|
9 |
+
|
10 |
+
import torch
|
11 |
+
|
12 |
+
from . import _dtypes, _dtypes_impl, _funcs, _ufuncs, _util
|
13 |
+
from ._normalizations import (
|
14 |
+
ArrayLike,
|
15 |
+
normalize_array_like,
|
16 |
+
normalizer,
|
17 |
+
NotImplementedType,
|
18 |
+
)
|
19 |
+
|
20 |
+
newaxis = None
|
21 |
+
|
22 |
+
FLAGS = [
|
23 |
+
"C_CONTIGUOUS",
|
24 |
+
"F_CONTIGUOUS",
|
25 |
+
"OWNDATA",
|
26 |
+
"WRITEABLE",
|
27 |
+
"ALIGNED",
|
28 |
+
"WRITEBACKIFCOPY",
|
29 |
+
"FNC",
|
30 |
+
"FORC",
|
31 |
+
"BEHAVED",
|
32 |
+
"CARRAY",
|
33 |
+
"FARRAY",
|
34 |
+
]
|
35 |
+
|
36 |
+
SHORTHAND_TO_FLAGS = {
|
37 |
+
"C": "C_CONTIGUOUS",
|
38 |
+
"F": "F_CONTIGUOUS",
|
39 |
+
"O": "OWNDATA",
|
40 |
+
"W": "WRITEABLE",
|
41 |
+
"A": "ALIGNED",
|
42 |
+
"X": "WRITEBACKIFCOPY",
|
43 |
+
"B": "BEHAVED",
|
44 |
+
"CA": "CARRAY",
|
45 |
+
"FA": "FARRAY",
|
46 |
+
}
|
47 |
+
|
48 |
+
|
49 |
+
class Flags:
|
50 |
+
def __init__(self, flag_to_value: dict):
|
51 |
+
assert all(k in FLAGS for k in flag_to_value.keys()) # sanity check
|
52 |
+
self._flag_to_value = flag_to_value
|
53 |
+
|
54 |
+
def __getattr__(self, attr: str):
|
55 |
+
if attr.islower() and attr.upper() in FLAGS:
|
56 |
+
return self[attr.upper()]
|
57 |
+
else:
|
58 |
+
raise AttributeError(f"No flag attribute '{attr}'")
|
59 |
+
|
60 |
+
def __getitem__(self, key):
|
61 |
+
if key in SHORTHAND_TO_FLAGS.keys():
|
62 |
+
key = SHORTHAND_TO_FLAGS[key]
|
63 |
+
if key in FLAGS:
|
64 |
+
try:
|
65 |
+
return self._flag_to_value[key]
|
66 |
+
except KeyError as e:
|
67 |
+
raise NotImplementedError(f"{key=}") from e
|
68 |
+
else:
|
69 |
+
raise KeyError(f"No flag key '{key}'")
|
70 |
+
|
71 |
+
def __setattr__(self, attr, value):
|
72 |
+
if attr.islower() and attr.upper() in FLAGS:
|
73 |
+
self[attr.upper()] = value
|
74 |
+
else:
|
75 |
+
super().__setattr__(attr, value)
|
76 |
+
|
77 |
+
def __setitem__(self, key, value):
|
78 |
+
if key in FLAGS or key in SHORTHAND_TO_FLAGS.keys():
|
79 |
+
raise NotImplementedError("Modifying flags is not implemented")
|
80 |
+
else:
|
81 |
+
raise KeyError(f"No flag key '{key}'")
|
82 |
+
|
83 |
+
|
84 |
+
def create_method(fn, name=None):
|
85 |
+
name = name or fn.__name__
|
86 |
+
|
87 |
+
def f(*args, **kwargs):
|
88 |
+
return fn(*args, **kwargs)
|
89 |
+
|
90 |
+
f.__name__ = name
|
91 |
+
f.__qualname__ = f"ndarray.{name}"
|
92 |
+
return f
|
93 |
+
|
94 |
+
|
95 |
+
# Map ndarray.name_method -> np.name_func
|
96 |
+
# If name_func == None, it means that name_method == name_func
|
97 |
+
methods = {
|
98 |
+
"clip": None,
|
99 |
+
"nonzero": None,
|
100 |
+
"repeat": None,
|
101 |
+
"round": None,
|
102 |
+
"squeeze": None,
|
103 |
+
"swapaxes": None,
|
104 |
+
"ravel": None,
|
105 |
+
# linalg
|
106 |
+
"diagonal": None,
|
107 |
+
"dot": None,
|
108 |
+
"trace": None,
|
109 |
+
# sorting
|
110 |
+
"argsort": None,
|
111 |
+
"searchsorted": None,
|
112 |
+
# reductions
|
113 |
+
"argmax": None,
|
114 |
+
"argmin": None,
|
115 |
+
"any": None,
|
116 |
+
"all": None,
|
117 |
+
"max": None,
|
118 |
+
"min": None,
|
119 |
+
"ptp": None,
|
120 |
+
"sum": None,
|
121 |
+
"prod": None,
|
122 |
+
"mean": None,
|
123 |
+
"var": None,
|
124 |
+
"std": None,
|
125 |
+
# scans
|
126 |
+
"cumsum": None,
|
127 |
+
"cumprod": None,
|
128 |
+
# advanced indexing
|
129 |
+
"take": None,
|
130 |
+
"choose": None,
|
131 |
+
}
|
132 |
+
|
133 |
+
dunder = {
|
134 |
+
"abs": "absolute",
|
135 |
+
"invert": None,
|
136 |
+
"pos": "positive",
|
137 |
+
"neg": "negative",
|
138 |
+
"gt": "greater",
|
139 |
+
"lt": "less",
|
140 |
+
"ge": "greater_equal",
|
141 |
+
"le": "less_equal",
|
142 |
+
}
|
143 |
+
|
144 |
+
# dunder methods with right-looking and in-place variants
|
145 |
+
ri_dunder = {
|
146 |
+
"add": None,
|
147 |
+
"sub": "subtract",
|
148 |
+
"mul": "multiply",
|
149 |
+
"truediv": "divide",
|
150 |
+
"floordiv": "floor_divide",
|
151 |
+
"pow": "power",
|
152 |
+
"mod": "remainder",
|
153 |
+
"and": "bitwise_and",
|
154 |
+
"or": "bitwise_or",
|
155 |
+
"xor": "bitwise_xor",
|
156 |
+
"lshift": "left_shift",
|
157 |
+
"rshift": "right_shift",
|
158 |
+
"matmul": None,
|
159 |
+
}
|
160 |
+
|
161 |
+
|
162 |
+
def _upcast_int_indices(index):
|
163 |
+
if isinstance(index, torch.Tensor):
|
164 |
+
if index.dtype in (torch.int8, torch.int16, torch.int32, torch.uint8):
|
165 |
+
return index.to(torch.int64)
|
166 |
+
elif isinstance(index, tuple):
|
167 |
+
return tuple(_upcast_int_indices(i) for i in index)
|
168 |
+
return index
|
169 |
+
|
170 |
+
|
171 |
+
# Used to indicate that a parameter is unspecified (as opposed to explicitly
|
172 |
+
# `None`)
|
173 |
+
class _Unspecified:
|
174 |
+
pass
|
175 |
+
|
176 |
+
|
177 |
+
_Unspecified.unspecified = _Unspecified()
|
178 |
+
|
179 |
+
###############################################################
|
180 |
+
# ndarray class #
|
181 |
+
###############################################################
|
182 |
+
|
183 |
+
|
184 |
+
class ndarray:
|
185 |
+
def __init__(self, t=None):
|
186 |
+
if t is None:
|
187 |
+
self.tensor = torch.Tensor()
|
188 |
+
elif isinstance(t, torch.Tensor):
|
189 |
+
self.tensor = t
|
190 |
+
else:
|
191 |
+
raise ValueError(
|
192 |
+
"ndarray constructor is not recommended; prefer"
|
193 |
+
"either array(...) or zeros/empty(...)"
|
194 |
+
)
|
195 |
+
|
196 |
+
# Register NumPy functions as methods
|
197 |
+
for method, name in methods.items():
|
198 |
+
fn = getattr(_funcs, name or method)
|
199 |
+
vars()[method] = create_method(fn, method)
|
200 |
+
|
201 |
+
# Regular methods but coming from ufuncs
|
202 |
+
conj = create_method(_ufuncs.conjugate, "conj")
|
203 |
+
conjugate = create_method(_ufuncs.conjugate)
|
204 |
+
|
205 |
+
for method, name in dunder.items():
|
206 |
+
fn = getattr(_ufuncs, name or method)
|
207 |
+
method = f"__{method}__"
|
208 |
+
vars()[method] = create_method(fn, method)
|
209 |
+
|
210 |
+
for method, name in ri_dunder.items():
|
211 |
+
fn = getattr(_ufuncs, name or method)
|
212 |
+
plain = f"__{method}__"
|
213 |
+
vars()[plain] = create_method(fn, plain)
|
214 |
+
rvar = f"__r{method}__"
|
215 |
+
vars()[rvar] = create_method(lambda self, other, fn=fn: fn(other, self), rvar)
|
216 |
+
ivar = f"__i{method}__"
|
217 |
+
vars()[ivar] = create_method(
|
218 |
+
lambda self, other, fn=fn: fn(self, other, out=self), ivar
|
219 |
+
)
|
220 |
+
|
221 |
+
# There's no __idivmod__
|
222 |
+
__divmod__ = create_method(_ufuncs.divmod, "__divmod__")
|
223 |
+
__rdivmod__ = create_method(
|
224 |
+
lambda self, other: _ufuncs.divmod(other, self), "__rdivmod__"
|
225 |
+
)
|
226 |
+
|
227 |
+
# prevent loop variables leaking into the ndarray class namespace
|
228 |
+
del ivar, rvar, name, plain, fn, method
|
229 |
+
|
230 |
+
@property
|
231 |
+
def shape(self):
|
232 |
+
return tuple(self.tensor.shape)
|
233 |
+
|
234 |
+
@property
|
235 |
+
def size(self):
|
236 |
+
return self.tensor.numel()
|
237 |
+
|
238 |
+
@property
|
239 |
+
def ndim(self):
|
240 |
+
return self.tensor.ndim
|
241 |
+
|
242 |
+
@property
|
243 |
+
def dtype(self):
|
244 |
+
return _dtypes.dtype(self.tensor.dtype)
|
245 |
+
|
246 |
+
@property
|
247 |
+
def strides(self):
|
248 |
+
elsize = self.tensor.element_size()
|
249 |
+
return tuple(stride * elsize for stride in self.tensor.stride())
|
250 |
+
|
251 |
+
@property
|
252 |
+
def itemsize(self):
|
253 |
+
return self.tensor.element_size()
|
254 |
+
|
255 |
+
@property
|
256 |
+
def flags(self):
|
257 |
+
# Note contiguous in torch is assumed C-style
|
258 |
+
return Flags(
|
259 |
+
{
|
260 |
+
"C_CONTIGUOUS": self.tensor.is_contiguous(),
|
261 |
+
"F_CONTIGUOUS": self.T.tensor.is_contiguous(),
|
262 |
+
"OWNDATA": self.tensor._base is None,
|
263 |
+
"WRITEABLE": True, # pytorch does not have readonly tensors
|
264 |
+
}
|
265 |
+
)
|
266 |
+
|
267 |
+
@property
|
268 |
+
def data(self):
|
269 |
+
return self.tensor.data_ptr()
|
270 |
+
|
271 |
+
@property
|
272 |
+
def nbytes(self):
|
273 |
+
return self.tensor.storage().nbytes()
|
274 |
+
|
275 |
+
@property
|
276 |
+
def T(self):
|
277 |
+
return self.transpose()
|
278 |
+
|
279 |
+
@property
|
280 |
+
def real(self):
|
281 |
+
return _funcs.real(self)
|
282 |
+
|
283 |
+
@real.setter
|
284 |
+
def real(self, value):
|
285 |
+
self.tensor.real = asarray(value).tensor
|
286 |
+
|
287 |
+
@property
|
288 |
+
def imag(self):
|
289 |
+
return _funcs.imag(self)
|
290 |
+
|
291 |
+
@imag.setter
|
292 |
+
def imag(self, value):
|
293 |
+
self.tensor.imag = asarray(value).tensor
|
294 |
+
|
295 |
+
# ctors
|
296 |
+
def astype(self, dtype, order="K", casting="unsafe", subok=True, copy=True):
|
297 |
+
if order != "K":
|
298 |
+
raise NotImplementedError(f"astype(..., order={order} is not implemented.")
|
299 |
+
if casting != "unsafe":
|
300 |
+
raise NotImplementedError(
|
301 |
+
f"astype(..., casting={casting} is not implemented."
|
302 |
+
)
|
303 |
+
if not subok:
|
304 |
+
raise NotImplementedError(f"astype(..., subok={subok} is not implemented.")
|
305 |
+
if not copy:
|
306 |
+
raise NotImplementedError(f"astype(..., copy={copy} is not implemented.")
|
307 |
+
torch_dtype = _dtypes.dtype(dtype).torch_dtype
|
308 |
+
t = self.tensor.to(torch_dtype)
|
309 |
+
return ndarray(t)
|
310 |
+
|
311 |
+
@normalizer
|
312 |
+
def copy(self: ArrayLike, order: NotImplementedType = "C"):
|
313 |
+
return self.clone()
|
314 |
+
|
315 |
+
@normalizer
|
316 |
+
def flatten(self: ArrayLike, order: NotImplementedType = "C"):
|
317 |
+
return torch.flatten(self)
|
318 |
+
|
319 |
+
def resize(self, *new_shape, refcheck=False):
|
320 |
+
# NB: differs from np.resize: fills with zeros instead of making repeated copies of input.
|
321 |
+
if refcheck:
|
322 |
+
raise NotImplementedError(
|
323 |
+
f"resize(..., refcheck={refcheck} is not implemented."
|
324 |
+
)
|
325 |
+
if new_shape in [(), (None,)]:
|
326 |
+
return
|
327 |
+
|
328 |
+
# support both x.resize((2, 2)) and x.resize(2, 2)
|
329 |
+
if len(new_shape) == 1:
|
330 |
+
new_shape = new_shape[0]
|
331 |
+
if isinstance(new_shape, int):
|
332 |
+
new_shape = (new_shape,)
|
333 |
+
|
334 |
+
if builtins.any(x < 0 for x in new_shape):
|
335 |
+
raise ValueError("all elements of `new_shape` must be non-negative")
|
336 |
+
|
337 |
+
new_numel, old_numel = math.prod(new_shape), self.tensor.numel()
|
338 |
+
|
339 |
+
self.tensor.resize_(new_shape)
|
340 |
+
|
341 |
+
if new_numel >= old_numel:
|
342 |
+
# zero-fill new elements
|
343 |
+
assert self.tensor.is_contiguous()
|
344 |
+
b = self.tensor.flatten() # does not copy
|
345 |
+
b[old_numel:].zero_()
|
346 |
+
|
347 |
+
def view(self, dtype=_Unspecified.unspecified, type=_Unspecified.unspecified):
|
348 |
+
if dtype is _Unspecified.unspecified:
|
349 |
+
dtype = self.dtype
|
350 |
+
if type is not _Unspecified.unspecified:
|
351 |
+
raise NotImplementedError(f"view(..., type={type} is not implemented.")
