Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step40/zero/13.mlp.dense_h_to_4h_swiglu.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step40/zero/13.mlp.dense_h_to_4h_swiglu.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step40/zero/13.mlp.dense_h_to_4h_swiglu.weight/fp32.pt +3 -0
- venv/lib/python3.10/site-packages/transformers/models/__init__.py +273 -0
- venv/lib/python3.10/site-packages/transformers/models/bit/__init__.py +73 -0
- venv/lib/python3.10/site-packages/transformers/models/bit/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/bit/__pycache__/configuration_bit.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/bit/__pycache__/convert_bit_to_pytorch.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/bit/__pycache__/image_processing_bit.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/bit/__pycache__/modeling_bit.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/bit/configuration_bit.py +136 -0
- venv/lib/python3.10/site-packages/transformers/models/bit/convert_bit_to_pytorch.py +178 -0
- venv/lib/python3.10/site-packages/transformers/models/bit/image_processing_bit.py +345 -0
- venv/lib/python3.10/site-packages/transformers/models/bit/modeling_bit.py +898 -0
- venv/lib/python3.10/site-packages/transformers/models/dinov2/__init__.py +61 -0
- venv/lib/python3.10/site-packages/transformers/models/dinov2/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/dinov2/__pycache__/configuration_dinov2.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/dinov2/__pycache__/convert_dinov2_to_hf.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/dinov2/__pycache__/modeling_dinov2.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/dinov2/configuration_dinov2.py +175 -0
- venv/lib/python3.10/site-packages/transformers/models/dinov2/convert_dinov2_to_hf.py +287 -0
- venv/lib/python3.10/site-packages/transformers/models/dinov2/modeling_dinov2.py +856 -0
- venv/lib/python3.10/site-packages/transformers/models/distilbert/__init__.py +166 -0
- venv/lib/python3.10/site-packages/transformers/models/distilbert/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/distilbert/__pycache__/configuration_distilbert.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/distilbert/__pycache__/modeling_distilbert.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/distilbert/__pycache__/modeling_flax_distilbert.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/distilbert/__pycache__/modeling_tf_distilbert.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/distilbert/__pycache__/tokenization_distilbert.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/distilbert/__pycache__/tokenization_distilbert_fast.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/distilbert/configuration_distilbert.py +140 -0
- venv/lib/python3.10/site-packages/transformers/models/distilbert/modeling_distilbert.py +1384 -0
- venv/lib/python3.10/site-packages/transformers/models/distilbert/modeling_flax_distilbert.py +895 -0
- venv/lib/python3.10/site-packages/transformers/models/distilbert/modeling_tf_distilbert.py +1139 -0
- venv/lib/python3.10/site-packages/transformers/models/distilbert/tokenization_distilbert.py +514 -0
- venv/lib/python3.10/site-packages/transformers/models/distilbert/tokenization_distilbert_fast.py +176 -0
- venv/lib/python3.10/site-packages/transformers/models/encoder_decoder/__init__.py +82 -0
- venv/lib/python3.10/site-packages/transformers/models/encoder_decoder/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/encoder_decoder/__pycache__/configuration_encoder_decoder.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/encoder_decoder/__pycache__/modeling_encoder_decoder.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/encoder_decoder/__pycache__/modeling_flax_encoder_decoder.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/encoder_decoder/__pycache__/modeling_tf_encoder_decoder.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/encoder_decoder/configuration_encoder_decoder.py +106 -0
- venv/lib/python3.10/site-packages/transformers/models/encoder_decoder/modeling_encoder_decoder.py +693 -0
- venv/lib/python3.10/site-packages/transformers/models/encoder_decoder/modeling_flax_encoder_decoder.py +899 -0
- venv/lib/python3.10/site-packages/transformers/models/encoder_decoder/modeling_tf_encoder_decoder.py +663 -0
- venv/lib/python3.10/site-packages/transformers/models/ibert/__init__.py +62 -0
- venv/lib/python3.10/site-packages/transformers/models/ibert/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/ibert/__pycache__/configuration_ibert.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/ibert/__pycache__/modeling_ibert.cpython-310.pyc +0 -0
ckpts/universal/global_step40/zero/13.mlp.dense_h_to_4h_swiglu.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5c58d9a4ba78bf6b0804db683329e66eb8ae93b01ff31f4f020feb4fad4514ee
|
3 |
+
size 33555612
|
ckpts/universal/global_step40/zero/13.mlp.dense_h_to_4h_swiglu.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ce326dc8c6d418331420b423287b45bfa55d60a768a3d87f44baf2125a288035
|
3 |
+
size 33555627
|
ckpts/universal/global_step40/zero/13.mlp.dense_h_to_4h_swiglu.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:058ce3d1d39eba8b80c35b26ea61854f1330e05b249b0e8edb3e8a41ed44893d
|
3 |
+
size 33555533
|
venv/lib/python3.10/site-packages/transformers/models/__init__.py
ADDED
@@ -0,0 +1,273 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from . import (
|
16 |
+
albert,
|
17 |
+
align,
|
18 |
+
altclip,
|
19 |
+
audio_spectrogram_transformer,
|
20 |
+
auto,
|
21 |
+
autoformer,
|
22 |
+
bark,
|
23 |
+
bart,
|
24 |
+
barthez,
|
25 |
+
bartpho,
|
26 |
+
beit,
|
27 |
+
bert,
|
28 |
+
bert_generation,
|
29 |
+
bert_japanese,
|
30 |
+
bertweet,
|
31 |
+
big_bird,
|
32 |
+
bigbird_pegasus,
|
33 |
+
biogpt,
|
34 |
+
bit,
|
35 |
+
blenderbot,
|
36 |
+
blenderbot_small,
|
37 |
+
blip,
|
38 |
+
blip_2,
|
39 |
+
bloom,
|
40 |
+
bridgetower,
|
41 |
+
bros,
|
42 |
+
byt5,
|
43 |
+
camembert,
|
44 |
+
canine,
|
45 |
+
chinese_clip,
|
46 |
+
clap,
|
47 |
+
clip,
|
48 |
+
clipseg,
|
49 |
+
clvp,
|
50 |
+
code_llama,
|
51 |
+
codegen,
|
52 |
+
cohere,
|
53 |
+
conditional_detr,
|
54 |
+
convbert,
|
55 |
+
convnext,
|
56 |
+
convnextv2,
|
57 |
+
cpm,
|
58 |
+
cpmant,
|
59 |
+
ctrl,
|
60 |
+
cvt,
|
61 |
+
data2vec,
|
62 |
+
dbrx,
|
63 |
+
deberta,
|
64 |
+
deberta_v2,
|
65 |
+
decision_transformer,
|
66 |
+
deformable_detr,
|
67 |
+
deit,
|
68 |
+
deprecated,
|
69 |
+
depth_anything,
|
70 |
+
deta,
|
71 |
+
detr,
|
72 |
+
dialogpt,
|
73 |
+
dinat,
|
74 |
+
dinov2,
|
75 |
+
distilbert,
|
76 |
+
dit,
|
77 |
+
donut,
|
78 |
+
dpr,
|
79 |
+
dpt,
|
80 |
+
efficientformer,
|
81 |
+
efficientnet,
|
82 |
+
electra,
|
83 |
+
encodec,
|
84 |
+
encoder_decoder,
|
85 |
+
ernie,
|
86 |
+
ernie_m,
|
87 |
+
esm,
|
88 |
+
falcon,
|
89 |
+
fastspeech2_conformer,
|
90 |
+
flaubert,
|
91 |
+
flava,
|
92 |
+
fnet,
|
93 |
+
focalnet,
|
94 |
+
fsmt,
|
95 |
+
funnel,
|
96 |
+
fuyu,
|
97 |
+
gemma,
|
98 |
+
git,
|
99 |
+
glpn,
|
100 |
+
gpt2,
|
101 |
+
gpt_bigcode,
|
102 |
+
gpt_neo,
|
103 |
+
gpt_neox,
|
104 |
+
gpt_neox_japanese,
|
105 |
+
gpt_sw3,
|
106 |
+
gptj,
|
107 |
+
gptsan_japanese,
|
108 |
+
graphormer,
|
109 |
+
grounding_dino,
|
110 |
+
groupvit,
|
111 |
+
herbert,
|
112 |
+
hubert,
|
113 |
+
ibert,
|
114 |
+
idefics,
|
115 |
+
idefics2,
|
116 |
+
imagegpt,
|
117 |
+
informer,
|
118 |
+
instructblip,
|
119 |
+
jamba,
|
120 |
+
jukebox,
|
121 |
+
kosmos2,
|
122 |
+
layoutlm,
|
123 |
+
layoutlmv2,
|
124 |
+
layoutlmv3,
|
125 |
+
layoutxlm,
|
126 |
+
led,
|
127 |
+
levit,
|
128 |
+
lilt,
|
129 |
+
llama,
|
130 |
+
llava,
|
131 |
+
llava_next,
|
132 |
+
longformer,
|
133 |
+
longt5,
|
134 |
+
luke,
|
135 |
+
lxmert,
|
136 |
+
m2m_100,
|
137 |
+
mamba,
|
138 |
+
marian,
|
139 |
+
markuplm,
|
140 |
+
mask2former,
|
141 |
+
maskformer,
|
142 |
+
mbart,
|
143 |
+
mbart50,
|
144 |
+
mega,
|
145 |
+
megatron_bert,
|
146 |
+
megatron_gpt2,
|
147 |
+
mgp_str,
|
148 |
+
mistral,
|
149 |
+
mixtral,
|
150 |
+
mluke,
|
151 |
+
mobilebert,
|
152 |
+
mobilenet_v1,
|
153 |
+
mobilenet_v2,
|
154 |
+
mobilevit,
|
155 |
+
mobilevitv2,
|
156 |
+
mpnet,
|
157 |
+
mpt,
|
158 |
+
mra,
|
159 |
+
mt5,
|
160 |
+
musicgen,
|
161 |
+
musicgen_melody,
|
162 |
+
mvp,
|
163 |
+
nat,
|
164 |
+
nezha,
|
165 |
+
nllb,
|
166 |
+
nllb_moe,
|
167 |
+
nougat,
|
168 |
+
nystromformer,
|
169 |
+
olmo,
|
170 |
+
oneformer,
|
171 |
+
openai,
|
172 |
+
opt,
|
173 |
+
owlv2,
|
174 |
+
owlvit,
|
175 |
+
patchtsmixer,
|
176 |
+
patchtst,
|
177 |
+
pegasus,
|
178 |
+
pegasus_x,
|
179 |
+
perceiver,
|
180 |
+
persimmon,
|
181 |
+
phi,
|
182 |
+
phobert,
|
183 |
+
pix2struct,
|
184 |
+
plbart,
|
185 |
+
poolformer,
|
186 |
+
pop2piano,
|
187 |
+
prophetnet,
|
188 |
+
pvt,
|
189 |
+
pvt_v2,
|
190 |
+
qdqbert,
|
191 |
+
qwen2,
|
192 |
+
qwen2_moe,
|
193 |
+
rag,
|
194 |
+
realm,
|
195 |
+
recurrent_gemma,
|
196 |
+
reformer,
|
197 |
+
regnet,
|
198 |
+
rembert,
|
199 |
+
resnet,
|
200 |
+
roberta,
|
201 |
+
roberta_prelayernorm,
|
202 |
+
roc_bert,
|
203 |
+
roformer,
|
204 |
+
rwkv,
|
205 |
+
sam,
|
206 |
+
seamless_m4t,
|
207 |
+
seamless_m4t_v2,
|
208 |
+
segformer,
|
209 |
+
seggpt,
|
210 |
+
sew,
|
211 |
+
sew_d,
|
212 |
+
siglip,
|
213 |
+
speech_encoder_decoder,
|
214 |
+
speech_to_text,
|
215 |
+
speech_to_text_2,
|
216 |
+
speecht5,
|
217 |
+
splinter,
|
218 |
+
squeezebert,
|
219 |
+
stablelm,
|
220 |
+
starcoder2,
|
221 |
+
superpoint,
|
222 |
+
swiftformer,
|
223 |
+
swin,
|
224 |
+
swin2sr,
|
225 |
+
swinv2,
|
226 |
+
switch_transformers,
|
227 |
+
t5,
|
228 |
+
table_transformer,
|
229 |
+
tapas,
|
230 |
+
time_series_transformer,
|
231 |
+
timesformer,
|
232 |
+
timm_backbone,
|
233 |
+
trocr,
|
234 |
+
tvlt,
|
235 |
+
tvp,
|
236 |
+
udop,
|
237 |
+
umt5,
|
238 |
+
unispeech,
|
239 |
+
unispeech_sat,
|
240 |
+
univnet,
|
241 |
+
upernet,
|
242 |
+
videomae,
|
243 |
+
vilt,
|
244 |
+
vipllava,
|
245 |
+
vision_encoder_decoder,
|
246 |
+
vision_text_dual_encoder,
|
247 |
+
visual_bert,
|
248 |
+
vit,
|
249 |
+
vit_hybrid,
|
250 |
+
vit_mae,
|
251 |
+
vit_msn,
|
252 |
+
vitdet,
|
253 |
+
vitmatte,
|
254 |
+
vits,
|
255 |
+
vivit,
|
256 |
+
wav2vec2,
|
257 |
+
wav2vec2_bert,
|
258 |
+
wav2vec2_conformer,
|
259 |
+
wav2vec2_phoneme,
|
260 |
+
wav2vec2_with_lm,
|
261 |
+
wavlm,
|
262 |
+
whisper,
|
263 |
+
x_clip,
|
264 |
+
xglm,
|
265 |
+
xlm,
|
266 |
+
xlm_prophetnet,
|
267 |
+
xlm_roberta,
|
268 |
+
xlm_roberta_xl,
|
269 |
+
xlnet,
|
270 |
+
xmod,
|
271 |
+
yolos,
|
272 |
+
yoso,
|
273 |
+
)
|
venv/lib/python3.10/site-packages/transformers/models/bit/__init__.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
|
17 |
+
|
18 |
+
|
19 |
+
_import_structure = {"configuration_bit": ["BIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BitConfig", "BitOnnxConfig"]}
|
20 |
+
|
21 |
+
try:
|
22 |
+
if not is_torch_available():
|
23 |
+
raise OptionalDependencyNotAvailable()
|
24 |
+
except OptionalDependencyNotAvailable:
|
25 |
+
pass
|
26 |
+
else:
|
27 |
+
_import_structure["modeling_bit"] = [
|
28 |
+
"BIT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
29 |
+
"BitForImageClassification",
|
30 |
+
"BitModel",
|
31 |
+
"BitPreTrainedModel",
|
32 |
+
"BitBackbone",
|
33 |
+
]
|
34 |
+
|
35 |
+
|
36 |
+
try:
|
37 |
+
if not is_vision_available():
|
38 |
+
raise OptionalDependencyNotAvailable()
|
39 |
+
except OptionalDependencyNotAvailable:
|
40 |
+
pass
|
41 |
+
else:
|
42 |
+
_import_structure["image_processing_bit"] = ["BitImageProcessor"]
|
43 |
+
|
44 |
+
|
45 |
+
if TYPE_CHECKING:
|
46 |
+
from .configuration_bit import BIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BitConfig, BitOnnxConfig
|
47 |
+
|
48 |
+
try:
|
49 |
+
if not is_torch_available():
|
50 |
+
raise OptionalDependencyNotAvailable()
|
51 |
+
except OptionalDependencyNotAvailable:
|
52 |
+
pass
|
53 |
+
else:
|
54 |
+
from .modeling_bit import (
|
55 |
+
BIT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
56 |
+
BitBackbone,
|
57 |
+
BitForImageClassification,
|
58 |
+
BitModel,
|
59 |
+
BitPreTrainedModel,
|
60 |
+
)
|
61 |
+
|
62 |
+
try:
|
63 |
+
if not is_vision_available():
|
64 |
+
raise OptionalDependencyNotAvailable()
|
65 |
+
except OptionalDependencyNotAvailable:
|
66 |
+
pass
|
67 |
+
else:
|
68 |
+
from .image_processing_bit import BitImageProcessor
|
69 |
+
|
70 |
+
else:
|
71 |
+
import sys
|
72 |
+
|
73 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
|
venv/lib/python3.10/site-packages/transformers/models/bit/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.14 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/bit/__pycache__/configuration_bit.cpython-310.pyc
ADDED
Binary file (5.57 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/bit/__pycache__/convert_bit_to_pytorch.cpython-310.pyc
ADDED
Binary file (4.51 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/bit/__pycache__/image_processing_bit.cpython-310.pyc
ADDED
Binary file (13.2 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/bit/__pycache__/modeling_bit.cpython-310.pyc
ADDED
Binary file (23.8 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/bit/configuration_bit.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" BiT model configuration"""
|
16 |
+
|
17 |
+
from ...configuration_utils import PretrainedConfig
|
18 |
+
from ...utils import logging
|
19 |
+
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
|
20 |
+
|
21 |
+
|
22 |
+
logger = logging.get_logger(__name__)
|
23 |
+
|
24 |
+
|
25 |
+
from ..deprecated._archive_maps import BIT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
26 |
+
|
27 |
+
|
28 |
+
class BitConfig(BackboneConfigMixin, PretrainedConfig):
|
29 |
+
r"""
|
30 |
+
This is the configuration class to store the configuration of a [`BitModel`]. It is used to instantiate an BiT
|
31 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
32 |
+
defaults will yield a similar configuration to that of the BiT
|
33 |
+
[google/bit-50](https://huggingface.co/google/bit-50) architecture.
|
34 |
+
|
35 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
36 |
+
documentation from [`PretrainedConfig`] for more information.
|
37 |
+
|
38 |
+
Args:
|
39 |
+
num_channels (`int`, *optional*, defaults to 3):
|
40 |
+
The number of input channels.
|
41 |
+
embedding_size (`int`, *optional*, defaults to 64):
|
42 |
+
Dimensionality (hidden size) for the embedding layer.
|
43 |
+
hidden_sizes (`List[int]`, *optional*, defaults to `[256, 512, 1024, 2048]`):
|
44 |
+
Dimensionality (hidden size) at each stage.
|
45 |
+
depths (`List[int]`, *optional*, defaults to `[3, 4, 6, 3]`):
|
46 |
+
Depth (number of layers) for each stage.
|
47 |
+
layer_type (`str`, *optional*, defaults to `"preactivation"`):
|
48 |
+
The layer to use, it can be either `"preactivation"` or `"bottleneck"`.
|
49 |
+
hidden_act (`str`, *optional*, defaults to `"relu"`):
|
50 |
+
The non-linear activation function in each block. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"`
|
51 |
+
are supported.
|
52 |
+
global_padding (`str`, *optional*):
|
53 |
+
Padding strategy to use for the convolutional layers. Can be either `"valid"`, `"same"`, or `None`.
|
54 |
+
num_groups (`int`, *optional*, defaults to 32):
|
55 |
+
Number of groups used for the `BitGroupNormActivation` layers.
|
56 |
+
drop_path_rate (`float`, *optional*, defaults to 0.0):
|
57 |
+
The drop path rate for the stochastic depth.
|
58 |
+
embedding_dynamic_padding (`bool`, *optional*, defaults to `False`):
|
59 |
+
Whether or not to make use of dynamic padding for the embedding layer.
|
60 |
+
output_stride (`int`, *optional*, defaults to 32):
|
61 |
+
The output stride of the model.
|
62 |
+
width_factor (`int`, *optional*, defaults to 1):
|
63 |
+
The width factor for the model.
|
64 |
+
out_features (`List[str]`, *optional*):
|
65 |
+
If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc.
|
66 |
+
(depending on how many stages the model has). If unset and `out_indices` is set, will default to the
|
67 |
+
corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the
|
68 |
+
same order as defined in the `stage_names` attribute.
|
69 |
+
out_indices (`List[int]`, *optional*):
|
70 |
+
If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how
|
71 |
+
many stages the model has). If unset and `out_features` is set, will default to the corresponding stages.
|
72 |
+
If unset and `out_features` is unset, will default to the last stage. Must be in the
|
73 |
+
same order as defined in the `stage_names` attribute.
|
74 |
+
|
75 |
+
Example:
|
76 |
+
```python
|
77 |
+
>>> from transformers import BitConfig, BitModel
|
78 |
+
|
79 |
+
>>> # Initializing a BiT bit-50 style configuration
|
80 |
+
>>> configuration = BitConfig()
|
81 |
+
|
82 |
+
>>> # Initializing a model (with random weights) from the bit-50 style configuration
|
83 |
+
>>> model = BitModel(configuration)
|
84 |
+
|
85 |
+
>>> # Accessing the model configuration
|
86 |
+
>>> configuration = model.config
|
87 |
+
```
|
88 |
+
"""
|
89 |
+
|
90 |
+
model_type = "bit"
|
91 |
+
layer_types = ["preactivation", "bottleneck"]
|
92 |
+
supported_padding = ["SAME", "VALID"]
|
93 |
+
|
94 |
+
def __init__(
|
95 |
+
self,
|
96 |
+
num_channels=3,
|
97 |
+
embedding_size=64,
|
98 |
+
hidden_sizes=[256, 512, 1024, 2048],
|
99 |
+
depths=[3, 4, 6, 3],
|
100 |
+
layer_type="preactivation",
|
101 |
+
hidden_act="relu",
|
102 |
+
global_padding=None,
|
103 |
+
num_groups=32,
|
104 |
+
drop_path_rate=0.0,
|
105 |
+
embedding_dynamic_padding=False,
|
106 |
+
output_stride=32,
|
107 |
+
width_factor=1,
|
108 |
+
out_features=None,
|
109 |
+
out_indices=None,
|
110 |
+
**kwargs,
|
111 |
+
):
|
112 |
+
super().__init__(**kwargs)
|
113 |
+
if layer_type not in self.layer_types:
|
114 |
+
raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types)}")
|
115 |
+
if global_padding is not None:
|
116 |
+
if global_padding.upper() in self.supported_padding:
|
117 |
+
global_padding = global_padding.upper()
|
118 |
+
else:
|
119 |
+
raise ValueError(f"Padding strategy {global_padding} not supported")
|
120 |
+
self.num_channels = num_channels
|
121 |
+
self.embedding_size = embedding_size
|
122 |
+
self.hidden_sizes = hidden_sizes
|
123 |
+
self.depths = depths
|
124 |
+
self.layer_type = layer_type
|
125 |
+
self.hidden_act = hidden_act
|
126 |
+
self.global_padding = global_padding
|
127 |
+
self.num_groups = num_groups
|
128 |
+
self.drop_path_rate = drop_path_rate
|
129 |
+
self.embedding_dynamic_padding = embedding_dynamic_padding
|
130 |
+
self.output_stride = output_stride
|
131 |
+
self.width_factor = width_factor
|
132 |
+
|
133 |
+
self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, len(depths) + 1)]
|
134 |
+
self._out_features, self._out_indices = get_aligned_output_features_output_indices(
|
135 |
+
out_features=out_features, out_indices=out_indices, stage_names=self.stage_names
|
136 |
+
)
|
venv/lib/python3.10/site-packages/transformers/models/bit/convert_bit_to_pytorch.py
ADDED
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Convert BiT checkpoints from the timm library."""
|
16 |
+
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import json
|
20 |
+
from pathlib import Path
|
21 |
+
|
22 |
+
import requests
|
23 |
+
import torch
|
24 |
+
from huggingface_hub import hf_hub_download
|
25 |
+
from PIL import Image
|
26 |
+
from timm import create_model
|
27 |
+
from timm.data import resolve_data_config
|
28 |
+
from timm.data.transforms_factory import create_transform
|
29 |
+
|
30 |
+
from transformers import BitConfig, BitForImageClassification, BitImageProcessor
|
31 |
+
from transformers.image_utils import PILImageResampling
|
32 |
+
from transformers.utils import logging
|
33 |
+
|
34 |
+
|
35 |
+
logging.set_verbosity_info()
|
36 |
+
logger = logging.get_logger(__name__)
|
37 |
+
|
38 |
+
|
39 |
+
def get_config(model_name):
|
40 |
+
repo_id = "huggingface/label-files"
|
41 |
+
filename = "imagenet-1k-id2label.json"
|
42 |
+
id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
|
43 |
+
id2label = {int(k): v for k, v in id2label.items()}
|
44 |
+
label2id = {v: k for k, v in id2label.items()}
|
45 |
+
|
46 |
+
conv_layer = "std_conv" if "bit" in model_name else False
|
47 |
+
|
48 |
+
# note that when using BiT as backbone for ViT-hybrid checkpoints,
|
49 |
+
# one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same",
|
50 |
+
# config.conv_layer = "std_conv_same"
|
51 |
+
config = BitConfig(
|
52 |
+
conv_layer=conv_layer,
|
53 |
+
num_labels=1000,
|
54 |
+
id2label=id2label,
|
55 |
+
label2id=label2id,
|
56 |
+
)
|
57 |
+
|
58 |
+
return config
|
59 |
+
|
60 |
+
|
61 |
+
def rename_key(name):
|
62 |
+
if "stem.conv" in name:
|
63 |
+
name = name.replace("stem.conv", "bit.embedder.convolution")
|
64 |
+
if "blocks" in name:
|
65 |
+
name = name.replace("blocks", "layers")
|
66 |
+
if "head.fc" in name:
|
67 |
+
name = name.replace("head.fc", "classifier.1")
|
68 |
+
if name.startswith("norm"):
|
69 |
+
name = "bit." + name
|
70 |
+
if "bit" not in name and "classifier" not in name:
|
71 |
+
name = "bit.encoder." + name
|
72 |
+
|
73 |
+
return name
|
74 |
+
|
75 |
+
|
76 |
+
# We will verify our results on an image of cute cats
|
77 |
+
def prepare_img():
|
78 |
+
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
79 |
+
im = Image.open(requests.get(url, stream=True).raw)
|
80 |
+
return im
|
81 |
+
|
82 |
+
|
83 |
+
@torch.no_grad()
|
84 |
+
def convert_bit_checkpoint(model_name, pytorch_dump_folder_path, push_to_hub=False):
|
85 |
+
"""
|
86 |
+
Copy/paste/tweak model's weights to our BiT structure.
|
87 |
+
"""
|
88 |
+
|
89 |
+
# define default BiT configuration
|
90 |
+
config = get_config(model_name)
|
91 |
+
|
92 |
+
# load original model from timm
|
93 |
+
timm_model = create_model(model_name, pretrained=True)
|
94 |
+
timm_model.eval()
|
95 |
+
|
96 |
+
# load state_dict of original model
|
97 |
+
state_dict = timm_model.state_dict()
|
98 |
+
for key in state_dict.copy().keys():
|
99 |
+
val = state_dict.pop(key)
|
100 |
+
state_dict[rename_key(key)] = val.squeeze() if "head" in key else val
|
101 |
+
|
102 |
+
# load HuggingFace model
|
103 |
+
model = BitForImageClassification(config)
|
104 |
+
model.eval()
|
105 |
+
model.load_state_dict(state_dict)
|
106 |
+
|
107 |
+
# create image processor
|
108 |
+
transform = create_transform(**resolve_data_config({}, model=timm_model))
|
109 |
+
timm_transforms = transform.transforms
|
110 |
+
|
111 |
+
pillow_resamplings = {
|
112 |
+
"bilinear": PILImageResampling.BILINEAR,
|
113 |
+
"bicubic": PILImageResampling.BICUBIC,
|
114 |
+
"nearest": PILImageResampling.NEAREST,
|
115 |
+
}
|
116 |
+
|
117 |
+
processor = BitImageProcessor(
|
118 |
+
do_resize=True,
|
119 |
+
size={"shortest_edge": timm_transforms[0].size},
|
120 |
+
resample=pillow_resamplings[timm_transforms[0].interpolation.value],
|
121 |
+
do_center_crop=True,
|
122 |
+
crop_size={"height": timm_transforms[1].size[0], "width": timm_transforms[1].size[1]},
|
123 |
+
do_normalize=True,
|
124 |
+
image_mean=timm_transforms[-1].mean.tolist(),
|
125 |
+
image_std=timm_transforms[-1].std.tolist(),
|
126 |
+
)
|
127 |
+
|
128 |
+
image = prepare_img()
|
129 |
+
timm_pixel_values = transform(image).unsqueeze(0)
|
130 |
+
pixel_values = processor(image, return_tensors="pt").pixel_values
|
131 |
+
|
132 |
+
# verify pixel values
|
133 |
+
assert torch.allclose(timm_pixel_values, pixel_values)
|
134 |
+
|
135 |
+
# verify logits
|
136 |
+
with torch.no_grad():
|
137 |
+
outputs = model(pixel_values)
|
138 |
+
logits = outputs.logits
|
139 |
+
|
140 |
+
print("Logits:", logits[0, :3])
|
141 |
+
print("Predicted class:", model.config.id2label[logits.argmax(-1).item()])
|
142 |
+
timm_logits = timm_model(pixel_values)
|
143 |
+
assert timm_logits.shape == outputs.logits.shape
|
144 |
+
assert torch.allclose(timm_logits, outputs.logits, atol=1e-3)
|
145 |
+
print("Looks ok!")
|
146 |
+
|
147 |
+
if pytorch_dump_folder_path is not None:
|
148 |
+
Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
|
149 |
+
print(f"Saving model {model_name} and processor to {pytorch_dump_folder_path}")
|
150 |
+
model.save_pretrained(pytorch_dump_folder_path)
|
151 |
+
processor.save_pretrained(pytorch_dump_folder_path)
|
152 |
+
|
153 |
+
if push_to_hub:
|
154 |
+
print(f"Pushing model {model_name} and processor to the hub")
|
155 |
+
model.push_to_hub(f"ybelkada/{model_name}")
|
156 |
+
processor.push_to_hub(f"ybelkada/{model_name}")
|
157 |
+
|
158 |
+
|
159 |
+
if __name__ == "__main__":
|
160 |
+
parser = argparse.ArgumentParser()
|
161 |
+
# Required parameters
|
162 |
+
parser.add_argument(
|
163 |
+
"--model_name",
|
164 |
+
default="resnetv2_50x1_bitm",
|
165 |
+
type=str,
|
166 |
+
help="Name of the BiT timm model you'd like to convert.",
|
167 |
+
)
|
168 |
+
parser.add_argument(
|
169 |
+
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
|
170 |
+
)
|
171 |
+
parser.add_argument(
|
172 |
+
"--push_to_hub",
|
173 |
+
action="store_true",
|
174 |
+
help="Whether to push the model to the hub.",
|
175 |
+
)
|
176 |
+
|
177 |
+
args = parser.parse_args()
|
178 |
+
convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
|
venv/lib/python3.10/site-packages/transformers/models/bit/image_processing_bit.py
ADDED
@@ -0,0 +1,345 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Image processor class for BiT."""
|
16 |
+
|
17 |
+
from typing import Dict, List, Optional, Union
|
18 |
+
|
19 |
+
import numpy as np
|
20 |
+
|
21 |
+
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
|
22 |
+
from ...image_transforms import (
|
23 |
+
convert_to_rgb,
|
24 |
+
get_resize_output_image_size,
|
25 |
+
resize,
|
26 |
+
to_channel_dimension_format,
|
27 |
+
)
|
28 |
+
from ...image_utils import (
|
29 |
+
OPENAI_CLIP_MEAN,
|
30 |
+
OPENAI_CLIP_STD,
|
31 |
+
ChannelDimension,
|
32 |
+
ImageInput,
|
33 |
+
PILImageResampling,
|
34 |
+
infer_channel_dimension_format,
|
35 |
+
is_scaled_image,
|
36 |
+
make_list_of_images,
|
37 |
+
to_numpy_array,
|
38 |
+
valid_images,
|
39 |
+
validate_kwargs,
|
40 |
+
validate_preprocess_arguments,
|
41 |
+
)
|
42 |
+
from ...utils import TensorType, is_vision_available, logging
|
43 |
+
|
44 |
+
|
45 |
+
logger = logging.get_logger(__name__)
|
46 |
+
|
47 |
+
|
48 |
+
if is_vision_available():
|
49 |
+
import PIL
|
50 |
+
|
51 |
+
|
52 |
+
class BitImageProcessor(BaseImageProcessor):
|
53 |
+
r"""
|
54 |
+
Constructs a BiT image processor.
|
55 |
+
|
56 |
+
Args:
|
57 |
+
do_resize (`bool`, *optional*, defaults to `True`):
|
58 |
+
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by
|
59 |
+
`do_resize` in the `preprocess` method.
|
60 |
+
size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`):
|
61 |
+
Size of the image after resizing. The shortest edge of the image is resized to size["shortest_edge"], with
|
62 |
+
the longest edge resized to keep the input aspect ratio. Can be overridden by `size` in the `preprocess`
|
63 |
+
method.
|
64 |
+
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
|
65 |
+
Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method.
|
66 |
+
do_center_crop (`bool`, *optional*, defaults to `True`):
|
67 |
+
Whether to center crop the image to the specified `crop_size`. Can be overridden by `do_center_crop` in the
|
68 |
+
`preprocess` method.
|
69 |
+
crop_size (`Dict[str, int]` *optional*, defaults to 224):
|
70 |
+
Size of the output image after applying `center_crop`. Can be overridden by `crop_size` in the `preprocess`
|
71 |
+
method.
|
72 |
+
do_rescale (`bool`, *optional*, defaults to `True`):
|
73 |
+
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in
|
74 |
+
the `preprocess` method.
|
75 |
+
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
|
76 |
+
Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess`
|
77 |
+
method.
|
78 |
+
do_normalize:
|
79 |
+
Whether to normalize the image. Can be overridden by `do_normalize` in the `preprocess` method.
|
80 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `OPENAI_CLIP_MEAN`):
|
81 |
+
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
|
82 |
+
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
|
83 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `OPENAI_CLIP_MEAN`):
|
84 |
+
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
|
85 |
+
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
|
86 |
+
Can be overridden by the `image_std` parameter in the `preprocess` method.
|
87 |
+
do_convert_rgb (`bool`, *optional*, defaults to `True`):
|
88 |
+
Whether to convert the image to RGB.
|
89 |
+
"""
|
90 |
+
|
91 |
+
model_input_names = ["pixel_values"]
|
92 |
+
|
93 |
+
def __init__(
|
94 |
+
self,
|
95 |
+
do_resize: bool = True,
|
96 |
+
size: Dict[str, int] = None,
|
97 |
+
resample: PILImageResampling = PILImageResampling.BICUBIC,
|
98 |
+
do_center_crop: bool = True,
|
99 |
+
crop_size: Dict[str, int] = None,
|
100 |
+
do_rescale: bool = True,
|
101 |
+
rescale_factor: Union[int, float] = 1 / 255,
|
102 |
+
do_normalize: bool = True,
|
103 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
104 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
105 |
+
do_convert_rgb: bool = True,
|
106 |
+
**kwargs,
|
107 |
+
) -> None:
|
108 |
+
super().__init__(**kwargs)
|
109 |
+
size = size if size is not None else {"shortest_edge": 224}
|
110 |
+
size = get_size_dict(size, default_to_square=False)
|
111 |
+
crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
|
112 |
+
crop_size = get_size_dict(crop_size, default_to_square=True, param_name="crop_size")
|
113 |
+
|
114 |
+
self.do_resize = do_resize
|
115 |
+
self.size = size
|
116 |
+
self.resample = resample
|
117 |
+
self.do_center_crop = do_center_crop
|
118 |
+
self.crop_size = crop_size
|
119 |
+
self.do_rescale = do_rescale
|
120 |
+
self.rescale_factor = rescale_factor
|
121 |
+
self.do_normalize = do_normalize
|
122 |
+
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
|
123 |
+
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
|
124 |
+
self.do_convert_rgb = do_convert_rgb
|
125 |
+
self._valid_processor_keys = [
|
126 |
+
"images",
|
127 |
+
"do_resize",
|
128 |
+
"size",
|
129 |
+
"resample",
|
130 |
+
"do_center_crop",
|
131 |
+
"crop_size",
|
132 |
+
"do_rescale",
|
133 |
+
"rescale_factor",
|
134 |
+
"do_normalize",
|
135 |
+
"image_mean",
|
136 |
+
"image_std",
|
137 |
+
"do_convert_rgb",
|
138 |
+
"return_tensors",
|
139 |
+
"data_format",
|
140 |
+
"input_data_format",
|
141 |
+
]
|
142 |
+
|
143 |
+
# Copied from transformers.models.clip.image_processing_clip.CLIPImageProcessor.resize
|
144 |
+
def resize(
|
145 |
+
self,
|
146 |
+
image: np.ndarray,
|
147 |
+
size: Dict[str, int],
|
148 |
+
resample: PILImageResampling = PILImageResampling.BICUBIC,
|
149 |
+
data_format: Optional[Union[str, ChannelDimension]] = None,
|
150 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
151 |
+
**kwargs,
|
152 |
+
) -> np.ndarray:
|
153 |
+
"""
|
154 |
+
Resize an image. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge
|
155 |
+
resized to keep the input aspect ratio.
|
156 |
+
|
157 |
+
Args:
|
158 |
+
image (`np.ndarray`):
|
159 |
+
Image to resize.
|
160 |
+
size (`Dict[str, int]`):
|
161 |
+
Size of the output image.
|
162 |
+
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
|
163 |
+
Resampling filter to use when resiizing the image.
|
164 |
+
data_format (`str` or `ChannelDimension`, *optional*):
|
165 |
+
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
166 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
167 |
+
The channel dimension format of the input image. If not provided, it will be inferred.
|
168 |
+
"""
|
169 |
+
default_to_square = True
|
170 |
+
if "shortest_edge" in size:
|
171 |
+
size = size["shortest_edge"]
|
172 |
+
default_to_square = False
|
173 |
+
elif "height" in size and "width" in size:
|
174 |
+
size = (size["height"], size["width"])
|
175 |
+
else:
|
176 |
+
raise ValueError("Size must contain either 'shortest_edge' or 'height' and 'width'.")
|
177 |
+
|
178 |
+
output_size = get_resize_output_image_size(
|
179 |
+
image,
|
180 |
+
size=size,
|
181 |
+
default_to_square=default_to_square,
|
182 |
+
input_data_format=input_data_format,
|
183 |
+
)
|
184 |
+
return resize(
|
185 |
+
image,
|
186 |
+
size=output_size,
|
187 |
+
resample=resample,
|
188 |
+
data_format=data_format,
|
189 |
+
input_data_format=input_data_format,
|
190 |
+
**kwargs,
|
191 |
+
)
|
192 |
+
|
193 |
+
def preprocess(
|
194 |
+
self,
|
195 |
+
images: ImageInput,
|
196 |
+
do_resize: bool = None,
|
197 |
+
size: Dict[str, int] = None,
|
198 |
+
resample: PILImageResampling = None,
|
199 |
+
do_center_crop: bool = None,
|
200 |
+
crop_size: int = None,
|
201 |
+
do_rescale: bool = None,
|
202 |
+
rescale_factor: float = None,
|
203 |
+
do_normalize: bool = None,
|
204 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
205 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
206 |
+
do_convert_rgb: bool = None,
|
207 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
208 |
+
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
|
209 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
210 |
+
**kwargs,
|
211 |
+
) -> PIL.Image.Image:
|
212 |
+
"""
|
213 |
+
Preprocess an image or batch of images.
|
214 |
+
|
215 |
+
Args:
|
216 |
+
images (`ImageInput`):
|
217 |
+
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
|
218 |
+
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
|
219 |
+
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
|
220 |
+
Whether to resize the image.
|
221 |
+
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
|
222 |
+
Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with
|
223 |
+
the longest edge resized to keep the input aspect ratio.
|
224 |
+
resample (`int`, *optional*, defaults to `self.resample`):
|
225 |
+
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
|
226 |
+
has an effect if `do_resize` is set to `True`.
|
227 |
+
do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
|
228 |
+
Whether to center crop the image.
|
229 |
+
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
|
230 |
+
Size of the center crop. Only has an effect if `do_center_crop` is set to `True`.
|
231 |
+
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
|
232 |
+
Whether to rescale the image.
|
233 |
+
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
|
234 |
+
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
|
235 |
+
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
|
236 |
+
Whether to normalize the image.
|
237 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
|
238 |
+
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
|
239 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
240 |
+
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
|
241 |
+
`True`.
|
242 |
+
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
|
243 |
+
Whether to convert the image to RGB.
|
244 |
+
return_tensors (`str` or `TensorType`, *optional*):
|
245 |
+
The type of tensors to return. Can be one of:
|
246 |
+
- Unset: Return a list of `np.ndarray`.
|
247 |
+
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
|
248 |
+
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
|
249 |
+
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
|
250 |
+
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
|
251 |
+
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
|
252 |
+
The channel dimension format for the output image. Can be one of:
|
253 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
254 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
255 |
+
- Unset: Use the channel dimension format of the input image.
|
256 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
257 |
+
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
258 |
+
from the input image. Can be one of:
|
259 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
260 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
261 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
262 |
+
"""
|
263 |
+
do_resize = do_resize if do_resize is not None else self.do_resize
|
264 |
+
size = size if size is not None else self.size
|
265 |
+
size = get_size_dict(size, param_name="size", default_to_square=False)
|
266 |
+
resample = resample if resample is not None else self.resample
|
267 |
+
do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
|
268 |
+
crop_size = crop_size if crop_size is not None else self.crop_size
|
269 |
+
crop_size = get_size_dict(crop_size, param_name="crop_size", default_to_square=True)
|
270 |
+
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
|
271 |
+
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
|
272 |
+
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
|
273 |
+
image_mean = image_mean if image_mean is not None else self.image_mean
|
274 |
+
image_std = image_std if image_std is not None else self.image_std
|
275 |
+
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
|
276 |
+
|
277 |
+
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
278 |
+
|
279 |
+
images = make_list_of_images(images)
|
280 |
+
|
281 |
+
if not valid_images(images):
|
282 |
+
raise ValueError(
|
283 |
+
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
284 |
+
"torch.Tensor, tf.Tensor or jax.ndarray."
|
285 |
+
)
|
286 |
+
|
287 |
+
validate_preprocess_arguments(
|
288 |
+
do_rescale=do_rescale,
|
289 |
+
rescale_factor=rescale_factor,
|
290 |
+
do_normalize=do_normalize,
|
291 |
+
image_mean=image_mean,
|
292 |
+
image_std=image_std,
|
293 |
+
do_center_crop=do_center_crop,
|
294 |
+
crop_size=crop_size,
|
295 |
+
do_resize=do_resize,
|
296 |
+
size=size,
|
297 |
+
resample=resample,
|
298 |
+
)
|
299 |
+
|
300 |
+
# PIL RGBA images are converted to RGB
|
301 |
+
if do_convert_rgb:
|
302 |
+
images = [convert_to_rgb(image) for image in images]
|
303 |
+
|
304 |
+
# All transformations expect numpy arrays.
|
305 |
+
images = [to_numpy_array(image) for image in images]
|
306 |
+
|
307 |
+
if is_scaled_image(images[0]) and do_rescale:
|
308 |
+
logger.warning_once(
|
309 |
+
"It looks like you are trying to rescale already rescaled images. If the input"
|
310 |
+
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
|
311 |
+
)
|
312 |
+
|
313 |
+
if input_data_format is None:
|
314 |
+
# We assume that all images have the same channel dimension format.
|
315 |
+
input_data_format = infer_channel_dimension_format(images[0])
|
316 |
+
|
317 |
+
if do_resize:
|
318 |
+
images = [
|
319 |
+
self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
|
320 |
+
for image in images
|
321 |
+
]
|
322 |
+
|
323 |
+
if do_center_crop:
|
324 |
+
images = [
|
325 |
+
self.center_crop(image=image, size=crop_size, input_data_format=input_data_format) for image in images
|
326 |
+
]
|
327 |
+
|
328 |
+
if do_rescale:
|
329 |
+
images = [
|
330 |
+
self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
|
331 |
+
for image in images
|
332 |
+
]
|
333 |
+
|
334 |
+
if do_normalize:
|
335 |
+
images = [
|
336 |
+
self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
|
337 |
+
for image in images
|
338 |
+
]
|
339 |
+
|
340 |
+
images = [
|
341 |
+
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
|
342 |
+
]
|
343 |
+
|
344 |
+
data = {"pixel_values": images}
|
345 |
+
return BatchFeature(data=data, tensor_type=return_tensors)
|
venv/lib/python3.10/site-packages/transformers/models/bit/modeling_bit.py
ADDED
@@ -0,0 +1,898 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 Google AI and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch BiT model. Also supports backbone for ViT hybrid."""
|
16 |
+
|
17 |
+
import collections
|
18 |
+
import math
|
19 |
+
from typing import Optional, Tuple
|
20 |
+
|
21 |
+
import numpy as np
|
22 |
+
import torch
|
23 |
+
import torch.utils.checkpoint
|
24 |
+
from torch import Tensor, nn
|
25 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
26 |
+
|
27 |
+
from ...activations import ACT2FN
|
28 |
+
from ...modeling_outputs import (
|
29 |
+
BackboneOutput,
|
30 |
+
BaseModelOutputWithNoAttention,
|
31 |
+
BaseModelOutputWithPoolingAndNoAttention,
|
32 |
+
ImageClassifierOutputWithNoAttention,
|
33 |
+
)
|
34 |
+
from ...modeling_utils import PreTrainedModel
|
35 |
+
from ...utils import (
|
36 |
+
add_code_sample_docstrings,
|
37 |
+
add_start_docstrings,
|
38 |
+
add_start_docstrings_to_model_forward,
|
39 |
+
logging,
|
40 |
+
replace_return_docstrings,
|
41 |
+
)
|
42 |
+
from ...utils.backbone_utils import BackboneMixin
|
43 |
+
from .configuration_bit import BitConfig
|
44 |
+
|
45 |
+
|
46 |
+
logger = logging.get_logger(__name__)
|
47 |
+
|
48 |
+
# General docstring
|
49 |
+
_CONFIG_FOR_DOC = "BitConfig"
|
50 |
+
|
51 |
+
# Base docstring
|
52 |
+
_CHECKPOINT_FOR_DOC = "google/bit-50"
|
53 |
+
_EXPECTED_OUTPUT_SHAPE = [1, 2048, 7, 7]
|
54 |
+
|
55 |
+
# Image classification docstring
|
56 |
+
_IMAGE_CLASS_CHECKPOINT = "google/bit-50"
|
57 |
+
_IMAGE_CLASS_EXPECTED_OUTPUT = "tiger cat"
|
58 |
+
|
59 |
+
|
60 |
+
from ..deprecated._archive_maps import BIT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
61 |
+
|
62 |
+
|
63 |
+
def get_padding_value(padding=None, kernel_size=7, stride=1, dilation=1) -> Tuple[Tuple, bool]:
|
64 |
+
r"""
|
65 |
+
Utility function to get the tuple padding value given the kernel_size and padding.
|
66 |
+
|
67 |
+
Args:
|
68 |
+
padding (Union[`str`, `int`], *optional*):
|
69 |
+
Padding value, can be either `"same"`, `"valid"`. If a different value is provided the default padding from
|
70 |
+
PyTorch is used.
|
71 |
+
kernel_size (`int`, *optional*, defaults to 7):
|
72 |
+
Kernel size of the convolution layers.
|
73 |
+
stride (`int`, *optional*, defaults to 1):
|
74 |
+
Stride value of the convolution layers.
|
75 |
+
dilation (`int`, *optional*, defaults to 1):
|
76 |
+
Dilation value of the convolution layers.
|
77 |
+
"""
|
78 |
+
dynamic = False
|
79 |
+
if padding is None:
|
80 |
+
padding = ((stride - 1) + dilation * (kernel_size - 1)) // 2
|
81 |
+
return padding, dynamic
|
82 |
+
|
83 |
+
if isinstance(padding, str):
|
84 |
+
# for any string padding, the padding will be calculated for you, one of three ways
|
85 |
+
padding = padding.lower()
|
86 |
+
if padding == "same":
|
87 |
+
# TF compatible 'SAME' padding, has a performance and GPU memory allocation impact
|
88 |
+
if stride == 1 and (dilation * (kernel_size - 1)) % 2 == 0:
|
89 |
+
# static case, no extra overhead
|
90 |
+
padding = ((stride - 1) + dilation * (kernel_size - 1)) // 2
|
91 |
+
else:
|
92 |
+
# dynamic 'SAME' padding, has runtime/GPU memory overhead
|
93 |
+
padding = 0
|
94 |
+
dynamic = True
|
95 |
+
elif padding == "valid":
|
96 |
+
# 'VALID' padding, same as padding=0
|
97 |
+
padding = 0
|
98 |
+
else:
|
99 |
+
# Default to PyTorch style 'same'-ish symmetric padding
|
100 |
+
padding = ((stride - 1) + dilation * (kernel_size - 1)) // 2
|
101 |
+
return padding, dynamic
|
102 |
+
|
103 |
+
|
104 |
+
class WeightStandardizedConv2d(nn.Conv2d):
|
105 |
+
"""Conv2d with Weight Standardization. Includes TensorFlow compatible SAME padding. Used for ViT Hybrid model.
|
106 |
+
|
107 |
+
Paper: [Micro-Batch Training with Batch-Channel Normalization and Weight
|
108 |
+
Standardization](https://arxiv.org/abs/1903.10520v2)
|
109 |
+
"""
|
110 |
+
|
111 |
+
def __init__(
|
112 |
+
self,
|
113 |
+
in_channel,
|
114 |
+
out_channels,
|
115 |
+
kernel_size,
|
116 |
+
stride=1,
|
117 |
+
padding="SAME",
|
118 |
+
dilation=1,
|
119 |
+
groups=1,
|
120 |
+
bias=False,
|
121 |
+
eps=1e-6,
|
122 |
+
):
|
123 |
+
padding, is_dynamic = get_padding_value(padding, kernel_size, stride=stride, dilation=dilation)
|
124 |
+
super().__init__(
|
125 |
+
in_channel,
|
126 |
+
out_channels,
|
127 |
+
kernel_size,
|
128 |
+
stride=stride,
|
129 |
+
padding=padding,
|
130 |
+
dilation=dilation,
|
131 |
+
groups=groups,
|
132 |
+
bias=bias,
|
133 |
+
)
|
134 |
+
if is_dynamic:
|
135 |
+
self.pad = DynamicPad2d(kernel_size, stride, dilation)
|
136 |
+
else:
|
137 |
+
self.pad = None
|
138 |
+
self.eps = eps
|
139 |
+
|
140 |
+
def forward(self, hidden_state):
|
141 |
+
if self.pad is not None:
|
142 |
+
hidden_state = self.pad(hidden_state)
|
143 |
+
weight = nn.functional.batch_norm(
|
144 |
+
self.weight.reshape(1, self.out_channels, -1), None, None, training=True, momentum=0.0, eps=self.eps
|
145 |
+
).reshape_as(self.weight)
|
146 |
+
hidden_state = nn.functional.conv2d(
|
147 |
+
hidden_state, weight, self.bias, self.stride, self.padding, self.dilation, self.groups
|
148 |
+
)
|
149 |
+
return hidden_state
|
150 |
+
|
151 |
+
|
152 |
+
class BitGroupNormActivation(nn.GroupNorm):
|
153 |
+
r"""
|
154 |
+
A module that combines group normalization with an activation function.
|
155 |
+
"""
|
156 |
+
|
157 |
+
def __init__(self, config, num_channels, eps=1e-5, affine=True, apply_activation=True):
|
158 |
+
super(BitGroupNormActivation, self).__init__(config.num_groups, num_channels, eps=eps, affine=affine)
|
159 |
+
if apply_activation:
|
160 |
+
self.activation = ACT2FN[config.hidden_act]
|
161 |
+
else:
|
162 |
+
self.activation = nn.Identity()
|
163 |
+
|
164 |
+
def forward(self, hidden_state):
|
165 |
+
hidden_state = nn.functional.group_norm(hidden_state, self.num_groups, self.weight, self.bias, self.eps)
|
166 |
+
hidden_state = self.activation(hidden_state)
|
167 |
+
return hidden_state
|
168 |
+
|
169 |
+
|
170 |
+
class DynamicPad2d(nn.Module):
|
171 |
+
r"""
|
172 |
+
A module that wraps dynamic padding of any input, given the parameters of the convolutional layer and the input
|
173 |
+
hidden states.
|
174 |
+
"""
|
175 |
+
|
176 |
+
def __init__(self, kernel_size, stride, dilation, value=0):
|
177 |
+
super().__init__()
|
178 |
+
# Safety checkers
|
179 |
+
if isinstance(kernel_size, int):
|
180 |
+
kernel_size = (kernel_size, kernel_size)
|
181 |
+
|
182 |
+
if isinstance(stride, int):
|
183 |
+
stride = (stride, stride)
|
184 |
+
|
185 |
+
if isinstance(dilation, int):
|
186 |
+
dilation = (dilation, dilation)
|
187 |
+
|
188 |
+
self.kernel_size = kernel_size
|
189 |
+
self.stride = stride
|
190 |
+
self.dilation = dilation
|
191 |
+
self.value = value
|
192 |
+
|
193 |
+
def compute_padding(x, kernel_size, stride, dilation):
|
194 |
+
return max((math.ceil(x / stride) - 1) * stride + (kernel_size - 1) * dilation + 1 - x, 0)
|
195 |
+
|
196 |
+
self.compute_padding = compute_padding
|
197 |
+
|
198 |
+
def __call__(self, input):
|
199 |
+
# Get width and height
|
200 |
+
input_height, input_width = input.size()[-2:]
|
201 |
+
|
202 |
+
# Compute the padding values
|
203 |
+
padding_height = self.compute_padding(input_height, self.kernel_size[0], self.stride[0], self.dilation[0])
|
204 |
+
padding_width = self.compute_padding(input_width, self.kernel_size[1], self.stride[1], self.dilation[1])
|
205 |
+
|
206 |
+
# apply pad
|
207 |
+
if padding_height > 0 or padding_width > 0:
|
208 |
+
input = nn.functional.pad(
|
209 |
+
input,
|
210 |
+
[
|
211 |
+
padding_width // 2,
|
212 |
+
padding_width - padding_width // 2,
|
213 |
+
padding_height // 2,
|
214 |
+
padding_height - padding_height // 2,
|
215 |
+
],
|
216 |
+
value=self.value,
|
217 |
+
)
|
218 |
+
return input
|
219 |
+
|
220 |
+
|
221 |
+
class BitMaxPool2d(nn.MaxPool2d):
|
222 |
+
"""Tensorflow like 'SAME' wrapper for 2D max pooling"""
|
223 |
+
|
224 |
+
def __init__(
|
225 |
+
self,
|
226 |
+
kernel_size: int,
|
227 |
+
stride=None,
|
228 |
+
dilation=1,
|
229 |
+
ceil_mode=False,
|
230 |
+
padding=(0, 0),
|
231 |
+
padding_value=0,
|
232 |
+
use_dynamic_padding=True,
|
233 |
+
):
|
234 |
+
kernel_size = kernel_size if isinstance(kernel_size, collections.abc.Iterable) else (kernel_size, kernel_size)
|
235 |
+
stride = stride if isinstance(stride, collections.abc.Iterable) else (stride, stride)
|
236 |
+
dilation = dilation if isinstance(dilation, collections.abc.Iterable) else (dilation, dilation)
|
237 |
+
super().__init__(kernel_size, stride, padding, dilation, ceil_mode)
|
238 |
+
if use_dynamic_padding:
|
239 |
+
self.pad = DynamicPad2d(kernel_size, stride, dilation, padding_value)
|
240 |
+
else:
|
241 |
+
self.pad = nn.Identity()
|
242 |
+
|
243 |
+
def forward(self, hidden_states):
|
244 |
+
hidden_states = self.pad(hidden_states)
|
245 |
+
return nn.functional.max_pool2d(
|
246 |
+
hidden_states, self.kernel_size, self.stride, self.padding, self.dilation, self.ceil_mode
|
247 |
+
)
|
248 |
+
|
249 |
+
|
250 |
+
class BitEmbeddings(nn.Module):
|
251 |
+
"""
|
252 |
+
BiT Embeddings (stem) composed of a single aggressive convolution.
|
253 |
+
"""
|
254 |
+
|
255 |
+
def __init__(self, config: BitConfig):
|
256 |
+
super().__init__()
|
257 |
+
|
258 |
+
self.convolution = WeightStandardizedConv2d(
|
259 |
+
config.num_channels,
|
260 |
+
config.embedding_size,
|
261 |
+
kernel_size=7,
|
262 |
+
stride=2,
|
263 |
+
eps=1e-8,
|
264 |
+
padding=config.global_padding,
|
265 |
+
)
|
266 |
+
|
267 |
+
self.pooler = BitMaxPool2d(kernel_size=3, stride=2, use_dynamic_padding=config.embedding_dynamic_padding)
|
268 |
+
|
269 |
+
# Use the same padding strategy as convolutional layers
|
270 |
+
if config.global_padding is not None and config.global_padding.upper() == "SAME":
|
271 |
+
self.pad = nn.Identity()
|
272 |
+
else:
|
273 |
+
self.pad = nn.ConstantPad2d(padding=(1, 1, 1, 1), value=0.0)
|
274 |
+
|
275 |
+
if not config.layer_type == "preactivation":
|
276 |
+
self.norm = BitGroupNormActivation(config, num_channels=config.embedding_size)
|
277 |
+
else:
|
278 |
+
self.norm = nn.Identity()
|
279 |
+
|
280 |
+
self.num_channels = config.num_channels
|
281 |
+
|
282 |
+
def forward(self, pixel_values: Tensor) -> Tensor:
|
283 |
+
num_channels = pixel_values.shape[1]
|
284 |
+
if num_channels != self.num_channels:
|
285 |
+
raise ValueError(
|
286 |
+
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
|
287 |
+
)
|
288 |
+
|
289 |
+
embedding = self.convolution(pixel_values)
|
290 |
+
|
291 |
+
embedding = self.pad(embedding)
|
292 |
+
|
293 |
+
embedding = self.norm(embedding)
|
294 |
+
|
295 |
+
embedding = self.pooler(embedding)
|
296 |
+
|
297 |
+
return embedding
|
298 |
+
|
299 |
+
|
300 |
+
# Copied from transformers.models.convnext.modeling_convnext.drop_path
|
301 |
+
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
|
302 |
+
"""
|
303 |
+
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
304 |
+
|
305 |
+
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
|
306 |
+
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
|
307 |
+
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
|
308 |
+
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
|
309 |
+
argument.
|
310 |
+
"""
|
311 |
+
if drop_prob == 0.0 or not training:
|
312 |
+
return input
|
313 |
+
keep_prob = 1 - drop_prob
|
314 |
+
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
|
315 |
+
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
|
316 |
+
random_tensor.floor_() # binarize
|
317 |
+
output = input.div(keep_prob) * random_tensor
|
318 |
+
return output
|
319 |
+
|
320 |
+
|
321 |
+
# Copied from transformers.models.beit.modeling_beit.BeitDropPath with Beit->Bit
|
322 |
+
class BitDropPath(nn.Module):
|
323 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
|
324 |
+
|
325 |
+
def __init__(self, drop_prob: Optional[float] = None) -> None:
|
326 |
+
super().__init__()
|
327 |
+
self.drop_prob = drop_prob
|
328 |
+
|
329 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
330 |
+
return drop_path(hidden_states, self.drop_prob, self.training)
|
331 |
+
|
332 |
+
def extra_repr(self) -> str:
|
333 |
+
return "p={}".format(self.drop_prob)
|
334 |
+
|
335 |
+
|
336 |
+
def make_div(value, divisor=8):
|
337 |
+
min_value = divisor
|
338 |
+
new_value = max(min_value, int(value + divisor / 2) // divisor * divisor)
|
339 |
+
if new_value < 0.9 * value:
|
340 |
+
new_value += divisor
|
341 |
+
return new_value
|
342 |
+
|
343 |
+
|
344 |
+
class BitPreActivationBottleneckLayer(nn.Module):
|
345 |
+
"""Pre-activation (v2) bottleneck block.
|
346 |
+
Follows the implementation of "Identity Mappings in Deep Residual Networks":
|
347 |
+
https://github.com/KaimingHe/resnet-1k-layers/blob/master/resnet-pre-act.lua
|
348 |
+
|
349 |
+
Except it puts the stride on 3x3 conv when available.
