Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step40/zero/19.attention.dense.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step40/zero/19.attention.dense.weight/fp32.pt +3 -0
- venv/lib/python3.10/site-packages/sklearn/gaussian_process/__init__.py +15 -0
- venv/lib/python3.10/site-packages/sklearn/gaussian_process/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/gaussian_process/__pycache__/_gpc.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/gaussian_process/__pycache__/_gpr.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/gaussian_process/__pycache__/kernels.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/gaussian_process/_gpc.py +902 -0
- venv/lib/python3.10/site-packages/sklearn/gaussian_process/_gpr.py +673 -0
- venv/lib/python3.10/site-packages/sklearn/gaussian_process/kernels.py +2415 -0
- venv/lib/python3.10/site-packages/sklearn/gaussian_process/tests/__init__.py +0 -0
- venv/lib/python3.10/site-packages/sklearn/gaussian_process/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/gaussian_process/tests/__pycache__/_mini_sequence_kernel.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/gaussian_process/tests/__pycache__/test_gpc.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/gaussian_process/tests/__pycache__/test_gpr.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/gaussian_process/tests/__pycache__/test_kernels.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/gaussian_process/tests/_mini_sequence_kernel.py +54 -0
- venv/lib/python3.10/site-packages/sklearn/gaussian_process/tests/test_gpc.py +288 -0
- venv/lib/python3.10/site-packages/sklearn/gaussian_process/tests/test_gpr.py +853 -0
- venv/lib/python3.10/site-packages/sklearn/gaussian_process/tests/test_kernels.py +388 -0
- venv/lib/python3.10/site-packages/sklearn/linear_model/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/linear_model/__pycache__/_base.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/linear_model/__pycache__/_bayes.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/linear_model/__pycache__/_coordinate_descent.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/linear_model/__pycache__/_huber.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/linear_model/__pycache__/_least_angle.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/linear_model/__pycache__/_linear_loss.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/linear_model/__pycache__/_logistic.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/linear_model/__pycache__/_omp.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/linear_model/__pycache__/_passive_aggressive.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/linear_model/__pycache__/_perceptron.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/linear_model/__pycache__/_quantile.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/linear_model/__pycache__/_ransac.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/linear_model/__pycache__/_ridge.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/linear_model/__pycache__/_sag.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/linear_model/__pycache__/_stochastic_gradient.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/linear_model/__pycache__/_theil_sen.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/linear_model/_glm/__init__.py +15 -0
- venv/lib/python3.10/site-packages/sklearn/linear_model/_glm/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/linear_model/_glm/__pycache__/_newton_solver.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/linear_model/_glm/__pycache__/glm.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/linear_model/_glm/_newton_solver.py +525 -0
- venv/lib/python3.10/site-packages/sklearn/linear_model/_glm/glm.py +904 -0
- venv/lib/python3.10/site-packages/sklearn/linear_model/_glm/tests/__init__.py +1 -0
- venv/lib/python3.10/site-packages/sklearn/linear_model/_glm/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/linear_model/_glm/tests/__pycache__/test_glm.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/linear_model/_glm/tests/test_glm.py +1112 -0
- venv/lib/python3.10/site-packages/sklearn/linear_model/tests/__init__.py +0 -0
- venv/lib/python3.10/site-packages/sklearn/linear_model/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/linear_model/tests/__pycache__/test_base.cpython-310.pyc +0 -0
ckpts/universal/global_step40/zero/19.attention.dense.weight/exp_avg.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ad37a0acc46ab46511ce568a17497d8c55fa5c71a08bcf004b3438ea60054721
|
| 3 |
+
size 16778396
|
ckpts/universal/global_step40/zero/19.attention.dense.weight/fp32.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b00e249ac56688ceb8f4c14ab09acb2661b3eb3af6f3d5b8339599114a1ddabd
|
| 3 |
+
size 16778317
|
venv/lib/python3.10/site-packages/sklearn/gaussian_process/__init__.py
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Author: Jan Hendrik Metzen <[email protected]>
|
| 2 |
+
# Vincent Dubourg <[email protected]>
|
| 3 |
+
# (mostly translation, see implementation details)
|
| 4 |
+
# License: BSD 3 clause
|
| 5 |
+
|
| 6 |
+
"""
|
| 7 |
+
The :mod:`sklearn.gaussian_process` module implements Gaussian Process
|
| 8 |
+
based regression and classification.
|
| 9 |
+
"""
|
| 10 |
+
|
| 11 |
+
from . import kernels
|
| 12 |
+
from ._gpc import GaussianProcessClassifier
|
| 13 |
+
from ._gpr import GaussianProcessRegressor
|
| 14 |
+
|
| 15 |
+
__all__ = ["GaussianProcessRegressor", "GaussianProcessClassifier", "kernels"]
|
venv/lib/python3.10/site-packages/sklearn/gaussian_process/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (493 Bytes). View file
|
|
|
venv/lib/python3.10/site-packages/sklearn/gaussian_process/__pycache__/_gpc.cpython-310.pyc
ADDED
|
Binary file (29.4 kB). View file
|
|
|
venv/lib/python3.10/site-packages/sklearn/gaussian_process/__pycache__/_gpr.cpython-310.pyc
ADDED
|
Binary file (19.9 kB). View file
|
|
|
venv/lib/python3.10/site-packages/sklearn/gaussian_process/__pycache__/kernels.cpython-310.pyc
ADDED
|
Binary file (71.2 kB). View file
|
|
|
venv/lib/python3.10/site-packages/sklearn/gaussian_process/_gpc.py
ADDED
|
@@ -0,0 +1,902 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Gaussian processes classification."""
|
| 2 |
+
|
| 3 |
+
# Authors: Jan Hendrik Metzen <[email protected]>
|
| 4 |
+
#
|
| 5 |
+
# License: BSD 3 clause
|
| 6 |
+
|
| 7 |
+
from numbers import Integral
|
| 8 |
+
from operator import itemgetter
|
| 9 |
+
|
| 10 |
+
import numpy as np
|
| 11 |
+
import scipy.optimize
|
| 12 |
+
from scipy.linalg import cho_solve, cholesky, solve
|
| 13 |
+
from scipy.special import erf, expit
|
| 14 |
+
|
| 15 |
+
from ..base import BaseEstimator, ClassifierMixin, _fit_context, clone
|
| 16 |
+
from ..multiclass import OneVsOneClassifier, OneVsRestClassifier
|
| 17 |
+
from ..preprocessing import LabelEncoder
|
| 18 |
+
from ..utils import check_random_state
|
| 19 |
+
from ..utils._param_validation import Interval, StrOptions
|
| 20 |
+
from ..utils.optimize import _check_optimize_result
|
| 21 |
+
from ..utils.validation import check_is_fitted
|
| 22 |
+
from .kernels import RBF, CompoundKernel, Kernel
|
| 23 |
+
from .kernels import ConstantKernel as C
|
| 24 |
+
|
| 25 |
+
# Values required for approximating the logistic sigmoid by
|
| 26 |
+
# error functions. coefs are obtained via:
|
| 27 |
+
# x = np.array([0, 0.6, 2, 3.5, 4.5, np.inf])
|
| 28 |
+
# b = logistic(x)
|
| 29 |
+
# A = (erf(np.dot(x, self.lambdas)) + 1) / 2
|
| 30 |
+
# coefs = lstsq(A, b)[0]
|
| 31 |
+
LAMBDAS = np.array([0.41, 0.4, 0.37, 0.44, 0.39])[:, np.newaxis]
|
| 32 |
+
COEFS = np.array(
|
| 33 |
+
[-1854.8214151, 3516.89893646, 221.29346712, 128.12323805, -2010.49422654]
|
| 34 |
+
)[:, np.newaxis]
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
class _BinaryGaussianProcessClassifierLaplace(BaseEstimator):
|
| 38 |
+
"""Binary Gaussian process classification based on Laplace approximation.
|
| 39 |
+
|
| 40 |
+
The implementation is based on Algorithm 3.1, 3.2, and 5.1 from [RW2006]_.
|
| 41 |
+
|
| 42 |
+
Internally, the Laplace approximation is used for approximating the
|
| 43 |
+
non-Gaussian posterior by a Gaussian.
|
| 44 |
+
|
| 45 |
+
Currently, the implementation is restricted to using the logistic link
|
| 46 |
+
function.
|
| 47 |
+
|
| 48 |
+
.. versionadded:: 0.18
|
| 49 |
+
|
| 50 |
+
Parameters
|
| 51 |
+
----------
|
| 52 |
+
kernel : kernel instance, default=None
|
| 53 |
+
The kernel specifying the covariance function of the GP. If None is
|
| 54 |
+
passed, the kernel "1.0 * RBF(1.0)" is used as default. Note that
|
| 55 |
+
the kernel's hyperparameters are optimized during fitting.
|
| 56 |
+
|
| 57 |
+
optimizer : 'fmin_l_bfgs_b' or callable, default='fmin_l_bfgs_b'
|
| 58 |
+
Can either be one of the internally supported optimizers for optimizing
|
| 59 |
+
the kernel's parameters, specified by a string, or an externally
|
| 60 |
+
defined optimizer passed as a callable. If a callable is passed, it
|
| 61 |
+
must have the signature::
|
| 62 |
+
|
| 63 |
+
def optimizer(obj_func, initial_theta, bounds):
|
| 64 |
+
# * 'obj_func' is the objective function to be maximized, which
|
| 65 |
+
# takes the hyperparameters theta as parameter and an
|
| 66 |
+
# optional flag eval_gradient, which determines if the
|
| 67 |
+
# gradient is returned additionally to the function value
|
| 68 |
+
# * 'initial_theta': the initial value for theta, which can be
|
| 69 |
+
# used by local optimizers
|
| 70 |
+
# * 'bounds': the bounds on the values of theta
|
| 71 |
+
....
|
| 72 |
+
# Returned are the best found hyperparameters theta and
|
| 73 |
+
# the corresponding value of the target function.
|
| 74 |
+
return theta_opt, func_min
|
| 75 |
+
|
| 76 |
+
Per default, the 'L-BFGS-B' algorithm from scipy.optimize.minimize
|
| 77 |
+
is used. If None is passed, the kernel's parameters are kept fixed.
|
| 78 |
+
Available internal optimizers are::
|
| 79 |
+
|
| 80 |
+
'fmin_l_bfgs_b'
|
| 81 |
+
|
| 82 |
+
n_restarts_optimizer : int, default=0
|
| 83 |
+
The number of restarts of the optimizer for finding the kernel's
|
| 84 |
+
parameters which maximize the log-marginal likelihood. The first run
|
| 85 |
+
of the optimizer is performed from the kernel's initial parameters,
|
| 86 |
+
the remaining ones (if any) from thetas sampled log-uniform randomly
|
| 87 |
+
from the space of allowed theta-values. If greater than 0, all bounds
|
| 88 |
+
must be finite. Note that n_restarts_optimizer=0 implies that one
|
| 89 |
+
run is performed.
|
| 90 |
+
|
| 91 |
+
max_iter_predict : int, default=100
|
| 92 |
+
The maximum number of iterations in Newton's method for approximating
|
| 93 |
+
the posterior during predict. Smaller values will reduce computation
|
| 94 |
+
time at the cost of worse results.
|
| 95 |
+
|
| 96 |
+
warm_start : bool, default=False
|
| 97 |
+
If warm-starts are enabled, the solution of the last Newton iteration
|
| 98 |
+
on the Laplace approximation of the posterior mode is used as
|
| 99 |
+
initialization for the next call of _posterior_mode(). This can speed
|
| 100 |
+
up convergence when _posterior_mode is called several times on similar
|
| 101 |
+
problems as in hyperparameter optimization. See :term:`the Glossary
|
| 102 |
+
<warm_start>`.
|
| 103 |
+
|
| 104 |
+
copy_X_train : bool, default=True
|
| 105 |
+
If True, a persistent copy of the training data is stored in the
|
| 106 |
+
object. Otherwise, just a reference to the training data is stored,
|
| 107 |
+
which might cause predictions to change if the data is modified
|
| 108 |
+
externally.
|
| 109 |
+
|
| 110 |
+
random_state : int, RandomState instance or None, default=None
|
| 111 |
+
Determines random number generation used to initialize the centers.
|
| 112 |
+
Pass an int for reproducible results across multiple function calls.
|
| 113 |
+
See :term:`Glossary <random_state>`.
|
| 114 |
+
|
| 115 |
+
Attributes
|
| 116 |
+
----------
|
| 117 |
+
X_train_ : array-like of shape (n_samples, n_features) or list of object
|
| 118 |
+
Feature vectors or other representations of training data (also
|
| 119 |
+
required for prediction).
|
| 120 |
+
|
| 121 |
+
y_train_ : array-like of shape (n_samples,)
|
| 122 |
+
Target values in training data (also required for prediction)
|
| 123 |
+
|
| 124 |
+
classes_ : array-like of shape (n_classes,)
|
| 125 |
+
Unique class labels.
|
| 126 |
+
|
| 127 |
+
kernel_ : kernl instance
|
| 128 |
+
The kernel used for prediction. The structure of the kernel is the
|
| 129 |
+
same as the one passed as parameter but with optimized hyperparameters
|
| 130 |
+
|
| 131 |
+
L_ : array-like of shape (n_samples, n_samples)
|
| 132 |
+
Lower-triangular Cholesky decomposition of the kernel in X_train_
|
| 133 |
+
|
| 134 |
+
pi_ : array-like of shape (n_samples,)
|
| 135 |
+
The probabilities of the positive class for the training points
|
| 136 |
+
X_train_
|
| 137 |
+
|
| 138 |
+
W_sr_ : array-like of shape (n_samples,)
|
| 139 |
+
Square root of W, the Hessian of log-likelihood of the latent function
|
| 140 |
+
values for the observed labels. Since W is diagonal, only the diagonal
|
| 141 |
+
of sqrt(W) is stored.
|
| 142 |
+
|
| 143 |
+
log_marginal_likelihood_value_ : float
|
| 144 |
+
The log-marginal-likelihood of ``self.kernel_.theta``
|
| 145 |
+
|
| 146 |
+
References
|
| 147 |
+
----------
|
| 148 |
+
.. [RW2006] `Carl E. Rasmussen and Christopher K.I. Williams,
|
| 149 |
+
"Gaussian Processes for Machine Learning",
|
| 150 |
+
MIT Press 2006 <https://www.gaussianprocess.org/gpml/chapters/RW.pdf>`_
|
| 151 |
+
"""
|
| 152 |
+
|
| 153 |
+
def __init__(
|
| 154 |
+
self,
|
| 155 |
+
kernel=None,
|
| 156 |
+
*,
|
| 157 |
+
optimizer="fmin_l_bfgs_b",
|
| 158 |
+
n_restarts_optimizer=0,
|
| 159 |
+
max_iter_predict=100,
|
| 160 |
+
warm_start=False,
|
| 161 |
+
copy_X_train=True,
|
| 162 |
+
random_state=None,
|
| 163 |
+
):
|
| 164 |
+
self.kernel = kernel
|
| 165 |
+
self.optimizer = optimizer
|
| 166 |
+
self.n_restarts_optimizer = n_restarts_optimizer
|
| 167 |
+
self.max_iter_predict = max_iter_predict
|
| 168 |
+
self.warm_start = warm_start
|
| 169 |
+
self.copy_X_train = copy_X_train
|
| 170 |
+
self.random_state = random_state
|
| 171 |
+
|
| 172 |
+
def fit(self, X, y):
|
| 173 |
+
"""Fit Gaussian process classification model.
|
| 174 |
+
|
| 175 |
+
Parameters
|
| 176 |
+
----------
|
| 177 |
+
X : array-like of shape (n_samples, n_features) or list of object
|
| 178 |
+
Feature vectors or other representations of training data.
|
| 179 |
+
|
| 180 |
+
y : array-like of shape (n_samples,)
|
| 181 |
+
Target values, must be binary.
|
| 182 |
+
|
| 183 |
+
Returns
|
| 184 |
+
-------
|
| 185 |
+
self : returns an instance of self.
|
| 186 |
+
"""
|
| 187 |
+
if self.kernel is None: # Use an RBF kernel as default
|
| 188 |
+
self.kernel_ = C(1.0, constant_value_bounds="fixed") * RBF(
|
| 189 |
+
1.0, length_scale_bounds="fixed"
|
| 190 |
+
)
|
| 191 |
+
else:
|
| 192 |
+
self.kernel_ = clone(self.kernel)
|
| 193 |
+
|
| 194 |
+
self.rng = check_random_state(self.random_state)
|
| 195 |
+
|
| 196 |
+
self.X_train_ = np.copy(X) if self.copy_X_train else X
|
| 197 |
+
|
| 198 |
+
# Encode class labels and check that it is a binary classification
|
| 199 |
+
# problem
|
| 200 |
+
label_encoder = LabelEncoder()
|
| 201 |
+
self.y_train_ = label_encoder.fit_transform(y)
|
| 202 |
+
self.classes_ = label_encoder.classes_
|
| 203 |
+
if self.classes_.size > 2:
|
| 204 |
+
raise ValueError(
|
| 205 |
+
"%s supports only binary classification. y contains classes %s"
|
| 206 |
+
% (self.__class__.__name__, self.classes_)
|
| 207 |
+
)
|
| 208 |
+
elif self.classes_.size == 1:
|
| 209 |
+
raise ValueError(
|
| 210 |
+
"{0:s} requires 2 classes; got {1:d} class".format(
|
| 211 |
+
self.__class__.__name__, self.classes_.size
|
| 212 |
+
)
|
| 213 |
+
)
|
| 214 |
+
|
| 215 |
+
if self.optimizer is not None and self.kernel_.n_dims > 0:
|
| 216 |
+
# Choose hyperparameters based on maximizing the log-marginal
|
| 217 |
+
# likelihood (potentially starting from several initial values)
|
| 218 |
+
def obj_func(theta, eval_gradient=True):
|
| 219 |
+
if eval_gradient:
|
| 220 |
+
lml, grad = self.log_marginal_likelihood(
|
| 221 |
+
theta, eval_gradient=True, clone_kernel=False
|
| 222 |
+
)
|
| 223 |
+
return -lml, -grad
|
| 224 |
+
else:
|
| 225 |
+
return -self.log_marginal_likelihood(theta, clone_kernel=False)
|
| 226 |
+
|
| 227 |
+
# First optimize starting from theta specified in kernel
|
| 228 |
+
optima = [
|
| 229 |
+
self._constrained_optimization(
|
| 230 |
+
obj_func, self.kernel_.theta, self.kernel_.bounds
|
| 231 |
+
)
|
| 232 |
+
]
|
| 233 |
+
|
| 234 |
+
# Additional runs are performed from log-uniform chosen initial
|
| 235 |
+
# theta
|
| 236 |
+
if self.n_restarts_optimizer > 0:
|
| 237 |
+
if not np.isfinite(self.kernel_.bounds).all():
|
| 238 |
+
raise ValueError(
|
| 239 |
+
"Multiple optimizer restarts (n_restarts_optimizer>0) "
|
| 240 |
+
"requires that all bounds are finite."
|
| 241 |
+
)
|
| 242 |
+
bounds = self.kernel_.bounds
|
| 243 |
+
for iteration in range(self.n_restarts_optimizer):
|
| 244 |
+
theta_initial = np.exp(self.rng.uniform(bounds[:, 0], bounds[:, 1]))
|
| 245 |
+
optima.append(
|
| 246 |
+
self._constrained_optimization(obj_func, theta_initial, bounds)
|
| 247 |
+
)
|
| 248 |
+
# Select result from run with minimal (negative) log-marginal
|
| 249 |
+
# likelihood
|
| 250 |
+
lml_values = list(map(itemgetter(1), optima))
|
| 251 |
+
self.kernel_.theta = optima[np.argmin(lml_values)][0]
|
| 252 |
+
self.kernel_._check_bounds_params()
|
| 253 |
+
|
| 254 |
+
self.log_marginal_likelihood_value_ = -np.min(lml_values)
|
| 255 |
+
else:
|
| 256 |
+
self.log_marginal_likelihood_value_ = self.log_marginal_likelihood(
|
| 257 |
+
self.kernel_.theta
|
| 258 |
+
)
|
| 259 |
+
|
| 260 |
+
# Precompute quantities required for predictions which are independent
|
| 261 |
+
# of actual query points
|
| 262 |
+
K = self.kernel_(self.X_train_)
|
| 263 |
+
|
| 264 |
+
_, (self.pi_, self.W_sr_, self.L_, _, _) = self._posterior_mode(
|
| 265 |
+
K, return_temporaries=True
|
| 266 |
+
)
|
| 267 |
+
|
| 268 |
+
return self
|
| 269 |
+
|
| 270 |
+
def predict(self, X):
|
| 271 |
+
"""Perform classification on an array of test vectors X.
|
| 272 |
+
|
| 273 |
+
Parameters
|
| 274 |
+
----------
|
| 275 |
+
X : array-like of shape (n_samples, n_features) or list of object
|
| 276 |
+
Query points where the GP is evaluated for classification.
|
| 277 |
+
|
| 278 |
+
Returns
|
| 279 |
+
-------
|
| 280 |
+
C : ndarray of shape (n_samples,)
|
| 281 |
+
Predicted target values for X, values are from ``classes_``
|
| 282 |
+
"""
|
| 283 |
+
check_is_fitted(self)
|
| 284 |
+
|
| 285 |
+
# As discussed on Section 3.4.2 of GPML, for making hard binary
|
| 286 |
+
# decisions, it is enough to compute the MAP of the posterior and
|
| 287 |
+
# pass it through the link function
|
| 288 |
+
K_star = self.kernel_(self.X_train_, X) # K_star =k(x_star)
|
| 289 |
+
f_star = K_star.T.dot(self.y_train_ - self.pi_) # Algorithm 3.2,Line 4
|
| 290 |
+
|
| 291 |
+
return np.where(f_star > 0, self.classes_[1], self.classes_[0])
|
| 292 |
+
|
| 293 |
+
def predict_proba(self, X):
|
| 294 |
+
"""Return probability estimates for the test vector X.
|
| 295 |
+
|
| 296 |
+
Parameters
|
| 297 |
+
----------
|
| 298 |
+
X : array-like of shape (n_samples, n_features) or list of object
|
| 299 |
+
Query points where the GP is evaluated for classification.
|
| 300 |
+
|
| 301 |
+
Returns
|
| 302 |
+
-------
|
| 303 |
+
C : array-like of shape (n_samples, n_classes)
|
| 304 |
+
Returns the probability of the samples for each class in
|
| 305 |
+
the model. The columns correspond to the classes in sorted
|
| 306 |
+
order, as they appear in the attribute ``classes_``.
|
| 307 |
+
"""
|
| 308 |
+
check_is_fitted(self)
|
| 309 |
+
|
| 310 |
+
# Based on Algorithm 3.2 of GPML
|
| 311 |
+
K_star = self.kernel_(self.X_train_, X) # K_star =k(x_star)
|
| 312 |
+
f_star = K_star.T.dot(self.y_train_ - self.pi_) # Line 4
|
| 313 |
+
v = solve(self.L_, self.W_sr_[:, np.newaxis] * K_star) # Line 5
|
| 314 |
+
# Line 6 (compute np.diag(v.T.dot(v)) via einsum)
|
| 315 |
+
var_f_star = self.kernel_.diag(X) - np.einsum("ij,ij->j", v, v)
|
| 316 |
+
|
| 317 |
+
# Line 7:
|
| 318 |
+
# Approximate \int log(z) * N(z | f_star, var_f_star)
|
| 319 |
+
# Approximation is due to Williams & Barber, "Bayesian Classification
|
| 320 |
+
# with Gaussian Processes", Appendix A: Approximate the logistic
|
| 321 |
+
# sigmoid by a linear combination of 5 error functions.
|
| 322 |
+
# For information on how this integral can be computed see
|
| 323 |
+
# blitiri.blogspot.de/2012/11/gaussian-integral-of-error-function.html
|
| 324 |
+
alpha = 1 / (2 * var_f_star)
|
| 325 |
+
gamma = LAMBDAS * f_star
|
| 326 |
+
integrals = (
|
| 327 |
+
np.sqrt(np.pi / alpha)
|
| 328 |
+
* erf(gamma * np.sqrt(alpha / (alpha + LAMBDAS**2)))
|
| 329 |
+
/ (2 * np.sqrt(var_f_star * 2 * np.pi))
|
| 330 |
+
)
|
| 331 |
+
pi_star = (COEFS * integrals).sum(axis=0) + 0.5 * COEFS.sum()
|
| 332 |
+
|
| 333 |
+
return np.vstack((1 - pi_star, pi_star)).T
|
| 334 |
+
|
| 335 |
+
def log_marginal_likelihood(
|
| 336 |
+
self, theta=None, eval_gradient=False, clone_kernel=True
|
| 337 |
+
):
|
| 338 |
+
"""Returns log-marginal likelihood of theta for training data.
|
| 339 |
+
|
| 340 |
+
Parameters
|
| 341 |
+
----------
|
| 342 |
+
theta : array-like of shape (n_kernel_params,), default=None
|
| 343 |
+
Kernel hyperparameters for which the log-marginal likelihood is
|
| 344 |
+
evaluated. If None, the precomputed log_marginal_likelihood
|
| 345 |
+
of ``self.kernel_.theta`` is returned.
|
| 346 |
+
|
| 347 |
+
eval_gradient : bool, default=False
|
| 348 |
+
If True, the gradient of the log-marginal likelihood with respect
|
| 349 |
+
to the kernel hyperparameters at position theta is returned
|
| 350 |
+
additionally. If True, theta must not be None.
|
| 351 |
+
|
| 352 |
+
clone_kernel : bool, default=True
|
| 353 |
+
If True, the kernel attribute is copied. If False, the kernel
|
| 354 |
+
attribute is modified, but may result in a performance improvement.
|
| 355 |
+
|
| 356 |
+
Returns
|
| 357 |
+
-------
|
| 358 |
+
log_likelihood : float
|
| 359 |
+
Log-marginal likelihood of theta for training data.
|
| 360 |
+
|
| 361 |
+
log_likelihood_gradient : ndarray of shape (n_kernel_params,), \
|
| 362 |
+
optional
|
| 363 |
+
Gradient of the log-marginal likelihood with respect to the kernel
|
| 364 |
+
hyperparameters at position theta.
|
| 365 |
+
Only returned when `eval_gradient` is True.
|
| 366 |
+
"""
|
| 367 |
+
if theta is None:
|
| 368 |
+
if eval_gradient:
|
| 369 |
+
raise ValueError("Gradient can only be evaluated for theta!=None")
|
| 370 |
+
return self.log_marginal_likelihood_value_
|
| 371 |
+
|
| 372 |
+
if clone_kernel:
|
| 373 |
+
kernel = self.kernel_.clone_with_theta(theta)
|
| 374 |
+
else:
|
| 375 |
+
kernel = self.kernel_
|
| 376 |
+
kernel.theta = theta
|
| 377 |
+
|
| 378 |
+
if eval_gradient:
|
| 379 |
+
K, K_gradient = kernel(self.X_train_, eval_gradient=True)
|
| 380 |
+
else:
|
| 381 |
+
K = kernel(self.X_train_)
|
| 382 |
+
|
| 383 |
+
# Compute log-marginal-likelihood Z and also store some temporaries
|
| 384 |
+
# which can be reused for computing Z's gradient
|
| 385 |
+
Z, (pi, W_sr, L, b, a) = self._posterior_mode(K, return_temporaries=True)
|
| 386 |
+
|
| 387 |
+
if not eval_gradient:
|
| 388 |
+
return Z
|
| 389 |
+
|
| 390 |
+
# Compute gradient based on Algorithm 5.1 of GPML
|
| 391 |
+
d_Z = np.empty(theta.shape[0])
|
| 392 |
+
# XXX: Get rid of the np.diag() in the next line
|
| 393 |
+
R = W_sr[:, np.newaxis] * cho_solve((L, True), np.diag(W_sr)) # Line 7
|
| 394 |
+
C = solve(L, W_sr[:, np.newaxis] * K) # Line 8
|
| 395 |
+
# Line 9: (use einsum to compute np.diag(C.T.dot(C))))
|
| 396 |
+
s_2 = (
|
| 397 |
+
-0.5
|
| 398 |
+
* (np.diag(K) - np.einsum("ij, ij -> j", C, C))
|
| 399 |
+
* (pi * (1 - pi) * (1 - 2 * pi))
|
| 400 |
+
) # third derivative
|
| 401 |
+
|
| 402 |
+
for j in range(d_Z.shape[0]):
|
| 403 |
+
C = K_gradient[:, :, j] # Line 11
|
| 404 |
+
# Line 12: (R.T.ravel().dot(C.ravel()) = np.trace(R.dot(C)))
|
| 405 |
+
s_1 = 0.5 * a.T.dot(C).dot(a) - 0.5 * R.T.ravel().dot(C.ravel())
|
| 406 |
+
|
| 407 |
+
b = C.dot(self.y_train_ - pi) # Line 13
|
| 408 |
+
s_3 = b - K.dot(R.dot(b)) # Line 14
|
| 409 |
+
|
| 410 |
+
d_Z[j] = s_1 + s_2.T.dot(s_3) # Line 15
|
| 411 |
+
|
| 412 |
+
return Z, d_Z
|
| 413 |
+
|
| 414 |
+
def _posterior_mode(self, K, return_temporaries=False):
|
| 415 |
+
"""Mode-finding for binary Laplace GPC and fixed kernel.
|
| 416 |
+
|
| 417 |
+
This approximates the posterior of the latent function values for given
|
| 418 |
+
inputs and target observations with a Gaussian approximation and uses
|
| 419 |
+
Newton's iteration to find the mode of this approximation.
|
| 420 |
+
"""
|
| 421 |
+
# Based on Algorithm 3.1 of GPML
|
| 422 |
+
|
| 423 |
+
# If warm_start are enabled, we reuse the last solution for the
|
| 424 |
+
# posterior mode as initialization; otherwise, we initialize with 0
|
| 425 |
+
if (
|
| 426 |
+
self.warm_start
|
| 427 |
+
and hasattr(self, "f_cached")
|
| 428 |
+
and self.f_cached.shape == self.y_train_.shape
|
| 429 |
+
):
|
| 430 |
+
f = self.f_cached
|
| 431 |
+
else:
|
| 432 |
+
f = np.zeros_like(self.y_train_, dtype=np.float64)
|
| 433 |
+
|
| 434 |
+
# Use Newton's iteration method to find mode of Laplace approximation
|
| 435 |
+
log_marginal_likelihood = -np.inf
|
| 436 |
+
for _ in range(self.max_iter_predict):
|
| 437 |
+
# Line 4
|
| 438 |
+
pi = expit(f)
|
| 439 |
+
W = pi * (1 - pi)
|
| 440 |
+
# Line 5
|
| 441 |
+
W_sr = np.sqrt(W)
|
| 442 |
+
W_sr_K = W_sr[:, np.newaxis] * K
|
| 443 |
+
B = np.eye(W.shape[0]) + W_sr_K * W_sr
|
| 444 |
+
L = cholesky(B, lower=True)
|
| 445 |
+
# Line 6
|
| 446 |
+
b = W * f + (self.y_train_ - pi)
|
| 447 |
+
# Line 7
|
| 448 |
+
a = b - W_sr * cho_solve((L, True), W_sr_K.dot(b))
|
| 449 |
+
# Line 8
|
| 450 |
+
f = K.dot(a)
|
| 451 |
+
|
| 452 |
+
# Line 10: Compute log marginal likelihood in loop and use as
|
| 453 |
+
# convergence criterion
|
| 454 |
+
lml = (
|
| 455 |
+
-0.5 * a.T.dot(f)
|
| 456 |
+
- np.log1p(np.exp(-(self.y_train_ * 2 - 1) * f)).sum()
|
| 457 |
+
- np.log(np.diag(L)).sum()
|
| 458 |
+
)
|
| 459 |
+
# Check if we have converged (log marginal likelihood does
|
| 460 |
+
# not decrease)
|
| 461 |
+
# XXX: more complex convergence criterion
|
| 462 |
+
if lml - log_marginal_likelihood < 1e-10:
|
| 463 |
+
break
|
| 464 |
+
log_marginal_likelihood = lml
|
| 465 |
+
|
| 466 |
+
self.f_cached = f # Remember solution for later warm-starts
|
| 467 |
+
if return_temporaries:
|
| 468 |
+
return log_marginal_likelihood, (pi, W_sr, L, b, a)
|
| 469 |
+
else:
|
| 470 |
+
return log_marginal_likelihood
|
| 471 |
+
|
| 472 |
+
def _constrained_optimization(self, obj_func, initial_theta, bounds):
|
| 473 |
+
if self.optimizer == "fmin_l_bfgs_b":
|
| 474 |
+
opt_res = scipy.optimize.minimize(
|
| 475 |
+
obj_func, initial_theta, method="L-BFGS-B", jac=True, bounds=bounds
|
| 476 |
+
)
|
| 477 |
+
_check_optimize_result("lbfgs", opt_res)
|
| 478 |
+
theta_opt, func_min = opt_res.x, opt_res.fun
|
| 479 |
+
elif callable(self.optimizer):
|
| 480 |
+
theta_opt, func_min = self.optimizer(obj_func, initial_theta, bounds=bounds)
|
| 481 |
+
else:
|
| 482 |
+
raise ValueError("Unknown optimizer %s." % self.optimizer)
|
| 483 |
+
|
| 484 |
+
return theta_opt, func_min
|
| 485 |
+
|
| 486 |
+
|
| 487 |
+
class GaussianProcessClassifier(ClassifierMixin, BaseEstimator):
|
| 488 |
+
"""Gaussian process classification (GPC) based on Laplace approximation.
|
| 489 |
+
|
| 490 |
+
The implementation is based on Algorithm 3.1, 3.2, and 5.1 from [RW2006]_.
|
| 491 |
+
|
| 492 |
+
Internally, the Laplace approximation is used for approximating the
|
| 493 |
+
non-Gaussian posterior by a Gaussian.
|
| 494 |
+
|
| 495 |
+
Currently, the implementation is restricted to using the logistic link
|
| 496 |
+
function. For multi-class classification, several binary one-versus rest
|
| 497 |
+
classifiers are fitted. Note that this class thus does not implement
|
| 498 |
+
a true multi-class Laplace approximation.
|
| 499 |
+
|
| 500 |
+
Read more in the :ref:`User Guide <gaussian_process>`.
|
| 501 |
+
|
| 502 |
+
.. versionadded:: 0.18
|
| 503 |
+
|
| 504 |
+
Parameters
|
| 505 |
+
----------
|
| 506 |
+
kernel : kernel instance, default=None
|
| 507 |
+
The kernel specifying the covariance function of the GP. If None is
|
| 508 |
+
passed, the kernel "1.0 * RBF(1.0)" is used as default. Note that
|
| 509 |
+
the kernel's hyperparameters are optimized during fitting. Also kernel
|
| 510 |
+
cannot be a `CompoundKernel`.
|
| 511 |
+
|
| 512 |
+
optimizer : 'fmin_l_bfgs_b', callable or None, default='fmin_l_bfgs_b'
|
| 513 |
+
Can either be one of the internally supported optimizers for optimizing
|
| 514 |
+
the kernel's parameters, specified by a string, or an externally
|
| 515 |
+
defined optimizer passed as a callable. If a callable is passed, it
|
| 516 |
+
must have the signature::
|
| 517 |
+
|
| 518 |
+
def optimizer(obj_func, initial_theta, bounds):
|
| 519 |
+
# * 'obj_func' is the objective function to be maximized, which
|
| 520 |
+
# takes the hyperparameters theta as parameter and an
|
| 521 |
+
# optional flag eval_gradient, which determines if the
|
| 522 |
+
# gradient is returned additionally to the function value
|
| 523 |
+
# * 'initial_theta': the initial value for theta, which can be
|
| 524 |
+
# used by local optimizers
|
| 525 |
+
# * 'bounds': the bounds on the values of theta
|
| 526 |
+
....
|
| 527 |
+
# Returned are the best found hyperparameters theta and
|
| 528 |
+
# the corresponding value of the target function.
|
| 529 |
+
return theta_opt, func_min
|
| 530 |
+
|
| 531 |
+
Per default, the 'L-BFGS-B' algorithm from scipy.optimize.minimize
|
| 532 |
+
is used. If None is passed, the kernel's parameters are kept fixed.
|
| 533 |
+
Available internal optimizers are::
|
| 534 |
+
|
| 535 |
+
'fmin_l_bfgs_b'
|
| 536 |
+
|
| 537 |
+
n_restarts_optimizer : int, default=0
|
| 538 |
+
The number of restarts of the optimizer for finding the kernel's
|
| 539 |
+
parameters which maximize the log-marginal likelihood. The first run
|
| 540 |
+
of the optimizer is performed from the kernel's initial parameters,
|
| 541 |
+
the remaining ones (if any) from thetas sampled log-uniform randomly
|
| 542 |
+
from the space of allowed theta-values. If greater than 0, all bounds
|
| 543 |
+
must be finite. Note that n_restarts_optimizer=0 implies that one
|
| 544 |
+
run is performed.
|
| 545 |
+
|
| 546 |
+
max_iter_predict : int, default=100
|
| 547 |
+
The maximum number of iterations in Newton's method for approximating
|
| 548 |
+
the posterior during predict. Smaller values will reduce computation
|
| 549 |
+
time at the cost of worse results.
|
| 550 |
+
|
| 551 |
+
warm_start : bool, default=False
|
| 552 |
+
If warm-starts are enabled, the solution of the last Newton iteration
|
| 553 |
+
on the Laplace approximation of the posterior mode is used as
|
| 554 |
+
initialization for the next call of _posterior_mode(). This can speed
|
| 555 |
+
up convergence when _posterior_mode is called several times on similar
|
| 556 |
+
problems as in hyperparameter optimization. See :term:`the Glossary
|
| 557 |
+
<warm_start>`.
|
| 558 |
+
|
| 559 |
+
copy_X_train : bool, default=True
|
| 560 |
+
If True, a persistent copy of the training data is stored in the
|
| 561 |
+
object. Otherwise, just a reference to the training data is stored,
|
| 562 |
+
which might cause predictions to change if the data is modified
|
| 563 |
+
externally.
|
| 564 |
+
|
| 565 |
+
random_state : int, RandomState instance or None, default=None
|
| 566 |
+
Determines random number generation used to initialize the centers.
|
| 567 |
+
Pass an int for reproducible results across multiple function calls.
|
| 568 |
+
See :term:`Glossary <random_state>`.
|
| 569 |
+
|
| 570 |
+
multi_class : {'one_vs_rest', 'one_vs_one'}, default='one_vs_rest'
|
| 571 |
+
Specifies how multi-class classification problems are handled.
|
| 572 |
+
Supported are 'one_vs_rest' and 'one_vs_one'. In 'one_vs_rest',
|
| 573 |
+
one binary Gaussian process classifier is fitted for each class, which
|
| 574 |
+
is trained to separate this class from the rest. In 'one_vs_one', one
|
| 575 |
+
binary Gaussian process classifier is fitted for each pair of classes,
|
| 576 |
+
which is trained to separate these two classes. The predictions of
|
| 577 |
+
these binary predictors are combined into multi-class predictions.
|
| 578 |
+
Note that 'one_vs_one' does not support predicting probability
|
| 579 |
+
estimates.
|
| 580 |
+
|
| 581 |
+
n_jobs : int, default=None
|
| 582 |
+
The number of jobs to use for the computation: the specified
|
| 583 |
+
multiclass problems are computed in parallel.
|
| 584 |
+
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
| 585 |
+
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
| 586 |
+
for more details.
|
| 587 |
+
|
| 588 |
+
Attributes
|
| 589 |
+
----------
|
| 590 |
+
base_estimator_ : ``Estimator`` instance
|
| 591 |
+
The estimator instance that defines the likelihood function
|
| 592 |
+
using the observed data.
|
| 593 |
+
|
| 594 |
+
kernel_ : kernel instance
|
| 595 |
+
The kernel used for prediction. In case of binary classification,
|
| 596 |
+
the structure of the kernel is the same as the one passed as parameter
|
| 597 |
+
but with optimized hyperparameters. In case of multi-class
|
| 598 |
+
classification, a CompoundKernel is returned which consists of the
|
| 599 |
+
different kernels used in the one-versus-rest classifiers.
|
| 600 |
+
|
| 601 |
+
log_marginal_likelihood_value_ : float
|
| 602 |
+
The log-marginal-likelihood of ``self.kernel_.theta``
|
| 603 |
+
|
| 604 |
+
classes_ : array-like of shape (n_classes,)
|
| 605 |
+
Unique class labels.
|
| 606 |
+
|
| 607 |
+
n_classes_ : int
|
| 608 |
+
The number of classes in the training data
|
| 609 |
+
|
| 610 |
+
n_features_in_ : int
|
| 611 |
+
Number of features seen during :term:`fit`.
|
| 612 |
+
|
| 613 |
+
.. versionadded:: 0.24
|
| 614 |
+
|
| 615 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
| 616 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
| 617 |
+
has feature names that are all strings.
|
| 618 |
+
|
| 619 |
+
.. versionadded:: 1.0
|
| 620 |
+
|
| 621 |
+
See Also
|
| 622 |
+
--------
|
| 623 |
+
GaussianProcessRegressor : Gaussian process regression (GPR).
|
| 624 |
+
|
| 625 |
+
References
|
| 626 |
+
----------
|
| 627 |
+
.. [RW2006] `Carl E. Rasmussen and Christopher K.I. Williams,
|
| 628 |
+
"Gaussian Processes for Machine Learning",
|
| 629 |
+
MIT Press 2006 <https://www.gaussianprocess.org/gpml/chapters/RW.pdf>`_
|
| 630 |
+
|
| 631 |
+
Examples
|
| 632 |
+
--------
|
| 633 |
+
>>> from sklearn.datasets import load_iris
|
| 634 |
+
>>> from sklearn.gaussian_process import GaussianProcessClassifier
|
| 635 |
+
>>> from sklearn.gaussian_process.kernels import RBF
|
| 636 |
+
>>> X, y = load_iris(return_X_y=True)
|
| 637 |
+
>>> kernel = 1.0 * RBF(1.0)
|
| 638 |
+
>>> gpc = GaussianProcessClassifier(kernel=kernel,
|
| 639 |
+
... random_state=0).fit(X, y)
|
| 640 |
+
>>> gpc.score(X, y)
|
| 641 |
+
0.9866...
|
| 642 |
+
>>> gpc.predict_proba(X[:2,:])
|
| 643 |
+
array([[0.83548752, 0.03228706, 0.13222543],
|
| 644 |
+
[0.79064206, 0.06525643, 0.14410151]])
|
| 645 |
+
"""
|
| 646 |
+
|
| 647 |
+
_parameter_constraints: dict = {
|
| 648 |
+
"kernel": [Kernel, None],
|
| 649 |
+
"optimizer": [StrOptions({"fmin_l_bfgs_b"}), callable, None],
|
| 650 |
+
"n_restarts_optimizer": [Interval(Integral, 0, None, closed="left")],
|
| 651 |
+
"max_iter_predict": [Interval(Integral, 1, None, closed="left")],
|
| 652 |
+
"warm_start": ["boolean"],
|
| 653 |
+
"copy_X_train": ["boolean"],
|
| 654 |
+
"random_state": ["random_state"],
|
| 655 |
+
"multi_class": [StrOptions({"one_vs_rest", "one_vs_one"})],
|
| 656 |
+
"n_jobs": [Integral, None],
|
| 657 |
+
}
|
| 658 |
+
|
| 659 |
+
def __init__(
|
| 660 |
+
self,
|
| 661 |
+
kernel=None,
|
| 662 |
+
*,
|
| 663 |
+
optimizer="fmin_l_bfgs_b",
|
| 664 |
+
n_restarts_optimizer=0,
|
| 665 |
+
max_iter_predict=100,
|
| 666 |
+
warm_start=False,
|
| 667 |
+
copy_X_train=True,
|
| 668 |
+
random_state=None,
|
| 669 |
+
multi_class="one_vs_rest",
|
| 670 |
+
n_jobs=None,
|
| 671 |
+
):
|
| 672 |
+
self.kernel = kernel
|
| 673 |
+
self.optimizer = optimizer
|
| 674 |
+
self.n_restarts_optimizer = n_restarts_optimizer
|
| 675 |
+
self.max_iter_predict = max_iter_predict
|
| 676 |
+
self.warm_start = warm_start
|
| 677 |
+
self.copy_X_train = copy_X_train
|
| 678 |
+
self.random_state = random_state
|
| 679 |
+
self.multi_class = multi_class
|
| 680 |
+
self.n_jobs = n_jobs
|
| 681 |
+
|
| 682 |
+
@_fit_context(prefer_skip_nested_validation=True)
|
| 683 |
+
def fit(self, X, y):
|
| 684 |
+
"""Fit Gaussian process classification model.
|
| 685 |
+
|
| 686 |
+
Parameters
|
| 687 |
+
----------
|
| 688 |
+
X : array-like of shape (n_samples, n_features) or list of object
|
| 689 |
+
Feature vectors or other representations of training data.
|
| 690 |
+
|
| 691 |
+
y : array-like of shape (n_samples,)
|
| 692 |
+
Target values, must be binary.
|
| 693 |
+
|
| 694 |
+
Returns
|
| 695 |
+
-------
|
| 696 |
+
self : object
|
| 697 |
+
Returns an instance of self.
|
| 698 |
+
"""
|
| 699 |
+
if isinstance(self.kernel, CompoundKernel):
|
| 700 |
+
raise ValueError("kernel cannot be a CompoundKernel")
|
| 701 |
+
|
| 702 |
+
if self.kernel is None or self.kernel.requires_vector_input:
|
| 703 |
+
X, y = self._validate_data(
|
| 704 |
+
X, y, multi_output=False, ensure_2d=True, dtype="numeric"
|
| 705 |
+
)
|
| 706 |
+
else:
|
| 707 |
+
X, y = self._validate_data(
|
| 708 |
+
X, y, multi_output=False, ensure_2d=False, dtype=None
|
| 709 |
+
)
|
| 710 |
+
|
| 711 |
+
self.base_estimator_ = _BinaryGaussianProcessClassifierLaplace(
|
| 712 |
+
kernel=self.kernel,
|
| 713 |
+
optimizer=self.optimizer,
|
| 714 |
+
n_restarts_optimizer=self.n_restarts_optimizer,
|
| 715 |
+
max_iter_predict=self.max_iter_predict,
|
| 716 |
+
warm_start=self.warm_start,
|
| 717 |
+
copy_X_train=self.copy_X_train,
|
| 718 |
+
random_state=self.random_state,
|
| 719 |
+
)
|
| 720 |
+
|
| 721 |
+
self.classes_ = np.unique(y)
|
| 722 |
+
self.n_classes_ = self.classes_.size
|
| 723 |
+
if self.n_classes_ == 1:
|
| 724 |
+
raise ValueError(
|
| 725 |
+
"GaussianProcessClassifier requires 2 or more "
|
| 726 |
+
"distinct classes; got %d class (only class %s "
|
| 727 |
+
"is present)" % (self.n_classes_, self.classes_[0])
|
| 728 |
+
)
|
| 729 |
+
if self.n_classes_ > 2:
|
| 730 |
+
if self.multi_class == "one_vs_rest":
|
| 731 |
+
self.base_estimator_ = OneVsRestClassifier(
|
| 732 |
+
self.base_estimator_, n_jobs=self.n_jobs
|
| 733 |
+
)
|
| 734 |
+
elif self.multi_class == "one_vs_one":
|
| 735 |
+
self.base_estimator_ = OneVsOneClassifier(
|
| 736 |
+
self.base_estimator_, n_jobs=self.n_jobs
|
| 737 |
+
)
|
| 738 |
+
else:
|
| 739 |
+
raise ValueError("Unknown multi-class mode %s" % self.multi_class)
|
| 740 |
+
|
| 741 |
+
self.base_estimator_.fit(X, y)
|
| 742 |
+
|
| 743 |
+
if self.n_classes_ > 2:
|
| 744 |
+
self.log_marginal_likelihood_value_ = np.mean(
|
| 745 |
+
[
|
| 746 |
+
estimator.log_marginal_likelihood()
|
| 747 |
+
for estimator in self.base_estimator_.estimators_
|
| 748 |
+
]
|
| 749 |
+
)
|
| 750 |
+
else:
|
| 751 |
+
self.log_marginal_likelihood_value_ = (
|
| 752 |
+
self.base_estimator_.log_marginal_likelihood()
|
| 753 |
+
)
|
| 754 |
+
|
| 755 |
+
return self
|
| 756 |
+
|
| 757 |
+
def predict(self, X):
|
| 758 |
+
"""Perform classification on an array of test vectors X.
|
| 759 |
+
|
| 760 |
+
Parameters
|
| 761 |
+
----------
|
| 762 |
+
X : array-like of shape (n_samples, n_features) or list of object
|
| 763 |
+
Query points where the GP is evaluated for classification.
|
| 764 |
+
|
| 765 |
+
Returns
|
| 766 |
+
-------
|
| 767 |
+
C : ndarray of shape (n_samples,)
|
| 768 |
+
Predicted target values for X, values are from ``classes_``.
|
| 769 |
+
"""
|
| 770 |
+
check_is_fitted(self)
|
| 771 |
+
|
| 772 |
+
if self.kernel is None or self.kernel.requires_vector_input:
|
| 773 |
+
X = self._validate_data(X, ensure_2d=True, dtype="numeric", reset=False)
|
| 774 |
+
else:
|
| 775 |
+
X = self._validate_data(X, ensure_2d=False, dtype=None, reset=False)
|
| 776 |
+
|
| 777 |
+
return self.base_estimator_.predict(X)
|
| 778 |
+
|
| 779 |
+
def predict_proba(self, X):
|
| 780 |
+
"""Return probability estimates for the test vector X.
|
| 781 |
+
|
| 782 |
+
Parameters
|
| 783 |
+
----------
|
| 784 |
+
X : array-like of shape (n_samples, n_features) or list of object
|
| 785 |
+
Query points where the GP is evaluated for classification.
|
| 786 |
+
|
| 787 |
+
Returns
|
| 788 |
+
-------
|
| 789 |
+
C : array-like of shape (n_samples, n_classes)
|
| 790 |
+
Returns the probability of the samples for each class in
|
| 791 |
+
the model. The columns correspond to the classes in sorted
|
| 792 |
+
order, as they appear in the attribute :term:`classes_`.
|
| 793 |
+
"""
|
| 794 |
+
check_is_fitted(self)
|
| 795 |
+
if self.n_classes_ > 2 and self.multi_class == "one_vs_one":
|
| 796 |
+
raise ValueError(
|
| 797 |
+
"one_vs_one multi-class mode does not support "
|
| 798 |
+
"predicting probability estimates. Use "
|
| 799 |
+
"one_vs_rest mode instead."
|
| 800 |
+
)
|
| 801 |
+
|
| 802 |
+
if self.kernel is None or self.kernel.requires_vector_input:
|
| 803 |
+
X = self._validate_data(X, ensure_2d=True, dtype="numeric", reset=False)
|
| 804 |
+
else:
|
| 805 |
+
X = self._validate_data(X, ensure_2d=False, dtype=None, reset=False)
|
| 806 |
+
|
| 807 |
+
return self.base_estimator_.predict_proba(X)
|
| 808 |
+
|
| 809 |
+
@property
|
| 810 |
+
def kernel_(self):
|
| 811 |
+
"""Return the kernel of the base estimator."""
|
| 812 |
+
if self.n_classes_ == 2:
|
| 813 |
+
return self.base_estimator_.kernel_
|
| 814 |
+
else:
|
| 815 |
+
return CompoundKernel(
|
| 816 |
+
[estimator.kernel_ for estimator in self.base_estimator_.estimators_]
|
| 817 |
+
)
|
| 818 |
+
|
| 819 |
+
def log_marginal_likelihood(
|
| 820 |
+
self, theta=None, eval_gradient=False, clone_kernel=True
|
| 821 |
+
):
|
| 822 |
+
"""Return log-marginal likelihood of theta for training data.
|
| 823 |
+
|
| 824 |
+
In the case of multi-class classification, the mean log-marginal
|
| 825 |
+
likelihood of the one-versus-rest classifiers are returned.
|
| 826 |
+
|
| 827 |
+
Parameters
|
| 828 |
+
----------
|
| 829 |
+
theta : array-like of shape (n_kernel_params,), default=None
|
| 830 |
+
Kernel hyperparameters for which the log-marginal likelihood is
|
| 831 |
+
evaluated. In the case of multi-class classification, theta may
|
| 832 |
+
be the hyperparameters of the compound kernel or of an individual
|
| 833 |
+
kernel. In the latter case, all individual kernel get assigned the
|
| 834 |
+
same theta values. If None, the precomputed log_marginal_likelihood
|
| 835 |
+
of ``self.kernel_.theta`` is returned.
|
| 836 |
+
|
| 837 |
+
eval_gradient : bool, default=False
|
| 838 |
+
If True, the gradient of the log-marginal likelihood with respect
|
| 839 |
+
to the kernel hyperparameters at position theta is returned
|
| 840 |
+
additionally. Note that gradient computation is not supported
|
| 841 |
+
for non-binary classification. If True, theta must not be None.
|
| 842 |
+
|
| 843 |
+
clone_kernel : bool, default=True
|
| 844 |
+
If True, the kernel attribute is copied. If False, the kernel
|
| 845 |
+
attribute is modified, but may result in a performance improvement.
|
| 846 |
+
|
| 847 |
+
Returns
|
| 848 |
+
-------
|
| 849 |
+
log_likelihood : float
|
| 850 |
+
Log-marginal likelihood of theta for training data.
|
| 851 |
+
|
| 852 |
+
log_likelihood_gradient : ndarray of shape (n_kernel_params,), optional
|
| 853 |
+
Gradient of the log-marginal likelihood with respect to the kernel
|
| 854 |
+
hyperparameters at position theta.
|
| 855 |
+
Only returned when `eval_gradient` is True.
|
| 856 |
+
"""
|
| 857 |
+
check_is_fitted(self)
|
| 858 |
+
|
| 859 |
+
if theta is None:
|
| 860 |
+
if eval_gradient:
|
| 861 |
+
raise ValueError("Gradient can only be evaluated for theta!=None")
|
| 862 |
+
return self.log_marginal_likelihood_value_
|
| 863 |
+
|
| 864 |
+
theta = np.asarray(theta)
|
| 865 |
+
if self.n_classes_ == 2:
|
| 866 |
+
return self.base_estimator_.log_marginal_likelihood(
|
| 867 |
+
theta, eval_gradient, clone_kernel=clone_kernel
|
| 868 |
+
)
|
| 869 |
+
else:
|
| 870 |
+
if eval_gradient:
|
| 871 |
+
raise NotImplementedError(
|
| 872 |
+
"Gradient of log-marginal-likelihood not implemented for "
|
| 873 |
+
"multi-class GPC."