|
352 |
+
torch_dtype = _dtypes.dtype(dtype).torch_dtype
|
353 |
+
tview = self.tensor.view(torch_dtype)
|
354 |
+
return ndarray(tview)
|
355 |
+
|
356 |
+
@normalizer
|
357 |
+
def fill(self, value: ArrayLike):
|
358 |
+
# Both Pytorch and NumPy accept 0D arrays/tensors and scalars, and
|
359 |
+
# error out on D > 0 arrays
|
360 |
+
self.tensor.fill_(value)
|
361 |
+
|
362 |
+
def tolist(self):
|
363 |
+
return self.tensor.tolist()
|
364 |
+
|
365 |
+
def __iter__(self):
|
366 |
+
return (ndarray(x) for x in self.tensor.__iter__())
|
367 |
+
|
368 |
+
def __str__(self):
|
369 |
+
return (
|
370 |
+
str(self.tensor)
|
371 |
+
.replace("tensor", "torch.ndarray")
|
372 |
+
.replace("dtype=torch.", "dtype=")
|
373 |
+
)
|
374 |
+
|
375 |
+
__repr__ = create_method(__str__)
|
376 |
+
|
377 |
+
def __eq__(self, other):
|
378 |
+
try:
|
379 |
+
return _ufuncs.equal(self, other)
|
380 |
+
except (RuntimeError, TypeError):
|
381 |
+
# Failed to convert other to array: definitely not equal.
|
382 |
+
falsy = torch.full(self.shape, fill_value=False, dtype=bool)
|
383 |
+
return asarray(falsy)
|
384 |
+
|
385 |
+
def __ne__(self, other):
|
386 |
+
return ~(self == other)
|
387 |
+
|
388 |
+
def __index__(self):
|
389 |
+
try:
|
390 |
+
return operator.index(self.tensor.item())
|
391 |
+
except Exception as exc:
|
392 |
+
raise TypeError(
|
393 |
+
"only integer scalar arrays can be converted to a scalar index"
|
394 |
+
) from exc
|
395 |
+
|
396 |
+
def __bool__(self):
|
397 |
+
return bool(self.tensor)
|
398 |
+
|
399 |
+
def __int__(self):
|
400 |
+
return int(self.tensor)
|
401 |
+
|
402 |
+
def __float__(self):
|
403 |
+
return float(self.tensor)
|
404 |
+
|
405 |
+
def __complex__(self):
|
406 |
+
return complex(self.tensor)
|
407 |
+
|
408 |
+
def is_integer(self):
|
409 |
+
try:
|
410 |
+
v = self.tensor.item()
|
411 |
+
result = int(v) == v
|
412 |
+
except Exception:
|
413 |
+
result = False
|
414 |
+
return result
|
415 |
+
|
416 |
+
def __len__(self):
|
417 |
+
return self.tensor.shape[0]
|
418 |
+
|
419 |
+
def __contains__(self, x):
|
420 |
+
return self.tensor.__contains__(x)
|
421 |
+
|
422 |
+
def transpose(self, *axes):
|
423 |
+
# np.transpose(arr, axis=None) but arr.transpose(*axes)
|
424 |
+
return _funcs.transpose(self, axes)
|
425 |
+
|
426 |
+
def reshape(self, *shape, order="C"):
|
427 |
+
# arr.reshape(shape) and arr.reshape(*shape)
|
428 |
+
return _funcs.reshape(self, shape, order=order)
|
429 |
+
|
430 |
+
def sort(self, axis=-1, kind=None, order=None):
|
431 |
+
# ndarray.sort works in-place
|
432 |
+
_funcs.copyto(self, _funcs.sort(self, axis, kind, order))
|
433 |
+
|
434 |
+
def item(self, *args):
|
435 |
+
# Mimic NumPy's implementation with three special cases (no arguments,
|
436 |
+
# a flat index and a multi-index):
|
437 |
+
# https://github.com/numpy/numpy/blob/main/numpy/core/src/multiarray/methods.c#L702
|
438 |
+
if args == ():
|
439 |
+
return self.tensor.item()
|
440 |
+
elif len(args) == 1:
|
441 |
+
# int argument
|
442 |
+
return self.ravel()[args[0]]
|
443 |
+
else:
|
444 |
+
return self.__getitem__(args)
|
445 |
+
|
446 |
+
def __getitem__(self, index):
|
447 |
+
tensor = self.tensor
|
448 |
+
|
449 |
+
def neg_step(i, s):
|
450 |
+
if not (isinstance(s, slice) and s.step is not None and s.step < 0):
|
451 |
+
return s
|
452 |
+
|
453 |
+
nonlocal tensor
|
454 |
+
tensor = torch.flip(tensor, (i,))
|
455 |
+
|
456 |
+
# Account for the fact that a slice includes the start but not the end
|
457 |
+
assert isinstance(s.start, int) or s.start is None
|
458 |
+
assert isinstance(s.stop, int) or s.stop is None
|
459 |
+
start = s.stop + 1 if s.stop else None
|
460 |
+
stop = s.start + 1 if s.start else None
|
461 |
+
|
462 |
+
return slice(start, stop, -s.step)
|
463 |
+
|
464 |
+
if isinstance(index, Sequence):
|
465 |
+
index = type(index)(neg_step(i, s) for i, s in enumerate(index))
|
466 |
+
else:
|
467 |
+
index = neg_step(0, index)
|
468 |
+
index = _util.ndarrays_to_tensors(index)
|
469 |
+
index = _upcast_int_indices(index)
|
470 |
+
return ndarray(tensor.__getitem__(index))
|
471 |
+
|
472 |
+
def __setitem__(self, index, value):
|
473 |
+
index = _util.ndarrays_to_tensors(index)
|
474 |
+
index = _upcast_int_indices(index)
|
475 |
+
|
476 |
+
if not _dtypes_impl.is_scalar(value):
|
477 |
+
value = normalize_array_like(value)
|
478 |
+
value = _util.cast_if_needed(value, self.tensor.dtype)
|
479 |
+
|
480 |
+
return self.tensor.__setitem__(index, value)
|
481 |
+
|
482 |
+
take = _funcs.take
|
483 |
+
put = _funcs.put
|
484 |
+
|
485 |
+
def __dlpack__(self, *, stream=None):
|
486 |
+
return self.tensor.__dlpack__(stream=stream)
|
487 |
+
|
488 |
+
def __dlpack_device__(self):
|
489 |
+
return self.tensor.__dlpack_device__()
|
490 |
+
|
491 |
+
|
492 |
+
def _tolist(obj):
|
493 |
+
"""Recursively convert tensors into lists."""
|
494 |
+
a1 = []
|
495 |
+
for elem in obj:
|
496 |
+
if isinstance(elem, (list, tuple)):
|
497 |
+
elem = _tolist(elem)
|
498 |
+
if isinstance(elem, ndarray):
|
499 |
+
a1.append(elem.tensor.tolist())
|
500 |
+
else:
|
501 |
+
a1.append(elem)
|
502 |
+
return a1
|
503 |
+
|
504 |
+
|
505 |
+
# This is the ideally the only place which talks to ndarray directly.
|
506 |
+
# The rest goes through asarray (preferred) or array.
|
507 |
+
|
508 |
+
|
509 |
+
def array(obj, dtype=None, *, copy=True, order="K", subok=False, ndmin=0, like=None):
|
510 |
+
if subok is not False:
|
511 |
+
raise NotImplementedError("'subok' parameter is not supported.")
|
512 |
+
if like is not None:
|
513 |
+
raise NotImplementedError("'like' parameter is not supported.")
|
514 |
+
if order != "K":
|
515 |
+
raise NotImplementedError()
|
516 |
+
|
517 |
+
# a happy path
|
518 |
+
if (
|
519 |
+
isinstance(obj, ndarray)
|
520 |
+
and copy is False
|
521 |
+
and dtype is None
|
522 |
+
and ndmin <= obj.ndim
|
523 |
+
):
|
524 |
+
return obj
|
525 |
+
|
526 |
+
if isinstance(obj, (list, tuple)):
|
527 |
+
# FIXME and they have the same dtype, device, etc
|
528 |
+
if obj and all(isinstance(x, torch.Tensor) for x in obj):
|
529 |
+
# list of arrays: *under torch.Dynamo* these are FakeTensors
|
530 |
+
obj = torch.stack(obj)
|
531 |
+
else:
|
532 |
+
# XXX: remove tolist
|
533 |
+
# lists of ndarrays: [1, [2, 3], ndarray(4)] convert to lists of lists
|
534 |
+
obj = _tolist(obj)
|
535 |
+
|
536 |
+
# is obj an ndarray already?
|
537 |
+
if isinstance(obj, ndarray):
|
538 |
+
obj = obj.tensor
|
539 |
+
|
540 |
+
# is a specific dtype requested?
|
541 |
+
torch_dtype = None
|
542 |
+
if dtype is not None:
|
543 |
+
torch_dtype = _dtypes.dtype(dtype).torch_dtype
|
544 |
+
|
545 |
+
tensor = _util._coerce_to_tensor(obj, torch_dtype, copy, ndmin)
|
546 |
+
return ndarray(tensor)
|
547 |
+
|
548 |
+
|
549 |
+
def asarray(a, dtype=None, order="K", *, like=None):
|
550 |
+
return array(a, dtype=dtype, order=order, like=like, copy=False, ndmin=0)
|
551 |
+
|
552 |
+
|
553 |
+
def ascontiguousarray(a, dtype=None, *, like=None):
|
554 |
+
arr = asarray(a, dtype=dtype, like=like)
|
555 |
+
if not arr.tensor.is_contiguous():
|
556 |
+
arr.tensor = arr.tensor.contiguous()
|
557 |
+
return arr
|
558 |
+
|
559 |
+
|
560 |
+
def from_dlpack(x, /):
|
561 |
+
t = torch.from_dlpack(x)
|
562 |
+
return ndarray(t)
|
563 |
+
|
564 |
+
|
565 |
+
def _extract_dtype(entry):
|
566 |
+
try:
|
567 |
+
dty = _dtypes.dtype(entry)
|
568 |
+
except Exception:
|
569 |
+
dty = asarray(entry).dtype
|
570 |
+
return dty
|
571 |
+
|
572 |
+
|
573 |
+
def can_cast(from_, to, casting="safe"):
|
574 |
+
from_ = _extract_dtype(from_)
|
575 |
+
to_ = _extract_dtype(to)
|
576 |
+
|
577 |
+
return _dtypes_impl.can_cast_impl(from_.torch_dtype, to_.torch_dtype, casting)
|
578 |
+
|
579 |
+
|
580 |
+
def result_type(*arrays_and_dtypes):
|
581 |
+
tensors = []
|
582 |
+
for entry in arrays_and_dtypes:
|
583 |
+
try:
|
584 |
+
t = asarray(entry).tensor
|
585 |
+
except (RuntimeError, ValueError, TypeError):
|
586 |
+
dty = _dtypes.dtype(entry)
|
587 |
+
t = torch.empty(1, dtype=dty.torch_dtype)
|
588 |
+
tensors.append(t)
|
589 |
+
|
590 |
+
torch_dtype = _dtypes_impl.result_type_impl(*tensors)
|
591 |
+
return _dtypes.dtype(torch_dtype)
|
venv/lib/python3.10/site-packages/torch/_numpy/_normalizations.py
ADDED
@@ -0,0 +1,258 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
""" "Normalize" arguments: convert array_likes to tensors, dtypes to torch dtypes and so on.
|
4 |
+
"""
|
5 |
+
from __future__ import annotations
|
6 |
+
|
7 |
+
import functools
|
8 |
+
import inspect
|
9 |
+
import operator
|
10 |
+
import typing
|
11 |
+
|
12 |
+
import torch
|
13 |
+
|
14 |
+
from . import _dtypes, _dtypes_impl, _util
|
15 |
+
|
16 |
+
ArrayLike = typing.TypeVar("ArrayLike")
|
17 |
+
Scalar = typing.Union[int, float, complex, bool]
|
18 |
+
ArrayLikeOrScalar = typing.Union[ArrayLike, Scalar]
|
19 |
+
|
20 |
+
DTypeLike = typing.TypeVar("DTypeLike")
|
21 |
+
AxisLike = typing.TypeVar("AxisLike")
|
22 |
+
NDArray = typing.TypeVar("NDArray")
|
23 |
+
CastingModes = typing.TypeVar("CastingModes")
|
24 |
+
KeepDims = typing.TypeVar("KeepDims")
|
25 |
+
|
26 |
+
# OutArray is to annotate the out= array argument.
|
27 |
+
#
|
28 |
+
# This one is special is several respects:
|
29 |
+
# First, It needs to be an NDArray, and we need to preserve the `result is out`
|
30 |
+
# semantics. Therefore, we cannot just extract the Tensor from the out array.
|
31 |
+
# So we never pass the out array to implementer functions and handle it in the
|
32 |
+
# `normalizer` below.
|
33 |
+
# Second, the out= argument can be either keyword or positional argument, and
|
34 |
+
# as a positional arg, it can be anywhere in the signature.
|
35 |
+
# To handle all this, we define a special `OutArray` annotation and dispatch on it.
|
36 |
+
#
|
37 |
+
OutArray = typing.TypeVar("OutArray")
|
38 |
+
|
39 |
+
try:
|
40 |
+
from typing import NotImplementedType
|
41 |
+
except ImportError:
|
42 |
+
NotImplementedType = typing.TypeVar("NotImplementedType")
|
43 |
+
|
44 |
+
|
45 |
+
def normalize_array_like(x, parm=None):
|
46 |
+
from ._ndarray import asarray
|
47 |
+
|
48 |
+
return asarray(x).tensor
|
49 |
+
|
50 |
+
|
51 |
+
def normalize_array_like_or_scalar(x, parm=None):
|
52 |
+
if _dtypes_impl.is_scalar_or_symbolic(x):
|
53 |
+
return x
|
54 |
+
return normalize_array_like(x, parm)
|
55 |
+
|
56 |
+
|
57 |
+
def normalize_optional_array_like_or_scalar(x, parm=None):
|
58 |
+
if x is None:
|
59 |
+
return None
|
60 |
+
return normalize_array_like_or_scalar(x, parm)
|
61 |
+
|
62 |
+
|
63 |
+
def normalize_optional_array_like(x, parm=None):
|
64 |
+
# This explicit normalizer is needed because otherwise normalize_array_like
|
65 |
+
# does not run for a parameter annotated as Optional[ArrayLike]
|
66 |
+
return None if x is None else normalize_array_like(x, parm)
|
67 |
+
|
68 |
+
|
69 |
+
def normalize_seq_array_like(x, parm=None):
|
70 |
+
return tuple(normalize_array_like(value) for value in x)
|
71 |
+
|
72 |
+
|
73 |
+
def normalize_dtype(dtype, parm=None):
|
74 |
+
# cf _decorators.dtype_to_torch
|
75 |
+
torch_dtype = None
|
76 |
+
if dtype is not None:
|
77 |
+
dtype = _dtypes.dtype(dtype)
|
78 |
+
torch_dtype = dtype.torch_dtype
|
79 |
+
return torch_dtype
|
80 |
+
|
81 |
+
|
82 |
+
def normalize_not_implemented(arg, parm):
|
83 |
+
if arg != parm.default:
|
84 |
+
raise NotImplementedError(f"'{parm.name}' parameter is not supported.")
|
85 |
+
|
86 |
+
|
87 |
+
def normalize_axis_like(arg, parm=None):
|
88 |
+
from ._ndarray import ndarray
|
89 |
+
|
90 |
+
if isinstance(arg, ndarray):
|
91 |
+
arg = operator.index(arg)
|
92 |
+
return arg
|
93 |
+
|
94 |
+
|
95 |
+
def normalize_ndarray(arg, parm=None):
|
96 |
+
# check the arg is an ndarray, extract its tensor attribute
|
97 |
+
if arg is None:
|
98 |
+
return arg
|
99 |
+
|
100 |
+
from ._ndarray import ndarray
|
101 |
+
|
102 |
+
if not isinstance(arg, ndarray):
|
103 |
+
raise TypeError(f"'{parm.name}' must be an array")
|
104 |
+
return arg.tensor
|
105 |
+
|
106 |
+
|
107 |
+
def normalize_outarray(arg, parm=None):
|
108 |
+
# almost normalize_ndarray, only return the array, not its tensor
|
109 |
+
if arg is None:
|
110 |
+
return arg
|
111 |
+
from ._ndarray import ndarray
|
112 |
+
|
113 |
+
# Dynamo can pass torch tensors as out arguments,
|
114 |
+
# wrap it in an ndarray before processing
|
115 |
+
if isinstance(arg, torch.Tensor):
|
116 |
+
arg = ndarray(arg)
|
117 |
+
|
118 |
+
if not isinstance(arg, ndarray):
|
119 |
+
raise TypeError(f"'{parm.name}' must be an array")
|
120 |
+
return arg
|
121 |
+
|
122 |
+
|
123 |
+
def normalize_casting(arg, parm=None):
|
124 |
+
if arg not in ["no", "equiv", "safe", "same_kind", "unsafe"]:
|
125 |
+
raise ValueError(
|
126 |
+
f"casting must be one of 'no', 'equiv', 'safe', 'same_kind', or 'unsafe' (got '{arg}')"
|
127 |
+
)
|
128 |
+
return arg
|
129 |
+
|
130 |
+
|
131 |
+
normalizers = {
|
132 |
+
"ArrayLike": normalize_array_like,
|
133 |
+
"ArrayLikeOrScalar": normalize_array_like_or_scalar,
|
134 |
+
"Optional[ArrayLike]": normalize_optional_array_like,
|
135 |
+
"Sequence[ArrayLike]": normalize_seq_array_like,
|
136 |
+
"Optional[ArrayLikeOrScalar]": normalize_optional_array_like_or_scalar,
|
137 |
+
"Optional[NDArray]": normalize_ndarray,
|
138 |
+
"Optional[OutArray]": normalize_outarray,
|
139 |
+
"NDArray": normalize_ndarray,
|
140 |
+
"Optional[DTypeLike]": normalize_dtype,
|
141 |
+
"AxisLike": normalize_axis_like,
|
142 |
+
"NotImplementedType": normalize_not_implemented,
|
143 |
+
"Optional[CastingModes]": normalize_casting,
|
144 |
+
}
|
145 |
+
|
146 |
+
|
147 |
+
def maybe_normalize(arg, parm):
|
148 |
+
"""Normalize arg if a normalizer is registered."""
|
149 |
+
normalizer = normalizers.get(parm.annotation, None)
|
150 |
+
return normalizer(arg, parm) if normalizer else arg
|
151 |
+
|
152 |
+
|
153 |
+
# ### Return value helpers ###
|
154 |
+
|
155 |
+
|
156 |
+
def maybe_copy_to(out, result, promote_scalar_result=False):
|
157 |
+
# NB: here out is either an ndarray or None
|
158 |
+
if out is None:
|
159 |
+
return result
|
160 |
+
elif isinstance(result, torch.Tensor):
|
161 |
+
if result.shape != out.shape:
|
162 |
+
can_fit = result.numel() == 1 and out.ndim == 0
|
163 |
+
if promote_scalar_result and can_fit:
|
164 |
+
result = result.squeeze()
|
165 |
+
else:
|
166 |
+
raise ValueError(
|
167 |
+
f"Bad size of the out array: out.shape = {out.shape}"
|
168 |
+
f" while result.shape = {result.shape}."