|
350 |
+
"""
|
351 |
+
|
352 |
+
def __init__(
|
353 |
+
self,
|
354 |
+
config,
|
355 |
+
in_channels,
|
356 |
+
out_channels=None,
|
357 |
+
bottle_ratio=0.25,
|
358 |
+
stride=1,
|
359 |
+
dilation=1,
|
360 |
+
first_dilation=None,
|
361 |
+
groups=1,
|
362 |
+
drop_path_rate=0.0,
|
363 |
+
is_first_layer=False,
|
364 |
+
):
|
365 |
+
super().__init__()
|
366 |
+
|
367 |
+
first_dilation = first_dilation or dilation
|
368 |
+
|
369 |
+
out_channels = out_channels or in_channels
|
370 |
+
mid_channels = make_div(out_channels * bottle_ratio)
|
371 |
+
|
372 |
+
if is_first_layer:
|
373 |
+
self.downsample = BitDownsampleConv(
|
374 |
+
config,
|
375 |
+
in_channels,
|
376 |
+
out_channels,
|
377 |
+
stride=stride,
|
378 |
+
preact=True,
|
379 |
+
)
|
380 |
+
else:
|
381 |
+
self.downsample = None
|
382 |
+
|
383 |
+
self.norm1 = BitGroupNormActivation(config, in_channels)
|
384 |
+
self.conv1 = WeightStandardizedConv2d(in_channels, mid_channels, 1, eps=1e-8, padding=config.global_padding)
|
385 |
+
|
386 |
+
self.norm2 = BitGroupNormActivation(config, num_channels=mid_channels)
|
387 |
+
self.conv2 = WeightStandardizedConv2d(
|
388 |
+
mid_channels, mid_channels, 3, stride=stride, groups=groups, eps=1e-8, padding=config.global_padding
|
389 |
+
)
|
390 |
+
|
391 |
+
self.norm3 = BitGroupNormActivation(config, mid_channels)
|
392 |
+
self.conv3 = WeightStandardizedConv2d(mid_channels, out_channels, 1, eps=1e-8, padding=config.global_padding)
|
393 |
+
|
394 |
+
self.drop_path = BitDropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity()
|
395 |
+
|
396 |
+
def forward(self, hidden_states):
|
397 |
+
hidden_states_preact = self.norm1(hidden_states)
|
398 |
+
|
399 |
+
# shortcut branch
|
400 |
+
shortcut = hidden_states
|
401 |
+
if self.downsample is not None:
|
402 |
+
shortcut = self.downsample(hidden_states_preact)
|
403 |
+
|
404 |
+
# residual branch
|
405 |
+
hidden_states = self.conv1(hidden_states_preact)
|
406 |
+
hidden_states = self.conv2(self.norm2(hidden_states))
|
407 |
+
hidden_states = self.conv3(self.norm3(hidden_states))
|
408 |
+
hidden_states = self.drop_path(hidden_states)
|
409 |
+
return hidden_states + shortcut
|
410 |
+
|
411 |
+
|
412 |
+
class BitBottleneckLayer(nn.Module):
|
413 |
+
"""Non Pre-activation bottleneck block, equivalent to V1.5/V1b bottleneck. Used for ViT Hybrid."""
|
414 |
+
|
415 |
+
def __init__(
|
416 |
+
self,
|
417 |
+
config,
|
418 |
+
in_channels,
|
419 |
+
out_channels=None,
|
420 |
+
bottle_ratio=0.25,
|
421 |
+
stride=1,
|
422 |
+
dilation=1,
|
423 |
+
first_dilation=None,
|
424 |
+
groups=1,
|
425 |
+
drop_path_rate=0.0,
|
426 |
+
is_first_layer=False,
|
427 |
+
):
|
428 |
+
super().__init__()
|
429 |
+
first_dilation = first_dilation or dilation
|
430 |
+
|
431 |
+
out_channels = out_channels or in_channels
|
432 |
+
mid_chs = make_div(out_channels * bottle_ratio)
|
433 |
+
|
434 |
+
if is_first_layer:
|
435 |
+
self.downsample = BitDownsampleConv(
|
436 |
+
config,
|
437 |
+
in_channels,
|
438 |
+
out_channels,
|
439 |
+
stride=stride,
|
440 |
+
preact=False,
|
441 |
+
)
|
442 |
+
else:
|
443 |
+
self.downsample = None
|
444 |
+
|
445 |
+
self.conv1 = WeightStandardizedConv2d(in_channels, mid_chs, 1, eps=1e-8, padding=config.global_padding)
|
446 |
+
self.norm1 = BitGroupNormActivation(config, num_channels=mid_chs)
|
447 |
+
self.conv2 = WeightStandardizedConv2d(
|
448 |
+
mid_chs,
|
449 |
+
mid_chs,
|
450 |
+
3,
|
451 |
+
stride=stride,
|
452 |
+
dilation=first_dilation,
|
453 |
+
groups=groups,
|
454 |
+
eps=1e-8,
|
455 |
+
padding=config.global_padding,
|
456 |
+
)
|
457 |
+
self.norm2 = BitGroupNormActivation(config, num_channels=mid_chs)
|
458 |
+
self.conv3 = WeightStandardizedConv2d(mid_chs, out_channels, 1, eps=1e-8, padding=config.global_padding)
|
459 |
+
self.norm3 = BitGroupNormActivation(config, num_channels=out_channels, apply_activation=False)
|
460 |
+
self.drop_path = BitDropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity()
|
461 |
+
|
462 |
+
self.activation = ACT2FN[config.hidden_act]
|
463 |
+
|
464 |
+
def forward(self, hidden_states):
|
465 |
+
# shortcut branch
|
466 |
+
shortcut = hidden_states
|
467 |
+
if self.downsample is not None:
|
468 |
+
shortcut = self.downsample(hidden_states)
|
469 |
+
|
470 |
+
# residual
|
471 |
+
hidden_states = self.conv1(hidden_states)
|
472 |
+
hidden_states = self.norm1(hidden_states)
|
473 |
+
|
474 |
+
hidden_states = self.conv2(hidden_states)
|
475 |
+
hidden_states = self.norm2(hidden_states)
|
476 |
+
|
477 |
+
hidden_states = self.conv3(hidden_states)
|
478 |
+
hidden_states = self.norm3(hidden_states)
|
479 |
+
|
480 |
+
hidden_states = self.drop_path(hidden_states)
|
481 |
+
hidden_states = self.activation(hidden_states + shortcut)
|
482 |
+
return hidden_states
|
483 |
+
|
484 |
+
|
485 |
+
class BitDownsampleConv(nn.Module):
|
486 |
+
def __init__(
|
487 |
+
self,
|
488 |
+
config,
|
489 |
+
in_channels,
|
490 |
+
out_channels,
|
491 |
+
stride=1,
|
492 |
+
preact=True,
|
493 |
+
):
|
494 |
+
super().__init__()
|
495 |
+
self.conv = WeightStandardizedConv2d(
|
496 |
+
in_channels, out_channels, 1, stride=stride, eps=1e-8, padding=config.global_padding
|
497 |
+
)
|
498 |
+
self.norm = (
|
499 |
+
nn.Identity()
|
500 |
+
if preact
|
501 |
+
else BitGroupNormActivation(config, num_channels=out_channels, apply_activation=False)
|
502 |
+
)
|
503 |
+
|
504 |
+
def forward(self, x):
|
505 |
+
return self.norm(self.conv(x))
|
506 |
+
|
507 |
+
|
508 |
+
class BitStage(nn.Module):
|
509 |
+
"""
|
510 |
+
A ResNet v2 stage composed by stacked layers.
|
511 |
+
"""
|
512 |
+
|
513 |
+
def __init__(
|
514 |
+
self,
|
515 |
+
config,
|
516 |
+
in_channels,
|
517 |
+
out_channels,
|
518 |
+
stride,
|
519 |
+
dilation,
|
520 |
+
depth,
|
521 |
+
bottle_ratio=0.25,
|
522 |
+
layer_dropout=None,
|
523 |
+
):
|
524 |
+
super().__init__()
|
525 |
+
|
526 |
+
first_dilation = 1 if dilation in (1, 2) else 2
|
527 |
+
|
528 |
+
# Get the layer type
|
529 |
+
if config.layer_type == "bottleneck":
|
530 |
+
layer_cls = BitBottleneckLayer
|
531 |
+
else:
|
532 |
+
layer_cls = BitPreActivationBottleneckLayer
|
533 |
+
|
534 |
+
prev_chs = in_channels
|
535 |
+
self.layers = nn.Sequential()
|
536 |
+
for layer_idx in range(depth):
|
537 |
+
# Get the current hyper-parameters
|
538 |
+
stride, drop_path_rate, is_first_layer = self._get_updated_hyperparameters(
|
539 |
+
layer_idx, stride, layer_dropout
|
540 |
+
)
|
541 |
+
|
542 |
+
self.layers.add_module(
|
543 |
+
str(layer_idx),
|
544 |
+
layer_cls(
|
545 |
+
config,
|
546 |
+
prev_chs,
|
547 |
+
out_channels,
|
548 |
+
stride=stride,
|
549 |
+
dilation=dilation,
|
550 |
+
bottle_ratio=bottle_ratio,
|
551 |
+
first_dilation=first_dilation,
|
552 |
+
drop_path_rate=drop_path_rate,
|
553 |
+
is_first_layer=is_first_layer,
|
554 |
+
),
|
555 |
+
)
|
556 |
+
prev_chs = out_channels
|
557 |
+
first_dilation = dilation
|
558 |
+
|
559 |
+
def _get_updated_hyperparameters(self, layer_idx, stride, layer_dropout):
|
560 |
+
r"""
|
561 |
+
Get the new hyper-parameters with respect to the previous ones and the index of the current layer.
|
562 |
+
"""
|
563 |
+
if layer_dropout:
|
564 |
+
drop_path_rate = layer_dropout[layer_idx]
|
565 |
+
else:
|
566 |
+
drop_path_rate = 0.0
|
567 |
+
|
568 |
+
if layer_idx != 0:
|
569 |
+
stride = 1
|
570 |
+
|
571 |
+
is_first_layer = layer_idx == 0
|
572 |
+
|
573 |
+
return stride, drop_path_rate, is_first_layer
|
574 |
+
|
575 |
+
def forward(self, input: Tensor) -> Tensor:
|
576 |
+
hidden_state = input
|
577 |
+
for _, layer in enumerate(self.layers):
|
578 |
+
hidden_state = layer(hidden_state)
|
579 |
+
return hidden_state
|
580 |
+
|
581 |
+
|
582 |
+
class BitEncoder(nn.Module):
|
583 |
+
def __init__(self, config: BitConfig):
|
584 |
+
super().__init__()
|
585 |
+
self.stages = nn.ModuleList([])
|
586 |
+
|
587 |
+
prev_chs = config.embedding_size
|
588 |
+
|
589 |
+
# These needs to stay hardcoded
|
590 |
+
current_stride = 4
|
591 |
+
dilation = 1
|
592 |
+
|
593 |
+
layer_dropouts = [
|
594 |
+
x.tolist()
|
595 |
+
for x in torch.Tensor(np.linspace(0, config.drop_path_rate, sum(config.depths))).split(config.depths)
|
596 |
+
]
|
597 |
+
|
598 |
+
for stage_idx, (current_depth, current_hidden_size, layer_dropout) in enumerate(
|
599 |
+
zip(config.depths, config.hidden_sizes, layer_dropouts)
|
600 |
+
):
|
601 |
+
# Get the updated hyper params
|
602 |
+
out_channels, stride, dilation = self._get_updated_hyperparameters(
|
603 |
+
stage_idx, current_stride, current_hidden_size, dilation, config
|
604 |
+
)
|
605 |
+
|
606 |
+
stage = BitStage(
|
607 |
+
config,
|
608 |
+
prev_chs,
|
609 |
+
out_channels,
|
610 |
+
stride=stride,
|
611 |
+
dilation=dilation,
|
612 |
+
depth=current_depth,
|
613 |
+
layer_dropout=layer_dropout,
|
614 |
+
)
|
615 |
+
|
616 |
+
prev_chs = out_channels
|
617 |
+
current_stride *= stride
|
618 |
+
|
619 |
+
self.stages.add_module(str(stage_idx), stage)
|
620 |
+
|
621 |
+
def _get_updated_hyperparameters(self, stage_idx, current_stride, current_hidden_size, dilation, config):
|
622 |
+
out_channels = make_div(current_hidden_size * config.width_factor)
|
623 |
+
stride = 1 if stage_idx == 0 else 2
|
624 |
+
if current_stride >= config.output_stride:
|
625 |
+
dilation *= stride
|
626 |
+
stride = 1
|
627 |
+
return out_channels, stride, dilation
|
628 |
+
|
629 |
+
def forward(
|
630 |
+
self, hidden_state: Tensor, output_hidden_states: bool = False, return_dict: bool = True
|
631 |
+
) -> BaseModelOutputWithNoAttention:
|
632 |
+
hidden_states = () if output_hidden_states else None
|
633 |
+
|
634 |
+
for stage_module in self.stages:
|
635 |
+
if output_hidden_states:
|
636 |
+
hidden_states = hidden_states + (hidden_state,)
|
637 |
+
|
638 |
+
hidden_state = stage_module(hidden_state)
|
639 |
+
|
640 |
+
if output_hidden_states:
|
641 |
+
hidden_states = hidden_states + (hidden_state,)
|
642 |
+
|
643 |
+
if not return_dict:
|
644 |
+
return tuple(v for v in [hidden_state, hidden_states] if v is not None)
|
645 |
+
|
646 |
+
return BaseModelOutputWithNoAttention(
|
647 |
+
last_hidden_state=hidden_state,
|
648 |
+
hidden_states=hidden_states,
|
649 |
+
)
|
650 |
+
|
651 |
+
|
652 |
+
class BitPreTrainedModel(PreTrainedModel):
|
653 |
+
"""
|
654 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
655 |
+
models.
|
656 |
+
"""
|
657 |
+
|
658 |
+
config_class = BitConfig
|
659 |
+
base_model_prefix = "bit"
|
660 |
+
main_input_name = "pixel_values"
|
661 |
+
|
662 |
+
def _init_weights(self, module):
|
663 |
+
if isinstance(module, nn.Conv2d):
|
664 |
+
nn.init.kaiming_normal_(module.weight, mode="fan_out", nonlinearity="relu")
|
665 |
+
elif isinstance(module, (nn.BatchNorm2d, nn.GroupNorm)):
|
666 |
+
nn.init.constant_(module.weight, 1)
|
667 |
+
nn.init.constant_(module.bias, 0)
|
668 |
+
|
669 |
+
|
670 |
+
BIT_START_DOCSTRING = r"""
|
671 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
|
672 |
+
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
673 |
+
behavior.
|
674 |
+
|
675 |
+
Parameters:
|
676 |
+
config ([`BitConfig`]): Model configuration class with all the parameters of the model.
|
677 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
678 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
679 |
+
"""
|
680 |
+
|
681 |
+
BIT_INPUTS_DOCSTRING = r"""
|
682 |
+
Args:
|
683 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
684 |
+
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`BitImageProcessor.__call__`]
|
685 |
+
for details.
|
686 |
+
|
687 |
+
output_hidden_states (`bool`, *optional*):
|
688 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
689 |
+
more detail.
|
690 |
+
return_dict (`bool`, *optional*):
|
691 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
692 |
+
"""
|
693 |
+
|
694 |
+
|
695 |
+
@add_start_docstrings(
|
696 |
+
"The bare BiT model outputting raw features without any specific head on top.",
|
697 |
+
BIT_START_DOCSTRING,
|
698 |
+
)
|
699 |
+
class BitModel(BitPreTrainedModel):
|
700 |
+
def __init__(self, config):
|
701 |
+
super().__init__(config)
|
702 |
+
self.config = config
|
703 |
+
|
704 |
+
self.embedder = BitEmbeddings(config)
|
705 |
+
|
706 |
+
self.encoder = BitEncoder(config)
|
707 |
+
self.norm = (
|
708 |
+
BitGroupNormActivation(config, num_channels=config.hidden_sizes[-1])
|
709 |
+
if config.layer_type == "preactivation"
|
710 |
+
else nn.Identity()
|
711 |
+
)
|
712 |
+
|
713 |
+
self.pooler = nn.AdaptiveAvgPool2d((1, 1))
|
714 |
+
# Initialize weights and apply final processing
|
715 |
+
self.post_init()
|
716 |
+
|
717 |
+
@add_start_docstrings_to_model_forward(BIT_INPUTS_DOCSTRING)
|
718 |
+
@add_code_sample_docstrings(
|
719 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
720 |
+
output_type=BaseModelOutputWithPoolingAndNoAttention,
|
721 |
+
config_class=_CONFIG_FOR_DOC,
|
722 |
+
modality="vision",
|
723 |
+
expected_output=_EXPECTED_OUTPUT_SHAPE,
|
724 |
+
)
|
725 |
+
def forward(
|
726 |
+
self, pixel_values: Tensor, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None
|
727 |
+
) -> BaseModelOutputWithPoolingAndNoAttention:
|
728 |
+
output_hidden_states = (
|
729 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
730 |
+
)
|
731 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
732 |
+
|
733 |
+
embedding_output = self.embedder(pixel_values)
|
734 |
+
|
735 |
+
encoder_outputs = self.encoder(
|
736 |
+
embedding_output, output_hidden_states=output_hidden_states, return_dict=return_dict
|
737 |
+
)
|
738 |
+
|
739 |
+
last_hidden_state = encoder_outputs[0]
|
740 |
+
|
741 |
+
last_hidden_state = self.norm(last_hidden_state)
|
742 |
+
|
743 |
+
pooled_output = self.pooler(last_hidden_state)
|
744 |
+
|
745 |
+
if not return_dict:
|
746 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
747 |
+
|
748 |
+
return BaseModelOutputWithPoolingAndNoAttention(
|
749 |
+
last_hidden_state=last_hidden_state,
|
750 |
+
pooler_output=pooled_output,
|
751 |
+
hidden_states=encoder_outputs.hidden_states,
|
752 |
+
)
|
753 |
+
|
754 |
+
|
755 |
+
@add_start_docstrings(
|
756 |
+
"""
|
757 |
+
BiT Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
|
758 |
+
ImageNet.
|
759 |
+
""",
|
760 |
+
BIT_START_DOCSTRING,
|
761 |
+
)
|
762 |
+
class BitForImageClassification(BitPreTrainedModel):
|
763 |
+
def __init__(self, config):
|
764 |
+
super().__init__(config)
|
765 |
+
self.num_labels = config.num_labels
|
766 |
+
self.bit = BitModel(config)
|
767 |
+
# classification head
|
768 |
+
self.classifier = nn.Sequential(
|
769 |
+
nn.Flatten(),
|
770 |
+
nn.Linear(config.hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else nn.Identity(),
|
771 |
+
)
|
772 |
+
# initialize weights and apply final processing
|
773 |
+
self.post_init()
|
774 |
+
|
775 |
+
@add_start_docstrings_to_model_forward(BIT_INPUTS_DOCSTRING)
|
776 |
+
@add_code_sample_docstrings(
|
777 |
+
checkpoint=_IMAGE_CLASS_CHECKPOINT,
|
778 |
+
output_type=ImageClassifierOutputWithNoAttention,
|
779 |
+
config_class=_CONFIG_FOR_DOC,
|
780 |
+
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
|
781 |
+
)
|
782 |
+
def forward(
|
783 |
+
self,
|
784 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
785 |
+
labels: Optional[torch.LongTensor] = None,
|
786 |
+
output_hidden_states: Optional[bool] = None,
|
787 |
+
return_dict: Optional[bool] = None,
|
788 |
+
) -> ImageClassifierOutputWithNoAttention:
|
789 |
+
r"""
|
790 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
791 |
+
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
|
792 |
+
config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
793 |
+
"""
|
794 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
795 |
+
|
796 |
+
outputs = self.bit(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict)
|
797 |
+
|
798 |
+
pooled_output = outputs.pooler_output if return_dict else outputs[1]
|
799 |
+
|
800 |
+
logits = self.classifier(pooled_output)
|
801 |
+
|
802 |
+
loss = None
|
803 |
+
|
804 |
+
if labels is not None:
|
805 |
+
if self.config.problem_type is None:
|
806 |
+
if self.num_labels == 1:
|
807 |
+
self.config.problem_type = "regression"
|
808 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
809 |
+
self.config.problem_type = "single_label_classification"
|
810 |
+
else:
|
811 |
+
self.config.problem_type = "multi_label_classification"
|
812 |
+
if self.config.problem_type == "regression":
|
813 |
+
loss_fct = MSELoss()
|
814 |
+
if self.num_labels == 1:
|
815 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
816 |
+
else:
|
817 |
+
loss = loss_fct(logits, labels)
|
818 |
+
elif self.config.problem_type == "single_label_classification":
|
819 |
+
loss_fct = CrossEntropyLoss()
|
820 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
821 |
+
elif self.config.problem_type == "multi_label_classification":
|
822 |
+
loss_fct = BCEWithLogitsLoss()
|
823 |
+
loss = loss_fct(logits, labels)
|
824 |
+
|
825 |
+
if not return_dict:
|
826 |
+
output = (logits,) + outputs[2:]
|
827 |
+
return (loss,) + output if loss is not None else output
|
828 |
+
|
829 |
+
return ImageClassifierOutputWithNoAttention(loss=loss, logits=logits, hidden_states=outputs.hidden_states)
|
830 |
+
|
831 |
+
|
832 |
+
@add_start_docstrings(
|
833 |
+
"""
|
834 |
+
BiT backbone, to be used with frameworks like DETR and MaskFormer.
|
835 |
+
""",
|
836 |
+
BIT_START_DOCSTRING,
|
837 |
+
)
|
838 |
+
class BitBackbone(BitPreTrainedModel, BackboneMixin):
|
839 |
+
def __init__(self, config):
|
840 |
+
super().__init__(config)
|
841 |
+
super()._init_backbone(config)
|
842 |
+
|
843 |
+
self.bit = BitModel(config)
|
844 |
+
self.num_features = [config.embedding_size] + config.hidden_sizes
|
845 |
+
|
846 |
+
# initialize weights and apply final processing
|
847 |
+
self.post_init()
|
848 |
+
|
849 |
+
@add_start_docstrings_to_model_forward(BIT_INPUTS_DOCSTRING)
|
850 |
+
@replace_return_docstrings(output_type=BackboneOutput, config_class=_CONFIG_FOR_DOC)
|
851 |
+
def forward(
|
852 |
+
self, pixel_values: Tensor, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None
|
853 |
+
) -> BackboneOutput:
|
854 |
+
"""
|
855 |
+
Returns:
|
856 |
+
|
857 |
+
Examples:
|
858 |
+
|
859 |
+
```python
|
860 |
+
>>> from transformers import AutoImageProcessor, AutoBackbone
|
861 |
+
>>> import torch
|
862 |
+
>>> from PIL import Image
|
863 |
+
>>> import requests
|
864 |
+
|
865 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
866 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
867 |
+
|
868 |
+
>>> processor = AutoImageProcessor.from_pretrained("google/resnetnv2-50")
|
869 |
+
>>> model = AutoBackbone.from_pretrained("google/resnetnv2-50")
|
870 |
+
|
871 |
+
>>> inputs = processor(image, return_tensors="pt")
|
872 |
+
>>> outputs = model(**inputs)
|
873 |
+
```"""
|
874 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
875 |
+
output_hidden_states = (
|
876 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
877 |
+
)
|
878 |
+
|
879 |
+
outputs = self.bit(pixel_values, output_hidden_states=True, return_dict=True)
|
880 |
+
|
881 |
+
hidden_states = outputs.hidden_states
|
882 |
+
|
883 |
+
feature_maps = ()
|
884 |
+
for idx, stage in enumerate(self.stage_names):
|
885 |
+
if stage in self.out_features:
|
886 |
+
feature_maps += (hidden_states[idx],)
|
887 |
+
|
888 |
+
if not return_dict:
|
889 |
+
output = (feature_maps,)
|
890 |
+
if output_hidden_states:
|
891 |
+
output += (outputs.hidden_states,)
|
892 |
+
return output
|
893 |
+
|
894 |
+
return BackboneOutput(
|
895 |
+
feature_maps=feature_maps,
|
896 |
+
hidden_states=outputs.hidden_states if output_hidden_states else None,
|
897 |
+
attentions=None,
|
898 |
+
)
|
venv/lib/python3.10/site-packages/transformers/models/dinov2/__init__.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import (
|
17 |
+
OptionalDependencyNotAvailable,
|
18 |
+
_LazyModule,
|
19 |
+
is_torch_available,
|
20 |
+
)
|
21 |
+
|
22 |
+
|
23 |
+
_import_structure = {
|
24 |
+
"configuration_dinov2": ["DINOV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Dinov2Config", "Dinov2OnnxConfig"]
|
25 |
+
}
|
26 |
+
|
27 |
+
try:
|
28 |
+
if not is_torch_available():
|
29 |
+
raise OptionalDependencyNotAvailable()
|
30 |
+
except OptionalDependencyNotAvailable:
|
31 |
+
pass
|
32 |
+
else:
|
33 |
+
_import_structure["modeling_dinov2"] = [
|
34 |
+
"DINOV2_PRETRAINED_MODEL_ARCHIVE_LIST",
|
35 |
+
"Dinov2ForImageClassification",
|
36 |
+
"Dinov2Model",
|
37 |
+
"Dinov2PreTrainedModel",
|
38 |
+
"Dinov2Backbone",
|
39 |
+
]
|
40 |
+
|
41 |
+
if TYPE_CHECKING:
|
42 |
+
from .configuration_dinov2 import DINOV2_PRETRAINED_CONFIG_ARCHIVE_MAP, Dinov2Config, Dinov2OnnxConfig
|
43 |
+
|
44 |
+
try:
|
45 |
+
if not is_torch_available():
|
46 |
+
raise OptionalDependencyNotAvailable()
|
47 |
+
except OptionalDependencyNotAvailable:
|
48 |
+
pass
|
49 |
+
else:
|
50 |
+
from .modeling_dinov2 import (
|
51 |
+
DINOV2_PRETRAINED_MODEL_ARCHIVE_LIST,
|
52 |
+
Dinov2Backbone,
|
53 |
+
Dinov2ForImageClassification,
|
54 |
+
Dinov2Model,
|
55 |
+
Dinov2PreTrainedModel,
|
56 |
+
)
|
57 |
+
|
58 |
+
else:
|
59 |
+
import sys
|
60 |
+
|
61 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
venv/lib/python3.10/site-packages/transformers/models/dinov2/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (990 Bytes). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/dinov2/__pycache__/configuration_dinov2.cpython-310.pyc
ADDED
Binary file (7.65 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/dinov2/__pycache__/convert_dinov2_to_hf.cpython-310.pyc
ADDED
Binary file (7.97 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/dinov2/__pycache__/modeling_dinov2.cpython-310.pyc
ADDED
Binary file (27.5 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/dinov2/configuration_dinov2.py
ADDED
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" DINOv2 model configuration"""
|
16 |
+
|
17 |
+
from collections import OrderedDict
|
18 |
+
from typing import Mapping
|
19 |
+
|
20 |
+
from packaging import version
|
21 |
+
|
22 |
+
from ...configuration_utils import PretrainedConfig
|
23 |
+
from ...onnx import OnnxConfig
|
24 |
+
from ...utils import logging
|
25 |
+
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
|
26 |
+
|
27 |
+
|
28 |
+
logger = logging.get_logger(__name__)
|
29 |
+
|
30 |
+
|
31 |
+
from ..deprecated._archive_maps import DINOV2_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
32 |
+
|
33 |
+
|
34 |
+
class Dinov2Config(BackboneConfigMixin, PretrainedConfig):
|
35 |
+
r"""
|
36 |
+
This is the configuration class to store the configuration of a [`Dinov2Model`]. It is used to instantiate an
|
37 |
+
Dinov2 model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
38 |
+
with the defaults will yield a similar configuration to that of the Dinov2
|
39 |
+
[google/dinov2-base-patch16-224](https://huggingface.co/google/dinov2-base-patch16-224) architecture.
|
40 |
+
|
41 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
42 |
+
documentation from [`PretrainedConfig`] for more information.
|
43 |
+
|
44 |
+
Args:
|
45 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
46 |
+
Dimensionality of the encoder layers and the pooler layer.
|
47 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
48 |
+
Number of hidden layers in the Transformer encoder.
|
49 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
50 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
51 |
+
mlp_ratio (`int`, *optional*, defaults to 4):
|
52 |
+
Ratio of the hidden size of the MLPs relative to the `hidden_size`.
|
53 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
54 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
55 |
+
`"relu"`, `"selu"` and `"gelu_new"` are supported.
|
56 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
|
57 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
58 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
|
59 |
+
The dropout ratio for the attention probabilities.
|
60 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
61 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
62 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
|
63 |
+
The epsilon used by the layer normalization layers.
|
64 |
+
image_size (`int`, *optional*, defaults to 224):
|
65 |
+
The size (resolution) of each image.
|
66 |
+
patch_size (`int`, *optional*, defaults to 16):
|
67 |
+
The size (resolution) of each patch.
|
68 |
+
num_channels (`int`, *optional*, defaults to 3):
|
69 |
+
The number of input channels.
|
70 |
+
qkv_bias (`bool`, *optional*, defaults to `True`):
|
71 |
+
Whether to add a bias to the queries, keys and values.
|
72 |
+
layerscale_value (`float`, *optional*, defaults to 1.0):
|
73 |
+
Initial value to use for layer scale.
|
74 |
+
drop_path_rate (`float`, *optional*, defaults to 0.0):
|
75 |
+
Stochastic depth rate per sample (when applied in the main path of residual layers).
|
76 |
+
use_swiglu_ffn (`bool`, *optional*, defaults to `False`):
|
77 |
+
Whether to use the SwiGLU feedforward neural network.
|
78 |
+
out_features (`List[str]`, *optional*):
|
79 |
+
If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc.
|
80 |
+
(depending on how many stages the model has). If unset and `out_indices` is set, will default to the
|
81 |
+
corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the
|
82 |
+
same order as defined in the `stage_names` attribute.
|
83 |
+
out_indices (`List[int]`, *optional*):
|
84 |
+
If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how
|
85 |
+
many stages the model has). If unset and `out_features` is set, will default to the corresponding stages.
|
86 |
+
If unset and `out_features` is unset, will default to the last stage. Must be in the
|
87 |
+
same order as defined in the `stage_names` attribute.
|
88 |
+
apply_layernorm (`bool`, *optional*, defaults to `True`):
|
89 |
+
Whether to apply layer normalization to the feature maps in case the model is used as backbone.
|
90 |
+
reshape_hidden_states (`bool`, *optional*, defaults to `True`):
|
91 |
+
Whether to reshape the feature maps to 4D tensors of shape `(batch_size, hidden_size, height, width)` in
|
92 |
+
case the model is used as backbone. If `False`, the feature maps will be 3D tensors of shape `(batch_size,
|
93 |
+
seq_len, hidden_size)`.
|
94 |
+
|
95 |
+
Example:
|
96 |
+
|
97 |
+
```python
|
98 |
+
>>> from transformers import Dinov2Config, Dinov2Model
|
99 |
+
|
100 |
+
>>> # Initializing a Dinov2 dinov2-base-patch16-224 style configuration
|
101 |
+
>>> configuration = Dinov2Config()
|
102 |
+
|
103 |
+
>>> # Initializing a model (with random weights) from the dinov2-base-patch16-224 style configuration
|
104 |
+
>>> model = Dinov2Model(configuration)
|
105 |
+
|
106 |
+
>>> # Accessing the model configuration
|
107 |
+
>>> configuration = model.config
|
108 |
+
```"""
|
109 |
+
|
110 |
+
model_type = "dinov2"
|
111 |
+
|
112 |
+
def __init__(
|
113 |
+
self,
|
114 |
+
hidden_size=768,
|
115 |
+
num_hidden_layers=12,
|
116 |
+
num_attention_heads=12,
|
117 |
+
mlp_ratio=4,
|
118 |
+
hidden_act="gelu",
|
119 |
+
hidden_dropout_prob=0.0,
|
120 |
+
attention_probs_dropout_prob=0.0,
|
121 |
+
initializer_range=0.02,
|
122 |
+
layer_norm_eps=1e-6,
|
123 |
+
image_size=224,
|
124 |
+
patch_size=16,
|
125 |
+
num_channels=3,
|
126 |
+
qkv_bias=True,
|
127 |
+
layerscale_value=1.0,
|
128 |
+
drop_path_rate=0.0,
|
129 |
+
use_swiglu_ffn=False,
|
130 |
+
out_features=None,
|
131 |
+
out_indices=None,
|
132 |
+
apply_layernorm=True,
|
133 |
+
reshape_hidden_states=True,
|
134 |
+
**kwargs,
|
135 |
+
):
|
136 |
+
super().__init__(**kwargs)
|
137 |
+
|
138 |
+
self.hidden_size = hidden_size
|
139 |
+
self.num_hidden_layers = num_hidden_layers
|
140 |
+
self.num_attention_heads = num_attention_heads
|
141 |
+
self.mlp_ratio = mlp_ratio
|
142 |
+
self.hidden_act = hidden_act
|
143 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
144 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
145 |
+
self.initializer_range = initializer_range
|
146 |
+
self.layer_norm_eps = layer_norm_eps
|
147 |
+
self.image_size = image_size
|
148 |
+
self.patch_size = patch_size
|
149 |
+
self.num_channels = num_channels
|
150 |
+
self.qkv_bias = qkv_bias
|
151 |
+
self.layerscale_value = layerscale_value
|
152 |
+
self.drop_path_rate = drop_path_rate
|
153 |
+
self.use_swiglu_ffn = use_swiglu_ffn
|
154 |
+
self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, num_hidden_layers + 1)]
|
155 |
+
self._out_features, self._out_indices = get_aligned_output_features_output_indices(
|
156 |
+
out_features=out_features, out_indices=out_indices, stage_names=self.stage_names
|
157 |
+
)
|
158 |
+
self.apply_layernorm = apply_layernorm
|
159 |
+
self.reshape_hidden_states = reshape_hidden_states
|
160 |
+
|
161 |
+
|
162 |
+
class Dinov2OnnxConfig(OnnxConfig):
|
163 |
+
torch_onnx_minimum_version = version.parse("1.11")
|
164 |
+
|
165 |
+
@property
|
166 |
+
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
167 |
+
return OrderedDict(
|
168 |
+
[
|
169 |
+
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
|
170 |
+
]
|
171 |
+
)
|
172 |
+
|
173 |
+
@property
|
174 |
+
def atol_for_validation(self) -> float:
|
175 |
+
return 1e-4
|
venv/lib/python3.10/site-packages/transformers/models/dinov2/convert_dinov2_to_hf.py
ADDED
@@ -0,0 +1,287 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Convert DINOv2 checkpoints from the original repository.
|
16 |
+
|
17 |
+
URL: https://github.com/facebookresearch/dinov2/tree/main
|
18 |
+
"""
|
19 |
+
|
20 |
+
|
21 |
+
import argparse
|
22 |
+
import json
|
23 |
+
from pathlib import Path
|
24 |
+
|
25 |
+
import requests
|
26 |
+
import torch
|
27 |
+
import torch.nn as nn
|
28 |
+
from huggingface_hub import hf_hub_download
|
29 |
+
from PIL import Image
|
30 |
+
from torchvision import transforms
|
31 |
+
|
32 |
+
from transformers import BitImageProcessor, Dinov2Config, Dinov2ForImageClassification, Dinov2Model
|
33 |
+
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling
|
34 |
+
from transformers.utils import logging
|
35 |
+
|
36 |
+
|
37 |
+
logging.set_verbosity_info()
|
38 |
+
logger = logging.get_logger(__name__)
|
39 |
+
|
40 |
+
|
41 |
+
def get_dinov2_config(model_name, image_classifier=False):
|
42 |
+
config = Dinov2Config(image_size=518, patch_size=14)
|
43 |
+
|
44 |
+
# size of the architecture
|
45 |
+
if "vits" in model_name:
|
46 |
+
config.hidden_size = 384
|
47 |
+
config.num_attention_heads = 6
|
48 |
+
elif "vitb" in model_name:
|
49 |
+
pass
|
50 |
+
elif "vitl" in model_name:
|
51 |
+
config.hidden_size = 1024
|
52 |
+
config.num_hidden_layers = 24
|
53 |
+
config.num_attention_heads = 16
|
54 |
+
elif "vitg" in model_name:
|
55 |
+
config.use_swiglu_ffn = True
|
56 |
+
config.hidden_size = 1536
|
57 |
+
config.num_hidden_layers = 40
|
58 |
+
config.num_attention_heads = 24
|
59 |
+
else:
|
60 |
+
raise ValueError("Model not supported")
|
61 |
+
|
62 |
+
if image_classifier:
|
63 |
+
repo_id = "huggingface/label-files"
|
64 |
+
filename = "imagenet-1k-id2label.json"
|
65 |
+
config.num_labels = 1000
|
66 |
+
config.id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
|
67 |
+
config.id2label = {int(k): v for k, v in config.id2label.items()}
|
68 |
+
|
69 |
+
return config
|
70 |
+
|
71 |
+
|
72 |
+
def create_rename_keys(config):
|
73 |
+
rename_keys = []
|
74 |
+
# fmt: off
|
75 |
+
|
76 |
+
# patch embedding layer
|
77 |
+
rename_keys.append(("cls_token", "embeddings.cls_token"))
|
78 |
+
rename_keys.append(("mask_token", "embeddings.mask_token"))
|
79 |
+
rename_keys.append(("pos_embed", "embeddings.position_embeddings"))
|
80 |
+
rename_keys.append(("patch_embed.proj.weight", "embeddings.patch_embeddings.projection.weight"))
|
81 |
+
rename_keys.append(("patch_embed.proj.bias", "embeddings.patch_embeddings.projection.bias"))
|
82 |
+
|
83 |
+
for i in range(config.num_hidden_layers):
|
84 |
+
# layernorms
|
85 |
+
rename_keys.append((f"blocks.{i}.norm1.weight", f"encoder.layer.{i}.norm1.weight"))
|
86 |
+
rename_keys.append((f"blocks.{i}.norm1.bias", f"encoder.layer.{i}.norm1.bias"))
|
87 |
+
rename_keys.append((f"blocks.{i}.norm2.weight", f"encoder.layer.{i}.norm2.weight"))
|
88 |
+
rename_keys.append((f"blocks.{i}.norm2.bias", f"encoder.layer.{i}.norm2.bias"))
|
89 |
+
# MLP
|
90 |
+
if config.use_swiglu_ffn:
|
91 |
+
rename_keys.append((f"blocks.{i}.mlp.w12.weight", f"encoder.layer.{i}.mlp.w12.weight"))
|
92 |
+
rename_keys.append((f"blocks.{i}.mlp.w12.bias", f"encoder.layer.{i}.mlp.w12.bias"))
|
93 |
+
rename_keys.append((f"blocks.{i}.mlp.w3.weight", f"encoder.layer.{i}.mlp.w3.weight"))
|
94 |
+
rename_keys.append((f"blocks.{i}.mlp.w3.bias", f"encoder.layer.{i}.mlp.w3.bias"))
|
95 |
+
else:
|
96 |
+
rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"encoder.layer.{i}.mlp.fc1.weight"))
|
97 |
+
rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"encoder.layer.{i}.mlp.fc1.bias"))
|
98 |
+
rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"encoder.layer.{i}.mlp.fc2.weight"))
|
99 |
+
rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"encoder.layer.{i}.mlp.fc2.bias"))
|
100 |
+
# layerscale
|
101 |
+
rename_keys.append((f"blocks.{i}.ls1.gamma", f"encoder.layer.{i}.layer_scale1.lambda1"))
|
102 |
+
rename_keys.append((f"blocks.{i}.ls2.gamma", f"encoder.layer.{i}.layer_scale2.lambda1"))
|
103 |
+
# attention projection layer
|
104 |
+
rename_keys.append((f"blocks.{i}.attn.proj.weight", f"encoder.layer.{i}.attention.output.dense.weight"))
|
105 |
+
rename_keys.append((f"blocks.{i}.attn.proj.bias", f"encoder.layer.{i}.attention.output.dense.bias"))
|
106 |
+
|
107 |
+
# final layernorm
|
108 |
+
rename_keys.append(("norm.weight", "layernorm.weight"))
|
109 |
+
rename_keys.append(("norm.bias", "layernorm.bias"))
|
110 |
+
|
111 |
+
# fmt: on
|
112 |
+
return rename_keys
|
113 |
+
|
114 |
+
|
115 |
+
def rename_key(dct, old, new):
|
116 |
+
val = dct.pop(old)
|
117 |
+
dct[new] = val
|
118 |
+
|
119 |
+
|
120 |
+
# we split up the matrix of each encoder layer into queries, keys and values
|
121 |
+
def read_in_q_k_v(state_dict, config):
|
122 |
+
for i in range(config.num_hidden_layers):
|
123 |
+
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
|
124 |
+
in_proj_weight = state_dict.pop(f"blocks.{i}.attn.qkv.weight")
|
125 |
+
in_proj_bias = state_dict.pop(f"blocks.{i}.attn.qkv.bias")
|
126 |
+
# next, add query, keys and values (in that order) to the state dict
|
127 |
+
state_dict[f"encoder.layer.{i}.attention.attention.query.weight"] = in_proj_weight[: config.hidden_size, :]
|
128 |
+
state_dict[f"encoder.layer.{i}.attention.attention.query.bias"] = in_proj_bias[: config.hidden_size]
|
129 |
+
state_dict[f"encoder.layer.{i}.attention.attention.key.weight"] = in_proj_weight[
|
130 |
+
config.hidden_size : config.hidden_size * 2, :
|
131 |
+
]
|
132 |
+
state_dict[f"encoder.layer.{i}.attention.attention.key.bias"] = in_proj_bias[
|
133 |
+
config.hidden_size : config.hidden_size * 2
|
134 |
+
]
|
135 |
+
state_dict[f"encoder.layer.{i}.attention.attention.value.weight"] = in_proj_weight[-config.hidden_size :, :]
|
136 |
+
state_dict[f"encoder.layer.{i}.attention.attention.value.bias"] = in_proj_bias[-config.hidden_size :]
|
137 |
+
|
138 |
+
|
139 |
+
# We will verify our results on an image of cute cats
|
140 |
+
def prepare_img():
|
141 |
+
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
142 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
143 |
+
return image
|
144 |
+
|
145 |
+
|
146 |
+
@torch.no_grad()
|
147 |
+
def convert_dinov2_checkpoint(model_name, pytorch_dump_folder_path, push_to_hub=False):
|
148 |
+
"""
|
149 |
+
Copy/paste/tweak model's weights to our DINOv2 structure.
|
150 |
+
"""
|
151 |
+
|
152 |
+
# define default Dinov2 configuration
|
153 |
+
image_classifier = "1layer" in model_name
|
154 |
+
config = get_dinov2_config(model_name, image_classifier=image_classifier)
|
155 |
+
|
156 |
+
# load original model from torch hub
|
157 |
+
original_model = torch.hub.load("facebookresearch/dinov2", model_name.replace("_1layer", ""))
|
158 |
+
original_model.eval()
|
159 |
+
|
160 |
+
# load state_dict of original model, remove and rename some keys
|
161 |
+
state_dict = original_model.state_dict()
|
162 |
+
rename_keys = create_rename_keys(config)
|
163 |
+
for src, dest in rename_keys:
|
164 |
+
rename_key(state_dict, src, dest)
|
165 |
+
read_in_q_k_v(state_dict, config)
|
166 |
+
|
167 |
+
for key, val in state_dict.copy().items():
|
168 |
+
val = state_dict.pop(key)
|
169 |
+
if "w12" in key:
|
170 |
+
key = key.replace("w12", "weights_in")
|
171 |
+
if "w3" in key:
|
172 |
+
key = key.replace("w3", "weights_out")
|
173 |
+
state_dict[key] = val
|
174 |
+
|
175 |
+
# load HuggingFace model
|
176 |
+
if image_classifier:
|
177 |
+
model = Dinov2ForImageClassification(config).eval()
|
178 |
+
model.dinov2.load_state_dict(state_dict)
|
179 |
+
model_name_to_classifier_dict_url = {
|
180 |
+
"dinov2_vits14_1layer": "https://dl.fbaipublicfiles.com/dinov2/dinov2_vits14/dinov2_vits14_linear_head.pth",
|
181 |
+
"dinov2_vitb14_1layer": "https://dl.fbaipublicfiles.com/dinov2/dinov2_vitb14/dinov2_vitb14_linear_head.pth",
|
182 |
+
"dinov2_vitl14_1layer": "https://dl.fbaipublicfiles.com/dinov2/dinov2_vitl14/dinov2_vitl14_linear_head.pth",
|
183 |
+
"dinov2_vitg14_1layer": "https://dl.fbaipublicfiles.com/dinov2/dinov2_vitg14/dinov2_vitg14_linear_head.pth",
|
184 |
+
}
|
185 |
+
url = model_name_to_classifier_dict_url[model_name]
|
186 |
+
classifier_state_dict = torch.hub.load_state_dict_from_url(url, map_location="cpu")
|
187 |
+
model.classifier.weight = nn.Parameter(classifier_state_dict["weight"])
|
188 |
+
model.classifier.bias = nn.Parameter(classifier_state_dict["bias"])
|
189 |
+
else:
|
190 |
+
model = Dinov2Model(config).eval()
|
191 |
+
model.load_state_dict(state_dict)
|
192 |
+
|
193 |
+
# load image
|
194 |
+
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
195 |
+
image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
|
196 |
+
|
197 |
+
# preprocess image
|
198 |
+
transformations = transforms.Compose(
|
199 |
+
[
|
200 |
+
transforms.Resize(256, interpolation=transforms.InterpolationMode.BICUBIC),
|
201 |
+
transforms.CenterCrop(224),
|
202 |
+
transforms.ToTensor(),
|
203 |
+
transforms.Normalize(
|
204 |
+
mean=IMAGENET_DEFAULT_MEAN, # these are RGB mean+std values
|
205 |
+
std=IMAGENET_DEFAULT_STD, # across a large photo dataset.
|
206 |
+
),
|
207 |
+
]
|
208 |
+
)
|
209 |
+
|
210 |
+
original_pixel_values = transformations(image).unsqueeze(0) # insert batch dimension
|
211 |
+
|
212 |
+
processor = BitImageProcessor(
|
213 |
+
size={"shortest_edge": 256},
|
214 |
+
resample=PILImageResampling.BICUBIC,
|
215 |
+
image_mean=IMAGENET_DEFAULT_MEAN,
|
216 |
+
image_std=IMAGENET_DEFAULT_STD,
|
217 |
+
)
|
218 |
+
pixel_values = processor(image, return_tensors="pt").pixel_values
|
219 |
+
|
220 |
+
assert torch.allclose(original_pixel_values, pixel_values)
|
221 |
+
|
222 |
+
with torch.no_grad():
|
223 |
+
outputs = model(pixel_values, output_hidden_states=True)
|
224 |
+
original_outputs = original_model(pixel_values)
|
225 |
+
|
226 |
+
# assert values
|
227 |
+
if image_classifier:
|
228 |
+
print("Predicted class:")
|
229 |
+
class_idx = outputs.logits.argmax(-1).item()
|
230 |
+
print(model.config.id2label[class_idx])
|
231 |
+
else:
|
232 |
+
assert outputs.last_hidden_state[:, 0].shape == original_outputs.shape
|
233 |
+
assert torch.allclose(outputs.last_hidden_state[:, 0], original_outputs, atol=1e-3)
|
234 |
+
print("Looks ok!")
|
235 |
+
|
236 |
+
if pytorch_dump_folder_path is not None:
|
237 |
+
Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
|
238 |
+
print(f"Saving model {model_name} to {pytorch_dump_folder_path}")
|
239 |
+
model.save_pretrained(pytorch_dump_folder_path)
|
240 |
+
print(f"Saving image processor to {pytorch_dump_folder_path}")
|
241 |
+
processor.save_pretrained(pytorch_dump_folder_path)
|
242 |
+
|
243 |
+
if push_to_hub:
|
244 |
+
model_name_to_hf_name = {
|
245 |
+
"dinov2_vits14": "dinov2-small",
|
246 |
+
"dinov2_vitb14": "dinov2-base",
|
247 |
+
"dinov2_vitl14": "dinov2-large",
|
248 |
+
"dinov2_vitg14": "dinov2-giant",
|
249 |
+
"dinov2_vits14_1layer": "dinov2-small-imagenet1k-1-layer",
|
250 |
+
"dinov2_vitb14_1layer": "dinov2-base-imagenet1k-1-layer",
|
251 |
+
"dinov2_vitl14_1layer": "dinov2-large-imagenet1k-1-layer",
|
252 |
+
"dinov2_vitg14_1layer": "dinov2-giant-imagenet1k-1-layer",
|
253 |
+
}
|
254 |
+
|
255 |
+
name = model_name_to_hf_name[model_name]
|
256 |
+
model.push_to_hub(f"facebook/{name}")
|
257 |
+
processor.push_to_hub(f"facebook/{name}")
|
258 |
+
|
259 |
+
|
260 |
+
if __name__ == "__main__":
|
261 |
+
parser = argparse.ArgumentParser()
|
262 |
+
# Required parameters
|
263 |
+
parser.add_argument(
|
264 |
+
"--model_name",
|
265 |
+
default="dinov2_vitb14",
|
266 |
+
type=str,
|
267 |
+
choices=[
|
268 |
+
"dinov2_vits14",
|
269 |
+
"dinov2_vitb14",
|
270 |
+
"dinov2_vitl14",
|
271 |
+
"dinov2_vitg14",
|
272 |
+
"dinov2_vits14_1layer",
|
273 |
+
"dinov2_vitb14_1layer",
|
274 |
+
"dinov2_vitl14_1layer",
|
275 |
+
"dinov2_vitg14_1layer",
|
276 |
+
],
|
277 |
+
help="Name of the model you'd like to convert.",
|
278 |
+
)
|
279 |
+
parser.add_argument(
|
280 |
+
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
|
281 |
+
)
|
282 |
+
parser.add_argument(
|
283 |
+
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
|
284 |
+
)
|
285 |
+
|
286 |
+
args = parser.parse_args()
|
287 |
+
convert_dinov2_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
|
venv/lib/python3.10/site-packages/transformers/models/dinov2/modeling_dinov2.py
ADDED
@@ -0,0 +1,856 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 Meta AI and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch DINOv2 model."""
|
16 |
+
|
17 |
+
|
18 |
+
import collections.abc
|
19 |
+
import math
|
20 |
+
from typing import Dict, List, Optional, Set, Tuple, Union
|
21 |
+
|
22 |
+
import torch
|
23 |
+
import torch.utils.checkpoint
|
24 |
+
from torch import nn
|
25 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
26 |
+
|
27 |
+
from ...activations import ACT2FN
|
28 |
+
from ...modeling_outputs import (
|
29 |
+
BackboneOutput,
|
30 |
+
BaseModelOutput,
|
31 |
+
BaseModelOutputWithPooling,
|
32 |
+
ImageClassifierOutput,
|
33 |
+
)
|
34 |
+
from ...modeling_utils import PreTrainedModel
|
35 |
+
from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
|
36 |
+
from ...utils import (
|
37 |
+
add_code_sample_docstrings,
|
38 |
+
add_start_docstrings,
|
39 |
+
add_start_docstrings_to_model_forward,
|
40 |
+
logging,
|
41 |
+
replace_return_docstrings,
|
42 |
+
)
|
43 |
+
from ...utils.backbone_utils import BackboneMixin
|
44 |
+
from .configuration_dinov2 import Dinov2Config
|
45 |
+
|
46 |
+
|
47 |
+
logger = logging.get_logger(__name__)
|
48 |
+
|
49 |
+
# General docstring
|
50 |
+
_CONFIG_FOR_DOC = "Dinov2Config"
|
51 |
+
|
52 |
+
# Base docstring
|
53 |
+
_CHECKPOINT_FOR_DOC = "facebook/dinov2-base"
|
54 |
+
_EXPECTED_OUTPUT_SHAPE = [1, 257, 768]
|
55 |
+
|
56 |
+
# Image classification docstring
|
57 |
+
_IMAGE_CLASS_CHECKPOINT = "facebook/dinov2-small-imagenet1k-1-layer"
|
58 |
+
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
|
59 |
+
|
60 |
+
|
61 |
+
from ..deprecated._archive_maps import DINOV2_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
62 |
+
|
63 |
+
|
64 |
+
class Dinov2Embeddings(nn.Module):
|
65 |
+
"""
|
66 |
+
Construct the CLS token, mask token, position and patch embeddings.
|
67 |
+
"""
|
68 |
+
|
69 |
+
def __init__(self, config: Dinov2Config) -> None:
|
70 |
+
super().__init__()
|
71 |
+
|
72 |
+
self.cls_token = nn.Parameter(torch.randn(1, 1, config.hidden_size))
|
73 |
+
self.mask_token = nn.Parameter(torch.zeros(1, config.hidden_size))
|
74 |
+
self.patch_embeddings = Dinov2PatchEmbeddings(config)
|
75 |
+
num_patches = self.patch_embeddings.num_patches
|
76 |
+
self.position_embeddings = nn.Parameter(torch.randn(1, num_patches + 1, config.hidden_size))
|
77 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
78 |
+
self.config = config
|
79 |
+
|
80 |
+
def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
|
81 |
+
"""
|
82 |
+
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher
|
83 |
+
resolution images.
|
84 |
+
|
85 |
+
Source:
|
86 |
+
https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174
|
87 |
+
"""
|
88 |
+
|
89 |
+
num_patches = embeddings.shape[1] - 1
|
90 |
+
num_positions = self.position_embeddings.shape[1] - 1
|
91 |
+
if num_patches == num_positions and height == width:
|
92 |
+
return self.position_embeddings
|
93 |
+
class_pos_embed = self.position_embeddings[:, 0]
|
94 |
+
patch_pos_embed = self.position_embeddings[:, 1:]
|
95 |
+
dim = embeddings.shape[-1]
|
96 |
+
height = height // self.config.patch_size
|
97 |
+
width = width // self.config.patch_size
|
98 |
+
# we add a small number to avoid floating point error in the interpolation
|
99 |
+
# see discussion at https://github.com/facebookresearch/dino/issues/8
|
100 |
+
height, width = height + 0.1, width + 0.1
|
101 |
+
patch_pos_embed = patch_pos_embed.reshape(1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim)
|
102 |
+
patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
|
103 |
+
target_dtype = patch_pos_embed.dtype
|
104 |
+
patch_pos_embed = nn.functional.interpolate(
|
105 |
+
patch_pos_embed.to(dtype=torch.float32),
|
106 |
+
scale_factor=(float(height / math.sqrt(num_positions)), float(width / math.sqrt(num_positions))),
|
107 |
+
mode="bicubic",
|
108 |
+
align_corners=False,
|
109 |
+
).to(dtype=target_dtype)
|
110 |
+
if int(height) != patch_pos_embed.shape[-2] or int(width) != patch_pos_embed.shape[-1]:
|
111 |
+
raise ValueError("Width or height does not match with the interpolated position embeddings")
|
112 |
+
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
|
113 |
+
return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1)
|
114 |
+
|
115 |
+
def forward(self, pixel_values: torch.Tensor, bool_masked_pos: Optional[torch.Tensor] = None) -> torch.Tensor:
|
116 |
+
batch_size, _, height, width = pixel_values.shape
|
117 |
+
target_dtype = self.patch_embeddings.projection.weight.dtype
|
118 |
+
embeddings = self.patch_embeddings(pixel_values.to(dtype=target_dtype))
|
119 |
+
|
120 |
+
if bool_masked_pos is not None:
|
121 |
+
embeddings = torch.where(
|
122 |
+
bool_masked_pos.unsqueeze(-1), self.mask_token.to(embeddings.dtype).unsqueeze(0), embeddings
|
123 |
+
)
|
124 |
+
|
125 |
+
# add the [CLS] token to the embedded patch tokens
|
126 |
+
cls_tokens = self.cls_token.expand(batch_size, -1, -1)
|
127 |
+
embeddings = torch.cat((cls_tokens, embeddings), dim=1)
|
128 |
+
|
129 |
+
# add positional encoding to each token
|
130 |
+
embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
|
131 |
+
|
132 |
+
embeddings = self.dropout(embeddings)
|
133 |
+
|
134 |
+
return embeddings
|
135 |
+
|
136 |
+
|
137 |
+
class Dinov2PatchEmbeddings(nn.Module):
|
138 |
+
"""
|
139 |
+
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
|
140 |
+
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
|
141 |
+
Transformer.
|
142 |
+
"""
|
143 |
+
|
144 |
+
def __init__(self, config):
|
145 |
+
super().__init__()
|
146 |
+
image_size, patch_size = config.image_size, config.patch_size
|
147 |
+
num_channels, hidden_size = config.num_channels, config.hidden_size
|
148 |
+
|
149 |
+
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
|
150 |
+
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
|
151 |
+
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
|
152 |
+
self.image_size = image_size
|
153 |
+
self.patch_size = patch_size
|
154 |
+
self.num_channels = num_channels
|
155 |
+
self.num_patches = num_patches
|
156 |
+
|
157 |
+
self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size)
|
158 |
+
|
159 |
+
def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
|
160 |
+
num_channels = pixel_values.shape[1]
|
161 |
+
if num_channels != self.num_channels:
|
162 |
+
raise ValueError(
|
163 |
+
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
|
164 |
+
f" Expected {self.num_channels} but got {num_channels}."
|
165 |
+
)
|
166 |
+
embeddings = self.projection(pixel_values).flatten(2).transpose(1, 2)
|
167 |
+
return embeddings
|
168 |
+
|
169 |
+
|
170 |
+
# Copied from transformers.models.vit.modeling_vit.ViTSelfAttention with ViT->Dinov2
|
171 |
+
class Dinov2SelfAttention(nn.Module):
|
172 |
+
def __init__(self, config: Dinov2Config) -> None:
|
173 |
+
super().__init__()
|
174 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
175 |
+
raise ValueError(
|
176 |
+
f"The hidden size {config.hidden_size,} is not a multiple of the number of attention "
|
177 |
+
f"heads {config.num_attention_heads}."
|
178 |
+
)
|
179 |
+
|
180 |
+
self.num_attention_heads = config.num_attention_heads
|
181 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
182 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
183 |
+
|
184 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
|
185 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
|
186 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
|
187 |
+
|
188 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
189 |
+
|
190 |
+
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
|
191 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
192 |
+
x = x.view(new_x_shape)
|
193 |
+
return x.permute(0, 2, 1, 3)
|
194 |
+
|
195 |
+
def forward(
|
196 |
+
self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False
|
197 |
+
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
|
198 |
+
mixed_query_layer = self.query(hidden_states)
|
199 |
+
|
200 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
201 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
202 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
203 |
+
|
204 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
205 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
206 |
+
|
207 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
208 |
+
|
209 |
+
# Normalize the attention scores to probabilities.
|
210 |
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
211 |
+
|
212 |
+
# This is actually dropping out entire tokens to attend to, which might
|
213 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
214 |
+
attention_probs = self.dropout(attention_probs)
|
215 |
+
|
216 |
+
# Mask heads if we want to
|
217 |
+
if head_mask is not None:
|
218 |
+
attention_probs = attention_probs * head_mask
|
219 |
+
|
220 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
221 |
+
|
222 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
223 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
224 |
+
context_layer = context_layer.view(new_context_layer_shape)
|
225 |
+
|
226 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
227 |
+
|
228 |
+
return outputs
|
229 |
+
|
230 |
+
|
231 |
+
# Copied from transformers.models.vit.modeling_vit.ViTSelfOutput with ViT->Dinov2
|
232 |
+
class Dinov2SelfOutput(nn.Module):
|
233 |
+
"""
|
234 |
+
The residual connection is defined in Dinov2Layer instead of here (as is the case with other models), due to the
|
235 |
+
layernorm applied before each block.