|
| 874 |
+
)
|
| 875 |
+
estimators = self.base_estimator_.estimators_
|
| 876 |
+
n_dims = estimators[0].kernel_.n_dims
|
| 877 |
+
if theta.shape[0] == n_dims: # use same theta for all sub-kernels
|
| 878 |
+
return np.mean(
|
| 879 |
+
[
|
| 880 |
+
estimator.log_marginal_likelihood(
|
| 881 |
+
theta, clone_kernel=clone_kernel
|
| 882 |
+
)
|
| 883 |
+
for i, estimator in enumerate(estimators)
|
| 884 |
+
]
|
| 885 |
+
)
|
| 886 |
+
elif theta.shape[0] == n_dims * self.classes_.shape[0]:
|
| 887 |
+
# theta for compound kernel
|
| 888 |
+
return np.mean(
|
| 889 |
+
[
|
| 890 |
+
estimator.log_marginal_likelihood(
|
| 891 |
+
theta[n_dims * i : n_dims * (i + 1)],
|
| 892 |
+
clone_kernel=clone_kernel,
|
| 893 |
+
)
|
| 894 |
+
for i, estimator in enumerate(estimators)
|
| 895 |
+
]
|
| 896 |
+
)
|
| 897 |
+
else:
|
| 898 |
+
raise ValueError(
|
| 899 |
+
"Shape of theta must be either %d or %d. "
|
| 900 |
+
"Obtained theta with shape %d."
|
| 901 |
+
% (n_dims, n_dims * self.classes_.shape[0], theta.shape[0])
|
| 902 |
+
)
|
venv/lib/python3.10/site-packages/sklearn/gaussian_process/_gpr.py
ADDED
|
@@ -0,0 +1,673 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Gaussian processes regression."""
|
| 2 |
+
|
| 3 |
+
# Authors: Jan Hendrik Metzen <[email protected]>
|
| 4 |
+
# Modified by: Pete Green <[email protected]>
|
| 5 |
+
# License: BSD 3 clause
|
| 6 |
+
|
| 7 |
+
import warnings
|
| 8 |
+
from numbers import Integral, Real
|
| 9 |
+
from operator import itemgetter
|
| 10 |
+
|
| 11 |
+
import numpy as np
|
| 12 |
+
import scipy.optimize
|
| 13 |
+
from scipy.linalg import cho_solve, cholesky, solve_triangular
|
| 14 |
+
|
| 15 |
+
from ..base import BaseEstimator, MultiOutputMixin, RegressorMixin, _fit_context, clone
|
| 16 |
+
from ..preprocessing._data import _handle_zeros_in_scale
|
| 17 |
+
from ..utils import check_random_state
|
| 18 |
+
from ..utils._param_validation import Interval, StrOptions
|
| 19 |
+
from ..utils.optimize import _check_optimize_result
|
| 20 |
+
from .kernels import RBF, Kernel
|
| 21 |
+
from .kernels import ConstantKernel as C
|
| 22 |
+
|
| 23 |
+
GPR_CHOLESKY_LOWER = True
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
class GaussianProcessRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
|
| 27 |
+
"""Gaussian process regression (GPR).
|
| 28 |
+
|
| 29 |
+
The implementation is based on Algorithm 2.1 of [RW2006]_.
|
| 30 |
+
|
| 31 |
+
In addition to standard scikit-learn estimator API,
|
| 32 |
+
:class:`GaussianProcessRegressor`:
|
| 33 |
+
|
| 34 |
+
* allows prediction without prior fitting (based on the GP prior)
|
| 35 |
+
* provides an additional method `sample_y(X)`, which evaluates samples
|
| 36 |
+
drawn from the GPR (prior or posterior) at given inputs
|
| 37 |
+
* exposes a method `log_marginal_likelihood(theta)`, which can be used
|
| 38 |
+
externally for other ways of selecting hyperparameters, e.g., via
|
| 39 |
+
Markov chain Monte Carlo.
|
| 40 |
+
|
| 41 |
+
To learn the difference between a point-estimate approach vs. a more
|
| 42 |
+
Bayesian modelling approach, refer to the example entitled
|
| 43 |
+
:ref:`sphx_glr_auto_examples_gaussian_process_plot_compare_gpr_krr.py`.
|
| 44 |
+
|
| 45 |
+
Read more in the :ref:`User Guide <gaussian_process>`.
|
| 46 |
+
|
| 47 |
+
.. versionadded:: 0.18
|
| 48 |
+
|
| 49 |
+
Parameters
|
| 50 |
+
----------
|
| 51 |
+
kernel : kernel instance, default=None
|
| 52 |
+
The kernel specifying the covariance function of the GP. If None is
|
| 53 |
+
passed, the kernel ``ConstantKernel(1.0, constant_value_bounds="fixed")
|
| 54 |
+
* RBF(1.0, length_scale_bounds="fixed")`` is used as default. Note that
|
| 55 |
+
the kernel hyperparameters are optimized during fitting unless the
|
| 56 |
+
bounds are marked as "fixed".
|
| 57 |
+
|
| 58 |
+
alpha : float or ndarray of shape (n_samples,), default=1e-10
|
| 59 |
+
Value added to the diagonal of the kernel matrix during fitting.
|
| 60 |
+
This can prevent a potential numerical issue during fitting, by
|
| 61 |
+
ensuring that the calculated values form a positive definite matrix.
|
| 62 |
+
It can also be interpreted as the variance of additional Gaussian
|
| 63 |
+
measurement noise on the training observations. Note that this is
|
| 64 |
+
different from using a `WhiteKernel`. If an array is passed, it must
|
| 65 |
+
have the same number of entries as the data used for fitting and is
|
| 66 |
+
used as datapoint-dependent noise level. Allowing to specify the
|
| 67 |
+
noise level directly as a parameter is mainly for convenience and
|
| 68 |
+
for consistency with :class:`~sklearn.linear_model.Ridge`.
|
| 69 |
+
|
| 70 |
+
optimizer : "fmin_l_bfgs_b", callable or None, default="fmin_l_bfgs_b"
|
| 71 |
+
Can either be one of the internally supported optimizers for optimizing
|
| 72 |
+
the kernel's parameters, specified by a string, or an externally
|
| 73 |
+
defined optimizer passed as a callable. If a callable is passed, it
|
| 74 |
+
must have the signature::
|
| 75 |
+
|
| 76 |
+
def optimizer(obj_func, initial_theta, bounds):
|
| 77 |
+
# * 'obj_func': the objective function to be minimized, which
|
| 78 |
+
# takes the hyperparameters theta as a parameter and an
|
| 79 |
+
# optional flag eval_gradient, which determines if the
|
| 80 |
+
# gradient is returned additionally to the function value
|
| 81 |
+
# * 'initial_theta': the initial value for theta, which can be
|
| 82 |
+
# used by local optimizers
|
| 83 |
+
# * 'bounds': the bounds on the values of theta
|
| 84 |
+
....
|
| 85 |
+
# Returned are the best found hyperparameters theta and
|
| 86 |
+
# the corresponding value of the target function.
|
| 87 |
+
return theta_opt, func_min
|
| 88 |
+
|
| 89 |
+
Per default, the L-BFGS-B algorithm from `scipy.optimize.minimize`
|
| 90 |
+
is used. If None is passed, the kernel's parameters are kept fixed.
|
| 91 |
+
Available internal optimizers are: `{'fmin_l_bfgs_b'}`.
|
| 92 |
+
|
| 93 |
+
n_restarts_optimizer : int, default=0
|
| 94 |
+
The number of restarts of the optimizer for finding the kernel's
|
| 95 |
+
parameters which maximize the log-marginal likelihood. The first run
|
| 96 |
+
of the optimizer is performed from the kernel's initial parameters,
|
| 97 |
+
the remaining ones (if any) from thetas sampled log-uniform randomly
|
| 98 |
+
from the space of allowed theta-values. If greater than 0, all bounds
|
| 99 |
+
must be finite. Note that `n_restarts_optimizer == 0` implies that one
|
| 100 |
+
run is performed.
|
| 101 |
+
|
| 102 |
+
normalize_y : bool, default=False
|
| 103 |
+
Whether or not to normalize the target values `y` by removing the mean
|
| 104 |
+
and scaling to unit-variance. This is recommended for cases where
|
| 105 |
+
zero-mean, unit-variance priors are used. Note that, in this
|
| 106 |
+
implementation, the normalisation is reversed before the GP predictions
|
| 107 |
+
are reported.
|
| 108 |
+
|
| 109 |
+
.. versionchanged:: 0.23
|
| 110 |
+
|
| 111 |
+
copy_X_train : bool, default=True
|
| 112 |
+
If True, a persistent copy of the training data is stored in the
|
| 113 |
+
object. Otherwise, just a reference to the training data is stored,
|
| 114 |
+
which might cause predictions to change if the data is modified
|
| 115 |
+
externally.
|
| 116 |
+
|
| 117 |
+
n_targets : int, default=None
|
| 118 |
+
The number of dimensions of the target values. Used to decide the number
|
| 119 |
+
of outputs when sampling from the prior distributions (i.e. calling
|
| 120 |
+
:meth:`sample_y` before :meth:`fit`). This parameter is ignored once
|
| 121 |
+
:meth:`fit` has been called.
|
| 122 |
+
|
| 123 |
+
.. versionadded:: 1.3
|
| 124 |
+
|
| 125 |
+
random_state : int, RandomState instance or None, default=None
|
| 126 |
+
Determines random number generation used to initialize the centers.
|
| 127 |
+
Pass an int for reproducible results across multiple function calls.
|
| 128 |
+
See :term:`Glossary <random_state>`.
|
| 129 |
+
|
| 130 |
+
Attributes
|
| 131 |
+
----------
|
| 132 |
+
X_train_ : array-like of shape (n_samples, n_features) or list of object
|
| 133 |
+
Feature vectors or other representations of training data (also
|
| 134 |
+
required for prediction).
|
| 135 |
+
|
| 136 |
+
y_train_ : array-like of shape (n_samples,) or (n_samples, n_targets)
|
| 137 |
+
Target values in training data (also required for prediction).
|
| 138 |
+
|
| 139 |
+
kernel_ : kernel instance
|
| 140 |
+
The kernel used for prediction. The structure of the kernel is the
|
| 141 |
+
same as the one passed as parameter but with optimized hyperparameters.
|
| 142 |
+
|
| 143 |
+
L_ : array-like of shape (n_samples, n_samples)
|
| 144 |
+
Lower-triangular Cholesky decomposition of the kernel in ``X_train_``.
|
| 145 |
+
|
| 146 |
+
alpha_ : array-like of shape (n_samples,)
|
| 147 |
+
Dual coefficients of training data points in kernel space.
|
| 148 |
+
|
| 149 |
+
log_marginal_likelihood_value_ : float
|
| 150 |
+
The log-marginal-likelihood of ``self.kernel_.theta``.
|
| 151 |
+
|
| 152 |
+
n_features_in_ : int
|
| 153 |
+
Number of features seen during :term:`fit`.
|
| 154 |
+
|
| 155 |
+
.. versionadded:: 0.24
|
| 156 |
+
|
| 157 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
| 158 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
| 159 |
+
has feature names that are all strings.
|
| 160 |
+
|
| 161 |
+
.. versionadded:: 1.0
|
| 162 |
+
|
| 163 |
+
See Also
|
| 164 |
+
--------
|
| 165 |
+
GaussianProcessClassifier : Gaussian process classification (GPC)
|
| 166 |
+
based on Laplace approximation.
|
| 167 |
+
|
| 168 |
+
References
|
| 169 |
+
----------
|
| 170 |
+
.. [RW2006] `Carl E. Rasmussen and Christopher K.I. Williams,
|
| 171 |
+
"Gaussian Processes for Machine Learning",
|
| 172 |
+
MIT Press 2006 <https://www.gaussianprocess.org/gpml/chapters/RW.pdf>`_
|
| 173 |
+
|
| 174 |
+
Examples
|
| 175 |
+
--------
|
| 176 |
+
>>> from sklearn.datasets import make_friedman2
|
| 177 |
+
>>> from sklearn.gaussian_process import GaussianProcessRegressor
|
| 178 |
+
>>> from sklearn.gaussian_process.kernels import DotProduct, WhiteKernel
|
| 179 |
+
>>> X, y = make_friedman2(n_samples=500, noise=0, random_state=0)
|
| 180 |
+
>>> kernel = DotProduct() + WhiteKernel()
|
| 181 |
+
>>> gpr = GaussianProcessRegressor(kernel=kernel,
|
| 182 |
+
... random_state=0).fit(X, y)
|
| 183 |
+
>>> gpr.score(X, y)
|
| 184 |
+
0.3680...
|
| 185 |
+
>>> gpr.predict(X[:2,:], return_std=True)
|
| 186 |
+
(array([653.0..., 592.1...]), array([316.6..., 316.6...]))
|
| 187 |
+
"""
|
| 188 |
+
|
| 189 |
+
_parameter_constraints: dict = {
|
| 190 |
+
"kernel": [None, Kernel],
|
| 191 |
+
"alpha": [Interval(Real, 0, None, closed="left"), np.ndarray],
|
| 192 |
+
"optimizer": [StrOptions({"fmin_l_bfgs_b"}), callable, None],
|
| 193 |
+
"n_restarts_optimizer": [Interval(Integral, 0, None, closed="left")],
|
| 194 |
+
"normalize_y": ["boolean"],
|
| 195 |
+
"copy_X_train": ["boolean"],
|
| 196 |
+
"n_targets": [Interval(Integral, 1, None, closed="left"), None],
|
| 197 |
+
"random_state": ["random_state"],
|
| 198 |
+
}
|
| 199 |
+
|
| 200 |
+
def __init__(
|
| 201 |
+
self,
|
| 202 |
+
kernel=None,
|
| 203 |
+
*,
|
| 204 |
+
alpha=1e-10,
|
| 205 |
+
optimizer="fmin_l_bfgs_b",
|
| 206 |
+
n_restarts_optimizer=0,
|
| 207 |
+
normalize_y=False,
|
| 208 |
+
copy_X_train=True,
|
| 209 |
+
n_targets=None,
|
| 210 |
+
random_state=None,
|
| 211 |
+
):
|
| 212 |
+
self.kernel = kernel
|
| 213 |
+
self.alpha = alpha
|
| 214 |
+
self.optimizer = optimizer
|
| 215 |
+
self.n_restarts_optimizer = n_restarts_optimizer
|
| 216 |
+
self.normalize_y = normalize_y
|
| 217 |
+
self.copy_X_train = copy_X_train
|
| 218 |
+
self.n_targets = n_targets
|
| 219 |
+
self.random_state = random_state
|
| 220 |
+
|
| 221 |
+
@_fit_context(prefer_skip_nested_validation=True)
|
| 222 |
+
def fit(self, X, y):
|
| 223 |
+
"""Fit Gaussian process regression model.
|
| 224 |
+
|
| 225 |
+
Parameters
|
| 226 |
+
----------
|
| 227 |
+
X : array-like of shape (n_samples, n_features) or list of object
|
| 228 |
+
Feature vectors or other representations of training data.
|
| 229 |
+
|
| 230 |
+
y : array-like of shape (n_samples,) or (n_samples, n_targets)
|
| 231 |
+
Target values.
|
| 232 |
+
|
| 233 |
+
Returns
|
| 234 |
+
-------
|
| 235 |
+
self : object
|
| 236 |
+
GaussianProcessRegressor class instance.
|
| 237 |
+
"""
|
| 238 |
+
if self.kernel is None: # Use an RBF kernel as default
|
| 239 |
+
self.kernel_ = C(1.0, constant_value_bounds="fixed") * RBF(
|
| 240 |
+
1.0, length_scale_bounds="fixed"
|
| 241 |
+
)
|
| 242 |
+
else:
|
| 243 |
+
self.kernel_ = clone(self.kernel)
|
| 244 |
+
|
| 245 |
+
self._rng = check_random_state(self.random_state)
|
| 246 |
+
|
| 247 |
+
if self.kernel_.requires_vector_input:
|
| 248 |
+
dtype, ensure_2d = "numeric", True
|
| 249 |
+
else:
|
| 250 |
+
dtype, ensure_2d = None, False
|
| 251 |
+
X, y = self._validate_data(
|
| 252 |
+
X,
|
| 253 |
+
y,
|
| 254 |
+
multi_output=True,
|
| 255 |
+
y_numeric=True,
|
| 256 |
+
ensure_2d=ensure_2d,
|
| 257 |
+
dtype=dtype,
|
| 258 |
+
)
|
| 259 |
+
|
| 260 |
+
n_targets_seen = y.shape[1] if y.ndim > 1 else 1
|
| 261 |
+
if self.n_targets is not None and n_targets_seen != self.n_targets:
|
| 262 |
+
raise ValueError(
|
| 263 |
+
"The number of targets seen in `y` is different from the parameter "
|
| 264 |
+
f"`n_targets`. Got {n_targets_seen} != {self.n_targets}."
|
| 265 |
+
)
|
| 266 |
+
|
| 267 |
+
# Normalize target value
|
| 268 |
+
if self.normalize_y:
|
| 269 |
+
self._y_train_mean = np.mean(y, axis=0)
|
| 270 |
+
self._y_train_std = _handle_zeros_in_scale(np.std(y, axis=0), copy=False)
|
| 271 |
+
|
| 272 |
+
# Remove mean and make unit variance
|
| 273 |
+
y = (y - self._y_train_mean) / self._y_train_std
|
| 274 |
+
|
| 275 |
+
else:
|
| 276 |
+
shape_y_stats = (y.shape[1],) if y.ndim == 2 else 1
|
| 277 |
+
self._y_train_mean = np.zeros(shape=shape_y_stats)
|
| 278 |
+
self._y_train_std = np.ones(shape=shape_y_stats)
|
| 279 |
+
|
| 280 |
+
if np.iterable(self.alpha) and self.alpha.shape[0] != y.shape[0]:
|
| 281 |
+
if self.alpha.shape[0] == 1:
|
| 282 |
+
self.alpha = self.alpha[0]
|
| 283 |
+
else:
|
| 284 |
+
raise ValueError(
|
| 285 |
+
"alpha must be a scalar or an array with same number of "
|
| 286 |
+
f"entries as y. ({self.alpha.shape[0]} != {y.shape[0]})"
|
| 287 |
+
)
|
| 288 |
+
|
| 289 |
+
self.X_train_ = np.copy(X) if self.copy_X_train else X
|
| 290 |
+
self.y_train_ = np.copy(y) if self.copy_X_train else y
|
| 291 |
+
|
| 292 |
+
if self.optimizer is not None and self.kernel_.n_dims > 0:
|
| 293 |
+
# Choose hyperparameters based on maximizing the log-marginal
|
| 294 |
+
# likelihood (potentially starting from several initial values)
|
| 295 |
+
def obj_func(theta, eval_gradient=True):
|
| 296 |
+
if eval_gradient:
|
| 297 |
+
lml, grad = self.log_marginal_likelihood(
|
| 298 |
+
theta, eval_gradient=True, clone_kernel=False
|
| 299 |
+
)
|
| 300 |
+
return -lml, -grad
|
| 301 |
+
else:
|
| 302 |
+
return -self.log_marginal_likelihood(theta, clone_kernel=False)
|
| 303 |
+
|
| 304 |
+
# First optimize starting from theta specified in kernel
|
| 305 |
+
optima = [
|
| 306 |
+
(
|
| 307 |
+
self._constrained_optimization(
|
| 308 |
+
obj_func, self.kernel_.theta, self.kernel_.bounds
|
| 309 |
+
)
|
| 310 |
+
)
|
| 311 |
+
]
|
| 312 |
+
|
| 313 |
+
# Additional runs are performed from log-uniform chosen initial
|
| 314 |
+
# theta
|
| 315 |
+
if self.n_restarts_optimizer > 0:
|
| 316 |
+
if not np.isfinite(self.kernel_.bounds).all():
|
| 317 |
+
raise ValueError(
|
| 318 |
+
"Multiple optimizer restarts (n_restarts_optimizer>0) "
|
| 319 |
+
"requires that all bounds are finite."
|
| 320 |
+
)
|
| 321 |
+
bounds = self.kernel_.bounds
|
| 322 |
+
for iteration in range(self.n_restarts_optimizer):
|
| 323 |
+
theta_initial = self._rng.uniform(bounds[:, 0], bounds[:, 1])
|
| 324 |
+
optima.append(
|
| 325 |
+
self._constrained_optimization(obj_func, theta_initial, bounds)
|
| 326 |
+
)
|
| 327 |
+
# Select result from run with minimal (negative) log-marginal
|
| 328 |
+
# likelihood
|
| 329 |
+
lml_values = list(map(itemgetter(1), optima))
|
| 330 |
+
self.kernel_.theta = optima[np.argmin(lml_values)][0]
|
| 331 |
+
self.kernel_._check_bounds_params()
|
| 332 |
+
|
| 333 |
+
self.log_marginal_likelihood_value_ = -np.min(lml_values)
|
| 334 |
+
else:
|
| 335 |
+
self.log_marginal_likelihood_value_ = self.log_marginal_likelihood(
|
| 336 |
+
self.kernel_.theta, clone_kernel=False
|
| 337 |
+
)
|
| 338 |
+
|
| 339 |
+
# Precompute quantities required for predictions which are independent
|
| 340 |
+
# of actual query points
|
| 341 |
+
# Alg. 2.1, page 19, line 2 -> L = cholesky(K + sigma^2 I)
|
| 342 |
+
K = self.kernel_(self.X_train_)
|
| 343 |
+
K[np.diag_indices_from(K)] += self.alpha
|
| 344 |
+
try:
|
| 345 |
+
self.L_ = cholesky(K, lower=GPR_CHOLESKY_LOWER, check_finite=False)
|
| 346 |
+
except np.linalg.LinAlgError as exc:
|
| 347 |
+
exc.args = (
|
| 348 |
+
(
|
| 349 |
+
f"The kernel, {self.kernel_}, is not returning a positive "
|
| 350 |
+
"definite matrix. Try gradually increasing the 'alpha' "
|
| 351 |
+
"parameter of your GaussianProcessRegressor estimator."
|
| 352 |
+
),
|
| 353 |
+
) + exc.args
|
| 354 |
+
raise
|
| 355 |
+
# Alg 2.1, page 19, line 3 -> alpha = L^T \ (L \ y)
|
| 356 |
+
self.alpha_ = cho_solve(
|
| 357 |
+
(self.L_, GPR_CHOLESKY_LOWER),
|
| 358 |
+
self.y_train_,
|
| 359 |
+
check_finite=False,
|
| 360 |
+
)
|
| 361 |
+
return self
|
| 362 |
+
|
| 363 |
+
def predict(self, X, return_std=False, return_cov=False):
|
| 364 |
+
"""Predict using the Gaussian process regression model.
|
| 365 |
+
|
| 366 |
+
We can also predict based on an unfitted model by using the GP prior.
|
| 367 |
+
In addition to the mean of the predictive distribution, optionally also
|
| 368 |
+
returns its standard deviation (`return_std=True`) or covariance
|
| 369 |
+
(`return_cov=True`). Note that at most one of the two can be requested.
|
| 370 |
+
|
| 371 |
+
Parameters
|
| 372 |
+
----------
|
| 373 |
+
X : array-like of shape (n_samples, n_features) or list of object
|
| 374 |
+
Query points where the GP is evaluated.
|
| 375 |
+
|
| 376 |
+
return_std : bool, default=False
|
| 377 |
+
If True, the standard-deviation of the predictive distribution at
|
| 378 |
+
the query points is returned along with the mean.
|
| 379 |
+
|
| 380 |
+
return_cov : bool, default=False
|
| 381 |
+
If True, the covariance of the joint predictive distribution at
|
| 382 |
+
the query points is returned along with the mean.
|
| 383 |
+
|
| 384 |
+
Returns
|
| 385 |
+
-------
|
| 386 |
+
y_mean : ndarray of shape (n_samples,) or (n_samples, n_targets)
|
| 387 |
+
Mean of predictive distribution a query points.
|
| 388 |
+
|
| 389 |
+
y_std : ndarray of shape (n_samples,) or (n_samples, n_targets), optional
|
| 390 |
+
Standard deviation of predictive distribution at query points.
|
| 391 |
+
Only returned when `return_std` is True.
|
| 392 |
+
|
| 393 |
+
y_cov : ndarray of shape (n_samples, n_samples) or \
|
| 394 |
+
(n_samples, n_samples, n_targets), optional
|
| 395 |
+
Covariance of joint predictive distribution a query points.
|
| 396 |
+
Only returned when `return_cov` is True.
|
| 397 |
+
"""
|
| 398 |
+
if return_std and return_cov:
|
| 399 |
+
raise RuntimeError(
|
| 400 |
+
"At most one of return_std or return_cov can be requested."
|
| 401 |
+
)
|
| 402 |
+
|
| 403 |
+
if self.kernel is None or self.kernel.requires_vector_input:
|
| 404 |
+
dtype, ensure_2d = "numeric", True
|
| 405 |
+
else:
|
| 406 |
+
dtype, ensure_2d = None, False
|
| 407 |
+
|
| 408 |
+
X = self._validate_data(X, ensure_2d=ensure_2d, dtype=dtype, reset=False)
|
| 409 |
+
|
| 410 |
+
if not hasattr(self, "X_train_"): # Unfitted;predict based on GP prior
|
| 411 |
+
if self.kernel is None:
|
| 412 |
+
kernel = C(1.0, constant_value_bounds="fixed") * RBF(
|
| 413 |
+
1.0, length_scale_bounds="fixed"
|
| 414 |
+
)
|
| 415 |
+
else:
|
| 416 |
+
kernel = self.kernel
|
| 417 |
+
|
| 418 |
+
n_targets = self.n_targets if self.n_targets is not None else 1
|
| 419 |
+
y_mean = np.zeros(shape=(X.shape[0], n_targets)).squeeze()
|
| 420 |
+
|
| 421 |
+
if return_cov:
|
| 422 |
+
y_cov = kernel(X)
|
| 423 |
+
if n_targets > 1:
|
| 424 |
+
y_cov = np.repeat(
|
| 425 |
+
np.expand_dims(y_cov, -1), repeats=n_targets, axis=-1
|
| 426 |
+
)
|
| 427 |
+
return y_mean, y_cov
|
| 428 |
+
elif return_std:
|
| 429 |
+
y_var = kernel.diag(X)
|
| 430 |
+
if n_targets > 1:
|
| 431 |
+
y_var = np.repeat(
|
| 432 |
+
np.expand_dims(y_var, -1), repeats=n_targets, axis=-1
|
| 433 |
+
)
|
| 434 |
+
return y_mean, np.sqrt(y_var)
|
| 435 |
+
else:
|
| 436 |
+
return y_mean
|
| 437 |
+
else: # Predict based on GP posterior
|
| 438 |
+
# Alg 2.1, page 19, line 4 -> f*_bar = K(X_test, X_train) . alpha
|
| 439 |
+
K_trans = self.kernel_(X, self.X_train_)
|
| 440 |
+
y_mean = K_trans @ self.alpha_
|
| 441 |
+
|
| 442 |
+
# undo normalisation
|
| 443 |
+
y_mean = self._y_train_std * y_mean + self._y_train_mean
|
| 444 |
+
|
| 445 |
+
# if y_mean has shape (n_samples, 1), reshape to (n_samples,)
|
| 446 |
+
if y_mean.ndim > 1 and y_mean.shape[1] == 1:
|
| 447 |
+
y_mean = np.squeeze(y_mean, axis=1)
|
| 448 |
+
|
| 449 |
+
# Alg 2.1, page 19, line 5 -> v = L \ K(X_test, X_train)^T
|
| 450 |
+
V = solve_triangular(
|
| 451 |
+
self.L_, K_trans.T, lower=GPR_CHOLESKY_LOWER, check_finite=False
|
| 452 |
+
)
|
| 453 |
+
|
| 454 |
+
if return_cov:
|
| 455 |
+
# Alg 2.1, page 19, line 6 -> K(X_test, X_test) - v^T. v
|
| 456 |
+
y_cov = self.kernel_(X) - V.T @ V
|
| 457 |
+
|
| 458 |
+
# undo normalisation
|
| 459 |
+
y_cov = np.outer(y_cov, self._y_train_std**2).reshape(
|
| 460 |
+
*y_cov.shape, -1
|
| 461 |
+
)
|
| 462 |
+
# if y_cov has shape (n_samples, n_samples, 1), reshape to
|
| 463 |
+
# (n_samples, n_samples)
|
| 464 |
+
if y_cov.shape[2] == 1:
|
| 465 |
+
y_cov = np.squeeze(y_cov, axis=2)
|
| 466 |
+
|
| 467 |
+
return y_mean, y_cov
|
| 468 |
+
elif return_std:
|
| 469 |
+
# Compute variance of predictive distribution
|
| 470 |
+
# Use einsum to avoid explicitly forming the large matrix
|
| 471 |
+
# V^T @ V just to extract its diagonal afterward.
|
| 472 |
+
y_var = self.kernel_.diag(X).copy()
|
| 473 |
+
y_var -= np.einsum("ij,ji->i", V.T, V)
|
| 474 |
+
|
| 475 |
+
# Check if any of the variances is negative because of
|
| 476 |
+
# numerical issues. If yes: set the variance to 0.
|
| 477 |
+
y_var_negative = y_var < 0
|
| 478 |
+
if np.any(y_var_negative):
|
| 479 |
+
warnings.warn(
|
| 480 |
+
"Predicted variances smaller than 0. "
|
| 481 |
+
"Setting those variances to 0."
|
| 482 |
+
)
|
| 483 |
+
y_var[y_var_negative] = 0.0
|
| 484 |
+
|
| 485 |
+
# undo normalisation
|
| 486 |
+
y_var = np.outer(y_var, self._y_train_std**2).reshape(
|
| 487 |
+
*y_var.shape, -1
|
| 488 |
+
)
|
| 489 |
+
|
| 490 |
+
# if y_var has shape (n_samples, 1), reshape to (n_samples,)
|
| 491 |
+
if y_var.shape[1] == 1:
|
| 492 |
+
y_var = np.squeeze(y_var, axis=1)
|
| 493 |
+
|
| 494 |
+
return y_mean, np.sqrt(y_var)
|
| 495 |
+
else:
|
| 496 |
+
return y_mean
|
| 497 |
+
|
| 498 |
+
def sample_y(self, X, n_samples=1, random_state=0):
|
| 499 |
+
"""Draw samples from Gaussian process and evaluate at X.
|
| 500 |
+
|
| 501 |
+
Parameters
|
| 502 |
+
----------
|
| 503 |
+
X : array-like of shape (n_samples_X, n_features) or list of object
|
| 504 |
+
Query points where the GP is evaluated.
|
| 505 |
+
|
| 506 |
+
n_samples : int, default=1
|
| 507 |
+
Number of samples drawn from the Gaussian process per query point.
|
| 508 |
+
|
| 509 |
+
random_state : int, RandomState instance or None, default=0
|
| 510 |
+
Determines random number generation to randomly draw samples.
|
| 511 |
+
Pass an int for reproducible results across multiple function
|
| 512 |
+
calls.
|
| 513 |
+
See :term:`Glossary <random_state>`.
|
| 514 |
+
|
| 515 |
+
Returns
|
| 516 |
+
-------
|
| 517 |
+
y_samples : ndarray of shape (n_samples_X, n_samples), or \
|
| 518 |
+
(n_samples_X, n_targets, n_samples)
|
| 519 |
+
Values of n_samples samples drawn from Gaussian process and
|
| 520 |
+
evaluated at query points.
|
| 521 |
+
"""
|
| 522 |
+
rng = check_random_state(random_state)
|
| 523 |
+
|
| 524 |
+
y_mean, y_cov = self.predict(X, return_cov=True)
|
| 525 |
+
if y_mean.ndim == 1:
|
| 526 |
+
y_samples = rng.multivariate_normal(y_mean, y_cov, n_samples).T
|
| 527 |
+
else:
|
| 528 |
+
y_samples = [
|
| 529 |
+
rng.multivariate_normal(
|
| 530 |
+
y_mean[:, target], y_cov[..., target], n_samples
|
| 531 |
+
).T[:, np.newaxis]
|
| 532 |
+
for target in range(y_mean.shape[1])
|
| 533 |
+
]
|
| 534 |
+
y_samples = np.hstack(y_samples)
|
| 535 |
+
return y_samples
|
| 536 |
+
|
| 537 |
+
def log_marginal_likelihood(
|
| 538 |
+
self, theta=None, eval_gradient=False, clone_kernel=True
|
| 539 |
+
):
|
| 540 |
+
"""Return log-marginal likelihood of theta for training data.
|
| 541 |
+
|
| 542 |
+
Parameters
|
| 543 |
+
----------
|
| 544 |
+
theta : array-like of shape (n_kernel_params,) default=None
|
| 545 |
+
Kernel hyperparameters for which the log-marginal likelihood is
|
| 546 |
+
evaluated. If None, the precomputed log_marginal_likelihood
|
| 547 |
+
of ``self.kernel_.theta`` is returned.
|
| 548 |
+
|
| 549 |
+
eval_gradient : bool, default=False
|
| 550 |
+
If True, the gradient of the log-marginal likelihood with respect
|
| 551 |
+
to the kernel hyperparameters at position theta is returned
|
| 552 |
+
additionally. If True, theta must not be None.
|
| 553 |
+
|
| 554 |
+
clone_kernel : bool, default=True
|
| 555 |
+
If True, the kernel attribute is copied. If False, the kernel
|
| 556 |
+
attribute is modified, but may result in a performance improvement.
|
| 557 |
+
|
| 558 |
+
Returns
|
| 559 |
+
-------
|
| 560 |
+
log_likelihood : float
|
| 561 |
+
Log-marginal likelihood of theta for training data.
|
| 562 |
+
|
| 563 |
+
log_likelihood_gradient : ndarray of shape (n_kernel_params,), optional
|
| 564 |
+
Gradient of the log-marginal likelihood with respect to the kernel
|
| 565 |
+
hyperparameters at position theta.
|
| 566 |
+
Only returned when eval_gradient is True.
|
| 567 |
+
"""
|
| 568 |
+
if theta is None:
|
| 569 |
+
if eval_gradient:
|
| 570 |
+
raise ValueError("Gradient can only be evaluated for theta!=None")
|
| 571 |
+
return self.log_marginal_likelihood_value_
|
| 572 |
+
|
| 573 |
+
if clone_kernel:
|
| 574 |
+
kernel = self.kernel_.clone_with_theta(theta)
|
| 575 |
+
else:
|
| 576 |
+
kernel = self.kernel_
|
| 577 |
+
kernel.theta = theta
|
| 578 |
+
|
| 579 |
+
if eval_gradient:
|
| 580 |
+
K, K_gradient = kernel(self.X_train_, eval_gradient=True)
|
| 581 |
+
else:
|
| 582 |
+
K = kernel(self.X_train_)
|
| 583 |
+
|
| 584 |
+
# Alg. 2.1, page 19, line 2 -> L = cholesky(K + sigma^2 I)
|
| 585 |
+
K[np.diag_indices_from(K)] += self.alpha
|
| 586 |
+
try:
|
| 587 |
+
L = cholesky(K, lower=GPR_CHOLESKY_LOWER, check_finite=False)
|
| 588 |
+
except np.linalg.LinAlgError:
|
| 589 |
+
return (-np.inf, np.zeros_like(theta)) if eval_gradient else -np.inf
|
| 590 |
+
|
| 591 |
+
# Support multi-dimensional output of self.y_train_
|
| 592 |
+
y_train = self.y_train_
|
| 593 |
+
if y_train.ndim == 1:
|
| 594 |
+
y_train = y_train[:, np.newaxis]
|
| 595 |
+
|
| 596 |
+
# Alg 2.1, page 19, line 3 -> alpha = L^T \ (L \ y)
|
| 597 |
+
alpha = cho_solve((L, GPR_CHOLESKY_LOWER), y_train, check_finite=False)
|
| 598 |
+
|
| 599 |
+
# Alg 2.1, page 19, line 7
|
| 600 |
+
# -0.5 . y^T . alpha - sum(log(diag(L))) - n_samples / 2 log(2*pi)
|
| 601 |
+
# y is originally thought to be a (1, n_samples) row vector. However,
|
| 602 |
+
# in multioutputs, y is of shape (n_samples, 2) and we need to compute
|
| 603 |
+
# y^T . alpha for each output, independently using einsum. Thus, it
|
| 604 |
+
# is equivalent to:
|
| 605 |
+
# for output_idx in range(n_outputs):
|
| 606 |
+
# log_likelihood_dims[output_idx] = (
|
| 607 |
+
# y_train[:, [output_idx]] @ alpha[:, [output_idx]]
|
| 608 |
+
# )
|
| 609 |
+
log_likelihood_dims = -0.5 * np.einsum("ik,ik->k", y_train, alpha)
|
| 610 |
+
log_likelihood_dims -= np.log(np.diag(L)).sum()
|
| 611 |
+
log_likelihood_dims -= K.shape[0] / 2 * np.log(2 * np.pi)
|
| 612 |
+
# the log likehood is sum-up across the outputs
|
| 613 |
+
log_likelihood = log_likelihood_dims.sum(axis=-1)
|
| 614 |
+
|
| 615 |
+
if eval_gradient:
|
| 616 |
+
# Eq. 5.9, p. 114, and footnote 5 in p. 114
|
| 617 |
+
# 0.5 * trace((alpha . alpha^T - K^-1) . K_gradient)
|
| 618 |
+
# alpha is supposed to be a vector of (n_samples,) elements. With
|
| 619 |
+
# multioutputs, alpha is a matrix of size (n_samples, n_outputs).
|
| 620 |
+
# Therefore, we want to construct a matrix of
|
| 621 |
+
# (n_samples, n_samples, n_outputs) equivalent to
|
| 622 |
+
# for output_idx in range(n_outputs):
|
| 623 |
+
# output_alpha = alpha[:, [output_idx]]
|
| 624 |
+
# inner_term[..., output_idx] = output_alpha @ output_alpha.T
|
| 625 |
+
inner_term = np.einsum("ik,jk->ijk", alpha, alpha)
|
| 626 |
+
# compute K^-1 of shape (n_samples, n_samples)
|
| 627 |
+
K_inv = cho_solve(
|
| 628 |
+
(L, GPR_CHOLESKY_LOWER), np.eye(K.shape[0]), check_finite=False
|
| 629 |
+
)
|
| 630 |
+
# create a new axis to use broadcasting between inner_term and
|
| 631 |
+
# K_inv
|
| 632 |
+
inner_term -= K_inv[..., np.newaxis]
|
| 633 |
+
# Since we are interested about the trace of
|
| 634 |
+
# inner_term @ K_gradient, we don't explicitly compute the
|
| 635 |
+
# matrix-by-matrix operation and instead use an einsum. Therefore
|
| 636 |
+
# it is equivalent to:
|
| 637 |
+
# for param_idx in range(n_kernel_params):
|
| 638 |
+
# for output_idx in range(n_output):
|
| 639 |
+
# log_likehood_gradient_dims[param_idx, output_idx] = (
|
| 640 |
+
# inner_term[..., output_idx] @
|
| 641 |
+
# K_gradient[..., param_idx]
|
| 642 |
+
# )
|
| 643 |
+
log_likelihood_gradient_dims = 0.5 * np.einsum(
|
| 644 |
+
"ijl,jik->kl", inner_term, K_gradient
|
| 645 |
+
)
|
| 646 |
+
# the log likehood gradient is the sum-up across the outputs
|
| 647 |
+
log_likelihood_gradient = log_likelihood_gradient_dims.sum(axis=-1)
|
| 648 |
+
|
| 649 |
+
if eval_gradient:
|
| 650 |
+
return log_likelihood, log_likelihood_gradient
|
| 651 |
+
else:
|
| 652 |
+
return log_likelihood
|
| 653 |
+
|
| 654 |
+
def _constrained_optimization(self, obj_func, initial_theta, bounds):
|
| 655 |
+
if self.optimizer == "fmin_l_bfgs_b":
|
| 656 |
+
opt_res = scipy.optimize.minimize(
|
| 657 |
+
obj_func,
|
| 658 |
+
initial_theta,
|
| 659 |
+
method="L-BFGS-B",
|
| 660 |
+
jac=True,
|
| 661 |
+
bounds=bounds,
|
| 662 |
+
)
|
| 663 |
+
_check_optimize_result("lbfgs", opt_res)
|
| 664 |
+
theta_opt, func_min = opt_res.x, opt_res.fun
|
| 665 |
+
elif callable(self.optimizer):
|
| 666 |
+
theta_opt, func_min = self.optimizer(obj_func, initial_theta, bounds=bounds)
|
| 667 |
+
else:
|
| 668 |
+
raise ValueError(f"Unknown optimizer {self.optimizer}.")
|
| 669 |
+
|
| 670 |
+
return theta_opt, func_min
|
| 671 |
+
|
| 672 |
+
def _more_tags(self):
|
| 673 |
+
return {"requires_fit": False}
|
venv/lib/python3.10/site-packages/sklearn/gaussian_process/kernels.py
ADDED
|
@@ -0,0 +1,2415 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
The :mod:`sklearn.gaussian_process.kernels` module implements a set of kernels that
|
| 3 |
+
can be combined by operators and used in Gaussian processes.
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
# Kernels for Gaussian process regression and classification.
|
| 7 |
+
#
|
| 8 |
+
# The kernels in this module allow kernel-engineering, i.e., they can be
|
| 9 |
+
# combined via the "+" and "*" operators or be exponentiated with a scalar
|
| 10 |
+
# via "**". These sum and product expressions can also contain scalar values,
|
| 11 |
+
# which are automatically converted to a constant kernel.
|
| 12 |
+
#
|
| 13 |
+
# All kernels allow (analytic) gradient-based hyperparameter optimization.
|
| 14 |
+
# The space of hyperparameters can be specified by giving lower und upper
|
| 15 |
+
# boundaries for the value of each hyperparameter (the search space is thus
|
| 16 |
+
# rectangular). Instead of specifying bounds, hyperparameters can also be
|
| 17 |
+
# declared to be "fixed", which causes these hyperparameters to be excluded from
|
| 18 |
+
# optimization.
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
# Author: Jan Hendrik Metzen <[email protected]>
|
| 22 |
+
# License: BSD 3 clause
|
| 23 |
+
|
| 24 |
+
# Note: this module is strongly inspired by the kernel module of the george
|
| 25 |
+
# package.
|
| 26 |
+
|
| 27 |
+
import math
|
| 28 |
+
import warnings
|
| 29 |
+
from abc import ABCMeta, abstractmethod
|
| 30 |
+
from collections import namedtuple
|
| 31 |
+
from inspect import signature
|
| 32 |
+
|
| 33 |
+
import numpy as np
|
| 34 |
+
from scipy.spatial.distance import cdist, pdist, squareform
|
| 35 |
+
from scipy.special import gamma, kv
|
| 36 |
+
|
| 37 |
+
from ..base import clone
|
| 38 |
+
from ..exceptions import ConvergenceWarning
|
| 39 |
+
from ..metrics.pairwise import pairwise_kernels
|
| 40 |
+
from ..utils.validation import _num_samples
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def _check_length_scale(X, length_scale):
|
| 44 |
+
length_scale = np.squeeze(length_scale).astype(float)
|
| 45 |
+
if np.ndim(length_scale) > 1:
|
| 46 |
+
raise ValueError("length_scale cannot be of dimension greater than 1")
|
| 47 |
+
if np.ndim(length_scale) == 1 and X.shape[1] != length_scale.shape[0]:
|
| 48 |
+
raise ValueError(
|
| 49 |
+
"Anisotropic kernel must have the same number of "
|
| 50 |
+
"dimensions as data (%d!=%d)" % (length_scale.shape[0], X.shape[1])
|
| 51 |
+
)
|
| 52 |
+
return length_scale
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
class Hyperparameter(
|
| 56 |
+
namedtuple(
|
| 57 |
+
"Hyperparameter", ("name", "value_type", "bounds", "n_elements", "fixed")
|
| 58 |
+
)
|
| 59 |
+
):
|
| 60 |
+
"""A kernel hyperparameter's specification in form of a namedtuple.
|
| 61 |
+
|
| 62 |
+
.. versionadded:: 0.18
|
| 63 |
+
|
| 64 |
+
Attributes
|
| 65 |
+
----------
|
| 66 |
+
name : str
|
| 67 |
+
The name of the hyperparameter. Note that a kernel using a
|
| 68 |
+
hyperparameter with name "x" must have the attributes self.x and
|
| 69 |
+
self.x_bounds
|
| 70 |
+
|
| 71 |
+
value_type : str
|
| 72 |
+
The type of the hyperparameter. Currently, only "numeric"
|
| 73 |
+
hyperparameters are supported.
|
| 74 |
+
|
| 75 |
+
bounds : pair of floats >= 0 or "fixed"
|
| 76 |
+
The lower and upper bound on the parameter. If n_elements>1, a pair
|
| 77 |
+
of 1d array with n_elements each may be given alternatively. If
|
| 78 |
+
the string "fixed" is passed as bounds, the hyperparameter's value
|
| 79 |
+
cannot be changed.
|
| 80 |
+
|
| 81 |
+
n_elements : int, default=1
|
| 82 |
+
The number of elements of the hyperparameter value. Defaults to 1,
|
| 83 |
+
which corresponds to a scalar hyperparameter. n_elements > 1
|
| 84 |
+
corresponds to a hyperparameter which is vector-valued,
|
| 85 |
+
such as, e.g., anisotropic length-scales.
|
| 86 |
+
|
| 87 |
+
fixed : bool, default=None
|
| 88 |
+
Whether the value of this hyperparameter is fixed, i.e., cannot be
|
| 89 |
+
changed during hyperparameter tuning. If None is passed, the "fixed" is
|
| 90 |
+
derived based on the given bounds.
|
| 91 |
+
|
| 92 |
+
Examples
|
| 93 |
+
--------
|
| 94 |
+
>>> from sklearn.gaussian_process.kernels import ConstantKernel
|
| 95 |
+
>>> from sklearn.datasets import make_friedman2
|
| 96 |
+
>>> from sklearn.gaussian_process import GaussianProcessRegressor
|
| 97 |
+
>>> from sklearn.gaussian_process.kernels import Hyperparameter
|
| 98 |
+
>>> X, y = make_friedman2(n_samples=50, noise=0, random_state=0)
|
| 99 |
+
>>> kernel = ConstantKernel(constant_value=1.0,
|
| 100 |
+
... constant_value_bounds=(0.0, 10.0))
|
| 101 |
+
|
| 102 |
+
We can access each hyperparameter:
|
| 103 |
+
|
| 104 |
+
>>> for hyperparameter in kernel.hyperparameters:
|
| 105 |
+
... print(hyperparameter)
|
| 106 |
+
Hyperparameter(name='constant_value', value_type='numeric',
|
| 107 |
+
bounds=array([[ 0., 10.]]), n_elements=1, fixed=False)
|
| 108 |
+
|
| 109 |
+
>>> params = kernel.get_params()
|
| 110 |
+
>>> for key in sorted(params): print(f"{key} : {params[key]}")
|
| 111 |
+
constant_value : 1.0
|
| 112 |
+
constant_value_bounds : (0.0, 10.0)
|
| 113 |
+
"""
|
| 114 |
+
|
| 115 |
+
# A raw namedtuple is very memory efficient as it packs the attributes
|
| 116 |
+
# in a struct to get rid of the __dict__ of attributes in particular it
|
| 117 |
+
# does not copy the string for the keys on each instance.
|
| 118 |
+
# By deriving a namedtuple class just to introduce the __init__ method we
|
| 119 |
+
# would also reintroduce the __dict__ on the instance. By telling the
|
| 120 |
+
# Python interpreter that this subclass uses static __slots__ instead of
|
| 121 |
+
# dynamic attributes. Furthermore we don't need any additional slot in the
|
| 122 |
+
# subclass so we set __slots__ to the empty tuple.
|
| 123 |
+
__slots__ = ()
|
| 124 |
+
|
| 125 |
+
def __new__(cls, name, value_type, bounds, n_elements=1, fixed=None):
|
| 126 |
+
if not isinstance(bounds, str) or bounds != "fixed":
|
| 127 |
+
bounds = np.atleast_2d(bounds)
|
| 128 |
+
if n_elements > 1: # vector-valued parameter
|
| 129 |
+
if bounds.shape[0] == 1:
|
| 130 |
+
bounds = np.repeat(bounds, n_elements, 0)
|
| 131 |
+
elif bounds.shape[0] != n_elements:
|
| 132 |
+
raise ValueError(
|
| 133 |
+
"Bounds on %s should have either 1 or "
|
| 134 |
+
"%d dimensions. Given are %d"
|
| 135 |
+
% (name, n_elements, bounds.shape[0])
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
if fixed is None:
|
| 139 |
+
fixed = isinstance(bounds, str) and bounds == "fixed"
|
| 140 |
+
return super(Hyperparameter, cls).__new__(
|
| 141 |
+
cls, name, value_type, bounds, n_elements, fixed
|
| 142 |
+
)
|
| 143 |
+
|
| 144 |
+
# This is mainly a testing utility to check that two hyperparameters
|
| 145 |
+
# are equal.
|
| 146 |
+
def __eq__(self, other):
|
| 147 |
+
return (
|
| 148 |
+
self.name == other.name
|
| 149 |
+
and self.value_type == other.value_type
|
| 150 |
+
and np.all(self.bounds == other.bounds)
|
| 151 |
+
and self.n_elements == other.n_elements
|
| 152 |
+
and self.fixed == other.fixed
|
| 153 |
+
)
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
class Kernel(metaclass=ABCMeta):
|
| 157 |
+
"""Base class for all kernels.
|
| 158 |
+
|
| 159 |
+
.. versionadded:: 0.18
|
| 160 |
+
|
| 161 |
+
Examples
|
| 162 |
+
--------
|
| 163 |
+
>>> from sklearn.gaussian_process.kernels import Kernel, RBF
|
| 164 |
+
>>> import numpy as np
|
| 165 |
+
>>> class CustomKernel(Kernel):
|
| 166 |
+
... def __init__(self, length_scale=1.0):
|
| 167 |
+
... self.length_scale = length_scale
|
| 168 |
+
... def __call__(self, X, Y=None):
|
| 169 |
+
... if Y is None:
|
| 170 |
+
... Y = X
|
| 171 |
+
... return np.inner(X, X if Y is None else Y) ** 2
|
| 172 |
+
... def diag(self, X):
|
| 173 |
+
... return np.ones(X.shape[0])
|
| 174 |
+
... def is_stationary(self):
|
| 175 |
+
... return True
|
| 176 |
+
>>> kernel = CustomKernel(length_scale=2.0)
|
| 177 |
+
>>> X = np.array([[1, 2], [3, 4]])
|
| 178 |
+
>>> print(kernel(X))
|
| 179 |
+
[[ 25 121]
|
| 180 |
+
[121 625]]
|
| 181 |
+
"""
|
| 182 |
+
|
| 183 |
+
def get_params(self, deep=True):
|
| 184 |
+
"""Get parameters of this kernel.
|
| 185 |
+
|
| 186 |
+
Parameters
|
| 187 |
+
----------
|
| 188 |
+
deep : bool, default=True
|
| 189 |
+
If True, will return the parameters for this estimator and
|
| 190 |
+
contained subobjects that are estimators.
|
| 191 |
+
|
| 192 |
+
Returns
|
| 193 |
+
-------
|
| 194 |
+
params : dict
|
| 195 |
+
Parameter names mapped to their values.
|
| 196 |
+
"""
|
| 197 |
+
params = dict()
|
| 198 |
+
|
| 199 |
+
# introspect the constructor arguments to find the model parameters
|
| 200 |
+
# to represent
|
| 201 |
+
cls = self.__class__
|
| 202 |
+
init = getattr(cls.__init__, "deprecated_original", cls.__init__)
|
| 203 |
+
init_sign = signature(init)
|
| 204 |
+
args, varargs = [], []
|
| 205 |
+
for parameter in init_sign.parameters.values():
|
| 206 |
+
if parameter.kind != parameter.VAR_KEYWORD and parameter.name != "self":
|
| 207 |
+
args.append(parameter.name)
|
| 208 |
+
if parameter.kind == parameter.VAR_POSITIONAL:
|
| 209 |
+
varargs.append(parameter.name)
|
| 210 |
+
|
| 211 |
+
if len(varargs) != 0:
|
| 212 |
+
raise RuntimeError(
|
| 213 |
+
"scikit-learn kernels should always "
|
| 214 |
+
"specify their parameters in the signature"
|
| 215 |
+
" of their __init__ (no varargs)."
|
| 216 |
+
" %s doesn't follow this convention." % (cls,)
|
| 217 |
+
)
|
| 218 |
+
for arg in args:
|
| 219 |
+
params[arg] = getattr(self, arg)
|
| 220 |
+
|
| 221 |
+
return params
|
| 222 |
+
|
| 223 |
+
def set_params(self, **params):
|
| 224 |
+
"""Set the parameters of this kernel.
|
| 225 |
+
|
| 226 |
+
The method works on simple kernels as well as on nested kernels.
|
| 227 |
+
The latter have parameters of the form ``<component>__<parameter>``
|
| 228 |
+
so that it's possible to update each component of a nested object.
|
| 229 |
+
|
| 230 |
+
Returns
|
| 231 |
+
-------
|
| 232 |
+
self
|
| 233 |
+
"""
|
| 234 |
+
if not params:
|
| 235 |
+
# Simple optimisation to gain speed (inspect is slow)
|
| 236 |
+
return self
|
| 237 |
+
valid_params = self.get_params(deep=True)
|
| 238 |
+
for key, value in params.items():
|
| 239 |
+
split = key.split("__", 1)
|
| 240 |
+
if len(split) > 1:
|
| 241 |
+
# nested objects case
|
| 242 |
+
name, sub_name = split
|
| 243 |
+
if name not in valid_params:
|
| 244 |
+
raise ValueError(
|
| 245 |
+
"Invalid parameter %s for kernel %s. "
|
| 246 |
+
"Check the list of available parameters "
|
| 247 |
+
"with `kernel.get_params().keys()`." % (name, self)
|
| 248 |
+
)
|
| 249 |
+
sub_object = valid_params[name]
|
| 250 |
+
sub_object.set_params(**{sub_name: value})
|
| 251 |
+
else:
|
| 252 |
+
# simple objects case
|
| 253 |
+
if key not in valid_params:
|
| 254 |
+
raise ValueError(
|
| 255 |
+
"Invalid parameter %s for kernel %s. "
|
| 256 |
+
"Check the list of available parameters "
|
| 257 |
+
"with `kernel.get_params().keys()`."