|
169 |
+
)
|
170 |
+
out.tensor.copy_(result)
|
171 |
+
return out
|
172 |
+
elif isinstance(result, (tuple, list)):
|
173 |
+
return type(result)(
|
174 |
+
maybe_copy_to(o, r, promote_scalar_result) for o, r in zip(out, result)
|
175 |
+
)
|
176 |
+
else:
|
177 |
+
raise AssertionError() # We should never hit this path
|
178 |
+
|
179 |
+
|
180 |
+
def wrap_tensors(result):
|
181 |
+
from ._ndarray import ndarray
|
182 |
+
|
183 |
+
if isinstance(result, torch.Tensor):
|
184 |
+
return ndarray(result)
|
185 |
+
elif isinstance(result, (tuple, list)):
|
186 |
+
result = type(result)(wrap_tensors(x) for x in result)
|
187 |
+
return result
|
188 |
+
|
189 |
+
|
190 |
+
def array_or_scalar(values, py_type=float, return_scalar=False):
|
191 |
+
if return_scalar:
|
192 |
+
return py_type(values.item())
|
193 |
+
else:
|
194 |
+
from ._ndarray import ndarray
|
195 |
+
|
196 |
+
return ndarray(values)
|
197 |
+
|
198 |
+
|
199 |
+
# ### The main decorator to normalize arguments / postprocess the output ###
|
200 |
+
|
201 |
+
|
202 |
+
def normalizer(_func=None, *, promote_scalar_result=False):
|
203 |
+
def normalizer_inner(func):
|
204 |
+
@functools.wraps(func)
|
205 |
+
def wrapped(*args, **kwds):
|
206 |
+
sig = inspect.signature(func)
|
207 |
+
params = sig.parameters
|
208 |
+
first_param = next(iter(params.values()))
|
209 |
+
|
210 |
+
# NumPy's API does not have positional args before variadic positional args
|
211 |
+
if first_param.kind == inspect.Parameter.VAR_POSITIONAL:
|
212 |
+
args = [maybe_normalize(arg, first_param) for arg in args]
|
213 |
+
else:
|
214 |
+
# NB: extra unknown arguments: pass through, will raise in func(*args) below
|
215 |
+
args = (
|
216 |
+
tuple(
|
217 |
+
maybe_normalize(arg, parm)
|
218 |
+
for arg, parm in zip(args, params.values())
|
219 |
+
)
|
220 |
+
+ args[len(params.values()) :]
|
221 |
+
)
|
222 |
+
|
223 |
+
kwds = {
|
224 |
+
name: maybe_normalize(arg, params[name]) if name in params else arg
|
225 |
+
for name, arg in kwds.items()
|
226 |
+
}
|
227 |
+
|
228 |
+
result = func(*args, **kwds)
|
229 |
+
|
230 |
+
# keepdims
|
231 |
+
bound_args = None
|
232 |
+
if "keepdims" in params and params["keepdims"].annotation == "KeepDims":
|
233 |
+
# keepdims can be in any position so we need sig.bind
|
234 |
+
bound_args = sig.bind(*args, **kwds).arguments
|
235 |
+
if bound_args.get("keepdims", False):
|
236 |
+
# In this case the first arg is the initial tensor and
|
237 |
+
# the second arg is (optionally) the axis
|
238 |
+
tensor = args[0]
|
239 |
+
axis = bound_args.get("axis")
|
240 |
+
result = _util.apply_keepdims(result, axis, tensor.ndim)
|
241 |
+
|
242 |
+
# out
|
243 |
+
if "out" in params:
|
244 |
+
# out can be in any position so we need sig.bind
|
245 |
+
if bound_args is None:
|
246 |
+
bound_args = sig.bind(*args, **kwds).arguments
|
247 |
+
out = bound_args.get("out")
|
248 |
+
result = maybe_copy_to(out, result, promote_scalar_result)
|
249 |
+
result = wrap_tensors(result)
|
250 |
+
|
251 |
+
return result
|
252 |
+
|
253 |
+
return wrapped
|
254 |
+
|
255 |
+
if _func is None:
|
256 |
+
return normalizer_inner
|
257 |
+
else:
|
258 |
+
return normalizer_inner(_func)
|
venv/lib/python3.10/site-packages/torch/_numpy/_reductions_impl.py
ADDED
@@ -0,0 +1,456 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
""" Implementation of reduction operations, to be wrapped into arrays, dtypes etc
|
4 |
+
in the 'public' layer.
|
5 |
+
|
6 |
+
Anything here only deals with torch objects, e.g. "dtype" is a torch.dtype instance etc
|
7 |
+
"""
|
8 |
+
from __future__ import annotations
|
9 |
+
|
10 |
+
import functools
|
11 |
+
from typing import Optional
|
12 |
+
|
13 |
+
import torch
|
14 |
+
|
15 |
+
from . import _dtypes_impl, _util
|
16 |
+
from ._normalizations import (
|
17 |
+
ArrayLike,
|
18 |
+
AxisLike,
|
19 |
+
DTypeLike,
|
20 |
+
KeepDims,
|
21 |
+
NotImplementedType,
|
22 |
+
OutArray,
|
23 |
+
)
|
24 |
+
|
25 |
+
|
26 |
+
def _deco_axis_expand(func):
|
27 |
+
"""
|
28 |
+
Generically handle axis arguments in reductions.
|
29 |
+
axis is *always* the 2nd arg in the function so no need to have a look at its signature
|
30 |
+
"""
|
31 |
+
|
32 |
+
@functools.wraps(func)
|
33 |
+
def wrapped(a, axis=None, *args, **kwds):
|
34 |
+
if axis is not None:
|
35 |
+
axis = _util.normalize_axis_tuple(axis, a.ndim)
|
36 |
+
|
37 |
+
if axis == ():
|
38 |
+
# So we insert a length-one axis and run the reduction along it.
|
39 |
+
# We cannot return a.clone() as this would sidestep the checks inside the function
|
40 |
+
newshape = _util.expand_shape(a.shape, axis=0)
|
41 |
+
a = a.reshape(newshape)
|
42 |
+
axis = (0,)
|
43 |
+
|
44 |
+
return func(a, axis, *args, **kwds)
|
45 |
+
|
46 |
+
return wrapped
|
47 |
+
|
48 |
+
|
49 |
+
def _atleast_float(dtype, other_dtype):
|
50 |
+
"""Return a dtype that is real or complex floating-point.
|
51 |
+
|
52 |
+
For inputs that are boolean or integer dtypes, this returns the default
|
53 |
+
float dtype; inputs that are complex get converted to the default complex
|
54 |
+
dtype; real floating-point dtypes (`float*`) get passed through unchanged
|
55 |
+
"""
|
56 |
+
if dtype is None:
|
57 |
+
dtype = other_dtype
|
58 |
+
if not (dtype.is_floating_point or dtype.is_complex):
|
59 |
+
return _dtypes_impl.default_dtypes().float_dtype
|
60 |
+
return dtype
|
61 |
+
|
62 |
+
|
63 |
+
@_deco_axis_expand
|
64 |
+
def count_nonzero(a: ArrayLike, axis: AxisLike = None, *, keepdims: KeepDims = False):
|
65 |
+
return a.count_nonzero(axis)
|
66 |
+
|
67 |
+
|
68 |
+
@_deco_axis_expand
|
69 |
+
def argmax(
|
70 |
+
a: ArrayLike,
|
71 |
+
axis: AxisLike = None,
|
72 |
+
out: Optional[OutArray] = None,
|
73 |
+
*,
|
74 |
+
keepdims: KeepDims = False,
|
75 |
+
):
|
76 |
+
if a.is_complex():
|
77 |
+
raise NotImplementedError(f"argmax with dtype={a.dtype}.")
|
78 |
+
|
79 |
+
axis = _util.allow_only_single_axis(axis)
|
80 |
+
|
81 |
+
if a.dtype == torch.bool:
|
82 |
+
# RuntimeError: "argmax_cpu" not implemented for 'Bool'
|
83 |
+
a = a.to(torch.uint8)
|
84 |
+
|
85 |
+
return torch.argmax(a, axis)
|
86 |
+
|
87 |
+
|
88 |
+
@_deco_axis_expand
|
89 |
+
def argmin(
|
90 |
+
a: ArrayLike,
|
91 |
+
axis: AxisLike = None,
|
92 |
+
out: Optional[OutArray] = None,
|
93 |
+
*,
|
94 |
+
keepdims: KeepDims = False,
|
95 |
+
):
|
96 |
+
if a.is_complex():
|
97 |
+
raise NotImplementedError(f"argmin with dtype={a.dtype}.")
|
98 |
+
|
99 |
+
axis = _util.allow_only_single_axis(axis)
|
100 |
+
|
101 |
+
if a.dtype == torch.bool:
|
102 |
+
# RuntimeError: "argmin_cpu" not implemented for 'Bool'
|
103 |
+
a = a.to(torch.uint8)
|
104 |
+
|
105 |
+
return torch.argmin(a, axis)
|
106 |
+
|
107 |
+
|
108 |
+
@_deco_axis_expand
|
109 |
+
def any(
|
110 |
+
a: ArrayLike,
|
111 |
+
axis: AxisLike = None,
|
112 |
+
out: Optional[OutArray] = None,
|
113 |
+
keepdims: KeepDims = False,
|
114 |
+
*,
|
115 |
+
where: NotImplementedType = None,
|
116 |
+
):
|
117 |
+
axis = _util.allow_only_single_axis(axis)
|
118 |
+
axis_kw = {} if axis is None else {"dim": axis}
|
119 |
+
return torch.any(a, **axis_kw)
|
120 |
+
|
121 |
+
|
122 |
+
@_deco_axis_expand
|
123 |
+
def all(
|
124 |
+
a: ArrayLike,
|
125 |
+
axis: AxisLike = None,
|
126 |
+
out: Optional[OutArray] = None,
|
127 |
+
keepdims: KeepDims = False,
|
128 |
+
*,
|
129 |
+
where: NotImplementedType = None,
|
130 |
+
):
|
131 |
+
axis = _util.allow_only_single_axis(axis)
|
132 |
+
axis_kw = {} if axis is None else {"dim": axis}
|
133 |
+
return torch.all(a, **axis_kw)
|
134 |
+
|
135 |
+
|
136 |
+
@_deco_axis_expand
|
137 |
+
def amax(
|
138 |
+
a: ArrayLike,
|
139 |
+
axis: AxisLike = None,
|
140 |
+
out: Optional[OutArray] = None,
|
141 |
+
keepdims: KeepDims = False,
|
142 |
+
initial: NotImplementedType = None,
|
143 |
+
where: NotImplementedType = None,
|
144 |
+
):
|
145 |
+
if a.is_complex():
|
146 |
+
raise NotImplementedError(f"amax with dtype={a.dtype}")
|
147 |
+
|
148 |
+
return a.amax(axis)
|
149 |
+
|
150 |
+
|
151 |
+
max = amax
|
152 |
+
|
153 |
+
|
154 |
+
@_deco_axis_expand
|
155 |
+
def amin(
|
156 |
+
a: ArrayLike,
|
157 |
+
axis: AxisLike = None,
|
158 |
+
out: Optional[OutArray] = None,
|
159 |
+
keepdims: KeepDims = False,
|
160 |
+
initial: NotImplementedType = None,
|
161 |
+
where: NotImplementedType = None,
|
162 |
+
):
|
163 |
+
if a.is_complex():
|
164 |
+
raise NotImplementedError(f"amin with dtype={a.dtype}")
|
165 |
+
|
166 |
+
return a.amin(axis)
|
167 |
+
|
168 |
+
|
169 |
+
min = amin
|
170 |
+
|
171 |
+
|
172 |
+
@_deco_axis_expand
|
173 |
+
def ptp(
|
174 |
+
a: ArrayLike,
|
175 |
+
axis: AxisLike = None,
|
176 |
+
out: Optional[OutArray] = None,
|
177 |
+
keepdims: KeepDims = False,
|
178 |
+
):
|
179 |
+
return a.amax(axis) - a.amin(axis)
|
180 |
+
|
181 |
+
|
182 |
+
@_deco_axis_expand
|
183 |
+
def sum(
|
184 |
+
a: ArrayLike,
|
185 |
+
axis: AxisLike = None,
|
186 |
+
dtype: Optional[DTypeLike] = None,
|
187 |
+
out: Optional[OutArray] = None,
|
188 |
+
keepdims: KeepDims = False,
|
189 |
+
initial: NotImplementedType = None,
|
190 |
+
where: NotImplementedType = None,
|
191 |
+
):
|
192 |
+
assert dtype is None or isinstance(dtype, torch.dtype)
|
193 |
+
|
194 |
+
if dtype == torch.bool:
|
195 |
+
dtype = _dtypes_impl.default_dtypes().int_dtype
|
196 |
+
|
197 |
+
axis_kw = {} if axis is None else {"dim": axis}
|
198 |
+
return a.sum(dtype=dtype, **axis_kw)
|
199 |
+
|
200 |
+
|
201 |
+
@_deco_axis_expand
|
202 |
+
def prod(
|
203 |
+
a: ArrayLike,
|
204 |
+
axis: AxisLike = None,
|
205 |
+
dtype: Optional[DTypeLike] = None,
|
206 |
+
out: Optional[OutArray] = None,
|
207 |
+
keepdims: KeepDims = False,
|
208 |
+
initial: NotImplementedType = None,
|
209 |
+
where: NotImplementedType = None,
|
210 |
+
):
|
211 |
+
axis = _util.allow_only_single_axis(axis)
|
212 |
+
|
213 |
+
if dtype == torch.bool:
|
214 |
+
dtype = _dtypes_impl.default_dtypes().int_dtype
|
215 |
+
|
216 |
+
axis_kw = {} if axis is None else {"dim": axis}
|
217 |
+
return a.prod(dtype=dtype, **axis_kw)
|
218 |
+
|
219 |
+
|
220 |
+
product = prod
|
221 |
+
|
222 |
+
|
223 |
+
@_deco_axis_expand
|
224 |
+
def mean(
|
225 |
+
a: ArrayLike,
|
226 |
+
axis: AxisLike = None,
|
227 |
+
dtype: Optional[DTypeLike] = None,
|
228 |
+
out: Optional[OutArray] = None,
|
229 |
+
keepdims: KeepDims = False,
|
230 |
+
*,
|
231 |
+
where: NotImplementedType = None,
|
232 |
+
):
|
233 |
+
dtype = _atleast_float(dtype, a.dtype)
|
234 |
+
|
235 |
+
axis_kw = {} if axis is None else {"dim": axis}
|
236 |
+
result = a.mean(dtype=dtype, **axis_kw)
|
237 |
+
|
238 |
+
return result
|
239 |
+
|
240 |
+
|
241 |
+
@_deco_axis_expand
|
242 |
+
def std(
|
243 |
+
a: ArrayLike,
|
244 |
+
axis: AxisLike = None,
|
245 |
+
dtype: Optional[DTypeLike] = None,
|
246 |
+
out: Optional[OutArray] = None,
|
247 |
+
ddof=0,
|
248 |
+
keepdims: KeepDims = False,
|
249 |
+
*,
|
250 |
+
where: NotImplementedType = None,
|
251 |
+
):
|
252 |
+
in_dtype = dtype
|
253 |
+
dtype = _atleast_float(dtype, a.dtype)
|
254 |
+
tensor = _util.cast_if_needed(a, dtype)
|
255 |
+
result = tensor.std(dim=axis, correction=ddof)
|
256 |
+
return _util.cast_if_needed(result, in_dtype)
|
257 |
+
|
258 |
+
|
259 |
+
@_deco_axis_expand
|
260 |
+
def var(
|
261 |
+
a: ArrayLike,
|
262 |
+
axis: AxisLike = None,
|
263 |
+
dtype: Optional[DTypeLike] = None,
|
264 |
+
out: Optional[OutArray] = None,
|
265 |
+
ddof=0,
|
266 |
+
keepdims: KeepDims = False,
|
267 |
+
*,
|
268 |
+
where: NotImplementedType = None,
|
269 |
+
):
|
270 |
+
in_dtype = dtype
|
271 |
+
dtype = _atleast_float(dtype, a.dtype)
|
272 |
+
tensor = _util.cast_if_needed(a, dtype)
|
273 |
+
result = tensor.var(dim=axis, correction=ddof)
|
274 |
+
return _util.cast_if_needed(result, in_dtype)
|
275 |
+
|
276 |
+
|
277 |
+
# cumsum / cumprod are almost reductions:
|
278 |
+
# 1. no keepdims
|
279 |
+
# 2. axis=None flattens
|
280 |
+
|
281 |
+
|
282 |
+
def cumsum(
|
283 |
+
a: ArrayLike,
|
284 |
+
axis: AxisLike = None,
|
285 |
+
dtype: Optional[DTypeLike] = None,
|
286 |
+
out: Optional[OutArray] = None,
|
287 |
+
):
|
288 |
+
if dtype == torch.bool:
|
289 |
+
dtype = _dtypes_impl.default_dtypes().int_dtype
|
290 |
+
if dtype is None:
|
291 |
+
dtype = a.dtype
|
292 |
+
|
293 |
+
(a,), axis = _util.axis_none_flatten(a, axis=axis)
|
294 |
+
axis = _util.normalize_axis_index(axis, a.ndim)
|
295 |
+
|
296 |
+
return a.cumsum(axis=axis, dtype=dtype)
|
297 |
+
|
298 |
+
|
299 |
+
def cumprod(
|
300 |
+
a: ArrayLike,
|
301 |
+
axis: AxisLike = None,
|
302 |
+
dtype: Optional[DTypeLike] = None,
|
303 |
+
out: Optional[OutArray] = None,
|
304 |
+
):
|
305 |
+
if dtype == torch.bool:
|
306 |
+
dtype = _dtypes_impl.default_dtypes().int_dtype
|
307 |
+
if dtype is None:
|
308 |
+
dtype = a.dtype
|
309 |
+
|
310 |
+
(a,), axis = _util.axis_none_flatten(a, axis=axis)
|
311 |
+
axis = _util.normalize_axis_index(axis, a.ndim)
|
312 |
+
|
313 |
+
return a.cumprod(axis=axis, dtype=dtype)
|
314 |
+
|
315 |
+
|
316 |
+
cumproduct = cumprod
|
317 |
+
|
318 |
+
|
319 |
+
def average(
|
320 |
+
a: ArrayLike,
|
321 |
+
axis=None,
|
322 |
+
weights: ArrayLike = None,
|
323 |
+
returned=False,
|
324 |
+
*,
|
325 |
+
keepdims=False,
|
326 |
+
):
|
327 |
+
if weights is None:
|
328 |
+
result = mean(a, axis=axis)
|
329 |
+
wsum = torch.as_tensor(a.numel() / result.numel(), dtype=result.dtype)
|
330 |
+
else:
|
331 |
+
if not a.dtype.is_floating_point:
|
332 |
+
a = a.double()
|
333 |
+
|
334 |
+
# axis & weights
|
335 |
+
if a.shape != weights.shape:
|
336 |
+
if axis is None:
|
337 |
+
raise TypeError(
|
338 |
+
"Axis must be specified when shapes of a and weights differ."