|
236 |
+
"""
|
237 |
+
|
238 |
+
def __init__(self, config: Dinov2Config) -> None:
|
239 |
+
super().__init__()
|
240 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
241 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
242 |
+
|
243 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
244 |
+
hidden_states = self.dense(hidden_states)
|
245 |
+
hidden_states = self.dropout(hidden_states)
|
246 |
+
|
247 |
+
return hidden_states
|
248 |
+
|
249 |
+
|
250 |
+
# Copied from transformers.models.vit.modeling_vit.ViTAttention with ViT->Dinov2
|
251 |
+
class Dinov2Attention(nn.Module):
|
252 |
+
def __init__(self, config: Dinov2Config) -> None:
|
253 |
+
super().__init__()
|
254 |
+
self.attention = Dinov2SelfAttention(config)
|
255 |
+
self.output = Dinov2SelfOutput(config)
|
256 |
+
self.pruned_heads = set()
|
257 |
+
|
258 |
+
def prune_heads(self, heads: Set[int]) -> None:
|
259 |
+
if len(heads) == 0:
|
260 |
+
return
|
261 |
+
heads, index = find_pruneable_heads_and_indices(
|
262 |
+
heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
|
263 |
+
)
|
264 |
+
|
265 |
+
# Prune linear layers
|
266 |
+
self.attention.query = prune_linear_layer(self.attention.query, index)
|
267 |
+
self.attention.key = prune_linear_layer(self.attention.key, index)
|
268 |
+
self.attention.value = prune_linear_layer(self.attention.value, index)
|
269 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
270 |
+
|
271 |
+
# Update hyper params and store pruned heads
|
272 |
+
self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
|
273 |
+
self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
|
274 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
275 |
+
|
276 |
+
def forward(
|
277 |
+
self,
|
278 |
+
hidden_states: torch.Tensor,
|
279 |
+
head_mask: Optional[torch.Tensor] = None,
|
280 |
+
output_attentions: bool = False,
|
281 |
+
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
|
282 |
+
self_outputs = self.attention(hidden_states, head_mask, output_attentions)
|
283 |
+
|
284 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
285 |
+
|
286 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
287 |
+
return outputs
|
288 |
+
|
289 |
+
|
290 |
+
class Dinov2LayerScale(nn.Module):
|
291 |
+
def __init__(self, config) -> None:
|
292 |
+
super().__init__()
|
293 |
+
self.lambda1 = nn.Parameter(config.layerscale_value * torch.ones(config.hidden_size))
|
294 |
+
|
295 |
+
def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
|
296 |
+
return hidden_state * self.lambda1
|
297 |
+
|
298 |
+
|
299 |
+
# Copied from transformers.models.beit.modeling_beit.drop_path
|
300 |
+
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
|
301 |
+
"""
|
302 |
+
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
303 |
+
|
304 |
+
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
|
305 |
+
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
|
306 |
+
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
|
307 |
+
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
|
308 |
+
argument.
|
309 |
+
"""
|
310 |
+
if drop_prob == 0.0 or not training:
|
311 |
+
return input
|
312 |
+
keep_prob = 1 - drop_prob
|
313 |
+
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
|
314 |
+
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
|
315 |
+
random_tensor.floor_() # binarize
|
316 |
+
output = input.div(keep_prob) * random_tensor
|
317 |
+
return output
|
318 |
+
|
319 |
+
|
320 |
+
# Copied from transformers.models.beit.modeling_beit.BeitDropPath
|
321 |
+
class Dinov2DropPath(nn.Module):
|
322 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
|
323 |
+
|
324 |
+
def __init__(self, drop_prob: Optional[float] = None) -> None:
|
325 |
+
super().__init__()
|
326 |
+
self.drop_prob = drop_prob
|
327 |
+
|
328 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
329 |
+
return drop_path(hidden_states, self.drop_prob, self.training)
|
330 |
+
|
331 |
+
def extra_repr(self) -> str:
|
332 |
+
return "p={}".format(self.drop_prob)
|
333 |
+
|
334 |
+
|
335 |
+
class Dinov2MLP(nn.Module):
|
336 |
+
def __init__(self, config) -> None:
|
337 |
+
super().__init__()
|
338 |
+
in_features = out_features = config.hidden_size
|
339 |
+
hidden_features = int(config.hidden_size * config.mlp_ratio)
|
340 |
+
self.fc1 = nn.Linear(in_features, hidden_features, bias=True)
|
341 |
+
if isinstance(config.hidden_act, str):
|
342 |
+
self.activation = ACT2FN[config.hidden_act]
|
343 |
+
else:
|
344 |
+
self.activation = config.hidden_act
|
345 |
+
self.fc2 = nn.Linear(hidden_features, out_features, bias=True)
|
346 |
+
|
347 |
+
def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
|
348 |
+
hidden_state = self.fc1(hidden_state)
|
349 |
+
hidden_state = self.activation(hidden_state)
|
350 |
+
hidden_state = self.fc2(hidden_state)
|
351 |
+
return hidden_state
|
352 |
+
|
353 |
+
|
354 |
+
class Dinov2SwiGLUFFN(nn.Module):
|
355 |
+
def __init__(self, config) -> None:
|
356 |
+
super().__init__()
|
357 |
+
in_features = out_features = config.hidden_size
|
358 |
+
hidden_features = int(config.hidden_size * config.mlp_ratio)
|
359 |
+
hidden_features = (int(hidden_features * 2 / 3) + 7) // 8 * 8
|
360 |
+
|
361 |
+
self.weights_in = nn.Linear(in_features, 2 * hidden_features, bias=True)
|
362 |
+
self.weights_out = nn.Linear(hidden_features, out_features, bias=True)
|
363 |
+
|
364 |
+
def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
|
365 |
+
hidden_state = self.weights_in(hidden_state)
|
366 |
+
x1, x2 = hidden_state.chunk(2, dim=-1)
|
367 |
+
hidden = nn.functional.silu(x1) * x2
|
368 |
+
return self.weights_out(hidden)
|
369 |
+
|
370 |
+
|
371 |
+
class Dinov2Layer(nn.Module):
|
372 |
+
"""This corresponds to the Block class in the original implementation."""
|
373 |
+
|
374 |
+
def __init__(self, config: Dinov2Config) -> None:
|
375 |
+
super().__init__()
|
376 |
+
|
377 |
+
self.norm1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
378 |
+
self.attention = Dinov2Attention(config)
|
379 |
+
self.layer_scale1 = Dinov2LayerScale(config)
|
380 |
+
self.drop_path = Dinov2DropPath(config.drop_path_rate) if config.drop_path_rate > 0.0 else nn.Identity()
|
381 |
+
|
382 |
+
self.norm2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
383 |
+
|
384 |
+
if config.use_swiglu_ffn:
|
385 |
+
self.mlp = Dinov2SwiGLUFFN(config)
|
386 |
+
else:
|
387 |
+
self.mlp = Dinov2MLP(config)
|
388 |
+
self.layer_scale2 = Dinov2LayerScale(config)
|
389 |
+
|
390 |
+
def forward(
|
391 |
+
self,
|
392 |
+
hidden_states: torch.Tensor,
|
393 |
+
head_mask: Optional[torch.Tensor] = None,
|
394 |
+
output_attentions: bool = False,
|
395 |
+
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
|
396 |
+
self_attention_outputs = self.attention(
|
397 |
+
self.norm1(hidden_states), # in Dinov2, layernorm is applied before self-attention
|
398 |
+
head_mask,
|
399 |
+
output_attentions=output_attentions,
|
400 |
+
)
|
401 |
+
attention_output = self_attention_outputs[0]
|
402 |
+
|
403 |
+
attention_output = self.layer_scale1(attention_output)
|
404 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
405 |
+
|
406 |
+
# first residual connection
|
407 |
+
hidden_states = self.drop_path(attention_output) + hidden_states
|
408 |
+
|
409 |
+
# in Dinov2, layernorm is also applied after self-attention
|
410 |
+
layer_output = self.norm2(hidden_states)
|
411 |
+
layer_output = self.mlp(layer_output)
|
412 |
+
layer_output = self.layer_scale2(layer_output)
|
413 |
+
|
414 |
+
# second residual connection
|
415 |
+
layer_output = self.drop_path(layer_output) + hidden_states
|
416 |
+
|
417 |
+
outputs = (layer_output,) + outputs
|
418 |
+
|
419 |
+
return outputs
|
420 |
+
|
421 |
+
|
422 |
+
# Copied from transformers.models.vit.modeling_vit.ViTEncoder with ViT->Dinov2
|
423 |
+
class Dinov2Encoder(nn.Module):
|
424 |
+
def __init__(self, config: Dinov2Config) -> None:
|
425 |
+
super().__init__()
|
426 |
+
self.config = config
|
427 |
+
self.layer = nn.ModuleList([Dinov2Layer(config) for _ in range(config.num_hidden_layers)])
|
428 |
+
self.gradient_checkpointing = False
|
429 |
+
|
430 |
+
def forward(
|
431 |
+
self,
|
432 |
+
hidden_states: torch.Tensor,
|
433 |
+
head_mask: Optional[torch.Tensor] = None,
|
434 |
+
output_attentions: bool = False,
|
435 |
+
output_hidden_states: bool = False,
|
436 |
+
return_dict: bool = True,
|
437 |
+
) -> Union[tuple, BaseModelOutput]:
|
438 |
+
all_hidden_states = () if output_hidden_states else None
|
439 |
+
all_self_attentions = () if output_attentions else None
|
440 |
+
|
441 |
+
for i, layer_module in enumerate(self.layer):
|
442 |
+
if output_hidden_states:
|
443 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
444 |
+
|
445 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
446 |
+
|
447 |
+
if self.gradient_checkpointing and self.training:
|
448 |
+
layer_outputs = self._gradient_checkpointing_func(
|
449 |
+
layer_module.__call__,
|
450 |
+
hidden_states,
|
451 |
+
layer_head_mask,
|
452 |
+
output_attentions,
|
453 |
+
)
|
454 |
+
else:
|
455 |
+
layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions)
|
456 |
+
|
457 |
+
hidden_states = layer_outputs[0]
|
458 |
+
|
459 |
+
if output_attentions:
|
460 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
461 |
+
|
462 |
+
if output_hidden_states:
|
463 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
464 |
+
|
465 |
+
if not return_dict:
|
466 |
+
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
|
467 |
+
return BaseModelOutput(
|
468 |
+
last_hidden_state=hidden_states,
|
469 |
+
hidden_states=all_hidden_states,
|
470 |
+
attentions=all_self_attentions,
|
471 |
+
)
|
472 |
+
|
473 |
+
|
474 |
+
class Dinov2PreTrainedModel(PreTrainedModel):
|
475 |
+
"""
|
476 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
477 |
+
models.
|
478 |
+
"""
|
479 |
+
|
480 |
+
config_class = Dinov2Config
|
481 |
+
base_model_prefix = "dinov2"
|
482 |
+
main_input_name = "pixel_values"
|
483 |
+
supports_gradient_checkpointing = True
|
484 |
+
|
485 |
+
def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None:
|
486 |
+
"""Initialize the weights"""
|
487 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
488 |
+
# Upcast the input in `fp32` and cast it back to desired `dtype` to avoid
|
489 |
+
# `trunc_normal_cpu` not implemented in `half` issues
|
490 |
+
module.weight.data = nn.init.trunc_normal_(
|
491 |
+
module.weight.data.to(torch.float32), mean=0.0, std=self.config.initializer_range
|
492 |
+
).to(module.weight.dtype)
|
493 |
+
if module.bias is not None:
|
494 |
+
module.bias.data.zero_()
|
495 |
+
elif isinstance(module, nn.LayerNorm):
|
496 |
+
module.bias.data.zero_()
|
497 |
+
module.weight.data.fill_(1.0)
|
498 |
+
elif isinstance(module, Dinov2Embeddings):
|
499 |
+
module.position_embeddings.data = nn.init.trunc_normal_(
|
500 |
+
module.position_embeddings.data.to(torch.float32),
|
501 |
+
mean=0.0,
|
502 |
+
std=self.config.initializer_range,
|
503 |
+
).to(module.position_embeddings.dtype)
|
504 |
+
|
505 |
+
module.cls_token.data = nn.init.trunc_normal_(
|
506 |
+
module.cls_token.data.to(torch.float32),
|
507 |
+
mean=0.0,
|
508 |
+
std=self.config.initializer_range,
|
509 |
+
).to(module.cls_token.dtype)
|
510 |
+
|
511 |
+
|
512 |
+
DINOV2_START_DOCSTRING = r"""
|
513 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
|
514 |
+
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
515 |
+
behavior.
|
516 |
+
|
517 |
+
Parameters:
|
518 |
+
config ([`Dinov2Config`]): Model configuration class with all the parameters of the model.
|
519 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
520 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
521 |
+
"""
|
522 |
+
|
523 |
+
DINOV2_BASE_INPUTS_DOCSTRING = r"""
|
524 |
+
Args:
|
525 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
526 |
+
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
|
527 |
+
[`BitImageProcessor.preprocess`] for details.
|
528 |
+
|
529 |
+
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, sequence_length)`):
|
530 |
+
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). Only relevant for
|
531 |
+
pre-training.
|
532 |
+
|
533 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
534 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
535 |
+
|
536 |
+
- 1 indicates the head is **not masked**,
|
537 |
+
- 0 indicates the head is **masked**.
|
538 |
+
|
539 |
+
output_attentions (`bool`, *optional*):
|
540 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
541 |
+
tensors for more detail.
|
542 |
+
output_hidden_states (`bool`, *optional*):
|
543 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
544 |
+
more detail.
|
545 |
+
return_dict (`bool`, *optional*):
|
546 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
547 |
+
"""
|
548 |
+
|
549 |
+
DINOV2_INPUTS_DOCSTRING = r"""
|
550 |
+
Args:
|
551 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
552 |
+
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
|
553 |
+
[`BitImageProcessor.preprocess`] for details.
|
554 |
+
|
555 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
556 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
557 |
+
|
558 |
+
- 1 indicates the head is **not masked**,
|
559 |
+
- 0 indicates the head is **masked**.
|
560 |
+
|
561 |
+
output_attentions (`bool`, *optional*):
|
562 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
563 |
+
tensors for more detail.
|
564 |
+
output_hidden_states (`bool`, *optional*):
|
565 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
566 |
+
more detail.
|
567 |
+
return_dict (`bool`, *optional*):
|
568 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
569 |
+
"""
|
570 |
+
|
571 |
+
|
572 |
+
@add_start_docstrings(
|
573 |
+
"The bare DINOv2 Model transformer outputting raw hidden-states without any specific head on top.",
|
574 |
+
DINOV2_START_DOCSTRING,
|
575 |
+
)
|
576 |
+
class Dinov2Model(Dinov2PreTrainedModel):
|
577 |
+
def __init__(self, config: Dinov2Config):
|
578 |
+
super().__init__(config)
|
579 |
+
self.config = config
|
580 |
+
|
581 |
+
self.embeddings = Dinov2Embeddings(config)
|
582 |
+
self.encoder = Dinov2Encoder(config)
|
583 |
+
|
584 |
+
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
585 |
+
|
586 |
+
# Initialize weights and apply final processing
|
587 |
+
self.post_init()
|
588 |
+
|
589 |
+
def get_input_embeddings(self) -> Dinov2PatchEmbeddings:
|
590 |
+
return self.embeddings.patch_embeddings
|
591 |
+
|
592 |
+
def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None:
|
593 |
+
"""
|
594 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
595 |
+
class PreTrainedModel
|
596 |
+
"""
|
597 |
+
for layer, heads in heads_to_prune.items():
|
598 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
599 |
+
|
600 |
+
@add_start_docstrings_to_model_forward(DINOV2_BASE_INPUTS_DOCSTRING)
|
601 |
+
@add_code_sample_docstrings(
|
602 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
603 |
+
output_type=BaseModelOutputWithPooling,
|
604 |
+
config_class=_CONFIG_FOR_DOC,
|
605 |
+
modality="vision",
|
606 |
+
expected_output=_EXPECTED_OUTPUT_SHAPE,
|
607 |
+
)
|
608 |
+
def forward(
|
609 |
+
self,
|
610 |
+
pixel_values: Optional[torch.Tensor] = None,
|
611 |
+
bool_masked_pos: Optional[torch.Tensor] = None,
|
612 |
+
head_mask: Optional[torch.Tensor] = None,
|
613 |
+
output_attentions: Optional[bool] = None,
|
614 |
+
output_hidden_states: Optional[bool] = None,
|
615 |
+
return_dict: Optional[bool] = None,
|
616 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
617 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
618 |
+
output_hidden_states = (
|
619 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
620 |
+
)
|
621 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
622 |
+
|
623 |
+
if pixel_values is None:
|
624 |
+
raise ValueError("You have to specify pixel_values")
|
625 |
+
|
626 |
+
# Prepare head mask if needed
|
627 |
+
# 1.0 in head_mask indicate we keep the head
|
628 |
+
# attention_probs has shape bsz x n_heads x N x N
|
629 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
630 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
631 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
632 |
+
|
633 |
+
embedding_output = self.embeddings(pixel_values, bool_masked_pos=bool_masked_pos)
|
634 |
+
|
635 |
+
encoder_outputs = self.encoder(
|
636 |
+
embedding_output,
|
637 |
+
head_mask=head_mask,
|
638 |
+
output_attentions=output_attentions,
|
639 |
+
output_hidden_states=output_hidden_states,
|
640 |
+
return_dict=return_dict,
|
641 |
+
)
|
642 |
+
sequence_output = encoder_outputs[0]
|
643 |
+
sequence_output = self.layernorm(sequence_output)
|
644 |
+
pooled_output = sequence_output[:, 0, :]
|
645 |
+
|
646 |
+
if not return_dict:
|
647 |
+
head_outputs = (sequence_output, pooled_output)
|
648 |
+
return head_outputs + encoder_outputs[1:]
|
649 |
+
|
650 |
+
return BaseModelOutputWithPooling(
|
651 |
+
last_hidden_state=sequence_output,
|
652 |
+
pooler_output=pooled_output,
|
653 |
+
hidden_states=encoder_outputs.hidden_states,
|
654 |
+
attentions=encoder_outputs.attentions,
|
655 |
+
)
|
656 |
+
|
657 |
+
|
658 |
+
@add_start_docstrings(
|
659 |
+
"""
|
660 |
+
Dinov2 Model transformer with an image classification head on top (a linear layer on top of the final hidden state
|
661 |
+
of the [CLS] token) e.g. for ImageNet.
|
662 |
+
""",
|
663 |
+
DINOV2_START_DOCSTRING,
|
664 |
+
)
|
665 |
+
class Dinov2ForImageClassification(Dinov2PreTrainedModel):
|
666 |
+
def __init__(self, config: Dinov2Config) -> None:
|
667 |
+
super().__init__(config)
|
668 |
+
|
669 |
+
self.num_labels = config.num_labels
|
670 |
+
self.dinov2 = Dinov2Model(config)
|
671 |
+
|
672 |
+
# Classifier head
|
673 |
+
self.classifier = (
|
674 |
+
nn.Linear(config.hidden_size * 2, config.num_labels) if config.num_labels > 0 else nn.Identity()
|
675 |
+
)
|
676 |
+
|
677 |
+
# Initialize weights and apply final processing
|
678 |
+
self.post_init()
|
679 |
+
|
680 |
+
@add_start_docstrings_to_model_forward(DINOV2_INPUTS_DOCSTRING)
|
681 |
+
@add_code_sample_docstrings(
|
682 |
+
checkpoint=_IMAGE_CLASS_CHECKPOINT,
|
683 |
+
output_type=ImageClassifierOutput,
|
684 |
+
config_class=_CONFIG_FOR_DOC,
|
685 |
+
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
|
686 |
+
)
|
687 |
+
def forward(
|
688 |
+
self,
|
689 |
+
pixel_values: Optional[torch.Tensor] = None,
|
690 |
+
head_mask: Optional[torch.Tensor] = None,
|
691 |
+
labels: Optional[torch.Tensor] = None,
|
692 |
+
output_attentions: Optional[bool] = None,
|
693 |
+
output_hidden_states: Optional[bool] = None,
|
694 |
+
return_dict: Optional[bool] = None,
|
695 |
+
) -> Union[tuple, ImageClassifierOutput]:
|
696 |
+
r"""
|
697 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
698 |
+
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
|
699 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
700 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
701 |
+
"""
|
702 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
703 |
+
|
704 |
+
outputs = self.dinov2(
|
705 |
+
pixel_values,
|
706 |
+
head_mask=head_mask,
|
707 |
+
output_attentions=output_attentions,
|
708 |
+
output_hidden_states=output_hidden_states,
|
709 |
+
return_dict=return_dict,
|
710 |
+
)
|
711 |
+
|
712 |
+
sequence_output = outputs[0] # batch_size, sequence_length, hidden_size
|
713 |
+
|
714 |
+
cls_token = sequence_output[:, 0]
|
715 |
+
patch_tokens = sequence_output[:, 1:]
|
716 |
+
|
717 |
+
linear_input = torch.cat([cls_token, patch_tokens.mean(dim=1)], dim=1)
|
718 |
+
|
719 |
+
logits = self.classifier(linear_input)
|
720 |
+
|
721 |
+
loss = None
|
722 |
+
if labels is not None:
|
723 |
+
# move labels to correct device to enable model parallelism
|
724 |
+
labels = labels.to(logits.device)
|
725 |
+
if self.config.problem_type is None:
|
726 |
+
if self.num_labels == 1:
|
727 |
+
self.config.problem_type = "regression"
|
728 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
729 |
+
self.config.problem_type = "single_label_classification"
|
730 |
+
else:
|
731 |
+
self.config.problem_type = "multi_label_classification"
|
732 |
+
|
733 |
+
if self.config.problem_type == "regression":
|
734 |
+
loss_fct = MSELoss()
|
735 |
+
if self.num_labels == 1:
|
736 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
737 |
+
else:
|
738 |
+
loss = loss_fct(logits, labels)
|
739 |
+
elif self.config.problem_type == "single_label_classification":
|
740 |
+
loss_fct = CrossEntropyLoss()
|
741 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
742 |
+
elif self.config.problem_type == "multi_label_classification":
|
743 |
+
loss_fct = BCEWithLogitsLoss()
|
744 |
+
loss = loss_fct(logits, labels)
|
745 |
+
|
746 |
+
if not return_dict:
|
747 |
+
output = (logits,) + outputs[2:]
|
748 |
+
return ((loss,) + output) if loss is not None else output
|
749 |
+
|
750 |
+
return ImageClassifierOutput(
|
751 |
+
loss=loss,
|
752 |
+
logits=logits,
|
753 |
+
hidden_states=outputs.hidden_states,
|
754 |
+
attentions=outputs.attentions,
|
755 |
+
)
|
756 |
+
|
757 |
+
|
758 |
+
@add_start_docstrings(
|
759 |
+
"""
|
760 |
+
Dinov2 backbone, to be used with frameworks like DETR and MaskFormer.
|
761 |
+
""",
|
762 |
+
DINOV2_START_DOCSTRING,
|
763 |
+
)
|
764 |
+
class Dinov2Backbone(Dinov2PreTrainedModel, BackboneMixin):
|
765 |
+
def __init__(self, config):
|
766 |
+
super().__init__(config)
|
767 |
+
super()._init_backbone(config)
|
768 |
+
|
769 |
+
self.num_features = [config.hidden_size for _ in range(config.num_hidden_layers + 1)]
|
770 |
+
self.embeddings = Dinov2Embeddings(config)
|
771 |
+
self.encoder = Dinov2Encoder(config)
|
772 |
+
|
773 |
+
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
774 |
+
|
775 |
+
# Initialize weights and apply final processing
|
776 |
+
self.post_init()
|
777 |
+
|
778 |
+
def get_input_embeddings(self) -> Dinov2PatchEmbeddings:
|
779 |
+
return self.embeddings.patch_embeddings
|
780 |
+
|
781 |
+
@add_start_docstrings_to_model_forward(DINOV2_INPUTS_DOCSTRING)
|
782 |
+
@replace_return_docstrings(output_type=BackboneOutput, config_class=_CONFIG_FOR_DOC)
|
783 |
+
def forward(
|
784 |
+
self,
|
785 |
+
pixel_values: torch.Tensor,
|
786 |
+
output_hidden_states: Optional[bool] = None,
|
787 |
+
output_attentions: Optional[bool] = None,
|
788 |
+
return_dict: Optional[bool] = None,
|
789 |
+
) -> BackboneOutput:
|
790 |
+
"""
|
791 |
+
Returns:
|
792 |
+
|
793 |
+
Examples:
|
794 |
+
|
795 |
+
```python
|
796 |
+
>>> from transformers import AutoImageProcessor, AutoBackbone
|
797 |
+
>>> import torch
|
798 |
+
>>> from PIL import Image
|
799 |
+
>>> import requests
|
800 |
+
|
801 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
802 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
803 |
+
|
804 |
+
>>> processor = AutoImageProcessor.from_pretrained("facebook/dinov2-base")
|
805 |
+
>>> model = AutoBackbone.from_pretrained(
|
806 |
+
... "facebook/dinov2-base", out_features=["stage2", "stage5", "stage8", "stage11"]
|
807 |
+
... )
|
808 |
+
|
809 |
+
>>> inputs = processor(image, return_tensors="pt")
|
810 |
+
|
811 |
+
>>> outputs = model(**inputs)
|
812 |
+
>>> feature_maps = outputs.feature_maps
|
813 |
+
>>> list(feature_maps[-1].shape)
|
814 |
+
[1, 768, 16, 16]
|
815 |
+
```"""
|
816 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
817 |
+
output_hidden_states = (
|
818 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
819 |
+
)
|
820 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
821 |
+
|
822 |
+
embedding_output = self.embeddings(pixel_values)
|
823 |
+
|
824 |
+
outputs = self.encoder(
|
825 |
+
embedding_output, output_hidden_states=True, output_attentions=output_attentions, return_dict=return_dict
|
826 |
+
)
|
827 |
+
|
828 |
+
hidden_states = outputs.hidden_states if return_dict else outputs[1]
|
829 |
+
|
830 |
+
feature_maps = ()
|
831 |
+
for stage, hidden_state in zip(self.stage_names, hidden_states):
|
832 |
+
if stage in self.out_features:
|
833 |
+
if self.config.apply_layernorm:
|
834 |
+
hidden_state = self.layernorm(hidden_state)
|
835 |
+
if self.config.reshape_hidden_states:
|
836 |
+
hidden_state = hidden_state[:, 1:]
|
837 |
+
# this was actually a bug in the original implementation that we copied here,
|
838 |
+
# cause normally the order is height, width
|
839 |
+
batch_size, _, height, width = pixel_values.shape
|
840 |
+
patch_size = self.config.patch_size
|
841 |
+
hidden_state = hidden_state.reshape(batch_size, height // patch_size, width // patch_size, -1)
|
842 |
+
hidden_state = hidden_state.permute(0, 3, 1, 2).contiguous()
|
843 |
+
feature_maps += (hidden_state,)
|
844 |
+
|
845 |
+
if not return_dict:
|
846 |
+
if output_hidden_states:
|
847 |
+
output = (feature_maps,) + outputs[1:]
|
848 |
+
else:
|
849 |
+
output = (feature_maps,) + outputs[2:]
|
850 |
+
return output
|
851 |
+
|
852 |
+
return BackboneOutput(
|
853 |
+
feature_maps=feature_maps,
|
854 |
+
hidden_states=outputs.hidden_states if output_hidden_states else None,
|
855 |
+
attentions=outputs.attentions if output_attentions else None,
|
856 |
+
)
|
venv/lib/python3.10/site-packages/transformers/models/distilbert/__init__.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import TYPE_CHECKING
|
16 |
+
|
17 |
+
from ...utils import (
|
18 |
+
OptionalDependencyNotAvailable,
|
19 |
+
_LazyModule,
|
20 |
+
is_flax_available,
|
21 |
+
is_tf_available,
|
22 |
+
is_tokenizers_available,
|
23 |
+
is_torch_available,
|
24 |
+
)
|
25 |
+
|
26 |
+
|
27 |
+
_import_structure = {
|
28 |
+
"configuration_distilbert": [
|
29 |
+
"DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
30 |
+
"DistilBertConfig",
|
31 |
+
"DistilBertOnnxConfig",
|
32 |
+
],
|
33 |
+
"tokenization_distilbert": ["DistilBertTokenizer"],
|
34 |
+
}
|
35 |
+
|
36 |
+
try:
|
37 |
+
if not is_tokenizers_available():
|
38 |
+
raise OptionalDependencyNotAvailable()
|
39 |
+
except OptionalDependencyNotAvailable:
|
40 |
+
pass
|
41 |
+
else:
|
42 |
+
_import_structure["tokenization_distilbert_fast"] = ["DistilBertTokenizerFast"]
|
43 |
+
|
44 |
+
try:
|
45 |
+
if not is_torch_available():
|
46 |
+
raise OptionalDependencyNotAvailable()
|
47 |
+
except OptionalDependencyNotAvailable:
|
48 |
+
pass
|
49 |
+
else:
|
50 |
+
_import_structure["modeling_distilbert"] = [
|
51 |
+
"DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
52 |
+
"DistilBertForMaskedLM",
|
53 |
+
"DistilBertForMultipleChoice",
|
54 |
+
"DistilBertForQuestionAnswering",
|
55 |
+
"DistilBertForSequenceClassification",
|
56 |
+
"DistilBertForTokenClassification",
|
57 |
+
"DistilBertModel",
|
58 |
+
"DistilBertPreTrainedModel",
|
59 |
+
]
|
60 |
+
|
61 |
+
try:
|
62 |
+
if not is_tf_available():
|
63 |
+
raise OptionalDependencyNotAvailable()
|
64 |
+
except OptionalDependencyNotAvailable:
|
65 |
+
pass
|
66 |
+
else:
|
67 |
+
_import_structure["modeling_tf_distilbert"] = [
|
68 |
+
"TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
69 |
+
"TFDistilBertForMaskedLM",
|
70 |
+
"TFDistilBertForMultipleChoice",
|
71 |
+
"TFDistilBertForQuestionAnswering",
|
72 |
+
"TFDistilBertForSequenceClassification",
|
73 |
+
"TFDistilBertForTokenClassification",
|
74 |
+
"TFDistilBertMainLayer",
|
75 |
+
"TFDistilBertModel",
|
76 |
+
"TFDistilBertPreTrainedModel",
|
77 |
+
]
|
78 |
+
|
79 |
+
try:
|
80 |
+
if not is_flax_available():
|
81 |
+
raise OptionalDependencyNotAvailable()
|
82 |
+
except OptionalDependencyNotAvailable:
|
83 |
+
pass
|
84 |
+
else:
|
85 |
+
_import_structure["modeling_flax_distilbert"] = [
|
86 |
+
"FlaxDistilBertForMaskedLM",
|
87 |
+
"FlaxDistilBertForMultipleChoice",
|
88 |
+
"FlaxDistilBertForQuestionAnswering",
|
89 |
+
"FlaxDistilBertForSequenceClassification",
|
90 |
+
"FlaxDistilBertForTokenClassification",
|
91 |
+
"FlaxDistilBertModel",
|
92 |
+
"FlaxDistilBertPreTrainedModel",
|
93 |
+
]
|
94 |
+
|
95 |
+
|
96 |
+
if TYPE_CHECKING:
|
97 |
+
from .configuration_distilbert import (
|
98 |
+
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
99 |
+
DistilBertConfig,
|
100 |
+
DistilBertOnnxConfig,
|
101 |
+
)
|
102 |
+
from .tokenization_distilbert import DistilBertTokenizer
|
103 |
+
|
104 |
+
try:
|
105 |
+
if not is_tokenizers_available():
|
106 |
+
raise OptionalDependencyNotAvailable()
|
107 |
+
except OptionalDependencyNotAvailable:
|
108 |
+
pass
|
109 |
+
else:
|
110 |
+
from .tokenization_distilbert_fast import DistilBertTokenizerFast
|
111 |
+
|
112 |
+
try:
|
113 |
+
if not is_torch_available():
|
114 |
+
raise OptionalDependencyNotAvailable()
|
115 |
+
except OptionalDependencyNotAvailable:
|
116 |
+
pass
|
117 |
+
else:
|
118 |
+
from .modeling_distilbert import (
|
119 |
+
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
120 |
+
DistilBertForMaskedLM,
|
121 |
+
DistilBertForMultipleChoice,
|
122 |
+
DistilBertForQuestionAnswering,
|
123 |
+
DistilBertForSequenceClassification,
|
124 |
+
DistilBertForTokenClassification,
|
125 |
+
DistilBertModel,
|
126 |
+
DistilBertPreTrainedModel,
|
127 |
+
)
|
128 |
+
|
129 |
+
try:
|
130 |
+
if not is_tf_available():
|
131 |
+
raise OptionalDependencyNotAvailable()
|
132 |
+
except OptionalDependencyNotAvailable:
|
133 |
+
pass
|
134 |
+
else:
|
135 |
+
from .modeling_tf_distilbert import (
|
136 |
+
TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
137 |
+
TFDistilBertForMaskedLM,
|
138 |
+
TFDistilBertForMultipleChoice,
|
139 |
+
TFDistilBertForQuestionAnswering,
|
140 |
+
TFDistilBertForSequenceClassification,
|
141 |
+
TFDistilBertForTokenClassification,
|
142 |
+
TFDistilBertMainLayer,
|
143 |
+
TFDistilBertModel,
|
144 |
+
TFDistilBertPreTrainedModel,
|
145 |
+
)
|
146 |
+
|
147 |
+
try:
|
148 |
+
if not is_flax_available():
|
149 |
+
raise OptionalDependencyNotAvailable()
|
150 |
+
except OptionalDependencyNotAvailable:
|
151 |
+
pass
|
152 |
+
else:
|
153 |
+
from .modeling_flax_distilbert import (
|
154 |
+
FlaxDistilBertForMaskedLM,
|
155 |
+
FlaxDistilBertForMultipleChoice,
|
156 |
+
FlaxDistilBertForQuestionAnswering,
|
157 |
+
FlaxDistilBertForSequenceClassification,
|
158 |
+
FlaxDistilBertForTokenClassification,
|
159 |
+
FlaxDistilBertModel,
|
160 |
+
FlaxDistilBertPreTrainedModel,
|
161 |
+
)
|
162 |
+
|
163 |
+
else:
|
164 |
+
import sys
|
165 |
+
|
166 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
venv/lib/python3.10/site-packages/transformers/models/distilbert/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (2.47 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/distilbert/__pycache__/configuration_distilbert.cpython-310.pyc
ADDED
Binary file (5.58 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/distilbert/__pycache__/modeling_distilbert.cpython-310.pyc
ADDED
Binary file (41.2 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/distilbert/__pycache__/modeling_flax_distilbert.cpython-310.pyc
ADDED
Binary file (22.9 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/distilbert/__pycache__/modeling_tf_distilbert.cpython-310.pyc
ADDED
Binary file (35.8 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/distilbert/__pycache__/tokenization_distilbert.cpython-310.pyc
ADDED
Binary file (17.1 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/distilbert/__pycache__/tokenization_distilbert_fast.cpython-310.pyc
ADDED
Binary file (6.88 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/distilbert/configuration_distilbert.py
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2019-present, the HuggingFace Inc. team, The Google AI Language Team and Facebook, Inc.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" DistilBERT model configuration"""
|
16 |
+
from collections import OrderedDict
|
17 |
+
from typing import Mapping
|
18 |
+
|
19 |
+
from ...configuration_utils import PretrainedConfig
|
20 |
+
from ...onnx import OnnxConfig
|
21 |
+
from ...utils import logging
|
22 |
+
|
23 |
+
|
24 |
+
logger = logging.get_logger(__name__)
|
25 |
+
|
26 |
+
|
27 |
+
from ..deprecated._archive_maps import DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
28 |
+
|
29 |
+
|
30 |
+
class DistilBertConfig(PretrainedConfig):
|
31 |
+
r"""
|
32 |
+
This is the configuration class to store the configuration of a [`DistilBertModel`] or a [`TFDistilBertModel`]. It
|
33 |
+
is used to instantiate a DistilBERT model according to the specified arguments, defining the model architecture.
|
34 |
+
Instantiating a configuration with the defaults will yield a similar configuration to that of the DistilBERT
|
35 |
+
[distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) architecture.
|
36 |
+
|
37 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
38 |
+
documentation from [`PretrainedConfig`] for more information.
|
39 |
+
|
40 |
+
Args:
|
41 |
+
vocab_size (`int`, *optional*, defaults to 30522):
|
42 |
+
Vocabulary size of the DistilBERT model. Defines the number of different tokens that can be represented by
|
43 |
+
the `inputs_ids` passed when calling [`DistilBertModel`] or [`TFDistilBertModel`].
|
44 |
+
max_position_embeddings (`int`, *optional*, defaults to 512):
|
45 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
46 |
+
just in case (e.g., 512 or 1024 or 2048).
|
47 |
+
sinusoidal_pos_embds (`boolean`, *optional*, defaults to `False`):
|
48 |
+
Whether to use sinusoidal positional embeddings.
|
49 |
+
n_layers (`int`, *optional*, defaults to 6):
|
50 |
+
Number of hidden layers in the Transformer encoder.
|
51 |
+
n_heads (`int`, *optional*, defaults to 12):
|
52 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
53 |
+
dim (`int`, *optional*, defaults to 768):
|
54 |
+
Dimensionality of the encoder layers and the pooler layer.
|
55 |
+
hidden_dim (`int`, *optional*, defaults to 3072):
|
56 |
+
The size of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
|
57 |
+
dropout (`float`, *optional*, defaults to 0.1):
|
58 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
59 |
+
attention_dropout (`float`, *optional*, defaults to 0.1):
|
60 |
+
The dropout ratio for the attention probabilities.
|
61 |
+
activation (`str` or `Callable`, *optional*, defaults to `"gelu"`):
|
62 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
63 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
64 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
65 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
66 |
+
qa_dropout (`float`, *optional*, defaults to 0.1):
|
67 |
+
The dropout probabilities used in the question answering model [`DistilBertForQuestionAnswering`].
|
68 |
+
seq_classif_dropout (`float`, *optional*, defaults to 0.2):
|
69 |
+
The dropout probabilities used in the sequence classification and the multiple choice model
|
70 |
+
[`DistilBertForSequenceClassification`].
|
71 |
+
|
72 |
+
Examples:
|
73 |
+
|
74 |
+
```python
|
75 |
+
>>> from transformers import DistilBertConfig, DistilBertModel
|
76 |
+
|
77 |
+
>>> # Initializing a DistilBERT configuration
|
78 |
+
>>> configuration = DistilBertConfig()
|
79 |
+
|
80 |
+
>>> # Initializing a model (with random weights) from the configuration
|
81 |
+
>>> model = DistilBertModel(configuration)
|
82 |
+
|
83 |
+
>>> # Accessing the model configuration
|
84 |
+
>>> configuration = model.config
|
85 |
+
```"""
|
86 |
+
|
87 |
+
model_type = "distilbert"
|
88 |
+
attribute_map = {
|
89 |
+
"hidden_size": "dim",
|
90 |
+
"num_attention_heads": "n_heads",
|
91 |
+
"num_hidden_layers": "n_layers",
|
92 |
+
}
|
93 |
+
|
94 |
+
def __init__(
|
95 |
+
self,
|
96 |
+
vocab_size=30522,
|
97 |
+
max_position_embeddings=512,
|
98 |
+
sinusoidal_pos_embds=False,
|
99 |
+
n_layers=6,
|
100 |
+
n_heads=12,
|
101 |
+
dim=768,
|
102 |
+
hidden_dim=4 * 768,
|
103 |
+
dropout=0.1,
|
104 |
+
attention_dropout=0.1,
|
105 |
+
activation="gelu",
|
106 |
+
initializer_range=0.02,
|
107 |
+
qa_dropout=0.1,
|
108 |
+
seq_classif_dropout=0.2,
|
109 |
+
pad_token_id=0,
|
110 |
+
**kwargs,
|
111 |
+
):
|
112 |
+
self.vocab_size = vocab_size
|
113 |
+
self.max_position_embeddings = max_position_embeddings
|
114 |
+
self.sinusoidal_pos_embds = sinusoidal_pos_embds
|
115 |
+
self.n_layers = n_layers
|
116 |
+
self.n_heads = n_heads
|
117 |
+
self.dim = dim
|
118 |
+
self.hidden_dim = hidden_dim
|
119 |
+
self.dropout = dropout
|
120 |
+
self.attention_dropout = attention_dropout
|
121 |
+
self.activation = activation
|
122 |
+
self.initializer_range = initializer_range
|
123 |
+
self.qa_dropout = qa_dropout
|
124 |
+
self.seq_classif_dropout = seq_classif_dropout
|
125 |
+
super().__init__(**kwargs, pad_token_id=pad_token_id)
|
126 |
+
|
127 |
+
|
128 |
+
class DistilBertOnnxConfig(OnnxConfig):
|
129 |
+
@property
|
130 |
+
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
131 |
+
if self.task == "multiple-choice":
|
132 |
+
dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
|
133 |
+
else:
|
134 |
+
dynamic_axis = {0: "batch", 1: "sequence"}
|
135 |
+
return OrderedDict(
|
136 |
+
[
|
137 |
+
("input_ids", dynamic_axis),
|
138 |
+
("attention_mask", dynamic_axis),
|
139 |
+
]
|
140 |
+
)
|
venv/lib/python3.10/site-packages/transformers/models/distilbert/modeling_distilbert.py
ADDED
@@ -0,0 +1,1384 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2019-present, the HuggingFace Inc. team, The Google AI Language Team and Facebook, Inc.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
"""
|
17 |
+
PyTorch DistilBERT model adapted in part from Facebook, Inc XLM model (https://github.com/facebookresearch/XLM) and in
|
18 |
+
part from HuggingFace PyTorch version of Google AI Bert model (https://github.com/google-research/bert)
|
19 |
+
"""
|
20 |
+
|
21 |
+
|
22 |
+
import math
|
23 |
+
from typing import Dict, List, Optional, Set, Tuple, Union
|
24 |
+
|
25 |
+
import numpy as np
|
26 |
+
import torch
|
27 |
+
import torch.nn.functional as F
|
28 |
+
from torch import nn
|
29 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
30 |
+
|
31 |
+
from ...activations import get_activation
|
32 |
+
from ...configuration_utils import PretrainedConfig
|
33 |
+
from ...integrations.deepspeed import is_deepspeed_zero3_enabled
|
34 |
+
from ...modeling_outputs import (
|
35 |
+
BaseModelOutput,
|
36 |
+
MaskedLMOutput,
|
37 |
+
MultipleChoiceModelOutput,
|
38 |
+
QuestionAnsweringModelOutput,
|
39 |
+
SequenceClassifierOutput,
|
40 |
+
TokenClassifierOutput,
|
41 |
+
)
|
42 |
+
from ...modeling_utils import PreTrainedModel
|
43 |
+
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
|
44 |
+
from ...utils import (
|
45 |
+
add_code_sample_docstrings,
|
46 |
+
add_start_docstrings,
|
47 |
+
add_start_docstrings_to_model_forward,
|
48 |
+
is_flash_attn_2_available,
|
49 |
+
is_flash_attn_greater_or_equal_2_10,
|
50 |
+
logging,
|
51 |
+
replace_return_docstrings,
|
52 |
+
)
|
53 |
+
from .configuration_distilbert import DistilBertConfig
|
54 |
+
|
55 |
+
|
56 |
+
if is_flash_attn_2_available():
|
57 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
58 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
59 |
+
|
60 |
+
|
61 |
+
logger = logging.get_logger(__name__)
|
62 |
+
_CHECKPOINT_FOR_DOC = "distilbert-base-uncased"
|
63 |
+
_CONFIG_FOR_DOC = "DistilBertConfig"
|
64 |
+
|
65 |
+
|
66 |
+
from ..deprecated._archive_maps import DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
67 |
+
|
68 |
+
|
69 |
+
# UTILS AND BUILDING BLOCKS OF THE ARCHITECTURE #
|
70 |
+
|
71 |
+
|
72 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
73 |
+
def _get_unpad_data(attention_mask):
|
74 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
75 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
76 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
77 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
78 |
+
return (
|
79 |
+
indices,
|
80 |
+
cu_seqlens,
|
81 |
+
max_seqlen_in_batch,
|
82 |
+
)
|
83 |
+
|
84 |
+
|
85 |
+
def create_sinusoidal_embeddings(n_pos: int, dim: int, out: torch.Tensor):
|
86 |
+
if is_deepspeed_zero3_enabled():
|
87 |
+
import deepspeed
|
88 |
+
|
89 |
+
with deepspeed.zero.GatheredParameters(out, modifier_rank=0):
|
90 |
+
if torch.distributed.get_rank() == 0:
|
91 |
+
_create_sinusoidal_embeddings(n_pos=n_pos, dim=dim, out=out)
|
92 |
+
else:
|
93 |
+
_create_sinusoidal_embeddings(n_pos=n_pos, dim=dim, out=out)
|
94 |
+
|
95 |
+
|
96 |
+
def _create_sinusoidal_embeddings(n_pos: int, dim: int, out: torch.Tensor):
|
97 |
+
position_enc = np.array([[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)])
|
98 |
+
out.requires_grad = False
|
99 |
+
out[:, 0::2] = torch.FloatTensor(np.sin(position_enc[:, 0::2]))
|
100 |
+
out[:, 1::2] = torch.FloatTensor(np.cos(position_enc[:, 1::2]))
|
101 |
+
out.detach_()
|
102 |
+
|
103 |
+
|
104 |
+
class Embeddings(nn.Module):
|
105 |
+
def __init__(self, config: PretrainedConfig):
|
106 |
+
super().__init__()
|
107 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.dim, padding_idx=config.pad_token_id)
|
108 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.dim)
|
109 |
+
|
110 |
+
self.LayerNorm = nn.LayerNorm(config.dim, eps=1e-12)
|
111 |
+
self.dropout = nn.Dropout(config.dropout)
|
112 |
+
self.register_buffer(
|
113 |
+
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
|
114 |
+
)
|
115 |
+
|
116 |
+
def forward(self, input_ids: torch.Tensor, input_embeds: Optional[torch.Tensor] = None) -> torch.Tensor:
|
117 |
+
"""
|
118 |
+
Parameters:
|
119 |
+
input_ids (torch.Tensor):
|
120 |
+
torch.tensor(bs, max_seq_length) The token ids to embed.
|
121 |
+
input_embeds (*optional*, torch.Tensor):
|
122 |
+
The pre-computed word embeddings. Can only be passed if the input ids are `None`.
|
123 |
+
|
124 |
+
|
125 |
+
Returns: torch.tensor(bs, max_seq_length, dim) The embedded tokens (plus position embeddings, no token_type
|
126 |
+
embeddings)
|
127 |
+
"""
|
128 |
+
if input_ids is not None:
|
129 |
+
input_embeds = self.word_embeddings(input_ids) # (bs, max_seq_length, dim)
|
130 |
+
|
131 |
+
seq_length = input_embeds.size(1)
|
132 |
+
|
133 |
+
# Setting the position-ids to the registered buffer in constructor, it helps
|
134 |
+
# when tracing the model without passing position-ids, solves
|
135 |
+
# isues similar to issue #5664
|
136 |
+
if hasattr(self, "position_ids"):
|
137 |
+
position_ids = self.position_ids[:, :seq_length]
|
138 |
+
else:
|
139 |
+
position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device) # (max_seq_length)
|
140 |
+
position_ids = position_ids.unsqueeze(0).expand_as(input_ids) # (bs, max_seq_length)
|
141 |
+
|
142 |
+
position_embeddings = self.position_embeddings(position_ids) # (bs, max_seq_length, dim)
|
143 |
+
|
144 |
+
embeddings = input_embeds + position_embeddings # (bs, max_seq_length, dim)
|
145 |
+
embeddings = self.LayerNorm(embeddings) # (bs, max_seq_length, dim)
|
146 |
+
embeddings = self.dropout(embeddings) # (bs, max_seq_length, dim)
|
147 |
+
return embeddings
|
148 |
+
|
149 |
+
|
150 |
+
class MultiHeadSelfAttention(nn.Module):
|
151 |
+
def __init__(self, config: PretrainedConfig):
|
152 |
+
super().__init__()
|
153 |
+
self.config = config
|
154 |
+
|
155 |
+
self.n_heads = config.n_heads
|
156 |
+
self.dim = config.dim
|
157 |
+
self.dropout = nn.Dropout(p=config.attention_dropout)
|
158 |
+
self.is_causal = False
|
159 |
+
|
160 |
+
# Have an even number of multi heads that divide the dimensions
|
161 |
+
if self.dim % self.n_heads != 0:
|
162 |
+
# Raise value errors for even multi-head attention nodes
|
163 |
+
raise ValueError(f"self.n_heads: {self.n_heads} must divide self.dim: {self.dim} evenly")
|
164 |
+
|
165 |
+
self.q_lin = nn.Linear(in_features=config.dim, out_features=config.dim)
|
166 |
+
self.k_lin = nn.Linear(in_features=config.dim, out_features=config.dim)
|
167 |
+
self.v_lin = nn.Linear(in_features=config.dim, out_features=config.dim)
|
168 |
+
self.out_lin = nn.Linear(in_features=config.dim, out_features=config.dim)
|
169 |
+
|
170 |
+
self.pruned_heads: Set[int] = set()
|
171 |
+
self.attention_head_size = self.dim // self.n_heads
|
172 |
+
|
173 |
+
def prune_heads(self, heads: List[int]):
|
174 |
+
if len(heads) == 0:
|
175 |
+
return
|
176 |
+
heads, index = find_pruneable_heads_and_indices(
|
177 |
+
heads, self.n_heads, self.attention_head_size, self.pruned_heads
|
178 |
+
)
|
179 |
+
# Prune linear layers
|
180 |
+
self.q_lin = prune_linear_layer(self.q_lin, index)
|
181 |
+
self.k_lin = prune_linear_layer(self.k_lin, index)
|
182 |
+
self.v_lin = prune_linear_layer(self.v_lin, index)
|
183 |
+
self.out_lin = prune_linear_layer(self.out_lin, index, dim=1)
|
184 |
+
# Update hyper params
|
185 |
+
self.n_heads = self.n_heads - len(heads)
|
186 |
+
self.dim = self.attention_head_size * self.n_heads
|
187 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
188 |
+
|
189 |
+
def forward(
|
190 |
+
self,
|
191 |
+
query: torch.Tensor,
|
192 |
+
key: torch.Tensor,
|
193 |
+
value: torch.Tensor,
|
194 |
+
mask: torch.Tensor,
|
195 |
+
head_mask: Optional[torch.Tensor] = None,
|
196 |
+
output_attentions: bool = False,
|
197 |
+
) -> Tuple[torch.Tensor, ...]:
|
198 |
+
"""
|
199 |
+
Parameters:
|
200 |
+
query: torch.tensor(bs, seq_length, dim)
|
201 |
+
key: torch.tensor(bs, seq_length, dim)
|
202 |
+
value: torch.tensor(bs, seq_length, dim)
|
203 |
+
mask: torch.tensor(bs, seq_length)
|
204 |
+
|
205 |
+
Returns:
|
206 |
+
weights: torch.tensor(bs, n_heads, seq_length, seq_length) Attention weights context: torch.tensor(bs,
|
207 |
+
seq_length, dim) Contextualized layer. Optional: only if `output_attentions=True`
|
208 |
+
"""
|
209 |
+
bs, q_length, dim = query.size()
|
210 |
+
k_length = key.size(1)
|
211 |
+
# assert dim == self.dim, f'Dimensions do not match: {dim} input vs {self.dim} configured'
|
212 |
+
# assert key.size() == value.size()
|
213 |
+
|
214 |
+
dim_per_head = self.dim // self.n_heads
|
215 |
+
|
216 |
+
mask_reshp = (bs, 1, 1, k_length)
|
217 |
+
|
218 |
+
def shape(x: torch.Tensor) -> torch.Tensor:
|
219 |
+
"""separate heads"""
|
220 |
+
return x.view(bs, -1, self.n_heads, dim_per_head).transpose(1, 2)
|
221 |
+
|
222 |
+
def unshape(x: torch.Tensor) -> torch.Tensor:
|
223 |
+
"""group heads"""
|
224 |
+
return x.transpose(1, 2).contiguous().view(bs, -1, self.n_heads * dim_per_head)
|
225 |
+
|
226 |
+
q = shape(self.q_lin(query)) # (bs, n_heads, q_length, dim_per_head)
|
227 |
+
k = shape(self.k_lin(key)) # (bs, n_heads, k_length, dim_per_head)
|
228 |
+
v = shape(self.v_lin(value)) # (bs, n_heads, k_length, dim_per_head)
|
229 |
+
|
230 |
+
q = q / math.sqrt(dim_per_head) # (bs, n_heads, q_length, dim_per_head)
|
231 |
+
scores = torch.matmul(q, k.transpose(2, 3)) # (bs, n_heads, q_length, k_length)
|
232 |
+
mask = (mask == 0).view(mask_reshp).expand_as(scores) # (bs, n_heads, q_length, k_length)
|
233 |
+
scores = scores.masked_fill(
|
234 |
+
mask, torch.tensor(torch.finfo(scores.dtype).min)
|
235 |
+
) # (bs, n_heads, q_length, k_length)
|
236 |
+
|
237 |
+
weights = nn.functional.softmax(scores, dim=-1) # (bs, n_heads, q_length, k_length)
|
238 |
+
weights = self.dropout(weights) # (bs, n_heads, q_length, k_length)
|
239 |
+
|
240 |
+
# Mask heads if we want to
|
241 |
+
if head_mask is not None:
|
242 |
+
weights = weights * head_mask
|
243 |
+
|
244 |
+
context = torch.matmul(weights, v) # (bs, n_heads, q_length, dim_per_head)
|
245 |
+
context = unshape(context) # (bs, q_length, dim)
|
246 |
+
context = self.out_lin(context) # (bs, q_length, dim)
|
247 |
+
|
248 |
+
if output_attentions:
|
249 |
+
return (context, weights)
|
250 |
+
else:
|
251 |
+
return (context,)
|
252 |
+
|
253 |
+
|
254 |
+
class DistilBertFlashAttention2(MultiHeadSelfAttention):
|
255 |
+
"""
|
256 |
+
DistilBert flash attention module. This module inherits from `MultiHeadSelfAttention` as the weights of the module
|
257 |
+
stays untouched. The only required change would be on the forward pass where it needs to correctly call the public
|
258 |
+
API of flash attention and deal with padding tokens in case the input contains any of them.
|
259 |
+
"""
|
260 |
+
|
261 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
|
262 |
+
def __init__(self, *args, **kwargs):
|
263 |
+
super().__init__(*args, **kwargs)
|
264 |
+
|
265 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
266 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
267 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
268 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
269 |
+
|
270 |
+
def forward(
|
271 |
+
self,
|
272 |
+
query: torch.Tensor,
|
273 |
+
key: torch.Tensor,
|
274 |
+
value: torch.Tensor,
|
275 |
+
mask: torch.Tensor,
|
276 |
+
head_mask: Optional[torch.Tensor] = None,
|
277 |
+
output_attentions: bool = False,
|
278 |
+
) -> Tuple[torch.Tensor, ...]:
|
279 |
+
"""
|
280 |
+
Parameters:
|
281 |
+
query: torch.tensor(bs, seq_length, dim)
|
282 |
+
key: torch.tensor(bs, seq_length, dim)
|
283 |
+
value: torch.tensor(bs, seq_length, dim)
|
284 |
+
mask: torch.tensor(bs, seq_length)
|
285 |
+
|
286 |
+
Returns:
|
287 |
+
weights: torch.tensor(bs, n_heads, seq_length, seq_length) Attention weights context: torch.tensor(bs,
|
288 |
+
seq_length, dim) Contextualized layer. Optional: only if `output_attentions=True`
|
289 |
+
"""
|
290 |
+
batch_size, q_length, dim = query.size()
|
291 |
+
|
292 |
+
dim_per_head = self.dim // self.n_heads
|
293 |
+
|
294 |
+
def reshape(x: torch.Tensor) -> torch.Tensor:
|
295 |
+
"""separate heads"""
|
296 |
+
return x.view(batch_size, -1, self.n_heads, dim_per_head)
|
297 |
+
|
298 |
+
# Flash attention requires the input to have the shape
|
299 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
300 |
+
query_states = reshape(self.q_lin(query))
|
301 |
+
key_states = reshape(self.k_lin(key))
|
302 |
+
value_states = reshape(self.v_lin(value))
|
303 |
+
|
304 |
+
attn_dropout = self.config.attention_dropout if self.training else 0.0
|
305 |
+
|
306 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
307 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
308 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
309 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
310 |
+
# in fp32. (LlamaRMSNorm handles it correctly)
|
311 |
+
|
312 |
+
if query_states.dtype == torch.float32:
|
313 |
+
if torch.is_autocast_enabled():
|
314 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
315 |
+
# Handle the case where the model is quantized
|
316 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
317 |
+
target_dtype = self.config._pre_quantization_dtype
|
318 |
+
else:
|
319 |
+
target_dtype = self.q_lin.weight.dtype
|
320 |
+
|
321 |
+
logger.warning_once(
|
322 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
323 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
324 |
+
f" {target_dtype}."
|
325 |
+
)
|
326 |
+
|
327 |
+
query_states = query_states.to(target_dtype)
|
328 |
+
key_states = key_states.to(target_dtype)
|
329 |
+
value_states = value_states.to(target_dtype)
|
330 |
+
|
331 |
+
attn_weights = self._flash_attention_forward(
|
332 |
+
query_states, key_states, value_states, mask, q_length, dropout=attn_dropout
|
333 |
+
)
|
334 |
+
|
335 |
+
attn_weights_reshaped = attn_weights.reshape(batch_size, q_length, self.n_heads * dim_per_head)
|
336 |
+
attn_output = self.out_lin(attn_weights_reshaped)
|
337 |
+
|
338 |
+
if output_attentions:
|
339 |
+
return (attn_output, attn_weights)
|
340 |
+
else:
|
341 |
+
return (attn_output,)
|
342 |
+
|
343 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._flash_attention_forward with causal=True->causal=False
|
344 |
+
def _flash_attention_forward(
|
345 |
+
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
346 |
+
):
|
347 |
+
"""
|
348 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
349 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
350 |
+
|
351 |
+
Args:
|
352 |
+
query_states (`torch.Tensor`):
|
353 |
+
Input query states to be passed to Flash Attention API
|
354 |
+
key_states (`torch.Tensor`):
|
355 |
+
Input key states to be passed to Flash Attention API
|
356 |
+
value_states (`torch.Tensor`):
|
357 |
+
Input value states to be passed to Flash Attention API
|
358 |
+
attention_mask (`torch.Tensor`):
|
359 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
360 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
361 |
+
dropout (`float`):
|
362 |
+
Attention dropout
|
363 |
+
softmax_scale (`float`, *optional*):
|
364 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
365 |
+
"""
|
366 |
+
if not self._flash_attn_uses_top_left_mask:
|
367 |
+
causal = self.is_causal
|
368 |
+
else:
|
369 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
370 |
+
causal = self.is_causal and query_length != 1
|
371 |
+
|
372 |
+
# Contains at least one padding token in the sequence
|
373 |
+
if attention_mask is not None:
|
374 |
+
batch_size = query_states.shape[0]
|
375 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
376 |
+
query_states, key_states, value_states, attention_mask, query_length
|
377 |
+
)
|
378 |
+
|
379 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
380 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
381 |
+
|
382 |
+
attn_output_unpad = flash_attn_varlen_func(
|
383 |
+
query_states,
|
384 |
+
key_states,
|
385 |
+
value_states,
|
386 |
+
cu_seqlens_q=cu_seqlens_q,
|
387 |
+
cu_seqlens_k=cu_seqlens_k,
|
388 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
389 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
390 |
+
dropout_p=dropout,
|
391 |
+
softmax_scale=softmax_scale,
|
392 |
+
causal=causal,
|
393 |
+
)
|
394 |
+
|
395 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
396 |
+
else:
|
397 |
+
attn_output = flash_attn_func(
|
398 |
+
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
399 |
+
)
|
400 |
+
|
401 |
+
return attn_output
|
402 |
+
|
403 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._upad_input with num_heads->n_heads
|
404 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
405 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
406 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
407 |
+
|
408 |
+
key_layer = index_first_axis(
|
409 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
410 |
+
)
|
411 |
+
value_layer = index_first_axis(
|
412 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
413 |
+
)
|
414 |
+
if query_length == kv_seq_len:
|
415 |
+
query_layer = index_first_axis(
|
416 |
+
query_layer.reshape(batch_size * kv_seq_len, self.n_heads, head_dim), indices_k
|
417 |
+
)
|
418 |
+
cu_seqlens_q = cu_seqlens_k
|
419 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
420 |
+
indices_q = indices_k
|
421 |
+
elif query_length == 1:
|
422 |
+
max_seqlen_in_batch_q = 1
|
423 |
+
cu_seqlens_q = torch.arange(
|
424 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
425 |
+
) # There is a memcpy here, that is very bad.