|
| 258 |
+
% (key, self.__class__.__name__)
|
| 259 |
+
)
|
| 260 |
+
setattr(self, key, value)
|
| 261 |
+
return self
|
| 262 |
+
|
| 263 |
+
def clone_with_theta(self, theta):
|
| 264 |
+
"""Returns a clone of self with given hyperparameters theta.
|
| 265 |
+
|
| 266 |
+
Parameters
|
| 267 |
+
----------
|
| 268 |
+
theta : ndarray of shape (n_dims,)
|
| 269 |
+
The hyperparameters
|
| 270 |
+
"""
|
| 271 |
+
cloned = clone(self)
|
| 272 |
+
cloned.theta = theta
|
| 273 |
+
return cloned
|
| 274 |
+
|
| 275 |
+
@property
|
| 276 |
+
def n_dims(self):
|
| 277 |
+
"""Returns the number of non-fixed hyperparameters of the kernel."""
|
| 278 |
+
return self.theta.shape[0]
|
| 279 |
+
|
| 280 |
+
@property
|
| 281 |
+
def hyperparameters(self):
|
| 282 |
+
"""Returns a list of all hyperparameter specifications."""
|
| 283 |
+
r = [
|
| 284 |
+
getattr(self, attr)
|
| 285 |
+
for attr in dir(self)
|
| 286 |
+
if attr.startswith("hyperparameter_")
|
| 287 |
+
]
|
| 288 |
+
return r
|
| 289 |
+
|
| 290 |
+
@property
|
| 291 |
+
def theta(self):
|
| 292 |
+
"""Returns the (flattened, log-transformed) non-fixed hyperparameters.
|
| 293 |
+
|
| 294 |
+
Note that theta are typically the log-transformed values of the
|
| 295 |
+
kernel's hyperparameters as this representation of the search space
|
| 296 |
+
is more amenable for hyperparameter search, as hyperparameters like
|
| 297 |
+
length-scales naturally live on a log-scale.
|
| 298 |
+
|
| 299 |
+
Returns
|
| 300 |
+
-------
|
| 301 |
+
theta : ndarray of shape (n_dims,)
|
| 302 |
+
The non-fixed, log-transformed hyperparameters of the kernel
|
| 303 |
+
"""
|
| 304 |
+
theta = []
|
| 305 |
+
params = self.get_params()
|
| 306 |
+
for hyperparameter in self.hyperparameters:
|
| 307 |
+
if not hyperparameter.fixed:
|
| 308 |
+
theta.append(params[hyperparameter.name])
|
| 309 |
+
if len(theta) > 0:
|
| 310 |
+
return np.log(np.hstack(theta))
|
| 311 |
+
else:
|
| 312 |
+
return np.array([])
|
| 313 |
+
|
| 314 |
+
@theta.setter
|
| 315 |
+
def theta(self, theta):
|
| 316 |
+
"""Sets the (flattened, log-transformed) non-fixed hyperparameters.
|
| 317 |
+
|
| 318 |
+
Parameters
|
| 319 |
+
----------
|
| 320 |
+
theta : ndarray of shape (n_dims,)
|
| 321 |
+
The non-fixed, log-transformed hyperparameters of the kernel
|
| 322 |
+
"""
|
| 323 |
+
params = self.get_params()
|
| 324 |
+
i = 0
|
| 325 |
+
for hyperparameter in self.hyperparameters:
|
| 326 |
+
if hyperparameter.fixed:
|
| 327 |
+
continue
|
| 328 |
+
if hyperparameter.n_elements > 1:
|
| 329 |
+
# vector-valued parameter
|
| 330 |
+
params[hyperparameter.name] = np.exp(
|
| 331 |
+
theta[i : i + hyperparameter.n_elements]
|
| 332 |
+
)
|
| 333 |
+
i += hyperparameter.n_elements
|
| 334 |
+
else:
|
| 335 |
+
params[hyperparameter.name] = np.exp(theta[i])
|
| 336 |
+
i += 1
|
| 337 |
+
|
| 338 |
+
if i != len(theta):
|
| 339 |
+
raise ValueError(
|
| 340 |
+
"theta has not the correct number of entries."
|
| 341 |
+
" Should be %d; given are %d" % (i, len(theta))
|
| 342 |
+
)
|
| 343 |
+
self.set_params(**params)
|
| 344 |
+
|
| 345 |
+
@property
|
| 346 |
+
def bounds(self):
|
| 347 |
+
"""Returns the log-transformed bounds on the theta.
|
| 348 |
+
|
| 349 |
+
Returns
|
| 350 |
+
-------
|
| 351 |
+
bounds : ndarray of shape (n_dims, 2)
|
| 352 |
+
The log-transformed bounds on the kernel's hyperparameters theta
|
| 353 |
+
"""
|
| 354 |
+
bounds = [
|
| 355 |
+
hyperparameter.bounds
|
| 356 |
+
for hyperparameter in self.hyperparameters
|
| 357 |
+
if not hyperparameter.fixed
|
| 358 |
+
]
|
| 359 |
+
if len(bounds) > 0:
|
| 360 |
+
return np.log(np.vstack(bounds))
|
| 361 |
+
else:
|
| 362 |
+
return np.array([])
|
| 363 |
+
|
| 364 |
+
def __add__(self, b):
|
| 365 |
+
if not isinstance(b, Kernel):
|
| 366 |
+
return Sum(self, ConstantKernel(b))
|
| 367 |
+
return Sum(self, b)
|
| 368 |
+
|
| 369 |
+
def __radd__(self, b):
|
| 370 |
+
if not isinstance(b, Kernel):
|
| 371 |
+
return Sum(ConstantKernel(b), self)
|
| 372 |
+
return Sum(b, self)
|
| 373 |
+
|
| 374 |
+
def __mul__(self, b):
|
| 375 |
+
if not isinstance(b, Kernel):
|
| 376 |
+
return Product(self, ConstantKernel(b))
|
| 377 |
+
return Product(self, b)
|
| 378 |
+
|
| 379 |
+
def __rmul__(self, b):
|
| 380 |
+
if not isinstance(b, Kernel):
|
| 381 |
+
return Product(ConstantKernel(b), self)
|
| 382 |
+
return Product(b, self)
|
| 383 |
+
|
| 384 |
+
def __pow__(self, b):
|
| 385 |
+
return Exponentiation(self, b)
|
| 386 |
+
|
| 387 |
+
def __eq__(self, b):
|
| 388 |
+
if type(self) != type(b):
|
| 389 |
+
return False
|
| 390 |
+
params_a = self.get_params()
|
| 391 |
+
params_b = b.get_params()
|
| 392 |
+
for key in set(list(params_a.keys()) + list(params_b.keys())):
|
| 393 |
+
if np.any(params_a.get(key, None) != params_b.get(key, None)):
|
| 394 |
+
return False
|
| 395 |
+
return True
|
| 396 |
+
|
| 397 |
+
def __repr__(self):
|
| 398 |
+
return "{0}({1})".format(
|
| 399 |
+
self.__class__.__name__, ", ".join(map("{0:.3g}".format, self.theta))
|
| 400 |
+
)
|
| 401 |
+
|
| 402 |
+
@abstractmethod
|
| 403 |
+
def __call__(self, X, Y=None, eval_gradient=False):
|
| 404 |
+
"""Evaluate the kernel."""
|
| 405 |
+
|
| 406 |
+
@abstractmethod
|
| 407 |
+
def diag(self, X):
|
| 408 |
+
"""Returns the diagonal of the kernel k(X, X).
|
| 409 |
+
|
| 410 |
+
The result of this method is identical to np.diag(self(X)); however,
|
| 411 |
+
it can be evaluated more efficiently since only the diagonal is
|
| 412 |
+
evaluated.
|
| 413 |
+
|
| 414 |
+
Parameters
|
| 415 |
+
----------
|
| 416 |
+
X : array-like of shape (n_samples,)
|
| 417 |
+
Left argument of the returned kernel k(X, Y)
|
| 418 |
+
|
| 419 |
+
Returns
|
| 420 |
+
-------
|
| 421 |
+
K_diag : ndarray of shape (n_samples_X,)
|
| 422 |
+
Diagonal of kernel k(X, X)
|
| 423 |
+
"""
|
| 424 |
+
|
| 425 |
+
@abstractmethod
|
| 426 |
+
def is_stationary(self):
|
| 427 |
+
"""Returns whether the kernel is stationary."""
|
| 428 |
+
|
| 429 |
+
@property
|
| 430 |
+
def requires_vector_input(self):
|
| 431 |
+
"""Returns whether the kernel is defined on fixed-length feature
|
| 432 |
+
vectors or generic objects. Defaults to True for backward
|
| 433 |
+
compatibility."""
|
| 434 |
+
return True
|
| 435 |
+
|
| 436 |
+
def _check_bounds_params(self):
|
| 437 |
+
"""Called after fitting to warn if bounds may have been too tight."""
|
| 438 |
+
list_close = np.isclose(self.bounds, np.atleast_2d(self.theta).T)
|
| 439 |
+
idx = 0
|
| 440 |
+
for hyp in self.hyperparameters:
|
| 441 |
+
if hyp.fixed:
|
| 442 |
+
continue
|
| 443 |
+
for dim in range(hyp.n_elements):
|
| 444 |
+
if list_close[idx, 0]:
|
| 445 |
+
warnings.warn(
|
| 446 |
+
"The optimal value found for "
|
| 447 |
+
"dimension %s of parameter %s is "
|
| 448 |
+
"close to the specified lower "
|
| 449 |
+
"bound %s. Decreasing the bound and"
|
| 450 |
+
" calling fit again may find a "
|
| 451 |
+
"better value." % (dim, hyp.name, hyp.bounds[dim][0]),
|
| 452 |
+
ConvergenceWarning,
|
| 453 |
+
)
|
| 454 |
+
elif list_close[idx, 1]:
|
| 455 |
+
warnings.warn(
|
| 456 |
+
"The optimal value found for "
|
| 457 |
+
"dimension %s of parameter %s is "
|
| 458 |
+
"close to the specified upper "
|
| 459 |
+
"bound %s. Increasing the bound and"
|
| 460 |
+
" calling fit again may find a "
|
| 461 |
+
"better value." % (dim, hyp.name, hyp.bounds[dim][1]),
|
| 462 |
+
ConvergenceWarning,
|
| 463 |
+
)
|
| 464 |
+
idx += 1
|
| 465 |
+
|
| 466 |
+
|
| 467 |
+
class NormalizedKernelMixin:
|
| 468 |
+
"""Mixin for kernels which are normalized: k(X, X)=1.
|
| 469 |
+
|
| 470 |
+
.. versionadded:: 0.18
|
| 471 |
+
"""
|
| 472 |
+
|
| 473 |
+
def diag(self, X):
|
| 474 |
+
"""Returns the diagonal of the kernel k(X, X).
|
| 475 |
+
|
| 476 |
+
The result of this method is identical to np.diag(self(X)); however,
|
| 477 |
+
it can be evaluated more efficiently since only the diagonal is
|
| 478 |
+
evaluated.
|
| 479 |
+
|
| 480 |
+
Parameters
|
| 481 |
+
----------
|
| 482 |
+
X : ndarray of shape (n_samples_X, n_features)
|
| 483 |
+
Left argument of the returned kernel k(X, Y)
|
| 484 |
+
|
| 485 |
+
Returns
|
| 486 |
+
-------
|
| 487 |
+
K_diag : ndarray of shape (n_samples_X,)
|
| 488 |
+
Diagonal of kernel k(X, X)
|
| 489 |
+
"""
|
| 490 |
+
return np.ones(X.shape[0])
|
| 491 |
+
|
| 492 |
+
|
| 493 |
+
class StationaryKernelMixin:
|
| 494 |
+
"""Mixin for kernels which are stationary: k(X, Y)= f(X-Y).
|
| 495 |
+
|
| 496 |
+
.. versionadded:: 0.18
|
| 497 |
+
"""
|
| 498 |
+
|
| 499 |
+
def is_stationary(self):
|
| 500 |
+
"""Returns whether the kernel is stationary."""
|
| 501 |
+
return True
|
| 502 |
+
|
| 503 |
+
|
| 504 |
+
class GenericKernelMixin:
|
| 505 |
+
"""Mixin for kernels which operate on generic objects such as variable-
|
| 506 |
+
length sequences, trees, and graphs.
|
| 507 |
+
|
| 508 |
+
.. versionadded:: 0.22
|
| 509 |
+
"""
|
| 510 |
+
|
| 511 |
+
@property
|
| 512 |
+
def requires_vector_input(self):
|
| 513 |
+
"""Whether the kernel works only on fixed-length feature vectors."""
|
| 514 |
+
return False
|
| 515 |
+
|
| 516 |
+
|
| 517 |
+
class CompoundKernel(Kernel):
|
| 518 |
+
"""Kernel which is composed of a set of other kernels.
|
| 519 |
+
|
| 520 |
+
.. versionadded:: 0.18
|
| 521 |
+
|
| 522 |
+
Parameters
|
| 523 |
+
----------
|
| 524 |
+
kernels : list of Kernels
|
| 525 |
+
The other kernels
|
| 526 |
+
|
| 527 |
+
Examples
|
| 528 |
+
--------
|
| 529 |
+
>>> from sklearn.gaussian_process.kernels import WhiteKernel
|
| 530 |
+
>>> from sklearn.gaussian_process.kernels import RBF
|
| 531 |
+
>>> from sklearn.gaussian_process.kernels import CompoundKernel
|
| 532 |
+
>>> kernel = CompoundKernel(
|
| 533 |
+
... [WhiteKernel(noise_level=3.0), RBF(length_scale=2.0)])
|
| 534 |
+
>>> print(kernel.bounds)
|
| 535 |
+
[[-11.51292546 11.51292546]
|
| 536 |
+
[-11.51292546 11.51292546]]
|
| 537 |
+
>>> print(kernel.n_dims)
|
| 538 |
+
2
|
| 539 |
+
>>> print(kernel.theta)
|
| 540 |
+
[1.09861229 0.69314718]
|
| 541 |
+
"""
|
| 542 |
+
|
| 543 |
+
def __init__(self, kernels):
|
| 544 |
+
self.kernels = kernels
|
| 545 |
+
|
| 546 |
+
def get_params(self, deep=True):
|
| 547 |
+
"""Get parameters of this kernel.
|
| 548 |
+
|
| 549 |
+
Parameters
|
| 550 |
+
----------
|
| 551 |
+
deep : bool, default=True
|
| 552 |
+
If True, will return the parameters for this estimator and
|
| 553 |
+
contained subobjects that are estimators.
|
| 554 |
+
|
| 555 |
+
Returns
|
| 556 |
+
-------
|
| 557 |
+
params : dict
|
| 558 |
+
Parameter names mapped to their values.
|
| 559 |
+
"""
|
| 560 |
+
return dict(kernels=self.kernels)
|
| 561 |
+
|
| 562 |
+
@property
|
| 563 |
+
def theta(self):
|
| 564 |
+
"""Returns the (flattened, log-transformed) non-fixed hyperparameters.
|
| 565 |
+
|
| 566 |
+
Note that theta are typically the log-transformed values of the
|
| 567 |
+
kernel's hyperparameters as this representation of the search space
|
| 568 |
+
is more amenable for hyperparameter search, as hyperparameters like
|
| 569 |
+
length-scales naturally live on a log-scale.
|
| 570 |
+
|
| 571 |
+
Returns
|
| 572 |
+
-------
|
| 573 |
+
theta : ndarray of shape (n_dims,)
|
| 574 |
+
The non-fixed, log-transformed hyperparameters of the kernel
|
| 575 |
+
"""
|
| 576 |
+
return np.hstack([kernel.theta for kernel in self.kernels])
|
| 577 |
+
|
| 578 |
+
@theta.setter
|
| 579 |
+
def theta(self, theta):
|
| 580 |
+
"""Sets the (flattened, log-transformed) non-fixed hyperparameters.
|
| 581 |
+
|
| 582 |
+
Parameters
|
| 583 |
+
----------
|
| 584 |
+
theta : array of shape (n_dims,)
|
| 585 |
+
The non-fixed, log-transformed hyperparameters of the kernel
|
| 586 |
+
"""
|
| 587 |
+
k_dims = self.k1.n_dims
|
| 588 |
+
for i, kernel in enumerate(self.kernels):
|
| 589 |
+
kernel.theta = theta[i * k_dims : (i + 1) * k_dims]
|
| 590 |
+
|
| 591 |
+
@property
|
| 592 |
+
def bounds(self):
|
| 593 |
+
"""Returns the log-transformed bounds on the theta.
|
| 594 |
+
|
| 595 |
+
Returns
|
| 596 |
+
-------
|
| 597 |
+
bounds : array of shape (n_dims, 2)
|
| 598 |
+
The log-transformed bounds on the kernel's hyperparameters theta
|
| 599 |
+
"""
|
| 600 |
+
return np.vstack([kernel.bounds for kernel in self.kernels])
|
| 601 |
+
|
| 602 |
+
def __call__(self, X, Y=None, eval_gradient=False):
|
| 603 |
+
"""Return the kernel k(X, Y) and optionally its gradient.
|
| 604 |
+
|
| 605 |
+
Note that this compound kernel returns the results of all simple kernel
|
| 606 |
+
stacked along an additional axis.
|
| 607 |
+
|
| 608 |
+
Parameters
|
| 609 |
+
----------
|
| 610 |
+
X : array-like of shape (n_samples_X, n_features) or list of object, \
|
| 611 |
+
default=None
|
| 612 |
+
Left argument of the returned kernel k(X, Y)
|
| 613 |
+
|
| 614 |
+
Y : array-like of shape (n_samples_X, n_features) or list of object, \
|
| 615 |
+
default=None
|
| 616 |
+
Right argument of the returned kernel k(X, Y). If None, k(X, X)
|
| 617 |
+
is evaluated instead.
|
| 618 |
+
|
| 619 |
+
eval_gradient : bool, default=False
|
| 620 |
+
Determines whether the gradient with respect to the log of the
|
| 621 |
+
kernel hyperparameter is computed.
|
| 622 |
+
|
| 623 |
+
Returns
|
| 624 |
+
-------
|
| 625 |
+
K : ndarray of shape (n_samples_X, n_samples_Y, n_kernels)
|
| 626 |
+
Kernel k(X, Y)
|
| 627 |
+
|
| 628 |
+
K_gradient : ndarray of shape \
|
| 629 |
+
(n_samples_X, n_samples_X, n_dims, n_kernels), optional
|
| 630 |
+
The gradient of the kernel k(X, X) with respect to the log of the
|
| 631 |
+
hyperparameter of the kernel. Only returned when `eval_gradient`
|
| 632 |
+
is True.
|
| 633 |
+
"""
|
| 634 |
+
if eval_gradient:
|
| 635 |
+
K = []
|
| 636 |
+
K_grad = []
|
| 637 |
+
for kernel in self.kernels:
|
| 638 |
+
K_single, K_grad_single = kernel(X, Y, eval_gradient)
|
| 639 |
+
K.append(K_single)
|
| 640 |
+
K_grad.append(K_grad_single[..., np.newaxis])
|
| 641 |
+
return np.dstack(K), np.concatenate(K_grad, 3)
|
| 642 |
+
else:
|
| 643 |
+
return np.dstack([kernel(X, Y, eval_gradient) for kernel in self.kernels])
|
| 644 |
+
|
| 645 |
+
def __eq__(self, b):
|
| 646 |
+
if type(self) != type(b) or len(self.kernels) != len(b.kernels):
|
| 647 |
+
return False
|
| 648 |
+
return np.all(
|
| 649 |
+
[self.kernels[i] == b.kernels[i] for i in range(len(self.kernels))]
|
| 650 |
+
)
|
| 651 |
+
|
| 652 |
+
def is_stationary(self):
|
| 653 |
+
"""Returns whether the kernel is stationary."""
|
| 654 |
+
return np.all([kernel.is_stationary() for kernel in self.kernels])
|
| 655 |
+
|
| 656 |
+
@property
|
| 657 |
+
def requires_vector_input(self):
|
| 658 |
+
"""Returns whether the kernel is defined on discrete structures."""
|
| 659 |
+
return np.any([kernel.requires_vector_input for kernel in self.kernels])
|
| 660 |
+
|
| 661 |
+
def diag(self, X):
|
| 662 |
+
"""Returns the diagonal of the kernel k(X, X).
|
| 663 |
+
|
| 664 |
+
The result of this method is identical to `np.diag(self(X))`; however,
|
| 665 |
+
it can be evaluated more efficiently since only the diagonal is
|
| 666 |
+
evaluated.
|
| 667 |
+
|
| 668 |
+
Parameters
|
| 669 |
+
----------
|
| 670 |
+
X : array-like of shape (n_samples_X, n_features) or list of object
|
| 671 |
+
Argument to the kernel.
|
| 672 |
+
|
| 673 |
+
Returns
|
| 674 |
+
-------
|
| 675 |
+
K_diag : ndarray of shape (n_samples_X, n_kernels)
|
| 676 |
+
Diagonal of kernel k(X, X)
|
| 677 |
+
"""
|
| 678 |
+
return np.vstack([kernel.diag(X) for kernel in self.kernels]).T
|
| 679 |
+
|
| 680 |
+
|
| 681 |
+
class KernelOperator(Kernel):
|
| 682 |
+
"""Base class for all kernel operators.
|
| 683 |
+
|
| 684 |
+
.. versionadded:: 0.18
|
| 685 |
+
"""
|
| 686 |
+
|
| 687 |
+
def __init__(self, k1, k2):
|
| 688 |
+
self.k1 = k1
|
| 689 |
+
self.k2 = k2
|
| 690 |
+
|
| 691 |
+
def get_params(self, deep=True):
|
| 692 |
+
"""Get parameters of this kernel.
|
| 693 |
+
|
| 694 |
+
Parameters
|
| 695 |
+
----------
|
| 696 |
+
deep : bool, default=True
|
| 697 |
+
If True, will return the parameters for this estimator and
|
| 698 |
+
contained subobjects that are estimators.
|
| 699 |
+
|
| 700 |
+
Returns
|
| 701 |
+
-------
|
| 702 |
+
params : dict
|
| 703 |
+
Parameter names mapped to their values.
|
| 704 |
+
"""
|
| 705 |
+
params = dict(k1=self.k1, k2=self.k2)
|
| 706 |
+
if deep:
|
| 707 |
+
deep_items = self.k1.get_params().items()
|
| 708 |
+
params.update(("k1__" + k, val) for k, val in deep_items)
|
| 709 |
+
deep_items = self.k2.get_params().items()
|
| 710 |
+
params.update(("k2__" + k, val) for k, val in deep_items)
|
| 711 |
+
|
| 712 |
+
return params
|
| 713 |
+
|
| 714 |
+
@property
|
| 715 |
+
def hyperparameters(self):
|
| 716 |
+
"""Returns a list of all hyperparameter."""
|
| 717 |
+
r = [
|
| 718 |
+
Hyperparameter(
|
| 719 |
+
"k1__" + hyperparameter.name,
|
| 720 |
+
hyperparameter.value_type,
|
| 721 |
+
hyperparameter.bounds,
|
| 722 |
+
hyperparameter.n_elements,
|
| 723 |
+
)
|
| 724 |
+
for hyperparameter in self.k1.hyperparameters
|
| 725 |
+
]
|
| 726 |
+
|
| 727 |
+
for hyperparameter in self.k2.hyperparameters:
|
| 728 |
+
r.append(
|
| 729 |
+
Hyperparameter(
|
| 730 |
+
"k2__" + hyperparameter.name,
|
| 731 |
+
hyperparameter.value_type,
|
| 732 |
+
hyperparameter.bounds,
|
| 733 |
+
hyperparameter.n_elements,
|
| 734 |
+
)
|
| 735 |
+
)
|
| 736 |
+
return r
|
| 737 |
+
|
| 738 |
+
@property
|
| 739 |
+
def theta(self):
|
| 740 |
+
"""Returns the (flattened, log-transformed) non-fixed hyperparameters.
|
| 741 |
+
|
| 742 |
+
Note that theta are typically the log-transformed values of the
|
| 743 |
+
kernel's hyperparameters as this representation of the search space
|
| 744 |
+
is more amenable for hyperparameter search, as hyperparameters like
|
| 745 |
+
length-scales naturally live on a log-scale.
|
| 746 |
+
|
| 747 |
+
Returns
|
| 748 |
+
-------
|
| 749 |
+
theta : ndarray of shape (n_dims,)
|
| 750 |
+
The non-fixed, log-transformed hyperparameters of the kernel
|
| 751 |
+
"""
|
| 752 |
+
return np.append(self.k1.theta, self.k2.theta)
|
| 753 |
+
|
| 754 |
+
@theta.setter
|
| 755 |
+
def theta(self, theta):
|
| 756 |
+
"""Sets the (flattened, log-transformed) non-fixed hyperparameters.
|
| 757 |
+
|
| 758 |
+
Parameters
|
| 759 |
+
----------
|
| 760 |
+
theta : ndarray of shape (n_dims,)
|
| 761 |
+
The non-fixed, log-transformed hyperparameters of the kernel
|
| 762 |
+
"""
|
| 763 |
+
k1_dims = self.k1.n_dims
|
| 764 |
+
self.k1.theta = theta[:k1_dims]
|
| 765 |
+
self.k2.theta = theta[k1_dims:]
|
| 766 |
+
|
| 767 |
+
@property
|
| 768 |
+
def bounds(self):
|
| 769 |
+
"""Returns the log-transformed bounds on the theta.
|
| 770 |
+
|
| 771 |
+
Returns
|
| 772 |
+
-------
|
| 773 |
+
bounds : ndarray of shape (n_dims, 2)
|
| 774 |
+
The log-transformed bounds on the kernel's hyperparameters theta
|
| 775 |
+
"""
|
| 776 |
+
if self.k1.bounds.size == 0:
|
| 777 |
+
return self.k2.bounds
|
| 778 |
+
if self.k2.bounds.size == 0:
|
| 779 |
+
return self.k1.bounds
|
| 780 |
+
return np.vstack((self.k1.bounds, self.k2.bounds))
|
| 781 |
+
|
| 782 |
+
def __eq__(self, b):
|
| 783 |
+
if type(self) != type(b):
|
| 784 |
+
return False
|
| 785 |
+
return (self.k1 == b.k1 and self.k2 == b.k2) or (
|
| 786 |
+
self.k1 == b.k2 and self.k2 == b.k1
|
| 787 |
+
)
|
| 788 |
+
|
| 789 |
+
def is_stationary(self):
|
| 790 |
+
"""Returns whether the kernel is stationary."""
|
| 791 |
+
return self.k1.is_stationary() and self.k2.is_stationary()
|
| 792 |
+
|
| 793 |
+
@property
|
| 794 |
+
def requires_vector_input(self):
|
| 795 |
+
"""Returns whether the kernel is stationary."""
|
| 796 |
+
return self.k1.requires_vector_input or self.k2.requires_vector_input
|
| 797 |
+
|
| 798 |
+
|
| 799 |
+
class Sum(KernelOperator):
|
| 800 |
+
"""The `Sum` kernel takes two kernels :math:`k_1` and :math:`k_2`
|
| 801 |
+
and combines them via
|
| 802 |
+
|
| 803 |
+
.. math::
|
| 804 |
+
k_{sum}(X, Y) = k_1(X, Y) + k_2(X, Y)
|
| 805 |
+
|
| 806 |
+
Note that the `__add__` magic method is overridden, so
|
| 807 |
+
`Sum(RBF(), RBF())` is equivalent to using the + operator
|
| 808 |
+
with `RBF() + RBF()`.
|
| 809 |
+
|
| 810 |
+
|
| 811 |
+
Read more in the :ref:`User Guide <gp_kernels>`.
|
| 812 |
+
|
| 813 |
+
.. versionadded:: 0.18
|
| 814 |
+
|
| 815 |
+
Parameters
|
| 816 |
+
----------
|
| 817 |
+
k1 : Kernel
|
| 818 |
+
The first base-kernel of the sum-kernel
|
| 819 |
+
|
| 820 |
+
k2 : Kernel
|
| 821 |
+
The second base-kernel of the sum-kernel
|
| 822 |
+
|
| 823 |
+
Examples
|
| 824 |
+
--------
|
| 825 |
+
>>> from sklearn.datasets import make_friedman2
|
| 826 |
+
>>> from sklearn.gaussian_process import GaussianProcessRegressor
|
| 827 |
+
>>> from sklearn.gaussian_process.kernels import RBF, Sum, ConstantKernel
|
| 828 |
+
>>> X, y = make_friedman2(n_samples=500, noise=0, random_state=0)
|
| 829 |
+
>>> kernel = Sum(ConstantKernel(2), RBF())
|
| 830 |
+
>>> gpr = GaussianProcessRegressor(kernel=kernel,
|
| 831 |
+
... random_state=0).fit(X, y)
|
| 832 |
+
>>> gpr.score(X, y)
|
| 833 |
+
1.0
|
| 834 |
+
>>> kernel
|
| 835 |
+
1.41**2 + RBF(length_scale=1)
|
| 836 |
+
"""
|
| 837 |
+
|
| 838 |
+
def __call__(self, X, Y=None, eval_gradient=False):
|
| 839 |
+
"""Return the kernel k(X, Y) and optionally its gradient.
|
| 840 |
+
|
| 841 |
+
Parameters
|
| 842 |
+
----------
|
| 843 |
+
X : array-like of shape (n_samples_X, n_features) or list of object
|
| 844 |
+
Left argument of the returned kernel k(X, Y)
|
| 845 |
+
|
| 846 |
+
Y : array-like of shape (n_samples_X, n_features) or list of object,\
|
| 847 |
+
default=None
|
| 848 |
+
Right argument of the returned kernel k(X, Y). If None, k(X, X)
|
| 849 |
+
is evaluated instead.
|
| 850 |
+
|
| 851 |
+
eval_gradient : bool, default=False
|
| 852 |
+
Determines whether the gradient with respect to the log of
|
| 853 |
+
the kernel hyperparameter is computed.
|
| 854 |
+
|
| 855 |
+
Returns
|
| 856 |
+
-------
|
| 857 |
+
K : ndarray of shape (n_samples_X, n_samples_Y)
|
| 858 |
+
Kernel k(X, Y)
|
| 859 |
+
|
| 860 |
+
K_gradient : ndarray of shape (n_samples_X, n_samples_X, n_dims),\
|
| 861 |
+
optional
|
| 862 |
+
The gradient of the kernel k(X, X) with respect to the log of the
|
| 863 |
+
hyperparameter of the kernel. Only returned when `eval_gradient`
|
| 864 |
+
is True.
|
| 865 |
+
"""
|
| 866 |
+
if eval_gradient:
|
| 867 |
+
K1, K1_gradient = self.k1(X, Y, eval_gradient=True)
|
| 868 |
+
K2, K2_gradient = self.k2(X, Y, eval_gradient=True)
|
| 869 |
+
return K1 + K2, np.dstack((K1_gradient, K2_gradient))
|
| 870 |
+
else:
|
| 871 |
+
return self.k1(X, Y) + self.k2(X, Y)
|
| 872 |
+
|
| 873 |
+
def diag(self, X):
|
| 874 |
+
"""Returns the diagonal of the kernel k(X, X).
|
| 875 |
+
|
| 876 |
+
The result of this method is identical to `np.diag(self(X))`; however,
|
| 877 |
+
it can be evaluated more efficiently since only the diagonal is
|
| 878 |
+
evaluated.
|
| 879 |
+
|
| 880 |
+
Parameters
|
| 881 |
+
----------
|
| 882 |
+
X : array-like of shape (n_samples_X, n_features) or list of object
|
| 883 |
+
Argument to the kernel.
|
| 884 |
+
|
| 885 |
+
Returns
|
| 886 |
+
-------
|
| 887 |
+
K_diag : ndarray of shape (n_samples_X,)
|
| 888 |
+
Diagonal of kernel k(X, X)
|
| 889 |
+
"""
|
| 890 |
+
return self.k1.diag(X) + self.k2.diag(X)
|
| 891 |
+
|
| 892 |
+
def __repr__(self):
|
| 893 |
+
return "{0} + {1}".format(self.k1, self.k2)
|
| 894 |
+
|
| 895 |
+
|
| 896 |
+
class Product(KernelOperator):
|
| 897 |
+
"""The `Product` kernel takes two kernels :math:`k_1` and :math:`k_2`
|
| 898 |
+
and combines them via
|
| 899 |
+
|
| 900 |
+
.. math::
|
| 901 |
+
k_{prod}(X, Y) = k_1(X, Y) * k_2(X, Y)
|
| 902 |
+
|
| 903 |
+
Note that the `__mul__` magic method is overridden, so
|
| 904 |
+
`Product(RBF(), RBF())` is equivalent to using the * operator
|
| 905 |
+
with `RBF() * RBF()`.
|
| 906 |
+
|
| 907 |
+
Read more in the :ref:`User Guide <gp_kernels>`.
|
| 908 |
+
|
| 909 |
+
.. versionadded:: 0.18
|
| 910 |
+
|
| 911 |
+
Parameters
|
| 912 |
+
----------
|
| 913 |
+
k1 : Kernel
|
| 914 |
+
The first base-kernel of the product-kernel
|
| 915 |
+
|
| 916 |
+
k2 : Kernel
|
| 917 |
+
The second base-kernel of the product-kernel
|
| 918 |
+
|
| 919 |
+
|
| 920 |
+
Examples
|
| 921 |
+
--------
|
| 922 |
+
>>> from sklearn.datasets import make_friedman2
|
| 923 |
+
>>> from sklearn.gaussian_process import GaussianProcessRegressor
|
| 924 |
+
>>> from sklearn.gaussian_process.kernels import (RBF, Product,
|
| 925 |
+
... ConstantKernel)
|
| 926 |
+
>>> X, y = make_friedman2(n_samples=500, noise=0, random_state=0)
|
| 927 |
+
>>> kernel = Product(ConstantKernel(2), RBF())
|
| 928 |
+
>>> gpr = GaussianProcessRegressor(kernel=kernel,
|
| 929 |
+
... random_state=0).fit(X, y)
|
| 930 |
+
>>> gpr.score(X, y)
|
| 931 |
+
1.0
|
| 932 |
+
>>> kernel
|
| 933 |
+
1.41**2 * RBF(length_scale=1)
|
| 934 |
+
"""
|
| 935 |
+
|
| 936 |
+
def __call__(self, X, Y=None, eval_gradient=False):
|
| 937 |
+
"""Return the kernel k(X, Y) and optionally its gradient.
|
| 938 |
+
|
| 939 |
+
Parameters
|
| 940 |
+
----------
|
| 941 |
+
X : array-like of shape (n_samples_X, n_features) or list of object
|
| 942 |
+
Left argument of the returned kernel k(X, Y)
|
| 943 |
+
|
| 944 |
+
Y : array-like of shape (n_samples_Y, n_features) or list of object,\
|
| 945 |
+
default=None
|
| 946 |
+
Right argument of the returned kernel k(X, Y). If None, k(X, X)
|
| 947 |
+
is evaluated instead.
|
| 948 |
+
|
| 949 |
+
eval_gradient : bool, default=False
|
| 950 |
+
Determines whether the gradient with respect to the log of
|
| 951 |
+
the kernel hyperparameter is computed.
|
| 952 |
+
|
| 953 |
+
Returns
|
| 954 |
+
-------
|
| 955 |
+
K : ndarray of shape (n_samples_X, n_samples_Y)
|
| 956 |
+
Kernel k(X, Y)
|
| 957 |
+
|
| 958 |
+
K_gradient : ndarray of shape (n_samples_X, n_samples_X, n_dims), \
|
| 959 |
+
optional
|
| 960 |
+
The gradient of the kernel k(X, X) with respect to the log of the
|
| 961 |
+
hyperparameter of the kernel. Only returned when `eval_gradient`
|
| 962 |
+
is True.
|
| 963 |
+
"""
|
| 964 |
+
if eval_gradient:
|
| 965 |
+
K1, K1_gradient = self.k1(X, Y, eval_gradient=True)
|
| 966 |
+
K2, K2_gradient = self.k2(X, Y, eval_gradient=True)
|
| 967 |
+
return K1 * K2, np.dstack(
|
| 968 |
+
(K1_gradient * K2[:, :, np.newaxis], K2_gradient * K1[:, :, np.newaxis])
|
| 969 |
+
)
|
| 970 |
+
else:
|
| 971 |
+
return self.k1(X, Y) * self.k2(X, Y)
|
| 972 |
+
|
| 973 |
+
def diag(self, X):
|
| 974 |
+
"""Returns the diagonal of the kernel k(X, X).
|
| 975 |
+
|
| 976 |
+
The result of this method is identical to np.diag(self(X)); however,
|
| 977 |
+
it can be evaluated more efficiently since only the diagonal is
|
| 978 |
+
evaluated.
|
| 979 |
+
|
| 980 |
+
Parameters
|
| 981 |
+
----------
|
| 982 |
+
X : array-like of shape (n_samples_X, n_features) or list of object
|
| 983 |
+
Argument to the kernel.
|
| 984 |
+
|
| 985 |
+
Returns
|
| 986 |
+
-------
|
| 987 |
+
K_diag : ndarray of shape (n_samples_X,)
|
| 988 |
+
Diagonal of kernel k(X, X)
|
| 989 |
+
"""
|
| 990 |
+
return self.k1.diag(X) * self.k2.diag(X)
|
| 991 |
+
|
| 992 |
+
def __repr__(self):
|
| 993 |
+
return "{0} * {1}".format(self.k1, self.k2)
|
| 994 |
+
|
| 995 |
+
|
| 996 |
+
class Exponentiation(Kernel):
|
| 997 |
+
"""The Exponentiation kernel takes one base kernel and a scalar parameter
|
| 998 |
+
:math:`p` and combines them via
|
| 999 |
+
|
| 1000 |
+
.. math::
|
| 1001 |
+
k_{exp}(X, Y) = k(X, Y) ^p
|
| 1002 |
+
|
| 1003 |
+
Note that the `__pow__` magic method is overridden, so
|
| 1004 |
+
`Exponentiation(RBF(), 2)` is equivalent to using the ** operator
|
| 1005 |
+
with `RBF() ** 2`.
|
| 1006 |
+
|
| 1007 |
+
|
| 1008 |
+
Read more in the :ref:`User Guide <gp_kernels>`.
|
| 1009 |
+
|
| 1010 |
+
.. versionadded:: 0.18
|
| 1011 |
+
|
| 1012 |
+
Parameters
|
| 1013 |
+
----------
|
| 1014 |
+
kernel : Kernel
|
| 1015 |
+
The base kernel
|
| 1016 |
+
|
| 1017 |
+
exponent : float
|
| 1018 |
+
The exponent for the base kernel
|
| 1019 |
+
|
| 1020 |
+
|
| 1021 |
+
Examples
|
| 1022 |
+
--------
|
| 1023 |
+
>>> from sklearn.datasets import make_friedman2
|
| 1024 |
+
>>> from sklearn.gaussian_process import GaussianProcessRegressor
|
| 1025 |
+
>>> from sklearn.gaussian_process.kernels import (RationalQuadratic,
|
| 1026 |
+
... Exponentiation)
|
| 1027 |
+
>>> X, y = make_friedman2(n_samples=500, noise=0, random_state=0)
|
| 1028 |
+
>>> kernel = Exponentiation(RationalQuadratic(), exponent=2)
|
| 1029 |
+
>>> gpr = GaussianProcessRegressor(kernel=kernel, alpha=5,
|
| 1030 |
+
... random_state=0).fit(X, y)
|
| 1031 |
+
>>> gpr.score(X, y)
|
| 1032 |
+
0.419...
|
| 1033 |
+
>>> gpr.predict(X[:1,:], return_std=True)
|
| 1034 |
+
(array([635.5...]), array([0.559...]))
|
| 1035 |
+
"""
|
| 1036 |
+
|
| 1037 |
+
def __init__(self, kernel, exponent):
|
| 1038 |
+
self.kernel = kernel
|
| 1039 |
+
self.exponent = exponent
|
| 1040 |
+
|
| 1041 |
+
def get_params(self, deep=True):
|
| 1042 |
+
"""Get parameters of this kernel.
|
| 1043 |
+
|
| 1044 |
+
Parameters
|
| 1045 |
+
----------
|
| 1046 |
+
deep : bool, default=True
|
| 1047 |
+
If True, will return the parameters for this estimator and
|
| 1048 |
+
contained subobjects that are estimators.
|
| 1049 |
+
|
| 1050 |
+
Returns
|
| 1051 |
+
-------
|
| 1052 |
+
params : dict
|
| 1053 |
+
Parameter names mapped to their values.
|
| 1054 |
+
"""
|
| 1055 |
+
params = dict(kernel=self.kernel, exponent=self.exponent)
|
| 1056 |
+
if deep:
|
| 1057 |
+
deep_items = self.kernel.get_params().items()
|
| 1058 |
+
params.update(("kernel__" + k, val) for k, val in deep_items)
|
| 1059 |
+
return params
|
| 1060 |
+
|
| 1061 |
+
@property
|
| 1062 |
+
def hyperparameters(self):
|
| 1063 |
+
"""Returns a list of all hyperparameter."""
|
| 1064 |
+
r = []
|
| 1065 |
+
for hyperparameter in self.kernel.hyperparameters:
|
| 1066 |
+
r.append(
|
| 1067 |
+
Hyperparameter(
|
| 1068 |
+
"kernel__" + hyperparameter.name,
|
| 1069 |
+
hyperparameter.value_type,
|
| 1070 |
+
hyperparameter.bounds,
|
| 1071 |
+
hyperparameter.n_elements,
|
| 1072 |
+
)
|
| 1073 |
+
)
|
| 1074 |
+
return r
|
| 1075 |
+
|
| 1076 |
+
@property
|
| 1077 |
+
def theta(self):
|
| 1078 |
+
"""Returns the (flattened, log-transformed) non-fixed hyperparameters.
|
| 1079 |
+
|
| 1080 |
+
Note that theta are typically the log-transformed values of the
|
| 1081 |
+
kernel's hyperparameters as this representation of the search space
|
| 1082 |
+
is more amenable for hyperparameter search, as hyperparameters like
|
| 1083 |
+
length-scales naturally live on a log-scale.
|
| 1084 |
+
|
| 1085 |
+
Returns
|
| 1086 |
+
-------
|
| 1087 |
+
theta : ndarray of shape (n_dims,)
|
| 1088 |
+
The non-fixed, log-transformed hyperparameters of the kernel
|
| 1089 |
+
"""
|
| 1090 |
+
return self.kernel.theta
|
| 1091 |
+
|
| 1092 |
+
@theta.setter
|
| 1093 |
+
def theta(self, theta):
|
| 1094 |
+
"""Sets the (flattened, log-transformed) non-fixed hyperparameters.
|
| 1095 |
+
|
| 1096 |
+
Parameters
|
| 1097 |
+
----------
|
| 1098 |
+
theta : ndarray of shape (n_dims,)
|
| 1099 |
+
The non-fixed, log-transformed hyperparameters of the kernel
|
| 1100 |
+
"""
|
| 1101 |
+
self.kernel.theta = theta
|
| 1102 |
+
|
| 1103 |
+
@property
|
| 1104 |
+
def bounds(self):
|
| 1105 |
+
"""Returns the log-transformed bounds on the theta.
|
| 1106 |
+
|
| 1107 |
+
Returns
|
| 1108 |
+
-------
|
| 1109 |
+
bounds : ndarray of shape (n_dims, 2)
|
| 1110 |
+
The log-transformed bounds on the kernel's hyperparameters theta
|
| 1111 |
+
"""
|
| 1112 |
+
return self.kernel.bounds
|
| 1113 |
+
|
| 1114 |
+
def __eq__(self, b):
|
| 1115 |
+
if type(self) != type(b):
|
| 1116 |
+
return False
|
| 1117 |
+
return self.kernel == b.kernel and self.exponent == b.exponent
|
| 1118 |
+
|
| 1119 |
+
def __call__(self, X, Y=None, eval_gradient=False):
|
| 1120 |
+
"""Return the kernel k(X, Y) and optionally its gradient.
|
| 1121 |
+
|
| 1122 |
+
Parameters
|
| 1123 |
+
----------
|
| 1124 |
+
X : array-like of shape (n_samples_X, n_features) or list of object
|
| 1125 |
+
Left argument of the returned kernel k(X, Y)
|
| 1126 |
+
|
| 1127 |
+
Y : array-like of shape (n_samples_Y, n_features) or list of object,\
|
| 1128 |
+
default=None
|
| 1129 |
+
Right argument of the returned kernel k(X, Y). If None, k(X, X)
|
| 1130 |
+
is evaluated instead.
|
| 1131 |
+
|
| 1132 |
+
eval_gradient : bool, default=False
|
| 1133 |
+
Determines whether the gradient with respect to the log of
|
| 1134 |
+
the kernel hyperparameter is computed.
|
| 1135 |
+
|
| 1136 |
+
Returns
|
| 1137 |
+
-------
|
| 1138 |
+
K : ndarray of shape (n_samples_X, n_samples_Y)
|
| 1139 |
+
Kernel k(X, Y)
|
| 1140 |
+
|
| 1141 |
+
K_gradient : ndarray of shape (n_samples_X, n_samples_X, n_dims),\
|
| 1142 |
+
optional
|
| 1143 |
+
The gradient of the kernel k(X, X) with respect to the log of the
|
| 1144 |
+
hyperparameter of the kernel. Only returned when `eval_gradient`
|
| 1145 |
+
is True.
|
| 1146 |
+
"""
|
| 1147 |
+
if eval_gradient:
|
| 1148 |
+
K, K_gradient = self.kernel(X, Y, eval_gradient=True)
|
| 1149 |
+
K_gradient *= self.exponent * K[:, :, np.newaxis] ** (self.exponent - 1)
|
| 1150 |
+
return K**self.exponent, K_gradient
|
| 1151 |
+
else:
|
| 1152 |
+
K = self.kernel(X, Y, eval_gradient=False)
|
| 1153 |
+
return K**self.exponent
|
| 1154 |
+
|
| 1155 |
+
def diag(self, X):
|
| 1156 |
+
"""Returns the diagonal of the kernel k(X, X).
|
| 1157 |
+
|
| 1158 |
+
The result of this method is identical to np.diag(self(X)); however,
|
| 1159 |
+
it can be evaluated more efficiently since only the diagonal is
|
| 1160 |
+
evaluated.
|
| 1161 |
+
|
| 1162 |
+
Parameters
|
| 1163 |
+
----------
|
| 1164 |
+
X : array-like of shape (n_samples_X, n_features) or list of object
|
| 1165 |
+
Argument to the kernel.
|
| 1166 |
+
|
| 1167 |
+
Returns
|
| 1168 |
+
-------
|
| 1169 |
+
K_diag : ndarray of shape (n_samples_X,)
|
| 1170 |
+
Diagonal of kernel k(X, X)
|
| 1171 |
+
"""
|
| 1172 |
+
return self.kernel.diag(X) ** self.exponent
|
| 1173 |
+
|
| 1174 |
+
def __repr__(self):
|
| 1175 |
+
return "{0} ** {1}".format(self.kernel, self.exponent)
|
| 1176 |
+
|
| 1177 |
+
def is_stationary(self):
|
| 1178 |
+
"""Returns whether the kernel is stationary."""
|
| 1179 |
+
return self.kernel.is_stationary()
|
| 1180 |
+
|
| 1181 |
+
@property
|
| 1182 |
+
def requires_vector_input(self):
|
| 1183 |
+
"""Returns whether the kernel is defined on discrete structures."""
|
| 1184 |
+
return self.kernel.requires_vector_input
|
| 1185 |
+
|
| 1186 |
+
|
| 1187 |
+
class ConstantKernel(StationaryKernelMixin, GenericKernelMixin, Kernel):
|
| 1188 |
+
"""Constant kernel.
|
| 1189 |
+
|
| 1190 |
+
Can be used as part of a product-kernel where it scales the magnitude of
|
| 1191 |
+
the other factor (kernel) or as part of a sum-kernel, where it modifies
|
| 1192 |
+
the mean of the Gaussian process.
|
| 1193 |
+
|
| 1194 |
+
.. math::
|
| 1195 |
+
k(x_1, x_2) = constant\\_value \\;\\forall\\; x_1, x_2
|
| 1196 |
+
|
| 1197 |
+
Adding a constant kernel is equivalent to adding a constant::
|
| 1198 |
+
|
| 1199 |
+
kernel = RBF() + ConstantKernel(constant_value=2)
|
| 1200 |
+
|
| 1201 |
+
is the same as::
|
| 1202 |
+
|
| 1203 |
+
kernel = RBF() + 2
|
| 1204 |
+
|
| 1205 |
+
|
| 1206 |
+
Read more in the :ref:`User Guide <gp_kernels>`.
|
| 1207 |
+
|
| 1208 |
+
.. versionadded:: 0.18
|
| 1209 |
+
|
| 1210 |
+
Parameters
|
| 1211 |
+
----------
|
| 1212 |
+
constant_value : float, default=1.0
|
| 1213 |
+
The constant value which defines the covariance:
|
| 1214 |
+
k(x_1, x_2) = constant_value
|
| 1215 |
+
|
| 1216 |
+
constant_value_bounds : pair of floats >= 0 or "fixed", default=(1e-5, 1e5)
|
| 1217 |
+
The lower and upper bound on `constant_value`.
|
| 1218 |
+
If set to "fixed", `constant_value` cannot be changed during
|
| 1219 |
+
hyperparameter tuning.
|
| 1220 |
+
|
| 1221 |
+
Examples
|
| 1222 |
+
--------
|
| 1223 |
+
>>> from sklearn.datasets import make_friedman2
|
| 1224 |
+
>>> from sklearn.gaussian_process import GaussianProcessRegressor
|
| 1225 |
+
>>> from sklearn.gaussian_process.kernels import RBF, ConstantKernel
|
| 1226 |
+
>>> X, y = make_friedman2(n_samples=500, noise=0, random_state=0)
|
| 1227 |
+
>>> kernel = RBF() + ConstantKernel(constant_value=2)
|
| 1228 |
+
>>> gpr = GaussianProcessRegressor(kernel=kernel, alpha=5,
|
| 1229 |
+
... random_state=0).fit(X, y)
|
| 1230 |
+
>>> gpr.score(X, y)
|
| 1231 |
+
0.3696...
|
| 1232 |
+
>>> gpr.predict(X[:1,:], return_std=True)
|
| 1233 |
+
(array([606.1...]), array([0.24...]))
|
| 1234 |
+
"""
|
| 1235 |
+
|
| 1236 |
+
def __init__(self, constant_value=1.0, constant_value_bounds=(1e-5, 1e5)):
|
| 1237 |
+
self.constant_value = constant_value
|
| 1238 |
+
self.constant_value_bounds = constant_value_bounds
|
| 1239 |
+
|
| 1240 |
+
@property
|
| 1241 |
+
def hyperparameter_constant_value(self):
|
| 1242 |
+
return Hyperparameter("constant_value", "numeric", self.constant_value_bounds)
|
| 1243 |
+
|
| 1244 |
+
def __call__(self, X, Y=None, eval_gradient=False):
|
| 1245 |
+
"""Return the kernel k(X, Y) and optionally its gradient.
|
| 1246 |
+
|
| 1247 |
+
Parameters
|
| 1248 |
+
----------
|
| 1249 |
+
X : array-like of shape (n_samples_X, n_features) or list of object
|
| 1250 |
+
Left argument of the returned kernel k(X, Y)
|
| 1251 |
+
|
| 1252 |
+
Y : array-like of shape (n_samples_X, n_features) or list of object, \
|
| 1253 |
+
default=None
|
| 1254 |
+
Right argument of the returned kernel k(X, Y). If None, k(X, X)
|
| 1255 |
+
is evaluated instead.
|
| 1256 |
+
|
| 1257 |
+
eval_gradient : bool, default=False
|
| 1258 |
+
Determines whether the gradient with respect to the log of
|
| 1259 |
+
the kernel hyperparameter is computed.
|
| 1260 |
+
Only supported when Y is None.
|
| 1261 |
+
|
| 1262 |
+
Returns
|
| 1263 |
+
-------
|
| 1264 |
+
K : ndarray of shape (n_samples_X, n_samples_Y)
|
| 1265 |
+
Kernel k(X, Y)
|
| 1266 |
+
|
| 1267 |
+
K_gradient : ndarray of shape (n_samples_X, n_samples_X, n_dims), \
|
| 1268 |
+
optional
|
| 1269 |
+
The gradient of the kernel k(X, X) with respect to the log of the
|
| 1270 |
+
hyperparameter of the kernel. Only returned when eval_gradient
|
| 1271 |
+
is True.
|
| 1272 |
+
"""
|
| 1273 |
+
if Y is None:
|
| 1274 |
+
Y = X
|
| 1275 |
+
elif eval_gradient:
|
| 1276 |
+
raise ValueError("Gradient can only be evaluated when Y is None.")
|
| 1277 |
+
|
| 1278 |
+
K = np.full(
|
| 1279 |
+
(_num_samples(X), _num_samples(Y)),
|
| 1280 |
+
self.constant_value,
|
| 1281 |
+
dtype=np.array(self.constant_value).dtype,
|
| 1282 |
+
)
|
| 1283 |
+
if eval_gradient:
|
| 1284 |
+
if not self.hyperparameter_constant_value.fixed:
|
| 1285 |
+
return (
|
| 1286 |
+
K,
|
| 1287 |
+
np.full(
|
| 1288 |
+
(_num_samples(X), _num_samples(X), 1),
|
| 1289 |
+
self.constant_value,
|
| 1290 |
+
dtype=np.array(self.constant_value).dtype,
|
| 1291 |
+
),
|
| 1292 |
+
)
|
| 1293 |
+
else:
|
| 1294 |
+
return K, np.empty((_num_samples(X), _num_samples(X), 0))
|
| 1295 |
+
else:
|
| 1296 |
+
return K
|
| 1297 |
+
|
| 1298 |
+
def diag(self, X):
|
| 1299 |
+
"""Returns the diagonal of the kernel k(X, X).
|
| 1300 |
+
|
| 1301 |
+
The result of this method is identical to np.diag(self(X)); however,
|
| 1302 |
+
it can be evaluated more efficiently since only the diagonal is
|
| 1303 |
+
evaluated.