|
339 |
+
)
|
340 |
+
if weights.ndim != 1:
|
341 |
+
raise TypeError(
|
342 |
+
"1D weights expected when shapes of a and weights differ."
|
343 |
+
)
|
344 |
+
if weights.shape[0] != a.shape[axis]:
|
345 |
+
raise ValueError(
|
346 |
+
"Length of weights not compatible with specified axis."
|
347 |
+
)
|
348 |
+
|
349 |
+
# setup weight to broadcast along axis
|
350 |
+
weights = torch.broadcast_to(weights, (a.ndim - 1) * (1,) + weights.shape)
|
351 |
+
weights = weights.swapaxes(-1, axis)
|
352 |
+
|
353 |
+
# do the work
|
354 |
+
result_dtype = _dtypes_impl.result_type_impl(a, weights)
|
355 |
+
numerator = sum(a * weights, axis, dtype=result_dtype)
|
356 |
+
wsum = sum(weights, axis, dtype=result_dtype)
|
357 |
+
result = numerator / wsum
|
358 |
+
|
359 |
+
# We process keepdims manually because the decorator does not deal with variadic returns
|
360 |
+
if keepdims:
|
361 |
+
result = _util.apply_keepdims(result, axis, a.ndim)
|
362 |
+
|
363 |
+
if returned:
|
364 |
+
if wsum.shape != result.shape:
|
365 |
+
wsum = torch.broadcast_to(wsum, result.shape).clone()
|
366 |
+
return result, wsum
|
367 |
+
else:
|
368 |
+
return result
|
369 |
+
|
370 |
+
|
371 |
+
# Not using deco_axis_expand as it assumes that axis is the second arg
|
372 |
+
def quantile(
|
373 |
+
a: ArrayLike,
|
374 |
+
q: ArrayLike,
|
375 |
+
axis: AxisLike = None,
|
376 |
+
out: Optional[OutArray] = None,
|
377 |
+
overwrite_input=False,
|
378 |
+
method="linear",
|
379 |
+
keepdims: KeepDims = False,
|
380 |
+
*,
|
381 |
+
interpolation: NotImplementedType = None,
|
382 |
+
):
|
383 |
+
if overwrite_input:
|
384 |
+
# raise NotImplementedError("overwrite_input in quantile not implemented.")
|
385 |
+
# NumPy documents that `overwrite_input` MAY modify inputs:
|
386 |
+
# https://numpy.org/doc/stable/reference/generated/numpy.percentile.html#numpy-percentile
|
387 |
+
# Here we choose to work out-of-place because why not.
|
388 |
+
pass
|
389 |
+
|
390 |
+
if not a.dtype.is_floating_point:
|
391 |
+
dtype = _dtypes_impl.default_dtypes().float_dtype
|
392 |
+
a = a.to(dtype)
|
393 |
+
|
394 |
+
# edge case: torch.quantile only supports float32 and float64
|
395 |
+
if a.dtype == torch.float16:
|
396 |
+
a = a.to(torch.float32)
|
397 |
+
|
398 |
+
if axis is None:
|
399 |
+
a = a.flatten()
|
400 |
+
q = q.flatten()
|
401 |
+
axis = (0,)
|
402 |
+
else:
|
403 |
+
axis = _util.normalize_axis_tuple(axis, a.ndim)
|
404 |
+
|
405 |
+
# FIXME(Mario) Doesn't np.quantile accept a tuple?
|
406 |
+
# torch.quantile does accept a number. If we don't want to implement the tuple behaviour
|
407 |
+
# (it's deffo low prio) change `normalize_axis_tuple` into a normalize_axis index above.
|
408 |
+
axis = _util.allow_only_single_axis(axis)
|
409 |
+
|
410 |
+
q = _util.cast_if_needed(q, a.dtype)
|
411 |
+
|
412 |
+
return torch.quantile(a, q, axis=axis, interpolation=method)
|
413 |
+
|
414 |
+
|
415 |
+
def percentile(
|
416 |
+
a: ArrayLike,
|
417 |
+
q: ArrayLike,
|
418 |
+
axis: AxisLike = None,
|
419 |
+
out: Optional[OutArray] = None,
|
420 |
+
overwrite_input=False,
|
421 |
+
method="linear",
|
422 |
+
keepdims: KeepDims = False,
|
423 |
+
*,
|
424 |
+
interpolation: NotImplementedType = None,
|
425 |
+
):
|
426 |
+
# np.percentile(float_tensor, 30) : q.dtype is int64 => q / 100.0 is float32
|
427 |
+
if _dtypes_impl.python_type_for_torch(q.dtype) == int:
|
428 |
+
q = q.to(_dtypes_impl.default_dtypes().float_dtype)
|
429 |
+
qq = q / 100.0
|
430 |
+
|
431 |
+
return quantile(
|
432 |
+
a,
|
433 |
+
qq,
|
434 |
+
axis=axis,
|
435 |
+
overwrite_input=overwrite_input,
|
436 |
+
method=method,
|
437 |
+
keepdims=keepdims,
|
438 |
+
interpolation=interpolation,
|
439 |
+
)
|
440 |
+
|
441 |
+
|
442 |
+
def median(
|
443 |
+
a: ArrayLike,
|
444 |
+
axis=None,
|
445 |
+
out: Optional[OutArray] = None,
|
446 |
+
overwrite_input=False,
|
447 |
+
keepdims: KeepDims = False,
|
448 |
+
):
|
449 |
+
return quantile(
|
450 |
+
a,
|
451 |
+
torch.as_tensor(0.5),
|
452 |
+
axis=axis,
|
453 |
+
overwrite_input=overwrite_input,
|
454 |
+
out=out,
|
455 |
+
keepdims=keepdims,
|
456 |
+
)
|
venv/lib/python3.10/site-packages/torch/_numpy/_ufuncs.py
ADDED
@@ -0,0 +1,334 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
|
5 |
+
from typing import Optional
|
6 |
+
|
7 |
+
import torch
|
8 |
+
|
9 |
+
from . import _binary_ufuncs_impl, _dtypes_impl, _unary_ufuncs_impl, _util
|
10 |
+
from ._normalizations import (
|
11 |
+
ArrayLike,
|
12 |
+
ArrayLikeOrScalar,
|
13 |
+
CastingModes,
|
14 |
+
DTypeLike,
|
15 |
+
normalizer,
|
16 |
+
NotImplementedType,
|
17 |
+
OutArray,
|
18 |
+
)
|
19 |
+
|
20 |
+
|
21 |
+
def _ufunc_postprocess(result, out, casting):
|
22 |
+
if out is not None:
|
23 |
+
result = _util.typecast_tensor(result, out.dtype.torch_dtype, casting)
|
24 |
+
result = torch.broadcast_to(result, out.shape)
|
25 |
+
return result
|
26 |
+
|
27 |
+
|
28 |
+
# ############# Binary ufuncs ######################
|
29 |
+
|
30 |
+
_binary = [
|
31 |
+
name
|
32 |
+
for name in dir(_binary_ufuncs_impl)
|
33 |
+
if not name.startswith("_") and name not in ["torch", "matmul", "divmod", "ldexp"]
|
34 |
+
]
|
35 |
+
|
36 |
+
|
37 |
+
NEP50_FUNCS = (
|
38 |
+
"add",
|
39 |
+
"subtract",
|
40 |
+
"multiply",
|
41 |
+
"floor_divide",
|
42 |
+
"true_divide",
|
43 |
+
"divide",
|
44 |
+
"remainder",
|
45 |
+
"bitwise_and",
|
46 |
+
"bitwise_or",
|
47 |
+
"bitwise_xor",
|
48 |
+
"bitwise_left_shift",
|
49 |
+
"bitwise_right_shift",
|
50 |
+
"hypot",
|
51 |
+
"arctan2",
|
52 |
+
"logaddexp",
|
53 |
+
"logaddexp2",
|
54 |
+
"heaviside",
|
55 |
+
"copysign",
|
56 |
+
"fmax",
|
57 |
+
"minimum",
|
58 |
+
"fmin",
|
59 |
+
"maximum",
|
60 |
+
"fmod",
|
61 |
+
"gcd",
|
62 |
+
"lcm",
|
63 |
+
"pow",
|
64 |
+
)
|
65 |
+
|
66 |
+
|
67 |
+
def deco_binary_ufunc(torch_func):
|
68 |
+
"""Common infra for binary ufuncs.
|
69 |
+
|
70 |
+
Normalize arguments, sort out type casting, broadcasting and delegate to
|
71 |
+
the pytorch functions for the actual work.
|
72 |
+
"""
|
73 |
+
|
74 |
+
@normalizer
|
75 |
+
def wrapped(
|
76 |
+
x1: ArrayLikeOrScalar,
|
77 |
+
x2: ArrayLikeOrScalar,
|
78 |
+
/,
|
79 |
+
out: Optional[OutArray] = None,
|
80 |
+
*,
|
81 |
+
where: NotImplementedType = True,
|
82 |
+
casting: Optional[CastingModes] = "same_kind",
|
83 |
+
order: NotImplementedType = "K",
|
84 |
+
dtype: Optional[DTypeLike] = None,
|
85 |
+
subok: NotImplementedType = False,
|
86 |
+
signature: NotImplementedType = None,
|
87 |
+
extobj: NotImplementedType = None,
|
88 |
+
):
|
89 |
+
if dtype is not None:
|
90 |
+
|
91 |
+
def cast(x, dtype):
|
92 |
+
if isinstance(x, torch.Tensor):
|
93 |
+
return _util.typecast_tensor(x, dtype, casting)
|
94 |
+
else:
|
95 |
+
return torch.as_tensor(x, dtype=dtype)
|
96 |
+
|
97 |
+
x1 = cast(x1, dtype)
|
98 |
+
x2 = cast(x2, dtype)
|
99 |
+
elif isinstance(x1, torch.Tensor) and isinstance(x2, torch.Tensor):
|
100 |
+
dtype = _dtypes_impl.result_type_impl(x1, x2)
|
101 |
+
x1, x2 = _util.typecast_tensors((x1, x2), dtype, casting)
|
102 |
+
else:
|
103 |
+
x1, x2 = _dtypes_impl.nep50_to_tensors(
|
104 |
+
x1, x2, torch_func.__name__ in NEP50_FUNCS, torch_func.__name__
|
105 |
+
)
|
106 |
+
|
107 |
+
result = torch_func(x1, x2)
|
108 |
+
|
109 |
+
return _ufunc_postprocess(result, out, casting)
|
110 |
+
|
111 |
+
wrapped.__qualname__ = torch_func.__name__
|
112 |
+
wrapped.__name__ = torch_func.__name__
|
113 |
+
|
114 |
+
return wrapped
|
115 |
+
|
116 |
+
|
117 |
+
# matmul's signature is _slightly_ different from other ufuncs:
|
118 |
+
# - no where=...
|
119 |
+
# - additional axis=..., axes=...
|
120 |
+
# - no NEP50 scalars in or out
|
121 |
+
@normalizer
|
122 |
+
def matmul(
|
123 |
+
x1: ArrayLike,
|
124 |
+
x2: ArrayLike,
|
125 |
+
/,
|
126 |
+
out: Optional[OutArray] = None,
|
127 |
+
*,
|
128 |
+
casting: Optional[CastingModes] = "same_kind",
|
129 |
+
order: NotImplementedType = "K",
|
130 |
+
dtype: Optional[DTypeLike] = None,
|
131 |
+
subok: NotImplementedType = False,
|
132 |
+
signature: NotImplementedType = None,
|
133 |
+
extobj: NotImplementedType = None,
|
134 |
+
axes: NotImplementedType = None,
|
135 |
+
axis: NotImplementedType = None,
|
136 |
+
):
|
137 |
+
if dtype is None:
|
138 |
+
dtype = _dtypes_impl.result_type_impl(x1, x2)
|
139 |
+
x1, x2 = _util.typecast_tensors((x1, x2), dtype, casting)
|
140 |
+
|
141 |
+
result = _binary_ufuncs_impl.matmul(x1, x2)
|
142 |
+
|
143 |
+
result = _ufunc_postprocess(result, out, casting)
|
144 |
+
return result
|
145 |
+
|
146 |
+
|
147 |
+
# ldexp casting is special : the dtype of the result == dtype of the 1st arg
|
148 |
+
@normalizer
|
149 |
+
def ldexp(
|
150 |
+
x1: ArrayLikeOrScalar,
|
151 |
+
x2: ArrayLikeOrScalar,
|
152 |
+
/,
|
153 |
+
out: Optional[OutArray] = None,
|
154 |
+
*,
|
155 |
+
where: NotImplementedType = True,
|
156 |
+
casting: Optional[CastingModes] = "same_kind",
|
157 |
+
order: NotImplementedType = "K",
|
158 |
+
dtype: Optional[DTypeLike] = None,
|
159 |
+
subok: NotImplementedType = False,
|
160 |
+
signature: NotImplementedType = None,
|
161 |
+
extobj: NotImplementedType = None,
|
162 |
+
):
|
163 |
+
if dtype is not None:
|
164 |
+
if isinstance(x1, torch.Tensor):
|
165 |
+
x1 = _util.typecast_tensor(x1, dtype, casting)
|
166 |
+
else:
|
167 |
+
x1 = torch.as_tensor(x1, dtype=dtype)
|
168 |
+
else:
|
169 |
+
if not isinstance(x1, torch.Tensor):
|
170 |
+
x1 = torch.as_tensor(x1)
|
171 |
+
x1 = _util.cast_int_to_float(x1)
|
172 |
+
|
173 |
+
x2 = torch.as_tensor(x2)
|
174 |
+
# the second arg must be integer
|
175 |
+
if _dtypes_impl._category(x2.dtype) != 1:
|
176 |
+
raise ValueError("ldexp 2nd arg must be integer")
|
177 |
+
|
178 |
+
result = _binary_ufuncs_impl.ldexp(x1, x2)
|
179 |
+
|
180 |
+
if x1.dtype == torch.float16:
|
181 |
+
# torch.ldexp(f16, int) -> f32, undo it
|
182 |
+
result = result.to(torch.float16)
|
183 |
+
|
184 |
+
return _ufunc_postprocess(result, out, casting)
|
185 |
+
|
186 |
+
|
187 |
+
# nin=2, nout=2
|
188 |
+
@normalizer
|
189 |
+
def divmod(
|
190 |
+
x1: ArrayLike,
|
191 |
+
x2: ArrayLike,
|
192 |
+
out1: Optional[OutArray] = None,
|
193 |
+
out2: Optional[OutArray] = None,
|
194 |
+
/,
|
195 |
+
out: tuple[Optional[OutArray], Optional[OutArray]] = (None, None),
|
196 |
+
*,
|
197 |
+
where: NotImplementedType = True,
|
198 |
+
casting: Optional[CastingModes] = "same_kind",
|
199 |
+
order: NotImplementedType = "K",
|
200 |
+
dtype: Optional[DTypeLike] = None,
|
201 |
+
subok: NotImplementedType = False,
|
202 |
+
signature: NotImplementedType = None,
|
203 |
+
extobj: NotImplementedType = None,
|
204 |
+
):
|
205 |
+
# make sure we either have no out arrays at all, or there is either
|
206 |
+
# out1, out2, or out=tuple, but not both
|
207 |
+
num_outs = sum(x is not None for x in [out1, out2])
|
208 |
+
if num_outs == 1:
|
209 |
+
raise ValueError("both out1 and out2 need to be provided")
|
210 |
+
elif num_outs == 2:
|
211 |
+
o1, o2 = out
|
212 |
+
if o1 is not None or o2 is not None:
|
213 |
+
raise TypeError(
|
214 |
+
"cannot specify 'out' as both a positional and keyword argument"
|
215 |
+
)
|
216 |
+
else:
|
217 |
+
out1, out2 = out
|
218 |
+
|
219 |
+
if dtype is None:
|
220 |
+
dtype = _dtypes_impl.result_type_impl(x1, x2)
|
221 |
+
x1, x2 = _util.typecast_tensors((x1, x2), dtype, casting)
|
222 |
+
|
223 |
+
quot, rem = _binary_ufuncs_impl.divmod(x1, x2)
|
224 |
+
|
225 |
+
quot = _ufunc_postprocess(quot, out1, casting)
|
226 |
+
rem = _ufunc_postprocess(rem, out2, casting)
|
227 |
+
return quot, rem
|
228 |
+
|
229 |
+
|
230 |
+
#
|
231 |
+
# Attach ufuncs to this module, for a further export to the public namespace in __init__.py
|
232 |
+
#
|
233 |
+
for name in _binary:
|
234 |
+
ufunc = getattr(_binary_ufuncs_impl, name)
|
235 |
+
vars()[name] = deco_binary_ufunc(ufunc)
|
236 |
+
|
237 |
+
|
238 |
+
def modf(x, /, *args, **kwds):
|
239 |
+
quot, rem = divmod(x, 1, *args, **kwds)
|
240 |
+
return rem, quot
|
241 |
+
|
242 |
+
|
243 |
+
_binary = _binary + ["divmod", "modf", "matmul", "ldexp"]
|
244 |
+
|
245 |
+
|
246 |
+
# ############# Unary ufuncs ######################
|
247 |
+
|
248 |
+
|
249 |
+
_unary = [
|
250 |
+
name
|
251 |
+
for name in dir(_unary_ufuncs_impl)
|
252 |
+
if not name.startswith("_") and name != "torch"
|
253 |
+
]
|
254 |
+
|
255 |
+
|
256 |
+
# these are ufunc(int) -> float
|
257 |
+
_fp_unary = [
|
258 |
+
"arccos",
|
259 |
+
"arccosh",
|
260 |
+
"arcsin",
|
261 |
+
"arcsinh",
|
262 |
+
"arctan",
|
263 |
+
"arctanh",
|
264 |
+
"cbrt",
|
265 |
+
"cos",
|
266 |
+
"cosh",
|
267 |
+
"deg2rad",
|
268 |
+
"degrees",
|
269 |
+
"exp",
|
270 |
+
"exp2",
|
271 |
+
"expm1",
|
272 |
+
"log",
|
273 |
+
"log10",
|
274 |
+
"log1p",
|
275 |
+
"log2",
|
276 |
+
"rad2deg",
|
277 |
+
"radians",
|
278 |
+
"reciprocal",
|
279 |
+
"sin",
|
280 |
+
"sinh",
|
281 |
+
"sqrt",
|
282 |
+
"square",
|
283 |
+
"tan",
|
284 |
+
"tanh",
|
285 |
+
"trunc",
|
286 |
+
]
|
287 |
+
|
288 |
+
|
289 |
+
def deco_unary_ufunc(torch_func):
|
290 |
+
"""Common infra for unary ufuncs.