|
426 |
+
indices_q = cu_seqlens_q[:-1]
|
427 |
+
query_layer = query_layer.squeeze(1)
|
428 |
+
else:
|
429 |
+
# The -q_len: slice assumes left padding.
|
430 |
+
attention_mask = attention_mask[:, -query_length:]
|
431 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
432 |
+
|
433 |
+
return (
|
434 |
+
query_layer,
|
435 |
+
key_layer,
|
436 |
+
value_layer,
|
437 |
+
indices_q,
|
438 |
+
(cu_seqlens_q, cu_seqlens_k),
|
439 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
440 |
+
)
|
441 |
+
|
442 |
+
|
443 |
+
class FFN(nn.Module):
|
444 |
+
def __init__(self, config: PretrainedConfig):
|
445 |
+
super().__init__()
|
446 |
+
self.dropout = nn.Dropout(p=config.dropout)
|
447 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
448 |
+
self.seq_len_dim = 1
|
449 |
+
self.lin1 = nn.Linear(in_features=config.dim, out_features=config.hidden_dim)
|
450 |
+
self.lin2 = nn.Linear(in_features=config.hidden_dim, out_features=config.dim)
|
451 |
+
self.activation = get_activation(config.activation)
|
452 |
+
|
453 |
+
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
454 |
+
return apply_chunking_to_forward(self.ff_chunk, self.chunk_size_feed_forward, self.seq_len_dim, input)
|
455 |
+
|
456 |
+
def ff_chunk(self, input: torch.Tensor) -> torch.Tensor:
|
457 |
+
x = self.lin1(input)
|
458 |
+
x = self.activation(x)
|
459 |
+
x = self.lin2(x)
|
460 |
+
x = self.dropout(x)
|
461 |
+
return x
|
462 |
+
|
463 |
+
|
464 |
+
DISTILBERT_ATTENTION_CLASSES = {
|
465 |
+
"eager": MultiHeadSelfAttention,
|
466 |
+
"flash_attention_2": DistilBertFlashAttention2,
|
467 |
+
}
|
468 |
+
|
469 |
+
|
470 |
+
class TransformerBlock(nn.Module):
|
471 |
+
def __init__(self, config: PretrainedConfig):
|
472 |
+
super().__init__()
|
473 |
+
|
474 |
+
# Have an even number of Configure multi-heads
|
475 |
+
if config.dim % config.n_heads != 0:
|
476 |
+
raise ValueError(f"config.n_heads {config.n_heads} must divide config.dim {config.dim} evenly")
|
477 |
+
|
478 |
+
self.attention = DISTILBERT_ATTENTION_CLASSES[config._attn_implementation](config)
|
479 |
+
self.sa_layer_norm = nn.LayerNorm(normalized_shape=config.dim, eps=1e-12)
|
480 |
+
|
481 |
+
self.ffn = FFN(config)
|
482 |
+
self.output_layer_norm = nn.LayerNorm(normalized_shape=config.dim, eps=1e-12)
|
483 |
+
|
484 |
+
def forward(
|
485 |
+
self,
|
486 |
+
x: torch.Tensor,
|
487 |
+
attn_mask: Optional[torch.Tensor] = None,
|
488 |
+
head_mask: Optional[torch.Tensor] = None,
|
489 |
+
output_attentions: bool = False,
|
490 |
+
) -> Tuple[torch.Tensor, ...]:
|
491 |
+
"""
|
492 |
+
Parameters:
|
493 |
+
x: torch.tensor(bs, seq_length, dim)
|
494 |
+
attn_mask: torch.tensor(bs, seq_length)
|
495 |
+
|
496 |
+
Returns:
|
497 |
+
sa_weights: torch.tensor(bs, n_heads, seq_length, seq_length) The attention weights ffn_output:
|
498 |
+
torch.tensor(bs, seq_length, dim) The output of the transformer block contextualization.
|
499 |
+
"""
|
500 |
+
# Self-Attention
|
501 |
+
sa_output = self.attention(
|
502 |
+
query=x,
|
503 |
+
key=x,
|
504 |
+
value=x,
|
505 |
+
mask=attn_mask,
|
506 |
+
head_mask=head_mask,
|
507 |
+
output_attentions=output_attentions,
|
508 |
+
)
|
509 |
+
if output_attentions:
|
510 |
+
sa_output, sa_weights = sa_output # (bs, seq_length, dim), (bs, n_heads, seq_length, seq_length)
|
511 |
+
else: # To handle these `output_attentions` or `output_hidden_states` cases returning tuples
|
512 |
+
if type(sa_output) != tuple:
|
513 |
+
raise TypeError(f"sa_output must be a tuple but it is {type(sa_output)} type")
|
514 |
+
|
515 |
+
sa_output = sa_output[0]
|
516 |
+
sa_output = self.sa_layer_norm(sa_output + x) # (bs, seq_length, dim)
|
517 |
+
|
518 |
+
# Feed Forward Network
|
519 |
+
ffn_output = self.ffn(sa_output) # (bs, seq_length, dim)
|
520 |
+
ffn_output: torch.Tensor = self.output_layer_norm(ffn_output + sa_output) # (bs, seq_length, dim)
|
521 |
+
|
522 |
+
output = (ffn_output,)
|
523 |
+
if output_attentions:
|
524 |
+
output = (sa_weights,) + output
|
525 |
+
return output
|
526 |
+
|
527 |
+
|
528 |
+
class Transformer(nn.Module):
|
529 |
+
def __init__(self, config: PretrainedConfig):
|
530 |
+
super().__init__()
|
531 |
+
self.n_layers = config.n_layers
|
532 |
+
self.layer = nn.ModuleList([TransformerBlock(config) for _ in range(config.n_layers)])
|
533 |
+
self.gradient_checkpointing = False
|
534 |
+
|
535 |
+
def forward(
|
536 |
+
self,
|
537 |
+
x: torch.Tensor,
|
538 |
+
attn_mask: Optional[torch.Tensor] = None,
|
539 |
+
head_mask: Optional[torch.Tensor] = None,
|
540 |
+
output_attentions: bool = False,
|
541 |
+
output_hidden_states: bool = False,
|
542 |
+
return_dict: Optional[bool] = None,
|
543 |
+
) -> Union[BaseModelOutput, Tuple[torch.Tensor, ...]]: # docstyle-ignore
|
544 |
+
"""
|
545 |
+
Parameters:
|
546 |
+
x: torch.tensor(bs, seq_length, dim) Input sequence embedded.
|
547 |
+
attn_mask: torch.tensor(bs, seq_length) Attention mask on the sequence.
|
548 |
+
|
549 |
+
Returns:
|
550 |
+
hidden_state: torch.tensor(bs, seq_length, dim) Sequence of hidden states in the last (top)
|
551 |
+
layer all_hidden_states: Tuple[torch.tensor(bs, seq_length, dim)]
|
552 |
+
Tuple of length n_layers with the hidden states from each layer.
|
553 |
+
Optional: only if output_hidden_states=True
|
554 |
+
all_attentions: Tuple[torch.tensor(bs, n_heads, seq_length, seq_length)]
|
555 |
+
Tuple of length n_layers with the attention weights from each layer
|
556 |
+
Optional: only if output_attentions=True
|
557 |
+
"""
|
558 |
+
all_hidden_states = () if output_hidden_states else None
|
559 |
+
all_attentions = () if output_attentions else None
|
560 |
+
|
561 |
+
hidden_state = x
|
562 |
+
for i, layer_module in enumerate(self.layer):
|
563 |
+
if output_hidden_states:
|
564 |
+
all_hidden_states = all_hidden_states + (hidden_state,)
|
565 |
+
|
566 |
+
if self.gradient_checkpointing and self.training:
|
567 |
+
layer_outputs = self._gradient_checkpointing_func(
|
568 |
+
layer_module.__call__,
|
569 |
+
hidden_state,
|
570 |
+
attn_mask,
|
571 |
+
head_mask[i],
|
572 |
+
output_attentions,
|
573 |
+
)
|
574 |
+
else:
|
575 |
+
layer_outputs = layer_module(
|
576 |
+
hidden_state,
|
577 |
+
attn_mask,
|
578 |
+
head_mask[i],
|
579 |
+
output_attentions,
|
580 |
+
)
|
581 |
+
|
582 |
+
hidden_state = layer_outputs[-1]
|
583 |
+
|
584 |
+
if output_attentions:
|
585 |
+
if len(layer_outputs) != 2:
|
586 |
+
raise ValueError(f"The length of the layer_outputs should be 2, but it is {len(layer_outputs)}")
|
587 |
+
|
588 |
+
attentions = layer_outputs[0]
|
589 |
+
all_attentions = all_attentions + (attentions,)
|
590 |
+
else:
|
591 |
+
if len(layer_outputs) != 1:
|
592 |
+
raise ValueError(f"The length of the layer_outputs should be 1, but it is {len(layer_outputs)}")
|
593 |
+
|
594 |
+
# Add last layer
|
595 |
+
if output_hidden_states:
|
596 |
+
all_hidden_states = all_hidden_states + (hidden_state,)
|
597 |
+
|
598 |
+
if not return_dict:
|
599 |
+
return tuple(v for v in [hidden_state, all_hidden_states, all_attentions] if v is not None)
|
600 |
+
return BaseModelOutput(
|
601 |
+
last_hidden_state=hidden_state, hidden_states=all_hidden_states, attentions=all_attentions
|
602 |
+
)
|
603 |
+
|
604 |
+
|
605 |
+
# INTERFACE FOR ENCODER AND TASK SPECIFIC MODEL #
|
606 |
+
class DistilBertPreTrainedModel(PreTrainedModel):
|
607 |
+
"""
|
608 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
609 |
+
models.
|
610 |
+
"""
|
611 |
+
|
612 |
+
config_class = DistilBertConfig
|
613 |
+
load_tf_weights = None
|
614 |
+
base_model_prefix = "distilbert"
|
615 |
+
supports_gradient_checkpointing = True
|
616 |
+
_supports_flash_attn_2 = True
|
617 |
+
|
618 |
+
def _init_weights(self, module: nn.Module):
|
619 |
+
"""Initialize the weights."""
|
620 |
+
if isinstance(module, nn.Linear):
|
621 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
622 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
623 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
624 |
+
if module.bias is not None:
|
625 |
+
module.bias.data.zero_()
|
626 |
+
elif isinstance(module, nn.Embedding):
|
627 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
628 |
+
if module.padding_idx is not None:
|
629 |
+
module.weight.data[module.padding_idx].zero_()
|
630 |
+
elif isinstance(module, nn.LayerNorm):
|
631 |
+
module.bias.data.zero_()
|
632 |
+
module.weight.data.fill_(1.0)
|
633 |
+
elif isinstance(module, Embeddings) and self.config.sinusoidal_pos_embds:
|
634 |
+
create_sinusoidal_embeddings(
|
635 |
+
self.config.max_position_embeddings, self.config.dim, module.position_embeddings.weight
|
636 |
+
)
|
637 |
+
|
638 |
+
|
639 |
+
DISTILBERT_START_DOCSTRING = r"""
|
640 |
+
|
641 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
642 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
643 |
+
etc.)
|
644 |
+
|
645 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
646 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
647 |
+
and behavior.
|
648 |
+
|
649 |
+
Parameters:
|
650 |
+
config ([`DistilBertConfig`]): Model configuration class with all the parameters of the model.
|
651 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
652 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
653 |
+
"""
|
654 |
+
|
655 |
+
DISTILBERT_INPUTS_DOCSTRING = r"""
|
656 |
+
Args:
|
657 |
+
input_ids (`torch.LongTensor` of shape `({0})`):
|
658 |
+
Indices of input sequence tokens in the vocabulary.
|
659 |
+
|
660 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
661 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
662 |
+
|
663 |
+
[What are input IDs?](../glossary#input-ids)
|
664 |
+
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
665 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
666 |
+
|
667 |
+
- 1 for tokens that are **not masked**,
|
668 |
+
- 0 for tokens that are **masked**.
|
669 |
+
|
670 |
+
[What are attention masks?](../glossary#attention-mask)
|
671 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
672 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
673 |
+
|
674 |
+
- 1 indicates the head is **not masked**,
|
675 |
+
- 0 indicates the head is **masked**.
|
676 |
+
|
677 |
+
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
678 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
679 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
680 |
+
model's internal embedding lookup matrix.
|
681 |
+
output_attentions (`bool`, *optional*):
|
682 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
683 |
+
tensors for more detail.
|
684 |
+
output_hidden_states (`bool`, *optional*):
|
685 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
686 |
+
more detail.
|
687 |
+
return_dict (`bool`, *optional*):
|
688 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
689 |
+
"""
|
690 |
+
|
691 |
+
|
692 |
+
@add_start_docstrings(
|
693 |
+
"The bare DistilBERT encoder/transformer outputting raw hidden-states without any specific head on top.",
|
694 |
+
DISTILBERT_START_DOCSTRING,
|
695 |
+
)
|
696 |
+
class DistilBertModel(DistilBertPreTrainedModel):
|
697 |
+
def __init__(self, config: PretrainedConfig):
|
698 |
+
super().__init__(config)
|
699 |
+
|
700 |
+
self.embeddings = Embeddings(config) # Embeddings
|
701 |
+
self.transformer = Transformer(config) # Encoder
|
702 |
+
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
703 |
+
|
704 |
+
# Initialize weights and apply final processing
|
705 |
+
self.post_init()
|
706 |
+
|
707 |
+
def get_position_embeddings(self) -> nn.Embedding:
|
708 |
+
"""
|
709 |
+
Returns the position embeddings
|
710 |
+
"""
|
711 |
+
return self.embeddings.position_embeddings
|
712 |
+
|
713 |
+
def resize_position_embeddings(self, new_num_position_embeddings: int):
|
714 |
+
"""
|
715 |
+
Resizes position embeddings of the model if `new_num_position_embeddings != config.max_position_embeddings`.
|
716 |
+
|
717 |
+
Arguments:
|
718 |
+
new_num_position_embeddings (`int`):
|
719 |
+
The number of new position embedding matrix. If position embeddings are learned, increasing the size
|
720 |
+
will add newly initialized vectors at the end, whereas reducing the size will remove vectors from the
|
721 |
+
end. If position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the
|
722 |
+
size will add correct vectors at the end following the position encoding algorithm, whereas reducing
|
723 |
+
the size will remove vectors from the end.
|
724 |
+
"""
|
725 |
+
num_position_embeds_diff = new_num_position_embeddings - self.config.max_position_embeddings
|
726 |
+
|
727 |
+
# no resizing needs to be done if the length stays the same
|
728 |
+
if num_position_embeds_diff == 0:
|
729 |
+
return
|
730 |
+
|
731 |
+
logger.info(f"Setting `config.max_position_embeddings={new_num_position_embeddings}`...")
|
732 |
+
self.config.max_position_embeddings = new_num_position_embeddings
|
733 |
+
|
734 |
+
old_position_embeddings_weight = self.embeddings.position_embeddings.weight.clone()
|
735 |
+
|
736 |
+
self.embeddings.position_embeddings = nn.Embedding(self.config.max_position_embeddings, self.config.dim)
|
737 |
+
|
738 |
+
if self.config.sinusoidal_pos_embds:
|
739 |
+
create_sinusoidal_embeddings(
|
740 |
+
n_pos=self.config.max_position_embeddings, dim=self.config.dim, out=self.position_embeddings.weight
|
741 |
+
)
|
742 |
+
else:
|
743 |
+
with torch.no_grad():
|
744 |
+
if num_position_embeds_diff > 0:
|
745 |
+
self.embeddings.position_embeddings.weight[:-num_position_embeds_diff] = nn.Parameter(
|
746 |
+
old_position_embeddings_weight
|
747 |
+
)
|
748 |
+
else:
|
749 |
+
self.embeddings.position_embeddings.weight = nn.Parameter(
|
750 |
+
old_position_embeddings_weight[:num_position_embeds_diff]
|
751 |
+
)
|
752 |
+
# move position_embeddings to correct device
|
753 |
+
self.embeddings.position_embeddings.to(self.device)
|
754 |
+
|
755 |
+
def get_input_embeddings(self) -> nn.Embedding:
|
756 |
+
return self.embeddings.word_embeddings
|
757 |
+
|
758 |
+
def set_input_embeddings(self, new_embeddings: nn.Embedding):
|
759 |
+
self.embeddings.word_embeddings = new_embeddings
|
760 |
+
|
761 |
+
def _prune_heads(self, heads_to_prune: Dict[int, List[List[int]]]):
|
762 |
+
"""
|
763 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
764 |
+
class PreTrainedModel
|
765 |
+
"""
|
766 |
+
for layer, heads in heads_to_prune.items():
|
767 |
+
self.transformer.layer[layer].attention.prune_heads(heads)
|
768 |
+
|
769 |
+
@add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, num_choices"))
|
770 |
+
@add_code_sample_docstrings(
|
771 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
772 |
+
output_type=BaseModelOutput,
|
773 |
+
config_class=_CONFIG_FOR_DOC,
|
774 |
+
)
|
775 |
+
def forward(
|
776 |
+
self,
|
777 |
+
input_ids: Optional[torch.Tensor] = None,
|
778 |
+
attention_mask: Optional[torch.Tensor] = None,
|
779 |
+
head_mask: Optional[torch.Tensor] = None,
|
780 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
781 |
+
output_attentions: Optional[bool] = None,
|
782 |
+
output_hidden_states: Optional[bool] = None,
|
783 |
+
return_dict: Optional[bool] = None,
|
784 |
+
) -> Union[BaseModelOutput, Tuple[torch.Tensor, ...]]:
|
785 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
786 |
+
output_hidden_states = (
|
787 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
788 |
+
)
|
789 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
790 |
+
|
791 |
+
if input_ids is not None and inputs_embeds is not None:
|
792 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
793 |
+
elif input_ids is not None:
|
794 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
795 |
+
input_shape = input_ids.size()
|
796 |
+
elif inputs_embeds is not None:
|
797 |
+
input_shape = inputs_embeds.size()[:-1]
|
798 |
+
else:
|
799 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
800 |
+
|
801 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
802 |
+
|
803 |
+
# Prepare head mask if needed
|
804 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
805 |
+
|
806 |
+
embeddings = self.embeddings(input_ids, inputs_embeds) # (bs, seq_length, dim)
|
807 |
+
|
808 |
+
if self._use_flash_attention_2:
|
809 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
810 |
+
else:
|
811 |
+
if attention_mask is None:
|
812 |
+
attention_mask = torch.ones(input_shape, device=device) # (bs, seq_length)
|
813 |
+
|
814 |
+
return self.transformer(
|
815 |
+
x=embeddings,
|
816 |
+
attn_mask=attention_mask,
|
817 |
+
head_mask=head_mask,
|
818 |
+
output_attentions=output_attentions,
|
819 |
+
output_hidden_states=output_hidden_states,
|
820 |
+
return_dict=return_dict,
|
821 |
+
)
|
822 |
+
|
823 |
+
|
824 |
+
@add_start_docstrings(
|
825 |
+
"""DistilBert Model with a `masked language modeling` head on top.""",
|
826 |
+
DISTILBERT_START_DOCSTRING,
|
827 |
+
)
|
828 |
+
class DistilBertForMaskedLM(DistilBertPreTrainedModel):
|
829 |
+
_tied_weights_keys = ["vocab_projector.weight"]
|
830 |
+
|
831 |
+
def __init__(self, config: PretrainedConfig):
|
832 |
+
super().__init__(config)
|
833 |
+
|
834 |
+
self.activation = get_activation(config.activation)
|
835 |
+
|
836 |
+
self.distilbert = DistilBertModel(config)
|
837 |
+
self.vocab_transform = nn.Linear(config.dim, config.dim)
|
838 |
+
self.vocab_layer_norm = nn.LayerNorm(config.dim, eps=1e-12)
|
839 |
+
self.vocab_projector = nn.Linear(config.dim, config.vocab_size)
|
840 |
+
|
841 |
+
# Initialize weights and apply final processing
|
842 |
+
self.post_init()
|
843 |
+
|
844 |
+
self.mlm_loss_fct = nn.CrossEntropyLoss()
|
845 |
+
|
846 |
+
def get_position_embeddings(self) -> nn.Embedding:
|
847 |
+
"""
|
848 |
+
Returns the position embeddings
|
849 |
+
"""
|
850 |
+
return self.distilbert.get_position_embeddings()
|
851 |
+
|
852 |
+
def resize_position_embeddings(self, new_num_position_embeddings: int):
|
853 |
+
"""
|
854 |
+
Resizes position embeddings of the model if `new_num_position_embeddings != config.max_position_embeddings`.
|
855 |
+
|
856 |
+
Arguments:
|
857 |
+
new_num_position_embeddings (`int`):
|
858 |
+
The number of new position embedding matrix. If position embeddings are learned, increasing the size
|
859 |
+
will add newly initialized vectors at the end, whereas reducing the size will remove vectors from the
|
860 |
+
end. If position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the
|
861 |
+
size will add correct vectors at the end following the position encoding algorithm, whereas reducing
|
862 |
+
the size will remove vectors from the end.
|
863 |
+
"""
|
864 |
+
self.distilbert.resize_position_embeddings(new_num_position_embeddings)
|
865 |
+
|
866 |
+
def get_output_embeddings(self) -> nn.Module:
|
867 |
+
return self.vocab_projector
|
868 |
+
|
869 |
+
def set_output_embeddings(self, new_embeddings: nn.Module):
|
870 |
+
self.vocab_projector = new_embeddings
|
871 |
+
|
872 |
+
@add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, num_choices"))
|
873 |
+
@add_code_sample_docstrings(
|
874 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
875 |
+
output_type=MaskedLMOutput,
|
876 |
+
config_class=_CONFIG_FOR_DOC,
|
877 |
+
)
|
878 |
+
def forward(
|
879 |
+
self,
|
880 |
+
input_ids: Optional[torch.Tensor] = None,
|
881 |
+
attention_mask: Optional[torch.Tensor] = None,
|
882 |
+
head_mask: Optional[torch.Tensor] = None,
|
883 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
884 |
+
labels: Optional[torch.LongTensor] = None,
|
885 |
+
output_attentions: Optional[bool] = None,
|
886 |
+
output_hidden_states: Optional[bool] = None,
|
887 |
+
return_dict: Optional[bool] = None,
|
888 |
+
) -> Union[MaskedLMOutput, Tuple[torch.Tensor, ...]]:
|
889 |
+
r"""
|
890 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
891 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
892 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
893 |
+
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
894 |
+
"""
|
895 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
896 |
+
|
897 |
+
dlbrt_output = self.distilbert(
|
898 |
+
input_ids=input_ids,
|
899 |
+
attention_mask=attention_mask,
|
900 |
+
head_mask=head_mask,
|
901 |
+
inputs_embeds=inputs_embeds,
|
902 |
+
output_attentions=output_attentions,
|
903 |
+
output_hidden_states=output_hidden_states,
|
904 |
+
return_dict=return_dict,
|
905 |
+
)
|
906 |
+
hidden_states = dlbrt_output[0] # (bs, seq_length, dim)
|
907 |
+
prediction_logits = self.vocab_transform(hidden_states) # (bs, seq_length, dim)
|
908 |
+
prediction_logits = self.activation(prediction_logits) # (bs, seq_length, dim)
|
909 |
+
prediction_logits = self.vocab_layer_norm(prediction_logits) # (bs, seq_length, dim)
|
910 |
+
prediction_logits = self.vocab_projector(prediction_logits) # (bs, seq_length, vocab_size)
|
911 |
+
|
912 |
+
mlm_loss = None
|
913 |
+
if labels is not None:
|
914 |
+
mlm_loss = self.mlm_loss_fct(prediction_logits.view(-1, prediction_logits.size(-1)), labels.view(-1))
|
915 |
+
|
916 |
+
if not return_dict:
|
917 |
+
output = (prediction_logits,) + dlbrt_output[1:]
|
918 |
+
return ((mlm_loss,) + output) if mlm_loss is not None else output
|
919 |
+
|
920 |
+
return MaskedLMOutput(
|
921 |
+
loss=mlm_loss,
|
922 |
+
logits=prediction_logits,
|
923 |
+
hidden_states=dlbrt_output.hidden_states,
|
924 |
+
attentions=dlbrt_output.attentions,
|
925 |
+
)
|
926 |
+
|
927 |
+
|
928 |
+
@add_start_docstrings(
|
929 |
+
"""
|
930 |
+
DistilBert Model transformer with a sequence classification/regression head on top (a linear layer on top of the
|
931 |
+
pooled output) e.g. for GLUE tasks.
|
932 |
+
""",
|
933 |
+
DISTILBERT_START_DOCSTRING,
|
934 |
+
)
|
935 |
+
class DistilBertForSequenceClassification(DistilBertPreTrainedModel):
|
936 |
+
def __init__(self, config: PretrainedConfig):
|
937 |
+
super().__init__(config)
|
938 |
+
self.num_labels = config.num_labels
|
939 |
+
self.config = config
|
940 |
+
|
941 |
+
self.distilbert = DistilBertModel(config)
|
942 |
+
self.pre_classifier = nn.Linear(config.dim, config.dim)
|
943 |
+
self.classifier = nn.Linear(config.dim, config.num_labels)
|
944 |
+
self.dropout = nn.Dropout(config.seq_classif_dropout)
|
945 |
+
|
946 |
+
# Initialize weights and apply final processing
|
947 |
+
self.post_init()
|
948 |
+
|
949 |
+
def get_position_embeddings(self) -> nn.Embedding:
|
950 |
+
"""
|
951 |
+
Returns the position embeddings
|
952 |
+
"""
|
953 |
+
return self.distilbert.get_position_embeddings()
|
954 |
+
|
955 |
+
def resize_position_embeddings(self, new_num_position_embeddings: int):
|
956 |
+
"""
|
957 |
+
Resizes position embeddings of the model if `new_num_position_embeddings != config.max_position_embeddings`.
|
958 |
+
|
959 |
+
Arguments:
|
960 |
+
new_num_position_embeddings (`int`):
|
961 |
+
The number of new position embedding matrix. If position embeddings are learned, increasing the size
|
962 |
+
will add newly initialized vectors at the end, whereas reducing the size will remove vectors from the
|
963 |
+
end. If position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the
|
964 |
+
size will add correct vectors at the end following the position encoding algorithm, whereas reducing
|
965 |
+
the size will remove vectors from the end.
|
966 |
+
"""
|
967 |
+
self.distilbert.resize_position_embeddings(new_num_position_embeddings)
|
968 |
+
|
969 |
+
@add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
970 |
+
@add_code_sample_docstrings(
|
971 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
972 |
+
output_type=SequenceClassifierOutput,
|
973 |
+
config_class=_CONFIG_FOR_DOC,
|
974 |
+
)
|
975 |
+
def forward(
|
976 |
+
self,
|
977 |
+
input_ids: Optional[torch.Tensor] = None,
|
978 |
+
attention_mask: Optional[torch.Tensor] = None,
|
979 |
+
head_mask: Optional[torch.Tensor] = None,
|
980 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
981 |
+
labels: Optional[torch.LongTensor] = None,
|
982 |
+
output_attentions: Optional[bool] = None,
|
983 |
+
output_hidden_states: Optional[bool] = None,
|
984 |
+
return_dict: Optional[bool] = None,
|
985 |
+
) -> Union[SequenceClassifierOutput, Tuple[torch.Tensor, ...]]:
|
986 |
+
r"""
|
987 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
988 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
989 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
990 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
991 |
+
"""
|
992 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
993 |
+
|
994 |
+
distilbert_output = self.distilbert(
|
995 |
+
input_ids=input_ids,
|
996 |
+
attention_mask=attention_mask,
|
997 |
+
head_mask=head_mask,
|
998 |
+
inputs_embeds=inputs_embeds,
|
999 |
+
output_attentions=output_attentions,
|
1000 |
+
output_hidden_states=output_hidden_states,
|
1001 |
+
return_dict=return_dict,
|
1002 |
+
)
|
1003 |
+
hidden_state = distilbert_output[0] # (bs, seq_len, dim)
|
1004 |
+
pooled_output = hidden_state[:, 0] # (bs, dim)
|
1005 |
+
pooled_output = self.pre_classifier(pooled_output) # (bs, dim)
|
1006 |
+
pooled_output = nn.ReLU()(pooled_output) # (bs, dim)
|
1007 |
+
pooled_output = self.dropout(pooled_output) # (bs, dim)
|
1008 |
+
logits = self.classifier(pooled_output) # (bs, num_labels)
|
1009 |
+
|
1010 |
+
loss = None
|
1011 |
+
if labels is not None:
|
1012 |
+
if self.config.problem_type is None:
|
1013 |
+
if self.num_labels == 1:
|
1014 |
+
self.config.problem_type = "regression"
|
1015 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1016 |
+
self.config.problem_type = "single_label_classification"
|
1017 |
+
else:
|
1018 |
+
self.config.problem_type = "multi_label_classification"
|
1019 |
+
|
1020 |
+
if self.config.problem_type == "regression":
|
1021 |
+
loss_fct = MSELoss()
|
1022 |
+
if self.num_labels == 1:
|
1023 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
1024 |
+
else:
|
1025 |
+
loss = loss_fct(logits, labels)
|
1026 |
+
elif self.config.problem_type == "single_label_classification":
|
1027 |
+
loss_fct = CrossEntropyLoss()
|
1028 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1029 |
+
elif self.config.problem_type == "multi_label_classification":
|
1030 |
+
loss_fct = BCEWithLogitsLoss()
|
1031 |
+
loss = loss_fct(logits, labels)
|
1032 |
+
|
1033 |
+
if not return_dict:
|
1034 |
+
output = (logits,) + distilbert_output[1:]
|
1035 |
+
return ((loss,) + output) if loss is not None else output
|
1036 |
+
|
1037 |
+
return SequenceClassifierOutput(
|
1038 |
+
loss=loss,
|
1039 |
+
logits=logits,
|
1040 |
+
hidden_states=distilbert_output.hidden_states,
|
1041 |
+
attentions=distilbert_output.attentions,
|
1042 |
+
)
|
1043 |
+
|
1044 |
+
|
1045 |
+
@add_start_docstrings(
|
1046 |
+
"""
|
1047 |
+
DistilBert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a
|
1048 |
+
linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1049 |
+
""",
|
1050 |
+
DISTILBERT_START_DOCSTRING,
|
1051 |
+
)
|
1052 |
+
class DistilBertForQuestionAnswering(DistilBertPreTrainedModel):
|
1053 |
+
def __init__(self, config: PretrainedConfig):
|
1054 |
+
super().__init__(config)
|
1055 |
+
|
1056 |
+
self.distilbert = DistilBertModel(config)
|
1057 |
+
self.qa_outputs = nn.Linear(config.dim, config.num_labels)
|
1058 |
+
if config.num_labels != 2:
|
1059 |
+
raise ValueError(f"config.num_labels should be 2, but it is {config.num_labels}")
|
1060 |
+
|
1061 |
+
self.dropout = nn.Dropout(config.qa_dropout)
|
1062 |
+
|
1063 |
+
# Initialize weights and apply final processing
|
1064 |
+
self.post_init()
|
1065 |
+
|
1066 |
+
def get_position_embeddings(self) -> nn.Embedding:
|
1067 |
+
"""
|
1068 |
+
Returns the position embeddings
|
1069 |
+
"""
|
1070 |
+
return self.distilbert.get_position_embeddings()
|
1071 |
+
|
1072 |
+
def resize_position_embeddings(self, new_num_position_embeddings: int):
|
1073 |
+
"""
|
1074 |
+
Resizes position embeddings of the model if `new_num_position_embeddings != config.max_position_embeddings`.
|
1075 |
+
|
1076 |
+
Arguments:
|
1077 |
+
new_num_position_embeddings (`int`):
|
1078 |
+
The number of new position embedding matrix. If position embeddings are learned, increasing the size
|
1079 |
+
will add newly initialized vectors at the end, whereas reducing the size will remove vectors from the
|
1080 |
+
end. If position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the
|
1081 |
+
size will add correct vectors at the end following the position encoding algorithm, whereas reducing
|
1082 |
+
the size will remove vectors from the end.
|
1083 |
+
"""
|
1084 |
+
self.distilbert.resize_position_embeddings(new_num_position_embeddings)
|
1085 |
+
|
1086 |
+
@add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, num_choices"))
|
1087 |
+
@add_code_sample_docstrings(
|
1088 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1089 |
+
output_type=QuestionAnsweringModelOutput,
|
1090 |
+
config_class=_CONFIG_FOR_DOC,
|
1091 |
+
)
|
1092 |
+
def forward(
|
1093 |
+
self,
|
1094 |
+
input_ids: Optional[torch.Tensor] = None,
|
1095 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1096 |
+
head_mask: Optional[torch.Tensor] = None,
|
1097 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1098 |
+
start_positions: Optional[torch.Tensor] = None,
|
1099 |
+
end_positions: Optional[torch.Tensor] = None,
|
1100 |
+
output_attentions: Optional[bool] = None,
|
1101 |
+
output_hidden_states: Optional[bool] = None,
|
1102 |
+
return_dict: Optional[bool] = None,
|
1103 |
+
) -> Union[QuestionAnsweringModelOutput, Tuple[torch.Tensor, ...]]:
|
1104 |
+
r"""
|
1105 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1106 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1107 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1108 |
+
are not taken into account for computing the loss.
|
1109 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1110 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1111 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1112 |
+
are not taken into account for computing the loss.
|
1113 |
+
"""
|
1114 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1115 |
+
|
1116 |
+
distilbert_output = self.distilbert(
|
1117 |
+
input_ids=input_ids,
|
1118 |
+
attention_mask=attention_mask,
|
1119 |
+
head_mask=head_mask,
|
1120 |
+
inputs_embeds=inputs_embeds,
|
1121 |
+
output_attentions=output_attentions,
|
1122 |
+
output_hidden_states=output_hidden_states,
|
1123 |
+
return_dict=return_dict,
|
1124 |
+
)
|
1125 |
+
hidden_states = distilbert_output[0] # (bs, max_query_len, dim)
|
1126 |
+
|
1127 |
+
hidden_states = self.dropout(hidden_states) # (bs, max_query_len, dim)
|
1128 |
+
logits = self.qa_outputs(hidden_states) # (bs, max_query_len, 2)
|
1129 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1130 |
+
start_logits = start_logits.squeeze(-1).contiguous() # (bs, max_query_len)
|
1131 |
+
end_logits = end_logits.squeeze(-1).contiguous() # (bs, max_query_len)
|
1132 |
+
|
1133 |
+
total_loss = None
|
1134 |
+
if start_positions is not None and end_positions is not None:
|
1135 |
+
# If we are on multi-GPU, split add a dimension
|
1136 |
+
if len(start_positions.size()) > 1:
|
1137 |
+
start_positions = start_positions.squeeze(-1)
|
1138 |
+
if len(end_positions.size()) > 1:
|
1139 |
+
end_positions = end_positions.squeeze(-1)
|
1140 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1141 |
+
ignored_index = start_logits.size(1)
|
1142 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
1143 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
1144 |
+
|
1145 |
+
loss_fct = nn.CrossEntropyLoss(ignore_index=ignored_index)
|
1146 |
+
start_loss = loss_fct(start_logits, start_positions)
|
1147 |
+
end_loss = loss_fct(end_logits, end_positions)
|
1148 |
+
total_loss = (start_loss + end_loss) / 2
|
1149 |
+
|
1150 |
+
if not return_dict:
|
1151 |
+
output = (start_logits, end_logits) + distilbert_output[1:]
|
1152 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1153 |
+
|
1154 |
+
return QuestionAnsweringModelOutput(
|
1155 |
+
loss=total_loss,
|
1156 |
+
start_logits=start_logits,
|
1157 |
+
end_logits=end_logits,
|
1158 |
+
hidden_states=distilbert_output.hidden_states,
|
1159 |
+
attentions=distilbert_output.attentions,
|
1160 |
+
)
|
1161 |
+
|
1162 |
+
|
1163 |
+
@add_start_docstrings(
|
1164 |
+
"""
|
1165 |
+
DistilBert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g.
|
1166 |
+
for Named-Entity-Recognition (NER) tasks.
|
1167 |
+
""",
|
1168 |
+
DISTILBERT_START_DOCSTRING,
|
1169 |
+
)
|
1170 |
+
class DistilBertForTokenClassification(DistilBertPreTrainedModel):
|
1171 |
+
def __init__(self, config: PretrainedConfig):
|
1172 |
+
super().__init__(config)
|
1173 |
+
self.num_labels = config.num_labels
|
1174 |
+
|
1175 |
+
self.distilbert = DistilBertModel(config)
|
1176 |
+
self.dropout = nn.Dropout(config.dropout)
|
1177 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1178 |
+
|
1179 |
+
# Initialize weights and apply final processing
|
1180 |
+
self.post_init()
|
1181 |
+
|
1182 |
+
def get_position_embeddings(self) -> nn.Embedding:
|
1183 |
+
"""
|
1184 |
+
Returns the position embeddings
|
1185 |
+
"""
|
1186 |
+
return self.distilbert.get_position_embeddings()
|
1187 |
+
|
1188 |
+
def resize_position_embeddings(self, new_num_position_embeddings: int):
|
1189 |
+
"""
|
1190 |
+
Resizes position embeddings of the model if `new_num_position_embeddings != config.max_position_embeddings`.
|
1191 |
+
|
1192 |
+
Arguments:
|
1193 |
+
new_num_position_embeddings (`int`):
|
1194 |
+
The number of new position embedding matrix. If position embeddings are learned, increasing the size
|
1195 |
+
will add newly initialized vectors at the end, whereas reducing the size will remove vectors from the
|
1196 |
+
end. If position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the
|
1197 |
+
size will add correct vectors at the end following the position encoding algorithm, whereas reducing
|
1198 |
+
the size will remove vectors from the end.
|
1199 |
+
"""
|
1200 |
+
self.distilbert.resize_position_embeddings(new_num_position_embeddings)
|
1201 |
+
|
1202 |
+
@add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING)
|
1203 |
+
@add_code_sample_docstrings(
|
1204 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1205 |
+
output_type=TokenClassifierOutput,
|
1206 |
+
config_class=_CONFIG_FOR_DOC,
|
1207 |
+
)
|
1208 |
+
def forward(
|
1209 |
+
self,
|
1210 |
+
input_ids: Optional[torch.Tensor] = None,
|
1211 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1212 |
+
head_mask: Optional[torch.Tensor] = None,
|
1213 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1214 |
+
labels: Optional[torch.LongTensor] = None,
|
1215 |
+
output_attentions: Optional[bool] = None,
|
1216 |
+
output_hidden_states: Optional[bool] = None,
|
1217 |
+
return_dict: Optional[bool] = None,
|
1218 |
+
) -> Union[TokenClassifierOutput, Tuple[torch.Tensor, ...]]:
|
1219 |
+
r"""
|
1220 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1221 |
+
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
1222 |
+
"""
|
1223 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1224 |
+
|
1225 |
+
outputs = self.distilbert(
|
1226 |
+
input_ids,
|
1227 |
+
attention_mask=attention_mask,
|
1228 |
+
head_mask=head_mask,
|
1229 |
+
inputs_embeds=inputs_embeds,
|
1230 |
+
output_attentions=output_attentions,
|
1231 |
+
output_hidden_states=output_hidden_states,
|
1232 |
+
return_dict=return_dict,
|
1233 |
+
)
|
1234 |
+
|
1235 |
+
sequence_output = outputs[0]
|
1236 |
+
|
1237 |
+
sequence_output = self.dropout(sequence_output)
|
1238 |
+
logits = self.classifier(sequence_output)
|
1239 |
+
|
1240 |
+
loss = None
|
1241 |
+
if labels is not None:
|
1242 |
+
loss_fct = CrossEntropyLoss()
|
1243 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1244 |
+
|
1245 |
+
if not return_dict:
|
1246 |
+
output = (logits,) + outputs[1:]
|
1247 |
+
return ((loss,) + output) if loss is not None else output
|
1248 |
+
|
1249 |
+
return TokenClassifierOutput(
|
1250 |
+
loss=loss,
|
1251 |
+
logits=logits,
|
1252 |
+
hidden_states=outputs.hidden_states,
|
1253 |
+
attentions=outputs.attentions,
|
1254 |
+
)
|
1255 |
+
|
1256 |
+
|
1257 |
+
@add_start_docstrings(
|
1258 |
+
"""
|
1259 |
+
DistilBert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and
|
1260 |
+
a softmax) e.g. for RocStories/SWAG tasks.
|
1261 |
+
""",
|
1262 |
+
DISTILBERT_START_DOCSTRING,
|
1263 |
+
)
|
1264 |
+
class DistilBertForMultipleChoice(DistilBertPreTrainedModel):
|
1265 |
+
def __init__(self, config: PretrainedConfig):
|
1266 |
+
super().__init__(config)
|
1267 |
+
|
1268 |
+
self.distilbert = DistilBertModel(config)
|
1269 |
+
self.pre_classifier = nn.Linear(config.dim, config.dim)
|
1270 |
+
self.classifier = nn.Linear(config.dim, 1)
|
1271 |
+
self.dropout = nn.Dropout(config.seq_classif_dropout)
|
1272 |
+
|
1273 |
+
# Initialize weights and apply final processing
|
1274 |
+
self.post_init()
|
1275 |
+
|
1276 |
+
def get_position_embeddings(self) -> nn.Embedding:
|
1277 |
+
"""
|
1278 |
+
Returns the position embeddings
|
1279 |
+
"""
|
1280 |
+
return self.distilbert.get_position_embeddings()
|
1281 |
+
|
1282 |
+
def resize_position_embeddings(self, new_num_position_embeddings: int):
|
1283 |
+
"""
|
1284 |
+
Resizes position embeddings of the model if `new_num_position_embeddings != config.max_position_embeddings`.
|
1285 |
+
|
1286 |
+
Arguments:
|
1287 |
+
new_num_position_embeddings (`int`)
|
1288 |
+
The number of new position embeddings. If position embeddings are learned, increasing the size will add
|
1289 |
+
newly initialized vectors at the end, whereas reducing the size will remove vectors from the end. If
|
1290 |
+
position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the size will
|
1291 |
+
add correct vectors at the end following the position encoding algorithm, whereas reducing the size
|
1292 |
+
will remove vectors from the end.
|
1293 |
+
"""
|
1294 |
+
self.distilbert.resize_position_embeddings(new_num_position_embeddings)
|
1295 |
+
|
1296 |
+
@add_start_docstrings_to_model_forward(
|
1297 |
+
DISTILBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
|
1298 |
+
)
|
1299 |
+
@replace_return_docstrings(output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC)
|
1300 |
+
def forward(
|
1301 |
+
self,
|
1302 |
+
input_ids: Optional[torch.Tensor] = None,
|
1303 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1304 |
+
head_mask: Optional[torch.Tensor] = None,
|
1305 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1306 |
+
labels: Optional[torch.LongTensor] = None,
|
1307 |
+
output_attentions: Optional[bool] = None,
|
1308 |
+
output_hidden_states: Optional[bool] = None,
|
1309 |
+
return_dict: Optional[bool] = None,
|
1310 |
+
) -> Union[MultipleChoiceModelOutput, Tuple[torch.Tensor, ...]]:
|
1311 |
+
r"""
|
1312 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1313 |
+
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
|
1314 |
+
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
|
1315 |
+
`input_ids` above)
|
1316 |
+
|
1317 |
+
Returns:
|
1318 |
+
|
1319 |
+
Examples:
|
1320 |
+
|
1321 |
+
```python
|
1322 |
+
>>> from transformers import AutoTokenizer, DistilBertForMultipleChoice
|
1323 |
+
>>> import torch
|
1324 |
+
|
1325 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert-base-cased")
|
1326 |
+
>>> model = DistilBertForMultipleChoice.from_pretrained("distilbert-base-cased")
|
1327 |
+
|
1328 |
+
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
|
1329 |
+
>>> choice0 = "It is eaten with a fork and a knife."
|
1330 |
+
>>> choice1 = "It is eaten while held in the hand."
|
1331 |
+
>>> labels = torch.tensor(0).unsqueeze(0) # choice0 is correct (according to Wikipedia ;)), batch size 1
|
1332 |
+
|
1333 |
+
>>> encoding = tokenizer([[prompt, choice0], [prompt, choice1]], return_tensors="pt", padding=True)
|
1334 |
+
>>> outputs = model(**{k: v.unsqueeze(0) for k, v in encoding.items()}, labels=labels) # batch size is 1
|
1335 |
+
|
1336 |
+
>>> # the linear classifier still needs to be trained
|
1337 |
+
>>> loss = outputs.loss
|
1338 |
+
>>> logits = outputs.logits
|
1339 |
+
```"""
|
1340 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1341 |
+
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
|
1342 |
+
|
1343 |
+
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
|
1344 |
+
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
1345 |
+
inputs_embeds = (
|
1346 |
+
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
|
1347 |
+
if inputs_embeds is not None
|
1348 |
+
else None
|
1349 |
+
)
|
1350 |
+
|
1351 |
+
outputs = self.distilbert(
|
1352 |
+
input_ids,
|
1353 |
+
attention_mask=attention_mask,
|
1354 |
+
head_mask=head_mask,
|
1355 |
+
inputs_embeds=inputs_embeds,
|
1356 |
+
output_attentions=output_attentions,
|
1357 |
+
output_hidden_states=output_hidden_states,
|
1358 |
+
return_dict=return_dict,
|
1359 |
+
)
|
1360 |
+
|
1361 |
+
hidden_state = outputs[0] # (bs * num_choices, seq_len, dim)
|
1362 |
+
pooled_output = hidden_state[:, 0] # (bs * num_choices, dim)
|
1363 |
+
pooled_output = self.pre_classifier(pooled_output) # (bs * num_choices, dim)
|
1364 |
+
pooled_output = nn.ReLU()(pooled_output) # (bs * num_choices, dim)
|
1365 |
+
pooled_output = self.dropout(pooled_output) # (bs * num_choices, dim)
|
1366 |
+
logits = self.classifier(pooled_output) # (bs * num_choices, 1)
|
1367 |
+
|
1368 |
+
reshaped_logits = logits.view(-1, num_choices) # (bs, num_choices)
|
1369 |
+
|
1370 |
+
loss = None
|
1371 |
+
if labels is not None:
|
1372 |
+
loss_fct = CrossEntropyLoss()
|
1373 |
+
loss = loss_fct(reshaped_logits, labels)
|
1374 |
+
|
1375 |
+
if not return_dict:
|
1376 |
+
output = (reshaped_logits,) + outputs[1:]
|
1377 |
+
return ((loss,) + output) if loss is not None else output
|
1378 |
+
|
1379 |
+
return MultipleChoiceModelOutput(
|
1380 |
+
loss=loss,
|
1381 |
+
logits=reshaped_logits,
|
1382 |
+
hidden_states=outputs.hidden_states,
|
1383 |
+
attentions=outputs.attentions,
|
1384 |
+
)
|
venv/lib/python3.10/site-packages/transformers/models/distilbert/modeling_flax_distilbert.py
ADDED
@@ -0,0 +1,895 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2019-present, the HuggingFace Inc. team, The Google AI Language Team and Facebook, Inc.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import math
|
17 |
+
from typing import Callable, Optional, Tuple
|
18 |
+
|
19 |
+
import flax.linen as nn
|
20 |
+
import jax
|
21 |
+
import jax.numpy as jnp
|
22 |
+
import numpy as np
|
23 |
+
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
|
24 |
+
from flax.traverse_util import flatten_dict, unflatten_dict
|
25 |
+
from jax import lax
|
26 |
+
|
27 |
+
from ...modeling_flax_outputs import (
|
28 |
+
FlaxBaseModelOutput,
|
29 |
+
FlaxMaskedLMOutput,
|
30 |
+
FlaxMultipleChoiceModelOutput,
|
31 |
+
FlaxQuestionAnsweringModelOutput,
|
32 |
+
FlaxSequenceClassifierOutput,
|
33 |
+
FlaxTokenClassifierOutput,
|
34 |
+
)
|
35 |
+
from ...modeling_flax_utils import ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring, overwrite_call_docstring
|
36 |
+
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging
|
37 |
+
from .configuration_distilbert import DistilBertConfig
|
38 |
+
|
39 |
+
|
40 |
+
logger = logging.get_logger(__name__)
|
41 |
+
|
42 |
+
_CHECKPOINT_FOR_DOC = "distilbert-base-uncased"
|
43 |
+
_CONFIG_FOR_DOC = "DistilBertConfig"
|
44 |
+
|
45 |
+
|
46 |
+
FLAX_DISTILBERT_START_DOCSTRING = r"""
|
47 |
+
|
48 |
+
This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
|
49 |
+
library implements for all its model (such as downloading, saving and converting weights from PyTorch models)
|
50 |
+
|
51 |
+
This model is also a
|
52 |
+
[flax.linen.Module](https://flax.readthedocs.io/en/latest/api_reference/flax.linen/module.html) subclass. Use it as
|
53 |
+
a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and
|
54 |
+
behavior.
|
55 |
+
|
56 |
+
Finally, this model supports inherent JAX features such as:
|
57 |
+
|
58 |
+
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
|
59 |
+
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
|
60 |
+
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
|
61 |
+
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
|
62 |
+
|
63 |
+
Parameters:
|
64 |
+
config ([`DistilBertConfig`]): Model configuration class with all the parameters of the model.
|
65 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
66 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
67 |
+
"""
|
68 |
+
|
69 |
+
DISTILBERT_INPUTS_DOCSTRING = r"""
|
70 |
+
Args:
|
71 |
+
input_ids (`numpy.ndarray` of shape `({0})`):
|
72 |
+
Indices of input sequence tokens in the vocabulary.
|
73 |
+
|
74 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
75 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
76 |
+
|
77 |
+
[What are input IDs?](../glossary#input-ids)
|
78 |
+
attention_mask (`numpy.ndarray` of shape `({0})`, *optional*):
|
79 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
80 |
+
|
81 |
+
- 1 for tokens that are **not masked**,
|
82 |
+
- 0 for tokens that are **masked**.
|
83 |
+
|
84 |
+
[What are attention masks?](../glossary#attention-mask)
|
85 |
+
output_attentions (`bool`, *optional*):
|
86 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
87 |
+
tensors for more detail.
|
88 |
+
output_hidden_states (`bool`, *optional*):
|
89 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
90 |
+
more detail.
|
91 |
+
return_dict (`bool`, *optional*):
|
92 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
93 |
+
"""
|
94 |
+
|
95 |
+
|
96 |
+
def get_angles(pos, i, d_model):
|
97 |
+
angle_rates = 1 / np.power(10000, (2 * (i // 2)) / np.float32(d_model))
|
98 |
+
return pos * angle_rates
|
99 |
+
|
100 |
+
|
101 |
+
def positional_encoding(position, d_model):
|
102 |
+
# create the sinusoidal pattern for the positional encoding
|
103 |
+
angle_rads = get_angles(np.arange(position)[:, np.newaxis], np.arange(d_model)[np.newaxis, :], d_model)
|
104 |
+
|
105 |
+
# apply sin to even indices in the array; 2i
|
106 |
+
angle_rads[:, 0::2] = np.sin(angle_rads[:, 0::2])
|
107 |
+
|
108 |
+
# apply cos to odd indices in the array; 2i+1
|
109 |
+
angle_rads[:, 1::2] = np.cos(angle_rads[:, 1::2])
|
110 |
+
|
111 |
+
pos_encoding = angle_rads[np.newaxis, ...]
|
112 |
+
|
113 |
+
return jnp.array(pos_encoding)
|
114 |
+
|
115 |
+
|
116 |
+
class FlaxEmbeddings(nn.Module):
|
117 |
+
"""Construct the embeddings from word, position and token_type embeddings."""
|
118 |
+
|
119 |
+
config: DistilBertConfig
|
120 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
121 |
+
|
122 |
+
def setup(self):
|
123 |
+
self.word_embeddings = nn.Embed(
|
124 |
+
self.config.vocab_size,
|
125 |
+
self.config.dim,
|
126 |
+
embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
|
127 |
+
)
|
128 |
+
if not self.config.sinusoidal_pos_embds:
|
129 |
+
self.position_embeddings = nn.Embed(
|
130 |
+
self.config.max_position_embeddings,
|
131 |
+
self.config.dim,
|
132 |
+
embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
|
133 |
+
)
|
134 |
+
else:
|
135 |
+
self.pos_encoding = positional_encoding(self.config.max_position_embeddings, self.config.dim)
|
136 |
+
self.LayerNorm = nn.LayerNorm(epsilon=1e-12, dtype=self.dtype)
|
137 |
+
self.dropout = nn.Dropout(rate=self.config.dropout)
|
138 |
+
|
139 |
+
def __call__(self, input_ids, deterministic: bool = True):
|
140 |
+
# Embed
|
141 |
+
batch_size, seq_length = input_ids.shape
|
142 |
+
inputs_embeds = self.word_embeddings(input_ids.astype("i4"))
|
143 |
+
if not self.config.sinusoidal_pos_embds:
|
144 |
+
position_ids = jnp.arange(seq_length).astype("i4")
|
145 |
+
position_ids = jnp.broadcast_to(position_ids, shape=(batch_size, seq_length))
|
146 |
+
position_embeds = self.position_embeddings(position_ids.astype("i4"))
|
147 |
+
else:
|
148 |
+
position_embeds = self.pos_encoding[:, :seq_length, :]
|
149 |
+
# explicitly cast the positions here, since self.embed_positions are not registered as parameters
|
150 |
+
position_embeds = position_embeds.astype(inputs_embeds.dtype)
|
151 |
+
|
152 |
+
# Sum all embeddings
|
153 |
+
hidden_states = inputs_embeds + position_embeds
|
154 |
+
|
155 |
+
# Layer Norm
|
156 |
+
hidden_states = self.LayerNorm(hidden_states)
|
157 |
+
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
|
158 |
+
return hidden_states
|
159 |
+
|
160 |
+
|
161 |
+
class FlaxMultiHeadSelfAttention(nn.Module):
|
162 |
+
config: DistilBertConfig
|
163 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
164 |
+
|
165 |
+
def setup(self):
|
166 |
+
self.n_heads = self.config.n_heads
|
167 |
+
self.dim = self.config.dim
|
168 |
+
self.dropout = nn.Dropout(rate=self.config.attention_dropout)
|
169 |
+
|
170 |
+
if not (self.dim % self.n_heads == 0):
|
171 |
+
raise ValueError(f"Hidden size {self.dim} not dividable by number of heads {self.n_heads}")
|
172 |
+
|
173 |
+
self.q_lin = nn.Dense(
|
174 |
+
self.dim,
|
175 |
+
dtype=self.dtype,
|
176 |
+
kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
|
177 |
+
)
|
178 |
+
self.k_lin = nn.Dense(
|
179 |
+
self.dim,
|
180 |
+
dtype=self.dtype,
|
181 |
+
kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
|
182 |
+
)
|
183 |
+
self.v_lin = nn.Dense(
|
184 |
+
self.dim,
|
185 |
+
dtype=self.dtype,
|
186 |
+
kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
|
187 |
+
)
|
188 |
+
self.out_lin = nn.Dense(
|
189 |
+
self.dim,
|
190 |
+
dtype=self.dtype,
|
191 |
+
kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
|
192 |
+
)
|
193 |
+
|
194 |
+
def __call__(
|
195 |
+
self,
|
196 |
+
query,
|
197 |
+
key,
|
198 |
+
value,
|
199 |
+
mask,
|
200 |
+
deterministic: bool = True,
|
201 |
+
output_attentions: bool = False,
|
202 |
+
):
|
203 |
+
bs, q_len, dim = query.shape
|
204 |
+
k_len = key.shape[1]
|
205 |
+
# assert dim == self.dim, f'Dimensions do not match: {dim} input vs {self.dim} configured'
|
206 |
+
# assert key.size() == value.size()
|
207 |
+
|
208 |
+
dim_per_head = self.dim // self.n_heads
|
209 |
+
|
210 |
+
mask_reshp = (bs, 1, 1, k_len)
|
211 |
+
|
212 |
+
def shape(x):
|
213 |
+
"""separate heads"""
|
214 |
+
return x.reshape(bs, -1, self.n_heads, dim_per_head).transpose(0, 2, 1, 3)
|
215 |
+
|
216 |
+
def unshape(x):
|
217 |
+
"""group heads"""
|
218 |
+
return x.transpose(0, 2, 1, 3).reshape(bs, -1, self.n_heads * dim_per_head)
|
219 |
+
|
220 |
+
q = shape(self.q_lin(query)) # (bs, n_heads, q_len, dim_per_head)
|
221 |
+
k = shape(self.k_lin(key)) # (bs, n_heads, k_len, dim_per_head)
|
222 |
+
v = shape(self.v_lin(value)) # (bs, n_heads, k_len, dim_per_head)
|
223 |
+
|
224 |
+
q = q / math.sqrt(dim_per_head) # (bs, n_heads, q_len, dim_per_head)
|
225 |
+
scores = jnp.matmul(q, k.transpose(0, 1, 3, 2)) # (bs, n_heads, q_len, k_len)
|
226 |
+
mask = jnp.reshape(mask, mask_reshp)
|
227 |
+
|
228 |
+
mask = mask.astype(scores.dtype)
|
229 |
+
scores = scores - 1e30 * (1.0 - mask)
|
230 |
+
|
231 |
+
weights = nn.softmax(scores, axis=-1) # (bs, n_heads, q_len, k_len)
|
232 |
+
weights = self.dropout(weights, deterministic=deterministic)
|
233 |
+
|
234 |
+
context = jnp.matmul(weights, v) # (bs, n_heads, q_len, dim_per_head)
|
235 |
+
context = unshape(context) # (bs, q_len, dim)
|
236 |
+
context = self.out_lin(context) # (bs, q_len, dim)
|
237 |
+
|
238 |
+
if output_attentions:
|
239 |
+
return (context, weights)
|
240 |
+
else:
|
241 |
+
return (context,)
|
242 |
+
|
243 |
+
|
244 |
+
class FlaxFFN(nn.Module):
|
245 |
+
config: DistilBertConfig
|
246 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
247 |
+
|
248 |
+
def setup(self):
|
249 |
+
self.dropout = nn.Dropout(rate=self.config.dropout)
|
250 |
+
self.chunk_size_feed_forward = self.config.chunk_size_feed_forward
|
251 |
+
self.seq_len_dim = 1
|
252 |
+
self.lin1 = nn.Dense(
|
253 |
+
self.config.hidden_dim,
|
254 |
+
dtype=self.dtype,
|
255 |
+
kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
|
256 |
+
)
|
257 |
+
self.lin2 = nn.Dense(
|
258 |
+
self.config.dim,
|
259 |
+
dtype=self.dtype,
|
260 |
+
kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
|
261 |
+
)
|
262 |
+
|
263 |
+
self.activation = ACT2FN[self.config.activation]
|
264 |
+
|
265 |
+
def __call__(self, hidden_states, deterministic: bool = True):
|
266 |
+
hidden_states = self.lin1(hidden_states)
|
267 |
+
hidden_states = self.activation(hidden_states)
|
268 |
+
hidden_states = self.lin2(hidden_states)
|
269 |
+
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
|
270 |
+
return hidden_states
|
271 |
+
|
272 |
+
|
273 |
+
class FlaxTransformerBlock(nn.Module):
|
274 |
+
config: DistilBertConfig
|
275 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
276 |
+
|
277 |
+
def setup(self):
|
278 |
+
assert (
|
279 |
+
self.config.dim % self.config.n_heads == 0
|
280 |
+
), f"Hidden size {self.config.dim} not dividable by number of heads {self.config.n_heads}"
|
281 |
+
|
282 |
+
self.attention = FlaxMultiHeadSelfAttention(self.config, dtype=self.dtype)
|
283 |
+
self.sa_layer_norm = nn.LayerNorm(epsilon=1e-12, dtype=self.dtype)
|
284 |
+
|
285 |
+
self.ffn = FlaxFFN(self.config, dtype=self.dtype)
|
286 |
+
self.output_layer_norm = nn.LayerNorm(epsilon=1e-12, dtype=self.dtype)
|
287 |
+
|
288 |
+
def __call__(
|
289 |
+
self,
|
290 |
+
hidden_states,
|
291 |
+
attn_mask,
|
292 |
+
output_attentions: bool = False,
|
293 |
+
deterministic: bool = True,
|
294 |
+
):
|
295 |
+
# Self-Attention
|
296 |
+
sa_output = self.attention(
|
297 |
+
query=hidden_states,
|
298 |
+
key=hidden_states,
|
299 |
+
value=hidden_states,
|
300 |
+
mask=attn_mask,
|
301 |
+
output_attentions=output_attentions,
|
302 |
+
deterministic=deterministic,
|
303 |
+
)
|
304 |
+
if output_attentions:
|
305 |
+
sa_output, sa_weights = sa_output
|
306 |
+
else:
|
307 |
+
assert type(sa_output) == tuple
|
308 |
+
sa_output = sa_output[0]
|
309 |
+
sa_output = self.sa_layer_norm(sa_output + hidden_states)
|
310 |
+
|
311 |
+
# Feed Forward Network
|
312 |
+
ffn_output = self.ffn(sa_output, deterministic=deterministic)
|
313 |
+
ffn_output = self.output_layer_norm(ffn_output + sa_output)
|
314 |
+
output = (ffn_output,)
|
315 |
+
if output_attentions:
|
316 |
+
output = (sa_weights,) + output
|
317 |
+
return output
|
318 |
+
|
319 |
+
|
320 |
+
class FlaxTransformer(nn.Module):
|
321 |
+
config: DistilBertConfig
|
322 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
323 |
+
|
324 |
+
def setup(self):
|
325 |
+
self.layers = [
|
326 |
+
FlaxTransformerBlock(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.n_layers)
|
327 |
+
]
|
328 |
+
|
329 |
+
def __call__(
|
330 |
+
self,
|
331 |
+
hidden_states,
|
332 |
+
attention_mask,
|
333 |
+
output_attentions: bool = False,
|
334 |
+
output_hidden_states: bool = False,
|
335 |
+
deterministic: bool = True,
|
336 |
+
return_dict: bool = False,
|
337 |
+
):
|
338 |
+
all_hidden_states = () if output_hidden_states else None
|
339 |
+
all_attentions = () if output_attentions else None
|
340 |
+
|
341 |
+
for layer_module in self.layers:
|
342 |
+
if output_hidden_states:
|
343 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
344 |
+
|
345 |
+
layer_outputs = layer_module(
|
346 |
+
hidden_states=hidden_states,
|
347 |
+
attn_mask=attention_mask,
|
348 |
+
output_attentions=output_attentions,
|
349 |
+
deterministic=deterministic,
|
350 |
+
)
|
351 |
+
hidden_states = layer_outputs[-1]
|
352 |
+
|
353 |
+
if output_attentions:
|
354 |
+
assert len(layer_outputs) == 2
|
355 |
+
attentions = layer_outputs[0]
|
356 |
+
all_attentions = all_attentions + (attentions,)
|
357 |
+
else:
|
358 |
+
assert len(layer_outputs) == 1
|
359 |
+
|
360 |
+
# Add last layer
|
361 |
+
if output_hidden_states:
|
362 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
363 |
+
|
364 |
+
if not return_dict:
|
365 |
+
return tuple(v for v in [hidden_states, all_attentions, all_hidden_states] if v is not None)
|
366 |
+
return FlaxBaseModelOutput(
|
367 |
+
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
|
368 |
+
)
|
369 |
+
|
370 |
+
|
371 |
+
class FlaxTransformerEncoder(nn.Module):
|
372 |
+
config: DistilBertConfig
|
373 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
374 |
+
|
375 |
+
def setup(self):
|
376 |
+
self.layer = FlaxTransformer(self.config, dtype=self.dtype)
|
377 |
+
|
378 |
+
def __call__(
|
379 |
+
self,
|
380 |
+
hidden_states,
|
381 |
+
attention_mask,
|
382 |
+
output_attentions: bool = False,
|
383 |
+
output_hidden_states: bool = False,
|
384 |
+
deterministic: bool = True,
|
385 |
+
return_dict: bool = False,
|
386 |
+
):
|
387 |
+
return self.layer(
|
388 |
+
hidden_states=hidden_states,
|
389 |
+
attention_mask=attention_mask,
|
390 |
+
output_attentions=output_attentions,
|
391 |
+
output_hidden_states=output_hidden_states,
|
392 |
+
deterministic=deterministic,
|
393 |
+
return_dict=return_dict,
|
394 |
+
)
|
395 |
+
|
396 |
+
|
397 |
+
class FlaxDistilBertLMDecoder(nn.Module):
|
398 |
+
config: DistilBertConfig
|
399 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
400 |
+
bias_init: Callable[..., np.ndarray] = jax.nn.initializers.zeros
|
401 |
+
|
402 |
+
def setup(self):
|
403 |
+
self.bias = self.param("bias", self.bias_init, (self.config.vocab_size,))
|
404 |
+
|
405 |
+
def __call__(self, inputs, kernel):
|
406 |
+
inputs = jnp.asarray(inputs, self.dtype)
|
407 |
+
kernel = jnp.asarray(kernel, self.dtype)
|
408 |
+
y = lax.dot_general(inputs, kernel, (((inputs.ndim - 1,), (0,)), ((), ())))
|
409 |
+
bias = jnp.asarray(self.bias, self.dtype)
|
410 |
+
y = y + bias
|
411 |
+
return y
|
412 |
+
|
413 |
+
|
414 |
+
class FlaxDistilBertPreTrainedModel(FlaxPreTrainedModel):
|
415 |
+
"""
|
416 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
417 |
+
models.