|
| 1304 |
+
|
| 1305 |
+
Parameters
|
| 1306 |
+
----------
|
| 1307 |
+
X : array-like of shape (n_samples_X, n_features) or list of object
|
| 1308 |
+
Argument to the kernel.
|
| 1309 |
+
|
| 1310 |
+
Returns
|
| 1311 |
+
-------
|
| 1312 |
+
K_diag : ndarray of shape (n_samples_X,)
|
| 1313 |
+
Diagonal of kernel k(X, X)
|
| 1314 |
+
"""
|
| 1315 |
+
return np.full(
|
| 1316 |
+
_num_samples(X),
|
| 1317 |
+
self.constant_value,
|
| 1318 |
+
dtype=np.array(self.constant_value).dtype,
|
| 1319 |
+
)
|
| 1320 |
+
|
| 1321 |
+
def __repr__(self):
|
| 1322 |
+
return "{0:.3g}**2".format(np.sqrt(self.constant_value))
|
| 1323 |
+
|
| 1324 |
+
|
| 1325 |
+
class WhiteKernel(StationaryKernelMixin, GenericKernelMixin, Kernel):
|
| 1326 |
+
"""White kernel.
|
| 1327 |
+
|
| 1328 |
+
The main use-case of this kernel is as part of a sum-kernel where it
|
| 1329 |
+
explains the noise of the signal as independently and identically
|
| 1330 |
+
normally-distributed. The parameter noise_level equals the variance of this
|
| 1331 |
+
noise.
|
| 1332 |
+
|
| 1333 |
+
.. math::
|
| 1334 |
+
k(x_1, x_2) = noise\\_level \\text{ if } x_i == x_j \\text{ else } 0
|
| 1335 |
+
|
| 1336 |
+
|
| 1337 |
+
Read more in the :ref:`User Guide <gp_kernels>`.
|
| 1338 |
+
|
| 1339 |
+
.. versionadded:: 0.18
|
| 1340 |
+
|
| 1341 |
+
Parameters
|
| 1342 |
+
----------
|
| 1343 |
+
noise_level : float, default=1.0
|
| 1344 |
+
Parameter controlling the noise level (variance)
|
| 1345 |
+
|
| 1346 |
+
noise_level_bounds : pair of floats >= 0 or "fixed", default=(1e-5, 1e5)
|
| 1347 |
+
The lower and upper bound on 'noise_level'.
|
| 1348 |
+
If set to "fixed", 'noise_level' cannot be changed during
|
| 1349 |
+
hyperparameter tuning.
|
| 1350 |
+
|
| 1351 |
+
Examples
|
| 1352 |
+
--------
|
| 1353 |
+
>>> from sklearn.datasets import make_friedman2
|
| 1354 |
+
>>> from sklearn.gaussian_process import GaussianProcessRegressor
|
| 1355 |
+
>>> from sklearn.gaussian_process.kernels import DotProduct, WhiteKernel
|
| 1356 |
+
>>> X, y = make_friedman2(n_samples=500, noise=0, random_state=0)
|
| 1357 |
+
>>> kernel = DotProduct() + WhiteKernel(noise_level=0.5)
|
| 1358 |
+
>>> gpr = GaussianProcessRegressor(kernel=kernel,
|
| 1359 |
+
... random_state=0).fit(X, y)
|
| 1360 |
+
>>> gpr.score(X, y)
|
| 1361 |
+
0.3680...
|
| 1362 |
+
>>> gpr.predict(X[:2,:], return_std=True)
|
| 1363 |
+
(array([653.0..., 592.1... ]), array([316.6..., 316.6...]))
|
| 1364 |
+
"""
|
| 1365 |
+
|
| 1366 |
+
def __init__(self, noise_level=1.0, noise_level_bounds=(1e-5, 1e5)):
|
| 1367 |
+
self.noise_level = noise_level
|
| 1368 |
+
self.noise_level_bounds = noise_level_bounds
|
| 1369 |
+
|
| 1370 |
+
@property
|
| 1371 |
+
def hyperparameter_noise_level(self):
|
| 1372 |
+
return Hyperparameter("noise_level", "numeric", self.noise_level_bounds)
|
| 1373 |
+
|
| 1374 |
+
def __call__(self, X, Y=None, eval_gradient=False):
|
| 1375 |
+
"""Return the kernel k(X, Y) and optionally its gradient.
|
| 1376 |
+
|
| 1377 |
+
Parameters
|
| 1378 |
+
----------
|
| 1379 |
+
X : array-like of shape (n_samples_X, n_features) or list of object
|
| 1380 |
+
Left argument of the returned kernel k(X, Y)
|
| 1381 |
+
|
| 1382 |
+
Y : array-like of shape (n_samples_X, n_features) or list of object,\
|
| 1383 |
+
default=None
|
| 1384 |
+
Right argument of the returned kernel k(X, Y). If None, k(X, X)
|
| 1385 |
+
is evaluated instead.
|
| 1386 |
+
|
| 1387 |
+
eval_gradient : bool, default=False
|
| 1388 |
+
Determines whether the gradient with respect to the log of
|
| 1389 |
+
the kernel hyperparameter is computed.
|
| 1390 |
+
Only supported when Y is None.
|
| 1391 |
+
|
| 1392 |
+
Returns
|
| 1393 |
+
-------
|
| 1394 |
+
K : ndarray of shape (n_samples_X, n_samples_Y)
|
| 1395 |
+
Kernel k(X, Y)
|
| 1396 |
+
|
| 1397 |
+
K_gradient : ndarray of shape (n_samples_X, n_samples_X, n_dims),\
|
| 1398 |
+
optional
|
| 1399 |
+
The gradient of the kernel k(X, X) with respect to the log of the
|
| 1400 |
+
hyperparameter of the kernel. Only returned when eval_gradient
|
| 1401 |
+
is True.
|
| 1402 |
+
"""
|
| 1403 |
+
if Y is not None and eval_gradient:
|
| 1404 |
+
raise ValueError("Gradient can only be evaluated when Y is None.")
|
| 1405 |
+
|
| 1406 |
+
if Y is None:
|
| 1407 |
+
K = self.noise_level * np.eye(_num_samples(X))
|
| 1408 |
+
if eval_gradient:
|
| 1409 |
+
if not self.hyperparameter_noise_level.fixed:
|
| 1410 |
+
return (
|
| 1411 |
+
K,
|
| 1412 |
+
self.noise_level * np.eye(_num_samples(X))[:, :, np.newaxis],
|
| 1413 |
+
)
|
| 1414 |
+
else:
|
| 1415 |
+
return K, np.empty((_num_samples(X), _num_samples(X), 0))
|
| 1416 |
+
else:
|
| 1417 |
+
return K
|
| 1418 |
+
else:
|
| 1419 |
+
return np.zeros((_num_samples(X), _num_samples(Y)))
|
| 1420 |
+
|
| 1421 |
+
def diag(self, X):
|
| 1422 |
+
"""Returns the diagonal of the kernel k(X, X).
|
| 1423 |
+
|
| 1424 |
+
The result of this method is identical to np.diag(self(X)); however,
|
| 1425 |
+
it can be evaluated more efficiently since only the diagonal is
|
| 1426 |
+
evaluated.
|
| 1427 |
+
|
| 1428 |
+
Parameters
|
| 1429 |
+
----------
|
| 1430 |
+
X : array-like of shape (n_samples_X, n_features) or list of object
|
| 1431 |
+
Argument to the kernel.
|
| 1432 |
+
|
| 1433 |
+
Returns
|
| 1434 |
+
-------
|
| 1435 |
+
K_diag : ndarray of shape (n_samples_X,)
|
| 1436 |
+
Diagonal of kernel k(X, X)
|
| 1437 |
+
"""
|
| 1438 |
+
return np.full(
|
| 1439 |
+
_num_samples(X), self.noise_level, dtype=np.array(self.noise_level).dtype
|
| 1440 |
+
)
|
| 1441 |
+
|
| 1442 |
+
def __repr__(self):
|
| 1443 |
+
return "{0}(noise_level={1:.3g})".format(
|
| 1444 |
+
self.__class__.__name__, self.noise_level
|
| 1445 |
+
)
|
| 1446 |
+
|
| 1447 |
+
|
| 1448 |
+
class RBF(StationaryKernelMixin, NormalizedKernelMixin, Kernel):
|
| 1449 |
+
"""Radial basis function kernel (aka squared-exponential kernel).
|
| 1450 |
+
|
| 1451 |
+
The RBF kernel is a stationary kernel. It is also known as the
|
| 1452 |
+
"squared exponential" kernel. It is parameterized by a length scale
|
| 1453 |
+
parameter :math:`l>0`, which can either be a scalar (isotropic variant
|
| 1454 |
+
of the kernel) or a vector with the same number of dimensions as the inputs
|
| 1455 |
+
X (anisotropic variant of the kernel). The kernel is given by:
|
| 1456 |
+
|
| 1457 |
+
.. math::
|
| 1458 |
+
k(x_i, x_j) = \\exp\\left(- \\frac{d(x_i, x_j)^2}{2l^2} \\right)
|
| 1459 |
+
|
| 1460 |
+
where :math:`l` is the length scale of the kernel and
|
| 1461 |
+
:math:`d(\\cdot,\\cdot)` is the Euclidean distance.
|
| 1462 |
+
For advice on how to set the length scale parameter, see e.g. [1]_.
|
| 1463 |
+
|
| 1464 |
+
This kernel is infinitely differentiable, which implies that GPs with this
|
| 1465 |
+
kernel as covariance function have mean square derivatives of all orders,
|
| 1466 |
+
and are thus very smooth.
|
| 1467 |
+
See [2]_, Chapter 4, Section 4.2, for further details of the RBF kernel.
|
| 1468 |
+
|
| 1469 |
+
Read more in the :ref:`User Guide <gp_kernels>`.
|
| 1470 |
+
|
| 1471 |
+
.. versionadded:: 0.18
|
| 1472 |
+
|
| 1473 |
+
Parameters
|
| 1474 |
+
----------
|
| 1475 |
+
length_scale : float or ndarray of shape (n_features,), default=1.0
|
| 1476 |
+
The length scale of the kernel. If a float, an isotropic kernel is
|
| 1477 |
+
used. If an array, an anisotropic kernel is used where each dimension
|
| 1478 |
+
of l defines the length-scale of the respective feature dimension.
|
| 1479 |
+
|
| 1480 |
+
length_scale_bounds : pair of floats >= 0 or "fixed", default=(1e-5, 1e5)
|
| 1481 |
+
The lower and upper bound on 'length_scale'.
|
| 1482 |
+
If set to "fixed", 'length_scale' cannot be changed during
|
| 1483 |
+
hyperparameter tuning.
|
| 1484 |
+
|
| 1485 |
+
References
|
| 1486 |
+
----------
|
| 1487 |
+
.. [1] `David Duvenaud (2014). "The Kernel Cookbook:
|
| 1488 |
+
Advice on Covariance functions".
|
| 1489 |
+
<https://www.cs.toronto.edu/~duvenaud/cookbook/>`_
|
| 1490 |
+
|
| 1491 |
+
.. [2] `Carl Edward Rasmussen, Christopher K. I. Williams (2006).
|
| 1492 |
+
"Gaussian Processes for Machine Learning". The MIT Press.
|
| 1493 |
+
<http://www.gaussianprocess.org/gpml/>`_
|
| 1494 |
+
|
| 1495 |
+
Examples
|
| 1496 |
+
--------
|
| 1497 |
+
>>> from sklearn.datasets import load_iris
|
| 1498 |
+
>>> from sklearn.gaussian_process import GaussianProcessClassifier
|
| 1499 |
+
>>> from sklearn.gaussian_process.kernels import RBF
|
| 1500 |
+
>>> X, y = load_iris(return_X_y=True)
|
| 1501 |
+
>>> kernel = 1.0 * RBF(1.0)
|
| 1502 |
+
>>> gpc = GaussianProcessClassifier(kernel=kernel,
|
| 1503 |
+
... random_state=0).fit(X, y)
|
| 1504 |
+
>>> gpc.score(X, y)
|
| 1505 |
+
0.9866...
|
| 1506 |
+
>>> gpc.predict_proba(X[:2,:])
|
| 1507 |
+
array([[0.8354..., 0.03228..., 0.1322...],
|
| 1508 |
+
[0.7906..., 0.0652..., 0.1441...]])
|
| 1509 |
+
"""
|
| 1510 |
+
|
| 1511 |
+
def __init__(self, length_scale=1.0, length_scale_bounds=(1e-5, 1e5)):
|
| 1512 |
+
self.length_scale = length_scale
|
| 1513 |
+
self.length_scale_bounds = length_scale_bounds
|
| 1514 |
+
|
| 1515 |
+
@property
|
| 1516 |
+
def anisotropic(self):
|
| 1517 |
+
return np.iterable(self.length_scale) and len(self.length_scale) > 1
|
| 1518 |
+
|
| 1519 |
+
@property
|
| 1520 |
+
def hyperparameter_length_scale(self):
|
| 1521 |
+
if self.anisotropic:
|
| 1522 |
+
return Hyperparameter(
|
| 1523 |
+
"length_scale",
|
| 1524 |
+
"numeric",
|
| 1525 |
+
self.length_scale_bounds,
|
| 1526 |
+
len(self.length_scale),
|
| 1527 |
+
)
|
| 1528 |
+
return Hyperparameter("length_scale", "numeric", self.length_scale_bounds)
|
| 1529 |
+
|
| 1530 |
+
def __call__(self, X, Y=None, eval_gradient=False):
|
| 1531 |
+
"""Return the kernel k(X, Y) and optionally its gradient.
|
| 1532 |
+
|
| 1533 |
+
Parameters
|
| 1534 |
+
----------
|
| 1535 |
+
X : ndarray of shape (n_samples_X, n_features)
|
| 1536 |
+
Left argument of the returned kernel k(X, Y)
|
| 1537 |
+
|
| 1538 |
+
Y : ndarray of shape (n_samples_Y, n_features), default=None
|
| 1539 |
+
Right argument of the returned kernel k(X, Y). If None, k(X, X)
|
| 1540 |
+
if evaluated instead.
|
| 1541 |
+
|
| 1542 |
+
eval_gradient : bool, default=False
|
| 1543 |
+
Determines whether the gradient with respect to the log of
|
| 1544 |
+
the kernel hyperparameter is computed.
|
| 1545 |
+
Only supported when Y is None.
|
| 1546 |
+
|
| 1547 |
+
Returns
|
| 1548 |
+
-------
|
| 1549 |
+
K : ndarray of shape (n_samples_X, n_samples_Y)
|
| 1550 |
+
Kernel k(X, Y)
|
| 1551 |
+
|
| 1552 |
+
K_gradient : ndarray of shape (n_samples_X, n_samples_X, n_dims), \
|
| 1553 |
+
optional
|
| 1554 |
+
The gradient of the kernel k(X, X) with respect to the log of the
|
| 1555 |
+
hyperparameter of the kernel. Only returned when `eval_gradient`
|
| 1556 |
+
is True.
|
| 1557 |
+
"""
|
| 1558 |
+
X = np.atleast_2d(X)
|
| 1559 |
+
length_scale = _check_length_scale(X, self.length_scale)
|
| 1560 |
+
if Y is None:
|
| 1561 |
+
dists = pdist(X / length_scale, metric="sqeuclidean")
|
| 1562 |
+
K = np.exp(-0.5 * dists)
|
| 1563 |
+
# convert from upper-triangular matrix to square matrix
|
| 1564 |
+
K = squareform(K)
|
| 1565 |
+
np.fill_diagonal(K, 1)
|
| 1566 |
+
else:
|
| 1567 |
+
if eval_gradient:
|
| 1568 |
+
raise ValueError("Gradient can only be evaluated when Y is None.")
|
| 1569 |
+
dists = cdist(X / length_scale, Y / length_scale, metric="sqeuclidean")
|
| 1570 |
+
K = np.exp(-0.5 * dists)
|
| 1571 |
+
|
| 1572 |
+
if eval_gradient:
|
| 1573 |
+
if self.hyperparameter_length_scale.fixed:
|
| 1574 |
+
# Hyperparameter l kept fixed
|
| 1575 |
+
return K, np.empty((X.shape[0], X.shape[0], 0))
|
| 1576 |
+
elif not self.anisotropic or length_scale.shape[0] == 1:
|
| 1577 |
+
K_gradient = (K * squareform(dists))[:, :, np.newaxis]
|
| 1578 |
+
return K, K_gradient
|
| 1579 |
+
elif self.anisotropic:
|
| 1580 |
+
# We need to recompute the pairwise dimension-wise distances
|
| 1581 |
+
K_gradient = (X[:, np.newaxis, :] - X[np.newaxis, :, :]) ** 2 / (
|
| 1582 |
+
length_scale**2
|
| 1583 |
+
)
|
| 1584 |
+
K_gradient *= K[..., np.newaxis]
|
| 1585 |
+
return K, K_gradient
|
| 1586 |
+
else:
|
| 1587 |
+
return K
|
| 1588 |
+
|
| 1589 |
+
def __repr__(self):
|
| 1590 |
+
if self.anisotropic:
|
| 1591 |
+
return "{0}(length_scale=[{1}])".format(
|
| 1592 |
+
self.__class__.__name__,
|
| 1593 |
+
", ".join(map("{0:.3g}".format, self.length_scale)),
|
| 1594 |
+
)
|
| 1595 |
+
else: # isotropic
|
| 1596 |
+
return "{0}(length_scale={1:.3g})".format(
|
| 1597 |
+
self.__class__.__name__, np.ravel(self.length_scale)[0]
|
| 1598 |
+
)
|
| 1599 |
+
|
| 1600 |
+
|
| 1601 |
+
class Matern(RBF):
|
| 1602 |
+
"""Matern kernel.
|
| 1603 |
+
|
| 1604 |
+
The class of Matern kernels is a generalization of the :class:`RBF`.
|
| 1605 |
+
It has an additional parameter :math:`\\nu` which controls the
|
| 1606 |
+
smoothness of the resulting function. The smaller :math:`\\nu`,
|
| 1607 |
+
the less smooth the approximated function is.
|
| 1608 |
+
As :math:`\\nu\\rightarrow\\infty`, the kernel becomes equivalent to
|
| 1609 |
+
the :class:`RBF` kernel. When :math:`\\nu = 1/2`, the Matérn kernel
|
| 1610 |
+
becomes identical to the absolute exponential kernel.
|
| 1611 |
+
Important intermediate values are
|
| 1612 |
+
:math:`\\nu=1.5` (once differentiable functions)
|
| 1613 |
+
and :math:`\\nu=2.5` (twice differentiable functions).
|
| 1614 |
+
|
| 1615 |
+
The kernel is given by:
|
| 1616 |
+
|
| 1617 |
+
.. math::
|
| 1618 |
+
k(x_i, x_j) = \\frac{1}{\\Gamma(\\nu)2^{\\nu-1}}\\Bigg(
|
| 1619 |
+
\\frac{\\sqrt{2\\nu}}{l} d(x_i , x_j )
|
| 1620 |
+
\\Bigg)^\\nu K_\\nu\\Bigg(
|
| 1621 |
+
\\frac{\\sqrt{2\\nu}}{l} d(x_i , x_j )\\Bigg)
|
| 1622 |
+
|
| 1623 |
+
|
| 1624 |
+
|
| 1625 |
+
where :math:`d(\\cdot,\\cdot)` is the Euclidean distance,
|
| 1626 |
+
:math:`K_{\\nu}(\\cdot)` is a modified Bessel function and
|
| 1627 |
+
:math:`\\Gamma(\\cdot)` is the gamma function.
|
| 1628 |
+
See [1]_, Chapter 4, Section 4.2, for details regarding the different
|
| 1629 |
+
variants of the Matern kernel.
|
| 1630 |
+
|
| 1631 |
+
Read more in the :ref:`User Guide <gp_kernels>`.
|
| 1632 |
+
|
| 1633 |
+
.. versionadded:: 0.18
|
| 1634 |
+
|
| 1635 |
+
Parameters
|
| 1636 |
+
----------
|
| 1637 |
+
length_scale : float or ndarray of shape (n_features,), default=1.0
|
| 1638 |
+
The length scale of the kernel. If a float, an isotropic kernel is
|
| 1639 |
+
used. If an array, an anisotropic kernel is used where each dimension
|
| 1640 |
+
of l defines the length-scale of the respective feature dimension.
|
| 1641 |
+
|
| 1642 |
+
length_scale_bounds : pair of floats >= 0 or "fixed", default=(1e-5, 1e5)
|
| 1643 |
+
The lower and upper bound on 'length_scale'.
|
| 1644 |
+
If set to "fixed", 'length_scale' cannot be changed during
|
| 1645 |
+
hyperparameter tuning.
|
| 1646 |
+
|
| 1647 |
+
nu : float, default=1.5
|
| 1648 |
+
The parameter nu controlling the smoothness of the learned function.
|
| 1649 |
+
The smaller nu, the less smooth the approximated function is.
|
| 1650 |
+
For nu=inf, the kernel becomes equivalent to the RBF kernel and for
|
| 1651 |
+
nu=0.5 to the absolute exponential kernel. Important intermediate
|
| 1652 |
+
values are nu=1.5 (once differentiable functions) and nu=2.5
|
| 1653 |
+
(twice differentiable functions). Note that values of nu not in
|
| 1654 |
+
[0.5, 1.5, 2.5, inf] incur a considerably higher computational cost
|
| 1655 |
+
(appr. 10 times higher) since they require to evaluate the modified
|
| 1656 |
+
Bessel function. Furthermore, in contrast to l, nu is kept fixed to
|
| 1657 |
+
its initial value and not optimized.
|
| 1658 |
+
|
| 1659 |
+
References
|
| 1660 |
+
----------
|
| 1661 |
+
.. [1] `Carl Edward Rasmussen, Christopher K. I. Williams (2006).
|
| 1662 |
+
"Gaussian Processes for Machine Learning". The MIT Press.
|
| 1663 |
+
<http://www.gaussianprocess.org/gpml/>`_
|
| 1664 |
+
|
| 1665 |
+
Examples
|
| 1666 |
+
--------
|
| 1667 |
+
>>> from sklearn.datasets import load_iris
|
| 1668 |
+
>>> from sklearn.gaussian_process import GaussianProcessClassifier
|
| 1669 |
+
>>> from sklearn.gaussian_process.kernels import Matern
|
| 1670 |
+
>>> X, y = load_iris(return_X_y=True)
|
| 1671 |
+
>>> kernel = 1.0 * Matern(length_scale=1.0, nu=1.5)
|
| 1672 |
+
>>> gpc = GaussianProcessClassifier(kernel=kernel,
|
| 1673 |
+
... random_state=0).fit(X, y)
|
| 1674 |
+
>>> gpc.score(X, y)
|
| 1675 |
+
0.9866...
|
| 1676 |
+
>>> gpc.predict_proba(X[:2,:])
|
| 1677 |
+
array([[0.8513..., 0.0368..., 0.1117...],
|
| 1678 |
+
[0.8086..., 0.0693..., 0.1220...]])
|
| 1679 |
+
"""
|
| 1680 |
+
|
| 1681 |
+
def __init__(self, length_scale=1.0, length_scale_bounds=(1e-5, 1e5), nu=1.5):
|
| 1682 |
+
super().__init__(length_scale, length_scale_bounds)
|
| 1683 |
+
self.nu = nu
|
| 1684 |
+
|
| 1685 |
+
def __call__(self, X, Y=None, eval_gradient=False):
|
| 1686 |
+
"""Return the kernel k(X, Y) and optionally its gradient.
|
| 1687 |
+
|
| 1688 |
+
Parameters
|
| 1689 |
+
----------
|
| 1690 |
+
X : ndarray of shape (n_samples_X, n_features)
|
| 1691 |
+
Left argument of the returned kernel k(X, Y)
|
| 1692 |
+
|
| 1693 |
+
Y : ndarray of shape (n_samples_Y, n_features), default=None
|
| 1694 |
+
Right argument of the returned kernel k(X, Y). If None, k(X, X)
|
| 1695 |
+
if evaluated instead.
|
| 1696 |
+
|
| 1697 |
+
eval_gradient : bool, default=False
|
| 1698 |
+
Determines whether the gradient with respect to the log of
|
| 1699 |
+
the kernel hyperparameter is computed.
|
| 1700 |
+
Only supported when Y is None.
|
| 1701 |
+
|
| 1702 |
+
Returns
|
| 1703 |
+
-------
|
| 1704 |
+
K : ndarray of shape (n_samples_X, n_samples_Y)
|
| 1705 |
+
Kernel k(X, Y)
|
| 1706 |
+
|
| 1707 |
+
K_gradient : ndarray of shape (n_samples_X, n_samples_X, n_dims), \
|
| 1708 |
+
optional
|
| 1709 |
+
The gradient of the kernel k(X, X) with respect to the log of the
|
| 1710 |
+
hyperparameter of the kernel. Only returned when `eval_gradient`
|
| 1711 |
+
is True.
|
| 1712 |
+
"""
|
| 1713 |
+
X = np.atleast_2d(X)
|
| 1714 |
+
length_scale = _check_length_scale(X, self.length_scale)
|
| 1715 |
+
if Y is None:
|
| 1716 |
+
dists = pdist(X / length_scale, metric="euclidean")
|
| 1717 |
+
else:
|
| 1718 |
+
if eval_gradient:
|
| 1719 |
+
raise ValueError("Gradient can only be evaluated when Y is None.")
|
| 1720 |
+
dists = cdist(X / length_scale, Y / length_scale, metric="euclidean")
|
| 1721 |
+
|
| 1722 |
+
if self.nu == 0.5:
|
| 1723 |
+
K = np.exp(-dists)
|
| 1724 |
+
elif self.nu == 1.5:
|
| 1725 |
+
K = dists * math.sqrt(3)
|
| 1726 |
+
K = (1.0 + K) * np.exp(-K)
|
| 1727 |
+
elif self.nu == 2.5:
|
| 1728 |
+
K = dists * math.sqrt(5)
|
| 1729 |
+
K = (1.0 + K + K**2 / 3.0) * np.exp(-K)
|
| 1730 |
+
elif self.nu == np.inf:
|
| 1731 |
+
K = np.exp(-(dists**2) / 2.0)
|
| 1732 |
+
else: # general case; expensive to evaluate
|
| 1733 |
+
K = dists
|
| 1734 |
+
K[K == 0.0] += np.finfo(float).eps # strict zeros result in nan
|
| 1735 |
+
tmp = math.sqrt(2 * self.nu) * K
|
| 1736 |
+
K.fill((2 ** (1.0 - self.nu)) / gamma(self.nu))
|
| 1737 |
+
K *= tmp**self.nu
|
| 1738 |
+
K *= kv(self.nu, tmp)
|
| 1739 |
+
|
| 1740 |
+
if Y is None:
|
| 1741 |
+
# convert from upper-triangular matrix to square matrix
|
| 1742 |
+
K = squareform(K)
|
| 1743 |
+
np.fill_diagonal(K, 1)
|
| 1744 |
+
|
| 1745 |
+
if eval_gradient:
|
| 1746 |
+
if self.hyperparameter_length_scale.fixed:
|
| 1747 |
+
# Hyperparameter l kept fixed
|
| 1748 |
+
K_gradient = np.empty((X.shape[0], X.shape[0], 0))
|
| 1749 |
+
return K, K_gradient
|
| 1750 |
+
|
| 1751 |
+
# We need to recompute the pairwise dimension-wise distances
|
| 1752 |
+
if self.anisotropic:
|
| 1753 |
+
D = (X[:, np.newaxis, :] - X[np.newaxis, :, :]) ** 2 / (
|
| 1754 |
+
length_scale**2
|
| 1755 |
+
)
|
| 1756 |
+
else:
|
| 1757 |
+
D = squareform(dists**2)[:, :, np.newaxis]
|
| 1758 |
+
|
| 1759 |
+
if self.nu == 0.5:
|
| 1760 |
+
denominator = np.sqrt(D.sum(axis=2))[:, :, np.newaxis]
|
| 1761 |
+
divide_result = np.zeros_like(D)
|
| 1762 |
+
np.divide(
|
| 1763 |
+
D,
|
| 1764 |
+
denominator,
|
| 1765 |
+
out=divide_result,
|
| 1766 |
+
where=denominator != 0,
|
| 1767 |
+
)
|
| 1768 |
+
K_gradient = K[..., np.newaxis] * divide_result
|
| 1769 |
+
elif self.nu == 1.5:
|
| 1770 |
+
K_gradient = 3 * D * np.exp(-np.sqrt(3 * D.sum(-1)))[..., np.newaxis]
|
| 1771 |
+
elif self.nu == 2.5:
|
| 1772 |
+
tmp = np.sqrt(5 * D.sum(-1))[..., np.newaxis]
|
| 1773 |
+
K_gradient = 5.0 / 3.0 * D * (tmp + 1) * np.exp(-tmp)
|
| 1774 |
+
elif self.nu == np.inf:
|
| 1775 |
+
K_gradient = D * K[..., np.newaxis]
|
| 1776 |
+
else:
|
| 1777 |
+
# approximate gradient numerically
|
| 1778 |
+
def f(theta): # helper function
|
| 1779 |
+
return self.clone_with_theta(theta)(X, Y)
|
| 1780 |
+
|
| 1781 |
+
return K, _approx_fprime(self.theta, f, 1e-10)
|
| 1782 |
+
|
| 1783 |
+
if not self.anisotropic:
|
| 1784 |
+
return K, K_gradient[:, :].sum(-1)[:, :, np.newaxis]
|
| 1785 |
+
else:
|
| 1786 |
+
return K, K_gradient
|
| 1787 |
+
else:
|
| 1788 |
+
return K
|
| 1789 |
+
|
| 1790 |
+
def __repr__(self):
|
| 1791 |
+
if self.anisotropic:
|
| 1792 |
+
return "{0}(length_scale=[{1}], nu={2:.3g})".format(
|
| 1793 |
+
self.__class__.__name__,
|
| 1794 |
+
", ".join(map("{0:.3g}".format, self.length_scale)),
|
| 1795 |
+
self.nu,
|
| 1796 |
+
)
|
| 1797 |
+
else:
|
| 1798 |
+
return "{0}(length_scale={1:.3g}, nu={2:.3g})".format(
|
| 1799 |
+
self.__class__.__name__, np.ravel(self.length_scale)[0], self.nu
|
| 1800 |
+
)
|
| 1801 |
+
|
| 1802 |
+
|
| 1803 |
+
class RationalQuadratic(StationaryKernelMixin, NormalizedKernelMixin, Kernel):
|
| 1804 |
+
"""Rational Quadratic kernel.
|
| 1805 |
+
|
| 1806 |
+
The RationalQuadratic kernel can be seen as a scale mixture (an infinite
|
| 1807 |
+
sum) of RBF kernels with different characteristic length scales. It is
|
| 1808 |
+
parameterized by a length scale parameter :math:`l>0` and a scale
|
| 1809 |
+
mixture parameter :math:`\\alpha>0`. Only the isotropic variant
|
| 1810 |
+
where length_scale :math:`l` is a scalar is supported at the moment.
|
| 1811 |
+
The kernel is given by:
|
| 1812 |
+
|
| 1813 |
+
.. math::
|
| 1814 |
+
k(x_i, x_j) = \\left(
|
| 1815 |
+
1 + \\frac{d(x_i, x_j)^2 }{ 2\\alpha l^2}\\right)^{-\\alpha}
|
| 1816 |
+
|
| 1817 |
+
where :math:`\\alpha` is the scale mixture parameter, :math:`l` is
|
| 1818 |
+
the length scale of the kernel and :math:`d(\\cdot,\\cdot)` is the
|
| 1819 |
+
Euclidean distance.
|
| 1820 |
+
For advice on how to set the parameters, see e.g. [1]_.
|
| 1821 |
+
|
| 1822 |
+
Read more in the :ref:`User Guide <gp_kernels>`.
|
| 1823 |
+
|
| 1824 |
+
.. versionadded:: 0.18
|
| 1825 |
+
|
| 1826 |
+
Parameters
|
| 1827 |
+
----------
|
| 1828 |
+
length_scale : float > 0, default=1.0
|
| 1829 |
+
The length scale of the kernel.
|
| 1830 |
+
|
| 1831 |
+
alpha : float > 0, default=1.0
|
| 1832 |
+
Scale mixture parameter
|
| 1833 |
+
|
| 1834 |
+
length_scale_bounds : pair of floats >= 0 or "fixed", default=(1e-5, 1e5)
|
| 1835 |
+
The lower and upper bound on 'length_scale'.
|
| 1836 |
+
If set to "fixed", 'length_scale' cannot be changed during
|
| 1837 |
+
hyperparameter tuning.
|
| 1838 |
+
|
| 1839 |
+
alpha_bounds : pair of floats >= 0 or "fixed", default=(1e-5, 1e5)
|
| 1840 |
+
The lower and upper bound on 'alpha'.
|
| 1841 |
+
If set to "fixed", 'alpha' cannot be changed during
|
| 1842 |
+
hyperparameter tuning.
|
| 1843 |
+
|
| 1844 |
+
References
|
| 1845 |
+
----------
|
| 1846 |
+
.. [1] `David Duvenaud (2014). "The Kernel Cookbook:
|
| 1847 |
+
Advice on Covariance functions".
|
| 1848 |
+
<https://www.cs.toronto.edu/~duvenaud/cookbook/>`_
|
| 1849 |
+
|
| 1850 |
+
Examples
|
| 1851 |
+
--------
|
| 1852 |
+
>>> from sklearn.datasets import load_iris
|
| 1853 |
+
>>> from sklearn.gaussian_process import GaussianProcessClassifier
|
| 1854 |
+
>>> from sklearn.gaussian_process.kernels import RationalQuadratic
|
| 1855 |
+
>>> X, y = load_iris(return_X_y=True)
|
| 1856 |
+
>>> kernel = RationalQuadratic(length_scale=1.0, alpha=1.5)
|
| 1857 |
+
>>> gpc = GaussianProcessClassifier(kernel=kernel,
|
| 1858 |
+
... random_state=0).fit(X, y)
|
| 1859 |
+
>>> gpc.score(X, y)
|
| 1860 |
+
0.9733...
|
| 1861 |
+
>>> gpc.predict_proba(X[:2,:])
|
| 1862 |
+
array([[0.8881..., 0.0566..., 0.05518...],
|
| 1863 |
+
[0.8678..., 0.0707... , 0.0614...]])
|
| 1864 |
+
"""
|
| 1865 |
+
|
| 1866 |
+
def __init__(
|
| 1867 |
+
self,
|
| 1868 |
+
length_scale=1.0,
|
| 1869 |
+
alpha=1.0,
|
| 1870 |
+
length_scale_bounds=(1e-5, 1e5),
|
| 1871 |
+
alpha_bounds=(1e-5, 1e5),
|
| 1872 |
+
):
|
| 1873 |
+
self.length_scale = length_scale
|
| 1874 |
+
self.alpha = alpha
|
| 1875 |
+
self.length_scale_bounds = length_scale_bounds
|
| 1876 |
+
self.alpha_bounds = alpha_bounds
|
| 1877 |
+
|
| 1878 |
+
@property
|
| 1879 |
+
def hyperparameter_length_scale(self):
|
| 1880 |
+
return Hyperparameter("length_scale", "numeric", self.length_scale_bounds)
|
| 1881 |
+
|
| 1882 |
+
@property
|
| 1883 |
+
def hyperparameter_alpha(self):
|
| 1884 |
+
return Hyperparameter("alpha", "numeric", self.alpha_bounds)
|
| 1885 |
+
|
| 1886 |
+
def __call__(self, X, Y=None, eval_gradient=False):
|
| 1887 |
+
"""Return the kernel k(X, Y) and optionally its gradient.
|
| 1888 |
+
|
| 1889 |
+
Parameters
|
| 1890 |
+
----------
|
| 1891 |
+
X : ndarray of shape (n_samples_X, n_features)
|
| 1892 |
+
Left argument of the returned kernel k(X, Y)
|
| 1893 |
+
|
| 1894 |
+
Y : ndarray of shape (n_samples_Y, n_features), default=None
|
| 1895 |
+
Right argument of the returned kernel k(X, Y). If None, k(X, X)
|
| 1896 |
+
if evaluated instead.
|
| 1897 |
+
|
| 1898 |
+
eval_gradient : bool, default=False
|
| 1899 |
+
Determines whether the gradient with respect to the log of
|
| 1900 |
+
the kernel hyperparameter is computed.
|
| 1901 |
+
Only supported when Y is None.
|
| 1902 |
+
|
| 1903 |
+
Returns
|
| 1904 |
+
-------
|
| 1905 |
+
K : ndarray of shape (n_samples_X, n_samples_Y)
|
| 1906 |
+
Kernel k(X, Y)
|
| 1907 |
+
|
| 1908 |
+
K_gradient : ndarray of shape (n_samples_X, n_samples_X, n_dims)
|
| 1909 |
+
The gradient of the kernel k(X, X) with respect to the log of the
|
| 1910 |
+
hyperparameter of the kernel. Only returned when eval_gradient
|
| 1911 |
+
is True.
|
| 1912 |
+
"""
|
| 1913 |
+
if len(np.atleast_1d(self.length_scale)) > 1:
|
| 1914 |
+
raise AttributeError(
|
| 1915 |
+
"RationalQuadratic kernel only supports isotropic version, "
|
| 1916 |
+
"please use a single scalar for length_scale"
|
| 1917 |
+
)
|
| 1918 |
+
X = np.atleast_2d(X)
|
| 1919 |
+
if Y is None:
|
| 1920 |
+
dists = squareform(pdist(X, metric="sqeuclidean"))
|
| 1921 |
+
tmp = dists / (2 * self.alpha * self.length_scale**2)
|
| 1922 |
+
base = 1 + tmp
|
| 1923 |
+
K = base**-self.alpha
|
| 1924 |
+
np.fill_diagonal(K, 1)
|
| 1925 |
+
else:
|
| 1926 |
+
if eval_gradient:
|
| 1927 |
+
raise ValueError("Gradient can only be evaluated when Y is None.")
|
| 1928 |
+
dists = cdist(X, Y, metric="sqeuclidean")
|
| 1929 |
+
K = (1 + dists / (2 * self.alpha * self.length_scale**2)) ** -self.alpha
|
| 1930 |
+
|
| 1931 |
+
if eval_gradient:
|
| 1932 |
+
# gradient with respect to length_scale
|
| 1933 |
+
if not self.hyperparameter_length_scale.fixed:
|
| 1934 |
+
length_scale_gradient = dists * K / (self.length_scale**2 * base)
|
| 1935 |
+
length_scale_gradient = length_scale_gradient[:, :, np.newaxis]
|
| 1936 |
+
else: # l is kept fixed
|
| 1937 |
+
length_scale_gradient = np.empty((K.shape[0], K.shape[1], 0))
|
| 1938 |
+
|
| 1939 |
+
# gradient with respect to alpha
|
| 1940 |
+
if not self.hyperparameter_alpha.fixed:
|
| 1941 |
+
alpha_gradient = K * (
|
| 1942 |
+
-self.alpha * np.log(base)
|
| 1943 |
+
+ dists / (2 * self.length_scale**2 * base)
|
| 1944 |
+
)
|
| 1945 |
+
alpha_gradient = alpha_gradient[:, :, np.newaxis]
|
| 1946 |
+
else: # alpha is kept fixed
|
| 1947 |
+
alpha_gradient = np.empty((K.shape[0], K.shape[1], 0))
|
| 1948 |
+
|
| 1949 |
+
return K, np.dstack((alpha_gradient, length_scale_gradient))
|
| 1950 |
+
else:
|
| 1951 |
+
return K
|
| 1952 |
+
|
| 1953 |
+
def __repr__(self):
|
| 1954 |
+
return "{0}(alpha={1:.3g}, length_scale={2:.3g})".format(
|
| 1955 |
+
self.__class__.__name__, self.alpha, self.length_scale
|
| 1956 |
+
)
|
| 1957 |
+
|
| 1958 |
+
|
| 1959 |
+
class ExpSineSquared(StationaryKernelMixin, NormalizedKernelMixin, Kernel):
|
| 1960 |
+
r"""Exp-Sine-Squared kernel (aka periodic kernel).
|
| 1961 |
+
|
| 1962 |
+
The ExpSineSquared kernel allows one to model functions which repeat
|
| 1963 |
+
themselves exactly. It is parameterized by a length scale
|
| 1964 |
+
parameter :math:`l>0` and a periodicity parameter :math:`p>0`.
|
| 1965 |
+
Only the isotropic variant where :math:`l` is a scalar is
|
| 1966 |
+
supported at the moment. The kernel is given by:
|
| 1967 |
+
|
| 1968 |
+
.. math::
|
| 1969 |
+
k(x_i, x_j) = \text{exp}\left(-
|
| 1970 |
+
\frac{ 2\sin^2(\pi d(x_i, x_j)/p) }{ l^ 2} \right)
|
| 1971 |
+
|
| 1972 |
+
where :math:`l` is the length scale of the kernel, :math:`p` the
|
| 1973 |
+
periodicity of the kernel and :math:`d(\cdot,\cdot)` is the
|
| 1974 |
+
Euclidean distance.
|
| 1975 |
+
|
| 1976 |
+
Read more in the :ref:`User Guide <gp_kernels>`.
|
| 1977 |
+
|
| 1978 |
+
.. versionadded:: 0.18
|
| 1979 |
+
|
| 1980 |
+
Parameters
|
| 1981 |
+
----------
|
| 1982 |
+
|
| 1983 |
+
length_scale : float > 0, default=1.0
|
| 1984 |
+
The length scale of the kernel.
|
| 1985 |
+
|
| 1986 |
+
periodicity : float > 0, default=1.0
|
| 1987 |
+
The periodicity of the kernel.
|
| 1988 |
+
|
| 1989 |
+
length_scale_bounds : pair of floats >= 0 or "fixed", default=(1e-5, 1e5)
|
| 1990 |
+
The lower and upper bound on 'length_scale'.
|
| 1991 |
+
If set to "fixed", 'length_scale' cannot be changed during
|
| 1992 |
+
hyperparameter tuning.
|
| 1993 |
+
|
| 1994 |
+
periodicity_bounds : pair of floats >= 0 or "fixed", default=(1e-5, 1e5)
|
| 1995 |
+
The lower and upper bound on 'periodicity'.
|
| 1996 |
+
If set to "fixed", 'periodicity' cannot be changed during
|
| 1997 |
+
hyperparameter tuning.
|
| 1998 |
+
|
| 1999 |
+
Examples
|
| 2000 |
+
--------
|
| 2001 |
+
>>> from sklearn.datasets import make_friedman2
|
| 2002 |
+
>>> from sklearn.gaussian_process import GaussianProcessRegressor
|
| 2003 |
+
>>> from sklearn.gaussian_process.kernels import ExpSineSquared
|
| 2004 |
+
>>> X, y = make_friedman2(n_samples=50, noise=0, random_state=0)
|
| 2005 |
+
>>> kernel = ExpSineSquared(length_scale=1, periodicity=1)
|
| 2006 |
+
>>> gpr = GaussianProcessRegressor(kernel=kernel, alpha=5,
|
| 2007 |
+
... random_state=0).fit(X, y)
|
| 2008 |
+
>>> gpr.score(X, y)
|
| 2009 |
+
0.0144...
|
| 2010 |
+
>>> gpr.predict(X[:2,:], return_std=True)
|
| 2011 |
+
(array([425.6..., 457.5...]), array([0.3894..., 0.3467...]))
|
| 2012 |
+
"""
|
| 2013 |
+
|
| 2014 |
+
def __init__(
|
| 2015 |
+
self,
|
| 2016 |
+
length_scale=1.0,
|
| 2017 |
+
periodicity=1.0,
|
| 2018 |
+
length_scale_bounds=(1e-5, 1e5),
|
| 2019 |
+
periodicity_bounds=(1e-5, 1e5),
|
| 2020 |
+
):
|
| 2021 |
+
self.length_scale = length_scale
|
| 2022 |
+
self.periodicity = periodicity
|
| 2023 |
+
self.length_scale_bounds = length_scale_bounds
|
| 2024 |
+
self.periodicity_bounds = periodicity_bounds
|
| 2025 |
+
|
| 2026 |
+
@property
|
| 2027 |
+
def hyperparameter_length_scale(self):
|
| 2028 |
+
"""Returns the length scale"""
|
| 2029 |
+
return Hyperparameter("length_scale", "numeric", self.length_scale_bounds)
|
| 2030 |
+
|
| 2031 |
+
@property
|
| 2032 |
+
def hyperparameter_periodicity(self):
|
| 2033 |
+
return Hyperparameter("periodicity", "numeric", self.periodicity_bounds)
|
| 2034 |
+
|
| 2035 |
+
def __call__(self, X, Y=None, eval_gradient=False):
|
| 2036 |
+
"""Return the kernel k(X, Y) and optionally its gradient.
|
| 2037 |
+
|
| 2038 |
+
Parameters
|
| 2039 |
+
----------
|
| 2040 |
+
X : ndarray of shape (n_samples_X, n_features)
|
| 2041 |
+
Left argument of the returned kernel k(X, Y)
|
| 2042 |
+
|
| 2043 |
+
Y : ndarray of shape (n_samples_Y, n_features), default=None
|
| 2044 |
+
Right argument of the returned kernel k(X, Y). If None, k(X, X)
|
| 2045 |
+
if evaluated instead.
|
| 2046 |
+
|
| 2047 |
+
eval_gradient : bool, default=False
|
| 2048 |
+
Determines whether the gradient with respect to the log of
|
| 2049 |
+
the kernel hyperparameter is computed.
|
| 2050 |
+
Only supported when Y is None.
|
| 2051 |
+
|
| 2052 |
+
Returns
|
| 2053 |
+
-------
|
| 2054 |
+
K : ndarray of shape (n_samples_X, n_samples_Y)
|
| 2055 |
+
Kernel k(X, Y)
|
| 2056 |
+
|
| 2057 |
+
K_gradient : ndarray of shape (n_samples_X, n_samples_X, n_dims), \
|
| 2058 |
+
optional
|
| 2059 |
+
The gradient of the kernel k(X, X) with respect to the log of the
|
| 2060 |
+
hyperparameter of the kernel. Only returned when `eval_gradient`
|
| 2061 |
+
is True.
|
| 2062 |
+
"""
|
| 2063 |
+
X = np.atleast_2d(X)
|
| 2064 |
+
if Y is None:
|
| 2065 |
+
dists = squareform(pdist(X, metric="euclidean"))
|
| 2066 |
+
arg = np.pi * dists / self.periodicity
|
| 2067 |
+
sin_of_arg = np.sin(arg)
|
| 2068 |
+
K = np.exp(-2 * (sin_of_arg / self.length_scale) ** 2)
|
| 2069 |
+
else:
|
| 2070 |
+
if eval_gradient:
|
| 2071 |
+
raise ValueError("Gradient can only be evaluated when Y is None.")
|
| 2072 |
+
dists = cdist(X, Y, metric="euclidean")
|
| 2073 |
+
K = np.exp(
|
| 2074 |
+
-2 * (np.sin(np.pi / self.periodicity * dists) / self.length_scale) ** 2
|
| 2075 |
+
)
|
| 2076 |
+
|
| 2077 |
+
if eval_gradient:
|
| 2078 |
+
cos_of_arg = np.cos(arg)
|
| 2079 |
+
# gradient with respect to length_scale
|
| 2080 |
+
if not self.hyperparameter_length_scale.fixed:
|
| 2081 |
+
length_scale_gradient = 4 / self.length_scale**2 * sin_of_arg**2 * K
|
| 2082 |
+
length_scale_gradient = length_scale_gradient[:, :, np.newaxis]
|
| 2083 |
+
else: # length_scale is kept fixed
|
| 2084 |
+
length_scale_gradient = np.empty((K.shape[0], K.shape[1], 0))
|
| 2085 |
+
# gradient with respect to p
|
| 2086 |
+
if not self.hyperparameter_periodicity.fixed:
|
| 2087 |
+
periodicity_gradient = (
|
| 2088 |
+
4 * arg / self.length_scale**2 * cos_of_arg * sin_of_arg * K
|
| 2089 |
+
)
|
| 2090 |
+
periodicity_gradient = periodicity_gradient[:, :, np.newaxis]
|
| 2091 |
+
else: # p is kept fixed
|
| 2092 |
+
periodicity_gradient = np.empty((K.shape[0], K.shape[1], 0))
|
| 2093 |
+
|
| 2094 |
+
return K, np.dstack((length_scale_gradient, periodicity_gradient))
|
| 2095 |
+
else:
|
| 2096 |
+
return K
|
| 2097 |
+
|
| 2098 |
+
def __repr__(self):
|
| 2099 |
+
return "{0}(length_scale={1:.3g}, periodicity={2:.3g})".format(
|
| 2100 |
+
self.__class__.__name__, self.length_scale, self.periodicity
|
| 2101 |
+
)
|
| 2102 |
+
|
| 2103 |
+
|
| 2104 |
+
class DotProduct(Kernel):
|
| 2105 |
+
r"""Dot-Product kernel.
|
| 2106 |
+
|
| 2107 |
+
The DotProduct kernel is non-stationary and can be obtained from linear
|
| 2108 |
+
regression by putting :math:`N(0, 1)` priors on the coefficients
|
| 2109 |
+
of :math:`x_d (d = 1, . . . , D)` and a prior of :math:`N(0, \sigma_0^2)`
|
| 2110 |
+
on the bias. The DotProduct kernel is invariant to a rotation of
|
| 2111 |
+
the coordinates about the origin, but not translations.
|
| 2112 |
+
It is parameterized by a parameter sigma_0 :math:`\sigma`
|
| 2113 |
+
which controls the inhomogenity of the kernel. For :math:`\sigma_0^2 =0`,
|
| 2114 |
+
the kernel is called the homogeneous linear kernel, otherwise
|
| 2115 |
+
it is inhomogeneous. The kernel is given by
|
| 2116 |
+
|
| 2117 |
+
.. math::
|
| 2118 |
+
k(x_i, x_j) = \sigma_0 ^ 2 + x_i \cdot x_j
|
| 2119 |
+
|
| 2120 |
+
The DotProduct kernel is commonly combined with exponentiation.
|
| 2121 |
+
|
| 2122 |
+
See [1]_, Chapter 4, Section 4.2, for further details regarding the
|
| 2123 |
+
DotProduct kernel.
|
| 2124 |
+
|
| 2125 |
+
Read more in the :ref:`User Guide <gp_kernels>`.
|
| 2126 |
+
|
| 2127 |
+
.. versionadded:: 0.18
|
| 2128 |
+
|
| 2129 |
+
Parameters
|
| 2130 |
+
----------
|
| 2131 |
+
sigma_0 : float >= 0, default=1.0
|
| 2132 |
+
Parameter controlling the inhomogenity of the kernel. If sigma_0=0,
|
| 2133 |
+
the kernel is homogeneous.
|
| 2134 |
+
|
| 2135 |
+
sigma_0_bounds : pair of floats >= 0 or "fixed", default=(1e-5, 1e5)
|
| 2136 |
+
The lower and upper bound on 'sigma_0'.
|
| 2137 |
+
If set to "fixed", 'sigma_0' cannot be changed during
|
| 2138 |
+
hyperparameter tuning.
|
| 2139 |
+
|
| 2140 |
+
References
|
| 2141 |
+
----------
|
| 2142 |
+
.. [1] `Carl Edward Rasmussen, Christopher K. I. Williams (2006).
|
| 2143 |
+
"Gaussian Processes for Machine Learning". The MIT Press.
|
| 2144 |
+
<http://www.gaussianprocess.org/gpml/>`_
|
| 2145 |
+
|
| 2146 |
+
Examples
|
| 2147 |
+
--------
|
| 2148 |
+
>>> from sklearn.datasets import make_friedman2
|
| 2149 |
+
>>> from sklearn.gaussian_process import GaussianProcessRegressor
|
| 2150 |
+
>>> from sklearn.gaussian_process.kernels import DotProduct, WhiteKernel
|
| 2151 |
+
>>> X, y = make_friedman2(n_samples=500, noise=0, random_state=0)
|
| 2152 |
+
>>> kernel = DotProduct() + WhiteKernel()
|
| 2153 |
+
>>> gpr = GaussianProcessRegressor(kernel=kernel,
|
| 2154 |
+
... random_state=0).fit(X, y)
|
| 2155 |
+
>>> gpr.score(X, y)
|
| 2156 |
+
0.3680...
|
| 2157 |
+
>>> gpr.predict(X[:2,:], return_std=True)
|
| 2158 |
+
(array([653.0..., 592.1...]), array([316.6..., 316.6...]))
|
| 2159 |
+
"""
|
| 2160 |
+
|
| 2161 |
+
def __init__(self, sigma_0=1.0, sigma_0_bounds=(1e-5, 1e5)):
|
| 2162 |
+
self.sigma_0 = sigma_0
|
| 2163 |
+
self.sigma_0_bounds = sigma_0_bounds
|
| 2164 |
+
|
| 2165 |
+
@property
|
| 2166 |
+
def hyperparameter_sigma_0(self):
|
| 2167 |
+
return Hyperparameter("sigma_0", "numeric", self.sigma_0_bounds)
|
| 2168 |
+
|
| 2169 |
+
def __call__(self, X, Y=None, eval_gradient=False):
|
| 2170 |
+
"""Return the kernel k(X, Y) and optionally its gradient.
|
| 2171 |
+
|
| 2172 |
+
Parameters
|
| 2173 |
+
----------
|
| 2174 |
+
X : ndarray of shape (n_samples_X, n_features)
|
| 2175 |
+
Left argument of the returned kernel k(X, Y)
|
| 2176 |
+
|
| 2177 |
+
Y : ndarray of shape (n_samples_Y, n_features), default=None
|
| 2178 |
+
Right argument of the returned kernel k(X, Y). If None, k(X, X)
|
| 2179 |
+
if evaluated instead.
|
| 2180 |
+
|
| 2181 |
+
eval_gradient : bool, default=False
|
| 2182 |
+
Determines whether the gradient with respect to the log of
|
| 2183 |
+
the kernel hyperparameter is computed.
|
| 2184 |
+
Only supported when Y is None.
|
| 2185 |
+
|
| 2186 |
+
Returns
|
| 2187 |
+
-------
|
| 2188 |
+
K : ndarray of shape (n_samples_X, n_samples_Y)
|
| 2189 |
+
Kernel k(X, Y)
|
| 2190 |
+
|
| 2191 |
+
K_gradient : ndarray of shape (n_samples_X, n_samples_X, n_dims),\
|
| 2192 |
+
optional
|
| 2193 |
+
The gradient of the kernel k(X, X) with respect to the log of the
|
| 2194 |
+
hyperparameter of the kernel. Only returned when `eval_gradient`
|
| 2195 |
+
is True.