|
291 |
+
|
292 |
+
Normalize arguments, sort out type casting, broadcasting and delegate to
|
293 |
+
the pytorch functions for the actual work.
|
294 |
+
"""
|
295 |
+
|
296 |
+
@normalizer
|
297 |
+
def wrapped(
|
298 |
+
x: ArrayLike,
|
299 |
+
/,
|
300 |
+
out: Optional[OutArray] = None,
|
301 |
+
*,
|
302 |
+
where=True,
|
303 |
+
casting: Optional[CastingModes] = "same_kind",
|
304 |
+
order="K",
|
305 |
+
dtype: Optional[DTypeLike] = None,
|
306 |
+
subok: NotImplementedType = False,
|
307 |
+
signature=None,
|
308 |
+
extobj=None,
|
309 |
+
):
|
310 |
+
if dtype is not None:
|
311 |
+
x = _util.typecast_tensor(x, dtype, casting)
|
312 |
+
|
313 |
+
if torch_func.__name__ in _fp_unary:
|
314 |
+
x = _util.cast_int_to_float(x)
|
315 |
+
|
316 |
+
result = torch_func(x)
|
317 |
+
result = _ufunc_postprocess(result, out, casting)
|
318 |
+
return result
|
319 |
+
|
320 |
+
wrapped.__qualname__ = torch_func.__name__
|
321 |
+
wrapped.__name__ = torch_func.__name__
|
322 |
+
|
323 |
+
return wrapped
|
324 |
+
|
325 |
+
|
326 |
+
#
|
327 |
+
# Attach ufuncs to this module, for a further export to the public namespace in __init__.py
|
328 |
+
#
|
329 |
+
for name in _unary:
|
330 |
+
ufunc = getattr(_unary_ufuncs_impl, name)
|
331 |
+
vars()[name] = deco_unary_ufunc(ufunc)
|
332 |
+
|
333 |
+
|
334 |
+
__all__ = _binary + _unary # noqa: PLE0605
|
venv/lib/python3.10/site-packages/torch/_numpy/_unary_ufuncs_impl.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
"""Export torch work functions for unary ufuncs, rename/tweak to match numpy.
|
4 |
+
This listing is further exported to public symbols in the `_numpy/_ufuncs.py` module.
|
5 |
+
"""
|
6 |
+
|
7 |
+
import torch
|
8 |
+
|
9 |
+
from torch import ( # noqa: F401
|
10 |
+
absolute as fabs, # noqa: F401
|
11 |
+
arccos, # noqa: F401
|
12 |
+
arccosh, # noqa: F401
|
13 |
+
arcsin, # noqa: F401
|
14 |
+
arcsinh, # noqa: F401
|
15 |
+
arctan, # noqa: F401
|
16 |
+
arctanh, # noqa: F401
|
17 |
+
bitwise_not, # noqa: F401
|
18 |
+
bitwise_not as invert, # noqa: F401
|
19 |
+
ceil, # noqa: F401
|
20 |
+
conj_physical as conjugate, # noqa: F401
|
21 |
+
cos, # noqa: F401
|
22 |
+
cosh, # noqa: F401
|
23 |
+
deg2rad, # noqa: F401
|
24 |
+
deg2rad as radians, # noqa: F401
|
25 |
+
exp, # noqa: F401
|
26 |
+
exp2, # noqa: F401
|
27 |
+
expm1, # noqa: F401
|
28 |
+
floor, # noqa: F401
|
29 |
+
isfinite, # noqa: F401
|
30 |
+
isinf, # noqa: F401
|
31 |
+
isnan, # noqa: F401
|
32 |
+
log, # noqa: F401
|
33 |
+
log10, # noqa: F401
|
34 |
+
log1p, # noqa: F401
|
35 |
+
log2, # noqa: F401
|
36 |
+
logical_not, # noqa: F401
|
37 |
+
negative, # noqa: F401
|
38 |
+
rad2deg, # noqa: F401
|
39 |
+
rad2deg as degrees, # noqa: F401
|
40 |
+
reciprocal, # noqa: F401
|
41 |
+
round as fix, # noqa: F401
|
42 |
+
round as rint, # noqa: F401
|
43 |
+
sign, # noqa: F401
|
44 |
+
signbit, # noqa: F401
|
45 |
+
sin, # noqa: F401
|
46 |
+
sinh, # noqa: F401
|
47 |
+
sqrt, # noqa: F401
|
48 |
+
square, # noqa: F401
|
49 |
+
tan, # noqa: F401
|
50 |
+
tanh, # noqa: F401
|
51 |
+
trunc, # noqa: F401
|
52 |
+
)
|
53 |
+
|
54 |
+
|
55 |
+
# special cases: torch does not export these names
|
56 |
+
def cbrt(x):
|
57 |
+
return torch.pow(x, 1 / 3)
|
58 |
+
|
59 |
+
|
60 |
+
def positive(x):
|
61 |
+
return +x
|
62 |
+
|
63 |
+
|
64 |
+
def absolute(x):
|
65 |
+
# work around torch.absolute not impl for bools
|
66 |
+
if x.dtype == torch.bool:
|
67 |
+
return x
|
68 |
+
return torch.absolute(x)
|
69 |
+
|
70 |
+
|
71 |
+
# TODO set __name__ and __qualname__
|
72 |
+
abs = absolute
|
73 |
+
conj = conjugate
|
venv/lib/python3.10/site-packages/torch/_numpy/_util.py
ADDED
@@ -0,0 +1,261 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
"""Assorted utilities, which do not need anything other then torch and stdlib.
|
4 |
+
"""
|
5 |
+
|
6 |
+
import operator
|
7 |
+
|
8 |
+
import torch
|
9 |
+
|
10 |
+
from . import _dtypes_impl
|
11 |
+
|
12 |
+
|
13 |
+
# https://github.com/numpy/numpy/blob/v1.23.0/numpy/distutils/misc_util.py#L497-L504
|
14 |
+
def is_sequence(seq):
|
15 |
+
if isinstance(seq, str):
|
16 |
+
return False
|
17 |
+
try:
|
18 |
+
len(seq)
|
19 |
+
except Exception:
|
20 |
+
return False
|
21 |
+
return True
|
22 |
+
|
23 |
+
|
24 |
+
class AxisError(ValueError, IndexError):
|
25 |
+
pass
|
26 |
+
|
27 |
+
|
28 |
+
class UFuncTypeError(TypeError, RuntimeError):
|
29 |
+
pass
|
30 |
+
|
31 |
+
|
32 |
+
def cast_if_needed(tensor, dtype):
|
33 |
+
# NB: no casting if dtype=None
|
34 |
+
if dtype is not None and tensor.dtype != dtype:
|
35 |
+
tensor = tensor.to(dtype)
|
36 |
+
return tensor
|
37 |
+
|
38 |
+
|
39 |
+
def cast_int_to_float(x):
|
40 |
+
# cast integers and bools to the default float dtype
|
41 |
+
if _dtypes_impl._category(x.dtype) < 2:
|
42 |
+
x = x.to(_dtypes_impl.default_dtypes().float_dtype)
|
43 |
+
return x
|
44 |
+
|
45 |
+
|
46 |
+
# a replica of the version in ./numpy/numpy/core/src/multiarray/common.h
|
47 |
+
def normalize_axis_index(ax, ndim, argname=None):
|
48 |
+
if not (-ndim <= ax < ndim):
|
49 |
+
raise AxisError(f"axis {ax} is out of bounds for array of dimension {ndim}")
|
50 |
+
if ax < 0:
|
51 |
+
ax += ndim
|
52 |
+
return ax
|
53 |
+
|
54 |
+
|
55 |
+
# from https://github.com/numpy/numpy/blob/main/numpy/core/numeric.py#L1378
|
56 |
+
def normalize_axis_tuple(axis, ndim, argname=None, allow_duplicate=False):
|
57 |
+
"""
|
58 |
+
Normalizes an axis argument into a tuple of non-negative integer axes.
|
59 |
+
|
60 |
+
This handles shorthands such as ``1`` and converts them to ``(1,)``,
|
61 |
+
as well as performing the handling of negative indices covered by
|
62 |
+
`normalize_axis_index`.
|
63 |
+
|
64 |
+
By default, this forbids axes from being specified multiple times.
|
65 |
+
Used internally by multi-axis-checking logic.
|
66 |
+
|
67 |
+
Parameters
|
68 |
+
----------
|
69 |
+
axis : int, iterable of int
|
70 |
+
The un-normalized index or indices of the axis.
|
71 |
+
ndim : int
|
72 |
+
The number of dimensions of the array that `axis` should be normalized
|
73 |
+
against.
|
74 |
+
argname : str, optional
|
75 |
+
A prefix to put before the error message, typically the name of the
|
76 |
+
argument.
|
77 |
+
allow_duplicate : bool, optional
|
78 |
+
If False, the default, disallow an axis from being specified twice.
|
79 |
+
|
80 |
+
Returns
|
81 |
+
-------
|
82 |
+
normalized_axes : tuple of int
|
83 |
+
The normalized axis index, such that `0 <= normalized_axis < ndim`
|
84 |
+
"""
|
85 |
+
# Optimization to speed-up the most common cases.
|
86 |
+
if type(axis) not in (tuple, list):
|
87 |
+
try:
|
88 |
+
axis = [operator.index(axis)]
|
89 |
+
except TypeError:
|
90 |
+
pass
|
91 |
+
# Going via an iterator directly is slower than via list comprehension.
|
92 |
+
axis = tuple([normalize_axis_index(ax, ndim, argname) for ax in axis])
|
93 |
+
if not allow_duplicate and len(set(axis)) != len(axis):
|
94 |
+
if argname:
|
95 |
+
raise ValueError(f"repeated axis in `{argname}` argument")
|
96 |
+
else:
|
97 |
+
raise ValueError("repeated axis")
|
98 |
+
return axis
|
99 |
+
|
100 |
+
|
101 |
+
def allow_only_single_axis(axis):
|
102 |
+
if axis is None:
|
103 |
+
return axis
|
104 |
+
if len(axis) != 1:
|
105 |
+
raise NotImplementedError("does not handle tuple axis")
|
106 |
+
return axis[0]
|
107 |
+
|
108 |
+
|
109 |
+
def expand_shape(arr_shape, axis):
|
110 |
+
# taken from numpy 1.23.x, expand_dims function
|
111 |
+
if type(axis) not in (list, tuple):
|
112 |
+
axis = (axis,)
|
113 |
+
out_ndim = len(axis) + len(arr_shape)
|
114 |
+
axis = normalize_axis_tuple(axis, out_ndim)
|
115 |
+
shape_it = iter(arr_shape)
|
116 |
+
shape = [1 if ax in axis else next(shape_it) for ax in range(out_ndim)]
|
117 |
+
return shape
|
118 |
+
|
119 |
+
|
120 |
+
def apply_keepdims(tensor, axis, ndim):
|
121 |
+
if axis is None:
|
122 |
+
# tensor was a scalar
|
123 |
+
shape = (1,) * ndim
|
124 |
+
tensor = tensor.expand(shape).contiguous()
|
125 |
+
else:
|
126 |
+
shape = expand_shape(tensor.shape, axis)
|
127 |
+
tensor = tensor.reshape(shape)
|
128 |
+
return tensor
|
129 |
+
|
130 |
+
|
131 |
+
def axis_none_flatten(*tensors, axis=None):
|
132 |
+
"""Flatten the arrays if axis is None."""
|
133 |
+
if axis is None:
|
134 |
+
tensors = tuple(ar.flatten() for ar in tensors)
|
135 |
+
return tensors, 0
|
136 |
+
else:
|
137 |
+
return tensors, axis
|
138 |
+
|
139 |
+
|
140 |
+
def typecast_tensor(t, target_dtype, casting):
|
141 |
+
"""Dtype-cast tensor to target_dtype.
|
142 |
+
|
143 |
+
Parameters
|
144 |
+
----------
|
145 |
+
t : torch.Tensor
|
146 |
+
The tensor to cast
|
147 |
+
target_dtype : torch dtype object
|
148 |
+
The array dtype to cast all tensors to
|
149 |
+
casting : str
|
150 |
+
The casting mode, see `np.can_cast`
|
151 |
+
|
152 |
+
Returns
|
153 |
+
-------
|
154 |
+
`torch.Tensor` of the `target_dtype` dtype
|
155 |
+
|
156 |
+
Raises
|
157 |
+
------
|
158 |
+
ValueError
|
159 |
+
if the argument cannot be cast according to the `casting` rule
|
160 |
+
|
161 |
+
"""
|
162 |
+
can_cast = _dtypes_impl.can_cast_impl
|
163 |
+
|
164 |
+
if not can_cast(t.dtype, target_dtype, casting=casting):
|
165 |
+
raise TypeError(
|
166 |
+
f"Cannot cast array data from {t.dtype} to"
|
167 |
+
f" {target_dtype} according to the rule '{casting}'"
|
168 |
+
)
|
169 |
+
return cast_if_needed(t, target_dtype)
|
170 |
+
|
171 |
+
|
172 |
+
def typecast_tensors(tensors, target_dtype, casting):
|
173 |
+
return tuple(typecast_tensor(t, target_dtype, casting) for t in tensors)
|
174 |
+
|
175 |
+
|
176 |
+
def _try_convert_to_tensor(obj):
|
177 |
+
try:
|
178 |
+
tensor = torch.as_tensor(obj)
|
179 |
+
except Exception as e:
|
180 |
+
mesg = f"failed to convert {obj} to ndarray. \nInternal error is: {str(e)}."