|
418 |
+
"""
|
419 |
+
|
420 |
+
config_class = DistilBertConfig
|
421 |
+
base_model_prefix = "distilbert"
|
422 |
+
module_class: nn.Module = None
|
423 |
+
|
424 |
+
def __init__(
|
425 |
+
self,
|
426 |
+
config: DistilBertConfig,
|
427 |
+
input_shape: Tuple = (1, 1),
|
428 |
+
seed: int = 0,
|
429 |
+
dtype: jnp.dtype = jnp.float32,
|
430 |
+
_do_init: bool = True,
|
431 |
+
**kwargs,
|
432 |
+
):
|
433 |
+
module = self.module_class(config=config, dtype=dtype, **kwargs)
|
434 |
+
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
|
435 |
+
|
436 |
+
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
|
437 |
+
# init input tensors
|
438 |
+
input_ids = jnp.zeros(input_shape, dtype="i4")
|
439 |
+
attention_mask = jnp.ones_like(input_ids)
|
440 |
+
|
441 |
+
params_rng, dropout_rng = jax.random.split(rng)
|
442 |
+
rngs = {"params": params_rng, "dropout": dropout_rng}
|
443 |
+
|
444 |
+
random_params = self.module.init(rngs, input_ids, attention_mask, return_dict=False)["params"]
|
445 |
+
|
446 |
+
if params is not None:
|
447 |
+
random_params = flatten_dict(unfreeze(random_params))
|
448 |
+
params = flatten_dict(unfreeze(params))
|
449 |
+
for missing_key in self._missing_keys:
|
450 |
+
params[missing_key] = random_params[missing_key]
|
451 |
+
self._missing_keys = set()
|
452 |
+
return freeze(unflatten_dict(params))
|
453 |
+
else:
|
454 |
+
return random_params
|
455 |
+
|
456 |
+
@add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
457 |
+
def __call__(
|
458 |
+
self,
|
459 |
+
input_ids,
|
460 |
+
attention_mask=None,
|
461 |
+
head_mask=None,
|
462 |
+
params: dict = None,
|
463 |
+
dropout_rng: jax.random.PRNGKey = None,
|
464 |
+
train: bool = False,
|
465 |
+
output_attentions: Optional[bool] = None,
|
466 |
+
output_hidden_states: Optional[bool] = None,
|
467 |
+
return_dict: Optional[bool] = None,
|
468 |
+
):
|
469 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
470 |
+
output_hidden_states = (
|
471 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
472 |
+
)
|
473 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
474 |
+
|
475 |
+
if attention_mask is None:
|
476 |
+
attention_mask = jnp.ones_like(input_ids)
|
477 |
+
|
478 |
+
# Handle any PRNG if needed
|
479 |
+
rngs = {}
|
480 |
+
if dropout_rng is not None:
|
481 |
+
rngs["dropout"] = dropout_rng
|
482 |
+
|
483 |
+
return self.module.apply(
|
484 |
+
{"params": params or self.params},
|
485 |
+
jnp.array(input_ids, dtype="i4"),
|
486 |
+
jnp.array(attention_mask, dtype="i4"),
|
487 |
+
not train,
|
488 |
+
output_attentions,
|
489 |
+
output_hidden_states,
|
490 |
+
return_dict,
|
491 |
+
rngs=rngs,
|
492 |
+
)
|
493 |
+
|
494 |
+
|
495 |
+
class FlaxDistilBertModule(nn.Module):
|
496 |
+
config: DistilBertConfig
|
497 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
498 |
+
|
499 |
+
def setup(self):
|
500 |
+
self.embeddings = FlaxEmbeddings(self.config, dtype=self.dtype)
|
501 |
+
self.transformer = FlaxTransformerEncoder(self.config, dtype=self.dtype)
|
502 |
+
|
503 |
+
def __call__(
|
504 |
+
self,
|
505 |
+
input_ids,
|
506 |
+
attention_mask,
|
507 |
+
deterministic: bool = True,
|
508 |
+
output_attentions: bool = False,
|
509 |
+
output_hidden_states: bool = False,
|
510 |
+
return_dict: bool = True,
|
511 |
+
):
|
512 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
513 |
+
output_hidden_states = (
|
514 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
515 |
+
)
|
516 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
517 |
+
|
518 |
+
input_embeds = self.embeddings(input_ids, deterministic=deterministic)
|
519 |
+
return self.transformer(
|
520 |
+
hidden_states=input_embeds,
|
521 |
+
attention_mask=attention_mask,
|
522 |
+
deterministic=deterministic,
|
523 |
+
output_attentions=output_attentions,
|
524 |
+
output_hidden_states=output_hidden_states,
|
525 |
+
return_dict=return_dict,
|
526 |
+
)
|
527 |
+
|
528 |
+
|
529 |
+
@add_start_docstrings(
|
530 |
+
"The bare DistilBert Model transformer outputting raw hidden-states without any specific head on top.",
|
531 |
+
FLAX_DISTILBERT_START_DOCSTRING,
|
532 |
+
)
|
533 |
+
class FlaxDistilBertModel(FlaxDistilBertPreTrainedModel):
|
534 |
+
module_class = FlaxDistilBertModule
|
535 |
+
|
536 |
+
|
537 |
+
append_call_sample_docstring(FlaxDistilBertModel, _CHECKPOINT_FOR_DOC, None, _CONFIG_FOR_DOC)
|
538 |
+
|
539 |
+
|
540 |
+
class FlaxDistilBertForMaskedLMModule(nn.Module):
|
541 |
+
config: DistilBertConfig
|
542 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
543 |
+
|
544 |
+
def setup(self):
|
545 |
+
self.distilbert = FlaxDistilBertModule(self.config, dtype=self.dtype)
|
546 |
+
self.vocab_transform = nn.Dense(
|
547 |
+
self.config.dim,
|
548 |
+
dtype=self.dtype,
|
549 |
+
kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
|
550 |
+
)
|
551 |
+
self.vocab_layer_norm = nn.LayerNorm(epsilon=1e-12, dtype=self.dtype)
|
552 |
+
if self.config.tie_word_embeddings:
|
553 |
+
self.vocab_projector = FlaxDistilBertLMDecoder(
|
554 |
+
self.config,
|
555 |
+
dtype=self.dtype,
|
556 |
+
)
|
557 |
+
else:
|
558 |
+
self.vocab_projector = nn.Dense(
|
559 |
+
self.config.vocab_size,
|
560 |
+
dtype=self.dtype,
|
561 |
+
kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
|
562 |
+
)
|
563 |
+
|
564 |
+
def __call__(
|
565 |
+
self,
|
566 |
+
input_ids,
|
567 |
+
attention_mask,
|
568 |
+
deterministic: bool = True,
|
569 |
+
output_attentions: bool = False,
|
570 |
+
output_hidden_states: bool = False,
|
571 |
+
return_dict: bool = True,
|
572 |
+
):
|
573 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
574 |
+
|
575 |
+
dlbrt_output = self.distilbert(
|
576 |
+
input_ids=input_ids,
|
577 |
+
attention_mask=attention_mask,
|
578 |
+
output_attentions=output_attentions,
|
579 |
+
output_hidden_states=output_hidden_states,
|
580 |
+
deterministic=deterministic,
|
581 |
+
return_dict=return_dict,
|
582 |
+
)
|
583 |
+
hidden_states = dlbrt_output[0]
|
584 |
+
prediction_logits = self.vocab_transform(hidden_states)
|
585 |
+
prediction_logits = ACT2FN[self.config.activation](prediction_logits)
|
586 |
+
prediction_logits = self.vocab_layer_norm(prediction_logits)
|
587 |
+
|
588 |
+
if self.config.tie_word_embeddings:
|
589 |
+
shared_embedding = self.distilbert.variables["params"]["embeddings"]["word_embeddings"]["embedding"]
|
590 |
+
prediction_logits = self.vocab_projector(prediction_logits, shared_embedding.T)
|
591 |
+
else:
|
592 |
+
prediction_logits = self.vocab_projector(prediction_logits)
|
593 |
+
|
594 |
+
if not return_dict:
|
595 |
+
output = (prediction_logits,) + dlbrt_output[1:]
|
596 |
+
return output
|
597 |
+
|
598 |
+
return FlaxMaskedLMOutput(
|
599 |
+
logits=prediction_logits,
|
600 |
+
hidden_states=dlbrt_output.hidden_states,
|
601 |
+
attentions=dlbrt_output.attentions,
|
602 |
+
)
|
603 |
+
|
604 |
+
|
605 |
+
@add_start_docstrings("""DistilBert Model with a `language modeling` head on top.""", FLAX_DISTILBERT_START_DOCSTRING)
|
606 |
+
class FlaxDistilBertForMaskedLM(FlaxDistilBertPreTrainedModel):
|
607 |
+
module_class = FlaxDistilBertForMaskedLMModule
|
608 |
+
|
609 |
+
|
610 |
+
append_call_sample_docstring(FlaxDistilBertForMaskedLM, _CHECKPOINT_FOR_DOC, FlaxMaskedLMOutput, _CONFIG_FOR_DOC)
|
611 |
+
|
612 |
+
|
613 |
+
class FlaxDistilBertForSequenceClassificationModule(nn.Module):
|
614 |
+
config: DistilBertConfig
|
615 |
+
dtype: jnp.dtype = jnp.float32
|
616 |
+
|
617 |
+
def setup(self):
|
618 |
+
self.distilbert = FlaxDistilBertModule(config=self.config, dtype=self.dtype)
|
619 |
+
self.pre_classifier = nn.Dense(
|
620 |
+
self.config.dim,
|
621 |
+
dtype=self.dtype,
|
622 |
+
kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
|
623 |
+
)
|
624 |
+
self.dropout = nn.Dropout(rate=self.config.seq_classif_dropout)
|
625 |
+
self.classifier = nn.Dense(
|
626 |
+
self.config.num_labels,
|
627 |
+
dtype=self.dtype,
|
628 |
+
)
|
629 |
+
|
630 |
+
def __call__(
|
631 |
+
self,
|
632 |
+
input_ids,
|
633 |
+
attention_mask,
|
634 |
+
deterministic: bool = True,
|
635 |
+
output_attentions: bool = False,
|
636 |
+
output_hidden_states: bool = False,
|
637 |
+
return_dict: bool = True,
|
638 |
+
):
|
639 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
640 |
+
# Model
|
641 |
+
distilbert_output = self.distilbert(
|
642 |
+
input_ids,
|
643 |
+
attention_mask,
|
644 |
+
deterministic=deterministic,
|
645 |
+
output_attentions=output_attentions,
|
646 |
+
output_hidden_states=output_hidden_states,
|
647 |
+
return_dict=return_dict,
|
648 |
+
)
|
649 |
+
hidden_state = distilbert_output[0] # (bs, seq_len, dim)
|
650 |
+
pooled_output = hidden_state[:, 0] # (bs, dim)
|
651 |
+
pooled_output = self.pre_classifier(pooled_output) # (bs, dim)
|
652 |
+
pooled_output = ACT2FN["relu"](pooled_output)
|
653 |
+
pooled_output = self.dropout(pooled_output, deterministic=deterministic)
|
654 |
+
logits = self.classifier(pooled_output) # (bs, dim)
|
655 |
+
|
656 |
+
if not return_dict:
|
657 |
+
return (logits,) + distilbert_output[1:]
|
658 |
+
|
659 |
+
return FlaxSequenceClassifierOutput(
|
660 |
+
logits=logits,
|
661 |
+
hidden_states=distilbert_output.hidden_states,
|
662 |
+
attentions=distilbert_output.attentions,
|
663 |
+
)
|
664 |
+
|
665 |
+
|
666 |
+
@add_start_docstrings(
|
667 |
+
"""
|
668 |
+
DistilBert Model transformer with a sequence classification/regression head on top (a linear layer on top of the
|
669 |
+
pooled output) e.g. for GLUE tasks.
|
670 |
+
""",
|
671 |
+
FLAX_DISTILBERT_START_DOCSTRING,
|
672 |
+
)
|
673 |
+
class FlaxDistilBertForSequenceClassification(FlaxDistilBertPreTrainedModel):
|
674 |
+
module_class = FlaxDistilBertForSequenceClassificationModule
|
675 |
+
|
676 |
+
|
677 |
+
append_call_sample_docstring(
|
678 |
+
FlaxDistilBertForSequenceClassification,
|
679 |
+
_CHECKPOINT_FOR_DOC,
|
680 |
+
FlaxSequenceClassifierOutput,
|
681 |
+
_CONFIG_FOR_DOC,
|
682 |
+
)
|
683 |
+
|
684 |
+
|
685 |
+
class FlaxDistilBertForMultipleChoiceModule(nn.Module):
|
686 |
+
config: DistilBertConfig
|
687 |
+
dtype: jnp.dtype = jnp.float32
|
688 |
+
|
689 |
+
def setup(self):
|
690 |
+
self.distilbert = FlaxDistilBertModule(config=self.config, dtype=self.dtype)
|
691 |
+
self.pre_classifier = nn.Dense(
|
692 |
+
self.config.dim,
|
693 |
+
dtype=self.dtype,
|
694 |
+
kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
|
695 |
+
)
|
696 |
+
self.dropout = nn.Dropout(rate=self.config.seq_classif_dropout)
|
697 |
+
self.classifier = nn.Dense(
|
698 |
+
1,
|
699 |
+
dtype=self.dtype,
|
700 |
+
)
|
701 |
+
|
702 |
+
def __call__(
|
703 |
+
self,
|
704 |
+
input_ids,
|
705 |
+
attention_mask,
|
706 |
+
deterministic: bool = True,
|
707 |
+
output_attentions: bool = False,
|
708 |
+
output_hidden_states: bool = False,
|
709 |
+
return_dict: bool = True,
|
710 |
+
):
|
711 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
712 |
+
num_choices = input_ids.shape[1]
|
713 |
+
input_ids = input_ids.reshape(-1, input_ids.shape[-1]) if input_ids is not None else None
|
714 |
+
attention_mask = attention_mask.reshape(-1, attention_mask.shape[-1]) if attention_mask is not None else None
|
715 |
+
|
716 |
+
# Model
|
717 |
+
outputs = self.distilbert(
|
718 |
+
input_ids,
|
719 |
+
attention_mask,
|
720 |
+
deterministic=deterministic,
|
721 |
+
output_attentions=output_attentions,
|
722 |
+
output_hidden_states=output_hidden_states,
|
723 |
+
return_dict=return_dict,
|
724 |
+
)
|
725 |
+
|
726 |
+
hidden_state = outputs[0]
|
727 |
+
pooled_output = hidden_state[:, 0]
|
728 |
+
pooled_output = self.pre_classifier(pooled_output)
|
729 |
+
pooled_output = ACT2FN["relu"](pooled_output)
|
730 |
+
pooled_output = self.dropout(pooled_output, deterministic=deterministic)
|
731 |
+
logits = self.classifier(pooled_output)
|
732 |
+
|
733 |
+
reshaped_logits = logits.reshape(-1, num_choices)
|
734 |
+
|
735 |
+
if not return_dict:
|
736 |
+
return (reshaped_logits,) + outputs[2:]
|
737 |
+
|
738 |
+
return FlaxMultipleChoiceModelOutput(
|
739 |
+
logits=reshaped_logits,
|
740 |
+
hidden_states=outputs.hidden_states,
|
741 |
+
attentions=outputs.attentions,
|
742 |
+
)
|
743 |
+
|
744 |
+
|
745 |
+
@add_start_docstrings(
|
746 |
+
"""
|
747 |
+
DistilBert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and
|
748 |
+
a softmax) e.g. for RocStories/SWAG tasks.
|
749 |
+
""",
|
750 |
+
FLAX_DISTILBERT_START_DOCSTRING,
|
751 |
+
)
|
752 |
+
class FlaxDistilBertForMultipleChoice(FlaxDistilBertPreTrainedModel):
|
753 |
+
module_class = FlaxDistilBertForMultipleChoiceModule
|
754 |
+
|
755 |
+
|
756 |
+
overwrite_call_docstring(
|
757 |
+
FlaxDistilBertForMultipleChoice, DISTILBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
|
758 |
+
)
|
759 |
+
append_call_sample_docstring(
|
760 |
+
FlaxDistilBertForMultipleChoice,
|
761 |
+
_CHECKPOINT_FOR_DOC,
|
762 |
+
FlaxMultipleChoiceModelOutput,
|
763 |
+
_CONFIG_FOR_DOC,
|
764 |
+
)
|
765 |
+
|
766 |
+
|
767 |
+
class FlaxDistilBertForTokenClassificationModule(nn.Module):
|
768 |
+
config: DistilBertConfig
|
769 |
+
dtype: jnp.dtype = jnp.float32
|
770 |
+
|
771 |
+
def setup(self):
|
772 |
+
self.distilbert = FlaxDistilBertModule(config=self.config, dtype=self.dtype)
|
773 |
+
self.dropout = nn.Dropout(rate=self.config.dropout)
|
774 |
+
self.classifier = nn.Dense(self.config.num_labels, dtype=self.dtype)
|
775 |
+
|
776 |
+
def __call__(
|
777 |
+
self,
|
778 |
+
input_ids,
|
779 |
+
attention_mask,
|
780 |
+
deterministic: bool = True,
|
781 |
+
output_attentions: bool = False,
|
782 |
+
output_hidden_states: bool = False,
|
783 |
+
return_dict: bool = True,
|
784 |
+
):
|
785 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
786 |
+
# Model
|
787 |
+
outputs = self.distilbert(
|
788 |
+
input_ids,
|
789 |
+
attention_mask,
|
790 |
+
deterministic=deterministic,
|
791 |
+
output_attentions=output_attentions,
|
792 |
+
output_hidden_states=output_hidden_states,
|
793 |
+
return_dict=return_dict,
|
794 |
+
)
|
795 |
+
|
796 |
+
hidden_states = outputs[0]
|
797 |
+
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
|
798 |
+
logits = self.classifier(hidden_states)
|
799 |
+
|
800 |
+
if not return_dict:
|
801 |
+
return (logits,) + outputs[1:]
|
802 |
+
|
803 |
+
return FlaxTokenClassifierOutput(
|
804 |
+
logits=logits,
|
805 |
+
hidden_states=outputs.hidden_states,
|
806 |
+
attentions=outputs.attentions,
|
807 |
+
)
|
808 |
+
|
809 |
+
|
810 |
+
@add_start_docstrings(
|
811 |
+
"""
|
812 |
+
DistilBert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g.
|
813 |
+
for Named-Entity-Recognition (NER) tasks.
|
814 |
+
""",
|
815 |
+
FLAX_DISTILBERT_START_DOCSTRING,
|
816 |
+
)
|
817 |
+
class FlaxDistilBertForTokenClassification(FlaxDistilBertPreTrainedModel):
|
818 |
+
module_class = FlaxDistilBertForTokenClassificationModule
|
819 |
+
|
820 |
+
|
821 |
+
append_call_sample_docstring(
|
822 |
+
FlaxDistilBertForTokenClassification,
|
823 |
+
_CHECKPOINT_FOR_DOC,
|
824 |
+
FlaxTokenClassifierOutput,
|
825 |
+
_CONFIG_FOR_DOC,
|
826 |
+
)
|
827 |
+
|
828 |
+
|
829 |
+
class FlaxDistilBertForQuestionAnsweringModule(nn.Module):
|
830 |
+
config: DistilBertConfig
|
831 |
+
dtype: jnp.dtype = jnp.float32
|
832 |
+
|
833 |
+
def setup(self):
|
834 |
+
self.distilbert = FlaxDistilBertModule(config=self.config, dtype=self.dtype)
|
835 |
+
self.qa_outputs = nn.Dense(self.config.num_labels, dtype=self.dtype)
|
836 |
+
assert self.config.num_labels == 2
|
837 |
+
self.dropout = nn.Dropout(rate=self.config.qa_dropout)
|
838 |
+
|
839 |
+
def __call__(
|
840 |
+
self,
|
841 |
+
input_ids,
|
842 |
+
attention_mask,
|
843 |
+
deterministic: bool = True,
|
844 |
+
output_attentions: bool = False,
|
845 |
+
output_hidden_states: bool = False,
|
846 |
+
return_dict: bool = True,
|
847 |
+
):
|
848 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
849 |
+
|
850 |
+
# Model
|
851 |
+
distilbert_output = self.distilbert(
|
852 |
+
input_ids,
|
853 |
+
attention_mask,
|
854 |
+
deterministic=deterministic,
|
855 |
+
output_attentions=output_attentions,
|
856 |
+
output_hidden_states=output_hidden_states,
|
857 |
+
return_dict=return_dict,
|
858 |
+
)
|
859 |
+
|
860 |
+
hidden_states = distilbert_output[0]
|
861 |
+
|
862 |
+
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
|
863 |
+
logits = self.qa_outputs(hidden_states)
|
864 |
+
start_logits, end_logits = logits.split(self.config.num_labels, axis=-1)
|
865 |
+
start_logits = start_logits.squeeze(-1)
|
866 |
+
end_logits = end_logits.squeeze(-1)
|
867 |
+
|
868 |
+
if not return_dict:
|
869 |
+
return (start_logits, end_logits) + distilbert_output[1:]
|
870 |
+
|
871 |
+
return FlaxQuestionAnsweringModelOutput(
|
872 |
+
start_logits=start_logits,
|
873 |
+
end_logits=end_logits,
|
874 |
+
hidden_states=distilbert_output.hidden_states,
|
875 |
+
attentions=distilbert_output.attentions,
|
876 |
+
)
|
877 |
+
|
878 |
+
|
879 |
+
@add_start_docstrings(
|
880 |
+
"""
|
881 |
+
DistilBert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a
|
882 |
+
linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
883 |
+
""",
|
884 |
+
FLAX_DISTILBERT_START_DOCSTRING,
|
885 |
+
)
|
886 |
+
class FlaxDistilBertForQuestionAnswering(FlaxDistilBertPreTrainedModel):
|
887 |
+
module_class = FlaxDistilBertForQuestionAnsweringModule
|
888 |
+
|
889 |
+
|
890 |
+
append_call_sample_docstring(
|
891 |
+
FlaxDistilBertForQuestionAnswering,
|
892 |
+
_CHECKPOINT_FOR_DOC,
|
893 |
+
FlaxQuestionAnsweringModelOutput,
|
894 |
+
_CONFIG_FOR_DOC,
|
895 |
+
)
|
venv/lib/python3.10/site-packages/transformers/models/distilbert/modeling_tf_distilbert.py
ADDED
@@ -0,0 +1,1139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2019-present, the HuggingFace Inc. team, The Google AI Language Team and Facebook, Inc.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
TF 2.0 DistilBERT model
|
17 |
+
"""
|
18 |
+
|
19 |
+
|
20 |
+
from __future__ import annotations
|
21 |
+
|
22 |
+
import warnings
|
23 |
+
from typing import Optional, Tuple, Union
|
24 |
+
|
25 |
+
import numpy as np
|
26 |
+
import tensorflow as tf
|
27 |
+
|
28 |
+
from ...activations_tf import get_tf_activation
|
29 |
+
from ...modeling_tf_outputs import (
|
30 |
+
TFBaseModelOutput,
|
31 |
+
TFMaskedLMOutput,
|
32 |
+
TFMultipleChoiceModelOutput,
|
33 |
+
TFQuestionAnsweringModelOutput,
|
34 |
+
TFSequenceClassifierOutput,
|
35 |
+
TFTokenClassifierOutput,
|
36 |
+
)
|
37 |
+
from ...modeling_tf_utils import (
|
38 |
+
TFMaskedLanguageModelingLoss,
|
39 |
+
TFModelInputType,
|
40 |
+
TFMultipleChoiceLoss,
|
41 |
+
TFPreTrainedModel,
|
42 |
+
TFQuestionAnsweringLoss,
|
43 |
+
TFSequenceClassificationLoss,
|
44 |
+
TFTokenClassificationLoss,
|
45 |
+
get_initializer,
|
46 |
+
keras,
|
47 |
+
keras_serializable,
|
48 |
+
unpack_inputs,
|
49 |
+
)
|
50 |
+
from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
|
51 |
+
from ...utils import (
|
52 |
+
add_code_sample_docstrings,
|
53 |
+
add_start_docstrings,
|
54 |
+
add_start_docstrings_to_model_forward,
|
55 |
+
logging,
|
56 |
+
)
|
57 |
+
from .configuration_distilbert import DistilBertConfig
|
58 |
+
|
59 |
+
|
60 |
+
logger = logging.get_logger(__name__)
|
61 |
+
|
62 |
+
_CHECKPOINT_FOR_DOC = "distilbert-base-uncased"
|
63 |
+
_CONFIG_FOR_DOC = "DistilBertConfig"
|
64 |
+
|
65 |
+
|
66 |
+
from ..deprecated._archive_maps import TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
67 |
+
|
68 |
+
|
69 |
+
class TFEmbeddings(keras.layers.Layer):
|
70 |
+
"""Construct the embeddings from word, position and token_type embeddings."""
|
71 |
+
|
72 |
+
def __init__(self, config, **kwargs):
|
73 |
+
super().__init__(**kwargs)
|
74 |
+
self.config = config
|
75 |
+
self.dim = config.dim
|
76 |
+
self.initializer_range = config.initializer_range
|
77 |
+
self.max_position_embeddings = config.max_position_embeddings
|
78 |
+
self.LayerNorm = keras.layers.LayerNormalization(epsilon=1e-12, name="LayerNorm")
|
79 |
+
self.dropout = keras.layers.Dropout(rate=config.dropout)
|
80 |
+
|
81 |
+
def build(self, input_shape=None):
|
82 |
+
with tf.name_scope("word_embeddings"):
|
83 |
+
self.weight = self.add_weight(
|
84 |
+
name="weight",
|
85 |
+
shape=[self.config.vocab_size, self.dim],
|
86 |
+
initializer=get_initializer(initializer_range=self.initializer_range),
|
87 |
+
)
|
88 |
+
|
89 |
+
with tf.name_scope("position_embeddings"):
|
90 |
+
self.position_embeddings = self.add_weight(
|
91 |
+
name="embeddings",
|
92 |
+
shape=[self.max_position_embeddings, self.dim],
|
93 |
+
initializer=get_initializer(initializer_range=self.initializer_range),
|
94 |
+
)
|
95 |
+
|
96 |
+
if self.built:
|
97 |
+
return
|
98 |
+
self.built = True
|
99 |
+
if getattr(self, "LayerNorm", None) is not None:
|
100 |
+
with tf.name_scope(self.LayerNorm.name):
|
101 |
+
self.LayerNorm.build([None, None, self.config.dim])
|
102 |
+
|
103 |
+
def call(self, input_ids=None, position_ids=None, inputs_embeds=None, training=False):
|
104 |
+
"""
|
105 |
+
Applies embedding based on inputs tensor.
|
106 |
+
|
107 |
+
Returns:
|
108 |
+
final_embeddings (`tf.Tensor`): output embedding tensor.
|
109 |
+
"""
|
110 |
+
assert not (input_ids is None and inputs_embeds is None)
|
111 |
+
|
112 |
+
if input_ids is not None:
|
113 |
+
check_embeddings_within_bounds(input_ids, self.config.vocab_size)
|
114 |
+
inputs_embeds = tf.gather(params=self.weight, indices=input_ids)
|
115 |
+
|
116 |
+
input_shape = shape_list(inputs_embeds)[:-1]
|
117 |
+
|
118 |
+
if position_ids is None:
|
119 |
+
position_ids = tf.expand_dims(tf.range(start=0, limit=input_shape[-1]), axis=0)
|
120 |
+
|
121 |
+
position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids)
|
122 |
+
final_embeddings = inputs_embeds + position_embeds
|
123 |
+
final_embeddings = self.LayerNorm(inputs=final_embeddings)
|
124 |
+
final_embeddings = self.dropout(inputs=final_embeddings, training=training)
|
125 |
+
|
126 |
+
return final_embeddings
|
127 |
+
|
128 |
+
|
129 |
+
class TFMultiHeadSelfAttention(keras.layers.Layer):
|
130 |
+
def __init__(self, config, **kwargs):
|
131 |
+
super().__init__(**kwargs)
|
132 |
+
|
133 |
+
self.n_heads = config.n_heads
|
134 |
+
self.dim = config.dim
|
135 |
+
self.dropout = keras.layers.Dropout(config.attention_dropout)
|
136 |
+
self.output_attentions = config.output_attentions
|
137 |
+
|
138 |
+
assert self.dim % self.n_heads == 0, f"Hidden size {self.dim} not dividable by number of heads {self.n_heads}"
|
139 |
+
|
140 |
+
self.q_lin = keras.layers.Dense(
|
141 |
+
config.dim, kernel_initializer=get_initializer(config.initializer_range), name="q_lin"
|
142 |
+
)
|
143 |
+
self.k_lin = keras.layers.Dense(
|
144 |
+
config.dim, kernel_initializer=get_initializer(config.initializer_range), name="k_lin"
|
145 |
+
)
|
146 |
+
self.v_lin = keras.layers.Dense(
|
147 |
+
config.dim, kernel_initializer=get_initializer(config.initializer_range), name="v_lin"
|
148 |
+
)
|
149 |
+
self.out_lin = keras.layers.Dense(
|
150 |
+
config.dim, kernel_initializer=get_initializer(config.initializer_range), name="out_lin"
|
151 |
+
)
|
152 |
+
|
153 |
+
self.pruned_heads = set()
|
154 |
+
self.config = config
|
155 |
+
|
156 |
+
def prune_heads(self, heads):
|
157 |
+
raise NotImplementedError
|
158 |
+
|
159 |
+
def call(self, query, key, value, mask, head_mask, output_attentions, training=False):
|
160 |
+
"""
|
161 |
+
Parameters:
|
162 |
+
query: tf.Tensor(bs, seq_length, dim)
|
163 |
+
key: tf.Tensor(bs, seq_length, dim)
|
164 |
+
value: tf.Tensor(bs, seq_length, dim)
|
165 |
+
mask: tf.Tensor(bs, seq_length)
|
166 |
+
|
167 |
+
Returns:
|
168 |
+
weights: tf.Tensor(bs, n_heads, seq_length, seq_length) Attention weights context: tf.Tensor(bs,
|
169 |
+
seq_length, dim) Contextualized layer. Optional: only if `output_attentions=True`
|
170 |
+
"""
|
171 |
+
bs, q_length, dim = shape_list(query)
|
172 |
+
k_length = shape_list(key)[1]
|
173 |
+
# assert dim == self.dim, f'Dimensions do not match: {dim} input vs {self.dim} configured'
|
174 |
+
# assert key.size() == value.size()
|
175 |
+
dim_per_head = int(self.dim / self.n_heads)
|
176 |
+
dim_per_head = tf.cast(dim_per_head, dtype=tf.int32)
|
177 |
+
mask_reshape = [bs, 1, 1, k_length]
|
178 |
+
|
179 |
+
def shape(x):
|
180 |
+
"""separate heads"""
|
181 |
+
return tf.transpose(tf.reshape(x, (bs, -1, self.n_heads, dim_per_head)), perm=(0, 2, 1, 3))
|
182 |
+
|
183 |
+
def unshape(x):
|
184 |
+
"""group heads"""
|
185 |
+
return tf.reshape(tf.transpose(x, perm=(0, 2, 1, 3)), (bs, -1, self.n_heads * dim_per_head))
|
186 |
+
|
187 |
+
q = shape(self.q_lin(query)) # (bs, n_heads, q_length, dim_per_head)
|
188 |
+
k = shape(self.k_lin(key)) # (bs, n_heads, k_length, dim_per_head)
|
189 |
+
v = shape(self.v_lin(value)) # (bs, n_heads, k_length, dim_per_head)
|
190 |
+
q = tf.cast(q, dtype=tf.float32)
|
191 |
+
q = tf.multiply(q, tf.math.rsqrt(tf.cast(dim_per_head, dtype=tf.float32)))
|
192 |
+
k = tf.cast(k, dtype=q.dtype)
|
193 |
+
scores = tf.matmul(q, k, transpose_b=True) # (bs, n_heads, q_length, k_length)
|
194 |
+
mask = tf.reshape(mask, mask_reshape) # (bs, n_heads, qlen, klen)
|
195 |
+
# scores.masked_fill_(mask, -float('inf')) # (bs, n_heads, q_length, k_length)
|
196 |
+
|
197 |
+
mask = tf.cast(mask, dtype=scores.dtype)
|
198 |
+
scores = scores - 1e30 * (1.0 - mask)
|
199 |
+
weights = stable_softmax(scores, axis=-1) # (bs, n_heads, qlen, klen)
|
200 |
+
weights = self.dropout(weights, training=training) # (bs, n_heads, qlen, klen)
|
201 |
+
|
202 |
+
# Mask heads if we want to
|
203 |
+
if head_mask is not None:
|
204 |
+
weights = weights * head_mask
|
205 |
+
|
206 |
+
context = tf.matmul(weights, v) # (bs, n_heads, qlen, dim_per_head)
|
207 |
+
context = unshape(context) # (bs, q_length, dim)
|
208 |
+
context = self.out_lin(context) # (bs, q_length, dim)
|
209 |
+
|
210 |
+
if output_attentions:
|
211 |
+
return (context, weights)
|
212 |
+
else:
|
213 |
+
return (context,)
|
214 |
+
|
215 |
+
def build(self, input_shape=None):
|
216 |
+
if self.built:
|
217 |
+
return
|
218 |
+
self.built = True
|
219 |
+
if getattr(self, "q_lin", None) is not None:
|
220 |
+
with tf.name_scope(self.q_lin.name):
|
221 |
+
self.q_lin.build([None, None, self.config.dim])
|
222 |
+
if getattr(self, "k_lin", None) is not None:
|
223 |
+
with tf.name_scope(self.k_lin.name):
|
224 |
+
self.k_lin.build([None, None, self.config.dim])
|
225 |
+
if getattr(self, "v_lin", None) is not None:
|
226 |
+
with tf.name_scope(self.v_lin.name):
|
227 |
+
self.v_lin.build([None, None, self.config.dim])
|
228 |
+
if getattr(self, "out_lin", None) is not None:
|
229 |
+
with tf.name_scope(self.out_lin.name):
|
230 |
+
self.out_lin.build([None, None, self.config.dim])
|
231 |
+
|
232 |
+
|
233 |
+
class TFFFN(keras.layers.Layer):
|
234 |
+
def __init__(self, config, **kwargs):
|
235 |
+
super().__init__(**kwargs)
|
236 |
+
self.dropout = keras.layers.Dropout(config.dropout)
|
237 |
+
self.lin1 = keras.layers.Dense(
|
238 |
+
config.hidden_dim, kernel_initializer=get_initializer(config.initializer_range), name="lin1"
|
239 |
+
)
|
240 |
+
self.lin2 = keras.layers.Dense(
|
241 |
+
config.dim, kernel_initializer=get_initializer(config.initializer_range), name="lin2"
|
242 |
+
)
|
243 |
+
self.activation = get_tf_activation(config.activation)
|
244 |
+
self.config = config
|
245 |
+
|
246 |
+
def call(self, input, training=False):
|
247 |
+
x = self.lin1(input)
|
248 |
+
x = self.activation(x)
|
249 |
+
x = self.lin2(x)
|
250 |
+
x = self.dropout(x, training=training)
|
251 |
+
return x
|
252 |
+
|
253 |
+
def build(self, input_shape=None):
|
254 |
+
if self.built:
|
255 |
+
return
|
256 |
+
self.built = True
|
257 |
+
if getattr(self, "lin1", None) is not None:
|
258 |
+
with tf.name_scope(self.lin1.name):
|
259 |
+
self.lin1.build([None, None, self.config.dim])
|
260 |
+
if getattr(self, "lin2", None) is not None:
|
261 |
+
with tf.name_scope(self.lin2.name):
|
262 |
+
self.lin2.build([None, None, self.config.hidden_dim])
|
263 |
+
|
264 |
+
|
265 |
+
class TFTransformerBlock(keras.layers.Layer):
|
266 |
+
def __init__(self, config, **kwargs):
|
267 |
+
super().__init__(**kwargs)
|
268 |
+
|
269 |
+
self.n_heads = config.n_heads
|
270 |
+
self.dim = config.dim
|
271 |
+
self.hidden_dim = config.hidden_dim
|
272 |
+
self.dropout = keras.layers.Dropout(config.dropout)
|
273 |
+
self.activation = config.activation
|
274 |
+
self.output_attentions = config.output_attentions
|
275 |
+
|
276 |
+
assert (
|
277 |
+
config.dim % config.n_heads == 0
|
278 |
+
), f"Hidden size {config.dim} not dividable by number of heads {config.n_heads}"
|
279 |
+
|
280 |
+
self.attention = TFMultiHeadSelfAttention(config, name="attention")
|
281 |
+
self.sa_layer_norm = keras.layers.LayerNormalization(epsilon=1e-12, name="sa_layer_norm")
|
282 |
+
|
283 |
+
self.ffn = TFFFN(config, name="ffn")
|
284 |
+
self.output_layer_norm = keras.layers.LayerNormalization(epsilon=1e-12, name="output_layer_norm")
|
285 |
+
self.config = config
|
286 |
+
|
287 |
+
def call(self, x, attn_mask, head_mask, output_attentions, training=False): # removed: src_enc=None, src_len=None
|
288 |
+
"""
|
289 |
+
Parameters:
|
290 |
+
x: tf.Tensor(bs, seq_length, dim)
|
291 |
+
attn_mask: tf.Tensor(bs, seq_length)
|
292 |
+
|
293 |
+
Outputs: sa_weights: tf.Tensor(bs, n_heads, seq_length, seq_length) The attention weights ffn_output:
|
294 |
+
tf.Tensor(bs, seq_length, dim) The output of the transformer block contextualization.
|
295 |
+
"""
|
296 |
+
# Self-Attention
|
297 |
+
sa_output = self.attention(x, x, x, attn_mask, head_mask, output_attentions, training=training)
|
298 |
+
if output_attentions:
|
299 |
+
sa_output, sa_weights = sa_output # (bs, seq_length, dim), (bs, n_heads, seq_length, seq_length)
|
300 |
+
else: # To handle these `output_attentions` or `output_hidden_states` cases returning tuples
|
301 |
+
# assert type(sa_output) == tuple
|
302 |
+
sa_output = sa_output[0]
|
303 |
+
sa_output = self.sa_layer_norm(sa_output + x) # (bs, seq_length, dim)
|
304 |
+
|
305 |
+
# Feed Forward Network
|
306 |
+
ffn_output = self.ffn(sa_output, training=training) # (bs, seq_length, dim)
|
307 |
+
ffn_output = self.output_layer_norm(ffn_output + sa_output) # (bs, seq_length, dim)
|
308 |
+
|
309 |
+
output = (ffn_output,)
|
310 |
+
if output_attentions:
|
311 |
+
output = (sa_weights,) + output
|
312 |
+
return output
|
313 |
+
|
314 |
+
def build(self, input_shape=None):
|
315 |
+
if self.built:
|
316 |
+
return
|
317 |
+
self.built = True
|
318 |
+
if getattr(self, "attention", None) is not None:
|
319 |
+
with tf.name_scope(self.attention.name):
|
320 |
+
self.attention.build(None)
|
321 |
+
if getattr(self, "sa_layer_norm", None) is not None:
|
322 |
+
with tf.name_scope(self.sa_layer_norm.name):
|
323 |
+
self.sa_layer_norm.build([None, None, self.config.dim])
|
324 |
+
if getattr(self, "ffn", None) is not None:
|
325 |
+
with tf.name_scope(self.ffn.name):
|
326 |
+
self.ffn.build(None)
|
327 |
+
if getattr(self, "output_layer_norm", None) is not None:
|
328 |
+
with tf.name_scope(self.output_layer_norm.name):
|
329 |
+
self.output_layer_norm.build([None, None, self.config.dim])
|
330 |
+
|
331 |
+
|
332 |
+
class TFTransformer(keras.layers.Layer):
|
333 |
+
def __init__(self, config, **kwargs):
|
334 |
+
super().__init__(**kwargs)
|
335 |
+
self.n_layers = config.n_layers
|
336 |
+
self.output_hidden_states = config.output_hidden_states
|
337 |
+
self.output_attentions = config.output_attentions
|
338 |
+
|
339 |
+
self.layer = [TFTransformerBlock(config, name=f"layer_._{i}") for i in range(config.n_layers)]
|
340 |
+
|
341 |
+
def call(self, x, attn_mask, head_mask, output_attentions, output_hidden_states, return_dict, training=False):
|
342 |
+
# docstyle-ignore
|
343 |
+
"""
|
344 |
+
Parameters:
|
345 |
+
x: tf.Tensor(bs, seq_length, dim) Input sequence embedded.
|
346 |
+
attn_mask: tf.Tensor(bs, seq_length) Attention mask on the sequence.
|
347 |
+
|
348 |
+
Returns:
|
349 |
+
hidden_state: tf.Tensor(bs, seq_length, dim)
|
350 |
+
Sequence of hidden states in the last (top) layer
|
351 |
+
all_hidden_states: Tuple[tf.Tensor(bs, seq_length, dim)]
|
352 |
+
Tuple of length n_layers with the hidden states from each layer.
|
353 |
+
Optional: only if output_hidden_states=True
|
354 |
+
all_attentions: Tuple[tf.Tensor(bs, n_heads, seq_length, seq_length)]
|
355 |
+
Tuple of length n_layers with the attention weights from each layer
|
356 |
+
Optional: only if output_attentions=True
|
357 |
+
"""
|
358 |
+
all_hidden_states = () if output_hidden_states else None
|
359 |
+
all_attentions = () if output_attentions else None
|
360 |
+
|
361 |
+
hidden_state = x
|
362 |
+
for i, layer_module in enumerate(self.layer):
|
363 |
+
if output_hidden_states:
|
364 |
+
all_hidden_states = all_hidden_states + (hidden_state,)
|
365 |
+
|
366 |
+
layer_outputs = layer_module(hidden_state, attn_mask, head_mask[i], output_attentions, training=training)
|
367 |
+
hidden_state = layer_outputs[-1]
|
368 |
+
|
369 |
+
if output_attentions:
|
370 |
+
assert len(layer_outputs) == 2
|
371 |
+
attentions = layer_outputs[0]
|
372 |
+
all_attentions = all_attentions + (attentions,)
|
373 |
+
else:
|
374 |
+
assert len(layer_outputs) == 1, f"Incorrect number of outputs {len(layer_outputs)} instead of 1"
|
375 |
+
|
376 |
+
# Add last layer
|
377 |
+
if output_hidden_states:
|
378 |
+
all_hidden_states = all_hidden_states + (hidden_state,)
|
379 |
+
|
380 |
+
if not return_dict:
|
381 |
+
return tuple(v for v in [hidden_state, all_hidden_states, all_attentions] if v is not None)
|
382 |
+
return TFBaseModelOutput(
|
383 |
+
last_hidden_state=hidden_state, hidden_states=all_hidden_states, attentions=all_attentions
|
384 |
+
)
|
385 |
+
|
386 |
+
def build(self, input_shape=None):
|
387 |
+
if self.built:
|
388 |
+
return
|
389 |
+
self.built = True
|
390 |
+
if getattr(self, "layer", None) is not None:
|
391 |
+
for layer in self.layer:
|
392 |
+
with tf.name_scope(layer.name):
|
393 |
+
layer.build(None)
|
394 |
+
|
395 |
+
|
396 |
+
@keras_serializable
|
397 |
+
class TFDistilBertMainLayer(keras.layers.Layer):
|
398 |
+
config_class = DistilBertConfig
|
399 |
+
|
400 |
+
def __init__(self, config, **kwargs):
|
401 |
+
super().__init__(**kwargs)
|
402 |
+
|
403 |
+
self.config = config
|
404 |
+
self.num_hidden_layers = config.num_hidden_layers
|
405 |
+
self.output_attentions = config.output_attentions
|
406 |
+
self.output_hidden_states = config.output_hidden_states
|
407 |
+
self.return_dict = config.use_return_dict
|
408 |
+
|
409 |
+
self.embeddings = TFEmbeddings(config, name="embeddings") # Embeddings
|
410 |
+
self.transformer = TFTransformer(config, name="transformer") # Encoder
|
411 |
+
|
412 |
+
def get_input_embeddings(self):
|
413 |
+
return self.embeddings
|
414 |
+
|
415 |
+
def set_input_embeddings(self, value):
|
416 |
+
self.embeddings.weight = value
|
417 |
+
self.embeddings.vocab_size = value.shape[0]
|
418 |
+
|
419 |
+
def _prune_heads(self, heads_to_prune):
|
420 |
+
raise NotImplementedError
|
421 |
+
|
422 |
+
@unpack_inputs
|
423 |
+
def call(
|
424 |
+
self,
|
425 |
+
input_ids=None,
|
426 |
+
attention_mask=None,
|
427 |
+
head_mask=None,
|
428 |
+
inputs_embeds=None,
|
429 |
+
output_attentions=None,
|
430 |
+
output_hidden_states=None,
|
431 |
+
return_dict=None,
|
432 |
+
training=False,
|
433 |
+
):
|
434 |
+
if input_ids is not None and inputs_embeds is not None:
|
435 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
436 |
+
elif input_ids is not None:
|
437 |
+
input_shape = shape_list(input_ids)
|
438 |
+
elif inputs_embeds is not None:
|
439 |
+
input_shape = shape_list(inputs_embeds)[:-1]
|
440 |
+
else:
|
441 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
442 |
+
|
443 |
+
if attention_mask is None:
|
444 |
+
attention_mask = tf.ones(input_shape) # (bs, seq_length)
|
445 |
+
|
446 |
+
attention_mask = tf.cast(attention_mask, dtype=tf.float32)
|
447 |
+
|
448 |
+
# Prepare head mask if needed
|
449 |
+
# 1.0 in head_mask indicate we keep the head
|
450 |
+
# attention_probs has shape bsz x n_heads x N x N
|
451 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
452 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
453 |
+
if head_mask is not None:
|
454 |
+
raise NotImplementedError
|
455 |
+
else:
|
456 |
+
head_mask = [None] * self.num_hidden_layers
|
457 |
+
|
458 |
+
embedding_output = self.embeddings(input_ids, inputs_embeds=inputs_embeds) # (bs, seq_length, dim)
|
459 |
+
tfmr_output = self.transformer(
|
460 |
+
embedding_output,
|
461 |
+
attention_mask,
|
462 |
+
head_mask,
|
463 |
+
output_attentions,
|
464 |
+
output_hidden_states,
|
465 |
+
return_dict,
|
466 |
+
training=training,
|
467 |
+
)
|
468 |
+
|
469 |
+
return tfmr_output # last-layer hidden-state, (all hidden_states), (all attentions)
|
470 |
+
|
471 |
+
def build(self, input_shape=None):
|
472 |
+
if self.built:
|
473 |
+
return
|
474 |
+
self.built = True
|
475 |
+
if getattr(self, "embeddings", None) is not None:
|
476 |
+
with tf.name_scope(self.embeddings.name):
|
477 |
+
self.embeddings.build(None)
|
478 |
+
if getattr(self, "transformer", None) is not None:
|
479 |
+
with tf.name_scope(self.transformer.name):
|
480 |
+
self.transformer.build(None)
|
481 |
+
|
482 |
+
|
483 |
+
# INTERFACE FOR ENCODER AND TASK SPECIFIC MODEL #
|
484 |
+
class TFDistilBertPreTrainedModel(TFPreTrainedModel):
|
485 |
+
"""
|
486 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
487 |
+
models.
|
488 |
+
"""
|
489 |
+
|
490 |
+
config_class = DistilBertConfig
|
491 |
+
base_model_prefix = "distilbert"
|
492 |
+
|
493 |
+
|
494 |
+
DISTILBERT_START_DOCSTRING = r"""
|
495 |
+
|
496 |
+
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
|
497 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
498 |
+
etc.)
|
499 |
+
|
500 |
+
This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
|
501 |
+
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
|
502 |
+
behavior.
|
503 |
+
|
504 |
+
<Tip>
|
505 |
+
|
506 |
+
TensorFlow models and layers in `transformers` accept two formats as input:
|
507 |
+
|
508 |
+
- having all inputs as keyword arguments (like PyTorch models), or
|
509 |
+
- having all inputs as a list, tuple or dict in the first positional argument.
|
510 |
+
|
511 |
+
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
|
512 |
+
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
|
513 |
+
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
|
514 |
+
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
|
515 |
+
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
|
516 |
+
positional argument:
|
517 |
+
|
518 |
+
- a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
|
519 |
+
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
|
520 |
+
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
|
521 |
+
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
|
522 |
+
`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
|
523 |
+
|
524 |
+
Note that when creating models and layers with
|
525 |
+
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
|
526 |
+
about any of this, as you can just pass inputs like you would to any other Python function!
|
527 |
+
|
528 |
+
</Tip>
|
529 |
+
|
530 |
+
Parameters:
|
531 |
+
config ([`DistilBertConfig`]): Model configuration class with all the parameters of the model.
|
532 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
533 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
534 |
+
"""
|
535 |
+
|
536 |
+
DISTILBERT_INPUTS_DOCSTRING = r"""
|
537 |
+
Args:
|
538 |
+
input_ids (`Numpy array` or `tf.Tensor` of shape `({0})`):
|
539 |
+
Indices of input sequence tokens in the vocabulary.
|
540 |
+
|
541 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
|
542 |
+
[`PreTrainedTokenizer.encode`] for details.
|
543 |
+
|
544 |
+
[What are input IDs?](../glossary#input-ids)
|
545 |
+
attention_mask (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*):
|
546 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
547 |
+
|
548 |
+
- 1 for tokens that are **not masked**,
|
549 |
+
- 0 for tokens that are **masked**.
|
550 |
+
|
551 |
+
[What are attention masks?](../glossary#attention-mask)
|
552 |
+
head_mask (`Numpy array` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
553 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
554 |
+
|
555 |
+
- 1 indicates the head is **not masked**,
|
556 |
+
- 0 indicates the head is **masked**.
|
557 |
+
|
558 |
+
inputs_embeds (`tf.Tensor` of shape `({0}, hidden_size)`, *optional*):
|
559 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
560 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
561 |
+
model's internal embedding lookup matrix.
|
562 |
+
output_attentions (`bool`, *optional*):
|
563 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
564 |
+
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
|
565 |
+
config will be used instead.
|
566 |
+
output_hidden_states (`bool`, *optional*):
|
567 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
568 |
+
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
|
569 |
+
used instead.
|
570 |
+
return_dict (`bool`, *optional*):
|
571 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
|
572 |
+
eager mode, in graph mode the value will always be set to True.
|
573 |
+
training (`bool`, *optional*, defaults to `False`):
|
574 |
+
Whether or not to use the model in training mode (some modules like dropout modules have different
|
575 |
+
behaviors between training and evaluation).