|
| 2196 |
+
"""
|
| 2197 |
+
X = np.atleast_2d(X)
|
| 2198 |
+
if Y is None:
|
| 2199 |
+
K = np.inner(X, X) + self.sigma_0**2
|
| 2200 |
+
else:
|
| 2201 |
+
if eval_gradient:
|
| 2202 |
+
raise ValueError("Gradient can only be evaluated when Y is None.")
|
| 2203 |
+
K = np.inner(X, Y) + self.sigma_0**2
|
| 2204 |
+
|
| 2205 |
+
if eval_gradient:
|
| 2206 |
+
if not self.hyperparameter_sigma_0.fixed:
|
| 2207 |
+
K_gradient = np.empty((K.shape[0], K.shape[1], 1))
|
| 2208 |
+
K_gradient[..., 0] = 2 * self.sigma_0**2
|
| 2209 |
+
return K, K_gradient
|
| 2210 |
+
else:
|
| 2211 |
+
return K, np.empty((X.shape[0], X.shape[0], 0))
|
| 2212 |
+
else:
|
| 2213 |
+
return K
|
| 2214 |
+
|
| 2215 |
+
def diag(self, X):
|
| 2216 |
+
"""Returns the diagonal of the kernel k(X, X).
|
| 2217 |
+
|
| 2218 |
+
The result of this method is identical to np.diag(self(X)); however,
|
| 2219 |
+
it can be evaluated more efficiently since only the diagonal is
|
| 2220 |
+
evaluated.
|
| 2221 |
+
|
| 2222 |
+
Parameters
|
| 2223 |
+
----------
|
| 2224 |
+
X : ndarray of shape (n_samples_X, n_features)
|
| 2225 |
+
Left argument of the returned kernel k(X, Y).
|
| 2226 |
+
|
| 2227 |
+
Returns
|
| 2228 |
+
-------
|
| 2229 |
+
K_diag : ndarray of shape (n_samples_X,)
|
| 2230 |
+
Diagonal of kernel k(X, X).
|
| 2231 |
+
"""
|
| 2232 |
+
return np.einsum("ij,ij->i", X, X) + self.sigma_0**2
|
| 2233 |
+
|
| 2234 |
+
def is_stationary(self):
|
| 2235 |
+
"""Returns whether the kernel is stationary."""
|
| 2236 |
+
return False
|
| 2237 |
+
|
| 2238 |
+
def __repr__(self):
|
| 2239 |
+
return "{0}(sigma_0={1:.3g})".format(self.__class__.__name__, self.sigma_0)
|
| 2240 |
+
|
| 2241 |
+
|
| 2242 |
+
# adapted from scipy/optimize/optimize.py for functions with 2d output
|
| 2243 |
+
def _approx_fprime(xk, f, epsilon, args=()):
|
| 2244 |
+
f0 = f(*((xk,) + args))
|
| 2245 |
+
grad = np.zeros((f0.shape[0], f0.shape[1], len(xk)), float)
|
| 2246 |
+
ei = np.zeros((len(xk),), float)
|
| 2247 |
+
for k in range(len(xk)):
|
| 2248 |
+
ei[k] = 1.0
|
| 2249 |
+
d = epsilon * ei
|
| 2250 |
+
grad[:, :, k] = (f(*((xk + d,) + args)) - f0) / d[k]
|
| 2251 |
+
ei[k] = 0.0
|
| 2252 |
+
return grad
|
| 2253 |
+
|
| 2254 |
+
|
| 2255 |
+
class PairwiseKernel(Kernel):
|
| 2256 |
+
"""Wrapper for kernels in sklearn.metrics.pairwise.
|
| 2257 |
+
|
| 2258 |
+
A thin wrapper around the functionality of the kernels in
|
| 2259 |
+
sklearn.metrics.pairwise.
|
| 2260 |
+
|
| 2261 |
+
Note: Evaluation of eval_gradient is not analytic but numeric and all
|
| 2262 |
+
kernels support only isotropic distances. The parameter gamma is
|
| 2263 |
+
considered to be a hyperparameter and may be optimized. The other
|
| 2264 |
+
kernel parameters are set directly at initialization and are kept
|
| 2265 |
+
fixed.
|
| 2266 |
+
|
| 2267 |
+
.. versionadded:: 0.18
|
| 2268 |
+
|
| 2269 |
+
Parameters
|
| 2270 |
+
----------
|
| 2271 |
+
gamma : float, default=1.0
|
| 2272 |
+
Parameter gamma of the pairwise kernel specified by metric. It should
|
| 2273 |
+
be positive.
|
| 2274 |
+
|
| 2275 |
+
gamma_bounds : pair of floats >= 0 or "fixed", default=(1e-5, 1e5)
|
| 2276 |
+
The lower and upper bound on 'gamma'.
|
| 2277 |
+
If set to "fixed", 'gamma' cannot be changed during
|
| 2278 |
+
hyperparameter tuning.
|
| 2279 |
+
|
| 2280 |
+
metric : {"linear", "additive_chi2", "chi2", "poly", "polynomial", \
|
| 2281 |
+
"rbf", "laplacian", "sigmoid", "cosine"} or callable, \
|
| 2282 |
+
default="linear"
|
| 2283 |
+
The metric to use when calculating kernel between instances in a
|
| 2284 |
+
feature array. If metric is a string, it must be one of the metrics
|
| 2285 |
+
in pairwise.PAIRWISE_KERNEL_FUNCTIONS.
|
| 2286 |
+
If metric is "precomputed", X is assumed to be a kernel matrix.
|
| 2287 |
+
Alternatively, if metric is a callable function, it is called on each
|
| 2288 |
+
pair of instances (rows) and the resulting value recorded. The callable
|
| 2289 |
+
should take two arrays from X as input and return a value indicating
|
| 2290 |
+
the distance between them.
|
| 2291 |
+
|
| 2292 |
+
pairwise_kernels_kwargs : dict, default=None
|
| 2293 |
+
All entries of this dict (if any) are passed as keyword arguments to
|
| 2294 |
+
the pairwise kernel function.
|
| 2295 |
+
|
| 2296 |
+
Examples
|
| 2297 |
+
--------
|
| 2298 |
+
>>> from sklearn.datasets import load_iris
|
| 2299 |
+
>>> from sklearn.gaussian_process import GaussianProcessClassifier
|
| 2300 |
+
>>> from sklearn.gaussian_process.kernels import PairwiseKernel
|
| 2301 |
+
>>> X, y = load_iris(return_X_y=True)
|
| 2302 |
+
>>> kernel = PairwiseKernel(metric='rbf')
|
| 2303 |
+
>>> gpc = GaussianProcessClassifier(kernel=kernel,
|
| 2304 |
+
... random_state=0).fit(X, y)
|
| 2305 |
+
>>> gpc.score(X, y)
|
| 2306 |
+
0.9733...
|
| 2307 |
+
>>> gpc.predict_proba(X[:2,:])
|
| 2308 |
+
array([[0.8880..., 0.05663..., 0.05532...],
|
| 2309 |
+
[0.8676..., 0.07073..., 0.06165...]])
|
| 2310 |
+
"""
|
| 2311 |
+
|
| 2312 |
+
def __init__(
|
| 2313 |
+
self,
|
| 2314 |
+
gamma=1.0,
|
| 2315 |
+
gamma_bounds=(1e-5, 1e5),
|
| 2316 |
+
metric="linear",
|
| 2317 |
+
pairwise_kernels_kwargs=None,
|
| 2318 |
+
):
|
| 2319 |
+
self.gamma = gamma
|
| 2320 |
+
self.gamma_bounds = gamma_bounds
|
| 2321 |
+
self.metric = metric
|
| 2322 |
+
self.pairwise_kernels_kwargs = pairwise_kernels_kwargs
|
| 2323 |
+
|
| 2324 |
+
@property
|
| 2325 |
+
def hyperparameter_gamma(self):
|
| 2326 |
+
return Hyperparameter("gamma", "numeric", self.gamma_bounds)
|
| 2327 |
+
|
| 2328 |
+
def __call__(self, X, Y=None, eval_gradient=False):
|
| 2329 |
+
"""Return the kernel k(X, Y) and optionally its gradient.
|
| 2330 |
+
|
| 2331 |
+
Parameters
|
| 2332 |
+
----------
|
| 2333 |
+
X : ndarray of shape (n_samples_X, n_features)
|
| 2334 |
+
Left argument of the returned kernel k(X, Y)
|
| 2335 |
+
|
| 2336 |
+
Y : ndarray of shape (n_samples_Y, n_features), default=None
|
| 2337 |
+
Right argument of the returned kernel k(X, Y). If None, k(X, X)
|
| 2338 |
+
if evaluated instead.
|
| 2339 |
+
|
| 2340 |
+
eval_gradient : bool, default=False
|
| 2341 |
+
Determines whether the gradient with respect to the log of
|
| 2342 |
+
the kernel hyperparameter is computed.
|
| 2343 |
+
Only supported when Y is None.
|
| 2344 |
+
|
| 2345 |
+
Returns
|
| 2346 |
+
-------
|
| 2347 |
+
K : ndarray of shape (n_samples_X, n_samples_Y)
|
| 2348 |
+
Kernel k(X, Y)
|
| 2349 |
+
|
| 2350 |
+
K_gradient : ndarray of shape (n_samples_X, n_samples_X, n_dims),\
|
| 2351 |
+
optional
|
| 2352 |
+
The gradient of the kernel k(X, X) with respect to the log of the
|
| 2353 |
+
hyperparameter of the kernel. Only returned when `eval_gradient`
|
| 2354 |
+
is True.
|
| 2355 |
+
"""
|
| 2356 |
+
pairwise_kernels_kwargs = self.pairwise_kernels_kwargs
|
| 2357 |
+
if self.pairwise_kernels_kwargs is None:
|
| 2358 |
+
pairwise_kernels_kwargs = {}
|
| 2359 |
+
|
| 2360 |
+
X = np.atleast_2d(X)
|
| 2361 |
+
K = pairwise_kernels(
|
| 2362 |
+
X,
|
| 2363 |
+
Y,
|
| 2364 |
+
metric=self.metric,
|
| 2365 |
+
gamma=self.gamma,
|
| 2366 |
+
filter_params=True,
|
| 2367 |
+
**pairwise_kernels_kwargs,
|
| 2368 |
+
)
|
| 2369 |
+
if eval_gradient:
|
| 2370 |
+
if self.hyperparameter_gamma.fixed:
|
| 2371 |
+
return K, np.empty((X.shape[0], X.shape[0], 0))
|
| 2372 |
+
else:
|
| 2373 |
+
# approximate gradient numerically
|
| 2374 |
+
def f(gamma): # helper function
|
| 2375 |
+
return pairwise_kernels(
|
| 2376 |
+
X,
|
| 2377 |
+
Y,
|
| 2378 |
+
metric=self.metric,
|
| 2379 |
+
gamma=np.exp(gamma),
|
| 2380 |
+
filter_params=True,
|
| 2381 |
+
**pairwise_kernels_kwargs,
|
| 2382 |
+
)
|
| 2383 |
+
|
| 2384 |
+
return K, _approx_fprime(self.theta, f, 1e-10)
|
| 2385 |
+
else:
|
| 2386 |
+
return K
|
| 2387 |
+
|
| 2388 |
+
def diag(self, X):
|
| 2389 |
+
"""Returns the diagonal of the kernel k(X, X).
|
| 2390 |
+
|
| 2391 |
+
The result of this method is identical to np.diag(self(X)); however,
|
| 2392 |
+
it can be evaluated more efficiently since only the diagonal is
|
| 2393 |
+
evaluated.
|
| 2394 |
+
|
| 2395 |
+
Parameters
|
| 2396 |
+
----------
|
| 2397 |
+
X : ndarray of shape (n_samples_X, n_features)
|
| 2398 |
+
Left argument of the returned kernel k(X, Y)
|
| 2399 |
+
|
| 2400 |
+
Returns
|
| 2401 |
+
-------
|
| 2402 |
+
K_diag : ndarray of shape (n_samples_X,)
|
| 2403 |
+
Diagonal of kernel k(X, X)
|
| 2404 |
+
"""
|
| 2405 |
+
# We have to fall back to slow way of computing diagonal
|
| 2406 |
+
return np.apply_along_axis(self, 1, X).ravel()
|
| 2407 |
+
|
| 2408 |
+
def is_stationary(self):
|
| 2409 |
+
"""Returns whether the kernel is stationary."""
|
| 2410 |
+
return self.metric in ["rbf"]
|
| 2411 |
+
|
| 2412 |
+
def __repr__(self):
|
| 2413 |
+
return "{0}(gamma={1}, metric={2})".format(
|
| 2414 |
+
self.__class__.__name__, self.gamma, self.metric
|
| 2415 |
+
)
|
venv/lib/python3.10/site-packages/sklearn/gaussian_process/tests/__init__.py
ADDED
|
File without changes
|
venv/lib/python3.10/site-packages/sklearn/gaussian_process/tests/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (198 Bytes). View file
|
|
|
venv/lib/python3.10/site-packages/sklearn/gaussian_process/tests/__pycache__/_mini_sequence_kernel.cpython-310.pyc
ADDED
|
Binary file (3.17 kB). View file
|
|
|
venv/lib/python3.10/site-packages/sklearn/gaussian_process/tests/__pycache__/test_gpc.cpython-310.pyc
ADDED
|
Binary file (8.28 kB). View file
|
|
|
venv/lib/python3.10/site-packages/sklearn/gaussian_process/tests/__pycache__/test_gpr.cpython-310.pyc
ADDED
|
Binary file (22.9 kB). View file
|
|
|
venv/lib/python3.10/site-packages/sklearn/gaussian_process/tests/__pycache__/test_kernels.cpython-310.pyc
ADDED
|
Binary file (9.4 kB). View file
|
|
|
venv/lib/python3.10/site-packages/sklearn/gaussian_process/tests/_mini_sequence_kernel.py
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
|
| 3 |
+
from sklearn.base import clone
|
| 4 |
+
from sklearn.gaussian_process.kernels import (
|
| 5 |
+
GenericKernelMixin,
|
| 6 |
+
Hyperparameter,
|
| 7 |
+
Kernel,
|
| 8 |
+
StationaryKernelMixin,
|
| 9 |
+
)
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class MiniSeqKernel(GenericKernelMixin, StationaryKernelMixin, Kernel):
|
| 13 |
+
"""
|
| 14 |
+
A minimal (but valid) convolutional kernel for sequences of variable
|
| 15 |
+
length.
|
| 16 |
+
"""
|
| 17 |
+
|
| 18 |
+
def __init__(self, baseline_similarity=0.5, baseline_similarity_bounds=(1e-5, 1)):
|
| 19 |
+
self.baseline_similarity = baseline_similarity
|
| 20 |
+
self.baseline_similarity_bounds = baseline_similarity_bounds
|
| 21 |
+
|
| 22 |
+
@property
|
| 23 |
+
def hyperparameter_baseline_similarity(self):
|
| 24 |
+
return Hyperparameter(
|
| 25 |
+
"baseline_similarity", "numeric", self.baseline_similarity_bounds
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
def _f(self, s1, s2):
|
| 29 |
+
return sum(
|
| 30 |
+
[1.0 if c1 == c2 else self.baseline_similarity for c1 in s1 for c2 in s2]
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
def _g(self, s1, s2):
|
| 34 |
+
return sum([0.0 if c1 == c2 else 1.0 for c1 in s1 for c2 in s2])
|
| 35 |
+
|
| 36 |
+
def __call__(self, X, Y=None, eval_gradient=False):
|
| 37 |
+
if Y is None:
|
| 38 |
+
Y = X
|
| 39 |
+
|
| 40 |
+
if eval_gradient:
|
| 41 |
+
return (
|
| 42 |
+
np.array([[self._f(x, y) for y in Y] for x in X]),
|
| 43 |
+
np.array([[[self._g(x, y)] for y in Y] for x in X]),
|
| 44 |
+
)
|
| 45 |
+
else:
|
| 46 |
+
return np.array([[self._f(x, y) for y in Y] for x in X])
|
| 47 |
+
|
| 48 |
+
def diag(self, X):
|
| 49 |
+
return np.array([self._f(x, x) for x in X])
|
| 50 |
+
|
| 51 |
+
def clone_with_theta(self, theta):
|
| 52 |
+
cloned = clone(self)
|
| 53 |
+
cloned.theta = theta
|
| 54 |
+
return cloned
|
venv/lib/python3.10/site-packages/sklearn/gaussian_process/tests/test_gpc.py
ADDED
|
@@ -0,0 +1,288 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Testing for Gaussian process classification """
|
| 2 |
+
|
| 3 |
+
# Author: Jan Hendrik Metzen <[email protected]>
|
| 4 |
+
# License: BSD 3 clause
|
| 5 |
+
|
| 6 |
+
import warnings
|
| 7 |
+
|
| 8 |
+
import numpy as np
|
| 9 |
+
import pytest
|
| 10 |
+
from scipy.optimize import approx_fprime
|
| 11 |
+
|
| 12 |
+
from sklearn.exceptions import ConvergenceWarning
|
| 13 |
+
from sklearn.gaussian_process import GaussianProcessClassifier
|
| 14 |
+
from sklearn.gaussian_process.kernels import (
|
| 15 |
+
RBF,
|
| 16 |
+
CompoundKernel,
|
| 17 |
+
WhiteKernel,
|
| 18 |
+
)
|
| 19 |
+
from sklearn.gaussian_process.kernels import (
|
| 20 |
+
ConstantKernel as C,
|
| 21 |
+
)
|
| 22 |
+
from sklearn.gaussian_process.tests._mini_sequence_kernel import MiniSeqKernel
|
| 23 |
+
from sklearn.utils._testing import assert_almost_equal, assert_array_equal
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def f(x):
|
| 27 |
+
return np.sin(x)
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
X = np.atleast_2d(np.linspace(0, 10, 30)).T
|
| 31 |
+
X2 = np.atleast_2d([2.0, 4.0, 5.5, 6.5, 7.5]).T
|
| 32 |
+
y = np.array(f(X).ravel() > 0, dtype=int)
|
| 33 |
+
fX = f(X).ravel()
|
| 34 |
+
y_mc = np.empty(y.shape, dtype=int) # multi-class
|
| 35 |
+
y_mc[fX < -0.35] = 0
|
| 36 |
+
y_mc[(fX >= -0.35) & (fX < 0.35)] = 1
|
| 37 |
+
y_mc[fX > 0.35] = 2
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
fixed_kernel = RBF(length_scale=1.0, length_scale_bounds="fixed")
|
| 41 |
+
kernels = [
|
| 42 |
+
RBF(length_scale=0.1),
|
| 43 |
+
fixed_kernel,
|
| 44 |
+
RBF(length_scale=1.0, length_scale_bounds=(1e-3, 1e3)),
|
| 45 |
+
C(1.0, (1e-2, 1e2)) * RBF(length_scale=1.0, length_scale_bounds=(1e-3, 1e3)),
|
| 46 |
+
]
|
| 47 |
+
non_fixed_kernels = [kernel for kernel in kernels if kernel != fixed_kernel]
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
@pytest.mark.parametrize("kernel", kernels)
|
| 51 |
+
def test_predict_consistent(kernel):
|
| 52 |
+
# Check binary predict decision has also predicted probability above 0.5.
|
| 53 |
+
gpc = GaussianProcessClassifier(kernel=kernel).fit(X, y)
|
| 54 |
+
assert_array_equal(gpc.predict(X), gpc.predict_proba(X)[:, 1] >= 0.5)
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def test_predict_consistent_structured():
|
| 58 |
+
# Check binary predict decision has also predicted probability above 0.5.
|
| 59 |
+
X = ["A", "AB", "B"]
|
| 60 |
+
y = np.array([True, False, True])
|
| 61 |
+
kernel = MiniSeqKernel(baseline_similarity_bounds="fixed")
|
| 62 |
+
gpc = GaussianProcessClassifier(kernel=kernel).fit(X, y)
|
| 63 |
+
assert_array_equal(gpc.predict(X), gpc.predict_proba(X)[:, 1] >= 0.5)
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
@pytest.mark.parametrize("kernel", non_fixed_kernels)
|
| 67 |
+
def test_lml_improving(kernel):
|
| 68 |
+
# Test that hyperparameter-tuning improves log-marginal likelihood.
|
| 69 |
+
gpc = GaussianProcessClassifier(kernel=kernel).fit(X, y)
|
| 70 |
+
assert gpc.log_marginal_likelihood(gpc.kernel_.theta) > gpc.log_marginal_likelihood(
|
| 71 |
+
kernel.theta
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
@pytest.mark.parametrize("kernel", kernels)
|
| 76 |
+
def test_lml_precomputed(kernel):
|
| 77 |
+
# Test that lml of optimized kernel is stored correctly.
|
| 78 |
+
gpc = GaussianProcessClassifier(kernel=kernel).fit(X, y)
|
| 79 |
+
assert_almost_equal(
|
| 80 |
+
gpc.log_marginal_likelihood(gpc.kernel_.theta), gpc.log_marginal_likelihood(), 7
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
@pytest.mark.parametrize("kernel", kernels)
|
| 85 |
+
def test_lml_without_cloning_kernel(kernel):
|
| 86 |
+
# Test that clone_kernel=False has side-effects of kernel.theta.
|
| 87 |
+
gpc = GaussianProcessClassifier(kernel=kernel).fit(X, y)
|
| 88 |
+
input_theta = np.ones(gpc.kernel_.theta.shape, dtype=np.float64)
|
| 89 |
+
|
| 90 |
+
gpc.log_marginal_likelihood(input_theta, clone_kernel=False)
|
| 91 |
+
assert_almost_equal(gpc.kernel_.theta, input_theta, 7)
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
@pytest.mark.parametrize("kernel", non_fixed_kernels)
|
| 95 |
+
def test_converged_to_local_maximum(kernel):
|
| 96 |
+
# Test that we are in local maximum after hyperparameter-optimization.
|
| 97 |
+
gpc = GaussianProcessClassifier(kernel=kernel).fit(X, y)
|
| 98 |
+
|
| 99 |
+
lml, lml_gradient = gpc.log_marginal_likelihood(gpc.kernel_.theta, True)
|
| 100 |
+
|
| 101 |
+
assert np.all(
|
| 102 |
+
(np.abs(lml_gradient) < 1e-4)
|
| 103 |
+
| (gpc.kernel_.theta == gpc.kernel_.bounds[:, 0])
|
| 104 |
+
| (gpc.kernel_.theta == gpc.kernel_.bounds[:, 1])
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
@pytest.mark.parametrize("kernel", kernels)
|
| 109 |
+
def test_lml_gradient(kernel):
|
| 110 |
+
# Compare analytic and numeric gradient of log marginal likelihood.
|
| 111 |
+
gpc = GaussianProcessClassifier(kernel=kernel).fit(X, y)
|
| 112 |
+
|
| 113 |
+
lml, lml_gradient = gpc.log_marginal_likelihood(kernel.theta, True)
|
| 114 |
+
lml_gradient_approx = approx_fprime(
|
| 115 |
+
kernel.theta, lambda theta: gpc.log_marginal_likelihood(theta, False), 1e-10
|
| 116 |
+
)
|
| 117 |
+
|
| 118 |
+
assert_almost_equal(lml_gradient, lml_gradient_approx, 3)
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
def test_random_starts(global_random_seed):
|
| 122 |
+
# Test that an increasing number of random-starts of GP fitting only
|
| 123 |
+
# increases the log marginal likelihood of the chosen theta.
|
| 124 |
+
n_samples, n_features = 25, 2
|
| 125 |
+
rng = np.random.RandomState(global_random_seed)
|
| 126 |
+
X = rng.randn(n_samples, n_features) * 2 - 1
|
| 127 |
+
y = (np.sin(X).sum(axis=1) + np.sin(3 * X).sum(axis=1)) > 0
|
| 128 |
+
|
| 129 |
+
kernel = C(1.0, (1e-2, 1e2)) * RBF(
|
| 130 |
+
length_scale=[1e-3] * n_features, length_scale_bounds=[(1e-4, 1e2)] * n_features
|
| 131 |
+
)
|
| 132 |
+
last_lml = -np.inf
|
| 133 |
+
for n_restarts_optimizer in range(5):
|
| 134 |
+
gp = GaussianProcessClassifier(
|
| 135 |
+
kernel=kernel,
|
| 136 |
+
n_restarts_optimizer=n_restarts_optimizer,
|
| 137 |
+
random_state=global_random_seed,
|
| 138 |
+
).fit(X, y)
|
| 139 |
+
lml = gp.log_marginal_likelihood(gp.kernel_.theta)
|
| 140 |
+
assert lml > last_lml - np.finfo(np.float32).eps
|
| 141 |
+
last_lml = lml
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
@pytest.mark.parametrize("kernel", non_fixed_kernels)
|
| 145 |
+
def test_custom_optimizer(kernel, global_random_seed):
|
| 146 |
+
# Test that GPC can use externally defined optimizers.
|
| 147 |
+
# Define a dummy optimizer that simply tests 10 random hyperparameters
|
| 148 |
+
def optimizer(obj_func, initial_theta, bounds):
|
| 149 |
+
rng = np.random.RandomState(global_random_seed)
|
| 150 |
+
theta_opt, func_min = initial_theta, obj_func(
|
| 151 |
+
initial_theta, eval_gradient=False
|
| 152 |
+
)
|
| 153 |
+
for _ in range(10):
|
| 154 |
+
theta = np.atleast_1d(
|
| 155 |
+
rng.uniform(np.maximum(-2, bounds[:, 0]), np.minimum(1, bounds[:, 1]))
|
| 156 |
+
)
|
| 157 |
+
f = obj_func(theta, eval_gradient=False)
|
| 158 |
+
if f < func_min:
|
| 159 |
+
theta_opt, func_min = theta, f
|
| 160 |
+
return theta_opt, func_min
|
| 161 |
+
|
| 162 |
+
gpc = GaussianProcessClassifier(kernel=kernel, optimizer=optimizer)
|
| 163 |
+
gpc.fit(X, y_mc)
|
| 164 |
+
# Checks that optimizer improved marginal likelihood
|
| 165 |
+
assert gpc.log_marginal_likelihood(
|
| 166 |
+
gpc.kernel_.theta
|
| 167 |
+
) >= gpc.log_marginal_likelihood(kernel.theta)
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
@pytest.mark.parametrize("kernel", kernels)
|
| 171 |
+
def test_multi_class(kernel):
|
| 172 |
+
# Test GPC for multi-class classification problems.
|
| 173 |
+
gpc = GaussianProcessClassifier(kernel=kernel)
|
| 174 |
+
gpc.fit(X, y_mc)
|
| 175 |
+
|
| 176 |
+
y_prob = gpc.predict_proba(X2)
|
| 177 |
+
assert_almost_equal(y_prob.sum(1), 1)
|
| 178 |
+
|
| 179 |
+
y_pred = gpc.predict(X2)
|
| 180 |
+
assert_array_equal(np.argmax(y_prob, 1), y_pred)
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
@pytest.mark.parametrize("kernel", kernels)
|
| 184 |
+
def test_multi_class_n_jobs(kernel):
|
| 185 |
+
# Test that multi-class GPC produces identical results with n_jobs>1.
|
| 186 |
+
gpc = GaussianProcessClassifier(kernel=kernel)
|
| 187 |
+
gpc.fit(X, y_mc)
|
| 188 |
+
|
| 189 |
+
gpc_2 = GaussianProcessClassifier(kernel=kernel, n_jobs=2)
|
| 190 |
+
gpc_2.fit(X, y_mc)
|
| 191 |
+
|
| 192 |
+
y_prob = gpc.predict_proba(X2)
|
| 193 |
+
y_prob_2 = gpc_2.predict_proba(X2)
|
| 194 |
+
assert_almost_equal(y_prob, y_prob_2)
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
def test_warning_bounds():
|
| 198 |
+
kernel = RBF(length_scale_bounds=[1e-5, 1e-3])
|
| 199 |
+
gpc = GaussianProcessClassifier(kernel=kernel)
|
| 200 |
+
warning_message = (
|
| 201 |
+
"The optimal value found for dimension 0 of parameter "
|
| 202 |
+
"length_scale is close to the specified upper bound "
|
| 203 |
+
"0.001. Increasing the bound and calling fit again may "
|
| 204 |
+
"find a better value."
|
| 205 |
+
)
|
| 206 |
+
with pytest.warns(ConvergenceWarning, match=warning_message):
|
| 207 |
+
gpc.fit(X, y)
|
| 208 |
+
|
| 209 |
+
kernel_sum = WhiteKernel(noise_level_bounds=[1e-5, 1e-3]) + RBF(
|
| 210 |
+
length_scale_bounds=[1e3, 1e5]
|
| 211 |
+
)
|
| 212 |
+
gpc_sum = GaussianProcessClassifier(kernel=kernel_sum)
|
| 213 |
+
with warnings.catch_warnings(record=True) as record:
|
| 214 |
+
warnings.simplefilter("always")
|
| 215 |
+
gpc_sum.fit(X, y)
|
| 216 |
+
|
| 217 |
+
assert len(record) == 2
|
| 218 |
+
|
| 219 |
+
assert issubclass(record[0].category, ConvergenceWarning)
|
| 220 |
+
assert (
|
| 221 |
+
record[0].message.args[0]
|
| 222 |
+
== "The optimal value found for "
|
| 223 |
+
"dimension 0 of parameter "
|
| 224 |
+
"k1__noise_level is close to the "
|
| 225 |
+
"specified upper bound 0.001. "
|
| 226 |
+
"Increasing the bound and calling "
|
| 227 |
+
"fit again may find a better value."
|
| 228 |
+
)
|
| 229 |
+
|
| 230 |
+
assert issubclass(record[1].category, ConvergenceWarning)
|
| 231 |
+
assert (
|
| 232 |
+
record[1].message.args[0]
|
| 233 |
+
== "The optimal value found for "
|
| 234 |
+
"dimension 0 of parameter "
|
| 235 |
+
"k2__length_scale is close to the "
|
| 236 |
+
"specified lower bound 1000.0. "
|
| 237 |
+
"Decreasing the bound and calling "
|
| 238 |
+
"fit again may find a better value."
|
| 239 |
+
)
|
| 240 |
+
|
| 241 |
+
X_tile = np.tile(X, 2)
|
| 242 |
+
kernel_dims = RBF(length_scale=[1.0, 2.0], length_scale_bounds=[1e1, 1e2])
|
| 243 |
+
gpc_dims = GaussianProcessClassifier(kernel=kernel_dims)
|
| 244 |
+
|
| 245 |
+
with warnings.catch_warnings(record=True) as record:
|
| 246 |
+
warnings.simplefilter("always")
|
| 247 |
+
gpc_dims.fit(X_tile, y)
|
| 248 |
+
|
| 249 |
+
assert len(record) == 2
|
| 250 |
+
|
| 251 |
+
assert issubclass(record[0].category, ConvergenceWarning)
|
| 252 |
+
assert (
|
| 253 |
+
record[0].message.args[0]
|
| 254 |
+
== "The optimal value found for "
|
| 255 |
+
"dimension 0 of parameter "
|
| 256 |
+
"length_scale is close to the "
|
| 257 |
+
"specified upper bound 100.0. "
|
| 258 |
+
"Increasing the bound and calling "
|
| 259 |
+
"fit again may find a better value."
|
| 260 |
+
)
|
| 261 |
+
|
| 262 |
+
assert issubclass(record[1].category, ConvergenceWarning)
|
| 263 |
+
assert (
|
| 264 |
+
record[1].message.args[0]
|
| 265 |
+
== "The optimal value found for "
|
| 266 |
+
"dimension 1 of parameter "
|
| 267 |
+
"length_scale is close to the "
|
| 268 |
+
"specified upper bound 100.0. "
|
| 269 |
+
"Increasing the bound and calling "
|
| 270 |
+
"fit again may find a better value."
|
| 271 |
+
)
|
| 272 |
+
|
| 273 |
+
|
| 274 |
+
@pytest.mark.parametrize(
|
| 275 |
+
"params, error_type, err_msg",
|
| 276 |
+
[
|
| 277 |
+
(
|
| 278 |
+
{"kernel": CompoundKernel(0)},
|
| 279 |
+
ValueError,
|
| 280 |
+
"kernel cannot be a CompoundKernel",
|
| 281 |
+
)
|
| 282 |
+
],
|
| 283 |
+
)
|
| 284 |
+
def test_gpc_fit_error(params, error_type, err_msg):
|
| 285 |
+
"""Check that expected error are raised during fit."""
|
| 286 |
+
gpc = GaussianProcessClassifier(**params)
|
| 287 |
+
with pytest.raises(error_type, match=err_msg):
|
| 288 |
+
gpc.fit(X, y)
|
venv/lib/python3.10/site-packages/sklearn/gaussian_process/tests/test_gpr.py
ADDED
|
@@ -0,0 +1,853 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Testing for Gaussian process regression """
|
| 2 |
+
|
| 3 |
+
# Author: Jan Hendrik Metzen <[email protected]>
|
| 4 |
+
# Modified by: Pete Green <[email protected]>
|
| 5 |
+
# License: BSD 3 clause
|
| 6 |
+
|
| 7 |
+
import re
|
| 8 |
+
import sys
|
| 9 |
+
import warnings
|
| 10 |
+
|
| 11 |
+
import numpy as np
|
| 12 |
+
import pytest
|
| 13 |
+
from scipy.optimize import approx_fprime
|
| 14 |
+
|
| 15 |
+
from sklearn.exceptions import ConvergenceWarning
|
| 16 |
+
from sklearn.gaussian_process import GaussianProcessRegressor
|
| 17 |
+
from sklearn.gaussian_process.kernels import (
|
| 18 |
+
RBF,
|
| 19 |
+
DotProduct,
|
| 20 |
+
ExpSineSquared,
|
| 21 |
+
WhiteKernel,
|
| 22 |
+
)
|
| 23 |
+
from sklearn.gaussian_process.kernels import (
|
| 24 |
+
ConstantKernel as C,
|
| 25 |
+
)
|
| 26 |
+
from sklearn.gaussian_process.tests._mini_sequence_kernel import MiniSeqKernel
|
| 27 |
+
from sklearn.utils._testing import (
|
| 28 |
+
assert_allclose,
|
| 29 |
+
assert_almost_equal,
|
| 30 |
+
assert_array_almost_equal,
|
| 31 |
+
assert_array_less,
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def f(x):
|
| 36 |
+
return x * np.sin(x)
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
X = np.atleast_2d([1.0, 3.0, 5.0, 6.0, 7.0, 8.0]).T
|
| 40 |
+
X2 = np.atleast_2d([2.0, 4.0, 5.5, 6.5, 7.5]).T
|
| 41 |
+
y = f(X).ravel()
|
| 42 |
+
|
| 43 |
+
fixed_kernel = RBF(length_scale=1.0, length_scale_bounds="fixed")
|
| 44 |
+
kernels = [
|
| 45 |
+
RBF(length_scale=1.0),
|
| 46 |
+
fixed_kernel,
|
| 47 |
+
RBF(length_scale=1.0, length_scale_bounds=(1e-3, 1e3)),
|
| 48 |
+
C(1.0, (1e-2, 1e2)) * RBF(length_scale=1.0, length_scale_bounds=(1e-3, 1e3)),
|
| 49 |
+
C(1.0, (1e-2, 1e2)) * RBF(length_scale=1.0, length_scale_bounds=(1e-3, 1e3))
|
| 50 |
+
+ C(1e-5, (1e-5, 1e2)),
|
| 51 |
+
C(0.1, (1e-2, 1e2)) * RBF(length_scale=1.0, length_scale_bounds=(1e-3, 1e3))
|
| 52 |
+
+ C(1e-5, (1e-5, 1e2)),
|
| 53 |
+
]
|
| 54 |
+
non_fixed_kernels = [kernel for kernel in kernels if kernel != fixed_kernel]
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
@pytest.mark.parametrize("kernel", kernels)
|
| 58 |
+
def test_gpr_interpolation(kernel):
|
| 59 |
+
if sys.maxsize <= 2**32:
|
| 60 |
+
pytest.xfail("This test may fail on 32 bit Python")
|
| 61 |
+
|
| 62 |
+
# Test the interpolating property for different kernels.
|
| 63 |
+
gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)
|
| 64 |
+
y_pred, y_cov = gpr.predict(X, return_cov=True)
|
| 65 |
+
|
| 66 |
+
assert_almost_equal(y_pred, y)
|
| 67 |
+
assert_almost_equal(np.diag(y_cov), 0.0)
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def test_gpr_interpolation_structured():
|
| 71 |
+
# Test the interpolating property for different kernels.
|
| 72 |
+
kernel = MiniSeqKernel(baseline_similarity_bounds="fixed")
|
| 73 |
+
X = ["A", "B", "C"]
|
| 74 |
+
y = np.array([1, 2, 3])
|
| 75 |
+
gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)
|
| 76 |
+
y_pred, y_cov = gpr.predict(X, return_cov=True)
|
| 77 |
+
|
| 78 |
+
assert_almost_equal(
|
| 79 |
+
kernel(X, eval_gradient=True)[1].ravel(), (1 - np.eye(len(X))).ravel()
|
| 80 |
+
)
|
| 81 |
+
assert_almost_equal(y_pred, y)
|
| 82 |
+
assert_almost_equal(np.diag(y_cov), 0.0)
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
@pytest.mark.parametrize("kernel", non_fixed_kernels)
|
| 86 |
+
def test_lml_improving(kernel):
|
| 87 |
+
if sys.maxsize <= 2**32:
|
| 88 |
+
pytest.xfail("This test may fail on 32 bit Python")
|
| 89 |
+
|
| 90 |
+
# Test that hyperparameter-tuning improves log-marginal likelihood.
|
| 91 |
+
gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)
|
| 92 |
+
assert gpr.log_marginal_likelihood(gpr.kernel_.theta) > gpr.log_marginal_likelihood(
|
| 93 |
+
kernel.theta
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
@pytest.mark.parametrize("kernel", kernels)
|
| 98 |
+
def test_lml_precomputed(kernel):
|
| 99 |
+
# Test that lml of optimized kernel is stored correctly.
|
| 100 |
+
gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)
|
| 101 |
+
assert gpr.log_marginal_likelihood(gpr.kernel_.theta) == pytest.approx(
|
| 102 |
+
gpr.log_marginal_likelihood()
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
@pytest.mark.parametrize("kernel", kernels)
|
| 107 |
+
def test_lml_without_cloning_kernel(kernel):
|
| 108 |
+
# Test that lml of optimized kernel is stored correctly.
|
| 109 |
+
gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)
|
| 110 |
+
input_theta = np.ones(gpr.kernel_.theta.shape, dtype=np.float64)
|
| 111 |
+
|
| 112 |
+
gpr.log_marginal_likelihood(input_theta, clone_kernel=False)
|
| 113 |
+
assert_almost_equal(gpr.kernel_.theta, input_theta, 7)
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
@pytest.mark.parametrize("kernel", non_fixed_kernels)
|
| 117 |
+
def test_converged_to_local_maximum(kernel):
|
| 118 |
+
# Test that we are in local maximum after hyperparameter-optimization.
|
| 119 |
+
gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)
|
| 120 |
+
|
| 121 |
+
lml, lml_gradient = gpr.log_marginal_likelihood(gpr.kernel_.theta, True)
|
| 122 |
+
|
| 123 |
+
assert np.all(
|
| 124 |
+
(np.abs(lml_gradient) < 1e-4)
|
| 125 |
+
| (gpr.kernel_.theta == gpr.kernel_.bounds[:, 0])
|
| 126 |
+
| (gpr.kernel_.theta == gpr.kernel_.bounds[:, 1])
|
| 127 |
+
)
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
@pytest.mark.parametrize("kernel", non_fixed_kernels)
|
| 131 |
+
def test_solution_inside_bounds(kernel):
|
| 132 |
+
# Test that hyperparameter-optimization remains in bounds#
|
| 133 |
+
gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)
|
| 134 |
+
|
| 135 |
+
bounds = gpr.kernel_.bounds
|
| 136 |
+
max_ = np.finfo(gpr.kernel_.theta.dtype).max
|
| 137 |
+
tiny = 1e-10
|
| 138 |
+
bounds[~np.isfinite(bounds[:, 1]), 1] = max_
|
| 139 |
+
|
| 140 |
+
assert_array_less(bounds[:, 0], gpr.kernel_.theta + tiny)
|
| 141 |
+
assert_array_less(gpr.kernel_.theta, bounds[:, 1] + tiny)
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
@pytest.mark.parametrize("kernel", kernels)
|
| 145 |
+
def test_lml_gradient(kernel):
|
| 146 |
+
# Compare analytic and numeric gradient of log marginal likelihood.
|
| 147 |
+
gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)
|
| 148 |
+
|
| 149 |
+
lml, lml_gradient = gpr.log_marginal_likelihood(kernel.theta, True)
|
| 150 |
+
lml_gradient_approx = approx_fprime(
|
| 151 |
+
kernel.theta, lambda theta: gpr.log_marginal_likelihood(theta, False), 1e-10
|
| 152 |
+
)
|
| 153 |
+
|
| 154 |
+
assert_almost_equal(lml_gradient, lml_gradient_approx, 3)
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
@pytest.mark.parametrize("kernel", kernels)
|
| 158 |
+
def test_prior(kernel):
|
| 159 |
+
# Test that GP prior has mean 0 and identical variances.
|
| 160 |
+
gpr = GaussianProcessRegressor(kernel=kernel)
|
| 161 |
+
|
| 162 |
+
y_mean, y_cov = gpr.predict(X, return_cov=True)
|
| 163 |
+
|
| 164 |
+
assert_almost_equal(y_mean, 0, 5)
|
| 165 |
+
if len(gpr.kernel.theta) > 1:
|
| 166 |
+
# XXX: quite hacky, works only for current kernels
|
| 167 |
+
assert_almost_equal(np.diag(y_cov), np.exp(kernel.theta[0]), 5)
|
| 168 |
+
else:
|
| 169 |
+
assert_almost_equal(np.diag(y_cov), 1, 5)
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
@pytest.mark.parametrize("kernel", kernels)
|
| 173 |
+
def test_sample_statistics(kernel):
|
| 174 |
+
# Test that statistics of samples drawn from GP are correct.
|
| 175 |
+
gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)
|
| 176 |
+
|
| 177 |
+
y_mean, y_cov = gpr.predict(X2, return_cov=True)
|
| 178 |
+
|
| 179 |
+
samples = gpr.sample_y(X2, 300000)
|
| 180 |
+
|
| 181 |
+
# More digits accuracy would require many more samples
|
| 182 |
+
assert_almost_equal(y_mean, np.mean(samples, 1), 1)
|
| 183 |
+
assert_almost_equal(
|
| 184 |
+
np.diag(y_cov) / np.diag(y_cov).max(),
|
| 185 |
+
np.var(samples, 1) / np.diag(y_cov).max(),
|
| 186 |
+
1,
|
| 187 |
+
)
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
def test_no_optimizer():
|
| 191 |
+
# Test that kernel parameters are unmodified when optimizer is None.
|
| 192 |
+
kernel = RBF(1.0)
|
| 193 |
+
gpr = GaussianProcessRegressor(kernel=kernel, optimizer=None).fit(X, y)
|
| 194 |
+
assert np.exp(gpr.kernel_.theta) == 1.0
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
@pytest.mark.parametrize("kernel", kernels)
|
| 198 |
+
@pytest.mark.parametrize("target", [y, np.ones(X.shape[0], dtype=np.float64)])
|
| 199 |
+
def test_predict_cov_vs_std(kernel, target):
|
| 200 |
+
if sys.maxsize <= 2**32:
|
| 201 |
+
pytest.xfail("This test may fail on 32 bit Python")
|
| 202 |
+
|
| 203 |
+
# Test that predicted std.-dev. is consistent with cov's diagonal.
|
| 204 |
+
gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)
|
| 205 |
+
y_mean, y_cov = gpr.predict(X2, return_cov=True)
|
| 206 |
+
y_mean, y_std = gpr.predict(X2, return_std=True)
|
| 207 |
+
assert_almost_equal(np.sqrt(np.diag(y_cov)), y_std)
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
def test_anisotropic_kernel():
|
| 211 |
+
# Test that GPR can identify meaningful anisotropic length-scales.
|
| 212 |
+
# We learn a function which varies in one dimension ten-times slower
|
| 213 |
+
# than in the other. The corresponding length-scales should differ by at
|
| 214 |
+
# least a factor 5
|
| 215 |
+
rng = np.random.RandomState(0)
|
| 216 |
+
X = rng.uniform(-1, 1, (50, 2))
|
| 217 |
+
y = X[:, 0] + 0.1 * X[:, 1]
|
| 218 |
+
|
| 219 |
+
kernel = RBF([1.0, 1.0])
|
| 220 |
+
gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)
|
| 221 |
+
assert np.exp(gpr.kernel_.theta[1]) > np.exp(gpr.kernel_.theta[0]) * 5
|
| 222 |
+
|
| 223 |
+
|
| 224 |
+
def test_random_starts():
|
| 225 |
+
# Test that an increasing number of random-starts of GP fitting only
|
| 226 |
+
# increases the log marginal likelihood of the chosen theta.
|
| 227 |
+
n_samples, n_features = 25, 2
|
| 228 |
+
rng = np.random.RandomState(0)
|
| 229 |
+
X = rng.randn(n_samples, n_features) * 2 - 1
|
| 230 |
+
y = (
|
| 231 |
+
np.sin(X).sum(axis=1)
|
| 232 |
+
+ np.sin(3 * X).sum(axis=1)
|
| 233 |
+
+ rng.normal(scale=0.1, size=n_samples)
|
| 234 |
+
)
|
| 235 |
+
|
| 236 |
+
kernel = C(1.0, (1e-2, 1e2)) * RBF(
|
| 237 |
+
length_scale=[1.0] * n_features, length_scale_bounds=[(1e-4, 1e2)] * n_features
|
| 238 |
+
) + WhiteKernel(noise_level=1e-5, noise_level_bounds=(1e-5, 1e1))
|
| 239 |
+
last_lml = -np.inf
|
| 240 |
+
for n_restarts_optimizer in range(5):
|
| 241 |
+
gp = GaussianProcessRegressor(
|
| 242 |
+
kernel=kernel,
|
| 243 |
+
n_restarts_optimizer=n_restarts_optimizer,
|
| 244 |
+
random_state=0,
|
| 245 |
+
).fit(X, y)
|
| 246 |
+
lml = gp.log_marginal_likelihood(gp.kernel_.theta)
|
| 247 |
+
assert lml > last_lml - np.finfo(np.float32).eps
|
| 248 |
+
last_lml = lml
|
| 249 |
+
|
| 250 |
+
|
| 251 |
+
@pytest.mark.parametrize("kernel", kernels)
|
| 252 |
+
def test_y_normalization(kernel):
|
| 253 |
+
"""
|
| 254 |
+
Test normalization of the target values in GP
|
| 255 |
+
|
| 256 |
+
Fitting non-normalizing GP on normalized y and fitting normalizing GP
|
| 257 |
+
on unnormalized y should yield identical results. Note that, here,
|
| 258 |
+
'normalized y' refers to y that has been made zero mean and unit
|
| 259 |
+
variance.
|
| 260 |
+
|
| 261 |
+
"""
|
| 262 |
+
|
| 263 |
+
y_mean = np.mean(y)
|
| 264 |
+
y_std = np.std(y)
|
| 265 |
+
y_norm = (y - y_mean) / y_std
|
| 266 |
+
|
| 267 |
+
# Fit non-normalizing GP on normalized y
|
| 268 |
+
gpr = GaussianProcessRegressor(kernel=kernel)
|
| 269 |
+
gpr.fit(X, y_norm)
|
| 270 |
+
|
| 271 |
+
# Fit normalizing GP on unnormalized y
|
| 272 |
+
gpr_norm = GaussianProcessRegressor(kernel=kernel, normalize_y=True)
|
| 273 |
+
gpr_norm.fit(X, y)
|
| 274 |
+
|
| 275 |
+
# Compare predicted mean, std-devs and covariances
|
| 276 |
+
y_pred, y_pred_std = gpr.predict(X2, return_std=True)
|
| 277 |
+
y_pred = y_pred * y_std + y_mean
|
| 278 |
+
y_pred_std = y_pred_std * y_std
|
| 279 |
+
y_pred_norm, y_pred_std_norm = gpr_norm.predict(X2, return_std=True)
|
| 280 |
+
|
| 281 |
+
assert_almost_equal(y_pred, y_pred_norm)
|
| 282 |
+
assert_almost_equal(y_pred_std, y_pred_std_norm)
|
| 283 |
+
|
| 284 |
+
_, y_cov = gpr.predict(X2, return_cov=True)
|
| 285 |
+
y_cov = y_cov * y_std**2
|
| 286 |
+
_, y_cov_norm = gpr_norm.predict(X2, return_cov=True)
|
| 287 |
+
|
| 288 |
+
assert_almost_equal(y_cov, y_cov_norm)
|
| 289 |
+
|
| 290 |
+
|
| 291 |
+
def test_large_variance_y():
|
| 292 |
+
"""
|
| 293 |
+
Here we test that, when noramlize_y=True, our GP can produce a
|
| 294 |
+
sensible fit to training data whose variance is significantly
|
| 295 |
+
larger than unity. This test was made in response to issue #15612.
|
| 296 |
+
|
| 297 |
+
GP predictions are verified against predictions that were made
|
| 298 |
+
using GPy which, here, is treated as the 'gold standard'. Note that we
|
| 299 |
+
only investigate the RBF kernel here, as that is what was used in the
|
| 300 |
+
GPy implementation.
|
| 301 |
+
|
| 302 |
+
The following code can be used to recreate the GPy data:
|
| 303 |
+
|
| 304 |
+
--------------------------------------------------------------------------
|
| 305 |
+
import GPy
|
| 306 |
+
|
| 307 |
+
kernel_gpy = GPy.kern.RBF(input_dim=1, lengthscale=1.)