|
181 |
+
raise NotImplementedError(mesg) # noqa: TRY200
|
182 |
+
return tensor
|
183 |
+
|
184 |
+
|
185 |
+
def _coerce_to_tensor(obj, dtype=None, copy=False, ndmin=0):
|
186 |
+
"""The core logic of the array(...) function.
|
187 |
+
|
188 |
+
Parameters
|
189 |
+
----------
|
190 |
+
obj : tensor_like
|
191 |
+
The thing to coerce
|
192 |
+
dtype : torch.dtype object or None
|
193 |
+
Coerce to this torch dtype
|
194 |
+
copy : bool
|
195 |
+
Copy or not
|
196 |
+
ndmin : int
|
197 |
+
The results as least this many dimensions
|
198 |
+
is_weak : bool
|
199 |
+
Whether obj is a weakly typed python scalar.
|
200 |
+
|
201 |
+
Returns
|
202 |
+
-------
|
203 |
+
tensor : torch.Tensor
|
204 |
+
a tensor object with requested dtype, ndim and copy semantics.
|
205 |
+
|
206 |
+
Notes
|
207 |
+
-----
|
208 |
+
This is almost a "tensor_like" coersion function. Does not handle wrapper
|
209 |
+
ndarrays (those should be handled in the ndarray-aware layer prior to
|
210 |
+
invoking this function).
|
211 |
+
"""
|
212 |
+
if isinstance(obj, torch.Tensor):
|
213 |
+
tensor = obj
|
214 |
+
else:
|
215 |
+
# tensor.dtype is the pytorch default, typically float32. If obj's elements
|
216 |
+
# are not exactly representable in float32, we've lost precision:
|
217 |
+
# >>> torch.as_tensor(1e12).item() - 1e12
|
218 |
+
# -4096.0
|
219 |
+
default_dtype = torch.get_default_dtype()
|
220 |
+
torch.set_default_dtype(_dtypes_impl.get_default_dtype_for(torch.float32))
|
221 |
+
try:
|
222 |
+
tensor = _try_convert_to_tensor(obj)
|
223 |
+
finally:
|
224 |
+
torch.set_default_dtype(default_dtype)
|
225 |
+
|
226 |
+
# type cast if requested
|
227 |
+
tensor = cast_if_needed(tensor, dtype)
|
228 |
+
|
229 |
+
# adjust ndim if needed
|
230 |
+
ndim_extra = ndmin - tensor.ndim
|
231 |
+
if ndim_extra > 0:
|
232 |
+
tensor = tensor.view((1,) * ndim_extra + tensor.shape)
|
233 |
+
|
234 |
+
# copy if requested
|
235 |
+
if copy:
|
236 |
+
tensor = tensor.clone()
|
237 |
+
|
238 |
+
return tensor
|
239 |
+
|
240 |
+
|
241 |
+
def ndarrays_to_tensors(*inputs):
|
242 |
+
"""Convert all ndarrays from `inputs` to tensors. (other things are intact)"""
|
243 |
+
from ._ndarray import ndarray
|
244 |
+
|
245 |
+
if len(inputs) == 0:
|
246 |
+
return ValueError()
|
247 |
+
elif len(inputs) == 1:
|
248 |
+
input_ = inputs[0]
|
249 |
+
if isinstance(input_, ndarray):
|
250 |
+
return input_.tensor
|
251 |
+
elif isinstance(input_, tuple):
|
252 |
+
result = []
|
253 |
+
for sub_input in input_:
|
254 |
+
sub_result = ndarrays_to_tensors(sub_input)
|
255 |
+
result.append(sub_result)
|
256 |
+
return tuple(result)
|
257 |
+
else:
|
258 |
+
return input_
|
259 |
+
else:
|
260 |
+
assert isinstance(inputs, tuple) # sanity check
|
261 |
+
return ndarrays_to_tensors(inputs)
|
venv/lib/python3.10/site-packages/torch/_numpy/fft.py
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
|
5 |
+
import functools
|
6 |
+
|
7 |
+
import torch
|
8 |
+
|
9 |
+
from . import _dtypes_impl, _util
|
10 |
+
from ._normalizations import ArrayLike, normalizer
|
11 |
+
|
12 |
+
|
13 |
+
def upcast(func):
|
14 |
+
"""NumPy fft casts inputs to 64 bit and *returns 64-bit results*."""
|
15 |
+
|
16 |
+
@functools.wraps(func)
|
17 |
+
def wrapped(tensor, *args, **kwds):
|
18 |
+
target_dtype = (
|
19 |
+
_dtypes_impl.default_dtypes().complex_dtype
|
20 |
+
if tensor.is_complex()
|
21 |
+
else _dtypes_impl.default_dtypes().float_dtype
|
22 |
+
)
|
23 |
+
tensor = _util.cast_if_needed(tensor, target_dtype)
|
24 |
+
return func(tensor, *args, **kwds)
|
25 |
+
|
26 |
+
return wrapped
|
27 |
+
|
28 |
+
|
29 |
+
@normalizer
|
30 |
+
@upcast
|
31 |
+
def fft(a: ArrayLike, n=None, axis=-1, norm=None):
|
32 |
+
return torch.fft.fft(a, n, dim=axis, norm=norm)
|
33 |
+
|
34 |
+
|
35 |
+
@normalizer
|
36 |
+
@upcast
|
37 |
+
def ifft(a: ArrayLike, n=None, axis=-1, norm=None):
|
38 |
+
return torch.fft.ifft(a, n, dim=axis, norm=norm)
|
39 |
+
|
40 |
+
|
41 |
+
@normalizer
|
42 |
+
@upcast
|
43 |
+
def rfft(a: ArrayLike, n=None, axis=-1, norm=None):
|
44 |
+
return torch.fft.rfft(a, n, dim=axis, norm=norm)
|
45 |
+
|
46 |
+
|
47 |
+
@normalizer
|
48 |
+
@upcast
|
49 |
+
def irfft(a: ArrayLike, n=None, axis=-1, norm=None):
|
50 |
+
return torch.fft.irfft(a, n, dim=axis, norm=norm)
|
51 |
+
|
52 |
+
|
53 |
+
@normalizer
|
54 |
+
@upcast
|
55 |
+
def fftn(a: ArrayLike, s=None, axes=None, norm=None):
|
56 |
+
return torch.fft.fftn(a, s, dim=axes, norm=norm)
|
57 |
+
|
58 |
+
|
59 |
+
@normalizer
|
60 |
+
@upcast
|
61 |
+
def ifftn(a: ArrayLike, s=None, axes=None, norm=None):
|
62 |
+
return torch.fft.ifftn(a, s, dim=axes, norm=norm)
|
63 |
+
|
64 |
+
|
65 |
+
@normalizer
|
66 |
+
@upcast
|
67 |
+
def rfftn(a: ArrayLike, s=None, axes=None, norm=None):
|
68 |
+
return torch.fft.rfftn(a, s, dim=axes, norm=norm)
|
69 |
+
|
70 |
+
|
71 |
+
@normalizer
|
72 |
+
@upcast
|
73 |
+
def irfftn(a: ArrayLike, s=None, axes=None, norm=None):
|
74 |
+
return torch.fft.irfftn(a, s, dim=axes, norm=norm)
|
75 |
+
|
76 |
+
|
77 |
+
@normalizer
|
78 |
+
@upcast
|
79 |
+
def fft2(a: ArrayLike, s=None, axes=(-2, -1), norm=None):
|
80 |
+
return torch.fft.fft2(a, s, dim=axes, norm=norm)
|
81 |
+
|
82 |
+
|
83 |
+
@normalizer
|
84 |
+
@upcast
|
85 |
+
def ifft2(a: ArrayLike, s=None, axes=(-2, -1), norm=None):
|
86 |
+
return torch.fft.ifft2(a, s, dim=axes, norm=norm)
|
87 |
+
|
88 |
+
|
89 |
+
@normalizer
|
90 |
+
@upcast
|
91 |
+
def rfft2(a: ArrayLike, s=None, axes=(-2, -1), norm=None):
|
92 |
+
return torch.fft.rfft2(a, s, dim=axes, norm=norm)
|
93 |
+
|
94 |
+
|
95 |
+
@normalizer
|
96 |
+
@upcast
|
97 |
+
def irfft2(a: ArrayLike, s=None, axes=(-2, -1), norm=None):
|
98 |
+
return torch.fft.irfft2(a, s, dim=axes, norm=norm)
|
99 |
+
|
100 |
+
|
101 |
+
@normalizer
|
102 |
+
@upcast
|
103 |
+
def hfft(a: ArrayLike, n=None, axis=-1, norm=None):
|
104 |
+
return torch.fft.hfft(a, n, dim=axis, norm=norm)
|
105 |
+
|
106 |
+
|
107 |
+
@normalizer
|
108 |
+
@upcast
|
109 |
+
def ihfft(a: ArrayLike, n=None, axis=-1, norm=None):
|
110 |
+
return torch.fft.ihfft(a, n, dim=axis, norm=norm)
|
111 |
+
|
112 |
+
|
113 |
+
@normalizer
|
114 |
+
def fftfreq(n, d=1.0):
|
115 |
+
return torch.fft.fftfreq(n, d)
|
116 |
+
|
117 |
+
|
118 |
+
@normalizer
|
119 |
+
def rfftfreq(n, d=1.0):
|
120 |
+
return torch.fft.rfftfreq(n, d)
|
121 |
+
|
122 |
+
|
123 |
+
@normalizer
|
124 |
+
def fftshift(x: ArrayLike, axes=None):
|
125 |
+
return torch.fft.fftshift(x, axes)
|
126 |
+
|
127 |
+
|
128 |
+
@normalizer
|
129 |
+
def ifftshift(x: ArrayLike, axes=None):
|
130 |
+
return torch.fft.ifftshift(x, axes)
|
venv/lib/python3.10/site-packages/torch/_numpy/linalg.py
ADDED
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
|
5 |
+
import functools
|
6 |
+
import math
|
7 |
+
from typing import Sequence
|
8 |
+
|
9 |
+
import torch
|
10 |
+
|
11 |
+
from . import _dtypes_impl, _util
|
12 |
+
from ._normalizations import ArrayLike, KeepDims, normalizer
|
13 |
+
|
14 |
+
|
15 |
+
class LinAlgError(Exception):
|
16 |
+
pass
|
17 |
+
|
18 |
+
|
19 |
+
def _atleast_float_1(a):
|
20 |
+
if not (a.dtype.is_floating_point or a.dtype.is_complex):
|
21 |
+
a = a.to(_dtypes_impl.default_dtypes().float_dtype)
|
22 |
+
return a
|
23 |
+
|
24 |
+
|
25 |
+
def _atleast_float_2(a, b):
|
26 |
+
dtyp = _dtypes_impl.result_type_impl(a, b)
|
27 |
+
if not (dtyp.is_floating_point or dtyp.is_complex):
|
28 |
+
dtyp = _dtypes_impl.default_dtypes().float_dtype
|
29 |
+
|
30 |
+
a = _util.cast_if_needed(a, dtyp)
|
31 |
+
b = _util.cast_if_needed(b, dtyp)
|
32 |
+
return a, b
|
33 |
+
|
34 |
+
|
35 |
+
def linalg_errors(func):
|
36 |
+
@functools.wraps(func)
|
37 |
+
def wrapped(*args, **kwds):
|
38 |
+
try:
|
39 |
+
return func(*args, **kwds)
|
40 |
+
except torch._C._LinAlgError as e:
|
41 |
+
raise LinAlgError(*e.args) # noqa: TRY200
|
42 |
+
|
43 |
+
return wrapped
|
44 |
+
|
45 |
+
|
46 |
+
# ### Matrix and vector products ###
|
47 |
+
|
48 |
+
|
49 |
+
@normalizer
|
50 |
+
@linalg_errors
|
51 |
+
def matrix_power(a: ArrayLike, n):
|
52 |
+
a = _atleast_float_1(a)
|
53 |
+
return torch.linalg.matrix_power(a, n)
|
54 |
+
|
55 |
+
|
56 |
+
@normalizer
|
57 |
+
@linalg_errors
|
58 |
+
def multi_dot(inputs: Sequence[ArrayLike], *, out=None):
|
59 |
+
return torch.linalg.multi_dot(inputs)
|
60 |
+
|
61 |
+
|
62 |
+
# ### Solving equations and inverting matrices ###
|
63 |
+
|
64 |
+
|
65 |
+
@normalizer
|
66 |
+
@linalg_errors
|
67 |
+
def solve(a: ArrayLike, b: ArrayLike):
|
68 |
+
a, b = _atleast_float_2(a, b)
|
69 |
+
return torch.linalg.solve(a, b)
|
70 |
+
|
71 |
+
|
72 |
+
@normalizer
|
73 |
+
@linalg_errors
|
74 |
+
def lstsq(a: ArrayLike, b: ArrayLike, rcond=None):
|
75 |
+
a, b = _atleast_float_2(a, b)
|
76 |
+
# NumPy is using gelsd: https://github.com/numpy/numpy/blob/v1.24.0/numpy/linalg/umath_linalg.cpp#L3991
|
77 |
+
# on CUDA, only `gels` is available though, so use it instead
|
78 |
+
driver = "gels" if a.is_cuda or b.is_cuda else "gelsd"
|
79 |
+
return torch.linalg.lstsq(a, b, rcond=rcond, driver=driver)
|
80 |
+
|
81 |
+
|
82 |
+
@normalizer
|
83 |
+
@linalg_errors
|
84 |
+
def inv(a: ArrayLike):
|
85 |
+
a = _atleast_float_1(a)
|
86 |
+
result = torch.linalg.inv(a)
|
87 |
+
return result
|
88 |
+
|
89 |
+
|
90 |
+
@normalizer
|
91 |
+
@linalg_errors
|
92 |
+
def pinv(a: ArrayLike, rcond=1e-15, hermitian=False):
|
93 |
+
a = _atleast_float_1(a)
|
94 |
+
return torch.linalg.pinv(a, rtol=rcond, hermitian=hermitian)
|
95 |
+
|
96 |
+
|
97 |
+
@normalizer
|
98 |
+
@linalg_errors
|
99 |
+
def tensorsolve(a: ArrayLike, b: ArrayLike, axes=None):
|
100 |
+
a, b = _atleast_float_2(a, b)
|
101 |
+
return torch.linalg.tensorsolve(a, b, dims=axes)
|
102 |
+
|
103 |
+
|
104 |
+
@normalizer
|
105 |
+
@linalg_errors
|
106 |
+
def tensorinv(a: ArrayLike, ind=2):
|
107 |
+
a = _atleast_float_1(a)
|
108 |
+
return torch.linalg.tensorinv(a, ind=ind)
|
109 |
+
|
110 |
+
|
111 |
+
# ### Norms and other numbers ###
|
112 |
+
|
113 |
+
|
114 |
+
@normalizer
|
115 |
+
@linalg_errors
|
116 |
+
def det(a: ArrayLike):
|
117 |
+
a = _atleast_float_1(a)
|
118 |
+
return torch.linalg.det(a)
|
119 |
+
|
120 |
+
|
121 |
+
@normalizer
|
122 |
+
@linalg_errors
|
123 |
+
def slogdet(a: ArrayLike):
|
124 |
+
a = _atleast_float_1(a)
|
125 |
+
return torch.linalg.slogdet(a)
|
126 |
+
|
127 |
+
|
128 |
+
@normalizer
|
129 |
+
@linalg_errors
|
130 |
+
def cond(x: ArrayLike, p=None):
|
131 |
+
x = _atleast_float_1(x)
|
132 |
+
|
133 |
+
# check if empty
|
134 |
+
# cf: https://github.com/numpy/numpy/blob/v1.24.0/numpy/linalg/linalg.py#L1744
|
135 |
+
if x.numel() == 0 and math.prod(x.shape[-2:]) == 0:
|
136 |
+
raise LinAlgError("cond is not defined on empty arrays")
|
137 |
+
|
138 |
+
result = torch.linalg.cond(x, p=p)
|
139 |
+
|
140 |
+
# Convert nans to infs (numpy does it in a data-dependent way, depending on
|
141 |
+
# whether the input array has nans or not)
|
142 |
+
# XXX: NumPy does this: https://github.com/numpy/numpy/blob/v1.24.0/numpy/linalg/linalg.py#L1744
|
143 |
+
return torch.where(torch.isnan(result), float("inf"), result)
|
144 |
+
|
145 |
+
|
146 |
+
@normalizer
|
147 |
+
@linalg_errors
|
148 |
+
def matrix_rank(a: ArrayLike, tol=None, hermitian=False):
|
149 |
+
a = _atleast_float_1(a)
|
150 |
+
|
151 |
+
if a.ndim < 2:
|
152 |
+
return int((a != 0).any())
|
153 |
+
|
154 |
+
if tol is None:
|
155 |
+
# follow https://github.com/numpy/numpy/blob/v1.24.0/numpy/linalg/linalg.py#L1885
|
156 |
+
atol = 0
|
157 |
+
rtol = max(a.shape[-2:]) * torch.finfo(a.dtype).eps
|
158 |
+
else:
|
159 |
+
atol, rtol = tol, 0
|
160 |
+
return torch.linalg.matrix_rank(a, atol=atol, rtol=rtol, hermitian=hermitian)
|
161 |
+
|
162 |
+
|
163 |
+
@normalizer
|
164 |
+
@linalg_errors
|
165 |
+
def norm(x: ArrayLike, ord=None, axis=None, keepdims: KeepDims = False):
|
166 |
+
x = _atleast_float_1(x)
|
167 |
+
return torch.linalg.norm(x, ord=ord, dim=axis)
|
168 |
+
|
169 |
+
|
170 |
+
# ### Decompositions ###
|
171 |
+
|
172 |
+
|
173 |
+
@normalizer
|
174 |
+
@linalg_errors
|
175 |
+
def cholesky(a: ArrayLike):
|
176 |
+
a = _atleast_float_1(a)
|
177 |
+
return torch.linalg.cholesky(a)
|
178 |
+
|
179 |
+
|
180 |
+
@normalizer
|
181 |
+
@linalg_errors
|
182 |
+
def qr(a: ArrayLike, mode="reduced"):
|
183 |
+
a = _atleast_float_1(a)
|
184 |
+
result = torch.linalg.qr(a, mode=mode)
|
185 |
+
if mode == "r":
|
186 |
+
# match NumPy
|
187 |
+
result = result.R
|
188 |
+
return result
|
189 |
+
|
190 |
+
|
191 |
+
@normalizer
|
192 |
+
@linalg_errors
|
193 |
+
def svd(a: ArrayLike, full_matrices=True, compute_uv=True, hermitian=False):
|
194 |
+
a = _atleast_float_1(a)
|
195 |
+
if not compute_uv:
|
196 |
+
return torch.linalg.svdvals(a)
|
197 |
+
|
198 |
+
# NB: ignore the hermitian= argument (no pytorch equivalent)
|
199 |
+
result = torch.linalg.svd(a, full_matrices=full_matrices)
|
200 |
+
return result
|
201 |
+
|
202 |
+
|
203 |
+
# ### Eigenvalues and eigenvectors ###
|
204 |
+
|
205 |
+
|
206 |
+
@normalizer
|
207 |
+
@linalg_errors
|
208 |
+
def eig(a: ArrayLike):
|
209 |
+
a = _atleast_float_1(a)
|
210 |
+
w, vt = torch.linalg.eig(a)
|
211 |
+
|
212 |
+
if not a.is_complex() and w.is_complex() and (w.imag == 0).all():
|
213 |
+
w = w.real
|
214 |
+
vt = vt.real
|
215 |
+
return w, vt
|
216 |
+
|
217 |
+
|
218 |
+
@normalizer
|
219 |
+
@linalg_errors
|
220 |
+
def eigh(a: ArrayLike, UPLO="L"):
|
221 |
+
a = _atleast_float_1(a)
|
222 |
+
return torch.linalg.eigh(a, UPLO=UPLO)
|
223 |
+
|
224 |
+
|
225 |
+
@normalizer
|
226 |
+
@linalg_errors
|
227 |
+
def eigvals(a: ArrayLike):
|
228 |
+
a = _atleast_float_1(a)
|
229 |
+
result = torch.linalg.eigvals(a)
|
230 |
+
if not a.is_complex() and result.is_complex() and (result.imag == 0).all():
|
231 |
+
result = result.real
|
232 |
+
return result
|
233 |
+
|
234 |
+
|
235 |
+
@normalizer
|
236 |
+
@linalg_errors
|
237 |
+
def eigvalsh(a: ArrayLike, UPLO="L"):
|
238 |
+
a = _atleast_float_1(a)
|
239 |
+
return torch.linalg.eigvalsh(a, UPLO=UPLO)
|
venv/lib/python3.10/site-packages/torch/_numpy/random.py
ADDED
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
"""Wrapper to mimic (parts of) np.random API surface.