|
576 |
+
"""
|
577 |
+
|
578 |
+
|
579 |
+
@add_start_docstrings(
|
580 |
+
"The bare DistilBERT encoder/transformer outputting raw hidden-states without any specific head on top.",
|
581 |
+
DISTILBERT_START_DOCSTRING,
|
582 |
+
)
|
583 |
+
class TFDistilBertModel(TFDistilBertPreTrainedModel):
|
584 |
+
def __init__(self, config, *inputs, **kwargs):
|
585 |
+
super().__init__(config, *inputs, **kwargs)
|
586 |
+
self.distilbert = TFDistilBertMainLayer(config, name="distilbert") # Embeddings
|
587 |
+
|
588 |
+
@unpack_inputs
|
589 |
+
@add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
590 |
+
@add_code_sample_docstrings(
|
591 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
592 |
+
output_type=TFBaseModelOutput,
|
593 |
+
config_class=_CONFIG_FOR_DOC,
|
594 |
+
)
|
595 |
+
def call(
|
596 |
+
self,
|
597 |
+
input_ids: TFModelInputType | None = None,
|
598 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
599 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
600 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
601 |
+
output_attentions: Optional[bool] = None,
|
602 |
+
output_hidden_states: Optional[bool] = None,
|
603 |
+
return_dict: Optional[bool] = None,
|
604 |
+
training: Optional[bool] = False,
|
605 |
+
) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
|
606 |
+
outputs = self.distilbert(
|
607 |
+
input_ids=input_ids,
|
608 |
+
attention_mask=attention_mask,
|
609 |
+
head_mask=head_mask,
|
610 |
+
inputs_embeds=inputs_embeds,
|
611 |
+
output_attentions=output_attentions,
|
612 |
+
output_hidden_states=output_hidden_states,
|
613 |
+
return_dict=return_dict,
|
614 |
+
training=training,
|
615 |
+
)
|
616 |
+
return outputs
|
617 |
+
|
618 |
+
def build(self, input_shape=None):
|
619 |
+
if self.built:
|
620 |
+
return
|
621 |
+
self.built = True
|
622 |
+
if getattr(self, "distilbert", None) is not None:
|
623 |
+
with tf.name_scope(self.distilbert.name):
|
624 |
+
self.distilbert.build(None)
|
625 |
+
|
626 |
+
|
627 |
+
class TFDistilBertLMHead(keras.layers.Layer):
|
628 |
+
def __init__(self, config, input_embeddings, **kwargs):
|
629 |
+
super().__init__(**kwargs)
|
630 |
+
|
631 |
+
self.config = config
|
632 |
+
self.dim = config.dim
|
633 |
+
|
634 |
+
# The output weights are the same as the input embeddings, but there is
|
635 |
+
# an output-only bias for each token.
|
636 |
+
self.input_embeddings = input_embeddings
|
637 |
+
|
638 |
+
def build(self, input_shape):
|
639 |
+
self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias")
|
640 |
+
|
641 |
+
super().build(input_shape)
|
642 |
+
|
643 |
+
def get_output_embeddings(self):
|
644 |
+
return self.input_embeddings
|
645 |
+
|
646 |
+
def set_output_embeddings(self, value):
|
647 |
+
self.input_embeddings.weight = value
|
648 |
+
self.input_embeddings.vocab_size = shape_list(value)[0]
|
649 |
+
|
650 |
+
def get_bias(self):
|
651 |
+
return {"bias": self.bias}
|
652 |
+
|
653 |
+
def set_bias(self, value):
|
654 |
+
self.bias = value["bias"]
|
655 |
+
self.config.vocab_size = shape_list(value["bias"])[0]
|
656 |
+
|
657 |
+
def call(self, hidden_states):
|
658 |
+
seq_length = shape_list(tensor=hidden_states)[1]
|
659 |
+
hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.dim])
|
660 |
+
hidden_states = tf.matmul(a=hidden_states, b=self.input_embeddings.weight, transpose_b=True)
|
661 |
+
hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size])
|
662 |
+
hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias)
|
663 |
+
|
664 |
+
return hidden_states
|
665 |
+
|
666 |
+
|
667 |
+
@add_start_docstrings(
|
668 |
+
"""DistilBert Model with a `masked language modeling` head on top.""",
|
669 |
+
DISTILBERT_START_DOCSTRING,
|
670 |
+
)
|
671 |
+
class TFDistilBertForMaskedLM(TFDistilBertPreTrainedModel, TFMaskedLanguageModelingLoss):
|
672 |
+
def __init__(self, config, *inputs, **kwargs):
|
673 |
+
super().__init__(config, *inputs, **kwargs)
|
674 |
+
self.config = config
|
675 |
+
|
676 |
+
self.distilbert = TFDistilBertMainLayer(config, name="distilbert")
|
677 |
+
self.vocab_transform = keras.layers.Dense(
|
678 |
+
config.dim, kernel_initializer=get_initializer(config.initializer_range), name="vocab_transform"
|
679 |
+
)
|
680 |
+
self.act = get_tf_activation(config.activation)
|
681 |
+
self.vocab_layer_norm = keras.layers.LayerNormalization(epsilon=1e-12, name="vocab_layer_norm")
|
682 |
+
self.vocab_projector = TFDistilBertLMHead(config, self.distilbert.embeddings, name="vocab_projector")
|
683 |
+
|
684 |
+
def get_lm_head(self):
|
685 |
+
return self.vocab_projector
|
686 |
+
|
687 |
+
def get_prefix_bias_name(self):
|
688 |
+
warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning)
|
689 |
+
return self.name + "/" + self.vocab_projector.name
|
690 |
+
|
691 |
+
@unpack_inputs
|
692 |
+
@add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
693 |
+
@add_code_sample_docstrings(
|
694 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
695 |
+
output_type=TFMaskedLMOutput,
|
696 |
+
config_class=_CONFIG_FOR_DOC,
|
697 |
+
)
|
698 |
+
def call(
|
699 |
+
self,
|
700 |
+
input_ids: TFModelInputType | None = None,
|
701 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
702 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
703 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
704 |
+
output_attentions: Optional[bool] = None,
|
705 |
+
output_hidden_states: Optional[bool] = None,
|
706 |
+
return_dict: Optional[bool] = None,
|
707 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
708 |
+
training: Optional[bool] = False,
|
709 |
+
) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]:
|
710 |
+
r"""
|
711 |
+
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
712 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
713 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
714 |
+
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
715 |
+
"""
|
716 |
+
distilbert_output = self.distilbert(
|
717 |
+
input_ids=input_ids,
|
718 |
+
attention_mask=attention_mask,
|
719 |
+
head_mask=head_mask,
|
720 |
+
inputs_embeds=inputs_embeds,
|
721 |
+
output_attentions=output_attentions,
|
722 |
+
output_hidden_states=output_hidden_states,
|
723 |
+
return_dict=return_dict,
|
724 |
+
training=training,
|
725 |
+
)
|
726 |
+
hidden_states = distilbert_output[0] # (bs, seq_length, dim)
|
727 |
+
prediction_logits = self.vocab_transform(hidden_states) # (bs, seq_length, dim)
|
728 |
+
prediction_logits = self.act(prediction_logits) # (bs, seq_length, dim)
|
729 |
+
prediction_logits = self.vocab_layer_norm(prediction_logits) # (bs, seq_length, dim)
|
730 |
+
prediction_logits = self.vocab_projector(prediction_logits)
|
731 |
+
|
732 |
+
loss = None if labels is None else self.hf_compute_loss(labels, prediction_logits)
|
733 |
+
|
734 |
+
if not return_dict:
|
735 |
+
output = (prediction_logits,) + distilbert_output[1:]
|
736 |
+
return ((loss,) + output) if loss is not None else output
|
737 |
+
|
738 |
+
return TFMaskedLMOutput(
|
739 |
+
loss=loss,
|
740 |
+
logits=prediction_logits,
|
741 |
+
hidden_states=distilbert_output.hidden_states,
|
742 |
+
attentions=distilbert_output.attentions,
|
743 |
+
)
|
744 |
+
|
745 |
+
def build(self, input_shape=None):
|
746 |
+
if self.built:
|
747 |
+
return
|
748 |
+
self.built = True
|
749 |
+
if getattr(self, "distilbert", None) is not None:
|
750 |
+
with tf.name_scope(self.distilbert.name):
|
751 |
+
self.distilbert.build(None)
|
752 |
+
if getattr(self, "vocab_transform", None) is not None:
|
753 |
+
with tf.name_scope(self.vocab_transform.name):
|
754 |
+
self.vocab_transform.build([None, None, self.config.dim])
|
755 |
+
if getattr(self, "vocab_layer_norm", None) is not None:
|
756 |
+
with tf.name_scope(self.vocab_layer_norm.name):
|
757 |
+
self.vocab_layer_norm.build([None, None, self.config.dim])
|
758 |
+
if getattr(self, "vocab_projector", None) is not None:
|
759 |
+
with tf.name_scope(self.vocab_projector.name):
|
760 |
+
self.vocab_projector.build(None)
|
761 |
+
|
762 |
+
|
763 |
+
@add_start_docstrings(
|
764 |
+
"""
|
765 |
+
DistilBert Model transformer with a sequence classification/regression head on top (a linear layer on top of the
|
766 |
+
pooled output) e.g. for GLUE tasks.
|
767 |
+
""",
|
768 |
+
DISTILBERT_START_DOCSTRING,
|
769 |
+
)
|
770 |
+
class TFDistilBertForSequenceClassification(TFDistilBertPreTrainedModel, TFSequenceClassificationLoss):
|
771 |
+
def __init__(self, config, *inputs, **kwargs):
|
772 |
+
super().__init__(config, *inputs, **kwargs)
|
773 |
+
self.num_labels = config.num_labels
|
774 |
+
|
775 |
+
self.distilbert = TFDistilBertMainLayer(config, name="distilbert")
|
776 |
+
self.pre_classifier = keras.layers.Dense(
|
777 |
+
config.dim,
|
778 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
779 |
+
activation="relu",
|
780 |
+
name="pre_classifier",
|
781 |
+
)
|
782 |
+
self.classifier = keras.layers.Dense(
|
783 |
+
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
|
784 |
+
)
|
785 |
+
self.dropout = keras.layers.Dropout(config.seq_classif_dropout)
|
786 |
+
self.config = config
|
787 |
+
|
788 |
+
@unpack_inputs
|
789 |
+
@add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
790 |
+
@add_code_sample_docstrings(
|
791 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
792 |
+
output_type=TFSequenceClassifierOutput,
|
793 |
+
config_class=_CONFIG_FOR_DOC,
|
794 |
+
)
|
795 |
+
def call(
|
796 |
+
self,
|
797 |
+
input_ids: TFModelInputType | None = None,
|
798 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
799 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
800 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
801 |
+
output_attentions: Optional[bool] = None,
|
802 |
+
output_hidden_states: Optional[bool] = None,
|
803 |
+
return_dict: Optional[bool] = None,
|
804 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
805 |
+
training: Optional[bool] = False,
|
806 |
+
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
|
807 |
+
r"""
|
808 |
+
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
|
809 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
810 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
811 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
812 |
+
"""
|
813 |
+
distilbert_output = self.distilbert(
|
814 |
+
input_ids=input_ids,
|
815 |
+
attention_mask=attention_mask,
|
816 |
+
head_mask=head_mask,
|
817 |
+
inputs_embeds=inputs_embeds,
|
818 |
+
output_attentions=output_attentions,
|
819 |
+
output_hidden_states=output_hidden_states,
|
820 |
+
return_dict=return_dict,
|
821 |
+
training=training,
|
822 |
+
)
|
823 |
+
hidden_state = distilbert_output[0] # (bs, seq_len, dim)
|
824 |
+
pooled_output = hidden_state[:, 0] # (bs, dim)
|
825 |
+
pooled_output = self.pre_classifier(pooled_output) # (bs, dim)
|
826 |
+
pooled_output = self.dropout(pooled_output, training=training) # (bs, dim)
|
827 |
+
logits = self.classifier(pooled_output) # (bs, dim)
|
828 |
+
|
829 |
+
loss = None if labels is None else self.hf_compute_loss(labels, logits)
|
830 |
+
|
831 |
+
if not return_dict:
|
832 |
+
output = (logits,) + distilbert_output[1:]
|
833 |
+
return ((loss,) + output) if loss is not None else output
|
834 |
+
|
835 |
+
return TFSequenceClassifierOutput(
|
836 |
+
loss=loss,
|
837 |
+
logits=logits,
|
838 |
+
hidden_states=distilbert_output.hidden_states,
|
839 |
+
attentions=distilbert_output.attentions,
|
840 |
+
)
|
841 |
+
|
842 |
+
def build(self, input_shape=None):
|
843 |
+
if self.built:
|
844 |
+
return
|
845 |
+
self.built = True
|
846 |
+
if getattr(self, "distilbert", None) is not None:
|
847 |
+
with tf.name_scope(self.distilbert.name):
|
848 |
+
self.distilbert.build(None)
|
849 |
+
if getattr(self, "pre_classifier", None) is not None:
|
850 |
+
with tf.name_scope(self.pre_classifier.name):
|
851 |
+
self.pre_classifier.build([None, None, self.config.dim])
|
852 |
+
if getattr(self, "classifier", None) is not None:
|
853 |
+
with tf.name_scope(self.classifier.name):
|
854 |
+
self.classifier.build([None, None, self.config.dim])
|
855 |
+
|
856 |
+
|
857 |
+
@add_start_docstrings(
|
858 |
+
"""
|
859 |
+
DistilBert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g.
|
860 |
+
for Named-Entity-Recognition (NER) tasks.
|
861 |
+
""",
|
862 |
+
DISTILBERT_START_DOCSTRING,
|
863 |
+
)
|
864 |
+
class TFDistilBertForTokenClassification(TFDistilBertPreTrainedModel, TFTokenClassificationLoss):
|
865 |
+
def __init__(self, config, *inputs, **kwargs):
|
866 |
+
super().__init__(config, *inputs, **kwargs)
|
867 |
+
self.num_labels = config.num_labels
|
868 |
+
|
869 |
+
self.distilbert = TFDistilBertMainLayer(config, name="distilbert")
|
870 |
+
self.dropout = keras.layers.Dropout(config.dropout)
|
871 |
+
self.classifier = keras.layers.Dense(
|
872 |
+
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
|
873 |
+
)
|
874 |
+
self.config = config
|
875 |
+
|
876 |
+
@unpack_inputs
|
877 |
+
@add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
878 |
+
@add_code_sample_docstrings(
|
879 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
880 |
+
output_type=TFTokenClassifierOutput,
|
881 |
+
config_class=_CONFIG_FOR_DOC,
|
882 |
+
)
|
883 |
+
def call(
|
884 |
+
self,
|
885 |
+
input_ids: TFModelInputType | None = None,
|
886 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
887 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
888 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
889 |
+
output_attentions: Optional[bool] = None,
|
890 |
+
output_hidden_states: Optional[bool] = None,
|
891 |
+
return_dict: Optional[bool] = None,
|
892 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
893 |
+
training: Optional[bool] = False,
|
894 |
+
) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]:
|
895 |
+
r"""
|
896 |
+
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
897 |
+
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
898 |
+
"""
|
899 |
+
outputs = self.distilbert(
|
900 |
+
input_ids=input_ids,
|
901 |
+
attention_mask=attention_mask,
|
902 |
+
head_mask=head_mask,
|
903 |
+
inputs_embeds=inputs_embeds,
|
904 |
+
output_attentions=output_attentions,
|
905 |
+
output_hidden_states=output_hidden_states,
|
906 |
+
return_dict=return_dict,
|
907 |
+
training=training,
|
908 |
+
)
|
909 |
+
sequence_output = outputs[0]
|
910 |
+
sequence_output = self.dropout(sequence_output, training=training)
|
911 |
+
logits = self.classifier(sequence_output)
|
912 |
+
loss = None if labels is None else self.hf_compute_loss(labels, logits)
|
913 |
+
|
914 |
+
if not return_dict:
|
915 |
+
output = (logits,) + outputs[1:]
|
916 |
+
return ((loss,) + output) if loss is not None else output
|
917 |
+
|
918 |
+
return TFTokenClassifierOutput(
|
919 |
+
loss=loss,
|
920 |
+
logits=logits,
|
921 |
+
hidden_states=outputs.hidden_states,
|
922 |
+
attentions=outputs.attentions,
|
923 |
+
)
|
924 |
+
|
925 |
+
def build(self, input_shape=None):
|
926 |
+
if self.built:
|
927 |
+
return
|
928 |
+
self.built = True
|
929 |
+
if getattr(self, "distilbert", None) is not None:
|
930 |
+
with tf.name_scope(self.distilbert.name):
|
931 |
+
self.distilbert.build(None)
|
932 |
+
if getattr(self, "classifier", None) is not None:
|
933 |
+
with tf.name_scope(self.classifier.name):
|
934 |
+
self.classifier.build([None, None, self.config.hidden_size])
|
935 |
+
|
936 |
+
|
937 |
+
@add_start_docstrings(
|
938 |
+
"""
|
939 |
+
DistilBert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and
|
940 |
+
a softmax) e.g. for RocStories/SWAG tasks.
|
941 |
+
""",
|
942 |
+
DISTILBERT_START_DOCSTRING,
|
943 |
+
)
|
944 |
+
class TFDistilBertForMultipleChoice(TFDistilBertPreTrainedModel, TFMultipleChoiceLoss):
|
945 |
+
def __init__(self, config, *inputs, **kwargs):
|
946 |
+
super().__init__(config, *inputs, **kwargs)
|
947 |
+
|
948 |
+
self.distilbert = TFDistilBertMainLayer(config, name="distilbert")
|
949 |
+
self.dropout = keras.layers.Dropout(config.seq_classif_dropout)
|
950 |
+
self.pre_classifier = keras.layers.Dense(
|
951 |
+
config.dim,
|
952 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
953 |
+
activation="relu",
|
954 |
+
name="pre_classifier",
|
955 |
+
)
|
956 |
+
self.classifier = keras.layers.Dense(
|
957 |
+
1, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
|
958 |
+
)
|
959 |
+
self.config = config
|
960 |
+
|
961 |
+
@unpack_inputs
|
962 |
+
@add_start_docstrings_to_model_forward(
|
963 |
+
DISTILBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
|
964 |
+
)
|
965 |
+
@add_code_sample_docstrings(
|
966 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
967 |
+
output_type=TFMultipleChoiceModelOutput,
|
968 |
+
config_class=_CONFIG_FOR_DOC,
|
969 |
+
)
|
970 |
+
def call(
|
971 |
+
self,
|
972 |
+
input_ids: TFModelInputType | None = None,
|
973 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
974 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
975 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
976 |
+
output_attentions: Optional[bool] = None,
|
977 |
+
output_hidden_states: Optional[bool] = None,
|
978 |
+
return_dict: Optional[bool] = None,
|
979 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
980 |
+
training: Optional[bool] = False,
|
981 |
+
) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]:
|
982 |
+
r"""
|
983 |
+
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
|
984 |
+
Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]`
|
985 |
+
where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above)
|
986 |
+
"""
|
987 |
+
if input_ids is not None:
|
988 |
+
num_choices = shape_list(input_ids)[1]
|
989 |
+
seq_length = shape_list(input_ids)[2]
|
990 |
+
else:
|
991 |
+
num_choices = shape_list(inputs_embeds)[1]
|
992 |
+
seq_length = shape_list(inputs_embeds)[2]
|
993 |
+
|
994 |
+
flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None
|
995 |
+
flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None
|
996 |
+
flat_inputs_embeds = (
|
997 |
+
tf.reshape(inputs_embeds, (-1, seq_length, shape_list(inputs_embeds)[3]))
|
998 |
+
if inputs_embeds is not None
|
999 |
+
else None
|
1000 |
+
)
|
1001 |
+
distilbert_output = self.distilbert(
|
1002 |
+
flat_input_ids,
|
1003 |
+
flat_attention_mask,
|
1004 |
+
head_mask,
|
1005 |
+
flat_inputs_embeds,
|
1006 |
+
output_attentions,
|
1007 |
+
output_hidden_states,
|
1008 |
+
return_dict=return_dict,
|
1009 |
+
training=training,
|
1010 |
+
)
|
1011 |
+
hidden_state = distilbert_output[0] # (bs, seq_len, dim)
|
1012 |
+
pooled_output = hidden_state[:, 0] # (bs, dim)
|
1013 |
+
pooled_output = self.pre_classifier(pooled_output) # (bs, dim)
|
1014 |
+
pooled_output = self.dropout(pooled_output, training=training) # (bs, dim)
|
1015 |
+
logits = self.classifier(pooled_output)
|
1016 |
+
reshaped_logits = tf.reshape(logits, (-1, num_choices))
|
1017 |
+
|
1018 |
+
loss = None if labels is None else self.hf_compute_loss(labels, reshaped_logits)
|
1019 |
+
|
1020 |
+
if not return_dict:
|
1021 |
+
output = (reshaped_logits,) + distilbert_output[1:]
|
1022 |
+
return ((loss,) + output) if loss is not None else output
|
1023 |
+
|
1024 |
+
return TFMultipleChoiceModelOutput(
|
1025 |
+
loss=loss,
|
1026 |
+
logits=reshaped_logits,
|
1027 |
+
hidden_states=distilbert_output.hidden_states,
|
1028 |
+
attentions=distilbert_output.attentions,
|
1029 |
+
)
|
1030 |
+
|
1031 |
+
def build(self, input_shape=None):
|
1032 |
+
if self.built:
|
1033 |
+
return
|
1034 |
+
self.built = True
|
1035 |
+
if getattr(self, "distilbert", None) is not None:
|
1036 |
+
with tf.name_scope(self.distilbert.name):
|
1037 |
+
self.distilbert.build(None)
|
1038 |
+
if getattr(self, "pre_classifier", None) is not None:
|
1039 |
+
with tf.name_scope(self.pre_classifier.name):
|
1040 |
+
self.pre_classifier.build([None, None, self.config.dim])
|
1041 |
+
if getattr(self, "classifier", None) is not None:
|
1042 |
+
with tf.name_scope(self.classifier.name):
|
1043 |
+
self.classifier.build([None, None, self.config.dim])
|
1044 |
+
|
1045 |
+
|
1046 |
+
@add_start_docstrings(
|
1047 |
+
"""
|
1048 |
+
DistilBert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a
|
1049 |
+
linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1050 |
+
""",
|
1051 |
+
DISTILBERT_START_DOCSTRING,
|
1052 |
+
)
|
1053 |
+
class TFDistilBertForQuestionAnswering(TFDistilBertPreTrainedModel, TFQuestionAnsweringLoss):
|
1054 |
+
def __init__(self, config, *inputs, **kwargs):
|
1055 |
+
super().__init__(config, *inputs, **kwargs)
|
1056 |
+
|
1057 |
+
self.distilbert = TFDistilBertMainLayer(config, name="distilbert")
|
1058 |
+
self.qa_outputs = keras.layers.Dense(
|
1059 |
+
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs"
|
1060 |
+
)
|
1061 |
+
assert config.num_labels == 2, f"Incorrect number of labels {config.num_labels} instead of 2"
|
1062 |
+
self.dropout = keras.layers.Dropout(config.qa_dropout)
|
1063 |
+
self.config = config
|
1064 |
+
|
1065 |
+
@unpack_inputs
|
1066 |
+
@add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1067 |
+
@add_code_sample_docstrings(
|
1068 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1069 |
+
output_type=TFQuestionAnsweringModelOutput,
|
1070 |
+
config_class=_CONFIG_FOR_DOC,
|
1071 |
+
)
|
1072 |
+
def call(
|
1073 |
+
self,
|
1074 |
+
input_ids: TFModelInputType | None = None,
|
1075 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1076 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1077 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1078 |
+
output_attentions: Optional[bool] = None,
|
1079 |
+
output_hidden_states: Optional[bool] = None,
|
1080 |
+
return_dict: Optional[bool] = None,
|
1081 |
+
start_positions: np.ndarray | tf.Tensor | None = None,
|
1082 |
+
end_positions: np.ndarray | tf.Tensor | None = None,
|
1083 |
+
training: Optional[bool] = False,
|
1084 |
+
) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]:
|
1085 |
+
r"""
|
1086 |
+
start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
|
1087 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1088 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1089 |
+
are not taken into account for computing the loss.
|
1090 |
+
end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
|
1091 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1092 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1093 |
+
are not taken into account for computing the loss.
|
1094 |
+
"""
|
1095 |
+
distilbert_output = self.distilbert(
|
1096 |
+
input_ids=input_ids,
|
1097 |
+
attention_mask=attention_mask,
|
1098 |
+
head_mask=head_mask,
|
1099 |
+
inputs_embeds=inputs_embeds,
|
1100 |
+
output_attentions=output_attentions,
|
1101 |
+
output_hidden_states=output_hidden_states,
|
1102 |
+
return_dict=return_dict,
|
1103 |
+
training=training,
|
1104 |
+
)
|
1105 |
+
hidden_states = distilbert_output[0] # (bs, max_query_len, dim)
|
1106 |
+
hidden_states = self.dropout(hidden_states, training=training) # (bs, max_query_len, dim)
|
1107 |
+
logits = self.qa_outputs(hidden_states) # (bs, max_query_len, 2)
|
1108 |
+
start_logits, end_logits = tf.split(logits, 2, axis=-1)
|
1109 |
+
start_logits = tf.squeeze(start_logits, axis=-1)
|
1110 |
+
end_logits = tf.squeeze(end_logits, axis=-1)
|
1111 |
+
|
1112 |
+
loss = None
|
1113 |
+
if start_positions is not None and end_positions is not None:
|
1114 |
+
labels = {"start_position": start_positions}
|
1115 |
+
labels["end_position"] = end_positions
|
1116 |
+
loss = self.hf_compute_loss(labels, (start_logits, end_logits))
|
1117 |
+
|
1118 |
+
if not return_dict:
|
1119 |
+
output = (start_logits, end_logits) + distilbert_output[1:]
|
1120 |
+
return ((loss,) + output) if loss is not None else output
|
1121 |
+
|
1122 |
+
return TFQuestionAnsweringModelOutput(
|
1123 |
+
loss=loss,
|
1124 |
+
start_logits=start_logits,
|
1125 |
+
end_logits=end_logits,
|
1126 |
+
hidden_states=distilbert_output.hidden_states,
|
1127 |
+
attentions=distilbert_output.attentions,
|
1128 |
+
)
|
1129 |
+
|
1130 |
+
def build(self, input_shape=None):
|
1131 |
+
if self.built:
|
1132 |
+
return
|
1133 |
+
self.built = True
|
1134 |
+
if getattr(self, "distilbert", None) is not None:
|
1135 |
+
with tf.name_scope(self.distilbert.name):
|
1136 |
+
self.distilbert.build(None)
|
1137 |
+
if getattr(self, "qa_outputs", None) is not None:
|
1138 |
+
with tf.name_scope(self.qa_outputs.name):
|
1139 |
+
self.qa_outputs.build([None, None, self.config.dim])
|
venv/lib/python3.10/site-packages/transformers/models/distilbert/tokenization_distilbert.py
ADDED
@@ -0,0 +1,514 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Tokenization classes for DistilBERT."""
|
16 |
+
|
17 |
+
import collections
|
18 |
+
import os
|
19 |
+
import unicodedata
|
20 |
+
from typing import List, Optional, Tuple
|
21 |
+
|
22 |
+
from ...tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace
|
23 |
+
from ...utils import logging
|
24 |
+
|
25 |
+
|
26 |
+
logger = logging.get_logger(__name__)
|
27 |
+
|
28 |
+
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
|
29 |
+
|
30 |
+
|
31 |
+
# Copied from transformers.models.bert.tokenization_bert.load_vocab
|
32 |
+
def load_vocab(vocab_file):
|
33 |
+
"""Loads a vocabulary file into a dictionary."""
|
34 |
+
vocab = collections.OrderedDict()
|
35 |
+
with open(vocab_file, "r", encoding="utf-8") as reader:
|
36 |
+
tokens = reader.readlines()
|
37 |
+
for index, token in enumerate(tokens):
|
38 |
+
token = token.rstrip("\n")
|
39 |
+
vocab[token] = index
|
40 |
+
return vocab
|
41 |
+
|
42 |
+
|
43 |
+
# Copied from transformers.models.bert.tokenization_bert.whitespace_tokenize
|
44 |
+
def whitespace_tokenize(text):
|
45 |
+
"""Runs basic whitespace cleaning and splitting on a piece of text."""
|
46 |
+
text = text.strip()
|
47 |
+
if not text:
|
48 |
+
return []
|
49 |
+
tokens = text.split()
|
50 |
+
return tokens
|
51 |
+
|
52 |
+
|
53 |
+
class DistilBertTokenizer(PreTrainedTokenizer):
|
54 |
+
r"""
|
55 |
+
Construct a DistilBERT tokenizer. Based on WordPiece.
|
56 |
+
|
57 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
58 |
+
this superclass for more information regarding those methods.
|
59 |
+
|
60 |
+
Args:
|
61 |
+
vocab_file (`str`):
|
62 |
+
File containing the vocabulary.
|
63 |
+
do_lower_case (`bool`, *optional*, defaults to `True`):
|
64 |
+
Whether or not to lowercase the input when tokenizing.
|
65 |
+
do_basic_tokenize (`bool`, *optional*, defaults to `True`):
|
66 |
+
Whether or not to do basic tokenization before WordPiece.
|
67 |
+
never_split (`Iterable`, *optional*):
|
68 |
+
Collection of tokens which will never be split during tokenization. Only has an effect when
|
69 |
+
`do_basic_tokenize=True`
|
70 |
+
unk_token (`str`, *optional*, defaults to `"[UNK]"`):
|
71 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
72 |
+
token instead.
|
73 |
+
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
|
74 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
75 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
76 |
+
token of a sequence built with special tokens.
|
77 |
+
pad_token (`str`, *optional*, defaults to `"[PAD]"`):
|
78 |
+
The token used for padding, for example when batching sequences of different lengths.
|
79 |
+
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
|
80 |
+
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
81 |
+
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
82 |
+
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
|
83 |
+
The token used for masking values. This is the token used when training this model with masked language
|
84 |
+
modeling. This is the token which the model will try to predict.
|
85 |
+
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
|
86 |
+
Whether or not to tokenize Chinese characters.
|
87 |
+
|
88 |
+
This should likely be deactivated for Japanese (see this
|
89 |
+
[issue](https://github.com/huggingface/transformers/issues/328)).
|
90 |
+
strip_accents (`bool`, *optional*):
|
91 |
+
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
|
92 |
+
value for `lowercase` (as in the original BERT).
|
93 |
+
"""
|
94 |
+
|
95 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
96 |
+
model_input_names = ["input_ids", "attention_mask"]
|
97 |
+
|
98 |
+
def __init__(
|
99 |
+
self,
|
100 |
+
vocab_file,
|
101 |
+
do_lower_case=True,
|
102 |
+
do_basic_tokenize=True,
|
103 |
+
never_split=None,
|
104 |
+
unk_token="[UNK]",
|
105 |
+
sep_token="[SEP]",
|
106 |
+
pad_token="[PAD]",
|
107 |
+
cls_token="[CLS]",
|
108 |
+
mask_token="[MASK]",
|
109 |
+
tokenize_chinese_chars=True,
|
110 |
+
strip_accents=None,
|
111 |
+
**kwargs,
|
112 |
+
):
|
113 |
+
if not os.path.isfile(vocab_file):
|
114 |
+
raise ValueError(
|
115 |
+
f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
|
116 |
+
" model use `tokenizer = DistilBertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
|
117 |
+
)
|
118 |
+
self.vocab = load_vocab(vocab_file)
|
119 |
+
self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()])
|
120 |
+
self.do_basic_tokenize = do_basic_tokenize
|
121 |
+
if do_basic_tokenize:
|
122 |
+
self.basic_tokenizer = BasicTokenizer(
|
123 |
+
do_lower_case=do_lower_case,
|
124 |
+
never_split=never_split,
|
125 |
+
tokenize_chinese_chars=tokenize_chinese_chars,
|
126 |
+
strip_accents=strip_accents,
|
127 |
+
)
|
128 |
+
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token))
|
129 |
+
|
130 |
+
super().__init__(
|
131 |
+
do_lower_case=do_lower_case,
|
132 |
+
do_basic_tokenize=do_basic_tokenize,
|
133 |
+
never_split=never_split,
|
134 |
+
unk_token=unk_token,
|
135 |
+
sep_token=sep_token,
|
136 |
+
pad_token=pad_token,
|
137 |
+
cls_token=cls_token,
|
138 |
+
mask_token=mask_token,
|
139 |
+
tokenize_chinese_chars=tokenize_chinese_chars,
|
140 |
+
strip_accents=strip_accents,
|
141 |
+
**kwargs,
|
142 |
+
)
|
143 |
+
|
144 |
+
@property
|
145 |
+
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.do_lower_case
|
146 |
+
def do_lower_case(self):
|
147 |
+
return self.basic_tokenizer.do_lower_case
|
148 |
+
|
149 |
+
@property
|
150 |
+
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.vocab_size
|
151 |
+
def vocab_size(self):
|
152 |
+
return len(self.vocab)
|
153 |
+
|
154 |
+
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.get_vocab
|
155 |
+
def get_vocab(self):
|
156 |
+
return dict(self.vocab, **self.added_tokens_encoder)
|
157 |
+
|
158 |
+
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer._tokenize
|
159 |
+
def _tokenize(self, text, split_special_tokens=False):
|
160 |
+
split_tokens = []
|
161 |
+
if self.do_basic_tokenize:
|
162 |
+
for token in self.basic_tokenizer.tokenize(
|
163 |
+
text, never_split=self.all_special_tokens if not split_special_tokens else None
|
164 |
+
):
|
165 |
+
# If the token is part of the never_split set
|
166 |
+
if token in self.basic_tokenizer.never_split:
|
167 |
+
split_tokens.append(token)
|
168 |
+
else:
|
169 |
+
split_tokens += self.wordpiece_tokenizer.tokenize(token)
|
170 |
+
else:
|
171 |
+
split_tokens = self.wordpiece_tokenizer.tokenize(text)
|
172 |
+
return split_tokens
|
173 |
+
|
174 |
+
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer._convert_token_to_id
|
175 |
+
def _convert_token_to_id(self, token):
|
176 |
+
"""Converts a token (str) in an id using the vocab."""
|
177 |
+
return self.vocab.get(token, self.vocab.get(self.unk_token))
|
178 |
+
|
179 |
+
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer._convert_id_to_token
|
180 |
+
def _convert_id_to_token(self, index):
|
181 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
182 |
+
return self.ids_to_tokens.get(index, self.unk_token)
|
183 |
+
|
184 |
+
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.convert_tokens_to_string
|
185 |
+
def convert_tokens_to_string(self, tokens):
|
186 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
187 |
+
out_string = " ".join(tokens).replace(" ##", "").strip()
|
188 |
+
return out_string
|
189 |
+
|
190 |
+
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.build_inputs_with_special_tokens
|
191 |
+
def build_inputs_with_special_tokens(
|
192 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
193 |
+
) -> List[int]:
|
194 |
+
"""
|
195 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
196 |
+
adding special tokens. A BERT sequence has the following format:
|
197 |
+
|
198 |
+
- single sequence: `[CLS] X [SEP]`
|
199 |
+
- pair of sequences: `[CLS] A [SEP] B [SEP]`
|
200 |
+
|
201 |
+
Args:
|
202 |
+
token_ids_0 (`List[int]`):
|
203 |
+
List of IDs to which the special tokens will be added.
|
204 |
+
token_ids_1 (`List[int]`, *optional*):
|
205 |
+
Optional second list of IDs for sequence pairs.
|
206 |
+
|
207 |
+
Returns:
|
208 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
209 |
+
"""
|
210 |
+
if token_ids_1 is None:
|
211 |
+
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
212 |
+
cls = [self.cls_token_id]
|
213 |
+
sep = [self.sep_token_id]
|
214 |
+
return cls + token_ids_0 + sep + token_ids_1 + sep
|
215 |
+
|
216 |
+
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.get_special_tokens_mask
|
217 |
+
def get_special_tokens_mask(
|
218 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
219 |
+
) -> List[int]:
|
220 |
+
"""
|
221 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
222 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
223 |
+
|
224 |
+
Args:
|
225 |
+
token_ids_0 (`List[int]`):
|
226 |
+
List of IDs.
|
227 |
+
token_ids_1 (`List[int]`, *optional*):
|
228 |
+
Optional second list of IDs for sequence pairs.
|
229 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
230 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
231 |
+
|
232 |
+
Returns:
|
233 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
234 |
+
"""
|
235 |
+
|
236 |
+
if already_has_special_tokens:
|
237 |
+
return super().get_special_tokens_mask(
|
238 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
239 |
+
)
|
240 |
+
|
241 |
+
if token_ids_1 is not None:
|
242 |
+
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
|
243 |
+
return [1] + ([0] * len(token_ids_0)) + [1]
|
244 |
+
|
245 |
+
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.create_token_type_ids_from_sequences
|
246 |
+
def create_token_type_ids_from_sequences(
|
247 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
248 |
+
) -> List[int]:
|
249 |
+
"""
|
250 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence
|
251 |
+
pair mask has the following format:
|
252 |
+
|
253 |
+
```
|
254 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
255 |
+
| first sequence | second sequence |
|
256 |
+
```
|
257 |
+
|
258 |
+
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
|
259 |
+
|
260 |
+
Args:
|
261 |
+
token_ids_0 (`List[int]`):
|
262 |
+
List of IDs.
|
263 |
+
token_ids_1 (`List[int]`, *optional*):
|
264 |
+
Optional second list of IDs for sequence pairs.
|
265 |
+
|
266 |
+
Returns:
|
267 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
268 |
+
"""
|
269 |
+
sep = [self.sep_token_id]
|
270 |
+
cls = [self.cls_token_id]
|
271 |
+
if token_ids_1 is None:
|
272 |
+
return len(cls + token_ids_0 + sep) * [0]
|
273 |
+
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
|
274 |
+
|
275 |
+
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.save_vocabulary
|
276 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
277 |
+
index = 0
|
278 |
+
if os.path.isdir(save_directory):
|
279 |
+
vocab_file = os.path.join(
|
280 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
281 |
+
)
|
282 |
+
else:
|
283 |
+
vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
|
284 |
+
with open(vocab_file, "w", encoding="utf-8") as writer:
|
285 |
+
for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
|
286 |
+
if index != token_index:
|
287 |
+
logger.warning(
|
288 |
+
f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
|
289 |
+
" Please check that the vocabulary is not corrupted!"
|
290 |
+
)
|
291 |
+
index = token_index
|
292 |
+
writer.write(token + "\n")
|
293 |
+
index += 1
|
294 |
+
return (vocab_file,)
|
295 |
+
|
296 |
+
|
297 |
+
# Copied from transformers.models.bert.tokenization_bert.BasicTokenizer
|
298 |
+
class BasicTokenizer(object):
|
299 |
+
"""
|
300 |
+
Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.).
|
301 |
+
|
302 |
+
Args:
|
303 |
+
do_lower_case (`bool`, *optional*, defaults to `True`):
|
304 |
+
Whether or not to lowercase the input when tokenizing.
|
305 |
+
never_split (`Iterable`, *optional*):
|
306 |
+
Collection of tokens which will never be split during tokenization. Only has an effect when
|
307 |
+
`do_basic_tokenize=True`
|
308 |
+
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
|
309 |
+
Whether or not to tokenize Chinese characters.
|
310 |
+
|
311 |
+
This should likely be deactivated for Japanese (see this
|
312 |
+
[issue](https://github.com/huggingface/transformers/issues/328)).
|
313 |
+
strip_accents (`bool`, *optional*):
|
314 |
+
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
|
315 |
+
value for `lowercase` (as in the original BERT).
|
316 |
+
do_split_on_punc (`bool`, *optional*, defaults to `True`):
|
317 |
+
In some instances we want to skip the basic punctuation splitting so that later tokenization can capture
|
318 |
+
the full context of the words, such as contractions.
|
319 |
+
"""
|
320 |
+
|
321 |
+
def __init__(
|
322 |
+
self,
|
323 |
+
do_lower_case=True,
|
324 |
+
never_split=None,
|
325 |
+
tokenize_chinese_chars=True,
|
326 |
+
strip_accents=None,
|
327 |
+
do_split_on_punc=True,
|
328 |
+
):
|
329 |
+
if never_split is None:
|
330 |
+
never_split = []
|
331 |
+
self.do_lower_case = do_lower_case
|
332 |
+
self.never_split = set(never_split)
|
333 |
+
self.tokenize_chinese_chars = tokenize_chinese_chars
|
334 |
+
self.strip_accents = strip_accents
|
335 |
+
self.do_split_on_punc = do_split_on_punc
|
336 |
+
|
337 |
+
def tokenize(self, text, never_split=None):
|
338 |
+
"""
|
339 |
+
Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer.
|
340 |
+
|
341 |
+
Args:
|
342 |
+
never_split (`List[str]`, *optional*)
|
343 |
+
Kept for backward compatibility purposes. Now implemented directly at the base class level (see
|
344 |
+
[`PreTrainedTokenizer.tokenize`]) List of token not to split.
|
345 |
+
"""
|
346 |
+
# union() returns a new set by concatenating the two sets.
|
347 |
+
never_split = self.never_split.union(set(never_split)) if never_split else self.never_split
|
348 |
+
text = self._clean_text(text)
|
349 |
+
|
350 |
+
# This was added on November 1st, 2018 for the multilingual and Chinese
|
351 |
+
# models. This is also applied to the English models now, but it doesn't
|
352 |
+
# matter since the English models were not trained on any Chinese data
|
353 |
+
# and generally don't have any Chinese data in them (there are Chinese
|
354 |
+
# characters in the vocabulary because Wikipedia does have some Chinese
|
355 |
+
# words in the English Wikipedia.).
|
356 |
+
if self.tokenize_chinese_chars:
|
357 |
+
text = self._tokenize_chinese_chars(text)
|
358 |
+
# prevents treating the same character with different unicode codepoints as different characters
|
359 |
+
unicode_normalized_text = unicodedata.normalize("NFC", text)
|
360 |
+
orig_tokens = whitespace_tokenize(unicode_normalized_text)
|
361 |
+
split_tokens = []
|
362 |
+
for token in orig_tokens:
|
363 |
+
if token not in never_split:
|
364 |
+
if self.do_lower_case:
|
365 |
+
token = token.lower()
|
366 |
+
if self.strip_accents is not False:
|
367 |
+
token = self._run_strip_accents(token)
|
368 |
+
elif self.strip_accents:
|
369 |
+
token = self._run_strip_accents(token)
|
370 |
+
split_tokens.extend(self._run_split_on_punc(token, never_split))
|
371 |
+
|
372 |
+
output_tokens = whitespace_tokenize(" ".join(split_tokens))
|
373 |
+
return output_tokens
|
374 |
+
|
375 |
+
def _run_strip_accents(self, text):
|
376 |
+
"""Strips accents from a piece of text."""
|
377 |
+
text = unicodedata.normalize("NFD", text)
|
378 |
+
output = []
|
379 |
+
for char in text:
|
380 |
+
cat = unicodedata.category(char)
|
381 |
+
if cat == "Mn":
|
382 |
+
continue
|
383 |
+
output.append(char)
|
384 |
+
return "".join(output)
|
385 |
+
|
386 |
+
def _run_split_on_punc(self, text, never_split=None):
|
387 |
+
"""Splits punctuation on a piece of text."""
|
388 |
+
if not self.do_split_on_punc or (never_split is not None and text in never_split):
|
389 |
+
return [text]
|
390 |
+
chars = list(text)
|
391 |
+
i = 0
|
392 |
+
start_new_word = True
|
393 |
+
output = []
|
394 |
+
while i < len(chars):
|
395 |
+
char = chars[i]
|
396 |
+
if _is_punctuation(char):
|
397 |
+
output.append([char])
|
398 |
+
start_new_word = True
|
399 |
+
else:
|
400 |
+
if start_new_word:
|
401 |
+
output.append([])
|
402 |
+
start_new_word = False
|
403 |
+
output[-1].append(char)
|
404 |
+
i += 1
|
405 |
+
|
406 |
+
return ["".join(x) for x in output]
|
407 |
+
|
408 |
+
def _tokenize_chinese_chars(self, text):
|
409 |
+
"""Adds whitespace around any CJK character."""
|
410 |
+
output = []
|
411 |
+
for char in text:
|
412 |
+
cp = ord(char)
|
413 |
+
if self._is_chinese_char(cp):
|
414 |
+
output.append(" ")
|
415 |
+
output.append(char)
|
416 |
+
output.append(" ")
|
417 |
+
else:
|
418 |
+
output.append(char)
|
419 |
+
return "".join(output)
|
420 |
+
|
421 |
+
def _is_chinese_char(self, cp):
|
422 |
+
"""Checks whether CP is the codepoint of a CJK character."""
|
423 |
+
# This defines a "chinese character" as anything in the CJK Unicode block:
|
424 |
+
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
|
425 |
+
#
|
426 |
+
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
|
427 |
+
# despite its name. The modern Korean Hangul alphabet is a different block,
|
428 |
+
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
|
429 |
+
# space-separated words, so they are not treated specially and handled
|
430 |
+
# like the all of the other languages.
|
431 |
+
if (
|
432 |
+
(cp >= 0x4E00 and cp <= 0x9FFF)
|
433 |
+
or (cp >= 0x3400 and cp <= 0x4DBF) #
|
434 |
+
or (cp >= 0x20000 and cp <= 0x2A6DF) #
|
435 |
+
or (cp >= 0x2A700 and cp <= 0x2B73F) #
|
436 |
+
or (cp >= 0x2B740 and cp <= 0x2B81F) #
|
437 |
+
or (cp >= 0x2B820 and cp <= 0x2CEAF) #
|
438 |
+
or (cp >= 0xF900 and cp <= 0xFAFF)
|
439 |
+
or (cp >= 0x2F800 and cp <= 0x2FA1F) #
|
440 |
+
): #
|
441 |
+
return True
|
442 |
+
|
443 |
+
return False
|
444 |
+
|
445 |
+
def _clean_text(self, text):
|
446 |
+
"""Performs invalid character removal and whitespace cleanup on text."""
|
447 |
+
output = []
|
448 |
+
for char in text:
|
449 |
+
cp = ord(char)
|
450 |
+
if cp == 0 or cp == 0xFFFD or _is_control(char):
|
451 |
+
continue
|
452 |
+
if _is_whitespace(char):
|
453 |
+
output.append(" ")
|
454 |
+
else:
|
455 |
+
output.append(char)
|
456 |
+
return "".join(output)
|
457 |
+
|
458 |
+
|
459 |
+
# Copied from transformers.models.bert.tokenization_bert.WordpieceTokenizer
|
460 |
+
class WordpieceTokenizer(object):
|
461 |
+
"""Runs WordPiece tokenization."""
|
462 |
+
|
463 |
+
def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
|
464 |
+
self.vocab = vocab
|
465 |
+
self.unk_token = unk_token
|
466 |
+
self.max_input_chars_per_word = max_input_chars_per_word
|
467 |
+
|
468 |
+
def tokenize(self, text):
|
469 |
+
"""
|
470 |
+
Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform
|
471 |
+
tokenization using the given vocabulary.
|
472 |
+
|
473 |
+
For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`.
|
474 |
+
|
475 |
+
Args:
|
476 |
+
text: A single token or whitespace separated tokens. This should have
|
477 |
+
already been passed through *BasicTokenizer*.
|
478 |
+
|
479 |
+
Returns:
|
480 |
+
A list of wordpiece tokens.
|
481 |
+
"""
|
482 |
+
|
483 |
+
output_tokens = []
|
484 |
+
for token in whitespace_tokenize(text):
|
485 |
+
chars = list(token)
|
486 |
+
if len(chars) > self.max_input_chars_per_word:
|
487 |
+
output_tokens.append(self.unk_token)
|
488 |
+
continue
|
489 |
+
|
490 |
+
is_bad = False
|
491 |
+
start = 0
|
492 |
+
sub_tokens = []
|
493 |
+
while start < len(chars):
|
494 |
+
end = len(chars)
|
495 |
+
cur_substr = None
|
496 |
+
while start < end:
|
497 |
+
substr = "".join(chars[start:end])
|
498 |
+
if start > 0:
|
499 |
+
substr = "##" + substr
|
500 |
+
if substr in self.vocab:
|
501 |
+
cur_substr = substr
|
502 |
+
break
|
503 |
+
end -= 1
|
504 |
+
if cur_substr is None:
|
505 |
+
is_bad = True
|
506 |
+
break
|
507 |
+
sub_tokens.append(cur_substr)
|
508 |
+
start = end
|
509 |
+
|
510 |
+
if is_bad:
|
511 |
+
output_tokens.append(self.unk_token)
|
512 |
+
else:
|
513 |
+
output_tokens.extend(sub_tokens)
|
514 |
+
return output_tokens
|
venv/lib/python3.10/site-packages/transformers/models/distilbert/tokenization_distilbert_fast.py
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Tokenization classes for DistilBERT."""
|
16 |
+
|
17 |
+
import json
|
18 |
+
from typing import List, Optional, Tuple
|
19 |
+
|
20 |
+
from tokenizers import normalizers
|
21 |
+
|
22 |
+
from ...tokenization_utils_fast import PreTrainedTokenizerFast
|
23 |
+
from ...utils import logging
|
24 |
+
from .tokenization_distilbert import DistilBertTokenizer
|
25 |
+
|
26 |
+
|
27 |
+
logger = logging.get_logger(__name__)
|
28 |
+
|
29 |
+
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
|
30 |
+
|
31 |
+
|
32 |
+
class DistilBertTokenizerFast(PreTrainedTokenizerFast):
|
33 |
+
r"""
|
34 |
+
Construct a "fast" DistilBERT tokenizer (backed by HuggingFace's *tokenizers* library). Based on WordPiece.
|
35 |
+
|
36 |
+
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
|
37 |
+
refer to this superclass for more information regarding those methods.
|
38 |
+
|
39 |
+
Args:
|
40 |
+
vocab_file (`str`):
|
41 |
+
File containing the vocabulary.
|
42 |
+
do_lower_case (`bool`, *optional*, defaults to `True`):
|
43 |
+
Whether or not to lowercase the input when tokenizing.
|
44 |
+
unk_token (`str`, *optional*, defaults to `"[UNK]"`):
|
45 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
46 |
+
token instead.
|
47 |
+
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
|
48 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
49 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
50 |
+
token of a sequence built with special tokens.
|
51 |
+
pad_token (`str`, *optional*, defaults to `"[PAD]"`):
|
52 |
+
The token used for padding, for example when batching sequences of different lengths.
|
53 |
+
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
|
54 |
+
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
55 |
+
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
56 |
+
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
|
57 |
+
The token used for masking values. This is the token used when training this model with masked language
|
58 |
+
modeling. This is the token which the model will try to predict.
|
59 |
+
clean_text (`bool`, *optional*, defaults to `True`):
|
60 |
+
Whether or not to clean the text before tokenization by removing any control characters and replacing all
|
61 |
+
whitespaces by the classic one.
|
62 |
+
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
|
63 |
+
Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see [this
|
64 |
+
issue](https://github.com/huggingface/transformers/issues/328)).
|
65 |
+
strip_accents (`bool`, *optional*):
|
66 |
+
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
|
67 |
+
value for `lowercase` (as in the original BERT).
|
68 |
+
wordpieces_prefix (`str`, *optional*, defaults to `"##"`):
|
69 |
+
The prefix for subwords.
|
70 |
+
"""
|
71 |
+
|
72 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
73 |
+
model_input_names = ["input_ids", "attention_mask"]
|
74 |
+
slow_tokenizer_class = DistilBertTokenizer
|
75 |
+
|
76 |
+
def __init__(
|
77 |
+
self,
|
78 |
+
vocab_file=None,
|
79 |
+
tokenizer_file=None,
|
80 |
+
do_lower_case=True,
|
81 |
+
unk_token="[UNK]",
|
82 |
+
sep_token="[SEP]",
|
83 |
+
pad_token="[PAD]",
|
84 |
+
cls_token="[CLS]",
|
85 |
+
mask_token="[MASK]",
|
86 |
+
tokenize_chinese_chars=True,
|
87 |
+
strip_accents=None,
|
88 |
+
**kwargs,
|
89 |
+
):
|
90 |
+
super().__init__(
|
91 |
+
vocab_file,
|
92 |
+
tokenizer_file=tokenizer_file,
|
93 |
+
do_lower_case=do_lower_case,
|
94 |
+
unk_token=unk_token,
|
95 |
+
sep_token=sep_token,
|
96 |
+
pad_token=pad_token,
|
97 |
+
cls_token=cls_token,
|
98 |
+
mask_token=mask_token,
|
99 |
+
tokenize_chinese_chars=tokenize_chinese_chars,
|
100 |
+
strip_accents=strip_accents,
|
101 |
+
**kwargs,
|
102 |
+
)
|
103 |
+
|
104 |
+
normalizer_state = json.loads(self.backend_tokenizer.normalizer.__getstate__())
|
105 |
+
if (
|
106 |
+
normalizer_state.get("lowercase", do_lower_case) != do_lower_case
|
107 |
+
or normalizer_state.get("strip_accents", strip_accents) != strip_accents
|
108 |
+
or normalizer_state.get("handle_chinese_chars", tokenize_chinese_chars) != tokenize_chinese_chars
|
109 |
+
):
|
110 |
+
normalizer_class = getattr(normalizers, normalizer_state.pop("type"))
|
111 |
+
normalizer_state["lowercase"] = do_lower_case
|
112 |
+
normalizer_state["strip_accents"] = strip_accents
|
113 |
+
normalizer_state["handle_chinese_chars"] = tokenize_chinese_chars
|
114 |
+
self.backend_tokenizer.normalizer = normalizer_class(**normalizer_state)
|
115 |
+
|
116 |
+
self.do_lower_case = do_lower_case
|
117 |
+
|
118 |
+
# Copied from transformers.models.bert.tokenization_bert_fast.BertTokenizerFast.build_inputs_with_special_tokens
|
119 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
120 |
+
"""
|
121 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
122 |
+
adding special tokens. A BERT sequence has the following format:
|
123 |
+
|
124 |
+
- single sequence: `[CLS] X [SEP]`
|
125 |
+
- pair of sequences: `[CLS] A [SEP] B [SEP]`
|
126 |
+
|
127 |
+
Args:
|
128 |
+
token_ids_0 (`List[int]`):
|
129 |
+
List of IDs to which the special tokens will be added.
|
130 |
+
token_ids_1 (`List[int]`, *optional*):
|
131 |
+
Optional second list of IDs for sequence pairs.
|
132 |
+
|
133 |
+
Returns:
|
134 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
135 |
+
"""
|
136 |
+
output = [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
137 |
+
|
138 |
+
if token_ids_1 is not None:
|
139 |
+
output += token_ids_1 + [self.sep_token_id]
|
140 |
+
|
141 |
+
return output
|
142 |
+
|
143 |
+
# Copied from transformers.models.bert.tokenization_bert_fast.BertTokenizerFast.create_token_type_ids_from_sequences
|
144 |
+
def create_token_type_ids_from_sequences(
|
145 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
146 |
+
) -> List[int]:
|
147 |
+
"""
|
148 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence
|
149 |
+
pair mask has the following format:
|
150 |
+
|
151 |
+
```
|
152 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
153 |
+
| first sequence | second sequence |
|
154 |
+
```
|
155 |
+
|
156 |
+
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
|
157 |
+
|
158 |
+
Args:
|
159 |
+
token_ids_0 (`List[int]`):
|
160 |
+
List of IDs.
|
161 |
+
token_ids_1 (`List[int]`, *optional*):
|
162 |
+
Optional second list of IDs for sequence pairs.
|
163 |
+
|
164 |
+
Returns:
|
165 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
166 |
+
"""
|
167 |
+
sep = [self.sep_token_id]
|
168 |
+
cls = [self.cls_token_id]
|
169 |
+
if token_ids_1 is None:
|
170 |
+
return len(cls + token_ids_0 + sep) * [0]
|
171 |
+
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
|
172 |
+
|
173 |
+
# Copied from transformers.models.bert.tokenization_bert_fast.BertTokenizerFast.save_vocabulary
|
174 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
175 |
+
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
|
176 |
+
return tuple(files)
|
venv/lib/python3.10/site-packages/transformers/models/encoder_decoder/__init__.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import TYPE_CHECKING
|
16 |
+
|
17 |
+
from ...utils import (
|
18 |
+
OptionalDependencyNotAvailable,
|
19 |
+
_LazyModule,
|
20 |
+
is_flax_available,
|
21 |
+
is_tf_available,
|
22 |
+
is_torch_available,
|
23 |
+
)
|
24 |
+
|
25 |
+
|
26 |
+
_import_structure = {"configuration_encoder_decoder": ["EncoderDecoderConfig"]}
|
27 |
+
|
28 |
+
try:
|
29 |
+
if not is_torch_available():
|
30 |
+
raise OptionalDependencyNotAvailable()
|
31 |
+
except OptionalDependencyNotAvailable:
|
32 |
+
pass
|
33 |
+
else:
|
34 |
+
_import_structure["modeling_encoder_decoder"] = ["EncoderDecoderModel"]
|
35 |
+
|
36 |
+
try:
|
37 |
+
if not is_tf_available():
|
38 |
+
raise OptionalDependencyNotAvailable()
|
39 |
+
except OptionalDependencyNotAvailable:
|
40 |
+
pass
|
41 |
+
else:
|
42 |
+
_import_structure["modeling_tf_encoder_decoder"] = ["TFEncoderDecoderModel"]
|
43 |
+
|
44 |
+
try:
|
45 |
+
if not is_flax_available():
|
46 |
+
raise OptionalDependencyNotAvailable()
|
47 |
+
except OptionalDependencyNotAvailable:
|
48 |
+
pass
|
49 |
+
else:
|
50 |
+
_import_structure["modeling_flax_encoder_decoder"] = ["FlaxEncoderDecoderModel"]
|
51 |
+
|
52 |
+
if TYPE_CHECKING:
|
53 |
+
from .configuration_encoder_decoder import EncoderDecoderConfig
|
54 |
+
|
55 |
+
try:
|
56 |
+
if not is_torch_available():
|
57 |
+
raise OptionalDependencyNotAvailable()
|
58 |
+
except OptionalDependencyNotAvailable:
|
59 |
+
pass
|
60 |
+
else:
|
61 |
+
from .modeling_encoder_decoder import EncoderDecoderModel
|
62 |
+
|
63 |
+
try:
|
64 |
+
if not is_tf_available():
|
65 |
+
raise OptionalDependencyNotAvailable()
|
66 |
+
except OptionalDependencyNotAvailable:
|
67 |
+
pass
|
68 |
+
else:
|
69 |
+
from .modeling_tf_encoder_decoder import TFEncoderDecoderModel
|
70 |
+
|
71 |
+
try:
|
72 |
+
if not is_flax_available():
|
73 |
+
raise OptionalDependencyNotAvailable()
|
74 |
+
except OptionalDependencyNotAvailable:
|
75 |
+
pass
|
76 |
+
else:
|
77 |
+
from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel
|
78 |
+
|
79 |
+
else:
|
80 |
+
import sys
|
81 |
+
|
82 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
venv/lib/python3.10/site-packages/transformers/models/encoder_decoder/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.24 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/encoder_decoder/__pycache__/configuration_encoder_decoder.cpython-310.pyc
ADDED
Binary file (3.94 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/encoder_decoder/__pycache__/modeling_encoder_decoder.cpython-310.pyc
ADDED
Binary file (25.8 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/encoder_decoder/__pycache__/modeling_flax_encoder_decoder.cpython-310.pyc
ADDED
Binary file (31.5 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/encoder_decoder/__pycache__/modeling_tf_encoder_decoder.cpython-310.pyc
ADDED
Binary file (25.1 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/encoder_decoder/configuration_encoder_decoder.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
|
17 |
+
|
18 |
+
from ...configuration_utils import PretrainedConfig
|
19 |
+
from ...utils import logging
|
20 |
+
|
21 |
+
|
22 |
+
logger = logging.get_logger(__name__)
|
23 |
+
|
24 |
+
|
25 |
+
class EncoderDecoderConfig(PretrainedConfig):
|
26 |
+
r"""
|
27 |
+
[`EncoderDecoderConfig`] is the configuration class to store the configuration of a [`EncoderDecoderModel`]. It is
|
28 |
+
used to instantiate an Encoder Decoder model according to the specified arguments, defining the encoder and decoder
|
29 |
+
configs.
|
30 |
+
|
31 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
32 |
+
documentation from [`PretrainedConfig`] for more information.
|
33 |
+
|
34 |
+
Args:
|
35 |
+
kwargs (*optional*):
|
36 |
+
Dictionary of keyword arguments. Notably:
|
37 |
+
|
38 |
+
- **encoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that defines
|
39 |
+
the encoder config.
|
40 |
+
- **decoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that defines
|
41 |
+
the decoder config.
|
42 |
+
|
43 |
+
Examples:
|
44 |
+
|
45 |
+
```python
|
46 |
+
>>> from transformers import BertConfig, EncoderDecoderConfig, EncoderDecoderModel
|
47 |
+
|
48 |
+
>>> # Initializing a BERT google-bert/bert-base-uncased style configuration
|
49 |
+
>>> config_encoder = BertConfig()
|
50 |
+
>>> config_decoder = BertConfig()
|
51 |
+
|
52 |
+
>>> config = EncoderDecoderConfig.from_encoder_decoder_configs(config_encoder, config_decoder)
|
53 |
+
|
54 |
+
>>> # Initializing a Bert2Bert model (with random weights) from the google-bert/bert-base-uncased style configurations
|
55 |
+
>>> model = EncoderDecoderModel(config=config)
|
56 |
+
|
57 |
+
>>> # Accessing the model configuration
|
58 |
+
>>> config_encoder = model.config.encoder
|
59 |
+
>>> config_decoder = model.config.decoder
|
60 |
+
>>> # set decoder config to causal lm
|
61 |
+
>>> config_decoder.is_decoder = True
|
62 |
+
>>> config_decoder.add_cross_attention = True
|
63 |
+
|
64 |
+
>>> # Saving the model, including its configuration
|
65 |
+
>>> model.save_pretrained("my-model")
|
66 |
+
|
67 |
+
>>> # loading model and config from pretrained folder
|
68 |
+
>>> encoder_decoder_config = EncoderDecoderConfig.from_pretrained("my-model")
|
69 |
+
>>> model = EncoderDecoderModel.from_pretrained("my-model", config=encoder_decoder_config)
|
70 |
+
```"""
|
71 |
+
|
72 |
+
model_type = "encoder-decoder"
|
73 |
+
is_composition = True
|
74 |
+
|
75 |
+
def __init__(self, **kwargs):
|
76 |
+
super().__init__(**kwargs)
|
77 |
+
assert (
|
78 |
+
"encoder" in kwargs and "decoder" in kwargs
|
79 |
+
), "Config has to be initialized with encoder and decoder config"
|
80 |
+
encoder_config = kwargs.pop("encoder")
|
81 |
+
encoder_model_type = encoder_config.pop("model_type")
|
82 |
+
decoder_config = kwargs.pop("decoder")
|
83 |
+
decoder_model_type = decoder_config.pop("model_type")
|
84 |
+
|
85 |
+
from ..auto.configuration_auto import AutoConfig
|
86 |
+
|
87 |
+
self.encoder = AutoConfig.for_model(encoder_model_type, **encoder_config)
|
88 |
+
self.decoder = AutoConfig.for_model(decoder_model_type, **decoder_config)
|
89 |
+
self.is_encoder_decoder = True
|
90 |
+
|
91 |
+
@classmethod
|
92 |
+
def from_encoder_decoder_configs(
|
93 |
+
cls, encoder_config: PretrainedConfig, decoder_config: PretrainedConfig, **kwargs
|
94 |
+
) -> PretrainedConfig:
|
95 |
+
r"""
|
96 |
+
Instantiate a [`EncoderDecoderConfig`] (or a derived class) from a pre-trained encoder model configuration and
|
97 |
+
decoder model configuration.