|
| 308 |
+
gpy = GPy.models.GPRegression(X, np.vstack(y_large), kernel_gpy)
|
| 309 |
+
gpy.optimize()
|
| 310 |
+
y_pred_gpy, y_var_gpy = gpy.predict(X2)
|
| 311 |
+
y_pred_std_gpy = np.sqrt(y_var_gpy)
|
| 312 |
+
--------------------------------------------------------------------------
|
| 313 |
+
"""
|
| 314 |
+
|
| 315 |
+
# Here we utilise a larger variance version of the training data
|
| 316 |
+
y_large = 10 * y
|
| 317 |
+
|
| 318 |
+
# Standard GP with normalize_y=True
|
| 319 |
+
RBF_params = {"length_scale": 1.0}
|
| 320 |
+
kernel = RBF(**RBF_params)
|
| 321 |
+
gpr = GaussianProcessRegressor(kernel=kernel, normalize_y=True)
|
| 322 |
+
gpr.fit(X, y_large)
|
| 323 |
+
y_pred, y_pred_std = gpr.predict(X2, return_std=True)
|
| 324 |
+
|
| 325 |
+
# 'Gold standard' mean predictions from GPy
|
| 326 |
+
y_pred_gpy = np.array(
|
| 327 |
+
[15.16918303, -27.98707845, -39.31636019, 14.52605515, 69.18503589]
|
| 328 |
+
)
|
| 329 |
+
|
| 330 |
+
# 'Gold standard' std predictions from GPy
|
| 331 |
+
y_pred_std_gpy = np.array(
|
| 332 |
+
[7.78860962, 3.83179178, 0.63149951, 0.52745188, 0.86170042]
|
| 333 |
+
)
|
| 334 |
+
|
| 335 |
+
# Based on numerical experiments, it's reasonable to expect our
|
| 336 |
+
# GP's mean predictions to get within 7% of predictions of those
|
| 337 |
+
# made by GPy.
|
| 338 |
+
assert_allclose(y_pred, y_pred_gpy, rtol=0.07, atol=0)
|
| 339 |
+
|
| 340 |
+
# Based on numerical experiments, it's reasonable to expect our
|
| 341 |
+
# GP's std predictions to get within 15% of predictions of those
|
| 342 |
+
# made by GPy.
|
| 343 |
+
assert_allclose(y_pred_std, y_pred_std_gpy, rtol=0.15, atol=0)
|
| 344 |
+
|
| 345 |
+
|
| 346 |
+
def test_y_multioutput():
|
| 347 |
+
# Test that GPR can deal with multi-dimensional target values
|
| 348 |
+
y_2d = np.vstack((y, y * 2)).T
|
| 349 |
+
|
| 350 |
+
# Test for fixed kernel that first dimension of 2d GP equals the output
|
| 351 |
+
# of 1d GP and that second dimension is twice as large
|
| 352 |
+
kernel = RBF(length_scale=1.0)
|
| 353 |
+
|
| 354 |
+
gpr = GaussianProcessRegressor(kernel=kernel, optimizer=None, normalize_y=False)
|
| 355 |
+
gpr.fit(X, y)
|
| 356 |
+
|
| 357 |
+
gpr_2d = GaussianProcessRegressor(kernel=kernel, optimizer=None, normalize_y=False)
|
| 358 |
+
gpr_2d.fit(X, y_2d)
|
| 359 |
+
|
| 360 |
+
y_pred_1d, y_std_1d = gpr.predict(X2, return_std=True)
|
| 361 |
+
y_pred_2d, y_std_2d = gpr_2d.predict(X2, return_std=True)
|
| 362 |
+
_, y_cov_1d = gpr.predict(X2, return_cov=True)
|
| 363 |
+
_, y_cov_2d = gpr_2d.predict(X2, return_cov=True)
|
| 364 |
+
|
| 365 |
+
assert_almost_equal(y_pred_1d, y_pred_2d[:, 0])
|
| 366 |
+
assert_almost_equal(y_pred_1d, y_pred_2d[:, 1] / 2)
|
| 367 |
+
|
| 368 |
+
# Standard deviation and covariance do not depend on output
|
| 369 |
+
for target in range(y_2d.shape[1]):
|
| 370 |
+
assert_almost_equal(y_std_1d, y_std_2d[..., target])
|
| 371 |
+
assert_almost_equal(y_cov_1d, y_cov_2d[..., target])
|
| 372 |
+
|
| 373 |
+
y_sample_1d = gpr.sample_y(X2, n_samples=10)
|
| 374 |
+
y_sample_2d = gpr_2d.sample_y(X2, n_samples=10)
|
| 375 |
+
|
| 376 |
+
assert y_sample_1d.shape == (5, 10)
|
| 377 |
+
assert y_sample_2d.shape == (5, 2, 10)
|
| 378 |
+
# Only the first target will be equal
|
| 379 |
+
assert_almost_equal(y_sample_1d, y_sample_2d[:, 0, :])
|
| 380 |
+
|
| 381 |
+
# Test hyperparameter optimization
|
| 382 |
+
for kernel in kernels:
|
| 383 |
+
gpr = GaussianProcessRegressor(kernel=kernel, normalize_y=True)
|
| 384 |
+
gpr.fit(X, y)
|
| 385 |
+
|
| 386 |
+
gpr_2d = GaussianProcessRegressor(kernel=kernel, normalize_y=True)
|
| 387 |
+
gpr_2d.fit(X, np.vstack((y, y)).T)
|
| 388 |
+
|
| 389 |
+
assert_almost_equal(gpr.kernel_.theta, gpr_2d.kernel_.theta, 4)
|
| 390 |
+
|
| 391 |
+
|
| 392 |
+
@pytest.mark.parametrize("kernel", non_fixed_kernels)
|
| 393 |
+
def test_custom_optimizer(kernel):
|
| 394 |
+
# Test that GPR can use externally defined optimizers.
|
| 395 |
+
# Define a dummy optimizer that simply tests 50 random hyperparameters
|
| 396 |
+
def optimizer(obj_func, initial_theta, bounds):
|
| 397 |
+
rng = np.random.RandomState(0)
|
| 398 |
+
theta_opt, func_min = initial_theta, obj_func(
|
| 399 |
+
initial_theta, eval_gradient=False
|
| 400 |
+
)
|
| 401 |
+
for _ in range(50):
|
| 402 |
+
theta = np.atleast_1d(
|
| 403 |
+
rng.uniform(np.maximum(-2, bounds[:, 0]), np.minimum(1, bounds[:, 1]))
|
| 404 |
+
)
|
| 405 |
+
f = obj_func(theta, eval_gradient=False)
|
| 406 |
+
if f < func_min:
|
| 407 |
+
theta_opt, func_min = theta, f
|
| 408 |
+
return theta_opt, func_min
|
| 409 |
+
|
| 410 |
+
gpr = GaussianProcessRegressor(kernel=kernel, optimizer=optimizer)
|
| 411 |
+
gpr.fit(X, y)
|
| 412 |
+
# Checks that optimizer improved marginal likelihood
|
| 413 |
+
assert gpr.log_marginal_likelihood(gpr.kernel_.theta) > gpr.log_marginal_likelihood(
|
| 414 |
+
gpr.kernel.theta
|
| 415 |
+
)
|
| 416 |
+
|
| 417 |
+
|
| 418 |
+
def test_gpr_correct_error_message():
|
| 419 |
+
X = np.arange(12).reshape(6, -1)
|
| 420 |
+
y = np.ones(6)
|
| 421 |
+
kernel = DotProduct()
|
| 422 |
+
gpr = GaussianProcessRegressor(kernel=kernel, alpha=0.0)
|
| 423 |
+
message = (
|
| 424 |
+
"The kernel, %s, is not returning a "
|
| 425 |
+
"positive definite matrix. Try gradually increasing "
|
| 426 |
+
"the 'alpha' parameter of your "
|
| 427 |
+
"GaussianProcessRegressor estimator." % kernel
|
| 428 |
+
)
|
| 429 |
+
with pytest.raises(np.linalg.LinAlgError, match=re.escape(message)):
|
| 430 |
+
gpr.fit(X, y)
|
| 431 |
+
|
| 432 |
+
|
| 433 |
+
@pytest.mark.parametrize("kernel", kernels)
|
| 434 |
+
def test_duplicate_input(kernel):
|
| 435 |
+
# Test GPR can handle two different output-values for the same input.
|
| 436 |
+
gpr_equal_inputs = GaussianProcessRegressor(kernel=kernel, alpha=1e-2)
|
| 437 |
+
gpr_similar_inputs = GaussianProcessRegressor(kernel=kernel, alpha=1e-2)
|
| 438 |
+
|
| 439 |
+
X_ = np.vstack((X, X[0]))
|
| 440 |
+
y_ = np.hstack((y, y[0] + 1))
|
| 441 |
+
gpr_equal_inputs.fit(X_, y_)
|
| 442 |
+
|
| 443 |
+
X_ = np.vstack((X, X[0] + 1e-15))
|
| 444 |
+
y_ = np.hstack((y, y[0] + 1))
|
| 445 |
+
gpr_similar_inputs.fit(X_, y_)
|
| 446 |
+
|
| 447 |
+
X_test = np.linspace(0, 10, 100)[:, None]
|
| 448 |
+
y_pred_equal, y_std_equal = gpr_equal_inputs.predict(X_test, return_std=True)
|
| 449 |
+
y_pred_similar, y_std_similar = gpr_similar_inputs.predict(X_test, return_std=True)
|
| 450 |
+
|
| 451 |
+
assert_almost_equal(y_pred_equal, y_pred_similar)
|
| 452 |
+
assert_almost_equal(y_std_equal, y_std_similar)
|
| 453 |
+
|
| 454 |
+
|
| 455 |
+
def test_no_fit_default_predict():
|
| 456 |
+
# Test that GPR predictions without fit does not break by default.
|
| 457 |
+
default_kernel = C(1.0, constant_value_bounds="fixed") * RBF(
|
| 458 |
+
1.0, length_scale_bounds="fixed"
|
| 459 |
+
)
|
| 460 |
+
gpr1 = GaussianProcessRegressor()
|
| 461 |
+
_, y_std1 = gpr1.predict(X, return_std=True)
|
| 462 |
+
_, y_cov1 = gpr1.predict(X, return_cov=True)
|
| 463 |
+
|
| 464 |
+
gpr2 = GaussianProcessRegressor(kernel=default_kernel)
|
| 465 |
+
_, y_std2 = gpr2.predict(X, return_std=True)
|
| 466 |
+
_, y_cov2 = gpr2.predict(X, return_cov=True)
|
| 467 |
+
|
| 468 |
+
assert_array_almost_equal(y_std1, y_std2)
|
| 469 |
+
assert_array_almost_equal(y_cov1, y_cov2)
|
| 470 |
+
|
| 471 |
+
|
| 472 |
+
def test_warning_bounds():
|
| 473 |
+
kernel = RBF(length_scale_bounds=[1e-5, 1e-3])
|
| 474 |
+
gpr = GaussianProcessRegressor(kernel=kernel)
|
| 475 |
+
warning_message = (
|
| 476 |
+
"The optimal value found for dimension 0 of parameter "
|
| 477 |
+
"length_scale is close to the specified upper bound "
|
| 478 |
+
"0.001. Increasing the bound and calling fit again may "
|
| 479 |
+
"find a better value."
|
| 480 |
+
)
|
| 481 |
+
with pytest.warns(ConvergenceWarning, match=warning_message):
|
| 482 |
+
gpr.fit(X, y)
|
| 483 |
+
|
| 484 |
+
kernel_sum = WhiteKernel(noise_level_bounds=[1e-5, 1e-3]) + RBF(
|
| 485 |
+
length_scale_bounds=[1e3, 1e5]
|
| 486 |
+
)
|
| 487 |
+
gpr_sum = GaussianProcessRegressor(kernel=kernel_sum)
|
| 488 |
+
with warnings.catch_warnings(record=True) as record:
|
| 489 |
+
warnings.simplefilter("always")
|
| 490 |
+
gpr_sum.fit(X, y)
|
| 491 |
+
|
| 492 |
+
assert len(record) == 2
|
| 493 |
+
|
| 494 |
+
assert issubclass(record[0].category, ConvergenceWarning)
|
| 495 |
+
assert (
|
| 496 |
+
record[0].message.args[0]
|
| 497 |
+
== "The optimal value found for "
|
| 498 |
+
"dimension 0 of parameter "
|
| 499 |
+
"k1__noise_level is close to the "
|
| 500 |
+
"specified upper bound 0.001. "
|
| 501 |
+
"Increasing the bound and calling "
|
| 502 |
+
"fit again may find a better value."
|
| 503 |
+
)
|
| 504 |
+
|
| 505 |
+
assert issubclass(record[1].category, ConvergenceWarning)
|
| 506 |
+
assert (
|
| 507 |
+
record[1].message.args[0]
|
| 508 |
+
== "The optimal value found for "
|
| 509 |
+
"dimension 0 of parameter "
|
| 510 |
+
"k2__length_scale is close to the "
|
| 511 |
+
"specified lower bound 1000.0. "
|
| 512 |
+
"Decreasing the bound and calling "
|
| 513 |
+
"fit again may find a better value."
|
| 514 |
+
)
|
| 515 |
+
|
| 516 |
+
X_tile = np.tile(X, 2)
|
| 517 |
+
kernel_dims = RBF(length_scale=[1.0, 2.0], length_scale_bounds=[1e1, 1e2])
|
| 518 |
+
gpr_dims = GaussianProcessRegressor(kernel=kernel_dims)
|
| 519 |
+
|
| 520 |
+
with warnings.catch_warnings(record=True) as record:
|
| 521 |
+
warnings.simplefilter("always")
|
| 522 |
+
gpr_dims.fit(X_tile, y)
|
| 523 |
+
|
| 524 |
+
assert len(record) == 2
|
| 525 |
+
|
| 526 |
+
assert issubclass(record[0].category, ConvergenceWarning)
|
| 527 |
+
assert (
|
| 528 |
+
record[0].message.args[0]
|
| 529 |
+
== "The optimal value found for "
|
| 530 |
+
"dimension 0 of parameter "
|
| 531 |
+
"length_scale is close to the "
|
| 532 |
+
"specified lower bound 10.0. "
|
| 533 |
+
"Decreasing the bound and calling "
|
| 534 |
+
"fit again may find a better value."
|
| 535 |
+
)
|
| 536 |
+
|
| 537 |
+
assert issubclass(record[1].category, ConvergenceWarning)
|
| 538 |
+
assert (
|
| 539 |
+
record[1].message.args[0]
|
| 540 |
+
== "The optimal value found for "
|
| 541 |
+
"dimension 1 of parameter "
|
| 542 |
+
"length_scale is close to the "
|
| 543 |
+
"specified lower bound 10.0. "
|
| 544 |
+
"Decreasing the bound and calling "
|
| 545 |
+
"fit again may find a better value."
|
| 546 |
+
)
|
| 547 |
+
|
| 548 |
+
|
| 549 |
+
def test_bound_check_fixed_hyperparameter():
|
| 550 |
+
# Regression test for issue #17943
|
| 551 |
+
# Check that having a hyperparameter with fixed bounds doesn't cause an
|
| 552 |
+
# error
|
| 553 |
+
k1 = 50.0**2 * RBF(length_scale=50.0) # long term smooth rising trend
|
| 554 |
+
k2 = ExpSineSquared(
|
| 555 |
+
length_scale=1.0, periodicity=1.0, periodicity_bounds="fixed"
|
| 556 |
+
) # seasonal component
|
| 557 |
+
kernel = k1 + k2
|
| 558 |
+
GaussianProcessRegressor(kernel=kernel).fit(X, y)
|
| 559 |
+
|
| 560 |
+
|
| 561 |
+
@pytest.mark.parametrize("kernel", kernels)
|
| 562 |
+
def test_constant_target(kernel):
|
| 563 |
+
"""Check that the std. dev. is affected to 1 when normalizing a constant
|
| 564 |
+
feature.
|
| 565 |
+
Non-regression test for:
|
| 566 |
+
https://github.com/scikit-learn/scikit-learn/issues/18318
|
| 567 |
+
NaN where affected to the target when scaling due to null std. dev. with
|
| 568 |
+
constant target.
|
| 569 |
+
"""
|
| 570 |
+
y_constant = np.ones(X.shape[0], dtype=np.float64)
|
| 571 |
+
|
| 572 |
+
gpr = GaussianProcessRegressor(kernel=kernel, normalize_y=True)
|
| 573 |
+
gpr.fit(X, y_constant)
|
| 574 |
+
assert gpr._y_train_std == pytest.approx(1.0)
|
| 575 |
+
|
| 576 |
+
y_pred, y_cov = gpr.predict(X, return_cov=True)
|
| 577 |
+
assert_allclose(y_pred, y_constant)
|
| 578 |
+
# set atol because we compare to zero
|
| 579 |
+
assert_allclose(np.diag(y_cov), 0.0, atol=1e-9)
|
| 580 |
+
|
| 581 |
+
# Test multi-target data
|
| 582 |
+
n_samples, n_targets = X.shape[0], 2
|
| 583 |
+
rng = np.random.RandomState(0)
|
| 584 |
+
y = np.concatenate(
|
| 585 |
+
[
|
| 586 |
+
rng.normal(size=(n_samples, 1)), # non-constant target
|
| 587 |
+
np.full(shape=(n_samples, 1), fill_value=2), # constant target
|
| 588 |
+
],
|
| 589 |
+
axis=1,
|
| 590 |
+
)
|
| 591 |
+
|
| 592 |
+
gpr.fit(X, y)
|
| 593 |
+
Y_pred, Y_cov = gpr.predict(X, return_cov=True)
|
| 594 |
+
|
| 595 |
+
assert_allclose(Y_pred[:, 1], 2)
|
| 596 |
+
assert_allclose(np.diag(Y_cov[..., 1]), 0.0, atol=1e-9)
|
| 597 |
+
|
| 598 |
+
assert Y_pred.shape == (n_samples, n_targets)
|
| 599 |
+
assert Y_cov.shape == (n_samples, n_samples, n_targets)
|
| 600 |
+
|
| 601 |
+
|
| 602 |
+
def test_gpr_consistency_std_cov_non_invertible_kernel():
|
| 603 |
+
"""Check the consistency between the returned std. dev. and the covariance.
|
| 604 |
+
Non-regression test for:
|
| 605 |
+
https://github.com/scikit-learn/scikit-learn/issues/19936
|
| 606 |
+
Inconsistencies were observed when the kernel cannot be inverted (or
|
| 607 |
+
numerically stable).
|
| 608 |
+
"""
|
| 609 |
+
kernel = C(8.98576054e05, (1e-12, 1e12)) * RBF(
|
| 610 |
+
[5.91326520e02, 1.32584051e03], (1e-12, 1e12)
|
| 611 |
+
) + WhiteKernel(noise_level=1e-5)
|
| 612 |
+
gpr = GaussianProcessRegressor(kernel=kernel, alpha=0, optimizer=None)
|
| 613 |
+
X_train = np.array(
|
| 614 |
+
[
|
| 615 |
+
[0.0, 0.0],
|
| 616 |
+
[1.54919334, -0.77459667],
|
| 617 |
+
[-1.54919334, 0.0],
|
| 618 |
+
[0.0, -1.54919334],
|
| 619 |
+
[0.77459667, 0.77459667],
|
| 620 |
+
[-0.77459667, 1.54919334],
|
| 621 |
+
]
|
| 622 |
+
)
|
| 623 |
+
y_train = np.array(
|
| 624 |
+
[
|
| 625 |
+
[-2.14882017e-10],
|
| 626 |
+
[-4.66975823e00],
|
| 627 |
+
[4.01823986e00],
|
| 628 |
+
[-1.30303674e00],
|
| 629 |
+
[-1.35760156e00],
|
| 630 |
+
[3.31215668e00],
|
| 631 |
+
]
|
| 632 |
+
)
|
| 633 |
+
gpr.fit(X_train, y_train)
|
| 634 |
+
X_test = np.array(
|
| 635 |
+
[
|
| 636 |
+
[-1.93649167, -1.93649167],
|
| 637 |
+
[1.93649167, -1.93649167],
|
| 638 |
+
[-1.93649167, 1.93649167],
|
| 639 |
+
[1.93649167, 1.93649167],
|
| 640 |
+
]
|
| 641 |
+
)
|
| 642 |
+
pred1, std = gpr.predict(X_test, return_std=True)
|
| 643 |
+
pred2, cov = gpr.predict(X_test, return_cov=True)
|
| 644 |
+
assert_allclose(std, np.sqrt(np.diagonal(cov)), rtol=1e-5)
|
| 645 |
+
|
| 646 |
+
|
| 647 |
+
@pytest.mark.parametrize(
|
| 648 |
+
"params, TypeError, err_msg",
|
| 649 |
+
[
|
| 650 |
+
(
|
| 651 |
+
{"alpha": np.zeros(100)},
|
| 652 |
+
ValueError,
|
| 653 |
+
"alpha must be a scalar or an array with same number of entries as y",
|
| 654 |
+
),
|
| 655 |
+
(
|
| 656 |
+
{
|
| 657 |
+
"kernel": WhiteKernel(noise_level_bounds=(-np.inf, np.inf)),
|
| 658 |
+
"n_restarts_optimizer": 2,
|
| 659 |
+
},
|
| 660 |
+
ValueError,
|
| 661 |
+
"requires that all bounds are finite",
|
| 662 |
+
),
|
| 663 |
+
],
|
| 664 |
+
)
|
| 665 |
+
def test_gpr_fit_error(params, TypeError, err_msg):
|
| 666 |
+
"""Check that expected error are raised during fit."""
|
| 667 |
+
gpr = GaussianProcessRegressor(**params)
|
| 668 |
+
with pytest.raises(TypeError, match=err_msg):
|
| 669 |
+
gpr.fit(X, y)
|
| 670 |
+
|
| 671 |
+
|
| 672 |
+
def test_gpr_lml_error():
|
| 673 |
+
"""Check that we raise the proper error in the LML method."""
|
| 674 |
+
gpr = GaussianProcessRegressor(kernel=RBF()).fit(X, y)
|
| 675 |
+
|
| 676 |
+
err_msg = "Gradient can only be evaluated for theta!=None"
|
| 677 |
+
with pytest.raises(ValueError, match=err_msg):
|
| 678 |
+
gpr.log_marginal_likelihood(eval_gradient=True)
|
| 679 |
+
|
| 680 |
+
|
| 681 |
+
def test_gpr_predict_error():
|
| 682 |
+
"""Check that we raise the proper error during predict."""
|
| 683 |
+
gpr = GaussianProcessRegressor(kernel=RBF()).fit(X, y)
|
| 684 |
+
|
| 685 |
+
err_msg = "At most one of return_std or return_cov can be requested."
|
| 686 |
+
with pytest.raises(RuntimeError, match=err_msg):
|
| 687 |
+
gpr.predict(X, return_cov=True, return_std=True)
|
| 688 |
+
|
| 689 |
+
|
| 690 |
+
@pytest.mark.parametrize("normalize_y", [True, False])
|
| 691 |
+
@pytest.mark.parametrize("n_targets", [None, 1, 10])
|
| 692 |
+
def test_predict_shapes(normalize_y, n_targets):
|
| 693 |
+
"""Check the shapes of y_mean, y_std, and y_cov in single-output
|
| 694 |
+
(n_targets=None) and multi-output settings, including the edge case when
|
| 695 |
+
n_targets=1, where the sklearn convention is to squeeze the predictions.
|
| 696 |
+
|
| 697 |
+
Non-regression test for:
|
| 698 |
+
https://github.com/scikit-learn/scikit-learn/issues/17394
|
| 699 |
+
https://github.com/scikit-learn/scikit-learn/issues/18065
|
| 700 |
+
https://github.com/scikit-learn/scikit-learn/issues/22174
|
| 701 |
+
"""
|
| 702 |
+
rng = np.random.RandomState(1234)
|
| 703 |
+
|
| 704 |
+
n_features, n_samples_train, n_samples_test = 6, 9, 7
|
| 705 |
+
|
| 706 |
+
y_train_shape = (n_samples_train,)
|
| 707 |
+
if n_targets is not None:
|
| 708 |
+
y_train_shape = y_train_shape + (n_targets,)
|
| 709 |
+
|
| 710 |
+
# By convention single-output data is squeezed upon prediction
|
| 711 |
+
y_test_shape = (n_samples_test,)
|
| 712 |
+
if n_targets is not None and n_targets > 1:
|
| 713 |
+
y_test_shape = y_test_shape + (n_targets,)
|
| 714 |
+
|
| 715 |
+
X_train = rng.randn(n_samples_train, n_features)
|
| 716 |
+
X_test = rng.randn(n_samples_test, n_features)
|
| 717 |
+
y_train = rng.randn(*y_train_shape)
|
| 718 |
+
|
| 719 |
+
model = GaussianProcessRegressor(normalize_y=normalize_y)
|
| 720 |
+
model.fit(X_train, y_train)
|
| 721 |
+
|
| 722 |
+
y_pred, y_std = model.predict(X_test, return_std=True)
|
| 723 |
+
_, y_cov = model.predict(X_test, return_cov=True)
|
| 724 |
+
|
| 725 |
+
assert y_pred.shape == y_test_shape
|
| 726 |
+
assert y_std.shape == y_test_shape
|
| 727 |
+
assert y_cov.shape == (n_samples_test,) + y_test_shape
|
| 728 |
+
|
| 729 |
+
|
| 730 |
+
@pytest.mark.parametrize("normalize_y", [True, False])
|
| 731 |
+
@pytest.mark.parametrize("n_targets", [None, 1, 10])
|
| 732 |
+
def test_sample_y_shapes(normalize_y, n_targets):
|
| 733 |
+
"""Check the shapes of y_samples in single-output (n_targets=0) and
|
| 734 |
+
multi-output settings, including the edge case when n_targets=1, where the
|
| 735 |
+
sklearn convention is to squeeze the predictions.
|
| 736 |
+
|
| 737 |
+
Non-regression test for:
|
| 738 |
+
https://github.com/scikit-learn/scikit-learn/issues/22175
|
| 739 |
+
"""
|
| 740 |
+
rng = np.random.RandomState(1234)
|
| 741 |
+
|
| 742 |
+
n_features, n_samples_train = 6, 9
|
| 743 |
+
# Number of spatial locations to predict at
|
| 744 |
+
n_samples_X_test = 7
|
| 745 |
+
# Number of sample predictions per test point
|
| 746 |
+
n_samples_y_test = 5
|
| 747 |
+
|
| 748 |
+
y_train_shape = (n_samples_train,)
|
| 749 |
+
if n_targets is not None:
|
| 750 |
+
y_train_shape = y_train_shape + (n_targets,)
|
| 751 |
+
|
| 752 |
+
# By convention single-output data is squeezed upon prediction
|
| 753 |
+
if n_targets is not None and n_targets > 1:
|
| 754 |
+
y_test_shape = (n_samples_X_test, n_targets, n_samples_y_test)
|
| 755 |
+
else:
|
| 756 |
+
y_test_shape = (n_samples_X_test, n_samples_y_test)
|
| 757 |
+
|
| 758 |
+
X_train = rng.randn(n_samples_train, n_features)
|
| 759 |
+
X_test = rng.randn(n_samples_X_test, n_features)
|
| 760 |
+
y_train = rng.randn(*y_train_shape)
|
| 761 |
+
|
| 762 |
+
model = GaussianProcessRegressor(normalize_y=normalize_y)
|
| 763 |
+
|
| 764 |
+
# FIXME: before fitting, the estimator does not have information regarding
|
| 765 |
+
# the number of targets and default to 1. This is inconsistent with the shape
|
| 766 |
+
# provided after `fit`. This assert should be made once the following issue
|
| 767 |
+
# is fixed:
|
| 768 |
+
# https://github.com/scikit-learn/scikit-learn/issues/22430
|
| 769 |
+
# y_samples = model.sample_y(X_test, n_samples=n_samples_y_test)
|
| 770 |
+
# assert y_samples.shape == y_test_shape
|
| 771 |
+
|
| 772 |
+
model.fit(X_train, y_train)
|
| 773 |
+
|
| 774 |
+
y_samples = model.sample_y(X_test, n_samples=n_samples_y_test)
|
| 775 |
+
assert y_samples.shape == y_test_shape
|
| 776 |
+
|
| 777 |
+
|
| 778 |
+
@pytest.mark.parametrize("n_targets", [None, 1, 2, 3])
|
| 779 |
+
@pytest.mark.parametrize("n_samples", [1, 5])
|
| 780 |
+
def test_sample_y_shape_with_prior(n_targets, n_samples):
|
| 781 |
+
"""Check the output shape of `sample_y` is consistent before and after `fit`."""
|
| 782 |
+
rng = np.random.RandomState(1024)
|
| 783 |
+
|
| 784 |
+
X = rng.randn(10, 3)
|
| 785 |
+
y = rng.randn(10, n_targets if n_targets is not None else 1)
|
| 786 |
+
|
| 787 |
+
model = GaussianProcessRegressor(n_targets=n_targets)
|
| 788 |
+
shape_before_fit = model.sample_y(X, n_samples=n_samples).shape
|
| 789 |
+
model.fit(X, y)
|
| 790 |
+
shape_after_fit = model.sample_y(X, n_samples=n_samples).shape
|
| 791 |
+
assert shape_before_fit == shape_after_fit
|
| 792 |
+
|
| 793 |
+
|
| 794 |
+
@pytest.mark.parametrize("n_targets", [None, 1, 2, 3])
|
| 795 |
+
def test_predict_shape_with_prior(n_targets):
|
| 796 |
+
"""Check the output shape of `predict` with prior distribution."""
|
| 797 |
+
rng = np.random.RandomState(1024)
|
| 798 |
+
|
| 799 |
+
n_sample = 10
|
| 800 |
+
X = rng.randn(n_sample, 3)
|
| 801 |
+
y = rng.randn(n_sample, n_targets if n_targets is not None else 1)
|
| 802 |
+
|
| 803 |
+
model = GaussianProcessRegressor(n_targets=n_targets)
|
| 804 |
+
mean_prior, cov_prior = model.predict(X, return_cov=True)
|
| 805 |
+
_, std_prior = model.predict(X, return_std=True)
|
| 806 |
+
|
| 807 |
+
model.fit(X, y)
|
| 808 |
+
mean_post, cov_post = model.predict(X, return_cov=True)
|
| 809 |
+
_, std_post = model.predict(X, return_std=True)
|
| 810 |
+
|
| 811 |
+
assert mean_prior.shape == mean_post.shape
|
| 812 |
+
assert cov_prior.shape == cov_post.shape
|
| 813 |
+
assert std_prior.shape == std_post.shape
|
| 814 |
+
|
| 815 |
+
|
| 816 |
+
def test_n_targets_error():
|
| 817 |
+
"""Check that an error is raised when the number of targets seen at fit is
|
| 818 |
+
inconsistent with n_targets.
|
| 819 |
+
"""
|
| 820 |
+
rng = np.random.RandomState(0)
|
| 821 |
+
X = rng.randn(10, 3)
|
| 822 |
+
y = rng.randn(10, 2)
|
| 823 |
+
|
| 824 |
+
model = GaussianProcessRegressor(n_targets=1)
|
| 825 |
+
with pytest.raises(ValueError, match="The number of targets seen in `y`"):
|
| 826 |
+
model.fit(X, y)
|
| 827 |
+
|
| 828 |
+
|
| 829 |
+
class CustomKernel(C):
|
| 830 |
+
"""
|
| 831 |
+
A custom kernel that has a diag method that returns the first column of the
|
| 832 |
+
input matrix X. This is a helper for the test to check that the input
|
| 833 |
+
matrix X is not mutated.
|
| 834 |
+
"""
|
| 835 |
+
|
| 836 |
+
def diag(self, X):
|
| 837 |
+
return X[:, 0]
|
| 838 |
+
|
| 839 |
+
|
| 840 |
+
def test_gpr_predict_input_not_modified():
|
| 841 |
+
"""
|
| 842 |
+
Check that the input X is not modified by the predict method of the
|
| 843 |
+
GaussianProcessRegressor when setting return_std=True.
|
| 844 |
+
|
| 845 |
+
Non-regression test for:
|
| 846 |
+
https://github.com/scikit-learn/scikit-learn/issues/24340
|
| 847 |
+
"""
|
| 848 |
+
gpr = GaussianProcessRegressor(kernel=CustomKernel()).fit(X, y)
|
| 849 |
+
|
| 850 |
+
X2_copy = np.copy(X2)
|
| 851 |
+
_, _ = gpr.predict(X2, return_std=True)
|
| 852 |
+
|
| 853 |
+
assert_allclose(X2, X2_copy)
|
venv/lib/python3.10/site-packages/sklearn/gaussian_process/tests/test_kernels.py
ADDED
|
@@ -0,0 +1,388 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Testing for kernels for Gaussian processes."""
|
| 2 |
+
|
| 3 |
+
# Author: Jan Hendrik Metzen <[email protected]>
|
| 4 |
+
# License: BSD 3 clause
|
| 5 |
+
|
| 6 |
+
from inspect import signature
|
| 7 |
+
|
| 8 |
+
import numpy as np
|
| 9 |
+
import pytest
|
| 10 |
+
|
| 11 |
+
from sklearn.base import clone
|
| 12 |
+
from sklearn.gaussian_process.kernels import (
|
| 13 |
+
RBF,
|
| 14 |
+
CompoundKernel,
|
| 15 |
+
ConstantKernel,
|
| 16 |
+
DotProduct,
|
| 17 |
+
Exponentiation,
|
| 18 |
+
ExpSineSquared,
|
| 19 |
+
KernelOperator,
|
| 20 |
+
Matern,
|
| 21 |
+
PairwiseKernel,
|
| 22 |
+
RationalQuadratic,
|
| 23 |
+
WhiteKernel,
|
| 24 |
+
_approx_fprime,
|
| 25 |
+
)
|
| 26 |
+
from sklearn.metrics.pairwise import (
|
| 27 |
+
PAIRWISE_KERNEL_FUNCTIONS,
|
| 28 |
+
euclidean_distances,
|
| 29 |
+
pairwise_kernels,
|
| 30 |
+
)
|
| 31 |
+
from sklearn.utils._testing import (
|
| 32 |
+
assert_allclose,
|
| 33 |
+
assert_almost_equal,
|
| 34 |
+
assert_array_almost_equal,
|
| 35 |
+
assert_array_equal,
|
| 36 |
+
)
|
| 37 |
+
|
| 38 |
+
X = np.random.RandomState(0).normal(0, 1, (5, 2))
|
| 39 |
+
Y = np.random.RandomState(0).normal(0, 1, (6, 2))
|
| 40 |
+
|
| 41 |
+
kernel_rbf_plus_white = RBF(length_scale=2.0) + WhiteKernel(noise_level=3.0)
|
| 42 |
+
kernels = [
|
| 43 |
+
RBF(length_scale=2.0),
|
| 44 |
+
RBF(length_scale_bounds=(0.5, 2.0)),
|
| 45 |
+
ConstantKernel(constant_value=10.0),
|
| 46 |
+
2.0 * RBF(length_scale=0.33, length_scale_bounds="fixed"),
|
| 47 |
+
2.0 * RBF(length_scale=0.5),
|
| 48 |
+
kernel_rbf_plus_white,
|
| 49 |
+
2.0 * RBF(length_scale=[0.5, 2.0]),
|
| 50 |
+
2.0 * Matern(length_scale=0.33, length_scale_bounds="fixed"),
|
| 51 |
+
2.0 * Matern(length_scale=0.5, nu=0.5),
|
| 52 |
+
2.0 * Matern(length_scale=1.5, nu=1.5),
|
| 53 |
+
2.0 * Matern(length_scale=2.5, nu=2.5),
|
| 54 |
+
2.0 * Matern(length_scale=[0.5, 2.0], nu=0.5),
|
| 55 |
+
3.0 * Matern(length_scale=[2.0, 0.5], nu=1.5),
|
| 56 |
+
4.0 * Matern(length_scale=[0.5, 0.5], nu=2.5),
|
| 57 |
+
RationalQuadratic(length_scale=0.5, alpha=1.5),
|
| 58 |
+
ExpSineSquared(length_scale=0.5, periodicity=1.5),
|
| 59 |
+
DotProduct(sigma_0=2.0),
|
| 60 |
+
DotProduct(sigma_0=2.0) ** 2,
|
| 61 |
+
RBF(length_scale=[2.0]),
|
| 62 |
+
Matern(length_scale=[2.0]),
|
| 63 |
+
]
|
| 64 |
+
for metric in PAIRWISE_KERNEL_FUNCTIONS:
|
| 65 |
+
if metric in ["additive_chi2", "chi2"]:
|
| 66 |
+
continue
|
| 67 |
+
kernels.append(PairwiseKernel(gamma=1.0, metric=metric))
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
@pytest.mark.parametrize("kernel", kernels)
|
| 71 |
+
def test_kernel_gradient(kernel):
|
| 72 |
+
# Compare analytic and numeric gradient of kernels.
|
| 73 |
+
K, K_gradient = kernel(X, eval_gradient=True)
|
| 74 |
+
|
| 75 |
+
assert K_gradient.shape[0] == X.shape[0]
|
| 76 |
+
assert K_gradient.shape[1] == X.shape[0]
|
| 77 |
+
assert K_gradient.shape[2] == kernel.theta.shape[0]
|
| 78 |
+
|
| 79 |
+
def eval_kernel_for_theta(theta):
|
| 80 |
+
kernel_clone = kernel.clone_with_theta(theta)
|
| 81 |
+
K = kernel_clone(X, eval_gradient=False)
|
| 82 |
+
return K
|
| 83 |
+
|
| 84 |
+
K_gradient_approx = _approx_fprime(kernel.theta, eval_kernel_for_theta, 1e-10)
|
| 85 |
+
|
| 86 |
+
assert_almost_equal(K_gradient, K_gradient_approx, 4)
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
@pytest.mark.parametrize(
|
| 90 |
+
"kernel",
|
| 91 |
+
[
|
| 92 |
+
kernel
|
| 93 |
+
for kernel in kernels
|
| 94 |
+
# skip non-basic kernels
|
| 95 |
+
if not (isinstance(kernel, (KernelOperator, Exponentiation)))
|
| 96 |
+
],
|
| 97 |
+
)
|
| 98 |
+
def test_kernel_theta(kernel):
|
| 99 |
+
# Check that parameter vector theta of kernel is set correctly.
|
| 100 |
+
theta = kernel.theta
|
| 101 |
+
_, K_gradient = kernel(X, eval_gradient=True)
|
| 102 |
+
|
| 103 |
+
# Determine kernel parameters that contribute to theta
|
| 104 |
+
init_sign = signature(kernel.__class__.__init__).parameters.values()
|
| 105 |
+
args = [p.name for p in init_sign if p.name != "self"]
|
| 106 |
+
theta_vars = map(
|
| 107 |
+
lambda s: s[0 : -len("_bounds")], filter(lambda s: s.endswith("_bounds"), args)
|
| 108 |
+
)
|
| 109 |
+
assert set(hyperparameter.name for hyperparameter in kernel.hyperparameters) == set(
|
| 110 |
+
theta_vars
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
# Check that values returned in theta are consistent with
|
| 114 |
+
# hyperparameter values (being their logarithms)
|
| 115 |
+
for i, hyperparameter in enumerate(kernel.hyperparameters):
|
| 116 |
+
assert theta[i] == np.log(getattr(kernel, hyperparameter.name))
|
| 117 |
+
|
| 118 |
+
# Fixed kernel parameters must be excluded from theta and gradient.
|
| 119 |
+
for i, hyperparameter in enumerate(kernel.hyperparameters):
|
| 120 |
+
# create copy with certain hyperparameter fixed
|
| 121 |
+
params = kernel.get_params()
|
| 122 |
+
params[hyperparameter.name + "_bounds"] = "fixed"
|
| 123 |
+
kernel_class = kernel.__class__
|
| 124 |
+
new_kernel = kernel_class(**params)
|
| 125 |
+
# Check that theta and K_gradient are identical with the fixed
|
| 126 |
+
# dimension left out
|
| 127 |
+
_, K_gradient_new = new_kernel(X, eval_gradient=True)
|
| 128 |
+
assert theta.shape[0] == new_kernel.theta.shape[0] + 1
|
| 129 |
+
assert K_gradient.shape[2] == K_gradient_new.shape[2] + 1
|
| 130 |
+
if i > 0:
|
| 131 |
+
assert theta[:i] == new_kernel.theta[:i]
|
| 132 |
+
assert_array_equal(K_gradient[..., :i], K_gradient_new[..., :i])
|
| 133 |
+
if i + 1 < len(kernel.hyperparameters):
|
| 134 |
+
assert theta[i + 1 :] == new_kernel.theta[i:]
|
| 135 |
+
assert_array_equal(K_gradient[..., i + 1 :], K_gradient_new[..., i:])
|
| 136 |
+
|
| 137 |
+
# Check that values of theta are modified correctly
|
| 138 |
+
for i, hyperparameter in enumerate(kernel.hyperparameters):
|
| 139 |
+
theta[i] = np.log(42)
|
| 140 |
+
kernel.theta = theta
|
| 141 |
+
assert_almost_equal(getattr(kernel, hyperparameter.name), 42)
|
| 142 |
+
|
| 143 |
+
setattr(kernel, hyperparameter.name, 43)
|
| 144 |
+
assert_almost_equal(kernel.theta[i], np.log(43))
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
@pytest.mark.parametrize(
|
| 148 |
+
"kernel",
|
| 149 |
+
[
|
| 150 |
+
kernel
|
| 151 |
+
for kernel in kernels
|
| 152 |
+
# Identity is not satisfied on diagonal
|
| 153 |
+
if kernel != kernel_rbf_plus_white
|
| 154 |
+
],
|
| 155 |
+
)
|
| 156 |
+
def test_auto_vs_cross(kernel):
|
| 157 |
+
# Auto-correlation and cross-correlation should be consistent.
|
| 158 |
+
K_auto = kernel(X)
|
| 159 |
+
K_cross = kernel(X, X)
|
| 160 |
+
assert_almost_equal(K_auto, K_cross, 5)
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
@pytest.mark.parametrize("kernel", kernels)
|
| 164 |
+
def test_kernel_diag(kernel):
|
| 165 |
+
# Test that diag method of kernel returns consistent results.
|
| 166 |
+
K_call_diag = np.diag(kernel(X))
|
| 167 |
+
K_diag = kernel.diag(X)
|
| 168 |
+
assert_almost_equal(K_call_diag, K_diag, 5)
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
def test_kernel_operator_commutative():
|
| 172 |
+
# Adding kernels and multiplying kernels should be commutative.
|
| 173 |
+
# Check addition
|
| 174 |
+
assert_almost_equal((RBF(2.0) + 1.0)(X), (1.0 + RBF(2.0))(X))
|
| 175 |
+
|
| 176 |
+
# Check multiplication
|
| 177 |
+
assert_almost_equal((3.0 * RBF(2.0))(X), (RBF(2.0) * 3.0)(X))
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
def test_kernel_anisotropic():
|
| 181 |
+
# Anisotropic kernel should be consistent with isotropic kernels.
|
| 182 |
+
kernel = 3.0 * RBF([0.5, 2.0])
|
| 183 |
+
|
| 184 |
+
K = kernel(X)
|
| 185 |
+
X1 = np.array(X)
|
| 186 |
+
X1[:, 0] *= 4
|
| 187 |
+
K1 = 3.0 * RBF(2.0)(X1)
|
| 188 |
+
assert_almost_equal(K, K1)
|
| 189 |
+
|
| 190 |
+
X2 = np.array(X)
|
| 191 |
+
X2[:, 1] /= 4
|
| 192 |
+
K2 = 3.0 * RBF(0.5)(X2)
|
| 193 |
+
assert_almost_equal(K, K2)
|
| 194 |
+
|
| 195 |
+
# Check getting and setting via theta
|
| 196 |
+
kernel.theta = kernel.theta + np.log(2)
|
| 197 |
+
assert_array_equal(kernel.theta, np.log([6.0, 1.0, 4.0]))
|
| 198 |
+
assert_array_equal(kernel.k2.length_scale, [1.0, 4.0])
|
| 199 |
+
|
| 200 |
+
|
| 201 |
+
@pytest.mark.parametrize(
|
| 202 |
+
"kernel", [kernel for kernel in kernels if kernel.is_stationary()]
|
| 203 |
+
)
|
| 204 |
+
def test_kernel_stationary(kernel):
|
| 205 |
+
# Test stationarity of kernels.
|
| 206 |
+
K = kernel(X, X + 1)
|
| 207 |
+
assert_almost_equal(K[0, 0], np.diag(K))
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
@pytest.mark.parametrize("kernel", kernels)
|
| 211 |
+
def test_kernel_input_type(kernel):
|
| 212 |
+
# Test whether kernels is for vectors or structured data
|
| 213 |
+
if isinstance(kernel, Exponentiation):
|
| 214 |
+
assert kernel.requires_vector_input == kernel.kernel.requires_vector_input
|
| 215 |
+
if isinstance(kernel, KernelOperator):
|
| 216 |
+
assert kernel.requires_vector_input == (
|
| 217 |
+
kernel.k1.requires_vector_input or kernel.k2.requires_vector_input
|
| 218 |
+
)
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
def test_compound_kernel_input_type():
|
| 222 |
+
kernel = CompoundKernel([WhiteKernel(noise_level=3.0)])
|
| 223 |
+
assert not kernel.requires_vector_input
|
| 224 |
+
|
| 225 |
+
kernel = CompoundKernel([WhiteKernel(noise_level=3.0), RBF(length_scale=2.0)])
|
| 226 |
+
assert kernel.requires_vector_input
|
| 227 |
+
|
| 228 |
+
|
| 229 |
+
def check_hyperparameters_equal(kernel1, kernel2):
|
| 230 |
+
# Check that hyperparameters of two kernels are equal
|
| 231 |
+
for attr in set(dir(kernel1) + dir(kernel2)):
|
| 232 |
+
if attr.startswith("hyperparameter_"):
|
| 233 |
+
attr_value1 = getattr(kernel1, attr)
|
| 234 |
+
attr_value2 = getattr(kernel2, attr)
|
| 235 |
+
assert attr_value1 == attr_value2
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
@pytest.mark.parametrize("kernel", kernels)
|
| 239 |
+
def test_kernel_clone(kernel):
|
| 240 |
+
# Test that sklearn's clone works correctly on kernels.
|
| 241 |
+
kernel_cloned = clone(kernel)
|
| 242 |
+
|
| 243 |
+
# XXX: Should this be fixed?
|
| 244 |
+
# This differs from the sklearn's estimators equality check.
|
| 245 |
+
assert kernel == kernel_cloned
|
| 246 |
+
assert id(kernel) != id(kernel_cloned)
|
| 247 |
+
|
| 248 |
+
# Check that all constructor parameters are equal.
|
| 249 |
+
assert kernel.get_params() == kernel_cloned.get_params()
|
| 250 |
+
|
| 251 |
+
# Check that all hyperparameters are equal.
|
| 252 |
+
check_hyperparameters_equal(kernel, kernel_cloned)
|
| 253 |
+
|
| 254 |
+
|
| 255 |
+
@pytest.mark.parametrize("kernel", kernels)
|
| 256 |
+
def test_kernel_clone_after_set_params(kernel):
|
| 257 |
+
# This test is to verify that using set_params does not
|
| 258 |
+
# break clone on kernels.
|
| 259 |
+
# This used to break because in kernels such as the RBF, non-trivial
|
| 260 |
+
# logic that modified the length scale used to be in the constructor
|
| 261 |
+
# See https://github.com/scikit-learn/scikit-learn/issues/6961
|
| 262 |
+
# for more details.
|
| 263 |
+
bounds = (1e-5, 1e5)
|
| 264 |
+
kernel_cloned = clone(kernel)
|
| 265 |
+
params = kernel.get_params()
|
| 266 |
+
# RationalQuadratic kernel is isotropic.
|
| 267 |
+
isotropic_kernels = (ExpSineSquared, RationalQuadratic)
|
| 268 |
+
if "length_scale" in params and not isinstance(kernel, isotropic_kernels):
|
| 269 |
+
length_scale = params["length_scale"]
|
| 270 |
+
if np.iterable(length_scale):
|
| 271 |
+
# XXX unreached code as of v0.22
|
| 272 |
+
params["length_scale"] = length_scale[0]
|
| 273 |
+
params["length_scale_bounds"] = bounds
|
| 274 |
+
else:
|
| 275 |
+
params["length_scale"] = [length_scale] * 2
|
| 276 |
+
params["length_scale_bounds"] = bounds * 2
|
| 277 |
+
kernel_cloned.set_params(**params)
|
| 278 |
+
kernel_cloned_clone = clone(kernel_cloned)
|
| 279 |
+
assert kernel_cloned_clone.get_params() == kernel_cloned.get_params()
|
| 280 |
+
assert id(kernel_cloned_clone) != id(kernel_cloned)
|
| 281 |
+
check_hyperparameters_equal(kernel_cloned, kernel_cloned_clone)
|
| 282 |
+
|
| 283 |
+
|
| 284 |
+
def test_matern_kernel():
|
| 285 |
+
# Test consistency of Matern kernel for special values of nu.
|
| 286 |
+
K = Matern(nu=1.5, length_scale=1.0)(X)
|
| 287 |
+
# the diagonal elements of a matern kernel are 1
|
| 288 |
+
assert_array_almost_equal(np.diag(K), np.ones(X.shape[0]))
|
| 289 |
+
# matern kernel for coef0==0.5 is equal to absolute exponential kernel
|
| 290 |
+
K_absexp = np.exp(-euclidean_distances(X, X, squared=False))
|
| 291 |
+
K = Matern(nu=0.5, length_scale=1.0)(X)
|
| 292 |
+
assert_array_almost_equal(K, K_absexp)
|
| 293 |
+
# matern kernel with coef0==inf is equal to RBF kernel
|
| 294 |
+
K_rbf = RBF(length_scale=1.0)(X)
|
| 295 |
+
K = Matern(nu=np.inf, length_scale=1.0)(X)
|
| 296 |
+
assert_array_almost_equal(K, K_rbf)
|
| 297 |
+
assert_allclose(K, K_rbf)
|
| 298 |
+
# test that special cases of matern kernel (coef0 in [0.5, 1.5, 2.5])
|
| 299 |
+
# result in nearly identical results as the general case for coef0 in
|
| 300 |
+
# [0.5 + tiny, 1.5 + tiny, 2.5 + tiny]
|
| 301 |
+
tiny = 1e-10
|
| 302 |
+
for nu in [0.5, 1.5, 2.5]:
|
| 303 |
+
K1 = Matern(nu=nu, length_scale=1.0)(X)
|
| 304 |
+
K2 = Matern(nu=nu + tiny, length_scale=1.0)(X)
|
| 305 |
+
assert_array_almost_equal(K1, K2)
|
| 306 |
+
# test that coef0==large is close to RBF
|
| 307 |
+
large = 100
|
| 308 |
+
K1 = Matern(nu=large, length_scale=1.0)(X)
|
| 309 |
+
K2 = RBF(length_scale=1.0)(X)
|
| 310 |
+
assert_array_almost_equal(K1, K2, decimal=2)
|
| 311 |
+
|
| 312 |
+
|
| 313 |
+
@pytest.mark.parametrize("kernel", kernels)
|
| 314 |
+
def test_kernel_versus_pairwise(kernel):
|
| 315 |
+
# Check that GP kernels can also be used as pairwise kernels.
|
| 316 |
+
|
| 317 |
+
# Test auto-kernel
|
| 318 |
+
if kernel != kernel_rbf_plus_white:
|
| 319 |
+
# For WhiteKernel: k(X) != k(X,X). This is assumed by
|
| 320 |
+
# pairwise_kernels
|
| 321 |
+
K1 = kernel(X)
|
| 322 |
+
K2 = pairwise_kernels(X, metric=kernel)
|
| 323 |
+
assert_array_almost_equal(K1, K2)
|
| 324 |
+
|
| 325 |
+
# Test cross-kernel
|
| 326 |
+
K1 = kernel(X, Y)
|
| 327 |
+
K2 = pairwise_kernels(X, Y, metric=kernel)
|
| 328 |
+
assert_array_almost_equal(K1, K2)
|
| 329 |
+
|
| 330 |
+
|
| 331 |
+
@pytest.mark.parametrize("kernel", kernels)
|
| 332 |
+
def test_set_get_params(kernel):
|
| 333 |
+
# Check that set_params()/get_params() is consistent with kernel.theta.
|
| 334 |
+
|
| 335 |
+
# Test get_params()
|
| 336 |
+
index = 0
|
| 337 |
+
params = kernel.get_params()
|
| 338 |
+
for hyperparameter in kernel.hyperparameters:
|
| 339 |
+
if isinstance("string", type(hyperparameter.bounds)):
|
| 340 |
+
if hyperparameter.bounds == "fixed":
|
| 341 |
+
continue
|
| 342 |
+
size = hyperparameter.n_elements
|
| 343 |
+
if size > 1: # anisotropic kernels
|
| 344 |
+
assert_almost_equal(
|
| 345 |
+
np.exp(kernel.theta[index : index + size]), params[hyperparameter.name]
|
| 346 |
+
)
|
| 347 |
+
index += size
|
| 348 |
+
else:
|
| 349 |
+
assert_almost_equal(
|
| 350 |
+
np.exp(kernel.theta[index]), params[hyperparameter.name]
|
| 351 |
+
)
|
| 352 |
+
index += 1
|
| 353 |
+
# Test set_params()
|
| 354 |
+
index = 0
|
| 355 |
+
value = 10 # arbitrary value
|
| 356 |
+
for hyperparameter in kernel.hyperparameters:
|
| 357 |
+
if isinstance("string", type(hyperparameter.bounds)):
|
| 358 |
+
if hyperparameter.bounds == "fixed":
|
| 359 |
+
continue
|
| 360 |
+
size = hyperparameter.n_elements
|
| 361 |
+
if size > 1: # anisotropic kernels
|
| 362 |
+
kernel.set_params(**{hyperparameter.name: [value] * size})
|
| 363 |
+
assert_almost_equal(
|
| 364 |
+
np.exp(kernel.theta[index : index + size]), [value] * size
|
| 365 |
+
)
|
| 366 |
+
index += size
|
| 367 |
+
else:
|
| 368 |
+
kernel.set_params(**{hyperparameter.name: value})
|
| 369 |
+
assert_almost_equal(np.exp(kernel.theta[index]), value)
|
| 370 |
+
index += 1
|
| 371 |
+
|
| 372 |
+
|
| 373 |
+
@pytest.mark.parametrize("kernel", kernels)
|
| 374 |
+
def test_repr_kernels(kernel):
|
| 375 |
+
# Smoke-test for repr in kernels.
|
| 376 |
+
|
| 377 |
+
repr(kernel)
|
| 378 |
+
|
| 379 |
+
|
| 380 |
+
def test_rational_quadratic_kernel():
|
| 381 |
+
kernel = RationalQuadratic(length_scale=[1.0, 1.0])
|
| 382 |
+
message = (
|
| 383 |
+
"RationalQuadratic kernel only supports isotropic "
|
| 384 |
+
"version, please use a single "
|
| 385 |
+
"scalar for length_scale"
|
| 386 |
+
)
|
| 387 |
+
with pytest.raises(AttributeError, match=message):
|
| 388 |
+
kernel(X)
|
venv/lib/python3.10/site-packages/sklearn/linear_model/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (2.13 kB). View file
|
|
|
venv/lib/python3.10/site-packages/sklearn/linear_model/__pycache__/_base.cpython-310.pyc
ADDED
|
Binary file (22.7 kB). View file
|
|
|
venv/lib/python3.10/site-packages/sklearn/linear_model/__pycache__/_bayes.cpython-310.pyc
ADDED
|
Binary file (21.7 kB). View file
|
|
|
venv/lib/python3.10/site-packages/sklearn/linear_model/__pycache__/_coordinate_descent.cpython-310.pyc
ADDED
|
Binary file (89.4 kB). View file
|
|
|
venv/lib/python3.10/site-packages/sklearn/linear_model/__pycache__/_huber.cpython-310.pyc
ADDED
|
Binary file (10 kB). View file
|
|
|
venv/lib/python3.10/site-packages/sklearn/linear_model/__pycache__/_least_angle.cpython-310.pyc
ADDED
|
Binary file (65.2 kB). View file
|
|
|
venv/lib/python3.10/site-packages/sklearn/linear_model/__pycache__/_linear_loss.cpython-310.pyc
ADDED
|
Binary file (18.2 kB). View file
|
|
|
venv/lib/python3.10/site-packages/sklearn/linear_model/__pycache__/_logistic.cpython-310.pyc
ADDED
|
Binary file (62.1 kB). View file
|
|
|
venv/lib/python3.10/site-packages/sklearn/linear_model/__pycache__/_omp.cpython-310.pyc
ADDED
|
Binary file (31.3 kB). View file
|
|
|
venv/lib/python3.10/site-packages/sklearn/linear_model/__pycache__/_passive_aggressive.cpython-310.pyc
ADDED
|
Binary file (17.9 kB). View file
|
|
|
venv/lib/python3.10/site-packages/sklearn/linear_model/__pycache__/_perceptron.cpython-310.pyc
ADDED
|
Binary file (7.65 kB). View file
|
|
|
venv/lib/python3.10/site-packages/sklearn/linear_model/__pycache__/_quantile.cpython-310.pyc
ADDED
|
Binary file (7.35 kB). View file
|
|
|
venv/lib/python3.10/site-packages/sklearn/linear_model/__pycache__/_ransac.cpython-310.pyc
ADDED
|
Binary file (16.5 kB). View file
|
|
|
venv/lib/python3.10/site-packages/sklearn/linear_model/__pycache__/_ridge.cpython-310.pyc
ADDED
|
Binary file (73.5 kB). View file
|
|
|
venv/lib/python3.10/site-packages/sklearn/linear_model/__pycache__/_sag.cpython-310.pyc
ADDED
|
Binary file (9.76 kB). View file
|
|
|
venv/lib/python3.10/site-packages/sklearn/linear_model/__pycache__/_stochastic_gradient.cpython-310.pyc
ADDED
|
Binary file (67.2 kB). View file
|
|
|
venv/lib/python3.10/site-packages/sklearn/linear_model/__pycache__/_theil_sen.cpython-310.pyc
ADDED
|
Binary file (13.9 kB). View file
|
|
|
venv/lib/python3.10/site-packages/sklearn/linear_model/_glm/__init__.py
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# License: BSD 3 clause
|
| 2 |
+
|
| 3 |
+
from .glm import (
|
| 4 |
+
GammaRegressor,
|
| 5 |
+
PoissonRegressor,
|
| 6 |
+
TweedieRegressor,
|
| 7 |
+
_GeneralizedLinearRegressor,
|
| 8 |
+
)
|
| 9 |
+
|
| 10 |
+
__all__ = [
|
| 11 |
+
"_GeneralizedLinearRegressor",
|
| 12 |
+
"PoissonRegressor",
|
| 13 |
+
"GammaRegressor",
|
| 14 |
+
"TweedieRegressor",
|
| 15 |
+
]
|
venv/lib/python3.10/site-packages/sklearn/linear_model/_glm/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (368 Bytes). View file
|
|
|
venv/lib/python3.10/site-packages/sklearn/linear_model/_glm/__pycache__/_newton_solver.cpython-310.pyc
ADDED
|
Binary file (12.9 kB). View file
|
|
|
venv/lib/python3.10/site-packages/sklearn/linear_model/_glm/__pycache__/glm.cpython-310.pyc
ADDED
|
Binary file (26.4 kB). View file
|
|
|
venv/lib/python3.10/site-packages/sklearn/linear_model/_glm/_newton_solver.py
ADDED
|
@@ -0,0 +1,525 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Newton solver for Generalized Linear Models
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
# Author: Christian Lorentzen <[email protected]>
|
| 6 |
+
# License: BSD 3 clause
|
| 7 |
+
|
| 8 |
+
import warnings
|
| 9 |
+
from abc import ABC, abstractmethod
|
| 10 |
+
|
| 11 |
+
import numpy as np
|
| 12 |
+
import scipy.linalg
|
| 13 |
+
import scipy.optimize
|
| 14 |
+
|
| 15 |
+
from ..._loss.loss import HalfSquaredError
|
| 16 |
+
from ...exceptions import ConvergenceWarning
|
| 17 |
+
from ...utils.optimize import _check_optimize_result
|
| 18 |
+
from .._linear_loss import LinearModelLoss
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
class NewtonSolver(ABC):
|
| 22 |
+
"""Newton solver for GLMs.