|
4 |
+
|
5 |
+
NumPy has strict guarantees on reproducibility etc; here we don't give any.
|
6 |
+
|
7 |
+
Q: default dtype is float64 in numpy
|
8 |
+
|
9 |
+
"""
|
10 |
+
from __future__ import annotations
|
11 |
+
|
12 |
+
import functools
|
13 |
+
from math import sqrt
|
14 |
+
from typing import Optional
|
15 |
+
|
16 |
+
import torch
|
17 |
+
|
18 |
+
from . import _dtypes_impl, _util
|
19 |
+
from ._normalizations import array_or_scalar, ArrayLike, normalizer
|
20 |
+
|
21 |
+
|
22 |
+
__all__ = [
|
23 |
+
"seed",
|
24 |
+
"random_sample",
|
25 |
+
"sample",
|
26 |
+
"random",
|
27 |
+
"rand",
|
28 |
+
"randn",
|
29 |
+
"normal",
|
30 |
+
"choice",
|
31 |
+
"randint",
|
32 |
+
"shuffle",
|
33 |
+
"uniform",
|
34 |
+
]
|
35 |
+
|
36 |
+
|
37 |
+
def use_numpy_random():
|
38 |
+
# local import to avoid ref cycles
|
39 |
+
import torch._dynamo.config as config
|
40 |
+
|
41 |
+
return config.use_numpy_random_stream
|
42 |
+
|
43 |
+
|
44 |
+
def deco_stream(func):
|
45 |
+
@functools.wraps(func)
|
46 |
+
def inner(*args, **kwds):
|
47 |
+
if not use_numpy_random():
|
48 |
+
return func(*args, **kwds)
|
49 |
+
else:
|
50 |
+
import numpy
|
51 |
+
|
52 |
+
from ._ndarray import ndarray
|
53 |
+
|
54 |
+
f = getattr(numpy.random, func.__name__)
|
55 |
+
|
56 |
+
# numpy funcs accept numpy ndarrays, unwrap
|
57 |
+
args = tuple(
|
58 |
+
arg.tensor.numpy() if isinstance(arg, ndarray) else arg for arg in args
|
59 |
+
)
|
60 |
+
kwds = {
|
61 |
+
key: val.tensor.numpy() if isinstance(val, ndarray) else val
|
62 |
+
for key, val in kwds.items()
|
63 |
+
}
|
64 |
+
|
65 |
+
value = f(*args, **kwds)
|
66 |
+
|
67 |
+
# `value` can be either numpy.ndarray or python scalar (or None)
|
68 |
+
if isinstance(value, numpy.ndarray):
|
69 |
+
value = ndarray(torch.as_tensor(value))
|
70 |
+
|
71 |
+
return value
|
72 |
+
|
73 |
+
return inner
|
74 |
+
|
75 |
+
|
76 |
+
@deco_stream
|
77 |
+
def seed(seed=None):
|
78 |
+
if seed is not None:
|
79 |
+
torch.random.manual_seed(seed)
|
80 |
+
|
81 |
+
|
82 |
+
@deco_stream
|
83 |
+
def random_sample(size=None):
|
84 |
+
if size is None:
|
85 |
+
size = ()
|
86 |
+
dtype = _dtypes_impl.default_dtypes().float_dtype
|
87 |
+
values = torch.empty(size, dtype=dtype).uniform_()
|
88 |
+
return array_or_scalar(values, return_scalar=size == ())
|
89 |
+
|
90 |
+
|
91 |
+
def rand(*size):
|
92 |
+
if size == ():
|
93 |
+
size = None
|
94 |
+
return random_sample(size)
|
95 |
+
|
96 |
+
|
97 |
+
sample = random_sample
|
98 |
+
random = random_sample
|
99 |
+
|
100 |
+
|
101 |
+
@deco_stream
|
102 |
+
def uniform(low=0.0, high=1.0, size=None):
|
103 |
+
if size is None:
|
104 |
+
size = ()
|
105 |
+
dtype = _dtypes_impl.default_dtypes().float_dtype
|
106 |
+
values = torch.empty(size, dtype=dtype).uniform_(low, high)
|
107 |
+
return array_or_scalar(values, return_scalar=size == ())
|
108 |
+
|
109 |
+
|
110 |
+
@deco_stream
|
111 |
+
def randn(*size):
|
112 |
+
dtype = _dtypes_impl.default_dtypes().float_dtype
|
113 |
+
values = torch.randn(size, dtype=dtype)
|
114 |
+
return array_or_scalar(values, return_scalar=size == ())
|
115 |
+
|
116 |
+
|
117 |
+
@deco_stream
|
118 |
+
def normal(loc=0.0, scale=1.0, size=None):
|
119 |
+
if size is None:
|
120 |
+
size = ()
|
121 |
+
dtype = _dtypes_impl.default_dtypes().float_dtype
|
122 |
+
values = torch.empty(size, dtype=dtype).normal_(loc, scale)
|
123 |
+
return array_or_scalar(values, return_scalar=size == ())
|
124 |
+
|
125 |
+
|
126 |
+
@deco_stream
|
127 |
+
def shuffle(x):
|
128 |
+
# no @normalizer because we do not cast e.g. lists to tensors
|
129 |
+
from ._ndarray import ndarray
|
130 |
+
|
131 |
+
if isinstance(x, torch.Tensor):
|
132 |
+
tensor = x
|
133 |
+
elif isinstance(x, ndarray):
|
134 |
+
tensor = x.tensor
|
135 |
+
else:
|
136 |
+
raise NotImplementedError("We do not random.shuffle lists in-place")
|
137 |
+
|
138 |
+
perm = torch.randperm(tensor.shape[0])
|
139 |
+
xp = tensor[perm]
|
140 |
+
tensor.copy_(xp)
|
141 |
+
|
142 |
+
|
143 |
+
@deco_stream
|
144 |
+
def randint(low, high=None, size=None):
|
145 |
+
if size is None:
|
146 |
+
size = ()
|
147 |
+
if not isinstance(size, (tuple, list)):
|
148 |
+
size = (size,)
|
149 |
+
if high is None:
|
150 |
+
low, high = 0, low
|
151 |
+
values = torch.randint(low, high, size=size)
|
152 |
+
return array_or_scalar(values, int, return_scalar=size == ())
|
153 |
+
|
154 |
+
|
155 |
+
@deco_stream
|
156 |
+
@normalizer
|
157 |
+
def choice(a: ArrayLike, size=None, replace=True, p: Optional[ArrayLike] = None):
|
158 |
+
# https://stackoverflow.com/questions/59461811/random-choice-with-pytorch
|
159 |
+
if a.numel() == 1:
|
160 |
+
a = torch.arange(a)
|
161 |
+
|
162 |
+
# TODO: check a.dtype is integer -- cf np.random.choice(3.4) which raises
|
163 |
+
|
164 |
+
# number of draws
|
165 |
+
if size is None:
|
166 |
+
num_el = 1
|
167 |
+
elif _util.is_sequence(size):
|
168 |
+
num_el = 1
|
169 |
+
for el in size:
|
170 |
+
num_el *= el
|
171 |
+
else:
|
172 |
+
num_el = size
|
173 |
+
|
174 |
+
# prepare the probabilities
|
175 |
+
if p is None:
|
176 |
+
p = torch.ones_like(a) / a.shape[0]
|
177 |
+
|
178 |
+
# cf https://github.com/numpy/numpy/blob/main/numpy/random/mtrand.pyx#L973
|
179 |
+
atol = sqrt(torch.finfo(p.dtype).eps)
|
180 |
+
if abs(p.sum() - 1.0) > atol:
|
181 |
+
raise ValueError("probabilities do not sum to 1.")
|
182 |
+
|
183 |
+
# actually sample
|
184 |
+
indices = torch.multinomial(p, num_el, replacement=replace)
|
185 |
+
|
186 |
+
if _util.is_sequence(size):
|
187 |
+
indices = indices.reshape(size)
|
188 |
+
|
189 |
+
samples = a[indices]
|
190 |
+
|
191 |
+
return samples
|
venv/lib/python3.10/site-packages/torch/nn/backends/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/torch/nn/backends/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (185 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/nn/backends/__pycache__/thnn.cpython-310.pyc
ADDED
Binary file (297 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/nn/backends/thnn.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# this is for historical pickle deserialization, it is not used otherwise
|
2 |
+
|
3 |
+
def _get_thnn_function_backend():
|
4 |
+
pass
|
venv/lib/python3.10/site-packages/torch/nn/parallel/__init__.py
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .parallel_apply import parallel_apply
|
2 |
+
from .replicate import replicate
|
3 |
+
from .data_parallel import DataParallel, data_parallel
|
4 |
+
from .scatter_gather import gather, scatter
|
5 |
+
from .distributed import DistributedDataParallel
|
6 |
+
|
7 |
+
__all__ = ['replicate', 'scatter', 'parallel_apply', 'gather', 'data_parallel',
|
8 |
+
'DataParallel', 'DistributedDataParallel']
|
9 |
+
|
10 |
+
def DistributedDataParallelCPU(*args, **kwargs):
|
11 |
+
import warnings
|
12 |
+
warnings.warn("torch.nn.parallel.DistributedDataParallelCPU is deprecated, "
|
13 |
+
"please use torch.nn.parallel.DistributedDataParallel instead.")
|
14 |
+
return DistributedDataParallel(*args, **kwargs)
|
venv/lib/python3.10/site-packages/torch/nn/parallel/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (806 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/nn/parallel/__pycache__/_functions.cpython-310.pyc
ADDED
Binary file (5.76 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/nn/parallel/__pycache__/comm.cpython-310.pyc
ADDED
Binary file (10.3 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/nn/parallel/__pycache__/data_parallel.cpython-310.pyc
ADDED
Binary file (10.7 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/nn/parallel/__pycache__/distributed.cpython-310.pyc
ADDED
Binary file (80.2 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/nn/parallel/__pycache__/parallel_apply.cpython-310.pyc
ADDED
Binary file (4.11 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/nn/parallel/__pycache__/replicate.cpython-310.pyc
ADDED
Binary file (5.15 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/nn/parallel/__pycache__/scatter_gather.cpython-310.pyc
ADDED
Binary file (4.51 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/nn/parallel/_functions.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import warnings
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from . import comm
|
5 |
+
from torch.autograd import Function
|
6 |
+
from torch._utils import _get_device_index
|
7 |
+
from typing import List, Optional
|
8 |
+
|
9 |
+
|
10 |
+
class Broadcast(Function):
|
11 |
+
|
12 |
+
@staticmethod
|
13 |
+
def forward(ctx, target_gpus, *inputs):
|
14 |
+
assert all(i.device.type != 'cpu' for i in inputs), (
|
15 |
+
'Broadcast function not implemented for CPU tensors'
|
16 |
+
)
|
17 |
+
target_gpus = [_get_device_index(x, True) for x in target_gpus]
|
18 |
+
ctx.target_gpus = target_gpus
|
19 |
+
if len(inputs) == 0:
|
20 |
+
return tuple()
|
21 |
+
ctx.num_inputs = len(inputs)
|
22 |
+
ctx.input_device = inputs[0].get_device()
|
23 |
+
outputs = comm.broadcast_coalesced(inputs, ctx.target_gpus)
|
24 |
+
non_differentiables = []
|
25 |
+
for idx, input_requires_grad in enumerate(ctx.needs_input_grad[1:]):
|
26 |
+
if not input_requires_grad:
|
27 |
+
for output in outputs:
|
28 |
+
non_differentiables.append(output[idx])
|
29 |
+
ctx.mark_non_differentiable(*non_differentiables)
|
30 |
+
return tuple([t for tensors in outputs for t in tensors])
|
31 |
+
|
32 |
+
@staticmethod
|
33 |
+
def backward(ctx, *grad_outputs):
|
34 |
+
return (None,) + ReduceAddCoalesced.apply(ctx.input_device, ctx.num_inputs, *grad_outputs)
|
35 |
+
|
36 |
+
|
37 |
+
class ReduceAddCoalesced(Function):
|
38 |
+
|
39 |
+
@staticmethod
|
40 |
+
def forward(ctx, destination, num_inputs, *grads):
|
41 |
+
ctx.target_gpus = [grads[i].get_device() for i in range(0, len(grads), num_inputs)]
|
42 |
+
|
43 |
+
grads_ = [grads[i:i + num_inputs]
|
44 |
+
for i in range(0, len(grads), num_inputs)]
|
45 |
+
return comm.reduce_add_coalesced(grads_, destination)
|
46 |
+
|
47 |
+
@staticmethod
|
48 |
+
def backward(ctx, *grad_outputs):
|
49 |
+
return (None, None,) + Broadcast.apply(ctx.target_gpus, *grad_outputs)
|
50 |
+
|
51 |
+
|
52 |
+
class Gather(Function):
|
53 |
+
|
54 |
+
@staticmethod
|
55 |
+
def forward(ctx, target_device, dim, *inputs):
|
56 |
+
assert all(i.device.type != 'cpu' for i in inputs), (
|
57 |
+
'Gather function not implemented for CPU tensors'
|
58 |
+
)
|
59 |
+
if (target_device == 'cpu'):
|
60 |
+
ctx.target_device = 'cpu'
|
61 |
+
else:
|
62 |
+
target_device = _get_device_index(target_device, True)
|
63 |
+
ctx.target_device = target_device
|
64 |
+
ctx.dim = dim
|
65 |
+
ctx.input_gpus = tuple(i.get_device() for i in inputs)
|
66 |
+
if all(t.dim() == 0 for t in inputs) and dim == 0:
|
67 |
+
inputs = tuple(t.view(1) for t in inputs)
|
68 |
+
warnings.warn('Was asked to gather along dimension 0, but all '
|
69 |
+
'input tensors were scalars; will instead unsqueeze '
|
70 |
+
'and return a vector.')