|
98 |
+
|
99 |
+
Returns:
|
100 |
+
[`EncoderDecoderConfig`]: An instance of a configuration object
|
101 |
+
"""
|
102 |
+
logger.info("Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config")
|
103 |
+
decoder_config.is_decoder = True
|
104 |
+
decoder_config.add_cross_attention = True
|
105 |
+
|
106 |
+
return cls(encoder=encoder_config.to_dict(), decoder=decoder_config.to_dict(), **kwargs)
|
venv/lib/python3.10/site-packages/transformers/models/encoder_decoder/modeling_encoder_decoder.py
ADDED
@@ -0,0 +1,693 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Classes to support Encoder-Decoder architectures"""
|
16 |
+
|
17 |
+
|
18 |
+
import gc
|
19 |
+
import inspect
|
20 |
+
import os
|
21 |
+
import tempfile
|
22 |
+
import warnings
|
23 |
+
from typing import Optional, Tuple, Union
|
24 |
+
|
25 |
+
import torch
|
26 |
+
from torch import nn
|
27 |
+
from torch.nn import CrossEntropyLoss
|
28 |
+
|
29 |
+
from ...configuration_utils import PretrainedConfig
|
30 |
+
from ...modeling_outputs import BaseModelOutput, Seq2SeqLMOutput
|
31 |
+
from ...modeling_utils import PreTrainedModel
|
32 |
+
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
|
33 |
+
from ..auto.configuration_auto import AutoConfig
|
34 |
+
from ..auto.modeling_auto import AutoModel, AutoModelForCausalLM
|
35 |
+
from .configuration_encoder_decoder import EncoderDecoderConfig
|
36 |
+
|
37 |
+
|
38 |
+
logger = logging.get_logger(__name__)
|
39 |
+
|
40 |
+
_CONFIG_FOR_DOC = "EncoderDecoderConfig"
|
41 |
+
|
42 |
+
DEPRECATION_WARNING = (
|
43 |
+
"Version v4.12.0 introduces a better way to train encoder-decoder models by computing the loss inside the"
|
44 |
+
" encoder-decoder framework rather than in the decoder itself. You may observe training discrepancies if"
|
45 |
+
" fine-tuning a model trained with versions anterior to 4.12.0. The decoder_input_ids are now created based on the"
|
46 |
+
" labels, no need to pass them yourself anymore."
|
47 |
+
)
|
48 |
+
|
49 |
+
ENCODER_DECODER_START_DOCSTRING = r"""
|
50 |
+
This class can be used to initialize a sequence-to-sequence model with any pretrained autoencoding model as the
|
51 |
+
encoder and any pretrained autoregressive model as the decoder. The encoder is loaded via
|
52 |
+
[`~AutoModel.from_pretrained`] function and the decoder is loaded via [`~AutoModelForCausalLM.from_pretrained`]
|
53 |
+
function. Cross-attention layers are automatically added to the decoder and should be fine-tuned on a downstream
|
54 |
+
generative task, like summarization.
|
55 |
+
|
56 |
+
The effectiveness of initializing sequence-to-sequence models with pretrained checkpoints for sequence generation
|
57 |
+
tasks was shown in [Leveraging Pre-trained Checkpoints for Sequence Generation
|
58 |
+
Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn. Michael Matena, Yanqi
|
59 |
+
Zhou, Wei Li, Peter J. Liu.
|
60 |
+
|
61 |
+
After such an Encoder Decoder model has been trained/fine-tuned, it can be saved/loaded just like any other models
|
62 |
+
(see the examples for more information).
|
63 |
+
|
64 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
65 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
66 |
+
etc.)
|
67 |
+
|
68 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
69 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
70 |
+
and behavior.
|
71 |
+
|
72 |
+
Parameters:
|
73 |
+
config ([`EncoderDecoderConfig`]): Model configuration class with all the parameters of the model.
|
74 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
75 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
76 |
+
"""
|
77 |
+
|
78 |
+
ENCODER_DECODER_INPUTS_DOCSTRING = r"""
|
79 |
+
Args:
|
80 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
81 |
+
Indices of input sequence tokens in the vocabulary.
|
82 |
+
|
83 |
+
Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
84 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
85 |
+
|
86 |
+
[What are input IDs?](../glossary#input-ids)
|
87 |
+
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
88 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
89 |
+
|
90 |
+
- 1 for tokens that are **not masked**,
|
91 |
+
- 0 for tokens that are **masked**.
|
92 |
+
|
93 |
+
[What are attention masks?](../glossary#attention-mask)
|
94 |
+
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
95 |
+
Indices of decoder input sequence tokens in the vocabulary.
|
96 |
+
|
97 |
+
Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
98 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
99 |
+
|
100 |
+
[What are input IDs?](../glossary#input-ids)
|
101 |
+
|
102 |
+
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
103 |
+
`past_key_values`).
|
104 |
+
|
105 |
+
For training, `decoder_input_ids` are automatically created by the model by shifting the `labels` to the
|
106 |
+
right, replacing -100 by the `pad_token_id` and prepending them with the `decoder_start_token_id`.
|
107 |
+
decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
108 |
+
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
|
109 |
+
be used by default.
|
110 |
+
encoder_outputs (`tuple(torch.FloatTensor)`, *optional*):
|
111 |
+
This tuple must consist of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
|
112 |
+
`last_hidden_state` (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`) is a tensor
|
113 |
+
of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the
|
114 |
+
decoder.
|
115 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
116 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
117 |
+
|
118 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
119 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
120 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
121 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
122 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
123 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
124 |
+
model's internal embedding lookup matrix.
|
125 |
+
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
|
126 |
+
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
|
127 |
+
representation. This is useful if you want more control over how to convert `decoder_input_ids` indices
|
128 |
+
into associated vectors than the model's internal embedding lookup matrix.
|
129 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
130 |
+
Labels for computing the masked language modeling loss for the decoder. Indices should be in `[-100, 0,
|
131 |
+
..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored
|
132 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
133 |
+
use_cache (`bool`, *optional*):
|
134 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
135 |
+
`past_key_values`).
|
136 |
+
output_attentions (`bool`, *optional*):
|
137 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
138 |
+
tensors for more detail.
|
139 |
+
output_hidden_states (`bool`, *optional*):
|
140 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
141 |
+
more detail.
|
142 |
+
return_dict (`bool`, *optional*):
|
143 |
+
If set to `True`, the model will return a [`~utils.Seq2SeqLMOutput`] instead of a plain tuple.
|
144 |
+
kwargs (*optional*): Remaining dictionary of keyword arguments. Keyword arguments come in two flavors:
|
145 |
+
|
146 |
+
- Without a prefix which will be input as `**encoder_kwargs` for the encoder forward function.
|
147 |
+
- With a *decoder_* prefix which will be input as `**decoder_kwargs` for the decoder forward function.
|
148 |
+
"""
|
149 |
+
|
150 |
+
|
151 |
+
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
|
152 |
+
"""
|
153 |
+
Shift input ids one token to the right.
|
154 |
+
"""
|
155 |
+
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
|
156 |
+
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
|
157 |
+
if decoder_start_token_id is None:
|
158 |
+
raise ValueError("Make sure to set the decoder_start_token_id attribute of the model's configuration.")
|
159 |
+
shifted_input_ids[:, 0] = decoder_start_token_id
|
160 |
+
|
161 |
+
if pad_token_id is None:
|
162 |
+
raise ValueError("Make sure to set the pad_token_id attribute of the model's configuration.")
|
163 |
+
# replace possible -100 values in labels by `pad_token_id`
|
164 |
+
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
|
165 |
+
|
166 |
+
return shifted_input_ids
|
167 |
+
|
168 |
+
|
169 |
+
@add_start_docstrings(ENCODER_DECODER_START_DOCSTRING)
|
170 |
+
class EncoderDecoderModel(PreTrainedModel):
|
171 |
+
r"""
|
172 |
+
[`EncoderDecoderModel`] is a generic model class that will be instantiated as a transformer architecture with one
|
173 |
+
of the base model classes of the library as encoder and another one as decoder when created with the
|
174 |
+
:meth*~transformers.AutoModel.from_pretrained* class method for the encoder and
|
175 |
+
:meth*~transformers.AutoModelForCausalLM.from_pretrained* class method for the decoder.
|
176 |
+
"""
|
177 |
+
|
178 |
+
config_class = EncoderDecoderConfig
|
179 |
+
base_model_prefix = "encoder_decoder"
|
180 |
+
main_input_name = "input_ids"
|
181 |
+
supports_gradient_checkpointing = True
|
182 |
+
|
183 |
+
def __init__(
|
184 |
+
self,
|
185 |
+
config: Optional[PretrainedConfig] = None,
|
186 |
+
encoder: Optional[PreTrainedModel] = None,
|
187 |
+
decoder: Optional[PreTrainedModel] = None,
|
188 |
+
):
|
189 |
+
if config is None and (encoder is None or decoder is None):
|
190 |
+
raise ValueError("Either a configuration or an encoder and a decoder has to be provided.")
|
191 |
+
if config is None:
|
192 |
+
config = EncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config)
|
193 |
+
else:
|
194 |
+
if not isinstance(config, self.config_class):
|
195 |
+
raise ValueError(f"Config: {config} has to be of type {self.config_class}")
|
196 |
+
|
197 |
+
if config.decoder.cross_attention_hidden_size is not None:
|
198 |
+
if config.decoder.cross_attention_hidden_size != config.encoder.hidden_size:
|
199 |
+
raise ValueError(
|
200 |
+
"If `cross_attention_hidden_size` is specified in the decoder's configuration, it has to be equal"
|
201 |
+
f" to the encoder's `hidden_size`. Got {config.decoder.cross_attention_hidden_size} for"
|
202 |
+
f" `config.decoder.cross_attention_hidden_size` and {config.encoder.hidden_size} for"
|
203 |
+
" `config.encoder.hidden_size`."
|
204 |
+
)
|
205 |
+
|
206 |
+
# initialize with config
|
207 |
+
super().__init__(config)
|
208 |
+
|
209 |
+
if encoder is None:
|
210 |
+
from ..auto.modeling_auto import AutoModel
|
211 |
+
|
212 |
+
encoder = AutoModel.from_config(config.encoder)
|
213 |
+
|
214 |
+
if decoder is None:
|
215 |
+
from ..auto.modeling_auto import AutoModelForCausalLM
|
216 |
+
|
217 |
+
decoder = AutoModelForCausalLM.from_config(config.decoder)
|
218 |
+
|
219 |
+
self.encoder = encoder
|
220 |
+
self.decoder = decoder
|
221 |
+
|
222 |
+
if self.encoder.config.to_dict() != self.config.encoder.to_dict():
|
223 |
+
logger.warning(
|
224 |
+
f"Config of the encoder: {self.encoder.__class__} is overwritten by shared encoder config:"
|
225 |
+
f" {self.config.encoder}"
|
226 |
+
)
|
227 |
+
if self.decoder.config.to_dict() != self.config.decoder.to_dict():
|
228 |
+
logger.warning(
|
229 |
+
f"Config of the decoder: {self.decoder.__class__} is overwritten by shared decoder config:"
|
230 |
+
f" {self.config.decoder}"
|
231 |
+
)
|
232 |
+
|
233 |
+
# make sure that the individual model's config refers to the shared config
|
234 |
+
# so that the updates to the config will be synced
|
235 |
+
self.encoder.config = self.config.encoder
|
236 |
+
self.decoder.config = self.config.decoder
|
237 |
+
|
238 |
+
# encoder outputs might need to be projected to different dimension for decoder
|
239 |
+
if (
|
240 |
+
self.encoder.config.hidden_size != self.decoder.config.hidden_size
|
241 |
+
and self.decoder.config.cross_attention_hidden_size is None
|
242 |
+
):
|
243 |
+
self.enc_to_dec_proj = nn.Linear(self.encoder.config.hidden_size, self.decoder.config.hidden_size)
|
244 |
+
|
245 |
+
if self.encoder.get_output_embeddings() is not None:
|
246 |
+
raise ValueError(
|
247 |
+
f"The encoder {self.encoder} should not have a LM Head. Please use a model without LM Head"
|
248 |
+
)
|
249 |
+
|
250 |
+
decoder_signature = set(inspect.signature(self.decoder.forward).parameters.keys())
|
251 |
+
if "encoder_hidden_states" not in decoder_signature:
|
252 |
+
raise ValueError(
|
253 |
+
"The selected decoder is not prepared for the encoder hidden states to be passed. Please see the "
|
254 |
+
"following discussion on GitHub: https://github.com/huggingface/transformers/issues/23350"
|
255 |
+
)
|
256 |
+
|
257 |
+
# tie encoder, decoder weights if config set accordingly
|
258 |
+
self.tie_weights()
|
259 |
+
|
260 |
+
def tie_weights(self):
|
261 |
+
# tie encoder & decoder if needed
|
262 |
+
if self.config.tie_encoder_decoder:
|
263 |
+
# tie encoder and decoder base model
|
264 |
+
decoder_base_model_prefix = self.decoder.base_model_prefix
|
265 |
+
tied_weights = self._tie_encoder_decoder_weights(
|
266 |
+
self.encoder,
|
267 |
+
self.decoder._modules[decoder_base_model_prefix],
|
268 |
+
self.decoder.base_model_prefix,
|
269 |
+
"encoder",
|
270 |
+
)
|
271 |
+
# Setting a dynamic variable instead of `_tied_weights_keys` because it's a class
|
272 |
+
# attributed not an instance member, therefore modifying it will modify the entire class
|
273 |
+
# Leading to issues on subsequent calls by different tests or subsequent calls.
|
274 |
+
self._dynamic_tied_weights_keys = tied_weights
|
275 |
+
|
276 |
+
def get_encoder(self):
|
277 |
+
return self.encoder
|
278 |
+
|
279 |
+
def get_decoder(self):
|
280 |
+
return self.decoder
|
281 |
+
|
282 |
+
def get_input_embeddings(self):
|
283 |
+
return self.encoder.get_input_embeddings()
|
284 |
+
|
285 |
+
def get_output_embeddings(self):
|
286 |
+
return self.decoder.get_output_embeddings()
|
287 |
+
|
288 |
+
def set_output_embeddings(self, new_embeddings):
|
289 |
+
return self.decoder.set_output_embeddings(new_embeddings)
|
290 |
+
|
291 |
+
@classmethod
|
292 |
+
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
|
293 |
+
r"""
|
294 |
+
Example:
|
295 |
+
|
296 |
+
```python
|
297 |
+
>>> from transformers import EncoderDecoderModel
|
298 |
+
|
299 |
+
>>> model = EncoderDecoderModel.from_pretrained("patrickvonplaten/bert2bert-cnn_dailymail-fp16")
|
300 |
+
```"""
|
301 |
+
|
302 |
+
from_tf = kwargs.pop("from_tf", False)
|
303 |
+
if from_tf:
|
304 |
+
from transformers import TFEncoderDecoderModel
|
305 |
+
|
306 |
+
# a workaround to load from tensorflow checkpoint
|
307 |
+
# Using `_tf_model` won't work, because the weight names in the encoder/decoder of `_tf_model` get
|
308 |
+
# extended before saving those components. For example, The name of `_tf_model.encoder.vit` is
|
309 |
+
# `[top model name]/encoder/vit`, but the name of `tf_model.encoder.vit` is `[top model name]/vit`. The
|
310 |
+
# [top model name] is handled (stripped) by the conversion method, and the former case gets extra `encoder`,
|
311 |
+
# which should not occur when we want to save the components alone.
|
312 |
+
# There was a (very) ugly potential fix, which wasn't integrated to `transformers`: see
|
313 |
+
# https://github.com/huggingface/transformers/pull/13222/commits/dbb3c9de76eee235791d2064094654637c99f36d#r697304245
|
314 |
+
# (the change in `src/transformers/modeling_tf_utils.py`)
|
315 |
+
_tf_model = TFEncoderDecoderModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
|
316 |
+
config = _tf_model.config
|
317 |
+
|
318 |
+
# Using `tf_model` instead
|
319 |
+
encoder = _tf_model.encoder.__class__(_tf_model.config.encoder)
|
320 |
+
decoder = _tf_model.decoder.__class__(_tf_model.config.decoder)
|
321 |
+
# Make sure models are built
|
322 |
+
encoder(encoder.dummy_inputs)
|
323 |
+
decoder(decoder.dummy_inputs)
|
324 |
+
|
325 |
+
# Get the variable correspondence between `_tf_model` and `encoder` and `decoder`
|
326 |
+
encoder_variables = {}
|
327 |
+
for v in encoder.trainable_variables + encoder.non_trainable_variables:
|
328 |
+
encoder_variables["/".join(v.name.split("/")[1:])] = v
|
329 |
+
decoder_variables = {}
|
330 |
+
for v in decoder.trainable_variables + decoder.non_trainable_variables:
|
331 |
+
decoder_variables["/".join(v.name.split("/")[1:])] = v
|
332 |
+
|
333 |
+
_encoder_variables = {}
|
334 |
+
for v in _tf_model.encoder.trainable_variables + _tf_model.encoder.non_trainable_variables:
|
335 |
+
_encoder_variables["/".join(v.name.split("/")[2:])] = v
|
336 |
+
_decoder_variables = {}
|
337 |
+
for v in _tf_model.decoder.trainable_variables + _tf_model.decoder.non_trainable_variables:
|
338 |
+
_decoder_variables["/".join(v.name.split("/")[2:])] = v
|
339 |
+
|
340 |
+
# assign weight values to `encoder` and `decoder` from `_tf_model`
|
341 |
+
for name, v in encoder_variables.items():
|
342 |
+
v.assign(_encoder_variables[name])
|
343 |
+
for name, v in decoder_variables.items():
|
344 |
+
v.assign(_decoder_variables[name])
|
345 |
+
|
346 |
+
tf_model = TFEncoderDecoderModel(encoder=encoder, decoder=decoder)
|
347 |
+
|
348 |
+
# Deal with `enc_to_dec_proj`
|
349 |
+
if hasattr(_tf_model, "enc_to_dec_proj"):
|
350 |
+
tf_model(tf_model.dummy_inputs)
|
351 |
+
tf_model.enc_to_dec_proj.kernel.assign(_tf_model.enc_to_dec_proj.kernel)
|
352 |
+
tf_model.enc_to_dec_proj.bias.assign(_tf_model.enc_to_dec_proj.bias)
|
353 |
+
|
354 |
+
with tempfile.TemporaryDirectory() as tmpdirname:
|
355 |
+
encoder_dir = os.path.join(tmpdirname, "encoder")
|
356 |
+
decoder_dir = os.path.join(tmpdirname, "decoder")
|
357 |
+
tf_model.encoder.save_pretrained(encoder_dir)
|
358 |
+
tf_model.decoder.save_pretrained(decoder_dir)
|
359 |
+
|
360 |
+
if hasattr(tf_model, "enc_to_dec_proj"):
|
361 |
+
enc_to_dec_proj_weight = torch.transpose(
|
362 |
+
torch.from_numpy(tf_model.enc_to_dec_proj.kernel.numpy()), 1, 0
|
363 |
+
)
|
364 |
+
enc_to_dec_proj_bias = torch.from_numpy(tf_model.enc_to_dec_proj.bias.numpy())
|
365 |
+
|
366 |
+
del _tf_model
|
367 |
+
del tf_model
|
368 |
+
gc.collect()
|
369 |
+
|
370 |
+
model = EncoderDecoderModel.from_encoder_decoder_pretrained(
|
371 |
+
encoder_dir, decoder_dir, encoder_from_tf=True, decoder_from_tf=True
|
372 |
+
)
|
373 |
+
# This is only for copying some specific attributes of this particular model.
|
374 |
+
model.config = config
|
375 |
+
|
376 |
+
if hasattr(model, "enc_to_dec_proj"):
|
377 |
+
model.enc_to_dec_proj.weight.data = enc_to_dec_proj_weight.contiguous()
|
378 |
+
model.enc_to_dec_proj.bias.data = enc_to_dec_proj_bias.contiguous()
|
379 |
+
|
380 |
+
return model
|
381 |
+
|
382 |
+
# At the moment fast initialization is not supported for composite models
|
383 |
+
if kwargs.get("_fast_init", False):
|
384 |
+
logger.warning(
|
385 |
+
"Fast initialization is currently not supported for EncoderDecoderModel. "
|
386 |
+
"Falling back to slow initialization..."
|
387 |
+
)
|
388 |
+
kwargs["_fast_init"] = False
|
389 |
+
|
390 |
+
return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
|
391 |
+
|
392 |
+
@classmethod
|
393 |
+
def from_encoder_decoder_pretrained(
|
394 |
+
cls,
|
395 |
+
encoder_pretrained_model_name_or_path: str = None,
|
396 |
+
decoder_pretrained_model_name_or_path: str = None,
|
397 |
+
*model_args,
|
398 |
+
**kwargs,
|
399 |
+
) -> PreTrainedModel:
|
400 |
+
r"""
|
401 |
+
Instantiate an encoder and a decoder from one or two base classes of the library from pretrained model
|
402 |
+
checkpoints.
|
403 |
+
|
404 |
+
|
405 |
+
The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train
|
406 |
+
the model, you need to first set it back in training mode with `model.train()`.
|
407 |
+
|
408 |
+
Params:
|
409 |
+
encoder_pretrained_model_name_or_path (`str`, *optional*):
|
410 |
+
Information necessary to initiate the encoder. Can be either:
|
411 |
+
|
412 |
+
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
|
413 |
+
- A path to a *directory* containing model weights saved using
|
414 |
+
[`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
|
415 |
+
- A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In
|
416 |
+
this case, `from_tf` should be set to `True` and a configuration object should be provided as
|
417 |
+
`config` argument. This loading path is slower than converting the TensorFlow checkpoint in a
|
418 |
+
PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
|
419 |
+
|
420 |
+
decoder_pretrained_model_name_or_path (`str`, *optional*, defaults to `None`):
|
421 |
+
Information necessary to initiate the decoder. Can be either:
|
422 |
+
|
423 |
+
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
|
424 |
+
- A path to a *directory* containing model weights saved using
|
425 |
+
[`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
|
426 |
+
- A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In
|
427 |
+
this case, `from_tf` should be set to `True` and a configuration object should be provided as
|
428 |
+
`config` argument. This loading path is slower than converting the TensorFlow checkpoint in a
|
429 |
+
PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
|
430 |
+
|
431 |
+
model_args (remaining positional arguments, *optional*):
|
432 |
+
All remaining positional arguments will be passed to the underlying model's `__init__` method.
|
433 |
+
|
434 |
+
kwargs (remaining dictionary of keyword arguments, *optional*):
|
435 |
+
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
|
436 |
+
`output_attentions=True`).
|
437 |
+
|
438 |
+
- To update the encoder configuration, use the prefix *encoder_* for each configuration parameter.
|
439 |
+
- To update the decoder configuration, use the prefix *decoder_* for each configuration parameter.
|
440 |
+
- To update the parent model configuration, do not use a prefix for each configuration parameter.
|
441 |
+
|
442 |
+
Behaves differently depending on whether a `config` is provided or automatically loaded.
|
443 |
+
|
444 |
+
Example:
|
445 |
+
|
446 |
+
```python
|
447 |
+
>>> from transformers import EncoderDecoderModel
|
448 |
+
|
449 |
+
>>> # initialize a bert2bert from two pretrained BERT models. Note that the cross-attention layers will be randomly initialized
|
450 |
+
>>> model = EncoderDecoderModel.from_encoder_decoder_pretrained("google-bert/bert-base-uncased", "google-bert/bert-base-uncased")
|
451 |
+
>>> # saving model after fine-tuning
|
452 |
+
>>> model.save_pretrained("./bert2bert")
|
453 |
+
>>> # load fine-tuned model
|
454 |
+
>>> model = EncoderDecoderModel.from_pretrained("./bert2bert")
|
455 |
+
```"""
|
456 |
+
|
457 |
+
kwargs_encoder = {
|
458 |
+
argument[len("encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("encoder_")
|
459 |
+
}
|
460 |
+
|
461 |
+
kwargs_decoder = {
|
462 |
+
argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
|
463 |
+
}
|
464 |
+
|
465 |
+
# remove encoder, decoder kwargs from kwargs
|
466 |
+
for key in kwargs_encoder.keys():
|
467 |
+
del kwargs["encoder_" + key]
|
468 |
+
for key in kwargs_decoder.keys():
|
469 |
+
del kwargs["decoder_" + key]
|
470 |
+
|
471 |
+
# Load and initialize the encoder and decoder
|
472 |
+
# The distinction between encoder and decoder at the model level is made
|
473 |
+
# by the value of the flag `is_decoder` that we need to set correctly.
|
474 |
+
encoder = kwargs_encoder.pop("model", None)
|
475 |
+
if encoder is None:
|
476 |
+
if encoder_pretrained_model_name_or_path is None:
|
477 |
+
raise ValueError(
|
478 |
+
"If `encoder_model` is not defined as an argument, a `encoder_pretrained_model_name_or_path` has "
|
479 |
+
"to be defined."
|
480 |
+
)
|
481 |
+
|
482 |
+
if "config" not in kwargs_encoder:
|
483 |
+
encoder_config, kwargs_encoder = AutoConfig.from_pretrained(
|
484 |
+
encoder_pretrained_model_name_or_path, **kwargs_encoder, return_unused_kwargs=True
|
485 |
+
)
|
486 |
+
|
487 |
+
if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True:
|
488 |
+
logger.info(
|
489 |
+
f"Initializing {encoder_pretrained_model_name_or_path} as a encoder model "
|
490 |
+
"from a decoder model. Cross-attention and casual mask are disabled."
|
491 |
+
)
|
492 |
+
encoder_config.is_decoder = False
|
493 |
+
encoder_config.add_cross_attention = False
|
494 |
+
|
495 |
+
kwargs_encoder["config"] = encoder_config
|
496 |
+
|
497 |
+
encoder = AutoModel.from_pretrained(encoder_pretrained_model_name_or_path, *model_args, **kwargs_encoder)
|
498 |
+
|
499 |
+
decoder = kwargs_decoder.pop("model", None)
|
500 |
+
if decoder is None:
|
501 |
+
if decoder_pretrained_model_name_or_path is None:
|
502 |
+
raise ValueError(
|
503 |
+
"If `decoder_model` is not defined as an argument, a `decoder_pretrained_model_name_or_path` has "
|
504 |
+
"to be defined."
|
505 |
+
)
|
506 |
+
|
507 |
+
if "config" not in kwargs_decoder:
|
508 |
+
decoder_config, kwargs_decoder = AutoConfig.from_pretrained(
|
509 |
+
decoder_pretrained_model_name_or_path, **kwargs_decoder, return_unused_kwargs=True
|
510 |
+
)
|
511 |
+
|
512 |
+
if decoder_config.is_decoder is False or decoder_config.add_cross_attention is False:
|
513 |
+
logger.info(
|
514 |
+
f"Initializing {decoder_pretrained_model_name_or_path} as a decoder model. Cross attention"
|
515 |
+
f" layers are added to {decoder_pretrained_model_name_or_path} and randomly initialized if"
|
516 |
+
f" {decoder_pretrained_model_name_or_path}'s architecture allows for cross attention layers."
|
517 |
+
)
|
518 |
+
decoder_config.is_decoder = True
|
519 |
+
decoder_config.add_cross_attention = True
|
520 |
+
|
521 |
+
kwargs_decoder["config"] = decoder_config
|
522 |
+
|
523 |
+
if kwargs_decoder["config"].is_decoder is False or kwargs_decoder["config"].add_cross_attention is False:
|
524 |
+
logger.warning(
|
525 |
+
f"Decoder model {decoder_pretrained_model_name_or_path} is not initialized as a decoder. "
|
526 |
+
f"In order to initialize {decoder_pretrained_model_name_or_path} as a decoder, "
|
527 |
+
"make sure that the attributes `is_decoder` and `add_cross_attention` of `decoder_config` "
|
528 |
+
"passed to `.from_encoder_decoder_pretrained(...)` are set to `True` or do not pass a "
|
529 |
+
"`decoder_config` to `.from_encoder_decoder_pretrained(...)`"
|
530 |
+
)
|
531 |
+
|
532 |
+
decoder = AutoModelForCausalLM.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs_decoder)
|
533 |
+
|
534 |
+
# instantiate config with corresponding kwargs
|
535 |
+
config = EncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config, **kwargs)
|
536 |
+
return cls(encoder=encoder, decoder=decoder, config=config)
|
537 |
+
|
538 |
+
@add_start_docstrings_to_model_forward(ENCODER_DECODER_INPUTS_DOCSTRING)
|
539 |
+
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
|
540 |
+
def forward(
|
541 |
+
self,
|
542 |
+
input_ids: Optional[torch.LongTensor] = None,
|
543 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
544 |
+
decoder_input_ids: Optional[torch.LongTensor] = None,
|
545 |
+
decoder_attention_mask: Optional[torch.BoolTensor] = None,
|
546 |
+
encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None,
|
547 |
+
past_key_values: Tuple[Tuple[torch.FloatTensor]] = None,
|
548 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
549 |
+
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
|
550 |
+
labels: Optional[torch.LongTensor] = None,
|
551 |
+
use_cache: Optional[bool] = None,
|
552 |
+
output_attentions: Optional[bool] = None,
|
553 |
+
output_hidden_states: Optional[bool] = None,
|
554 |
+
return_dict: Optional[bool] = None,
|
555 |
+
**kwargs,
|
556 |
+
) -> Union[Tuple, Seq2SeqLMOutput]:
|
557 |
+
r"""
|
558 |
+
Returns:
|
559 |
+
|
560 |
+
Examples:
|
561 |
+
|
562 |
+
```python
|
563 |
+
>>> from transformers import EncoderDecoderModel, BertTokenizer
|
564 |
+
>>> import torch
|
565 |
+
|
566 |
+
>>> tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-uncased")
|
567 |
+
>>> model = EncoderDecoderModel.from_encoder_decoder_pretrained(
|
568 |
+
... "google-bert/bert-base-uncased", "google-bert/bert-base-uncased"
|
569 |
+
... ) # initialize Bert2Bert from pre-trained checkpoints
|
570 |
+
|
571 |
+
>>> # training
|
572 |
+
>>> model.config.decoder_start_token_id = tokenizer.cls_token_id
|
573 |
+
>>> model.config.pad_token_id = tokenizer.pad_token_id
|
574 |
+
>>> model.config.vocab_size = model.config.decoder.vocab_size
|
575 |
+
|
576 |
+
>>> input_ids = tokenizer("This is a really long text", return_tensors="pt").input_ids
|
577 |
+
>>> labels = tokenizer("This is the corresponding summary", return_tensors="pt").input_ids
|
578 |
+
>>> outputs = model(input_ids=input_ids, labels=labels)
|
579 |
+
>>> loss, logits = outputs.loss, outputs.logits
|
580 |
+
|
581 |
+
>>> # save and load from pretrained
|
582 |
+
>>> model.save_pretrained("bert2bert")
|
583 |
+
>>> model = EncoderDecoderModel.from_pretrained("bert2bert")
|
584 |
+
|
585 |
+
>>> # generation
|
586 |
+
>>> generated = model.generate(input_ids)
|
587 |
+
```"""
|
588 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
589 |
+
|
590 |
+
kwargs_encoder = {argument: value for argument, value in kwargs.items() if not argument.startswith("decoder_")}
|
591 |
+
|
592 |
+
kwargs_decoder = {
|
593 |
+
argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
|
594 |
+
}
|
595 |
+
|
596 |
+
if encoder_outputs is None:
|
597 |
+
encoder_outputs = self.encoder(
|
598 |
+
input_ids=input_ids,
|
599 |
+
attention_mask=attention_mask,
|
600 |
+
inputs_embeds=inputs_embeds,
|
601 |
+
output_attentions=output_attentions,
|
602 |
+
output_hidden_states=output_hidden_states,
|
603 |
+
return_dict=return_dict,
|
604 |
+
**kwargs_encoder,
|
605 |
+
)
|
606 |
+
elif isinstance(encoder_outputs, tuple):
|
607 |
+
encoder_outputs = BaseModelOutput(*encoder_outputs)
|
608 |
+
|
609 |
+
encoder_hidden_states = encoder_outputs[0]
|
610 |
+
|
611 |
+
# optionally project encoder_hidden_states
|
612 |
+
if (
|
613 |
+
self.encoder.config.hidden_size != self.decoder.config.hidden_size
|
614 |
+
and self.decoder.config.cross_attention_hidden_size is None
|
615 |
+
):
|
616 |
+
encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states)
|
617 |
+
|
618 |
+
if (labels is not None) and (decoder_input_ids is None and decoder_inputs_embeds is None):
|
619 |
+
decoder_input_ids = shift_tokens_right(
|
620 |
+
labels, self.config.pad_token_id, self.config.decoder_start_token_id
|
621 |
+
)
|
622 |
+
if decoder_attention_mask is None:
|
623 |
+
decoder_attention_mask = decoder_input_ids.new_tensor(decoder_input_ids != self.config.pad_token_id)
|
624 |
+
|
625 |
+
# Decode
|
626 |
+
decoder_outputs = self.decoder(
|
627 |
+
input_ids=decoder_input_ids,
|
628 |
+
attention_mask=decoder_attention_mask,
|
629 |
+
encoder_hidden_states=encoder_hidden_states,
|
630 |
+
encoder_attention_mask=attention_mask,
|
631 |
+
inputs_embeds=decoder_inputs_embeds,
|
632 |
+
output_attentions=output_attentions,
|
633 |
+
output_hidden_states=output_hidden_states,
|
634 |
+
use_cache=use_cache,
|
635 |
+
past_key_values=past_key_values,
|
636 |
+
return_dict=return_dict,
|
637 |
+
**kwargs_decoder,
|
638 |
+
)
|
639 |
+
|
640 |
+
# Compute loss independent from decoder (as some shift the logits inside them)
|
641 |
+
loss = None
|
642 |
+
if labels is not None:
|
643 |
+
warnings.warn(DEPRECATION_WARNING, FutureWarning)
|
644 |
+
logits = decoder_outputs.logits if return_dict else decoder_outputs[0]
|
645 |
+
loss_fct = CrossEntropyLoss()
|
646 |
+
loss = loss_fct(logits.reshape(-1, self.decoder.config.vocab_size), labels.view(-1))
|
647 |
+
|
648 |
+
if not return_dict:
|
649 |
+
if loss is not None:
|
650 |
+
return (loss,) + decoder_outputs + encoder_outputs
|
651 |
+
else:
|
652 |
+
return decoder_outputs + encoder_outputs
|
653 |
+
|
654 |
+
return Seq2SeqLMOutput(
|
655 |
+
loss=loss,
|
656 |
+
logits=decoder_outputs.logits,
|
657 |
+
past_key_values=decoder_outputs.past_key_values,
|
658 |
+
decoder_hidden_states=decoder_outputs.hidden_states,
|
659 |
+
decoder_attentions=decoder_outputs.attentions,
|
660 |
+
cross_attentions=decoder_outputs.cross_attentions,
|
661 |
+
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
662 |
+
encoder_hidden_states=encoder_outputs.hidden_states,
|
663 |
+
encoder_attentions=encoder_outputs.attentions,
|
664 |
+
)
|
665 |
+
|
666 |
+
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
|
667 |
+
return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id)
|
668 |
+
|
669 |
+
def prepare_inputs_for_generation(
|
670 |
+
self, input_ids, past_key_values=None, attention_mask=None, use_cache=None, encoder_outputs=None, **kwargs
|
671 |
+
):
|
672 |
+
decoder_inputs = self.decoder.prepare_inputs_for_generation(input_ids, past_key_values=past_key_values)
|
673 |
+
decoder_attention_mask = decoder_inputs["attention_mask"] if "attention_mask" in decoder_inputs else None
|
674 |
+
input_dict = {
|
675 |
+
"attention_mask": attention_mask,
|
676 |
+
"decoder_attention_mask": decoder_attention_mask,
|
677 |
+
"decoder_input_ids": decoder_inputs["input_ids"],
|
678 |
+
"encoder_outputs": encoder_outputs,
|
679 |
+
"past_key_values": decoder_inputs["past_key_values"],
|
680 |
+
"use_cache": use_cache,
|
681 |
+
}
|
682 |
+
return input_dict
|
683 |
+
|
684 |
+
def resize_token_embeddings(self, *args, **kwargs):
|
685 |
+
raise NotImplementedError(
|
686 |
+
"Resizing the embedding layers via the EncoderDecoderModel directly is not supported. Please use the"
|
687 |
+
" respective methods of the wrapped objects (model.encoder.resize_token_embeddings(...) or"
|
688 |
+
" model.decoder.resize_token_embeddings(...))"
|
689 |
+
)
|
690 |
+
|
691 |
+
def _reorder_cache(self, past_key_values, beam_idx):
|
692 |
+
# apply decoder cache reordering here
|
693 |
+
return self.decoder._reorder_cache(past_key_values, beam_idx)
|
venv/lib/python3.10/site-packages/transformers/models/encoder_decoder/modeling_flax_encoder_decoder.py
ADDED
@@ -0,0 +1,899 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Classes to support Flax Encoder-Decoder architectures"""
|
16 |
+
|
17 |
+
|
18 |
+
import os
|
19 |
+
from typing import Optional, Tuple, Union
|
20 |
+
|
21 |
+
import flax.linen as nn
|
22 |
+
import jax
|
23 |
+
import jax.numpy as jnp
|
24 |
+
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
|
25 |
+
from flax.traverse_util import flatten_dict, unflatten_dict
|
26 |
+
from jax import lax
|
27 |
+
from jax.random import PRNGKey
|
28 |
+
|
29 |
+
from ...modeling_flax_outputs import FlaxBaseModelOutput, FlaxCausalLMOutputWithCrossAttentions, FlaxSeq2SeqLMOutput
|
30 |
+
from ...modeling_flax_utils import FlaxPreTrainedModel
|
31 |
+
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
|
32 |
+
from ..auto.configuration_auto import AutoConfig
|
33 |
+
from ..auto.modeling_flax_auto import FlaxAutoModel, FlaxAutoModelForCausalLM
|
34 |
+
from .configuration_encoder_decoder import EncoderDecoderConfig
|
35 |
+
|
36 |
+
|
37 |
+
logger = logging.get_logger(__name__)
|
38 |
+
|
39 |
+
_CONFIG_FOR_DOC = "EncoderDecoderConfig"
|
40 |
+
|
41 |
+
ENCODER_DECODER_START_DOCSTRING = r"""
|
42 |
+
This class can be used to initialize a sequence-to-sequence model with any pretrained autoencoding model as the
|
43 |
+
encoder and any pretrained autoregressive model as the decoder. The encoder is loaded via
|
44 |
+
[`~AutoModel.from_pretrained`] function and the decoder is loaded via [`~AutoModelForCausalLM.from_pretrained`]
|
45 |
+
function. Cross-attention layers are automatically added to the decoder and should be fine-tuned on a downstream
|
46 |
+
generative task, like summarization.
|
47 |
+
|
48 |
+
The effectiveness of initializing sequence-to-sequence models with pretrained checkpoints for sequence generation
|
49 |
+
tasks was shown in [Leveraging Pre-trained Checkpoints for Sequence Generation
|
50 |
+
Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn. Michael Matena, Yanqi
|
51 |
+
Zhou, Wei Li, Peter J. Liu.
|
52 |
+
|
53 |
+
After such an Encoder Decoder model has been trained/fine-tuned, it can be saved/loaded just like any other models
|
54 |
+
(see the examples for more information).
|
55 |
+
|
56 |
+
This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
|
57 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
58 |
+
etc.)
|
59 |
+
|
60 |
+
This model is also a Flax Linen
|
61 |
+
[flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a
|
62 |
+
regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.
|
63 |
+
|
64 |
+
Parameters:
|
65 |
+
config ([`EncoderDecoderConfig`]): Model configuration class with all the parameters of the model.
|
66 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
67 |
+
configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
|
68 |
+
dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
|
69 |
+
The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
|
70 |
+
`jax.numpy.bfloat16` (on TPUs).
|
71 |
+
|
72 |
+
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
|
73 |
+
specified all the computation will be performed with the given `dtype`.
|
74 |
+
|
75 |
+
**Note that this only specifies the dtype of the computation and does not influence the dtype of model
|
76 |
+
parameters.**
|
77 |
+
|
78 |
+
If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and
|
79 |
+
[`~FlaxPreTrainedModel.to_bf16`].
|
80 |
+
"""
|
81 |
+
|
82 |
+
ENCODER_DECODER_INPUTS_DOCSTRING = r"""
|
83 |
+
Args:
|
84 |
+
input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):
|
85 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
86 |
+
it.
|
87 |
+
|
88 |
+
Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
89 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
90 |
+
|
91 |
+
[What are input IDs?](../glossary#input-ids)
|
92 |
+
attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
|
93 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
94 |
+
|
95 |
+
- 1 for tokens that are **not masked**,
|
96 |
+
- 0 for tokens that are **masked**.
|
97 |
+
|
98 |
+
[What are attention masks?](../glossary#attention-mask)
|
99 |
+
decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*):
|
100 |
+
Indices of decoder input sequence tokens in the vocabulary.
|
101 |
+
|
102 |
+
Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
103 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
104 |
+
|
105 |
+
[What are decoder input IDs?](../glossary#decoder-input-ids)
|
106 |
+
|
107 |
+
For sequence to sequence training, `decoder_input_ids` should be provided. `decoder_input_ids` should be
|
108 |
+
created outside of the model by shifting the `labels` to the right, replacing -100 by the `pad_token_id`
|
109 |
+
and prepending them with the `decoder_start_token_id`.
|
110 |
+
decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*):
|
111 |
+
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
|
112 |
+
be used by default.
|
113 |
+
position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
|
114 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
115 |
+
config.encoder.max_position_embeddings - 1]`.
|
116 |
+
decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
|
117 |
+
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
|
118 |
+
range `[0, config.decoder.max_position_embeddings - 1]`.
|
119 |
+
output_attentions (`bool`, *optional*):
|
120 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
121 |
+
tensors for more detail.
|
122 |
+
output_hidden_states (`bool`, *optional*):
|
123 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
124 |
+
more detail.
|
125 |
+
return_dict (`bool`, *optional*):
|
126 |
+
If set to `True`, the model will return a [`~utils.FlaxSeq2SeqLMOutput`] instead of a plain tuple.
|
127 |
+
"""
|
128 |
+
|
129 |
+
ENCODER_DECODER_ENCODE_INPUTS_DOCSTRING = r"""
|
130 |
+
Args:
|
131 |
+
input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):
|
132 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
133 |
+
it.
|
134 |
+
|
135 |
+
Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
136 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
137 |
+
|
138 |
+
[What are input IDs?](../glossary#input-ids)
|
139 |
+
attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
|
140 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
141 |
+
|
142 |
+
- 1 for tokens that are **not masked**,
|
143 |
+
- 0 for tokens that are **masked**.
|
144 |
+
|
145 |
+
[What are attention masks?](../glossary#attention-mask)
|
146 |
+
position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
|
147 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
148 |
+
config.encoder.max_position_embeddings - 1]`.
|
149 |
+
output_attentions (`bool`, *optional*):
|
150 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
151 |
+
tensors for more detail.
|
152 |
+
output_hidden_states (`bool`, *optional*):
|
153 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
154 |
+
more detail.
|
155 |
+
return_dict (`bool`, *optional*):
|
156 |
+
If set to `True`, the model will return a [`~utils.FlaxBaseModelOutput`] instead of a plain tuple.
|
157 |
+
"""
|
158 |
+
|
159 |
+
ENCODER_DECODER_DECODE_INPUTS_DOCSTRING = r"""
|
160 |
+
Args:
|
161 |
+
decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*):
|
162 |
+
Indices of decoder input sequence tokens in the vocabulary.
|
163 |
+
|
164 |
+
Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
165 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
166 |
+
|
167 |
+
[What are decoder input IDs?](../glossary#decoder-input-ids)
|
168 |
+
|
169 |
+
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
170 |
+
`past_key_values`).
|
171 |
+
|
172 |
+
For sequence to sequence training, `decoder_input_ids` should be provided. `decoder_input_ids` should be
|
173 |
+
created outside of the model by shifting the `labels` to the right, replacing -100 by the `pad_token_id`
|
174 |
+
and prepending them with the `decoder_start_token_id`.
|
175 |
+
encoder_outputs (`tuple(tuple(jnp.ndarray)`):
|
176 |
+
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
|
177 |
+
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
|
178 |
+
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
|
179 |
+
encoder_attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
|
180 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
181 |
+
|
182 |
+
- 1 for tokens that are **not masked**,
|
183 |
+
- 0 for tokens that are **masked**.
|
184 |
+
|
185 |
+
[What are attention masks?](../glossary#attention-mask)
|
186 |
+
decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*):
|
187 |
+
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
|
188 |
+
be used by default.
|
189 |
+
decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
|
190 |
+
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
|
191 |
+
range `[0, config.decoder.max_position_embeddings - 1]`.
|
192 |
+
past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`):
|
193 |
+
Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast
|
194 |
+
auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*.
|
195 |
+
output_attentions (`bool`, *optional*):
|
196 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
197 |
+
tensors for more detail.
|
198 |
+
output_hidden_states (`bool`, *optional*):
|
199 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
200 |
+
more detail.
|
201 |
+
return_dict (`bool`, *optional*):
|
202 |
+
If set to `True`, the model will return a [`~utils.FlaxCausalLMOutputWithCrossAttentions`] instead of a
|
203 |
+
plain tuple.
|
204 |
+
"""
|
205 |
+
|
206 |
+
|
207 |
+
class FlaxEncoderDecoderModule(nn.Module):
|
208 |
+
config: EncoderDecoderConfig
|
209 |
+
dtype: jnp.dtype = jnp.float32
|
210 |
+
|
211 |
+
def setup(self):
|
212 |
+
encoder_config = self.config.encoder
|
213 |
+
decoder_config = self.config.decoder
|
214 |
+
|
215 |
+
# Copied from `modeling_hybrid_clip.py` with modifications.
|
216 |
+
from ...models.auto.modeling_flax_auto import FLAX_MODEL_FOR_CAUSAL_LM_MAPPING, FLAX_MODEL_MAPPING
|
217 |
+
|
218 |
+
encoder_module = FLAX_MODEL_MAPPING[encoder_config.__class__].module_class
|
219 |
+
decoder_module = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING[decoder_config.__class__].module_class
|
220 |
+
|
221 |
+
self.encoder = encoder_module(encoder_config, dtype=self.dtype)
|
222 |
+
self.decoder = decoder_module(decoder_config, dtype=self.dtype)
|
223 |
+
|
224 |
+
# encoder outputs might need to be projected to different dimension for decoder
|
225 |
+
if (
|
226 |
+
self.encoder.config.hidden_size != self.decoder.config.hidden_size
|
227 |
+
and self.decoder.config.cross_attention_hidden_size is None
|
228 |
+
):
|
229 |
+
self.enc_to_dec_proj = nn.Dense(
|
230 |
+
self.decoder.config.hidden_size,
|
231 |
+
kernel_init=jax.nn.initializers.normal(self.decoder.config.initializer_range),
|
232 |
+
dtype=self.dtype,
|
233 |
+
)
|
234 |
+
else:
|
235 |
+
self.enc_to_dec_proj = None
|
236 |
+
|
237 |
+
def _get_encoder_module(self):
|
238 |
+
return self.encoder
|
239 |
+
|
240 |
+
def _get_projection_module(self):
|
241 |
+
return self.enc_to_dec_proj
|
242 |
+
|
243 |
+
def _get_decoder_module(self):
|
244 |
+
return self.decoder
|
245 |
+
|
246 |
+
def __call__(
|
247 |
+
self,
|
248 |
+
input_ids,
|
249 |
+
attention_mask,
|
250 |
+
decoder_input_ids,
|
251 |
+
decoder_attention_mask,
|
252 |
+
position_ids,
|
253 |
+
decoder_position_ids,
|
254 |
+
output_attentions: bool = False,
|
255 |
+
output_hidden_states: bool = False,
|
256 |
+
return_dict: bool = True,
|
257 |
+
deterministic: bool = True,
|
258 |
+
):
|
259 |
+
encoder_outputs = self.encoder(
|
260 |
+
input_ids=input_ids,
|
261 |
+
attention_mask=attention_mask,
|
262 |
+
position_ids=position_ids,
|
263 |
+
output_attentions=output_attentions,
|
264 |
+
output_hidden_states=output_hidden_states,
|
265 |
+
return_dict=return_dict,
|
266 |
+
deterministic=deterministic,
|
267 |
+
)
|
268 |
+
|
269 |
+
encoder_hidden_states = encoder_outputs[0]
|
270 |
+
|
271 |
+
# optionally project encoder_hidden_states
|
272 |
+
if self.enc_to_dec_proj is not None:
|
273 |
+
encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states)
|
274 |
+
|
275 |
+
decoder_outputs = self.decoder(
|
276 |
+
input_ids=decoder_input_ids,
|
277 |
+
attention_mask=decoder_attention_mask,
|
278 |
+
position_ids=decoder_position_ids,
|
279 |
+
encoder_hidden_states=encoder_hidden_states,
|
280 |
+
encoder_attention_mask=attention_mask,
|
281 |
+
output_attentions=output_attentions,
|
282 |
+
output_hidden_states=output_hidden_states,
|
283 |
+
return_dict=return_dict,
|
284 |
+
deterministic=deterministic,
|
285 |
+
)
|
286 |
+
|
287 |
+
if not return_dict:
|
288 |
+
return decoder_outputs + encoder_outputs
|
289 |
+
|
290 |
+
return FlaxSeq2SeqLMOutput(
|
291 |
+
logits=decoder_outputs.logits,
|
292 |
+
decoder_hidden_states=decoder_outputs.hidden_states,
|
293 |
+
decoder_attentions=decoder_outputs.attentions,
|
294 |
+
cross_attentions=decoder_outputs.cross_attentions,
|
295 |
+
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
296 |
+
encoder_hidden_states=encoder_outputs.hidden_states,
|
297 |
+
encoder_attentions=encoder_outputs.attentions,
|
298 |
+
)
|
299 |
+
|
300 |
+
|
301 |
+
@add_start_docstrings(ENCODER_DECODER_START_DOCSTRING)
|
302 |
+
class FlaxEncoderDecoderModel(FlaxPreTrainedModel):
|
303 |
+
r"""
|
304 |
+
[`FlaxEncoderDecoderModel`] is a generic model class that will be instantiated as a transformer architecture with
|
305 |
+
the module (flax.nn.Module) of one of the base model classes of the library as encoder module and another one as
|
306 |
+
decoder module when created with the :meth*~transformers.FlaxAutoModel.from_pretrained* class method for the
|
307 |
+
encoder and :meth*~transformers.FlaxAutoModelForCausalLM.from_pretrained* class method for the decoder.
|
308 |
+
"""
|
309 |
+
|
310 |
+
config_class = EncoderDecoderConfig
|
311 |
+
base_model_prefix = "encoder_decoder"
|
312 |
+
module_class = FlaxEncoderDecoderModule
|
313 |
+
|
314 |
+
def __init__(
|
315 |
+
self,
|
316 |
+
config: EncoderDecoderConfig,
|
317 |
+
input_shape: Optional[Tuple] = None,
|
318 |
+
seed: int = 0,
|
319 |
+
dtype: jnp.dtype = jnp.float32,
|
320 |
+
_do_init: bool = True,
|
321 |
+
**kwargs,
|
322 |
+
):
|
323 |
+
if input_shape is None:
|
324 |
+
input_shape = ((1, 1), (1, 1))
|
325 |
+
|
326 |
+
if not _do_init:
|
327 |
+
raise ValueError(
|
328 |
+
"`FlaxEncoderDecoderModel` cannot be created without initializing, `_do_init` must be `True`."
|
329 |
+
)
|
330 |
+
|
331 |
+
if config.decoder.cross_attention_hidden_size is not None:
|
332 |
+
if config.decoder.cross_attention_hidden_size != config.encoder.hidden_size:
|
333 |
+
raise ValueError(
|
334 |
+
"If `cross_attention_hidden_size` is specified in the decoder's configuration, it has to be equal"
|
335 |
+
f" to the encoder's `hidden_size`. Got {config.decoder.cross_attention_hidden_size} for"
|
336 |
+
f" `config.decoder.cross_attention_hidden_size` and {config.encoder.hidden_size} for"
|
337 |
+
" `config.encoder.hidden_size`."
|
338 |
+
)
|
339 |
+
|
340 |
+
module = self.module_class(config=config, dtype=dtype, **kwargs)
|
341 |
+
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
|
342 |
+
|
343 |
+
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
|
344 |
+
encoder_input_shape, decoder_input_shape = input_shape
|
345 |
+
|
346 |
+
# init input tensors
|
347 |
+
input_ids = jnp.zeros(encoder_input_shape, dtype="i4")
|
348 |
+
attention_mask = jnp.ones_like(input_ids)
|
349 |
+
decoder_input_ids = jnp.zeros(decoder_input_shape, dtype="i4")
|
350 |
+
decoder_attention_mask = jnp.ones_like(decoder_input_ids)
|
351 |
+
|
352 |
+
batch_size, sequence_length = input_ids.shape
|
353 |
+
position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
|
354 |
+
|
355 |
+
decoder_batch_size, decoder_sequence_length = decoder_input_ids.shape
|
356 |
+
if not decoder_batch_size == batch_size:
|
357 |
+
raise ValueError(
|
358 |
+
f"The inputs of encoder and decoder should have the same batch size, but got {batch_size} for encoder"
|
359 |
+
f" and {decoder_batch_size} for decoder."
|
360 |
+
)
|
361 |
+
decoder_position_ids = jnp.broadcast_to(
|
362 |
+
jnp.arange(decoder_sequence_length)[None, :], (decoder_batch_size, decoder_sequence_length)
|
363 |
+
)
|
364 |
+
|
365 |
+
params_rng, dropout_rng = jax.random.split(rng)
|
366 |
+
rngs = {"params": params_rng, "dropout": dropout_rng}
|
367 |
+
|
368 |
+
random_params = self.module.init(
|
369 |
+
rngs,
|
370 |
+
input_ids,
|
371 |
+
attention_mask,
|
372 |
+
decoder_input_ids,
|
373 |
+
decoder_attention_mask,
|
374 |
+
position_ids,
|
375 |
+
decoder_position_ids,
|
376 |
+
)["params"]
|
377 |
+
|
378 |
+
if params is not None:
|
379 |
+
random_params = flatten_dict(unfreeze(random_params))
|
380 |
+
params = flatten_dict(unfreeze(params))
|
381 |
+
for missing_key in self._missing_keys:
|
382 |
+
params[missing_key] = random_params[missing_key]
|
383 |
+
self._missing_keys = set()
|
384 |
+
return freeze(unflatten_dict(params))
|
385 |
+
else:
|
386 |
+
return random_params
|
387 |
+
|
388 |
+
def init_cache(self, batch_size, max_length, encoder_outputs):
|
389 |
+
r"""
|
390 |
+
Args:
|
391 |
+
batch_size (`int`):
|
392 |
+
batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
|
393 |
+
max_length (`int`):
|
394 |
+
maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
|
395 |
+
cache.
|
396 |
+
encoder_outputs (`Union[FlaxBaseModelOutput, tuple(tuple(jnp.ndarray)]`):
|
397 |
+
`encoder_outputs` consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*:
|
398 |
+
`attentions`). `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*)
|
399 |
+
is a sequence of hidden-states at the output of the last layer of the encoder. Used in the
|
400 |
+
cross-attention of the decoder.
|
401 |
+
"""
|
402 |
+
# init input variables to retrieve cache
|
403 |
+
decoder_input_ids = jnp.ones((batch_size, max_length), dtype="i4")
|
404 |
+
decoder_attention_mask = jnp.ones_like(decoder_input_ids)
|
405 |
+
decoder_position_ids = jnp.broadcast_to(
|
406 |
+
jnp.arange(jnp.atleast_2d(decoder_input_ids).shape[-1]), decoder_input_ids.shape
|
407 |
+
)
|
408 |
+
|
409 |
+
def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs):
|
410 |
+
decoder_module = module._get_decoder_module()
|
411 |
+
return decoder_module(
|
412 |
+
input_ids=decoder_input_ids,
|
413 |
+
attention_mask=decoder_attention_mask,
|
414 |
+
position_ids=decoder_position_ids,
|
415 |
+
**kwargs,
|
416 |
+
)
|
417 |
+
|
418 |
+
init_variables = self.module.init(
|
419 |
+
jax.random.PRNGKey(0),
|
420 |
+
decoder_input_ids=decoder_input_ids,
|
421 |
+
decoder_attention_mask=decoder_attention_mask,
|
422 |
+
decoder_position_ids=decoder_position_ids,
|
423 |
+
encoder_hidden_states=encoder_outputs[0],
|
424 |
+
init_cache=True,
|
425 |
+
method=_decoder_forward, # we only need to call the decoder to init the cache
|
426 |
+
)
|
427 |
+
return unfreeze(init_variables["cache"])
|
428 |
+
|
429 |
+
@add_start_docstrings(ENCODER_DECODER_ENCODE_INPUTS_DOCSTRING)
|
430 |
+
@replace_return_docstrings(output_type=FlaxBaseModelOutput, config_class=_CONFIG_FOR_DOC)
|
431 |
+
def encode(
|
432 |
+
self,
|
433 |
+
input_ids: jnp.ndarray,
|
434 |
+
attention_mask: Optional[jnp.ndarray] = None,
|
435 |
+
position_ids: Optional[jnp.ndarray] = None,
|
436 |
+
output_attentions: Optional[bool] = None,
|
437 |
+
output_hidden_states: Optional[bool] = None,
|
438 |
+
return_dict: Optional[bool] = None,
|
439 |
+
train: bool = False,
|
440 |
+
params: dict = None,
|
441 |
+
dropout_rng: PRNGKey = None,
|
442 |
+
):
|
443 |
+
r"""
|
444 |
+
Returns:
|
445 |
+
|
446 |
+
Example:
|
447 |
+
|
448 |
+
```python
|
449 |
+
>>> from transformers import FlaxEncoderDecoderModel, BertTokenizer
|
450 |
+
|
451 |
+
>>> # initialize a bert2gpt2 from pretrained BERT and GPT2 models. Note that the cross-attention layers will be randomly initialized
|
452 |
+
>>> model = FlaxEncoderDecoderModel.from_encoder_decoder_pretrained("google-bert/bert-base-cased", "openai-community/gpt2")
|
453 |
+
|
454 |
+
>>> tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-cased")
|
455 |
+
|
456 |
+
>>> text = "My friends are cool but they eat too many carbs."