|
| 23 |
+
|
| 24 |
+
This class implements Newton/2nd-order optimization routines for GLMs. Each Newton
|
| 25 |
+
iteration aims at finding the Newton step which is done by the inner solver. With
|
| 26 |
+
Hessian H, gradient g and coefficients coef, one step solves:
|
| 27 |
+
|
| 28 |
+
H @ coef_newton = -g
|
| 29 |
+
|
| 30 |
+
For our GLM / LinearModelLoss, we have gradient g and Hessian H:
|
| 31 |
+
|
| 32 |
+
g = X.T @ loss.gradient + l2_reg_strength * coef
|
| 33 |
+
H = X.T @ diag(loss.hessian) @ X + l2_reg_strength * identity
|
| 34 |
+
|
| 35 |
+
Backtracking line search updates coef = coef_old + t * coef_newton for some t in
|
| 36 |
+
(0, 1].
|
| 37 |
+
|
| 38 |
+
This is a base class, actual implementations (child classes) may deviate from the
|
| 39 |
+
above pattern and use structure specific tricks.
|
| 40 |
+
|
| 41 |
+
Usage pattern:
|
| 42 |
+
- initialize solver: sol = NewtonSolver(...)
|
| 43 |
+
- solve the problem: sol.solve(X, y, sample_weight)
|
| 44 |
+
|
| 45 |
+
References
|
| 46 |
+
----------
|
| 47 |
+
- Jorge Nocedal, Stephen J. Wright. (2006) "Numerical Optimization"
|
| 48 |
+
2nd edition
|
| 49 |
+
https://doi.org/10.1007/978-0-387-40065-5
|
| 50 |
+
|
| 51 |
+
- Stephen P. Boyd, Lieven Vandenberghe. (2004) "Convex Optimization."
|
| 52 |
+
Cambridge University Press, 2004.
|
| 53 |
+
https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf
|
| 54 |
+
|
| 55 |
+
Parameters
|
| 56 |
+
----------
|
| 57 |
+
coef : ndarray of shape (n_dof,), (n_classes, n_dof) or (n_classes * n_dof,)
|
| 58 |
+
Initial coefficients of a linear model.
|
| 59 |
+
If shape (n_classes * n_dof,), the classes of one feature are contiguous,
|
| 60 |
+
i.e. one reconstructs the 2d-array via
|
| 61 |
+
coef.reshape((n_classes, -1), order="F").
|
| 62 |
+
|
| 63 |
+
linear_loss : LinearModelLoss
|
| 64 |
+
The loss to be minimized.
|
| 65 |
+
|
| 66 |
+
l2_reg_strength : float, default=0.0
|
| 67 |
+
L2 regularization strength.
|
| 68 |
+
|
| 69 |
+
tol : float, default=1e-4
|
| 70 |
+
The optimization problem is solved when each of the following condition is
|
| 71 |
+
fulfilled:
|
| 72 |
+
1. maximum |gradient| <= tol
|
| 73 |
+
2. Newton decrement d: 1/2 * d^2 <= tol
|
| 74 |
+
|
| 75 |
+
max_iter : int, default=100
|
| 76 |
+
Maximum number of Newton steps allowed.
|
| 77 |
+
|
| 78 |
+
n_threads : int, default=1
|
| 79 |
+
Number of OpenMP threads to use for the computation of the Hessian and gradient
|
| 80 |
+
of the loss function.
|
| 81 |
+
|
| 82 |
+
Attributes
|
| 83 |
+
----------
|
| 84 |
+
coef_old : ndarray of shape coef.shape
|
| 85 |
+
Coefficient of previous iteration.
|
| 86 |
+
|
| 87 |
+
coef_newton : ndarray of shape coef.shape
|
| 88 |
+
Newton step.
|
| 89 |
+
|
| 90 |
+
gradient : ndarray of shape coef.shape
|
| 91 |
+
Gradient of the loss w.r.t. the coefficients.
|
| 92 |
+
|
| 93 |
+
gradient_old : ndarray of shape coef.shape
|
| 94 |
+
Gradient of previous iteration.
|
| 95 |
+
|
| 96 |
+
loss_value : float
|
| 97 |
+
Value of objective function = loss + penalty.
|
| 98 |
+
|
| 99 |
+
loss_value_old : float
|
| 100 |
+
Value of objective function of previous itertion.
|
| 101 |
+
|
| 102 |
+
raw_prediction : ndarray of shape (n_samples,) or (n_samples, n_classes)
|
| 103 |
+
|
| 104 |
+
converged : bool
|
| 105 |
+
Indicator for convergence of the solver.
|
| 106 |
+
|
| 107 |
+
iteration : int
|
| 108 |
+
Number of Newton steps, i.e. calls to inner_solve
|
| 109 |
+
|
| 110 |
+
use_fallback_lbfgs_solve : bool
|
| 111 |
+
If set to True, the solver will resort to call LBFGS to finish the optimisation
|
| 112 |
+
procedure in case of convergence issues.
|
| 113 |
+
|
| 114 |
+
gradient_times_newton : float
|
| 115 |
+
gradient @ coef_newton, set in inner_solve and used by line_search. If the
|
| 116 |
+
Newton step is a descent direction, this is negative.
|
| 117 |
+
"""
|
| 118 |
+
|
| 119 |
+
def __init__(
|
| 120 |
+
self,
|
| 121 |
+
*,
|
| 122 |
+
coef,
|
| 123 |
+
linear_loss=LinearModelLoss(base_loss=HalfSquaredError(), fit_intercept=True),
|
| 124 |
+
l2_reg_strength=0.0,
|
| 125 |
+
tol=1e-4,
|
| 126 |
+
max_iter=100,
|
| 127 |
+
n_threads=1,
|
| 128 |
+
verbose=0,
|
| 129 |
+
):
|
| 130 |
+
self.coef = coef
|
| 131 |
+
self.linear_loss = linear_loss
|
| 132 |
+
self.l2_reg_strength = l2_reg_strength
|
| 133 |
+
self.tol = tol
|
| 134 |
+
self.max_iter = max_iter
|
| 135 |
+
self.n_threads = n_threads
|
| 136 |
+
self.verbose = verbose
|
| 137 |
+
|
| 138 |
+
def setup(self, X, y, sample_weight):
|
| 139 |
+
"""Precomputations
|
| 140 |
+
|
| 141 |
+
If None, initializes:
|
| 142 |
+
- self.coef
|
| 143 |
+
Sets:
|
| 144 |
+
- self.raw_prediction
|
| 145 |
+
- self.loss_value
|
| 146 |
+
"""
|
| 147 |
+
_, _, self.raw_prediction = self.linear_loss.weight_intercept_raw(self.coef, X)
|
| 148 |
+
self.loss_value = self.linear_loss.loss(
|
| 149 |
+
coef=self.coef,
|
| 150 |
+
X=X,
|
| 151 |
+
y=y,
|
| 152 |
+
sample_weight=sample_weight,
|
| 153 |
+
l2_reg_strength=self.l2_reg_strength,
|
| 154 |
+
n_threads=self.n_threads,
|
| 155 |
+
raw_prediction=self.raw_prediction,
|
| 156 |
+
)
|
| 157 |
+
|
| 158 |
+
@abstractmethod
|
| 159 |
+
def update_gradient_hessian(self, X, y, sample_weight):
|
| 160 |
+
"""Update gradient and Hessian."""
|
| 161 |
+
|
| 162 |
+
@abstractmethod
|
| 163 |
+
def inner_solve(self, X, y, sample_weight):
|
| 164 |
+
"""Compute Newton step.
|
| 165 |
+
|
| 166 |
+
Sets:
|
| 167 |
+
- self.coef_newton
|
| 168 |
+
- self.gradient_times_newton
|
| 169 |
+
"""
|
| 170 |
+
|
| 171 |
+
def fallback_lbfgs_solve(self, X, y, sample_weight):
|
| 172 |
+
"""Fallback solver in case of emergency.
|
| 173 |
+
|
| 174 |
+
If a solver detects convergence problems, it may fall back to this methods in
|
| 175 |
+
the hope to exit with success instead of raising an error.
|
| 176 |
+
|
| 177 |
+
Sets:
|
| 178 |
+
- self.coef
|
| 179 |
+
- self.converged
|
| 180 |
+
"""
|
| 181 |
+
opt_res = scipy.optimize.minimize(
|
| 182 |
+
self.linear_loss.loss_gradient,
|
| 183 |
+
self.coef,
|
| 184 |
+
method="L-BFGS-B",
|
| 185 |
+
jac=True,
|
| 186 |
+
options={
|
| 187 |
+
"maxiter": self.max_iter,
|
| 188 |
+
"maxls": 50, # default is 20
|
| 189 |
+
"iprint": self.verbose - 1,
|
| 190 |
+
"gtol": self.tol,
|
| 191 |
+
"ftol": 64 * np.finfo(np.float64).eps,
|
| 192 |
+
},
|
| 193 |
+
args=(X, y, sample_weight, self.l2_reg_strength, self.n_threads),
|
| 194 |
+
)
|
| 195 |
+
self.n_iter_ = _check_optimize_result("lbfgs", opt_res)
|
| 196 |
+
self.coef = opt_res.x
|
| 197 |
+
self.converged = opt_res.status == 0
|
| 198 |
+
|
| 199 |
+
def line_search(self, X, y, sample_weight):
|
| 200 |
+
"""Backtracking line search.
|
| 201 |
+
|
| 202 |
+
Sets:
|
| 203 |
+
- self.coef_old
|
| 204 |
+
- self.coef
|
| 205 |
+
- self.loss_value_old
|
| 206 |
+
- self.loss_value
|
| 207 |
+
- self.gradient_old
|
| 208 |
+
- self.gradient
|
| 209 |
+
- self.raw_prediction
|
| 210 |
+
"""
|
| 211 |
+
# line search parameters
|
| 212 |
+
beta, sigma = 0.5, 0.00048828125 # 1/2, 1/2**11
|
| 213 |
+
eps = 16 * np.finfo(self.loss_value.dtype).eps
|
| 214 |
+
t = 1 # step size
|
| 215 |
+
|
| 216 |
+
# gradient_times_newton = self.gradient @ self.coef_newton
|
| 217 |
+
# was computed in inner_solve.
|
| 218 |
+
armijo_term = sigma * self.gradient_times_newton
|
| 219 |
+
_, _, raw_prediction_newton = self.linear_loss.weight_intercept_raw(
|
| 220 |
+
self.coef_newton, X
|
| 221 |
+
)
|
| 222 |
+
|
| 223 |
+
self.coef_old = self.coef
|
| 224 |
+
self.loss_value_old = self.loss_value
|
| 225 |
+
self.gradient_old = self.gradient
|
| 226 |
+
|
| 227 |
+
# np.sum(np.abs(self.gradient_old))
|
| 228 |
+
sum_abs_grad_old = -1
|
| 229 |
+
|
| 230 |
+
is_verbose = self.verbose >= 2
|
| 231 |
+
if is_verbose:
|
| 232 |
+
print(" Backtracking Line Search")
|
| 233 |
+
print(f" eps=10 * finfo.eps={eps}")
|
| 234 |
+
|
| 235 |
+
for i in range(21): # until and including t = beta**20 ~ 1e-6
|
| 236 |
+
self.coef = self.coef_old + t * self.coef_newton
|
| 237 |
+
raw = self.raw_prediction + t * raw_prediction_newton
|
| 238 |
+
self.loss_value, self.gradient = self.linear_loss.loss_gradient(
|
| 239 |
+
coef=self.coef,
|
| 240 |
+
X=X,
|
| 241 |
+
y=y,
|
| 242 |
+
sample_weight=sample_weight,
|
| 243 |
+
l2_reg_strength=self.l2_reg_strength,
|
| 244 |
+
n_threads=self.n_threads,
|
| 245 |
+
raw_prediction=raw,
|
| 246 |
+
)
|
| 247 |
+
# Note: If coef_newton is too large, loss_gradient may produce inf values,
|
| 248 |
+
# potentially accompanied by a RuntimeWarning.
|
| 249 |
+
# This case will be captured by the Armijo condition.
|
| 250 |
+
|
| 251 |
+
# 1. Check Armijo / sufficient decrease condition.
|
| 252 |
+
# The smaller (more negative) the better.
|
| 253 |
+
loss_improvement = self.loss_value - self.loss_value_old
|
| 254 |
+
check = loss_improvement <= t * armijo_term
|
| 255 |
+
if is_verbose:
|
| 256 |
+
print(
|
| 257 |
+
f" line search iteration={i+1}, step size={t}\n"
|
| 258 |
+
f" check loss improvement <= armijo term: {loss_improvement} "
|
| 259 |
+
f"<= {t * armijo_term} {check}"
|
| 260 |
+
)
|
| 261 |
+
if check:
|
| 262 |
+
break
|
| 263 |
+
# 2. Deal with relative loss differences around machine precision.
|
| 264 |
+
tiny_loss = np.abs(self.loss_value_old * eps)
|
| 265 |
+
check = np.abs(loss_improvement) <= tiny_loss
|
| 266 |
+
if is_verbose:
|
| 267 |
+
print(
|
| 268 |
+
" check loss |improvement| <= eps * |loss_old|:"
|
| 269 |
+
f" {np.abs(loss_improvement)} <= {tiny_loss} {check}"
|
| 270 |
+
)
|
| 271 |
+
if check:
|
| 272 |
+
if sum_abs_grad_old < 0:
|
| 273 |
+
sum_abs_grad_old = scipy.linalg.norm(self.gradient_old, ord=1)
|
| 274 |
+
# 2.1 Check sum of absolute gradients as alternative condition.
|
| 275 |
+
sum_abs_grad = scipy.linalg.norm(self.gradient, ord=1)
|
| 276 |
+
check = sum_abs_grad < sum_abs_grad_old
|
| 277 |
+
if is_verbose:
|
| 278 |
+
print(
|
| 279 |
+
" check sum(|gradient|) < sum(|gradient_old|): "
|
| 280 |
+
f"{sum_abs_grad} < {sum_abs_grad_old} {check}"
|
| 281 |
+
)
|
| 282 |
+
if check:
|
| 283 |
+
break
|
| 284 |
+
|
| 285 |
+
t *= beta
|
| 286 |
+
else:
|
| 287 |
+
warnings.warn(
|
| 288 |
+
(
|
| 289 |
+
f"Line search of Newton solver {self.__class__.__name__} at"
|
| 290 |
+
f" iteration #{self.iteration} did no converge after 21 line search"
|
| 291 |
+
" refinement iterations. It will now resort to lbfgs instead."
|
| 292 |
+
),
|
| 293 |
+
ConvergenceWarning,
|
| 294 |
+
)
|
| 295 |
+
if self.verbose:
|
| 296 |
+
print(" Line search did not converge and resorts to lbfgs instead.")
|
| 297 |
+
self.use_fallback_lbfgs_solve = True
|
| 298 |
+
return
|
| 299 |
+
|
| 300 |
+
self.raw_prediction = raw
|
| 301 |
+
|
| 302 |
+
def check_convergence(self, X, y, sample_weight):
|
| 303 |
+
"""Check for convergence.
|
| 304 |
+
|
| 305 |
+
Sets self.converged.
|
| 306 |
+
"""
|
| 307 |
+
if self.verbose:
|
| 308 |
+
print(" Check Convergence")
|
| 309 |
+
# Note: Checking maximum relative change of coefficient <= tol is a bad
|
| 310 |
+
# convergence criterion because even a large step could have brought us close
|
| 311 |
+
# to the true minimum.
|
| 312 |
+
# coef_step = self.coef - self.coef_old
|
| 313 |
+
# check = np.max(np.abs(coef_step) / np.maximum(1, np.abs(self.coef_old)))
|
| 314 |
+
|
| 315 |
+
# 1. Criterion: maximum |gradient| <= tol
|
| 316 |
+
# The gradient was already updated in line_search()
|
| 317 |
+
check = np.max(np.abs(self.gradient))
|
| 318 |
+
if self.verbose:
|
| 319 |
+
print(f" 1. max |gradient| {check} <= {self.tol}")
|
| 320 |
+
if check > self.tol:
|
| 321 |
+
return
|
| 322 |
+
|
| 323 |
+
# 2. Criterion: For Newton decrement d, check 1/2 * d^2 <= tol
|
| 324 |
+
# d = sqrt(grad @ hessian^-1 @ grad)
|
| 325 |
+
# = sqrt(coef_newton @ hessian @ coef_newton)
|
| 326 |
+
# See Boyd, Vanderberghe (2009) "Convex Optimization" Chapter 9.5.1.
|
| 327 |
+
d2 = self.coef_newton @ self.hessian @ self.coef_newton
|
| 328 |
+
if self.verbose:
|
| 329 |
+
print(f" 2. Newton decrement {0.5 * d2} <= {self.tol}")
|
| 330 |
+
if 0.5 * d2 > self.tol:
|
| 331 |
+
return
|
| 332 |
+
|
| 333 |
+
if self.verbose:
|
| 334 |
+
loss_value = self.linear_loss.loss(
|
| 335 |
+
coef=self.coef,
|
| 336 |
+
X=X,
|
| 337 |
+
y=y,
|
| 338 |
+
sample_weight=sample_weight,
|
| 339 |
+
l2_reg_strength=self.l2_reg_strength,
|
| 340 |
+
n_threads=self.n_threads,
|
| 341 |
+
)
|
| 342 |
+
print(f" Solver did converge at loss = {loss_value}.")
|
| 343 |
+
self.converged = True
|
| 344 |
+
|
| 345 |
+
def finalize(self, X, y, sample_weight):
|
| 346 |
+
"""Finalize the solvers results.
|
| 347 |
+
|
| 348 |
+
Some solvers may need this, others not.
|
| 349 |
+
"""
|
| 350 |
+
pass
|
| 351 |
+
|
| 352 |
+
def solve(self, X, y, sample_weight):
|
| 353 |
+
"""Solve the optimization problem.
|
| 354 |
+
|
| 355 |
+
This is the main routine.
|
| 356 |
+
|
| 357 |
+
Order of calls:
|
| 358 |
+
self.setup()
|
| 359 |
+
while iteration:
|
| 360 |
+
self.update_gradient_hessian()
|
| 361 |
+
self.inner_solve()
|
| 362 |
+
self.line_search()
|
| 363 |
+
self.check_convergence()
|
| 364 |
+
self.finalize()
|
| 365 |
+
|
| 366 |
+
Returns
|
| 367 |
+
-------
|
| 368 |
+
coef : ndarray of shape (n_dof,), (n_classes, n_dof) or (n_classes * n_dof,)
|
| 369 |
+
Solution of the optimization problem.
|
| 370 |
+
"""
|
| 371 |
+
# setup usually:
|
| 372 |
+
# - initializes self.coef if needed
|
| 373 |
+
# - initializes and calculates self.raw_predictions, self.loss_value
|
| 374 |
+
self.setup(X=X, y=y, sample_weight=sample_weight)
|
| 375 |
+
|
| 376 |
+
self.iteration = 1
|
| 377 |
+
self.converged = False
|
| 378 |
+
self.use_fallback_lbfgs_solve = False
|
| 379 |
+
|
| 380 |
+
while self.iteration <= self.max_iter and not self.converged:
|
| 381 |
+
if self.verbose:
|
| 382 |
+
print(f"Newton iter={self.iteration}")
|
| 383 |
+
|
| 384 |
+
self.use_fallback_lbfgs_solve = False # Fallback solver.
|
| 385 |
+
|
| 386 |
+
# 1. Update Hessian and gradient
|
| 387 |
+
self.update_gradient_hessian(X=X, y=y, sample_weight=sample_weight)
|
| 388 |
+
|
| 389 |
+
# TODO:
|
| 390 |
+
# if iteration == 1:
|
| 391 |
+
# We might stop early, e.g. we already are close to the optimum,
|
| 392 |
+
# usually detected by zero gradients at this stage.
|
| 393 |
+
|
| 394 |
+
# 2. Inner solver
|
| 395 |
+
# Calculate Newton step/direction
|
| 396 |
+
# This usually sets self.coef_newton and self.gradient_times_newton.
|
| 397 |
+
self.inner_solve(X=X, y=y, sample_weight=sample_weight)
|
| 398 |
+
if self.use_fallback_lbfgs_solve:
|
| 399 |
+
break
|
| 400 |
+
|
| 401 |
+
# 3. Backtracking line search
|
| 402 |
+
# This usually sets self.coef_old, self.coef, self.loss_value_old
|
| 403 |
+
# self.loss_value, self.gradient_old, self.gradient,
|
| 404 |
+
# self.raw_prediction.
|
| 405 |
+
self.line_search(X=X, y=y, sample_weight=sample_weight)
|
| 406 |
+
if self.use_fallback_lbfgs_solve:
|
| 407 |
+
break
|
| 408 |
+
|
| 409 |
+
# 4. Check convergence
|
| 410 |
+
# Sets self.converged.
|
| 411 |
+
self.check_convergence(X=X, y=y, sample_weight=sample_weight)
|
| 412 |
+
|
| 413 |
+
# 5. Next iteration
|
| 414 |
+
self.iteration += 1
|
| 415 |
+
|
| 416 |
+
if not self.converged:
|
| 417 |
+
if self.use_fallback_lbfgs_solve:
|
| 418 |
+
# Note: The fallback solver circumvents check_convergence and relies on
|
| 419 |
+
# the convergence checks of lbfgs instead. Enough warnings have been
|
| 420 |
+
# raised on the way.
|
| 421 |
+
self.fallback_lbfgs_solve(X=X, y=y, sample_weight=sample_weight)
|
| 422 |
+
else:
|
| 423 |
+
warnings.warn(
|
| 424 |
+
(
|
| 425 |
+
f"Newton solver did not converge after {self.iteration - 1} "
|
| 426 |
+
"iterations."
|
| 427 |
+
),
|
| 428 |
+
ConvergenceWarning,
|
| 429 |
+
)
|
| 430 |
+
|
| 431 |
+
self.iteration -= 1
|
| 432 |
+
self.finalize(X=X, y=y, sample_weight=sample_weight)
|
| 433 |
+
return self.coef
|
| 434 |
+
|
| 435 |
+
|
| 436 |
+
class NewtonCholeskySolver(NewtonSolver):
|
| 437 |
+
"""Cholesky based Newton solver.
|
| 438 |
+
|
| 439 |
+
Inner solver for finding the Newton step H w_newton = -g uses Cholesky based linear
|
| 440 |
+
solver.
|
| 441 |
+
"""
|
| 442 |
+
|
| 443 |
+
def setup(self, X, y, sample_weight):
|
| 444 |
+
super().setup(X=X, y=y, sample_weight=sample_weight)
|
| 445 |
+
n_dof = X.shape[1]
|
| 446 |
+
if self.linear_loss.fit_intercept:
|
| 447 |
+
n_dof += 1
|
| 448 |
+
self.gradient = np.empty_like(self.coef)
|
| 449 |
+
self.hessian = np.empty_like(self.coef, shape=(n_dof, n_dof))
|
| 450 |
+
|
| 451 |
+
def update_gradient_hessian(self, X, y, sample_weight):
|
| 452 |
+
_, _, self.hessian_warning = self.linear_loss.gradient_hessian(
|
| 453 |
+
coef=self.coef,
|
| 454 |
+
X=X,
|
| 455 |
+
y=y,
|
| 456 |
+
sample_weight=sample_weight,
|
| 457 |
+
l2_reg_strength=self.l2_reg_strength,
|
| 458 |
+
n_threads=self.n_threads,
|
| 459 |
+
gradient_out=self.gradient,
|
| 460 |
+
hessian_out=self.hessian,
|
| 461 |
+
raw_prediction=self.raw_prediction, # this was updated in line_search
|
| 462 |
+
)
|
| 463 |
+
|
| 464 |
+
def inner_solve(self, X, y, sample_weight):
|
| 465 |
+
if self.hessian_warning:
|
| 466 |
+
warnings.warn(
|
| 467 |
+
(
|
| 468 |
+
f"The inner solver of {self.__class__.__name__} detected a "
|
| 469 |
+
"pointwise hessian with many negative values at iteration "
|
| 470 |
+
f"#{self.iteration}. It will now resort to lbfgs instead."
|
| 471 |
+
),
|
| 472 |
+
ConvergenceWarning,
|
| 473 |
+
)
|
| 474 |
+
if self.verbose:
|
| 475 |
+
print(
|
| 476 |
+
" The inner solver detected a pointwise Hessian with many "
|
| 477 |
+
"negative values and resorts to lbfgs instead."
|
| 478 |
+
)
|
| 479 |
+
self.use_fallback_lbfgs_solve = True
|
| 480 |
+
return
|
| 481 |
+
|
| 482 |
+
try:
|
| 483 |
+
with warnings.catch_warnings():
|
| 484 |
+
warnings.simplefilter("error", scipy.linalg.LinAlgWarning)
|
| 485 |
+
self.coef_newton = scipy.linalg.solve(
|
| 486 |
+
self.hessian, -self.gradient, check_finite=False, assume_a="sym"
|
| 487 |
+
)
|
| 488 |
+
self.gradient_times_newton = self.gradient @ self.coef_newton
|
| 489 |
+
if self.gradient_times_newton > 0:
|
| 490 |
+
if self.verbose:
|
| 491 |
+
print(
|
| 492 |
+
" The inner solver found a Newton step that is not a "
|
| 493 |
+
"descent direction and resorts to LBFGS steps instead."
|
| 494 |
+
)
|
| 495 |
+
self.use_fallback_lbfgs_solve = True
|
| 496 |
+
return
|
| 497 |
+
except (np.linalg.LinAlgError, scipy.linalg.LinAlgWarning) as e:
|
| 498 |
+
warnings.warn(
|
| 499 |
+
f"The inner solver of {self.__class__.__name__} stumbled upon a "
|
| 500 |
+
"singular or very ill-conditioned Hessian matrix at iteration "
|
| 501 |
+
f"#{self.iteration}. It will now resort to lbfgs instead.\n"
|
| 502 |
+
"Further options are to use another solver or to avoid such situation "
|
| 503 |
+
"in the first place. Possible remedies are removing collinear features"
|
| 504 |
+
" of X or increasing the penalization strengths.\n"
|
| 505 |
+
"The original Linear Algebra message was:\n"
|
| 506 |
+
+ str(e),
|
| 507 |
+
scipy.linalg.LinAlgWarning,
|
| 508 |
+
)
|
| 509 |
+
# Possible causes:
|
| 510 |
+
# 1. hess_pointwise is negative. But this is already taken care in
|
| 511 |
+
# LinearModelLoss.gradient_hessian.
|
| 512 |
+
# 2. X is singular or ill-conditioned
|
| 513 |
+
# This might be the most probable cause.
|
| 514 |
+
#
|
| 515 |
+
# There are many possible ways to deal with this situation. Most of them
|
| 516 |
+
# add, explicitly or implicitly, a matrix to the hessian to make it
|
| 517 |
+
# positive definite, confer to Chapter 3.4 of Nocedal & Wright 2nd ed.
|
| 518 |
+
# Instead, we resort to lbfgs.
|
| 519 |
+
if self.verbose:
|
| 520 |
+
print(
|
| 521 |
+
" The inner solver stumbled upon an singular or ill-conditioned "
|
| 522 |
+
"Hessian matrix and resorts to LBFGS instead."
|
| 523 |
+
)
|
| 524 |
+
self.use_fallback_lbfgs_solve = True
|
| 525 |
+
return
|
venv/lib/python3.10/site-packages/sklearn/linear_model/_glm/glm.py
ADDED
|
@@ -0,0 +1,904 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Generalized Linear Models with Exponential Dispersion Family
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
# Author: Christian Lorentzen <[email protected]>
|
| 6 |
+
# some parts and tricks stolen from other sklearn files.
|
| 7 |
+
# License: BSD 3 clause
|
| 8 |
+
|
| 9 |
+
from numbers import Integral, Real
|
| 10 |
+
|
| 11 |
+
import numpy as np
|
| 12 |
+
import scipy.optimize
|
| 13 |
+
|
| 14 |
+
from ..._loss.loss import (
|
| 15 |
+
HalfGammaLoss,
|
| 16 |
+
HalfPoissonLoss,
|
| 17 |
+
HalfSquaredError,
|
| 18 |
+
HalfTweedieLoss,
|
| 19 |
+
HalfTweedieLossIdentity,
|
| 20 |
+
)
|
| 21 |
+
from ...base import BaseEstimator, RegressorMixin, _fit_context
|
| 22 |
+
from ...utils import check_array
|
| 23 |
+
from ...utils._openmp_helpers import _openmp_effective_n_threads
|
| 24 |
+
from ...utils._param_validation import Hidden, Interval, StrOptions
|
| 25 |
+
from ...utils.optimize import _check_optimize_result
|
| 26 |
+
from ...utils.validation import _check_sample_weight, check_is_fitted
|
| 27 |
+
from .._linear_loss import LinearModelLoss
|
| 28 |
+
from ._newton_solver import NewtonCholeskySolver, NewtonSolver
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
class _GeneralizedLinearRegressor(RegressorMixin, BaseEstimator):
|
| 32 |
+
"""Regression via a penalized Generalized Linear Model (GLM).
|
| 33 |
+
|
| 34 |
+
GLMs based on a reproductive Exponential Dispersion Model (EDM) aim at fitting and
|
| 35 |
+
predicting the mean of the target y as y_pred=h(X*w) with coefficients w.
|
| 36 |
+
Therefore, the fit minimizes the following objective function with L2 priors as
|
| 37 |
+
regularizer::
|
| 38 |
+
|
| 39 |
+
1/(2*sum(s_i)) * sum(s_i * deviance(y_i, h(x_i*w)) + 1/2 * alpha * ||w||_2^2
|
| 40 |
+
|
| 41 |
+
with inverse link function h, s=sample_weight and per observation (unit) deviance
|
| 42 |
+
deviance(y_i, h(x_i*w)). Note that for an EDM, 1/2 * deviance is the negative
|
| 43 |
+
log-likelihood up to a constant (in w) term.
|
| 44 |
+
The parameter ``alpha`` corresponds to the lambda parameter in glmnet.
|
| 45 |
+
|
| 46 |
+
Instead of implementing the EDM family and a link function separately, we directly
|
| 47 |
+
use the loss functions `from sklearn._loss` which have the link functions included
|
| 48 |
+
in them for performance reasons. We pick the loss functions that implement
|
| 49 |
+
(1/2 times) EDM deviances.
|
| 50 |
+
|
| 51 |
+
Read more in the :ref:`User Guide <Generalized_linear_models>`.
|
| 52 |
+
|
| 53 |
+
.. versionadded:: 0.23
|
| 54 |
+
|
| 55 |
+
Parameters
|
| 56 |
+
----------
|
| 57 |
+
alpha : float, default=1
|
| 58 |
+
Constant that multiplies the penalty term and thus determines the
|
| 59 |
+
regularization strength. ``alpha = 0`` is equivalent to unpenalized
|
| 60 |
+
GLMs. In this case, the design matrix `X` must have full column rank
|
| 61 |
+
(no collinearities).
|
| 62 |
+
Values must be in the range `[0.0, inf)`.
|
| 63 |
+
|
| 64 |
+
fit_intercept : bool, default=True
|
| 65 |
+
Specifies if a constant (a.k.a. bias or intercept) should be
|
| 66 |
+
added to the linear predictor (X @ coef + intercept).
|
| 67 |
+
|
| 68 |
+
solver : {'lbfgs', 'newton-cholesky'}, default='lbfgs'
|
| 69 |
+
Algorithm to use in the optimization problem:
|
| 70 |
+
|
| 71 |
+
'lbfgs'
|
| 72 |
+
Calls scipy's L-BFGS-B optimizer.
|
| 73 |
+
|
| 74 |
+
'newton-cholesky'
|
| 75 |
+
Uses Newton-Raphson steps (in arbitrary precision arithmetic equivalent to
|
| 76 |
+
iterated reweighted least squares) with an inner Cholesky based solver.
|
| 77 |
+
This solver is a good choice for `n_samples` >> `n_features`, especially
|
| 78 |
+
with one-hot encoded categorical features with rare categories. Be aware
|
| 79 |
+
that the memory usage of this solver has a quadratic dependency on
|
| 80 |
+
`n_features` because it explicitly computes the Hessian matrix.
|
| 81 |
+
|
| 82 |
+
.. versionadded:: 1.2
|
| 83 |
+
|
| 84 |
+
max_iter : int, default=100
|
| 85 |
+
The maximal number of iterations for the solver.
|
| 86 |
+
Values must be in the range `[1, inf)`.
|
| 87 |
+
|
| 88 |
+
tol : float, default=1e-4
|
| 89 |
+
Stopping criterion. For the lbfgs solver,
|
| 90 |
+
the iteration will stop when ``max{|g_j|, j = 1, ..., d} <= tol``
|
| 91 |
+
where ``g_j`` is the j-th component of the gradient (derivative) of
|
| 92 |
+
the objective function.
|
| 93 |
+
Values must be in the range `(0.0, inf)`.
|
| 94 |
+
|
| 95 |
+
warm_start : bool, default=False
|
| 96 |
+
If set to ``True``, reuse the solution of the previous call to ``fit``
|
| 97 |
+
as initialization for ``coef_`` and ``intercept_``.
|
| 98 |
+
|
| 99 |
+
verbose : int, default=0
|
| 100 |
+
For the lbfgs solver set verbose to any positive number for verbosity.
|
| 101 |
+
Values must be in the range `[0, inf)`.
|
| 102 |
+
|
| 103 |
+
Attributes
|
| 104 |
+
----------
|
| 105 |
+
coef_ : array of shape (n_features,)
|
| 106 |
+
Estimated coefficients for the linear predictor (`X @ coef_ +
|
| 107 |
+
intercept_`) in the GLM.
|
| 108 |
+
|
| 109 |
+
intercept_ : float
|
| 110 |
+
Intercept (a.k.a. bias) added to linear predictor.
|
| 111 |
+
|
| 112 |
+
n_iter_ : int
|
| 113 |
+
Actual number of iterations used in the solver.
|
| 114 |
+
|
| 115 |
+
_base_loss : BaseLoss, default=HalfSquaredError()
|
| 116 |
+
This is set during fit via `self._get_loss()`.
|
| 117 |
+
A `_base_loss` contains a specific loss function as well as the link
|
| 118 |
+
function. The loss to be minimized specifies the distributional assumption of
|
| 119 |
+
the GLM, i.e. the distribution from the EDM. Here are some examples:
|
| 120 |
+
|
| 121 |
+
======================= ======== ==========================
|
| 122 |
+
_base_loss Link Target Domain
|
| 123 |
+
======================= ======== ==========================
|
| 124 |
+
HalfSquaredError identity y any real number
|
| 125 |
+
HalfPoissonLoss log 0 <= y
|
| 126 |
+
HalfGammaLoss log 0 < y
|
| 127 |
+
HalfTweedieLoss log dependent on tweedie power
|
| 128 |
+
HalfTweedieLossIdentity identity dependent on tweedie power
|
| 129 |
+
======================= ======== ==========================
|
| 130 |
+
|
| 131 |
+
The link function of the GLM, i.e. mapping from linear predictor
|
| 132 |
+
`X @ coeff + intercept` to prediction `y_pred`. For instance, with a log link,
|
| 133 |
+
we have `y_pred = exp(X @ coeff + intercept)`.
|
| 134 |
+
"""
|
| 135 |
+
|
| 136 |
+
# We allow for NewtonSolver classes for the "solver" parameter but do not
|
| 137 |
+
# make them public in the docstrings. This facilitates testing and
|
| 138 |
+
# benchmarking.
|
| 139 |
+
_parameter_constraints: dict = {
|
| 140 |
+
"alpha": [Interval(Real, 0.0, None, closed="left")],
|
| 141 |
+
"fit_intercept": ["boolean"],
|
| 142 |
+
"solver": [
|
| 143 |
+
StrOptions({"lbfgs", "newton-cholesky"}),
|
| 144 |
+
Hidden(type),
|
| 145 |
+
],
|
| 146 |
+
"max_iter": [Interval(Integral, 1, None, closed="left")],
|
| 147 |
+
"tol": [Interval(Real, 0.0, None, closed="neither")],
|
| 148 |
+
"warm_start": ["boolean"],
|
| 149 |
+
"verbose": ["verbose"],
|
| 150 |
+
}
|
| 151 |
+
|
| 152 |
+
def __init__(
|
| 153 |
+
self,
|
| 154 |
+
*,
|
| 155 |
+
alpha=1.0,
|
| 156 |
+
fit_intercept=True,
|
| 157 |
+
solver="lbfgs",
|
| 158 |
+
max_iter=100,
|
| 159 |
+
tol=1e-4,
|
| 160 |
+
warm_start=False,
|
| 161 |
+
verbose=0,
|
| 162 |
+
):
|
| 163 |
+
self.alpha = alpha
|
| 164 |
+
self.fit_intercept = fit_intercept
|
| 165 |
+
self.solver = solver
|
| 166 |
+
self.max_iter = max_iter
|
| 167 |
+
self.tol = tol
|
| 168 |
+
self.warm_start = warm_start
|
| 169 |
+
self.verbose = verbose
|
| 170 |
+
|
| 171 |
+
@_fit_context(prefer_skip_nested_validation=True)
|
| 172 |
+
def fit(self, X, y, sample_weight=None):
|
| 173 |
+
"""Fit a Generalized Linear Model.
|
| 174 |
+
|
| 175 |
+
Parameters
|
| 176 |
+
----------
|
| 177 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
| 178 |
+
Training data.
|
| 179 |
+
|
| 180 |
+
y : array-like of shape (n_samples,)
|
| 181 |
+
Target values.
|
| 182 |
+
|
| 183 |
+
sample_weight : array-like of shape (n_samples,), default=None
|
| 184 |
+
Sample weights.
|
| 185 |
+
|
| 186 |
+
Returns
|
| 187 |
+
-------
|
| 188 |
+
self : object
|
| 189 |
+
Fitted model.
|
| 190 |
+
"""
|
| 191 |
+
X, y = self._validate_data(
|
| 192 |
+
X,
|
| 193 |
+
y,
|
| 194 |
+
accept_sparse=["csc", "csr"],
|
| 195 |
+
dtype=[np.float64, np.float32],
|
| 196 |
+
y_numeric=True,
|
| 197 |
+
multi_output=False,
|
| 198 |
+
)
|
| 199 |
+
|
| 200 |
+
# required by losses
|
| 201 |
+
if self.solver == "lbfgs":
|
| 202 |
+
# lbfgs will force coef and therefore raw_prediction to be float64. The
|
| 203 |
+
# base_loss needs y, X @ coef and sample_weight all of same dtype
|
| 204 |
+
# (and contiguous).
|
| 205 |
+
loss_dtype = np.float64
|
| 206 |
+
else:
|
| 207 |
+
loss_dtype = min(max(y.dtype, X.dtype), np.float64)
|
| 208 |
+
y = check_array(y, dtype=loss_dtype, order="C", ensure_2d=False)
|
| 209 |
+
|
| 210 |
+
if sample_weight is not None:
|
| 211 |
+
# Note that _check_sample_weight calls check_array(order="C") required by
|
| 212 |
+
# losses.
|
| 213 |
+
sample_weight = _check_sample_weight(sample_weight, X, dtype=loss_dtype)
|
| 214 |
+
|
| 215 |
+
n_samples, n_features = X.shape
|
| 216 |
+
self._base_loss = self._get_loss()
|
| 217 |
+
|
| 218 |
+
linear_loss = LinearModelLoss(
|
| 219 |
+
base_loss=self._base_loss,
|
| 220 |
+
fit_intercept=self.fit_intercept,
|
| 221 |
+
)
|
| 222 |
+
|
| 223 |
+
if not linear_loss.base_loss.in_y_true_range(y):
|
| 224 |
+
raise ValueError(
|
| 225 |
+
"Some value(s) of y are out of the valid range of the loss"
|
| 226 |
+
f" {self._base_loss.__class__.__name__!r}."
|
| 227 |
+
)
|
| 228 |
+
|
| 229 |
+
# TODO: if alpha=0 check that X is not rank deficient
|
| 230 |
+
|
| 231 |
+
# NOTE: Rescaling of sample_weight:
|
| 232 |
+
# We want to minimize
|
| 233 |
+
# obj = 1/(2 * sum(sample_weight)) * sum(sample_weight * deviance)
|
| 234 |
+
# + 1/2 * alpha * L2,
|
| 235 |
+
# with
|
| 236 |
+
# deviance = 2 * loss.
|
| 237 |
+
# The objective is invariant to multiplying sample_weight by a constant. We
|
| 238 |
+
# could choose this constant such that sum(sample_weight) = 1 in order to end
|
| 239 |
+
# up with
|
| 240 |
+
# obj = sum(sample_weight * loss) + 1/2 * alpha * L2.
|
| 241 |
+
# But LinearModelLoss.loss() already computes
|
| 242 |
+
# average(loss, weights=sample_weight)
|
| 243 |
+
# Thus, without rescaling, we have
|
| 244 |
+
# obj = LinearModelLoss.loss(...)
|
| 245 |
+
|
| 246 |
+
if self.warm_start and hasattr(self, "coef_"):
|
| 247 |
+
if self.fit_intercept:
|
| 248 |
+
# LinearModelLoss needs intercept at the end of coefficient array.
|
| 249 |
+
coef = np.concatenate((self.coef_, np.array([self.intercept_])))
|
| 250 |
+
else:
|
| 251 |
+
coef = self.coef_
|
| 252 |
+
coef = coef.astype(loss_dtype, copy=False)
|
| 253 |
+
else:
|
| 254 |
+
coef = linear_loss.init_zero_coef(X, dtype=loss_dtype)
|
| 255 |
+
if self.fit_intercept:
|
| 256 |
+
coef[-1] = linear_loss.base_loss.link.link(
|
| 257 |
+
np.average(y, weights=sample_weight)
|
| 258 |
+
)
|
| 259 |
+
|
| 260 |
+
l2_reg_strength = self.alpha
|
| 261 |
+
n_threads = _openmp_effective_n_threads()
|
| 262 |
+
|
| 263 |
+
# Algorithms for optimization:
|
| 264 |
+
# Note again that our losses implement 1/2 * deviance.
|
| 265 |
+
if self.solver == "lbfgs":
|
| 266 |
+
func = linear_loss.loss_gradient
|
| 267 |
+
|
| 268 |
+
opt_res = scipy.optimize.minimize(
|
| 269 |
+
func,
|
| 270 |
+
coef,
|
| 271 |
+
method="L-BFGS-B",
|
| 272 |
+
jac=True,
|
| 273 |
+
options={
|
| 274 |
+
"maxiter": self.max_iter,
|
| 275 |
+
"maxls": 50, # default is 20
|
| 276 |
+
"iprint": self.verbose - 1,
|
| 277 |
+
"gtol": self.tol,
|
| 278 |
+
# The constant 64 was found empirically to pass the test suite.
|
| 279 |
+
# The point is that ftol is very small, but a bit larger than
|
| 280 |
+
# machine precision for float64, which is the dtype used by lbfgs.
|
| 281 |
+
"ftol": 64 * np.finfo(float).eps,
|
| 282 |
+
},
|
| 283 |
+
args=(X, y, sample_weight, l2_reg_strength, n_threads),
|
| 284 |
+
)
|
| 285 |
+
self.n_iter_ = _check_optimize_result("lbfgs", opt_res)
|
| 286 |
+
coef = opt_res.x
|
| 287 |
+
elif self.solver == "newton-cholesky":
|
| 288 |
+
sol = NewtonCholeskySolver(
|
| 289 |
+
coef=coef,
|
| 290 |
+
linear_loss=linear_loss,
|
| 291 |
+
l2_reg_strength=l2_reg_strength,
|
| 292 |
+
tol=self.tol,
|
| 293 |
+
max_iter=self.max_iter,
|
| 294 |
+
n_threads=n_threads,
|
| 295 |
+
verbose=self.verbose,
|
| 296 |
+
)
|
| 297 |
+
coef = sol.solve(X, y, sample_weight)
|
| 298 |
+
self.n_iter_ = sol.iteration
|
| 299 |
+
elif issubclass(self.solver, NewtonSolver):
|
| 300 |
+
sol = self.solver(
|
| 301 |
+
coef=coef,
|
| 302 |
+
linear_loss=linear_loss,
|
| 303 |
+
l2_reg_strength=l2_reg_strength,
|
| 304 |
+
tol=self.tol,
|
| 305 |
+
max_iter=self.max_iter,
|
| 306 |
+
n_threads=n_threads,
|
| 307 |
+
)
|
| 308 |
+
coef = sol.solve(X, y, sample_weight)
|
| 309 |
+
self.n_iter_ = sol.iteration
|
| 310 |
+
else:
|
| 311 |
+
raise ValueError(f"Invalid solver={self.solver}.")
|
| 312 |
+
|
| 313 |
+
if self.fit_intercept:
|
| 314 |
+
self.intercept_ = coef[-1]
|
| 315 |
+
self.coef_ = coef[:-1]
|
| 316 |
+
else:
|
| 317 |
+
# set intercept to zero as the other linear models do
|
| 318 |
+
self.intercept_ = 0.0
|
| 319 |
+
self.coef_ = coef
|
| 320 |
+
|
| 321 |
+
return self
|
| 322 |
+
|
| 323 |
+
def _linear_predictor(self, X):
|
| 324 |
+
"""Compute the linear_predictor = `X @ coef_ + intercept_`.
|
| 325 |
+
|
| 326 |
+
Note that we often use the term raw_prediction instead of linear predictor.
|
| 327 |
+
|
| 328 |
+
Parameters
|
| 329 |
+
----------
|
| 330 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
| 331 |
+
Samples.
|
| 332 |
+
|
| 333 |
+
Returns
|
| 334 |
+
-------
|
| 335 |
+
y_pred : array of shape (n_samples,)
|
| 336 |
+
Returns predicted values of linear predictor.
|
| 337 |
+
"""
|
| 338 |
+
check_is_fitted(self)
|
| 339 |
+
X = self._validate_data(
|
| 340 |
+
X,
|
| 341 |
+
accept_sparse=["csr", "csc", "coo"],
|
| 342 |
+
dtype=[np.float64, np.float32],
|
| 343 |
+
ensure_2d=True,
|
| 344 |
+
allow_nd=False,
|
| 345 |
+
reset=False,
|
| 346 |
+
)
|
| 347 |
+
return X @ self.coef_ + self.intercept_
|
| 348 |
+
|
| 349 |
+
def predict(self, X):
|
| 350 |
+
"""Predict using GLM with feature matrix X.
|
| 351 |
+
|
| 352 |
+
Parameters
|
| 353 |
+
----------
|
| 354 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
| 355 |
+
Samples.
|
| 356 |
+
|
| 357 |
+
Returns
|
| 358 |
+
-------
|
| 359 |
+
y_pred : array of shape (n_samples,)
|
| 360 |
+
Returns predicted values.
|
| 361 |
+
"""
|
| 362 |
+
# check_array is done in _linear_predictor
|
| 363 |
+
raw_prediction = self._linear_predictor(X)
|
| 364 |
+
y_pred = self._base_loss.link.inverse(raw_prediction)
|
| 365 |
+
return y_pred
|
| 366 |
+
|
| 367 |
+
def score(self, X, y, sample_weight=None):
|
| 368 |
+
"""Compute D^2, the percentage of deviance explained.
|
| 369 |
+
|
| 370 |
+
D^2 is a generalization of the coefficient of determination R^2.
|
| 371 |
+
R^2 uses squared error and D^2 uses the deviance of this GLM, see the
|
| 372 |
+
:ref:`User Guide <regression_metrics>`.
|
| 373 |
+
|
| 374 |
+
D^2 is defined as
|
| 375 |
+
:math:`D^2 = 1-\\frac{D(y_{true},y_{pred})}{D_{null}}`,
|
| 376 |
+
:math:`D_{null}` is the null deviance, i.e. the deviance of a model
|
| 377 |
+
with intercept alone, which corresponds to :math:`y_{pred} = \\bar{y}`.
|
| 378 |
+
The mean :math:`\\bar{y}` is averaged by sample_weight.
|
| 379 |
+
Best possible score is 1.0 and it can be negative (because the model
|
| 380 |
+
can be arbitrarily worse).
|
| 381 |
+
|
| 382 |
+
Parameters
|
| 383 |
+
----------
|
| 384 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
| 385 |
+
Test samples.
|
| 386 |
+
|
| 387 |
+
y : array-like of shape (n_samples,)
|
| 388 |
+
True values of target.
|
| 389 |
+
|
| 390 |
+
sample_weight : array-like of shape (n_samples,), default=None
|
| 391 |
+
Sample weights.
|
| 392 |
+
|
| 393 |
+
Returns
|
| 394 |
+
-------
|
| 395 |
+
score : float
|
| 396 |
+
D^2 of self.predict(X) w.r.t. y.
|
| 397 |
+
"""
|
| 398 |
+
# TODO: Adapt link to User Guide in the docstring, once
|
| 399 |
+
# https://github.com/scikit-learn/scikit-learn/pull/22118 is merged.
|
| 400 |
+
#
|
| 401 |
+
# Note, default score defined in RegressorMixin is R^2 score.
|
| 402 |
+
# TODO: make D^2 a score function in module metrics (and thereby get
|
| 403 |
+
# input validation and so on)
|
| 404 |
+
raw_prediction = self._linear_predictor(X) # validates X
|
| 405 |
+
# required by losses
|
| 406 |
+
y = check_array(y, dtype=raw_prediction.dtype, order="C", ensure_2d=False)
|
| 407 |
+
|
| 408 |
+
if sample_weight is not None:
|
| 409 |
+
# Note that _check_sample_weight calls check_array(order="C") required by
|
| 410 |
+
# losses.
|
| 411 |
+
sample_weight = _check_sample_weight(sample_weight, X, dtype=y.dtype)
|
| 412 |
+
|
| 413 |
+
base_loss = self._base_loss
|
| 414 |
+
|
| 415 |
+
if not base_loss.in_y_true_range(y):
|
| 416 |
+
raise ValueError(
|
| 417 |
+
"Some value(s) of y are out of the valid range of the loss"
|
| 418 |
+
f" {base_loss.__name__}."
|
| 419 |
+
)
|
| 420 |
+
|
| 421 |
+
constant = np.average(
|
| 422 |
+
base_loss.constant_to_optimal_zero(y_true=y, sample_weight=None),
|
| 423 |
+
weights=sample_weight,
|
| 424 |
+
)
|
| 425 |
+
|
| 426 |
+
# Missing factor of 2 in deviance cancels out.
|
| 427 |
+
deviance = base_loss(
|
| 428 |
+
y_true=y,
|
| 429 |
+
raw_prediction=raw_prediction,
|
| 430 |
+
sample_weight=sample_weight,
|
| 431 |
+
n_threads=1,
|
| 432 |
+
)
|
| 433 |
+
y_mean = base_loss.link.link(np.average(y, weights=sample_weight))
|
| 434 |
+
deviance_null = base_loss(
|
| 435 |
+
y_true=y,
|
| 436 |
+
raw_prediction=np.tile(y_mean, y.shape[0]),
|
| 437 |
+
sample_weight=sample_weight,
|
| 438 |
+
n_threads=1,
|
| 439 |
+
)
|
| 440 |
+
return 1 - (deviance + constant) / (deviance_null + constant)
|
| 441 |
+
|
| 442 |
+
def _more_tags(self):
|
| 443 |
+
try:
|
| 444 |
+
# Create instance of BaseLoss if fit wasn't called yet. This is necessary as
|
| 445 |
+
# TweedieRegressor might set the used loss during fit different from
|
| 446 |
+
# self._base_loss.
|
| 447 |
+
base_loss = self._get_loss()
|
| 448 |
+
return {"requires_positive_y": not base_loss.in_y_true_range(-1.0)}
|
| 449 |
+
except (ValueError, AttributeError, TypeError):
|
| 450 |
+
# This happens when the link or power parameter of TweedieRegressor is
|
| 451 |
+
# invalid. We fallback on the default tags in that case.
|
| 452 |
+
return {}
|
| 453 |
+
|
| 454 |
+
def _get_loss(self):
|
| 455 |
+
"""This is only necessary because of the link and power arguments of the
|
| 456 |
+
TweedieRegressor.
|
| 457 |
+
|
| 458 |
+
Note that we do not need to pass sample_weight to the loss class as this is
|
| 459 |
+
only needed to set loss.constant_hessian on which GLMs do not rely.
|
| 460 |
+
"""
|
| 461 |
+
return HalfSquaredError()
|
| 462 |
+
|
| 463 |
+
|
| 464 |
+
class PoissonRegressor(_GeneralizedLinearRegressor):
|
| 465 |
+
"""Generalized Linear Model with a Poisson distribution.
|
| 466 |
+
|
| 467 |
+
This regressor uses the 'log' link function.
|
| 468 |
+
|
| 469 |
+
Read more in the :ref:`User Guide <Generalized_linear_models>`.