|
71 |
+
ctx.unsqueezed_scalar = True
|
72 |
+
else:
|
73 |
+
ctx.unsqueezed_scalar = False
|
74 |
+
ctx.input_sizes = tuple(i.size(ctx.dim) for i in inputs)
|
75 |
+
return comm.gather(inputs, ctx.dim, ctx.target_device)
|
76 |
+
|
77 |
+
@staticmethod
|
78 |
+
def backward(ctx, grad_output):
|
79 |
+
scattered_grads = Scatter.apply(ctx.input_gpus, ctx.input_sizes, ctx.dim, grad_output)
|
80 |
+
if ctx.unsqueezed_scalar:
|
81 |
+
scattered_grads = tuple(g[0] for g in scattered_grads)
|
82 |
+
return (None, None) + scattered_grads
|
83 |
+
|
84 |
+
|
85 |
+
class Scatter(Function):
|
86 |
+
|
87 |
+
@staticmethod
|
88 |
+
def forward(ctx, target_gpus, chunk_sizes, dim, input):
|
89 |
+
target_gpus = [_get_device_index(x, True) for x in target_gpus]
|
90 |
+
ctx.dim = dim
|
91 |
+
ctx.input_device = input.get_device() if input.device.type != "cpu" else -1
|
92 |
+
streams = None
|
93 |
+
if torch.cuda.is_available() and ctx.input_device == -1:
|
94 |
+
# Perform CPU to GPU copies in a background stream
|
95 |
+
streams = [_get_stream(torch.device("cuda", device)) for device in target_gpus]
|
96 |
+
outputs = comm.scatter(input, target_gpus, chunk_sizes, ctx.dim, streams)
|
97 |
+
# Synchronize with the copy stream
|
98 |
+
if streams is not None:
|
99 |
+
for i, output in enumerate(outputs):
|
100 |
+
with torch.cuda.device(target_gpus[i]):
|
101 |
+
main_stream = torch.cuda.current_stream()
|
102 |
+
main_stream.wait_stream(streams[i])
|
103 |
+
output.record_stream(main_stream)
|
104 |
+
return outputs
|
105 |
+
|
106 |
+
@staticmethod
|
107 |
+
def backward(ctx, *grad_output):
|
108 |
+
return None, None, None, Gather.apply(ctx.input_device, ctx.dim, *grad_output)
|
109 |
+
|
110 |
+
|
111 |
+
# background streams used for copying
|
112 |
+
_streams: Optional[List[Optional[torch.Stream]]] = None
|
113 |
+
|
114 |
+
def _get_stream(device: torch.device):
|
115 |
+
"""Get a background stream for copying between CPU and target device."""
|
116 |
+
global _streams
|
117 |
+
if device.type == "cpu":
|
118 |
+
return None
|
119 |
+
device_mod = getattr(torch, device.type, None)
|
120 |
+
if device_mod is None:
|
121 |
+
return None
|
122 |
+
if _streams is None:
|
123 |
+
_streams = [None] * device_mod.device_count()
|
124 |
+
if _streams[device.index] is None:
|
125 |
+
_streams[device.index] = device_mod.Stream(device.index)
|
126 |
+
return _streams[device.index]
|
venv/lib/python3.10/site-packages/torch/nn/parallel/comm.py
ADDED
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import warnings
|
2 |
+
import torch
|
3 |
+
from torch.cuda import nccl
|
4 |
+
from torch._utils import _take_tensors, _flatten_dense_tensors, \
|
5 |
+
_unflatten_dense_tensors, _reorder_tensors_as, _get_device_index, _handle_complex
|
6 |
+
from typing import List
|
7 |
+
|
8 |
+
def broadcast(tensor, devices=None, *, out=None):
|
9 |
+
r"""Broadcasts a tensor to specified GPU devices.
|
10 |
+
|
11 |
+
Args:
|
12 |
+
tensor (Tensor): tensor to broadcast. Can be on CPU or GPU.
|
13 |
+
devices (Iterable[torch.device, str or int], optional): an iterable of
|
14 |
+
GPU devices, among which to broadcast.
|
15 |
+
out (Sequence[Tensor], optional, keyword-only): the GPU tensors to
|
16 |
+
store output results.
|
17 |
+
|
18 |
+
.. note::
|
19 |
+
Exactly one of :attr:`devices` and :attr:`out` must be specified.
|
20 |
+
|
21 |
+
Returns:
|
22 |
+
- If :attr:`devices` is specified,
|
23 |
+
a tuple containing copies of :attr:`tensor`, placed on
|
24 |
+
:attr:`devices`.
|
25 |
+
- If :attr:`out` is specified,
|
26 |
+
a tuple containing :attr:`out` tensors, each containing a copy of
|
27 |
+
:attr:`tensor`.
|
28 |
+
"""
|
29 |
+
tensor = _handle_complex(tensor)
|
30 |
+
if not ((devices is None) ^ (out is None)):
|
31 |
+
raise RuntimeError(
|
32 |
+
f"Exactly one of 'devices' and 'out' must be specified, but got devices={devices} and out={out}")
|
33 |
+
if devices is not None:
|
34 |
+
devices = [_get_device_index(d) for d in devices]
|
35 |
+
return torch._C._broadcast(tensor, devices)
|
36 |
+
else:
|
37 |
+
return torch._C._broadcast_out(tensor, out)
|
38 |
+
|
39 |
+
|
40 |
+
def broadcast_coalesced(tensors, devices, buffer_size=10485760):
|
41 |
+
"""Broadcast a sequence of tensors to the specified GPUs.
|
42 |
+
|
43 |
+
Small tensors are first coalesced into a buffer to reduce the number of synchronizations.
|
44 |
+
|
45 |
+
Args:
|
46 |
+
tensors (sequence): tensors to broadcast. Must be on the same device,
|
47 |
+
either CPU or GPU.
|
48 |
+
devices (Iterable[torch.device, str or int]): an iterable of GPU
|
49 |
+
devices, among which to broadcast.
|
50 |
+
buffer_size (int): maximum size of the buffer used for coalescing
|
51 |
+
|
52 |
+
Returns:
|
53 |
+
A tuple containing copies of :attr:`tensor`, placed on :attr:`devices`.
|
54 |
+
"""
|
55 |
+
devices = [_get_device_index(d) for d in devices]
|
56 |
+
tensors = [_handle_complex(t) for t in tensors]
|
57 |
+
return torch._C._broadcast_coalesced(tensors, devices, buffer_size)
|
58 |
+
|
59 |
+
|
60 |
+
def reduce_add(inputs, destination=None):
|
61 |
+
"""Sum tensors from multiple GPUs.
|
62 |
+
|
63 |
+
All inputs should have matching shapes, dtype, and layout. The output tensor
|
64 |
+
will be of the same shape, dtype, and layout.
|
65 |
+
|
66 |
+
Args:
|
67 |
+
inputs (Iterable[Tensor]): an iterable of tensors to add.
|
68 |
+
destination (int, optional): a device on which the output will be
|
69 |
+
placed (default: current device).
|
70 |
+
|
71 |
+
Returns:
|
72 |
+
A tensor containing an elementwise sum of all inputs, placed on the
|
73 |
+
:attr:`destination` device.
|
74 |
+
"""
|
75 |
+
destination = _get_device_index(destination, optional=True)
|
76 |
+
input_size = inputs[0].size()
|
77 |
+
root_index = None # index of input tensor that already is on the correct device
|
78 |
+
for i, inp in enumerate(inputs):
|
79 |
+
assert inp.device.type != "cpu", "reduce_add expects all inputs to be on GPUs"
|
80 |
+
if inp.get_device() == destination:
|
81 |
+
root_index = i
|
82 |
+
if inp.size() != input_size:
|
83 |
+
got = 'x'.join(str(x) for x in inp.size())
|
84 |
+
expected = 'x'.join(str(x) for x in input_size)
|
85 |
+
raise ValueError(f"input {i} has invalid size: got {got}, but expected {expected}")
|
86 |
+
if root_index is None:
|
87 |
+
raise RuntimeError("reduce_add expects destination to be on the same GPU with one of the tensors")
|
88 |
+
|
89 |
+
if len(inputs) == 1:
|
90 |
+
return inputs[0]
|
91 |
+
|
92 |
+
if nccl.is_available(inputs):
|
93 |
+
result = torch.empty_like(inputs[root_index])
|
94 |
+
nccl.reduce(inputs, output=result, root=root_index)
|
95 |
+
else:
|
96 |
+
destination_device = torch.device(inputs[root_index].device.type, destination)
|
97 |
+
nonroot = [t for i, t in enumerate(inputs) if i != root_index]
|
98 |
+
# make a new tensor w/o clone
|
99 |
+
result = inputs[root_index] + nonroot[0].to(device=destination_device, non_blocking=True)
|
100 |
+
for other in nonroot[1:]:
|
101 |
+
result.add_(other.to(device=destination_device, non_blocking=True))
|
102 |
+
return result
|
103 |
+
|
104 |
+
|
105 |
+
def reduce_add_coalesced(inputs, destination=None, buffer_size=10485760):
|
106 |
+
"""Sum tensors from multiple GPUs.
|
107 |
+
|
108 |
+
Small tensors are first coalesced into a buffer to reduce the number
|
109 |
+
of synchronizations.
|
110 |
+
|
111 |
+
Args:
|
112 |
+
inputs (Iterable[Iterable[Tensor]]): iterable of iterables that
|
113 |
+
contain tensors from a single device.
|
114 |
+
destination (int, optional): a device on which the output will be
|
115 |
+
placed (default: current device).
|
116 |
+
buffer_size (int): maximum size of the buffer used for coalescing
|
117 |
+
|
118 |
+
Returns:
|
119 |
+
A tuple of tensors containing an elementwise sum of each group of
|
120 |
+
inputs, placed on the ``destination`` device.
|
121 |
+
"""
|
122 |
+
# TODO: When `len(inputs) == 1` and all inputs are on `destination`, just
|
123 |
+
# return `inputs`.
|
124 |
+
dense_tensors: List[List] = [[] for _ in inputs] # shape (num_gpus, num_tensors)
|
125 |
+
output = []
|
126 |
+
ref_order = []
|
127 |
+
# process sparse ones first since they may have different sizes on different gpus
|
128 |
+
for tensor_at_gpus in zip(*inputs):
|
129 |
+
if all(t.is_sparse for t in tensor_at_gpus):
|
130 |
+
result = reduce_add(tensor_at_gpus, destination) # this will be sparse too
|
131 |
+
output.append(result)
|
132 |
+
ref_order.append(tensor_at_gpus[0])
|
133 |
+
else:
|
134 |
+
for coll, t in zip(dense_tensors, tensor_at_gpus):
|
135 |
+
coll.append(t.to_dense() if t.is_sparse else t)
|
136 |
+
ref_order.append(dense_tensors[0][-1])
|
137 |
+
itrs = [_take_tensors(tensors, buffer_size) for tensors in dense_tensors]
|
138 |
+
# now the dense ones, which have consistent sizes
|
139 |
+
for chunks in zip(*itrs):
|
140 |
+
flat_tensors = [_flatten_dense_tensors(chunk) for chunk in chunks] # (num_gpus,)
|
141 |
+
flat_result = reduce_add(flat_tensors, destination)
|
142 |
+
for t in _unflatten_dense_tensors(flat_result, chunks[0]):
|
143 |
+
# The unflattened tensors do not share storage, and we don't expose
|
144 |
+
# base flat tensor anyways, so give them different version counters.
|
145 |
+
# See NOTE [ Version Counter in comm.*_coalesced ]
|
146 |
+
output.append(t.data)
|
147 |
+
return tuple(_reorder_tensors_as(output, ref_order))
|
148 |
+
|
149 |
+
|
150 |
+
def scatter(tensor, devices=None, chunk_sizes=None, dim=0, streams=None, *, out=None):
|
151 |
+
"""Scatters tensor across multiple GPUs.
|
152 |
+
|
153 |
+
Args:
|
154 |
+
tensor (Tensor): tensor to scatter. Can be on CPU or GPU.
|
155 |
+
devices (Iterable[torch.device, str or int], optional): an iterable of
|
156 |
+
GPU devices, among which to scatter.
|
157 |
+
chunk_sizes (Iterable[int], optional): sizes of chunks to be placed on
|
158 |
+
each device. It should match :attr:`devices` in length and sums to
|
159 |
+
``tensor.size(dim)``. If not specified, :attr:`tensor` will be divided
|
160 |
+
into equal chunks.
|
161 |
+
dim (int, optional): A dimension along which to chunk :attr:`tensor`.
|
162 |
+
Default: ``0``.
|
163 |
+
streams (Iterable[torch.cuda.Stream], optional): an iterable of Streams, among
|
164 |
+
which to execute the scatter. If not specified, the default stream will
|
165 |
+
be utilized.
|
166 |
+
out (Sequence[Tensor], optional, keyword-only): the GPU tensors to
|
167 |
+
store output results. Sizes of these tensors must match that of
|
168 |
+
:attr:`tensor`, except for :attr:`dim`, where the total size must
|
169 |
+
sum to ``tensor.size(dim)``.
|
170 |
+
|
171 |
+
.. note::
|
172 |
+
Exactly one of :attr:`devices` and :attr:`out` must be specified. When
|
173 |
+
:attr:`out` is specified, :attr:`chunk_sizes` must not be specified and
|
174 |
+
will be inferred from sizes of :attr:`out`.
|
175 |
+
|
176 |
+
Returns:
|
177 |
+
- If :attr:`devices` is specified,
|
178 |
+
a tuple containing chunks of :attr:`tensor`, placed on
|
179 |
+
:attr:`devices`.
|
180 |
+
- If :attr:`out` is specified,
|
181 |
+
a tuple containing :attr:`out` tensors, each containing a chunk of
|
182 |
+
:attr:`tensor`.
|
183 |
+
"""
|
184 |
+
tensor = _handle_complex(tensor)
|
185 |
+
if out is None:
|
186 |
+
devices = [_get_device_index(d) for d in devices]
|
187 |
+
return tuple(torch._C._scatter(tensor, devices, chunk_sizes, dim, streams))
|
188 |
+
else:
|
189 |
+
if devices is not None:
|
190 |
+
raise RuntimeError(
|
191 |
+
f"'devices' must not be specified when 'out' is specified, but got devices={devices}")
|
192 |
+
if chunk_sizes is not None:
|
193 |
+
raise RuntimeError(
|
194 |
+
f"'chunk_sizes' must not be specified when 'out' is specified, but got chunk_sizes={chunk_sizes}")
|
195 |
+
return tuple(torch._C._scatter_out(tensor, out, dim, streams))
|
196 |
+
|
197 |
+
|
198 |
+
def gather(tensors, dim=0, destination=None, *, out=None):
|
199 |
+
r"""Gathers tensors from multiple GPU devices.
|
200 |
+
|
201 |
+
Args:
|
202 |
+
tensors (Iterable[Tensor]): an iterable of tensors to gather.
|
203 |
+
Tensor sizes in all dimensions other than :attr:`dim` have to match.
|
204 |
+
dim (int, optional): a dimension along which the tensors will be
|
205 |
+
concatenated. Default: ``0``.
|
206 |
+
destination (torch.device, str, or int, optional): the output device.
|
207 |
+
Can be CPU or CUDA. Default: the current CUDA device.
|
208 |
+
out (Tensor, optional, keyword-only): the tensor to store gather result.
|
209 |
+
Its sizes must match those of :attr:`tensors`, except for :attr:`dim`,
|
210 |
+
where the size must equal ``sum(tensor.size(dim) for tensor in tensors)``.
|
211 |
+
Can be on CPU or CUDA.
|
212 |
+
|
213 |
+
.. note::
|
214 |
+
:attr:`destination` must not be specified when :attr:`out` is specified.
|
215 |
+
|
216 |
+
Returns:
|
217 |
+
- If :attr:`destination` is specified,
|
218 |
+
a tensor located on :attr:`destination` device, that is a result of
|
219 |
+
concatenating :attr:`tensors` along :attr:`dim`.
|
220 |
+
- If :attr:`out` is specified,
|
221 |
+
the :attr:`out` tensor, now containing results of concatenating
|
222 |
+
:attr:`tensors` along :attr:`dim`.
|
223 |
+
"""
|
224 |
+
tensors = [_handle_complex(t) for t in tensors]
|
225 |
+
if out is None:
|
226 |
+
if destination == -1:
|
227 |
+
warnings.warn(
|
228 |
+
'Using -1 to represent CPU tensor is deprecated. Please use a '
|
229 |
+
'device object or string instead, e.g., "cpu".')
|
230 |
+
destination = _get_device_index(destination, allow_cpu=True, optional=True)
|
231 |
+
return torch._C._gather(tensors, dim, destination)
|
232 |
+
else:
|
233 |
+
if destination is not None:
|
234 |
+
raise RuntimeError(
|
235 |
+
f"'destination' must not be specified when 'out' is specified, but got destination={destination}")
|
236 |
+
return torch._C._gather_out(tensors, out, dim)
|