|
457 |
+
>>> input_ids = tokenizer.encode(text, return_tensors="np")
|
458 |
+
>>> encoder_outputs = model.encode(input_ids)
|
459 |
+
```"""
|
460 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
461 |
+
output_hidden_states = (
|
462 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
463 |
+
)
|
464 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
465 |
+
|
466 |
+
if attention_mask is None:
|
467 |
+
attention_mask = jnp.ones_like(input_ids)
|
468 |
+
if position_ids is None:
|
469 |
+
batch_size, sequence_length = input_ids.shape
|
470 |
+
position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
|
471 |
+
|
472 |
+
# Handle any PRNG if needed
|
473 |
+
rngs = {}
|
474 |
+
if dropout_rng is not None:
|
475 |
+
rngs["dropout"] = dropout_rng
|
476 |
+
|
477 |
+
def _encoder_forward(module, input_ids, attention_mask, position_ids, **kwargs):
|
478 |
+
encode_module = module._get_encoder_module()
|
479 |
+
return encode_module(input_ids, attention_mask, position_ids, **kwargs)
|
480 |
+
|
481 |
+
outputs = self.module.apply(
|
482 |
+
{"params": params or self.params},
|
483 |
+
input_ids=jnp.array(input_ids, dtype="i4"),
|
484 |
+
attention_mask=jnp.array(attention_mask, dtype="i4"),
|
485 |
+
position_ids=jnp.array(position_ids, dtype="i4"),
|
486 |
+
output_attentions=output_attentions,
|
487 |
+
output_hidden_states=output_hidden_states,
|
488 |
+
return_dict=return_dict,
|
489 |
+
deterministic=not train,
|
490 |
+
rngs=rngs,
|
491 |
+
method=_encoder_forward,
|
492 |
+
)
|
493 |
+
|
494 |
+
if return_dict:
|
495 |
+
outputs = FlaxBaseModelOutput(
|
496 |
+
last_hidden_state=outputs.last_hidden_state,
|
497 |
+
hidden_states=outputs.hidden_states,
|
498 |
+
attentions=outputs.attentions,
|
499 |
+
)
|
500 |
+
|
501 |
+
return outputs
|
502 |
+
|
503 |
+
@add_start_docstrings(ENCODER_DECODER_DECODE_INPUTS_DOCSTRING)
|
504 |
+
@replace_return_docstrings(output_type=FlaxCausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
|
505 |
+
def decode(
|
506 |
+
self,
|
507 |
+
decoder_input_ids,
|
508 |
+
encoder_outputs,
|
509 |
+
encoder_attention_mask: Optional[jnp.ndarray] = None,
|
510 |
+
decoder_attention_mask: Optional[jnp.ndarray] = None,
|
511 |
+
decoder_position_ids: Optional[jnp.ndarray] = None,
|
512 |
+
past_key_values: dict = None,
|
513 |
+
output_attentions: Optional[bool] = None,
|
514 |
+
output_hidden_states: Optional[bool] = None,
|
515 |
+
return_dict: Optional[bool] = None,
|
516 |
+
train: bool = False,
|
517 |
+
params: dict = None,
|
518 |
+
dropout_rng: PRNGKey = None,
|
519 |
+
):
|
520 |
+
r"""
|
521 |
+
Returns:
|
522 |
+
|
523 |
+
Example:
|
524 |
+
|
525 |
+
```python
|
526 |
+
>>> from transformers import FlaxEncoderDecoderModel, BertTokenizer
|
527 |
+
>>> import jax.numpy as jnp
|
528 |
+
|
529 |
+
>>> # initialize a bert2gpt2 from pretrained BERT and GPT2 models. Note that the cross-attention layers will be randomly initialized
|
530 |
+
>>> model = FlaxEncoderDecoderModel.from_encoder_decoder_pretrained("google-bert/bert-base-cased", "openai-community/gpt2")
|
531 |
+
|
532 |
+
>>> tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-cased")
|
533 |
+
|
534 |
+
>>> text = "My friends are cool but they eat too many carbs."
|
535 |
+
>>> input_ids = tokenizer.encode(text, max_length=1024, return_tensors="np")
|
536 |
+
>>> encoder_outputs = model.encode(input_ids)
|
537 |
+
|
538 |
+
>>> decoder_start_token_id = model.config.decoder.bos_token_id
|
539 |
+
>>> decoder_input_ids = jnp.ones((input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
|
540 |
+
|
541 |
+
>>> outputs = model.decode(decoder_input_ids, encoder_outputs)
|
542 |
+
>>> logits = outputs.logits
|
543 |
+
```"""
|
544 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
545 |
+
output_hidden_states = (
|
546 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
547 |
+
)
|
548 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
549 |
+
|
550 |
+
encoder_hidden_states = encoder_outputs[0]
|
551 |
+
if encoder_attention_mask is None:
|
552 |
+
batch_size, sequence_length = encoder_hidden_states.shape[:2]
|
553 |
+
encoder_attention_mask = jnp.ones((batch_size, sequence_length))
|
554 |
+
|
555 |
+
batch_size, sequence_length = decoder_input_ids.shape
|
556 |
+
if decoder_attention_mask is None:
|
557 |
+
decoder_attention_mask = jnp.ones((batch_size, sequence_length))
|
558 |
+
|
559 |
+
if decoder_position_ids is None:
|
560 |
+
if past_key_values is not None:
|
561 |
+
raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.")
|
562 |
+
|
563 |
+
decoder_position_ids = jnp.broadcast_to(
|
564 |
+
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
|
565 |
+
)
|
566 |
+
|
567 |
+
# Handle any PRNG if needed
|
568 |
+
rngs = {}
|
569 |
+
if dropout_rng is not None:
|
570 |
+
rngs["dropout"] = dropout_rng
|
571 |
+
|
572 |
+
inputs = {"params": params or self.params}
|
573 |
+
|
574 |
+
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be
|
575 |
+
# passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that
|
576 |
+
# it can be changed by FlaxBartAttention module
|
577 |
+
if past_key_values:
|
578 |
+
inputs["cache"] = past_key_values
|
579 |
+
mutable = ["cache"]
|
580 |
+
else:
|
581 |
+
mutable = False
|
582 |
+
|
583 |
+
def _decoder_forward(
|
584 |
+
module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, encoder_hidden_states, **kwargs
|
585 |
+
):
|
586 |
+
projection_module = module._get_projection_module()
|
587 |
+
decoder_module = module._get_decoder_module()
|
588 |
+
|
589 |
+
# optionally project encoder_hidden_states
|
590 |
+
if projection_module is not None:
|
591 |
+
encoder_hidden_states = projection_module(encoder_hidden_states)
|
592 |
+
|
593 |
+
return decoder_module(
|
594 |
+
decoder_input_ids,
|
595 |
+
decoder_attention_mask,
|
596 |
+
decoder_position_ids,
|
597 |
+
encoder_hidden_states=encoder_hidden_states,
|
598 |
+
**kwargs,
|
599 |
+
)
|
600 |
+
|
601 |
+
outputs = self.module.apply(
|
602 |
+
inputs,
|
603 |
+
decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
|
604 |
+
decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
|
605 |
+
decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
|
606 |
+
encoder_hidden_states=encoder_hidden_states,
|
607 |
+
encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"),
|
608 |
+
output_attentions=output_attentions,
|
609 |
+
output_hidden_states=output_hidden_states,
|
610 |
+
return_dict=return_dict,
|
611 |
+
deterministic=not train,
|
612 |
+
rngs=rngs,
|
613 |
+
mutable=mutable,
|
614 |
+
method=_decoder_forward,
|
615 |
+
)
|
616 |
+
|
617 |
+
# add updated cache to model output
|
618 |
+
if past_key_values is not None and return_dict:
|
619 |
+
outputs, past = outputs
|
620 |
+
outputs["past_key_values"] = unfreeze(past["cache"])
|
621 |
+
return outputs
|
622 |
+
elif past_key_values is not None and not return_dict:
|
623 |
+
outputs, past = outputs
|
624 |
+
outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:]
|
625 |
+
|
626 |
+
return outputs
|
627 |
+
|
628 |
+
@add_start_docstrings_to_model_forward(ENCODER_DECODER_INPUTS_DOCSTRING)
|
629 |
+
@replace_return_docstrings(output_type=FlaxSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
|
630 |
+
def __call__(
|
631 |
+
self,
|
632 |
+
input_ids: jnp.ndarray,
|
633 |
+
attention_mask: Optional[jnp.ndarray] = None,
|
634 |
+
decoder_input_ids: Optional[jnp.ndarray] = None,
|
635 |
+
decoder_attention_mask: Optional[jnp.ndarray] = None,
|
636 |
+
position_ids: Optional[jnp.ndarray] = None,
|
637 |
+
decoder_position_ids: Optional[jnp.ndarray] = None,
|
638 |
+
output_attentions: Optional[bool] = None,
|
639 |
+
output_hidden_states: Optional[bool] = None,
|
640 |
+
return_dict: Optional[bool] = None,
|
641 |
+
train: bool = False,
|
642 |
+
params: dict = None,
|
643 |
+
dropout_rng: PRNGKey = None,
|
644 |
+
):
|
645 |
+
r"""
|
646 |
+
Returns:
|
647 |
+
|
648 |
+
Examples:
|
649 |
+
|
650 |
+
```python
|
651 |
+
>>> from transformers import FlaxEncoderDecoderModel, BertTokenizer, GPT2Tokenizer
|
652 |
+
|
653 |
+
>>> # load a fine-tuned bert2gpt2 model
|
654 |
+
>>> model = FlaxEncoderDecoderModel.from_pretrained("patrickvonplaten/bert2gpt2-cnn_dailymail-fp16")
|
655 |
+
>>> # load input & output tokenizer
|
656 |
+
>>> tokenizer_input = BertTokenizer.from_pretrained("google-bert/bert-base-cased")
|
657 |
+
>>> tokenizer_output = GPT2Tokenizer.from_pretrained("openai-community/gpt2")
|
658 |
+
|
659 |
+
>>> article = '''Sigma Alpha Epsilon is under fire for a video showing party-bound fraternity members
|
660 |
+
>>> singing a racist chant. SAE's national chapter suspended the students,
|
661 |
+
>>> but University of Oklahoma President David Boren took it a step further,
|
662 |
+
>>> saying the university's affiliation with the fraternity is permanently done.'''
|
663 |
+
|
664 |
+
>>> input_ids = tokenizer_input(article, add_special_tokens=True, return_tensors="np").input_ids
|
665 |
+
|
666 |
+
>>> # use GPT2's eos_token as the pad as well as eos token
|
667 |
+
>>> model.config.eos_token_id = model.config.decoder.eos_token_id
|
668 |
+
>>> model.config.pad_token_id = model.config.eos_token_id
|
669 |
+
|
670 |
+
>>> sequences = model.generate(input_ids, num_beams=4, max_length=12).sequences
|
671 |
+
|
672 |
+
>>> summary = tokenizer_output.batch_decode(sequences, skip_special_tokens=True)[0]
|
673 |
+
>>> assert summary == "SAS Alpha Epsilon suspended Sigma Alpha Epsilon members"
|
674 |
+
```
|
675 |
+
"""
|
676 |
+
|
677 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
678 |
+
output_hidden_states = (
|
679 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
680 |
+
)
|
681 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
682 |
+
|
683 |
+
# prepare encoder inputs
|
684 |
+
if attention_mask is None:
|
685 |
+
attention_mask = jnp.ones_like(input_ids)
|
686 |
+
if position_ids is None:
|
687 |
+
batch_size, sequence_length = input_ids.shape
|
688 |
+
position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
|
689 |
+
|
690 |
+
# prepare decoder inputs
|
691 |
+
if decoder_input_ids is None:
|
692 |
+
raise ValueError(
|
693 |
+
"`decoder_input_ids` cannot be `None`. For sequence to sequence training, `decoder_position_ids` must"
|
694 |
+
" be specified as an input argument."
|
695 |
+
)
|
696 |
+
if decoder_attention_mask is None:
|
697 |
+
decoder_attention_mask = jnp.ones_like(decoder_input_ids)
|
698 |
+
if decoder_position_ids is None:
|
699 |
+
batch_size, sequence_length = decoder_input_ids.shape
|
700 |
+
decoder_position_ids = jnp.broadcast_to(
|
701 |
+
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
|
702 |
+
)
|
703 |
+
|
704 |
+
# Handle any PRNG if needed
|
705 |
+
rngs = {"dropout": dropout_rng} if dropout_rng is not None else {}
|
706 |
+
|
707 |
+
return self.module.apply(
|
708 |
+
{"params": params or self.params},
|
709 |
+
input_ids=jnp.array(input_ids, dtype="i4"),
|
710 |
+
attention_mask=jnp.array(attention_mask, dtype="i4"),
|
711 |
+
decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
|
712 |
+
decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
|
713 |
+
position_ids=jnp.array(position_ids, dtype="i4"),
|
714 |
+
decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
|
715 |
+
output_attentions=output_attentions,
|
716 |
+
output_hidden_states=output_hidden_states,
|
717 |
+
return_dict=return_dict,
|
718 |
+
deterministic=not train,
|
719 |
+
rngs=rngs,
|
720 |
+
)
|
721 |
+
|
722 |
+
def prepare_inputs_for_generation(
|
723 |
+
self,
|
724 |
+
decoder_input_ids,
|
725 |
+
max_length,
|
726 |
+
attention_mask: Optional[jax.Array] = None,
|
727 |
+
decoder_attention_mask: Optional[jax.Array] = None,
|
728 |
+
encoder_outputs=None,
|
729 |
+
**kwargs,
|
730 |
+
):
|
731 |
+
# initializing the cache
|
732 |
+
batch_size, seq_length = decoder_input_ids.shape
|
733 |
+
|
734 |
+
past_key_values = self.init_cache(batch_size, max_length, encoder_outputs)
|
735 |
+
# Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
|
736 |
+
# But since the decoder uses a causal mask, those positions are masked anyways.
|
737 |
+
# Thus we can create a single static attention_mask here, which is more efficient for compilation
|
738 |
+
extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
|
739 |
+
if decoder_attention_mask is not None:
|
740 |
+
decoder_position_ids = decoder_attention_mask.cumsum(axis=-1) - 1
|
741 |
+
extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, decoder_attention_mask, (0, 0))
|
742 |
+
else:
|
743 |
+
decoder_position_ids = jnp.broadcast_to(
|
744 |
+
jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length)
|
745 |
+
)
|
746 |
+
|
747 |
+
return {
|
748 |
+
"past_key_values": past_key_values,
|
749 |
+
"encoder_outputs": encoder_outputs,
|
750 |
+
"encoder_attention_mask": attention_mask,
|
751 |
+
"decoder_attention_mask": extended_attention_mask,
|
752 |
+
"decoder_position_ids": decoder_position_ids,
|
753 |
+
}
|
754 |
+
|
755 |
+
def update_inputs_for_generation(self, model_outputs, model_kwargs):
|
756 |
+
model_kwargs["past_key_values"] = model_outputs.past_key_values
|
757 |
+
model_kwargs["decoder_position_ids"] = model_kwargs["decoder_position_ids"][:, -1:] + 1
|
758 |
+
return model_kwargs
|
759 |
+
|
760 |
+
@classmethod
|
761 |
+
def from_encoder_decoder_pretrained(
|
762 |
+
cls,
|
763 |
+
encoder_pretrained_model_name_or_path: Optional[Union[str, os.PathLike]] = None,
|
764 |
+
decoder_pretrained_model_name_or_path: Optional[Union[str, os.PathLike]] = None,
|
765 |
+
*model_args,
|
766 |
+
**kwargs,
|
767 |
+
) -> FlaxPreTrainedModel:
|
768 |
+
r"""
|
769 |
+
Instantiate an encoder and a decoder from one or two base classes of the library from pretrained model
|
770 |
+
checkpoints.
|
771 |
+
|
772 |
+
Params:
|
773 |
+
encoder_pretrained_model_name_or_path (`Union[str, os.PathLike]`, *optional*):
|
774 |
+
Information necessary to initiate the encoder. Can be either:
|
775 |
+
|
776 |
+
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
|
777 |
+
- A path to a *directory* containing model weights saved using
|
778 |
+
[`~FlaxPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
|
779 |
+
|
780 |
+
decoder_pretrained_model_name_or_path (`Union[str, os.PathLike]`, *optional*, defaults to `None`):
|
781 |
+
Information necessary to initiate the decoder. Can be either:
|
782 |
+
|
783 |
+
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
|
784 |
+
- A path to a *directory* containing model weights saved using
|
785 |
+
[`~FlaxPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
|
786 |
+
|
787 |
+
model_args (remaining positional arguments, *optional*):
|
788 |
+
All remaning positional arguments will be passed to the underlying model's `__init__` method.
|
789 |
+
|
790 |
+
kwargs (remaining dictionary of keyword arguments, *optional*):
|
791 |
+
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
|
792 |
+
`output_attentions=True`).
|
793 |
+
|
794 |
+
- To update the encoder configuration, use the prefix *encoder_* for each configuration parameter.
|
795 |
+
- To update the decoder configuration, use the prefix *decoder_* for each configuration parameter.
|
796 |
+
- To update the parent model configuration, do not use a prefix for each configuration parameter.
|
797 |
+
|
798 |
+
Behaves differently depending on whether a `config` is provided or automatically loaded.
|
799 |
+
|
800 |
+
Example:
|
801 |
+
|
802 |
+
```python
|
803 |
+
>>> from transformers import FlaxEncoderDecoderModel
|
804 |
+
|
805 |
+
>>> # initialize a bert2gpt2 from pretrained BERT and GPT2 models. Note that the cross-attention layers will be randomly initialized
|
806 |
+
>>> model = FlaxEncoderDecoderModel.from_encoder_decoder_pretrained("google-bert/bert-base-cased", "openai-community/gpt2")
|
807 |
+
>>> # saving model after fine-tuning
|
808 |
+
>>> model.save_pretrained("./bert2gpt2")
|
809 |
+
>>> # load fine-tuned model
|
810 |
+
>>> model = FlaxEncoderDecoderModel.from_pretrained("./bert2gpt2")
|
811 |
+
```"""
|
812 |
+
|
813 |
+
kwargs_encoder = {
|
814 |
+
argument[len("encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("encoder_")
|
815 |
+
}
|
816 |
+
|
817 |
+
kwargs_decoder = {
|
818 |
+
argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
|
819 |
+
}
|
820 |
+
|
821 |
+
# remove encoder, decoder kwargs from kwargs
|
822 |
+
for key in kwargs_encoder.keys():
|
823 |
+
del kwargs["encoder_" + key]
|
824 |
+
for key in kwargs_decoder.keys():
|
825 |
+
del kwargs["decoder_" + key]
|
826 |
+
|
827 |
+
# Load and initialize the encoder and decoder
|
828 |
+
# The distinction between encoder and decoder at the model level is made
|
829 |
+
# by the value of the flag `is_decoder` that we need to set correctly.
|
830 |
+
encoder = kwargs_encoder.pop("model", None)
|
831 |
+
if encoder is None:
|
832 |
+
if encoder_pretrained_model_name_or_path is None:
|
833 |
+
raise ValueError(
|
834 |
+
"If `encoder_model` is not defined as an argument, a `encoder_pretrained_model_name_or_path` has "
|
835 |
+
"to be defined."
|
836 |
+
)
|
837 |
+
|
838 |
+
if "config" not in kwargs_encoder:
|
839 |
+
encoder_config, kwargs_encoder = AutoConfig.from_pretrained(
|
840 |
+
encoder_pretrained_model_name_or_path, **kwargs_encoder, return_unused_kwargs=True
|
841 |
+
)
|
842 |
+
if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True:
|
843 |
+
logger.info(
|
844 |
+
f"Initializing {encoder_pretrained_model_name_or_path} as a encoder model "
|
845 |
+
"from a decoder model. Cross-attention and casual mask are disabled."
|
846 |
+
)
|
847 |
+
encoder_config.is_decoder = False
|
848 |
+
encoder_config.add_cross_attention = False
|
849 |
+
|
850 |
+
kwargs_encoder["config"] = encoder_config
|
851 |
+
|
852 |
+
encoder = FlaxAutoModel.from_pretrained(
|
853 |
+
encoder_pretrained_model_name_or_path, *model_args, **kwargs_encoder
|
854 |
+
)
|
855 |
+
|
856 |
+
decoder = kwargs_decoder.pop("model", None)
|
857 |
+
if decoder is None:
|
858 |
+
if decoder_pretrained_model_name_or_path is None:
|
859 |
+
raise ValueError(
|
860 |
+
"If `decoder_model` is not defined as an argument, a `decoder_pretrained_model_name_or_path` has "
|
861 |
+
"to be defined."
|
862 |
+
)
|
863 |
+
|
864 |
+
if "config" not in kwargs_decoder:
|
865 |
+
decoder_config, kwargs_decoder = AutoConfig.from_pretrained(
|
866 |
+
decoder_pretrained_model_name_or_path, **kwargs_decoder, return_unused_kwargs=True
|
867 |
+
)
|
868 |
+
if decoder_config.is_decoder is False or decoder_config.add_cross_attention is False:
|
869 |
+
logger.info(
|
870 |
+
f"Initializing {decoder_pretrained_model_name_or_path} as a decoder model. Cross attention"
|
871 |
+
f" layers are added to {decoder_pretrained_model_name_or_path} and randomly initialized if"
|
872 |
+
f" {decoder_pretrained_model_name_or_path}'s architecture allows for cross attention layers."
|
873 |
+
)
|
874 |
+
decoder_config.is_decoder = True
|
875 |
+
decoder_config.add_cross_attention = True
|
876 |
+
|
877 |
+
kwargs_decoder["config"] = decoder_config
|
878 |
+
|
879 |
+
if kwargs_decoder["config"].is_decoder is False or kwargs_decoder["config"].add_cross_attention is False:
|
880 |
+
logger.warning(
|
881 |
+
f"Decoder model {decoder_pretrained_model_name_or_path} is not initialized as a decoder. "
|
882 |
+
f"In order to initialize {decoder_pretrained_model_name_or_path} as a decoder, "
|
883 |
+
"make sure that the attributes `is_decoder` and `add_cross_attention` of `decoder_config` "
|
884 |
+
"passed to `.from_encoder_decoder_pretrained(...)` are set to `True` or do not pass a "
|
885 |
+
"`decoder_config` to `.from_encoder_decoder_pretrained(...)`"
|
886 |
+
)
|
887 |
+
|
888 |
+
decoder = FlaxAutoModelForCausalLM.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs_decoder)
|
889 |
+
|
890 |
+
# instantiate config with corresponding kwargs
|
891 |
+
dtype = kwargs.pop("dtype", jnp.float32)
|
892 |
+
config = EncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config, **kwargs)
|
893 |
+
|
894 |
+
# init model
|
895 |
+
model = cls(config, dtype=dtype)
|
896 |
+
model.params["encoder"] = encoder.params
|
897 |
+
model.params["decoder"] = decoder.params
|
898 |
+
|
899 |
+
return model
|
venv/lib/python3.10/site-packages/transformers/models/encoder_decoder/modeling_tf_encoder_decoder.py
ADDED
@@ -0,0 +1,663 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Classes to support TF Encoder-Decoder architectures"""
|
16 |
+
|
17 |
+
|
18 |
+
from __future__ import annotations
|
19 |
+
|
20 |
+
import inspect
|
21 |
+
import re
|
22 |
+
import warnings
|
23 |
+
from typing import Optional, Tuple, Union
|
24 |
+
|
25 |
+
import numpy as np
|
26 |
+
import tensorflow as tf
|
27 |
+
|
28 |
+
from ...configuration_utils import PretrainedConfig
|
29 |
+
from ...modeling_tf_outputs import TFBaseModelOutput, TFSeq2SeqLMOutput
|
30 |
+
from ...modeling_tf_utils import (
|
31 |
+
TFCausalLanguageModelingLoss,
|
32 |
+
TFModelInputType,
|
33 |
+
TFPreTrainedModel,
|
34 |
+
get_initializer,
|
35 |
+
keras,
|
36 |
+
unpack_inputs,
|
37 |
+
)
|
38 |
+
from ...tf_utils import shape_list
|
39 |
+
from ...utils import (
|
40 |
+
ModelOutput,
|
41 |
+
add_start_docstrings,
|
42 |
+
add_start_docstrings_to_model_forward,
|
43 |
+
logging,
|
44 |
+
replace_return_docstrings,
|
45 |
+
)
|
46 |
+
from ..auto.configuration_auto import AutoConfig
|
47 |
+
from ..auto.modeling_tf_auto import TFAutoModel, TFAutoModelForCausalLM
|
48 |
+
from .configuration_encoder_decoder import EncoderDecoderConfig
|
49 |
+
|
50 |
+
|
51 |
+
logger = logging.get_logger(__name__)
|
52 |
+
|
53 |
+
_CONFIG_FOR_DOC = "EncoderDecoderConfig"
|
54 |
+
|
55 |
+
DEPRECATION_WARNING = (
|
56 |
+
"Version v4.17.0 introduces a better way to train encoder-decoder models by computing the loss inside the"
|
57 |
+
" encoder-decoder framework rather than in the decoder itself. You may observe training discrepancies if"
|
58 |
+
" fine-tuning a model trained with versions anterior to 4.17.0. The decoder_input_ids are now created based on the"
|
59 |
+
" labels, no need to pass them yourself anymore."
|
60 |
+
)
|
61 |
+
|
62 |
+
ENCODER_DECODER_START_DOCSTRING = r"""
|
63 |
+
This class can be used to initialize a sequence-to-sequence model with any pretrained autoencoding model as the
|
64 |
+
encoder and any pretrained autoregressive model as the decoder. The encoder is loaded via
|
65 |
+
[`~TFAutoModel.from_pretrained`] function and the decoder is loaded via [`~TFAutoModelForCausalLM.from_pretrained`]
|
66 |
+
function. Cross-attention layers are automatically added to the decoder and should be fine-tuned on a downstream
|
67 |
+
generative task, like summarization.
|
68 |
+
|
69 |
+
The effectiveness of initializing sequence-to-sequence models with pretrained checkpoints for sequence generation
|
70 |
+
tasks was shown in [Leveraging Pre-trained Checkpoints for Sequence Generation
|
71 |
+
Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn. Michael Matena, Yanqi
|
72 |
+
Zhou, Wei Li, Peter J. Liu.
|
73 |
+
|
74 |
+
After such an Encoder Decoder model has been trained/fine-tuned, it can be saved/loaded just like any other models
|
75 |
+
(see the examples for more information).
|
76 |
+
|
77 |
+
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
|
78 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
79 |
+
etc.)
|
80 |
+
|
81 |
+
This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
|
82 |
+
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
|
83 |
+
behavior.
|
84 |
+
|
85 |
+
Parameters:
|
86 |
+
config ([`EncoderDecoderConfig`]): Model configuration class with all the parameters of the model.
|
87 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
88 |
+
configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
|
89 |
+
"""
|
90 |
+
|
91 |
+
ENCODER_DECODER_INPUTS_DOCSTRING = r"""
|
92 |
+
Args:
|
93 |
+
input_ids (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `({0})`):
|
94 |
+
Indices of input sequence tokens in the vocabulary.
|
95 |
+
|
96 |
+
Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
97 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
98 |
+
|
99 |
+
[What are input IDs?](../glossary#input-ids)
|
100 |
+
attention_mask (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*):
|
101 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
102 |
+
|
103 |
+
- 1 for tokens that are **not masked**,
|
104 |
+
- 0 for tokens that are **masked**.
|
105 |
+
|
106 |
+
[What are attention masks?](../glossary#attention-mask)
|
107 |
+
decoder_input_ids (`np.ndarray` or `tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
108 |
+
Indices of decoder input sequence tokens in the vocabulary.
|
109 |
+
|
110 |
+
Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
111 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
112 |
+
|
113 |
+
[What are input IDs?](../glossary#input-ids)
|
114 |
+
|
115 |
+
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
116 |
+
`past_key_values`).
|
117 |
+
|
118 |
+
Provide for sequence to sequence training to the decoder. Indices can be obtained using
|
119 |
+
[`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for
|
120 |
+
details.
|
121 |
+
decoder_attention_mask (`np.ndarray` or `tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
122 |
+
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
|
123 |
+
be used by default.
|
124 |
+
encoder_outputs (`tuple(tuple(tf.Tensor)`, *optional*):
|
125 |
+
This tuple must consist of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
|
126 |
+
`last_hidden_state` (`tf.Tensor` of shape `({0}, hidden_size)`) is a tensor of hidden-states at the output
|
127 |
+
of the last layer of the encoder. Used in the cross-attention of the decoder.
|
128 |
+
past_key_values (`tuple(tuple(tf.Tensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
129 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
130 |
+
|
131 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
132 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
133 |
+
`decoder_input_ids` of shape `({0})`.
|
134 |
+
inputs_embeds (`np.ndarray` or `tf.Tensor` of shape `({0}, hidden_size)`, *optional*):
|
135 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
136 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
137 |
+
model's internal embedding lookup matrix.
|
138 |
+
decoder_inputs_embeds (`np.ndarray` or `tf.Tensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
|
139 |
+
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
|
140 |
+
representation. This is useful if you want more control over how to convert `decoder_input_ids` indices
|
141 |
+
into associated vectors than the model's internal embedding lookup matrix.
|
142 |
+
labels (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*):
|
143 |
+
Labels for computing the masked language modeling loss for the decoder. Indices should be in `[-100, 0,
|
144 |
+
..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored
|
145 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
146 |
+
use_cache (`bool`, *optional*):
|
147 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
148 |
+
`past_key_values`).
|
149 |
+
output_attentions (`bool`, *optional*):
|
150 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
151 |
+
tensors for more detail.
|
152 |
+
output_hidden_states (`bool`, *optional*):
|
153 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
154 |
+
more detail.
|
155 |
+
return_dict (`bool`, *optional*):
|
156 |
+
If set to `True`, the model will return a [`~utils.Seq2SeqLMOutput`] instead of a plain tuple.
|
157 |
+
training (`bool`, *optional*, defaults to `False`):
|
158 |
+
Whether or not to use the model in training mode (some modules like dropout modules have different
|
159 |
+
behaviors between training and evaluation).
|
160 |
+
kwargs (*optional*): Remaining dictionary of keyword arguments. Keyword arguments come in two flavors:
|
161 |
+
|
162 |
+
- Without a prefix which will be input as `**encoder_kwargs` for the encoder forward function.
|
163 |
+
- With a *decoder_* prefix which will be input as `**decoder_kwargs`` for the decoder forward function.
|
164 |
+
"""
|
165 |
+
|
166 |
+
|
167 |
+
def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_token_id: int):
|
168 |
+
if pad_token_id is None:
|
169 |
+
raise ValueError("Make sure to set the pad_token_id attribute of the model's configuration.")
|
170 |
+
pad_token_id = tf.cast(pad_token_id, input_ids.dtype)
|
171 |
+
|
172 |
+
if decoder_start_token_id is None:
|
173 |
+
raise ValueError("Make sure to set the decoder_start_token_id attribute of the model's configuration.")
|
174 |
+
decoder_start_token_id = tf.cast(decoder_start_token_id, input_ids.dtype)
|
175 |
+
|
176 |
+
start_tokens = tf.fill((shape_list(input_ids)[0], 1), decoder_start_token_id)
|
177 |
+
shifted_input_ids = tf.concat([start_tokens, input_ids[:, :-1]], -1)
|
178 |
+
# replace possible -100 values in labels by `pad_token_id`
|
179 |
+
shifted_input_ids = tf.where(
|
180 |
+
shifted_input_ids == -100, tf.fill(shape_list(shifted_input_ids), pad_token_id), shifted_input_ids
|
181 |
+
)
|
182 |
+
|
183 |
+
# "Verify that `labels` has only positive values and -100"
|
184 |
+
assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=input_ids.dtype))
|
185 |
+
|
186 |
+
# Make sure the assertion op is called by wrapping the result in an identity no-op
|
187 |
+
with tf.control_dependencies([assert_gte0]):
|
188 |
+
shifted_input_ids = tf.identity(shifted_input_ids)
|
189 |
+
|
190 |
+
return shifted_input_ids
|
191 |
+
|
192 |
+
|
193 |
+
@add_start_docstrings(ENCODER_DECODER_START_DOCSTRING)
|
194 |
+
class TFEncoderDecoderModel(TFPreTrainedModel, TFCausalLanguageModelingLoss):
|
195 |
+
r"""
|
196 |
+
[`TFEncoderDecoderModel`] is a generic model class that will be instantiated as a transformer architecture with one
|
197 |
+
of the base model classes of the library as encoder and another one as decoder when created with the
|
198 |
+
[`~TFAutoModel.from_pretrained`] class method for the encoder and [`~TFAutoModelForCausalLM.from_pretrained`] class
|
199 |
+
method for the decoder.
|
200 |
+
"""
|
201 |
+
|
202 |
+
config_class = EncoderDecoderConfig
|
203 |
+
base_model_prefix = "encoder_decoder"
|
204 |
+
load_weight_prefix = "tf_encoder_decoder_model"
|
205 |
+
|
206 |
+
def __init__(
|
207 |
+
self,
|
208 |
+
config: Optional[PretrainedConfig] = None,
|
209 |
+
encoder: Optional[TFPreTrainedModel] = None,
|
210 |
+
decoder: Optional[TFPreTrainedModel] = None,
|
211 |
+
):
|
212 |
+
if config is None and (encoder is None or decoder is None):
|
213 |
+
raise ValueError("Either a configuration or an encoder and a decoder has to be provided.")
|
214 |
+
if config is None:
|
215 |
+
config = EncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config)
|
216 |
+
else:
|
217 |
+
if not isinstance(config, self.config_class):
|
218 |
+
raise ValueError(f"config: {config} has to be of type {self.config_class}")
|
219 |
+
|
220 |
+
if config.decoder.cross_attention_hidden_size is not None:
|
221 |
+
if config.decoder.cross_attention_hidden_size != config.encoder.hidden_size:
|
222 |
+
raise ValueError(
|
223 |
+
"If `cross_attention_hidden_size` is specified in the decoder's configuration, it has to be equal"
|
224 |
+
f" to the encoder's `hidden_size`. Got {config.decoder.cross_attention_hidden_size} for"
|
225 |
+
f" `config.decoder.cross_attention_hidden_size` and {config.encoder.hidden_size} for"
|
226 |
+
" `config.encoder.hidden_size`."
|
227 |
+
)
|
228 |
+
|
229 |
+
# initialize with config
|
230 |
+
super().__init__(config)
|
231 |
+
|
232 |
+
if encoder is None:
|
233 |
+
encoder = TFAutoModel.from_config(config.encoder, name="encoder")
|
234 |
+
|
235 |
+
if decoder is None:
|
236 |
+
decoder = TFAutoModelForCausalLM.from_config(config.decoder, name="decoder")
|
237 |
+
|
238 |
+
self.encoder = encoder
|
239 |
+
self.decoder = decoder
|
240 |
+
|
241 |
+
if self.encoder.config.to_dict() != self.config.encoder.to_dict():
|
242 |
+
logger.warning(
|
243 |
+
f"Config of the encoder: {self.encoder.__class__} is overwritten by shared encoder config:"
|
244 |
+
f" {self.config.encoder}"
|
245 |
+
)
|
246 |
+
if self.decoder.config.to_dict() != self.config.decoder.to_dict():
|
247 |
+
logger.warning(
|
248 |
+
f"Config of the decoder: {self.decoder.__class__} is overwritten by shared decoder config:"
|
249 |
+
f" {self.config.decoder}"
|
250 |
+
)
|
251 |
+
|
252 |
+
# make sure that the individual model's config refers to the shared config
|
253 |
+
# so that the updates to the config will be synced
|
254 |
+
self.encoder.config = self.config.encoder
|
255 |
+
self.decoder.config = self.config.decoder
|
256 |
+
|
257 |
+
# encoder outputs might need to be projected to different dimension for decoder
|
258 |
+
if (
|
259 |
+
self.encoder.config.hidden_size != self.decoder.config.hidden_size
|
260 |
+
and self.decoder.config.cross_attention_hidden_size is None
|
261 |
+
):
|
262 |
+
self.enc_to_dec_proj = keras.layers.Dense(
|
263 |
+
units=self.decoder.config.hidden_size,
|
264 |
+
kernel_initializer=get_initializer(config.encoder.initializer_range),
|
265 |
+
name="enc_to_dec_proj",
|
266 |
+
)
|
267 |
+
|
268 |
+
if self.encoder.get_output_embeddings() is not None:
|
269 |
+
raise ValueError(
|
270 |
+
f"The encoder {self.encoder} should not have a LM Head. Please use a model without LM Head"
|
271 |
+
)
|
272 |
+
|
273 |
+
decoder_signature = set(inspect.signature(self.decoder.call).parameters.keys())
|
274 |
+
if "encoder_hidden_states" not in decoder_signature:
|
275 |
+
raise ValueError(
|
276 |
+
"The selected decoder is not prepared for the encoder hidden states to be passed. Please see the "
|
277 |
+
"following discussion on GitHub: https://github.com/huggingface/transformers/issues/23350"
|
278 |
+
)
|
279 |
+
|
280 |
+
def get_encoder(self):
|
281 |
+
return self.encoder
|
282 |
+
|
283 |
+
def get_decoder(self):
|
284 |
+
return self.decoder
|
285 |
+
|
286 |
+
def get_input_embeddings(self):
|
287 |
+
return self.encoder.get_input_embeddings()
|
288 |
+
|
289 |
+
def get_output_embeddings(self):
|
290 |
+
return self.decoder.get_output_embeddings()
|
291 |
+
|
292 |
+
def set_output_embeddings(self, new_embeddings):
|
293 |
+
return self.decoder.set_output_embeddings(new_embeddings)
|
294 |
+
|
295 |
+
def tf_to_pt_weight_rename(self, tf_weight):
|
296 |
+
# Matt: The TF and PT weights don't align because our TF base classes have an extra layer compared to PT models
|
297 |
+
# (the main model stem is in the MainLayer class). If we remove that layer, then weight names sync up as normal.
|
298 |
+
# However, the name of that extra layer is the name of the MainLayer in the base model. We make the assumption
|
299 |
+
# here that the config model_type is the same as the name of the MainLayer. I don't know of anywhere that's
|
300 |
+
# not the case, and I wasn't sure how else to go from the config to the correct MainLayer name!
|
301 |
+
|
302 |
+
# This override is only needed in the case where we're crossloading weights from PT. However, since weights are
|
303 |
+
# often safetensors now, we don't know if we're going to be crossloading until we sniff the weights file.
|
304 |
+
# Therefore, we specify tf_to_pt_weight_rename anyway, and let the super method figure out if it needs it
|
305 |
+
# or not.
|
306 |
+
encoder_model_type = self.config.encoder.model_type
|
307 |
+
if "encoder" in tf_weight and "decoder" not in tf_weight:
|
308 |
+
return (re.sub(rf"encoder\.{encoder_model_type}\.", "encoder.", tf_weight),)
|
309 |
+
else:
|
310 |
+
return (tf_weight,)
|
311 |
+
|
312 |
+
@classmethod
|
313 |
+
def from_encoder_decoder_pretrained(
|
314 |
+
cls,
|
315 |
+
encoder_pretrained_model_name_or_path: str = None,
|
316 |
+
decoder_pretrained_model_name_or_path: str = None,
|
317 |
+
*model_args,
|
318 |
+
**kwargs,
|
319 |
+
) -> TFPreTrainedModel:
|
320 |
+
r"""
|
321 |
+
Instantiate an encoder and a decoder from one or two base classes of the library from pretrained model
|
322 |
+
checkpoints.
|
323 |
+
|
324 |
+
|
325 |
+
Params:
|
326 |
+
encoder_pretrained_model_name_or_path (`str`, *optional*):
|
327 |
+
Information necessary to initiate the encoder. Can be either:
|
328 |
+
|
329 |
+
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
|
330 |
+
- A path to a *directory* containing model weights saved using
|
331 |
+
[`~TFPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
|
332 |
+
- A path or url to a *pytorch index checkpoint file* (e.g, `./pt_model/`). In this case,
|
333 |
+
`encoder_from_pt` should be set to `True`.
|
334 |
+
|
335 |
+
decoder_pretrained_model_name_or_path (`str`, *optional*, defaults to `None`):
|
336 |
+
Information necessary to initiate the decoder. Can be either:
|
337 |
+
|
338 |
+
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
|
339 |
+
- A path to a *directory* containing model weights saved using
|
340 |
+
[`~TFPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
|
341 |
+
- A path or url to a *pytorch checkpoint file* (e.g, `./pt_model/`). In this case,
|
342 |
+
`decoder_from_pt` should be set to `True`.
|
343 |
+
|
344 |
+
model_args (remaining positional arguments, *optional*):
|
345 |
+
All remaning positional arguments will be passed to the underlying model's `__init__` method.
|
346 |
+
|
347 |
+
kwargs (remaining dictionary of keyword arguments, *optional*):
|
348 |
+
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
|
349 |
+
`output_attentions=True`).
|
350 |
+
|
351 |
+
- To update the encoder configuration, use the prefix *encoder_* for each configuration parameter.
|
352 |
+
- To update the decoder configuration, use the prefix *decoder_* for each configuration parameter.
|
353 |
+
- To update the parent model configuration, do not use a prefix for each configuration parameter.
|
354 |
+
|
355 |
+
Behaves differently depending on whether a `config` is provided or automatically loaded.
|
356 |
+
|
357 |
+
Example:
|
358 |
+
|
359 |
+
```python
|
360 |
+
>>> from transformers import TFEncoderDecoderModel
|
361 |
+
|
362 |
+
>>> # initialize a bert2gpt2 from two pretrained BERT models. Note that the cross-attention layers will be randomly initialized
|
363 |
+
>>> model = TFEncoderDecoderModel.from_encoder_decoder_pretrained("google-bert/bert-base-uncased", "openai-community/gpt2")
|
364 |
+
>>> # saving model after fine-tuning
|
365 |
+
>>> model.save_pretrained("./bert2gpt2")
|
366 |
+
>>> # load fine-tuned model
|
367 |
+
>>> model = TFEncoderDecoderModel.from_pretrained("./bert2gpt2")
|
368 |
+
```"""
|
369 |
+
|
370 |
+
kwargs_encoder = {
|
371 |
+
argument[len("encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("encoder_")
|
372 |
+
}
|
373 |
+
|
374 |
+
kwargs_decoder = {
|
375 |
+
argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
|
376 |
+
}
|
377 |
+
|
378 |
+
# remove encoder, decoder kwargs from kwargs
|
379 |
+
for key in kwargs_encoder.keys():
|
380 |
+
del kwargs["encoder_" + key]
|
381 |
+
for key in kwargs_decoder.keys():
|
382 |
+
del kwargs["decoder_" + key]
|
383 |
+
|
384 |
+
# Load and initialize the encoder and decoder
|
385 |
+
# The distinction between encoder and decoder at the model level is made
|
386 |
+
# by the value of the flag `is_decoder` that we need to set correctly.
|
387 |
+
encoder = kwargs_encoder.pop("model", None)
|
388 |
+
if encoder is None:
|
389 |
+
if encoder_pretrained_model_name_or_path is None:
|
390 |
+
raise ValueError(
|
391 |
+
"If `encoder_model` is not defined as an argument, a `encoder_pretrained_model_name_or_path` has "
|
392 |
+
"to be defined."
|
393 |
+
)
|
394 |
+
|
395 |
+
if "config" not in kwargs_encoder:
|
396 |
+
encoder_config = AutoConfig.from_pretrained(encoder_pretrained_model_name_or_path)
|
397 |
+
if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True:
|
398 |
+
logger.info(
|
399 |
+
f"Initializing {encoder_pretrained_model_name_or_path} as a encoder model "
|
400 |
+
"from a decoder model. Cross-attention and casual mask are disabled."
|
401 |
+
)
|
402 |
+
encoder_config.is_decoder = False
|
403 |
+
encoder_config.add_cross_attention = False
|
404 |
+
|
405 |
+
kwargs_encoder["config"] = encoder_config
|
406 |
+
|
407 |
+
kwargs_encoder["name"] = "encoder"
|
408 |
+
kwargs_encoder["load_weight_prefix"] = cls.load_weight_prefix
|
409 |
+
encoder = TFAutoModel.from_pretrained(encoder_pretrained_model_name_or_path, *model_args, **kwargs_encoder)
|
410 |
+
|
411 |
+
decoder = kwargs_decoder.pop("model", None)
|
412 |
+
if decoder is None:
|
413 |
+
if decoder_pretrained_model_name_or_path is None:
|
414 |
+
raise ValueError(
|
415 |
+
"If `decoder_model` is not defined as an argument, a `decoder_pretrained_model_name_or_path` has "
|
416 |
+
"to be defined."
|
417 |
+
)
|
418 |
+
|
419 |
+
if "config" not in kwargs_decoder:
|
420 |
+
decoder_config = AutoConfig.from_pretrained(decoder_pretrained_model_name_or_path)
|
421 |
+
if decoder_config.is_decoder is False or decoder_config.add_cross_attention is False:
|
422 |
+
logger.info(
|
423 |
+
f"Initializing {decoder_pretrained_model_name_or_path} as a decoder model. Cross attention"
|
424 |
+
f" layers are added to {decoder_pretrained_model_name_or_path} and randomly initialized if"
|
425 |
+
f" {decoder_pretrained_model_name_or_path}'s architecture allows for cross attention layers."
|
426 |
+
)
|
427 |
+
decoder_config.is_decoder = True
|
428 |
+
decoder_config.add_cross_attention = True
|
429 |
+
|
430 |
+
kwargs_decoder["config"] = decoder_config
|
431 |
+
|
432 |
+
if kwargs_decoder["config"].is_decoder is False or kwargs_decoder["config"].add_cross_attention is False:
|
433 |
+
logger.warning(
|
434 |
+
f"Decoder model {decoder_pretrained_model_name_or_path} is not initialized as a decoder. "
|
435 |
+
f"In order to initialize {decoder_pretrained_model_name_or_path} as a decoder, "
|
436 |
+
"make sure that the attributes `is_decoder` and `add_cross_attention` of `decoder_config` "
|
437 |
+
"passed to `.from_encoder_decoder_pretrained(...)` are set to `True` or do not pass a "
|
438 |
+
"`decoder_config` to `.from_encoder_decoder_pretrained(...)`"
|
439 |
+
)
|
440 |
+
|
441 |
+
kwargs_decoder["name"] = "decoder"
|
442 |
+
kwargs_decoder["load_weight_prefix"] = cls.load_weight_prefix
|
443 |
+
decoder = TFAutoModelForCausalLM.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs_decoder)
|
444 |
+
|
445 |
+
# Make sure these 2 `keras.Model` have fixed names so `from_pretrained` could load model weights correctly.
|
446 |
+
if encoder.name != "encoder":
|
447 |
+
raise ValueError("encoder model must be created with the name `encoder`.")
|
448 |
+
if decoder.name != "decoder":
|
449 |
+
raise ValueError("decoder model must be created with the name `decoder`.")
|
450 |
+
|
451 |
+
# instantiate config with corresponding kwargs
|
452 |
+
config = EncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config, **kwargs)
|
453 |
+
return cls(encoder=encoder, decoder=decoder, config=config)
|
454 |
+
|
455 |
+
@unpack_inputs
|
456 |
+
@add_start_docstrings_to_model_forward(ENCODER_DECODER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
457 |
+
@replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
|
458 |
+
def call(
|
459 |
+
self,
|
460 |
+
input_ids: TFModelInputType | None = None,
|
461 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
462 |
+
decoder_input_ids: np.ndarray | tf.Tensor | None = None,
|
463 |
+
decoder_attention_mask: np.ndarray | tf.Tensor | None = None,
|
464 |
+
encoder_outputs: np.ndarray | tf.Tensor | None = None,
|
465 |
+
past_key_values: Tuple[Tuple[tf.Tensor]] | None = None,
|
466 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
467 |
+
decoder_inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
468 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
469 |
+
use_cache: Optional[bool] = None,
|
470 |
+
output_attentions: Optional[bool] = None,
|
471 |
+
output_hidden_states: Optional[bool] = None,
|
472 |
+
return_dict: Optional[bool] = None,
|
473 |
+
training: bool = False,
|
474 |
+
**kwargs,
|
475 |
+
) -> Union[TFSeq2SeqLMOutput, Tuple[tf.Tensor]]:
|
476 |
+
r"""
|
477 |
+
Returns:
|
478 |
+
|
479 |
+
Examples:
|
480 |
+
|
481 |
+
```python
|
482 |
+
>>> from transformers import TFEncoderDecoderModel, BertTokenizer
|
483 |
+
|
484 |
+
>>> # initialize a bert2gpt2 from a pretrained BERT and GPT2 models. Note that the cross-attention layers will be randomly initialized
|
485 |
+
>>> model = TFEncoderDecoderModel.from_encoder_decoder_pretrained("google-bert/bert-base-cased", "openai-community/gpt2")
|
486 |
+
|
487 |
+
>>> tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-cased")
|
488 |
+
|
489 |
+
>>> # forward
|
490 |
+
>>> input_ids = tokenizer.encode(
|
491 |
+
... "Hello, my dog is cute", add_special_tokens=True, return_tensors="tf"
|
492 |
+
... ) # Batch size 1
|
493 |
+
>>> outputs = model(input_ids=input_ids, decoder_input_ids=input_ids)
|
494 |
+
|
495 |
+
>>> # training
|
496 |
+
>>> outputs = model(input_ids=input_ids, decoder_input_ids=input_ids, labels=input_ids)
|
497 |
+
>>> loss, logits = outputs.loss, outputs.logits
|
498 |
+
|
499 |
+
>>> # save and load from pretrained
|
500 |
+
>>> model.save_pretrained("bert2gpt2")
|
501 |
+
>>> model = TFEncoderDecoderModel.from_pretrained("bert2gpt2")
|
502 |
+
|
503 |
+
>>> # generation
|
504 |
+
>>> generated = model.generate(input_ids, decoder_start_token_id=model.config.decoder.bos_token_id)
|
505 |
+
```"""
|
506 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
507 |
+
|
508 |
+
kwargs_encoder = {argument: value for argument, value in kwargs.items() if not argument.startswith("decoder_")}
|
509 |
+
|
510 |
+
kwargs_decoder = {
|
511 |
+
argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
|
512 |
+
}
|
513 |
+
|
514 |
+
# Let the user be responsible for the expected format.
|
515 |
+
if encoder_outputs is not None:
|
516 |
+
if return_dict and not isinstance(encoder_outputs, ModelOutput):
|
517 |
+
raise ValueError(
|
518 |
+
"If `return_dict=True` and `encoder_outputs` is provided, it should be an instance of "
|
519 |
+
f"`ModelOutput`. Got an instance {type(encoder_outputs)} for `encoder_outputs`."
|
520 |
+
)
|
521 |
+
|
522 |
+
if encoder_outputs is None:
|
523 |
+
encoder_inputs = {
|
524 |
+
"input_ids": input_ids,
|
525 |
+
"attention_mask": attention_mask,
|
526 |
+
"inputs_embeds": inputs_embeds,
|
527 |
+
"output_attentions": output_attentions,
|
528 |
+
"output_hidden_states": output_hidden_states,
|
529 |
+
"return_dict": return_dict,
|
530 |
+
"training": training,
|
531 |
+
}
|
532 |
+
|
533 |
+
# Add arguments to encoder from `kwargs_encoder`
|
534 |
+
encoder_inputs.update(kwargs_encoder)
|
535 |
+
|
536 |
+
# Handle the case where the inputs are passed as a single dict which contains `labels`.
|
537 |
+
# The `labels` shouldn't be passed to `self.encoder` below, because it is a based model without this
|
538 |
+
# parameter (otherwise, an error occurs when `input_processing` is called inside `self.encoder.call()`).
|
539 |
+
if "labels" in encoder_inputs:
|
540 |
+
labels = encoder_inputs.pop("labels")
|
541 |
+
|
542 |
+
# handle the init case where `dummy_inputs` returns a dict containing `decoder_input_ids`.
|
543 |
+
if "decoder_input_ids" in encoder_inputs:
|
544 |
+
decoder_input_ids = encoder_inputs.pop("decoder_input_ids")
|
545 |
+
# handle the init case where `dummy_inputs` returns a dict containing `decoder_input_ids`.
|
546 |
+
if "decoder_attention_mask" in encoder_inputs:
|
547 |
+
decoder_attention_mask = encoder_inputs.pop("decoder_attention_mask")
|
548 |
+
|
549 |
+
encoder_outputs = self.encoder(**encoder_inputs)
|
550 |
+
|
551 |
+
encoder_hidden_states = encoder_outputs[0]
|
552 |
+
|
553 |
+
# optionally project encoder_hidden_states
|
554 |
+
if (
|
555 |
+
self.encoder.config.hidden_size != self.decoder.config.hidden_size
|
556 |
+
and self.decoder.config.cross_attention_hidden_size is None
|
557 |
+
):
|
558 |
+
encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states)
|
559 |
+
|
560 |
+
if (labels is not None) and (decoder_input_ids is None and decoder_inputs_embeds is None):
|
561 |
+
decoder_input_ids = shift_tokens_right(
|
562 |
+
labels, self.config.pad_token_id, self.config.decoder_start_token_id
|
563 |
+
)
|
564 |
+
|
565 |
+
decoder_inputs = {
|
566 |
+
"input_ids": decoder_input_ids,
|
567 |
+
"attention_mask": decoder_attention_mask,
|
568 |
+
"encoder_hidden_states": encoder_hidden_states,
|
569 |
+
"encoder_attention_mask": attention_mask,
|
570 |
+
"inputs_embeds": decoder_inputs_embeds,
|
571 |
+
"output_attentions": output_attentions,
|
572 |
+
"output_hidden_states": output_hidden_states,
|
573 |
+
"use_cache": use_cache,
|
574 |
+
"past_key_values": past_key_values,
|
575 |
+
"return_dict": return_dict,
|
576 |
+
"training": training,
|
577 |
+
}
|
578 |
+
|
579 |
+
# Add arguments to decoder from `kwargs_decoder`
|
580 |
+
decoder_inputs.update(kwargs_decoder)
|
581 |
+
|
582 |
+
decoder_outputs = self.decoder(**decoder_inputs)
|
583 |
+
|
584 |
+
logits = decoder_outputs[0]
|
585 |
+
|
586 |
+
# Compute loss independent from decoder (as some shift the logits inside them)
|
587 |
+
loss = None
|
588 |
+
if labels is not None:
|
589 |
+
warnings.warn(DEPRECATION_WARNING, FutureWarning)
|
590 |
+
loss = self.hf_compute_loss(labels, logits)
|
591 |
+
|
592 |
+
if not return_dict:
|
593 |
+
past_key_values = None
|
594 |
+
if use_cache:
|
595 |
+
past_key_values = decoder_outputs[1]
|
596 |
+
# The starting index of the remaining elements in `decoder_outputs`
|
597 |
+
start_index = sum([1 if x is not None else 0 for x in (loss, logits, past_key_values)])
|
598 |
+
|
599 |
+
if not isinstance(encoder_outputs, tuple):
|
600 |
+
encoder_outputs = encoder_outputs.to_tuple()
|
601 |
+
output = (loss, logits, past_key_values) + decoder_outputs[start_index:] + encoder_outputs
|
602 |
+
output = tuple([x for x in output if x is not None])
|
603 |
+
return output
|
604 |
+
|
605 |
+
return TFSeq2SeqLMOutput(
|
606 |
+
loss=loss,
|
607 |
+
logits=decoder_outputs.logits,
|
608 |
+
past_key_values=decoder_outputs.past_key_values,
|
609 |
+
decoder_hidden_states=decoder_outputs.hidden_states,
|
610 |
+
decoder_attentions=decoder_outputs.attentions,
|
611 |
+
cross_attentions=decoder_outputs.cross_attentions,
|
612 |
+
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
613 |
+
encoder_hidden_states=encoder_outputs.hidden_states,
|
614 |
+
encoder_attentions=encoder_outputs.attentions,
|
615 |
+
)
|
616 |
+
|
617 |
+
def prepare_inputs_for_generation(
|
618 |
+
self, input_ids, past_key_values=None, attention_mask=None, use_cache=None, encoder_outputs=None, **kwargs
|
619 |
+
):
|
620 |
+
decoder_inputs = self.decoder.prepare_inputs_for_generation(input_ids, past_key_values=past_key_values)
|
621 |
+
decoder_attention_mask = decoder_inputs["attention_mask"] if "attention_mask" in decoder_inputs else None
|
622 |
+
past_key_values = decoder_inputs.get("past_key_values")
|
623 |
+
if past_key_values is None:
|
624 |
+
past_key_values = decoder_inputs.get("past") # e.g. on TF GPT2
|
625 |
+
input_dict = {
|
626 |
+
"input_ids": None, # needs to be passed to make Keras.layer.__call__ happy
|
627 |
+
"attention_mask": attention_mask,
|
628 |
+
"decoder_attention_mask": decoder_attention_mask,
|
629 |
+
"decoder_input_ids": decoder_inputs["input_ids"],
|
630 |
+
# TODO (joao): the `TFBaseModelOutput` wrapper should not be needed after the generate refactor is complete
|
631 |
+
"encoder_outputs": TFBaseModelOutput(last_hidden_state=encoder_outputs[0]),
|
632 |
+
"past_key_values": past_key_values,
|
633 |
+
"use_cache": use_cache,
|
634 |
+
}
|
635 |
+
return input_dict
|
636 |
+
|
637 |
+
def prepare_decoder_input_ids_from_labels(self, labels: tf.Tensor):
|
638 |
+
return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id)
|
639 |
+
|
640 |
+
def resize_token_embeddings(self, *args, **kwargs):
|
641 |
+
raise NotImplementedError(
|
642 |
+
"Resizing the embedding layers via the TFEncoderDecoderModel directly is not supported.Please use the"
|
643 |
+
" respective methods of the wrapped objects (model.encoder.resize_token_embeddings(...) or"
|
644 |
+
" model.decoder.resize_token_embeddings(...))"
|
645 |
+
)
|
646 |
+
|
647 |
+
def _reorder_cache(self, past, beam_idx):
|
648 |
+
# apply decoder cache reordering here
|
649 |
+
return self.decoder._reorder_cache(past, beam_idx)
|
650 |
+
|
651 |
+
def build(self, input_shape=None):
|
652 |
+
if self.built:
|
653 |
+
return
|
654 |
+
self.built = True
|
655 |
+
if getattr(self, "enc_to_dec_proj", None) is not None:
|
656 |
+
with tf.name_scope(self.enc_to_dec_proj.name):
|
657 |
+
self.enc_to_dec_proj.build([None, None, self.encoder.config.hidden_size])
|
658 |
+
if getattr(self, "encoder", None) is not None:
|
659 |
+
with tf.name_scope(self.encoder.name):
|
660 |
+
self.encoder.build(None)
|
661 |
+
if getattr(self, "decoder", None) is not None:
|
662 |
+
with tf.name_scope(self.decoder.name):
|
663 |
+
self.decoder.build(None)
|
venv/lib/python3.10/site-packages/transformers/models/ibert/__init__.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import TYPE_CHECKING
|
16 |
+
|
17 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
|
18 |
+
|
19 |
+
|
20 |
+
_import_structure = {"configuration_ibert": ["IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "IBertConfig", "IBertOnnxConfig"]}
|
21 |
+
|
22 |
+
try:
|
23 |
+
if not is_torch_available():
|
24 |
+
raise OptionalDependencyNotAvailable()
|
25 |
+
except OptionalDependencyNotAvailable:
|
26 |
+
pass
|
27 |
+
else:
|
28 |
+
_import_structure["modeling_ibert"] = [
|
29 |
+
"IBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
30 |
+
"IBertForMaskedLM",
|
31 |
+
"IBertForMultipleChoice",
|
32 |
+
"IBertForQuestionAnswering",
|
33 |
+
"IBertForSequenceClassification",
|
34 |
+
"IBertForTokenClassification",
|
35 |
+
"IBertModel",
|
36 |
+
"IBertPreTrainedModel",
|
37 |
+
]
|
38 |
+
|
39 |
+
if TYPE_CHECKING:
|
40 |
+
from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig
|
41 |
+
|
42 |
+
try:
|
43 |
+
if not is_torch_available():
|
44 |
+
raise OptionalDependencyNotAvailable()
|
45 |
+
except OptionalDependencyNotAvailable:
|
46 |
+
pass
|
47 |
+
else:
|
48 |
+
from .modeling_ibert import (
|
49 |
+
IBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
50 |
+
IBertForMaskedLM,
|
51 |
+
IBertForMultipleChoice,
|
52 |
+
IBertForQuestionAnswering,
|
53 |
+
IBertForSequenceClassification,
|
54 |
+
IBertForTokenClassification,
|
55 |
+
IBertModel,
|
56 |
+
IBertPreTrainedModel,
|
57 |
+
)
|
58 |
+
|
59 |
+
else:
|
60 |
+
import sys
|
61 |
+
|
62 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
venv/lib/python3.10/site-packages/transformers/models/ibert/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.06 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/ibert/__pycache__/configuration_ibert.cpython-310.pyc
ADDED
Binary file (6.32 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/ibert/__pycache__/modeling_ibert.cpython-310.pyc
ADDED
Binary file (35.2 kB). View file
|
|