|
| 470 |
+
|
| 471 |
+
.. versionadded:: 0.23
|
| 472 |
+
|
| 473 |
+
Parameters
|
| 474 |
+
----------
|
| 475 |
+
alpha : float, default=1
|
| 476 |
+
Constant that multiplies the L2 penalty term and determines the
|
| 477 |
+
regularization strength. ``alpha = 0`` is equivalent to unpenalized
|
| 478 |
+
GLMs. In this case, the design matrix `X` must have full column rank
|
| 479 |
+
(no collinearities).
|
| 480 |
+
Values of `alpha` must be in the range `[0.0, inf)`.
|
| 481 |
+
|
| 482 |
+
fit_intercept : bool, default=True
|
| 483 |
+
Specifies if a constant (a.k.a. bias or intercept) should be
|
| 484 |
+
added to the linear predictor (`X @ coef + intercept`).
|
| 485 |
+
|
| 486 |
+
solver : {'lbfgs', 'newton-cholesky'}, default='lbfgs'
|
| 487 |
+
Algorithm to use in the optimization problem:
|
| 488 |
+
|
| 489 |
+
'lbfgs'
|
| 490 |
+
Calls scipy's L-BFGS-B optimizer.
|
| 491 |
+
|
| 492 |
+
'newton-cholesky'
|
| 493 |
+
Uses Newton-Raphson steps (in arbitrary precision arithmetic equivalent to
|
| 494 |
+
iterated reweighted least squares) with an inner Cholesky based solver.
|
| 495 |
+
This solver is a good choice for `n_samples` >> `n_features`, especially
|
| 496 |
+
with one-hot encoded categorical features with rare categories. Be aware
|
| 497 |
+
that the memory usage of this solver has a quadratic dependency on
|
| 498 |
+
`n_features` because it explicitly computes the Hessian matrix.
|
| 499 |
+
|
| 500 |
+
.. versionadded:: 1.2
|
| 501 |
+
|
| 502 |
+
max_iter : int, default=100
|
| 503 |
+
The maximal number of iterations for the solver.
|
| 504 |
+
Values must be in the range `[1, inf)`.
|
| 505 |
+
|
| 506 |
+
tol : float, default=1e-4
|
| 507 |
+
Stopping criterion. For the lbfgs solver,
|
| 508 |
+
the iteration will stop when ``max{|g_j|, j = 1, ..., d} <= tol``
|
| 509 |
+
where ``g_j`` is the j-th component of the gradient (derivative) of
|
| 510 |
+
the objective function.
|
| 511 |
+
Values must be in the range `(0.0, inf)`.
|
| 512 |
+
|
| 513 |
+
warm_start : bool, default=False
|
| 514 |
+
If set to ``True``, reuse the solution of the previous call to ``fit``
|
| 515 |
+
as initialization for ``coef_`` and ``intercept_`` .
|
| 516 |
+
|
| 517 |
+
verbose : int, default=0
|
| 518 |
+
For the lbfgs solver set verbose to any positive number for verbosity.
|
| 519 |
+
Values must be in the range `[0, inf)`.
|
| 520 |
+
|
| 521 |
+
Attributes
|
| 522 |
+
----------
|
| 523 |
+
coef_ : array of shape (n_features,)
|
| 524 |
+
Estimated coefficients for the linear predictor (`X @ coef_ +
|
| 525 |
+
intercept_`) in the GLM.
|
| 526 |
+
|
| 527 |
+
intercept_ : float
|
| 528 |
+
Intercept (a.k.a. bias) added to linear predictor.
|
| 529 |
+
|
| 530 |
+
n_features_in_ : int
|
| 531 |
+
Number of features seen during :term:`fit`.
|
| 532 |
+
|
| 533 |
+
.. versionadded:: 0.24
|
| 534 |
+
|
| 535 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
| 536 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
| 537 |
+
has feature names that are all strings.
|
| 538 |
+
|
| 539 |
+
.. versionadded:: 1.0
|
| 540 |
+
|
| 541 |
+
n_iter_ : int
|
| 542 |
+
Actual number of iterations used in the solver.
|
| 543 |
+
|
| 544 |
+
See Also
|
| 545 |
+
--------
|
| 546 |
+
TweedieRegressor : Generalized Linear Model with a Tweedie distribution.
|
| 547 |
+
|
| 548 |
+
Examples
|
| 549 |
+
--------
|
| 550 |
+
>>> from sklearn import linear_model
|
| 551 |
+
>>> clf = linear_model.PoissonRegressor()
|
| 552 |
+
>>> X = [[1, 2], [2, 3], [3, 4], [4, 3]]
|
| 553 |
+
>>> y = [12, 17, 22, 21]
|
| 554 |
+
>>> clf.fit(X, y)
|
| 555 |
+
PoissonRegressor()
|
| 556 |
+
>>> clf.score(X, y)
|
| 557 |
+
0.990...
|
| 558 |
+
>>> clf.coef_
|
| 559 |
+
array([0.121..., 0.158...])
|
| 560 |
+
>>> clf.intercept_
|
| 561 |
+
2.088...
|
| 562 |
+
>>> clf.predict([[1, 1], [3, 4]])
|
| 563 |
+
array([10.676..., 21.875...])
|
| 564 |
+
"""
|
| 565 |
+
|
| 566 |
+
_parameter_constraints: dict = {
|
| 567 |
+
**_GeneralizedLinearRegressor._parameter_constraints
|
| 568 |
+
}
|
| 569 |
+
|
| 570 |
+
def __init__(
|
| 571 |
+
self,
|
| 572 |
+
*,
|
| 573 |
+
alpha=1.0,
|
| 574 |
+
fit_intercept=True,
|
| 575 |
+
solver="lbfgs",
|
| 576 |
+
max_iter=100,
|
| 577 |
+
tol=1e-4,
|
| 578 |
+
warm_start=False,
|
| 579 |
+
verbose=0,
|
| 580 |
+
):
|
| 581 |
+
super().__init__(
|
| 582 |
+
alpha=alpha,
|
| 583 |
+
fit_intercept=fit_intercept,
|
| 584 |
+
solver=solver,
|
| 585 |
+
max_iter=max_iter,
|
| 586 |
+
tol=tol,
|
| 587 |
+
warm_start=warm_start,
|
| 588 |
+
verbose=verbose,
|
| 589 |
+
)
|
| 590 |
+
|
| 591 |
+
def _get_loss(self):
|
| 592 |
+
return HalfPoissonLoss()
|
| 593 |
+
|
| 594 |
+
|
| 595 |
+
class GammaRegressor(_GeneralizedLinearRegressor):
|
| 596 |
+
"""Generalized Linear Model with a Gamma distribution.
|
| 597 |
+
|
| 598 |
+
This regressor uses the 'log' link function.
|
| 599 |
+
|
| 600 |
+
Read more in the :ref:`User Guide <Generalized_linear_models>`.
|
| 601 |
+
|
| 602 |
+
.. versionadded:: 0.23
|
| 603 |
+
|
| 604 |
+
Parameters
|
| 605 |
+
----------
|
| 606 |
+
alpha : float, default=1
|
| 607 |
+
Constant that multiplies the L2 penalty term and determines the
|
| 608 |
+
regularization strength. ``alpha = 0`` is equivalent to unpenalized
|
| 609 |
+
GLMs. In this case, the design matrix `X` must have full column rank
|
| 610 |
+
(no collinearities).
|
| 611 |
+
Values of `alpha` must be in the range `[0.0, inf)`.
|
| 612 |
+
|
| 613 |
+
fit_intercept : bool, default=True
|
| 614 |
+
Specifies if a constant (a.k.a. bias or intercept) should be
|
| 615 |
+
added to the linear predictor `X @ coef_ + intercept_`.
|
| 616 |
+
|
| 617 |
+
solver : {'lbfgs', 'newton-cholesky'}, default='lbfgs'
|
| 618 |
+
Algorithm to use in the optimization problem:
|
| 619 |
+
|
| 620 |
+
'lbfgs'
|
| 621 |
+
Calls scipy's L-BFGS-B optimizer.
|
| 622 |
+
|
| 623 |
+
'newton-cholesky'
|
| 624 |
+
Uses Newton-Raphson steps (in arbitrary precision arithmetic equivalent to
|
| 625 |
+
iterated reweighted least squares) with an inner Cholesky based solver.
|
| 626 |
+
This solver is a good choice for `n_samples` >> `n_features`, especially
|
| 627 |
+
with one-hot encoded categorical features with rare categories. Be aware
|
| 628 |
+
that the memory usage of this solver has a quadratic dependency on
|
| 629 |
+
`n_features` because it explicitly computes the Hessian matrix.
|
| 630 |
+
|
| 631 |
+
.. versionadded:: 1.2
|
| 632 |
+
|
| 633 |
+
max_iter : int, default=100
|
| 634 |
+
The maximal number of iterations for the solver.
|
| 635 |
+
Values must be in the range `[1, inf)`.
|
| 636 |
+
|
| 637 |
+
tol : float, default=1e-4
|
| 638 |
+
Stopping criterion. For the lbfgs solver,
|
| 639 |
+
the iteration will stop when ``max{|g_j|, j = 1, ..., d} <= tol``
|
| 640 |
+
where ``g_j`` is the j-th component of the gradient (derivative) of
|
| 641 |
+
the objective function.
|
| 642 |
+
Values must be in the range `(0.0, inf)`.
|
| 643 |
+
|
| 644 |
+
warm_start : bool, default=False
|
| 645 |
+
If set to ``True``, reuse the solution of the previous call to ``fit``
|
| 646 |
+
as initialization for `coef_` and `intercept_`.
|
| 647 |
+
|
| 648 |
+
verbose : int, default=0
|
| 649 |
+
For the lbfgs solver set verbose to any positive number for verbosity.
|
| 650 |
+
Values must be in the range `[0, inf)`.
|
| 651 |
+
|
| 652 |
+
Attributes
|
| 653 |
+
----------
|
| 654 |
+
coef_ : array of shape (n_features,)
|
| 655 |
+
Estimated coefficients for the linear predictor (`X @ coef_ +
|
| 656 |
+
intercept_`) in the GLM.
|
| 657 |
+
|
| 658 |
+
intercept_ : float
|
| 659 |
+
Intercept (a.k.a. bias) added to linear predictor.
|
| 660 |
+
|
| 661 |
+
n_features_in_ : int
|
| 662 |
+
Number of features seen during :term:`fit`.
|
| 663 |
+
|
| 664 |
+
.. versionadded:: 0.24
|
| 665 |
+
|
| 666 |
+
n_iter_ : int
|
| 667 |
+
Actual number of iterations used in the solver.
|
| 668 |
+
|
| 669 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
| 670 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
| 671 |
+
has feature names that are all strings.
|
| 672 |
+
|
| 673 |
+
.. versionadded:: 1.0
|
| 674 |
+
|
| 675 |
+
See Also
|
| 676 |
+
--------
|
| 677 |
+
PoissonRegressor : Generalized Linear Model with a Poisson distribution.
|
| 678 |
+
TweedieRegressor : Generalized Linear Model with a Tweedie distribution.
|
| 679 |
+
|
| 680 |
+
Examples
|
| 681 |
+
--------
|
| 682 |
+
>>> from sklearn import linear_model
|
| 683 |
+
>>> clf = linear_model.GammaRegressor()
|
| 684 |
+
>>> X = [[1, 2], [2, 3], [3, 4], [4, 3]]
|
| 685 |
+
>>> y = [19, 26, 33, 30]
|
| 686 |
+
>>> clf.fit(X, y)
|
| 687 |
+
GammaRegressor()
|
| 688 |
+
>>> clf.score(X, y)
|
| 689 |
+
0.773...
|
| 690 |
+
>>> clf.coef_
|
| 691 |
+
array([0.072..., 0.066...])
|
| 692 |
+
>>> clf.intercept_
|
| 693 |
+
2.896...
|
| 694 |
+
>>> clf.predict([[1, 0], [2, 8]])
|
| 695 |
+
array([19.483..., 35.795...])
|
| 696 |
+
"""
|
| 697 |
+
|
| 698 |
+
_parameter_constraints: dict = {
|
| 699 |
+
**_GeneralizedLinearRegressor._parameter_constraints
|
| 700 |
+
}
|
| 701 |
+
|
| 702 |
+
def __init__(
|
| 703 |
+
self,
|
| 704 |
+
*,
|
| 705 |
+
alpha=1.0,
|
| 706 |
+
fit_intercept=True,
|
| 707 |
+
solver="lbfgs",
|
| 708 |
+
max_iter=100,
|
| 709 |
+
tol=1e-4,
|
| 710 |
+
warm_start=False,
|
| 711 |
+
verbose=0,
|
| 712 |
+
):
|
| 713 |
+
super().__init__(
|
| 714 |
+
alpha=alpha,
|
| 715 |
+
fit_intercept=fit_intercept,
|
| 716 |
+
solver=solver,
|
| 717 |
+
max_iter=max_iter,
|
| 718 |
+
tol=tol,
|
| 719 |
+
warm_start=warm_start,
|
| 720 |
+
verbose=verbose,
|
| 721 |
+
)
|
| 722 |
+
|
| 723 |
+
def _get_loss(self):
|
| 724 |
+
return HalfGammaLoss()
|
| 725 |
+
|
| 726 |
+
|
| 727 |
+
class TweedieRegressor(_GeneralizedLinearRegressor):
|
| 728 |
+
"""Generalized Linear Model with a Tweedie distribution.
|
| 729 |
+
|
| 730 |
+
This estimator can be used to model different GLMs depending on the
|
| 731 |
+
``power`` parameter, which determines the underlying distribution.
|
| 732 |
+
|
| 733 |
+
Read more in the :ref:`User Guide <Generalized_linear_models>`.
|
| 734 |
+
|
| 735 |
+
.. versionadded:: 0.23
|
| 736 |
+
|
| 737 |
+
Parameters
|
| 738 |
+
----------
|
| 739 |
+
power : float, default=0
|
| 740 |
+
The power determines the underlying target distribution according
|
| 741 |
+
to the following table:
|
| 742 |
+
|
| 743 |
+
+-------+------------------------+
|
| 744 |
+
| Power | Distribution |
|
| 745 |
+
+=======+========================+
|
| 746 |
+
| 0 | Normal |
|
| 747 |
+
+-------+------------------------+
|
| 748 |
+
| 1 | Poisson |
|
| 749 |
+
+-------+------------------------+
|
| 750 |
+
| (1,2) | Compound Poisson Gamma |
|
| 751 |
+
+-------+------------------------+
|
| 752 |
+
| 2 | Gamma |
|
| 753 |
+
+-------+------------------------+
|
| 754 |
+
| 3 | Inverse Gaussian |
|
| 755 |
+
+-------+------------------------+
|
| 756 |
+
|
| 757 |
+
For ``0 < power < 1``, no distribution exists.
|
| 758 |
+
|
| 759 |
+
alpha : float, default=1
|
| 760 |
+
Constant that multiplies the L2 penalty term and determines the
|
| 761 |
+
regularization strength. ``alpha = 0`` is equivalent to unpenalized
|
| 762 |
+
GLMs. In this case, the design matrix `X` must have full column rank
|
| 763 |
+
(no collinearities).
|
| 764 |
+
Values of `alpha` must be in the range `[0.0, inf)`.
|
| 765 |
+
|
| 766 |
+
fit_intercept : bool, default=True
|
| 767 |
+
Specifies if a constant (a.k.a. bias or intercept) should be
|
| 768 |
+
added to the linear predictor (`X @ coef + intercept`).
|
| 769 |
+
|
| 770 |
+
link : {'auto', 'identity', 'log'}, default='auto'
|
| 771 |
+
The link function of the GLM, i.e. mapping from linear predictor
|
| 772 |
+
`X @ coeff + intercept` to prediction `y_pred`. Option 'auto' sets
|
| 773 |
+
the link depending on the chosen `power` parameter as follows:
|
| 774 |
+
|
| 775 |
+
- 'identity' for ``power <= 0``, e.g. for the Normal distribution
|
| 776 |
+
- 'log' for ``power > 0``, e.g. for Poisson, Gamma and Inverse Gaussian
|
| 777 |
+
distributions
|
| 778 |
+
|
| 779 |
+
solver : {'lbfgs', 'newton-cholesky'}, default='lbfgs'
|
| 780 |
+
Algorithm to use in the optimization problem:
|
| 781 |
+
|
| 782 |
+
'lbfgs'
|
| 783 |
+
Calls scipy's L-BFGS-B optimizer.
|
| 784 |
+
|
| 785 |
+
'newton-cholesky'
|
| 786 |
+
Uses Newton-Raphson steps (in arbitrary precision arithmetic equivalent to
|
| 787 |
+
iterated reweighted least squares) with an inner Cholesky based solver.
|
| 788 |
+
This solver is a good choice for `n_samples` >> `n_features`, especially
|
| 789 |
+
with one-hot encoded categorical features with rare categories. Be aware
|
| 790 |
+
that the memory usage of this solver has a quadratic dependency on
|
| 791 |
+
`n_features` because it explicitly computes the Hessian matrix.
|
| 792 |
+
|
| 793 |
+
.. versionadded:: 1.2
|
| 794 |
+
|
| 795 |
+
max_iter : int, default=100
|
| 796 |
+
The maximal number of iterations for the solver.
|
| 797 |
+
Values must be in the range `[1, inf)`.
|
| 798 |
+
|
| 799 |
+
tol : float, default=1e-4
|
| 800 |
+
Stopping criterion. For the lbfgs solver,
|
| 801 |
+
the iteration will stop when ``max{|g_j|, j = 1, ..., d} <= tol``
|
| 802 |
+
where ``g_j`` is the j-th component of the gradient (derivative) of
|
| 803 |
+
the objective function.
|
| 804 |
+
Values must be in the range `(0.0, inf)`.
|
| 805 |
+
|
| 806 |
+
warm_start : bool, default=False
|
| 807 |
+
If set to ``True``, reuse the solution of the previous call to ``fit``
|
| 808 |
+
as initialization for ``coef_`` and ``intercept_`` .
|
| 809 |
+
|
| 810 |
+
verbose : int, default=0
|
| 811 |
+
For the lbfgs solver set verbose to any positive number for verbosity.
|
| 812 |
+
Values must be in the range `[0, inf)`.
|
| 813 |
+
|
| 814 |
+
Attributes
|
| 815 |
+
----------
|
| 816 |
+
coef_ : array of shape (n_features,)
|
| 817 |
+
Estimated coefficients for the linear predictor (`X @ coef_ +
|
| 818 |
+
intercept_`) in the GLM.
|
| 819 |
+
|
| 820 |
+
intercept_ : float
|
| 821 |
+
Intercept (a.k.a. bias) added to linear predictor.
|
| 822 |
+
|
| 823 |
+
n_iter_ : int
|
| 824 |
+
Actual number of iterations used in the solver.
|
| 825 |
+
|
| 826 |
+
n_features_in_ : int
|
| 827 |
+
Number of features seen during :term:`fit`.
|
| 828 |
+
|
| 829 |
+
.. versionadded:: 0.24
|
| 830 |
+
|
| 831 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
| 832 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
| 833 |
+
has feature names that are all strings.
|
| 834 |
+
|
| 835 |
+
.. versionadded:: 1.0
|
| 836 |
+
|
| 837 |
+
See Also
|
| 838 |
+
--------
|
| 839 |
+
PoissonRegressor : Generalized Linear Model with a Poisson distribution.
|
| 840 |
+
GammaRegressor : Generalized Linear Model with a Gamma distribution.
|
| 841 |
+
|
| 842 |
+
Examples
|
| 843 |
+
--------
|
| 844 |
+
>>> from sklearn import linear_model
|
| 845 |
+
>>> clf = linear_model.TweedieRegressor()
|
| 846 |
+
>>> X = [[1, 2], [2, 3], [3, 4], [4, 3]]
|
| 847 |
+
>>> y = [2, 3.5, 5, 5.5]
|
| 848 |
+
>>> clf.fit(X, y)
|
| 849 |
+
TweedieRegressor()
|
| 850 |
+
>>> clf.score(X, y)
|
| 851 |
+
0.839...
|
| 852 |
+
>>> clf.coef_
|
| 853 |
+
array([0.599..., 0.299...])
|
| 854 |
+
>>> clf.intercept_
|
| 855 |
+
1.600...
|
| 856 |
+
>>> clf.predict([[1, 1], [3, 4]])
|
| 857 |
+
array([2.500..., 4.599...])
|
| 858 |
+
"""
|
| 859 |
+
|
| 860 |
+
_parameter_constraints: dict = {
|
| 861 |
+
**_GeneralizedLinearRegressor._parameter_constraints,
|
| 862 |
+
"power": [Interval(Real, None, None, closed="neither")],
|
| 863 |
+
"link": [StrOptions({"auto", "identity", "log"})],
|
| 864 |
+
}
|
| 865 |
+
|
| 866 |
+
def __init__(
|
| 867 |
+
self,
|
| 868 |
+
*,
|
| 869 |
+
power=0.0,
|
| 870 |
+
alpha=1.0,
|
| 871 |
+
fit_intercept=True,
|
| 872 |
+
link="auto",
|
| 873 |
+
solver="lbfgs",
|
| 874 |
+
max_iter=100,
|
| 875 |
+
tol=1e-4,
|
| 876 |
+
warm_start=False,
|
| 877 |
+
verbose=0,
|
| 878 |
+
):
|
| 879 |
+
super().__init__(
|
| 880 |
+
alpha=alpha,
|
| 881 |
+
fit_intercept=fit_intercept,
|
| 882 |
+
solver=solver,
|
| 883 |
+
max_iter=max_iter,
|
| 884 |
+
tol=tol,
|
| 885 |
+
warm_start=warm_start,
|
| 886 |
+
verbose=verbose,
|
| 887 |
+
)
|
| 888 |
+
self.link = link
|
| 889 |
+
self.power = power
|
| 890 |
+
|
| 891 |
+
def _get_loss(self):
|
| 892 |
+
if self.link == "auto":
|
| 893 |
+
if self.power <= 0:
|
| 894 |
+
# identity link
|
| 895 |
+
return HalfTweedieLossIdentity(power=self.power)
|
| 896 |
+
else:
|
| 897 |
+
# log link
|
| 898 |
+
return HalfTweedieLoss(power=self.power)
|
| 899 |
+
|
| 900 |
+
if self.link == "log":
|
| 901 |
+
return HalfTweedieLoss(power=self.power)
|
| 902 |
+
|
| 903 |
+
if self.link == "identity":
|
| 904 |
+
return HalfTweedieLossIdentity(power=self.power)
|
venv/lib/python3.10/site-packages/sklearn/linear_model/_glm/tests/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
# License: BSD 3 clause
|
venv/lib/python3.10/site-packages/sklearn/linear_model/_glm/tests/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (199 Bytes). View file
|
|
|
venv/lib/python3.10/site-packages/sklearn/linear_model/_glm/tests/__pycache__/test_glm.cpython-310.pyc
ADDED
|
Binary file (23.8 kB). View file
|
|
|
venv/lib/python3.10/site-packages/sklearn/linear_model/_glm/tests/test_glm.py
ADDED
|
@@ -0,0 +1,1112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Authors: Christian Lorentzen <[email protected]>
|
| 2 |
+
#
|
| 3 |
+
# License: BSD 3 clause
|
| 4 |
+
|
| 5 |
+
import itertools
|
| 6 |
+
import warnings
|
| 7 |
+
from functools import partial
|
| 8 |
+
|
| 9 |
+
import numpy as np
|
| 10 |
+
import pytest
|
| 11 |
+
import scipy
|
| 12 |
+
from numpy.testing import assert_allclose
|
| 13 |
+
from scipy import linalg
|
| 14 |
+
from scipy.optimize import minimize, root
|
| 15 |
+
|
| 16 |
+
from sklearn._loss import HalfBinomialLoss, HalfPoissonLoss, HalfTweedieLoss
|
| 17 |
+
from sklearn._loss.link import IdentityLink, LogLink
|
| 18 |
+
from sklearn.base import clone
|
| 19 |
+
from sklearn.datasets import make_low_rank_matrix, make_regression
|
| 20 |
+
from sklearn.exceptions import ConvergenceWarning
|
| 21 |
+
from sklearn.linear_model import (
|
| 22 |
+
GammaRegressor,
|
| 23 |
+
PoissonRegressor,
|
| 24 |
+
Ridge,
|
| 25 |
+
TweedieRegressor,
|
| 26 |
+
)
|
| 27 |
+
from sklearn.linear_model._glm import _GeneralizedLinearRegressor
|
| 28 |
+
from sklearn.linear_model._glm._newton_solver import NewtonCholeskySolver
|
| 29 |
+
from sklearn.linear_model._linear_loss import LinearModelLoss
|
| 30 |
+
from sklearn.metrics import d2_tweedie_score, mean_poisson_deviance
|
| 31 |
+
from sklearn.model_selection import train_test_split
|
| 32 |
+
|
| 33 |
+
SOLVERS = ["lbfgs", "newton-cholesky"]
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
class BinomialRegressor(_GeneralizedLinearRegressor):
|
| 37 |
+
def _get_loss(self):
|
| 38 |
+
return HalfBinomialLoss()
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def _special_minimize(fun, grad, x, tol_NM, tol):
|
| 42 |
+
# Find good starting point by Nelder-Mead
|
| 43 |
+
res_NM = minimize(
|
| 44 |
+
fun, x, method="Nelder-Mead", options={"xatol": tol_NM, "fatol": tol_NM}
|
| 45 |
+
)
|
| 46 |
+
# Now refine via root finding on the gradient of the function, which is
|
| 47 |
+
# more precise than minimizing the function itself.
|
| 48 |
+
res = root(
|
| 49 |
+
grad,
|
| 50 |
+
res_NM.x,
|
| 51 |
+
method="lm",
|
| 52 |
+
options={"ftol": tol, "xtol": tol, "gtol": tol},
|
| 53 |
+
)
|
| 54 |
+
return res.x
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
@pytest.fixture(scope="module")
|
| 58 |
+
def regression_data():
|
| 59 |
+
X, y = make_regression(
|
| 60 |
+
n_samples=107, n_features=10, n_informative=80, noise=0.5, random_state=2
|
| 61 |
+
)
|
| 62 |
+
return X, y
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
@pytest.fixture(
|
| 66 |
+
params=itertools.product(
|
| 67 |
+
["long", "wide"],
|
| 68 |
+
[
|
| 69 |
+
BinomialRegressor(),
|
| 70 |
+
PoissonRegressor(),
|
| 71 |
+
GammaRegressor(),
|
| 72 |
+
# TweedieRegressor(power=3.0), # too difficult
|
| 73 |
+
# TweedieRegressor(power=0, link="log"), # too difficult
|
| 74 |
+
TweedieRegressor(power=1.5),
|
| 75 |
+
],
|
| 76 |
+
),
|
| 77 |
+
ids=lambda param: f"{param[0]}-{param[1]}",
|
| 78 |
+
)
|
| 79 |
+
def glm_dataset(global_random_seed, request):
|
| 80 |
+
"""Dataset with GLM solutions, well conditioned X.
|
| 81 |
+
|
| 82 |
+
This is inspired by ols_ridge_dataset in test_ridge.py.
|
| 83 |
+
|
| 84 |
+
The construction is based on the SVD decomposition of X = U S V'.
|
| 85 |
+
|
| 86 |
+
Parameters
|
| 87 |
+
----------
|
| 88 |
+
type : {"long", "wide"}
|
| 89 |
+
If "long", then n_samples > n_features.
|
| 90 |
+
If "wide", then n_features > n_samples.
|
| 91 |
+
model : a GLM model
|
| 92 |
+
|
| 93 |
+
For "wide", we return the minimum norm solution:
|
| 94 |
+
|
| 95 |
+
min ||w||_2 subject to w = argmin deviance(X, y, w)
|
| 96 |
+
|
| 97 |
+
Note that the deviance is always minimized if y = inverse_link(X w) is possible to
|
| 98 |
+
achieve, which it is in the wide data case. Therefore, we can construct the
|
| 99 |
+
solution with minimum norm like (wide) OLS:
|
| 100 |
+
|
| 101 |
+
min ||w||_2 subject to link(y) = raw_prediction = X w
|
| 102 |
+
|
| 103 |
+
Returns
|
| 104 |
+
-------
|
| 105 |
+
model : GLM model
|
| 106 |
+
X : ndarray
|
| 107 |
+
Last column of 1, i.e. intercept.
|
| 108 |
+
y : ndarray
|
| 109 |
+
coef_unpenalized : ndarray
|
| 110 |
+
Minimum norm solutions, i.e. min sum(loss(w)) (with minimum ||w||_2 in
|
| 111 |
+
case of ambiguity)
|
| 112 |
+
Last coefficient is intercept.
|
| 113 |
+
coef_penalized : ndarray
|
| 114 |
+
GLM solution with alpha=l2_reg_strength=1, i.e.
|
| 115 |
+
min 1/n * sum(loss) + ||w[:-1]||_2^2.
|
| 116 |
+
Last coefficient is intercept.
|
| 117 |
+
l2_reg_strength : float
|
| 118 |
+
Always equal 1.
|
| 119 |
+
"""
|
| 120 |
+
data_type, model = request.param
|
| 121 |
+
# Make larger dim more than double as big as the smaller one.
|
| 122 |
+
# This helps when constructing singular matrices like (X, X).
|
| 123 |
+
if data_type == "long":
|
| 124 |
+
n_samples, n_features = 12, 4
|
| 125 |
+
else:
|
| 126 |
+
n_samples, n_features = 4, 12
|
| 127 |
+
k = min(n_samples, n_features)
|
| 128 |
+
rng = np.random.RandomState(global_random_seed)
|
| 129 |
+
X = make_low_rank_matrix(
|
| 130 |
+
n_samples=n_samples,
|
| 131 |
+
n_features=n_features,
|
| 132 |
+
effective_rank=k,
|
| 133 |
+
tail_strength=0.1,
|
| 134 |
+
random_state=rng,
|
| 135 |
+
)
|
| 136 |
+
X[:, -1] = 1 # last columns acts as intercept
|
| 137 |
+
U, s, Vt = linalg.svd(X, full_matrices=False)
|
| 138 |
+
assert np.all(s > 1e-3) # to be sure
|
| 139 |
+
assert np.max(s) / np.min(s) < 100 # condition number of X
|
| 140 |
+
|
| 141 |
+
if data_type == "long":
|
| 142 |
+
coef_unpenalized = rng.uniform(low=1, high=3, size=n_features)
|
| 143 |
+
coef_unpenalized *= rng.choice([-1, 1], size=n_features)
|
| 144 |
+
raw_prediction = X @ coef_unpenalized
|
| 145 |
+
else:
|
| 146 |
+
raw_prediction = rng.uniform(low=-3, high=3, size=n_samples)
|
| 147 |
+
# minimum norm solution min ||w||_2 such that raw_prediction = X w:
|
| 148 |
+
# w = X'(XX')^-1 raw_prediction = V s^-1 U' raw_prediction
|
| 149 |
+
coef_unpenalized = Vt.T @ np.diag(1 / s) @ U.T @ raw_prediction
|
| 150 |
+
|
| 151 |
+
linear_loss = LinearModelLoss(base_loss=model._get_loss(), fit_intercept=True)
|
| 152 |
+
sw = np.full(shape=n_samples, fill_value=1 / n_samples)
|
| 153 |
+
y = linear_loss.base_loss.link.inverse(raw_prediction)
|
| 154 |
+
|
| 155 |
+
# Add penalty l2_reg_strength * ||coef||_2^2 for l2_reg_strength=1 and solve with
|
| 156 |
+
# optimizer. Note that the problem is well conditioned such that we get accurate
|
| 157 |
+
# results.
|
| 158 |
+
l2_reg_strength = 1
|
| 159 |
+
fun = partial(
|
| 160 |
+
linear_loss.loss,
|
| 161 |
+
X=X[:, :-1],
|
| 162 |
+
y=y,
|
| 163 |
+
sample_weight=sw,
|
| 164 |
+
l2_reg_strength=l2_reg_strength,
|
| 165 |
+
)
|
| 166 |
+
grad = partial(
|
| 167 |
+
linear_loss.gradient,
|
| 168 |
+
X=X[:, :-1],
|
| 169 |
+
y=y,
|
| 170 |
+
sample_weight=sw,
|
| 171 |
+
l2_reg_strength=l2_reg_strength,
|
| 172 |
+
)
|
| 173 |
+
coef_penalized_with_intercept = _special_minimize(
|
| 174 |
+
fun, grad, coef_unpenalized, tol_NM=1e-6, tol=1e-14
|
| 175 |
+
)
|
| 176 |
+
|
| 177 |
+
linear_loss = LinearModelLoss(base_loss=model._get_loss(), fit_intercept=False)
|
| 178 |
+
fun = partial(
|
| 179 |
+
linear_loss.loss,
|
| 180 |
+
X=X[:, :-1],
|
| 181 |
+
y=y,
|
| 182 |
+
sample_weight=sw,
|
| 183 |
+
l2_reg_strength=l2_reg_strength,
|
| 184 |
+
)
|
| 185 |
+
grad = partial(
|
| 186 |
+
linear_loss.gradient,
|
| 187 |
+
X=X[:, :-1],
|
| 188 |
+
y=y,
|
| 189 |
+
sample_weight=sw,
|
| 190 |
+
l2_reg_strength=l2_reg_strength,
|
| 191 |
+
)
|
| 192 |
+
coef_penalized_without_intercept = _special_minimize(
|
| 193 |
+
fun, grad, coef_unpenalized[:-1], tol_NM=1e-6, tol=1e-14
|
| 194 |
+
)
|
| 195 |
+
|
| 196 |
+
# To be sure
|
| 197 |
+
assert np.linalg.norm(coef_penalized_with_intercept) < np.linalg.norm(
|
| 198 |
+
coef_unpenalized
|
| 199 |
+
)
|
| 200 |
+
|
| 201 |
+
return (
|
| 202 |
+
model,
|
| 203 |
+
X,
|
| 204 |
+
y,
|
| 205 |
+
coef_unpenalized,
|
| 206 |
+
coef_penalized_with_intercept,
|
| 207 |
+
coef_penalized_without_intercept,
|
| 208 |
+
l2_reg_strength,
|
| 209 |
+
)
|
| 210 |
+
|
| 211 |
+
|
| 212 |
+
@pytest.mark.parametrize("solver", SOLVERS)
|
| 213 |
+
@pytest.mark.parametrize("fit_intercept", [False, True])
|
| 214 |
+
def test_glm_regression(solver, fit_intercept, glm_dataset):
|
| 215 |
+
"""Test that GLM converges for all solvers to correct solution.
|
| 216 |
+
|
| 217 |
+
We work with a simple constructed data set with known solution.
|
| 218 |
+
"""
|
| 219 |
+
model, X, y, _, coef_with_intercept, coef_without_intercept, alpha = glm_dataset
|
| 220 |
+
params = dict(
|
| 221 |
+
alpha=alpha,
|
| 222 |
+
fit_intercept=fit_intercept,
|
| 223 |
+
solver=solver,
|
| 224 |
+
tol=1e-12,
|
| 225 |
+
max_iter=1000,
|
| 226 |
+
)
|
| 227 |
+
|
| 228 |
+
model = clone(model).set_params(**params)
|
| 229 |
+
X = X[:, :-1] # remove intercept
|
| 230 |
+
if fit_intercept:
|
| 231 |
+
coef = coef_with_intercept
|
| 232 |
+
intercept = coef[-1]
|
| 233 |
+
coef = coef[:-1]
|
| 234 |
+
else:
|
| 235 |
+
coef = coef_without_intercept
|
| 236 |
+
intercept = 0
|
| 237 |
+
|
| 238 |
+
model.fit(X, y)
|
| 239 |
+
|
| 240 |
+
rtol = 5e-5 if solver == "lbfgs" else 1e-9
|
| 241 |
+
assert model.intercept_ == pytest.approx(intercept, rel=rtol)
|
| 242 |
+
assert_allclose(model.coef_, coef, rtol=rtol)
|
| 243 |
+
|
| 244 |
+
# Same with sample_weight.
|
| 245 |
+
model = (
|
| 246 |
+
clone(model).set_params(**params).fit(X, y, sample_weight=np.ones(X.shape[0]))
|
| 247 |
+
)
|
| 248 |
+
assert model.intercept_ == pytest.approx(intercept, rel=rtol)
|
| 249 |
+
assert_allclose(model.coef_, coef, rtol=rtol)
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
@pytest.mark.parametrize("solver", SOLVERS)
|
| 253 |
+
@pytest.mark.parametrize("fit_intercept", [True, False])
|
| 254 |
+
def test_glm_regression_hstacked_X(solver, fit_intercept, glm_dataset):
|
| 255 |
+
"""Test that GLM converges for all solvers to correct solution on hstacked data.
|
| 256 |
+
|
| 257 |
+
We work with a simple constructed data set with known solution.
|
| 258 |
+
Fit on [X] with alpha is the same as fit on [X, X]/2 with alpha/2.
|
| 259 |
+
For long X, [X, X] is still a long but singular matrix.
|
| 260 |
+
"""
|
| 261 |
+
model, X, y, _, coef_with_intercept, coef_without_intercept, alpha = glm_dataset
|
| 262 |
+
n_samples, n_features = X.shape
|
| 263 |
+
params = dict(
|
| 264 |
+
alpha=alpha / 2,
|
| 265 |
+
fit_intercept=fit_intercept,
|
| 266 |
+
solver=solver,
|
| 267 |
+
tol=1e-12,
|
| 268 |
+
max_iter=1000,
|
| 269 |
+
)
|
| 270 |
+
|
| 271 |
+
model = clone(model).set_params(**params)
|
| 272 |
+
X = X[:, :-1] # remove intercept
|
| 273 |
+
X = 0.5 * np.concatenate((X, X), axis=1)
|
| 274 |
+
assert np.linalg.matrix_rank(X) <= min(n_samples, n_features - 1)
|
| 275 |
+
if fit_intercept:
|
| 276 |
+
coef = coef_with_intercept
|
| 277 |
+
intercept = coef[-1]
|
| 278 |
+
coef = coef[:-1]
|
| 279 |
+
else:
|
| 280 |
+
coef = coef_without_intercept
|
| 281 |
+
intercept = 0
|
| 282 |
+
|
| 283 |
+
with warnings.catch_warnings():
|
| 284 |
+
# XXX: Investigate if the ConvergenceWarning that can appear in some
|
| 285 |
+
# cases should be considered a bug or not. In the mean time we don't
|
| 286 |
+
# fail when the assertions below pass irrespective of the presence of
|
| 287 |
+
# the warning.
|
| 288 |
+
warnings.simplefilter("ignore", ConvergenceWarning)
|
| 289 |
+
model.fit(X, y)
|
| 290 |
+
|
| 291 |
+
rtol = 2e-4 if solver == "lbfgs" else 5e-9
|
| 292 |
+
assert model.intercept_ == pytest.approx(intercept, rel=rtol)
|
| 293 |
+
assert_allclose(model.coef_, np.r_[coef, coef], rtol=rtol)
|
| 294 |
+
|
| 295 |
+
|
| 296 |
+
@pytest.mark.parametrize("solver", SOLVERS)
|
| 297 |
+
@pytest.mark.parametrize("fit_intercept", [True, False])
|
| 298 |
+
def test_glm_regression_vstacked_X(solver, fit_intercept, glm_dataset):
|
| 299 |
+
"""Test that GLM converges for all solvers to correct solution on vstacked data.
|
| 300 |
+
|
| 301 |
+
We work with a simple constructed data set with known solution.
|
| 302 |
+
Fit on [X] with alpha is the same as fit on [X], [y]
|
| 303 |
+
[X], [y] with 1 * alpha.
|
| 304 |
+
It is the same alpha as the average loss stays the same.
|
| 305 |
+
For wide X, [X', X'] is a singular matrix.
|
| 306 |
+
"""
|
| 307 |
+
model, X, y, _, coef_with_intercept, coef_without_intercept, alpha = glm_dataset
|
| 308 |
+
n_samples, n_features = X.shape
|
| 309 |
+
params = dict(
|
| 310 |
+
alpha=alpha,
|
| 311 |
+
fit_intercept=fit_intercept,
|
| 312 |
+
solver=solver,
|
| 313 |
+
tol=1e-12,
|
| 314 |
+
max_iter=1000,
|
| 315 |
+
)
|
| 316 |
+
|
| 317 |
+
model = clone(model).set_params(**params)
|
| 318 |
+
X = X[:, :-1] # remove intercept
|
| 319 |
+
X = np.concatenate((X, X), axis=0)
|
| 320 |
+
assert np.linalg.matrix_rank(X) <= min(n_samples, n_features)
|
| 321 |
+
y = np.r_[y, y]
|
| 322 |
+
if fit_intercept:
|
| 323 |
+
coef = coef_with_intercept
|
| 324 |
+
intercept = coef[-1]
|
| 325 |
+
coef = coef[:-1]
|
| 326 |
+
else:
|
| 327 |
+
coef = coef_without_intercept
|
| 328 |
+
intercept = 0
|
| 329 |
+
model.fit(X, y)
|
| 330 |
+
|
| 331 |
+
rtol = 3e-5 if solver == "lbfgs" else 5e-9
|
| 332 |
+
assert model.intercept_ == pytest.approx(intercept, rel=rtol)
|
| 333 |
+
assert_allclose(model.coef_, coef, rtol=rtol)
|
| 334 |
+
|
| 335 |
+
|
| 336 |
+
@pytest.mark.parametrize("solver", SOLVERS)
|
| 337 |
+
@pytest.mark.parametrize("fit_intercept", [True, False])
|
| 338 |
+
def test_glm_regression_unpenalized(solver, fit_intercept, glm_dataset):
|
| 339 |
+
"""Test that unpenalized GLM converges for all solvers to correct solution.
|
| 340 |
+
|
| 341 |
+
We work with a simple constructed data set with known solution.
|
| 342 |
+
Note: This checks the minimum norm solution for wide X, i.e.
|
| 343 |
+
n_samples < n_features:
|
| 344 |
+
min ||w||_2 subject to w = argmin deviance(X, y, w)
|
| 345 |
+
"""
|
| 346 |
+
model, X, y, coef, _, _, _ = glm_dataset
|
| 347 |
+
n_samples, n_features = X.shape
|
| 348 |
+
alpha = 0 # unpenalized
|
| 349 |
+
params = dict(
|
| 350 |
+
alpha=alpha,
|
| 351 |
+
fit_intercept=fit_intercept,
|
| 352 |
+
solver=solver,
|
| 353 |
+
tol=1e-12,
|
| 354 |
+
max_iter=1000,
|
| 355 |
+
)
|
| 356 |
+
|
| 357 |
+
model = clone(model).set_params(**params)
|
| 358 |
+
if fit_intercept:
|
| 359 |
+
X = X[:, :-1] # remove intercept
|
| 360 |
+
intercept = coef[-1]
|
| 361 |
+
coef = coef[:-1]
|
| 362 |
+
else:
|
| 363 |
+
intercept = 0
|
| 364 |
+
|
| 365 |
+
with warnings.catch_warnings():
|
| 366 |
+
if solver.startswith("newton") and n_samples < n_features:
|
| 367 |
+
# The newton solvers should warn and automatically fallback to LBFGS
|
| 368 |
+
# in this case. The model should still converge.
|
| 369 |
+
warnings.filterwarnings("ignore", category=scipy.linalg.LinAlgWarning)
|
| 370 |
+
# XXX: Investigate if the ConvergenceWarning that can appear in some
|
| 371 |
+
# cases should be considered a bug or not. In the mean time we don't
|
| 372 |
+
# fail when the assertions below pass irrespective of the presence of
|
| 373 |
+
# the warning.
|
| 374 |
+
warnings.filterwarnings("ignore", category=ConvergenceWarning)
|
| 375 |
+
model.fit(X, y)
|
| 376 |
+
|
| 377 |
+
# FIXME: `assert_allclose(model.coef_, coef)` should work for all cases but fails
|
| 378 |
+
# for the wide/fat case with n_features > n_samples. Most current GLM solvers do
|
| 379 |
+
# NOT return the minimum norm solution with fit_intercept=True.
|
| 380 |
+
if n_samples > n_features:
|
| 381 |
+
rtol = 5e-5 if solver == "lbfgs" else 1e-7
|
| 382 |
+
assert model.intercept_ == pytest.approx(intercept)
|
| 383 |
+
assert_allclose(model.coef_, coef, rtol=rtol)
|
| 384 |
+
else:
|
| 385 |
+
# As it is an underdetermined problem, prediction = y. The following shows that
|
| 386 |
+
# we get a solution, i.e. a (non-unique) minimum of the objective function ...
|
| 387 |
+
rtol = 5e-5
|
| 388 |
+
if solver == "newton-cholesky":
|
| 389 |
+
rtol = 5e-4
|
| 390 |
+
assert_allclose(model.predict(X), y, rtol=rtol)
|
| 391 |
+
|
| 392 |
+
norm_solution = np.linalg.norm(np.r_[intercept, coef])
|
| 393 |
+
norm_model = np.linalg.norm(np.r_[model.intercept_, model.coef_])
|
| 394 |
+
if solver == "newton-cholesky":
|
| 395 |
+
# XXX: This solver shows random behaviour. Sometimes it finds solutions
|
| 396 |
+
# with norm_model <= norm_solution! So we check conditionally.
|
| 397 |
+
if norm_model < (1 + 1e-12) * norm_solution:
|
| 398 |
+
assert model.intercept_ == pytest.approx(intercept)
|
| 399 |
+
assert_allclose(model.coef_, coef, rtol=rtol)
|
| 400 |
+
elif solver == "lbfgs" and fit_intercept:
|
| 401 |
+
# But it is not the minimum norm solution. Otherwise the norms would be
|
| 402 |
+
# equal.
|
| 403 |
+
assert norm_model > (1 + 1e-12) * norm_solution
|
| 404 |
+
|
| 405 |
+
# See https://github.com/scikit-learn/scikit-learn/issues/23670.
|
| 406 |
+
# Note: Even adding a tiny penalty does not give the minimal norm solution.
|
| 407 |
+
# XXX: We could have naively expected LBFGS to find the minimal norm
|
| 408 |
+
# solution by adding a very small penalty. Even that fails for a reason we
|
| 409 |
+
# do not properly understand at this point.
|
| 410 |
+
else:
|
| 411 |
+
# When `fit_intercept=False`, LBFGS naturally converges to the minimum norm
|
| 412 |
+
# solution on this problem.
|
| 413 |
+
# XXX: Do we have any theoretical guarantees why this should be the case?
|
| 414 |
+
assert model.intercept_ == pytest.approx(intercept, rel=rtol)
|
| 415 |
+
assert_allclose(model.coef_, coef, rtol=rtol)
|
| 416 |
+
|
| 417 |
+
|
| 418 |
+
@pytest.mark.parametrize("solver", SOLVERS)
|
| 419 |
+
@pytest.mark.parametrize("fit_intercept", [True, False])
|
| 420 |
+
def test_glm_regression_unpenalized_hstacked_X(solver, fit_intercept, glm_dataset):
|
| 421 |
+
"""Test that unpenalized GLM converges for all solvers to correct solution.
|
| 422 |
+
|
| 423 |
+
We work with a simple constructed data set with known solution.
|
| 424 |
+
GLM fit on [X] is the same as fit on [X, X]/2.
|
| 425 |
+
For long X, [X, X] is a singular matrix and we check against the minimum norm
|
| 426 |
+
solution:
|
| 427 |
+
min ||w||_2 subject to w = argmin deviance(X, y, w)
|
| 428 |
+
"""
|
| 429 |
+
model, X, y, coef, _, _, _ = glm_dataset
|
| 430 |
+
n_samples, n_features = X.shape
|
| 431 |
+
alpha = 0 # unpenalized
|
| 432 |
+
params = dict(
|
| 433 |
+
alpha=alpha,
|
| 434 |
+
fit_intercept=fit_intercept,
|
| 435 |
+
solver=solver,
|
| 436 |
+
tol=1e-12,
|
| 437 |
+
max_iter=1000,
|
| 438 |
+
)
|
| 439 |
+
|
| 440 |
+
model = clone(model).set_params(**params)
|
| 441 |
+
if fit_intercept:
|
| 442 |
+
intercept = coef[-1]
|
| 443 |
+
coef = coef[:-1]
|
| 444 |
+
if n_samples > n_features:
|
| 445 |
+
X = X[:, :-1] # remove intercept
|
| 446 |
+
X = 0.5 * np.concatenate((X, X), axis=1)
|
| 447 |
+
else:
|
| 448 |
+
# To know the minimum norm solution, we keep one intercept column and do
|
| 449 |
+
# not divide by 2. Later on, we must take special care.
|
| 450 |
+
X = np.c_[X[:, :-1], X[:, :-1], X[:, -1]]
|
| 451 |
+
else:
|
| 452 |
+
intercept = 0
|
| 453 |
+
X = 0.5 * np.concatenate((X, X), axis=1)
|
| 454 |
+
assert np.linalg.matrix_rank(X) <= min(n_samples, n_features)
|
| 455 |
+
|
| 456 |
+
with warnings.catch_warnings():
|
| 457 |
+
if solver.startswith("newton"):
|
| 458 |
+
# The newton solvers should warn and automatically fallback to LBFGS
|
| 459 |
+
# in this case. The model should still converge.
|
| 460 |
+
warnings.filterwarnings("ignore", category=scipy.linalg.LinAlgWarning)
|
| 461 |
+
# XXX: Investigate if the ConvergenceWarning that can appear in some
|
| 462 |
+
# cases should be considered a bug or not. In the mean time we don't
|
| 463 |
+
# fail when the assertions below pass irrespective of the presence of
|
| 464 |
+
# the warning.
|
| 465 |
+
warnings.filterwarnings("ignore", category=ConvergenceWarning)
|
| 466 |
+
model.fit(X, y)
|
| 467 |
+
|
| 468 |
+
if fit_intercept and n_samples < n_features:
|
| 469 |
+
# Here we take special care.
|
| 470 |
+
model_intercept = 2 * model.intercept_
|
| 471 |
+
model_coef = 2 * model.coef_[:-1] # exclude the other intercept term.
|
| 472 |
+
# For minimum norm solution, we would have
|
| 473 |
+
# assert model.intercept_ == pytest.approx(model.coef_[-1])
|
| 474 |
+
else:
|
| 475 |
+
model_intercept = model.intercept_
|
| 476 |
+
model_coef = model.coef_
|
| 477 |
+
|
| 478 |
+
if n_samples > n_features:
|
| 479 |
+
assert model_intercept == pytest.approx(intercept)
|
| 480 |
+
rtol = 1e-4
|
| 481 |
+
assert_allclose(model_coef, np.r_[coef, coef], rtol=rtol)
|
| 482 |
+
else:
|
| 483 |
+
# As it is an underdetermined problem, prediction = y. The following shows that
|
| 484 |
+
# we get a solution, i.e. a (non-unique) minimum of the objective function ...
|
| 485 |
+
rtol = 1e-6 if solver == "lbfgs" else 5e-6
|
| 486 |
+
assert_allclose(model.predict(X), y, rtol=rtol)
|
| 487 |
+
if (solver == "lbfgs" and fit_intercept) or solver == "newton-cholesky":
|
| 488 |
+
# Same as in test_glm_regression_unpenalized.
|
| 489 |
+
# But it is not the minimum norm solution. Otherwise the norms would be
|
| 490 |
+
# equal.
|
| 491 |
+
norm_solution = np.linalg.norm(
|
| 492 |
+
0.5 * np.r_[intercept, intercept, coef, coef]
|
| 493 |
+
)
|
| 494 |
+
norm_model = np.linalg.norm(np.r_[model.intercept_, model.coef_])
|
| 495 |
+
assert norm_model > (1 + 1e-12) * norm_solution
|
| 496 |
+
# For minimum norm solution, we would have
|
| 497 |
+
# assert model.intercept_ == pytest.approx(model.coef_[-1])
|
| 498 |
+
else:
|
| 499 |
+
assert model_intercept == pytest.approx(intercept, rel=5e-6)
|
| 500 |
+
assert_allclose(model_coef, np.r_[coef, coef], rtol=1e-4)
|
| 501 |
+
|
| 502 |
+
|
| 503 |
+
@pytest.mark.parametrize("solver", SOLVERS)
|
| 504 |
+
@pytest.mark.parametrize("fit_intercept", [True, False])
|
| 505 |
+
def test_glm_regression_unpenalized_vstacked_X(solver, fit_intercept, glm_dataset):
|
| 506 |
+
"""Test that unpenalized GLM converges for all solvers to correct solution.
|
| 507 |
+
|
| 508 |
+
We work with a simple constructed data set with known solution.
|
| 509 |
+
GLM fit on [X] is the same as fit on [X], [y]
|
| 510 |
+
[X], [y].
|
| 511 |
+
For wide X, [X', X'] is a singular matrix and we check against the minimum norm
|
| 512 |
+
solution:
|
| 513 |
+
min ||w||_2 subject to w = argmin deviance(X, y, w)
|
| 514 |
+
"""
|
| 515 |
+
model, X, y, coef, _, _, _ = glm_dataset
|
| 516 |
+
n_samples, n_features = X.shape
|
| 517 |
+
alpha = 0 # unpenalized
|
| 518 |
+
params = dict(
|
| 519 |
+
alpha=alpha,
|
| 520 |
+
fit_intercept=fit_intercept,
|
| 521 |
+
solver=solver,
|
| 522 |
+
tol=1e-12,
|
| 523 |
+
max_iter=1000,
|
| 524 |
+
)
|
| 525 |
+
|
| 526 |
+
model = clone(model).set_params(**params)
|
| 527 |
+
if fit_intercept:
|
| 528 |
+
X = X[:, :-1] # remove intercept
|
| 529 |
+
intercept = coef[-1]
|
| 530 |
+
coef = coef[:-1]
|
| 531 |
+
else:
|
| 532 |
+
intercept = 0
|
| 533 |
+
X = np.concatenate((X, X), axis=0)
|
| 534 |
+
assert np.linalg.matrix_rank(X) <= min(n_samples, n_features)
|
| 535 |
+
y = np.r_[y, y]
|
| 536 |
+
|
| 537 |
+
with warnings.catch_warnings():
|
| 538 |
+
if solver.startswith("newton") and n_samples < n_features:
|
| 539 |
+
# The newton solvers should warn and automatically fallback to LBFGS
|
| 540 |
+
# in this case. The model should still converge.
|
| 541 |
+
warnings.filterwarnings("ignore", category=scipy.linalg.LinAlgWarning)
|
| 542 |
+
# XXX: Investigate if the ConvergenceWarning that can appear in some
|
| 543 |
+
# cases should be considered a bug or not. In the mean time we don't
|
| 544 |
+
# fail when the assertions below pass irrespective of the presence of
|
| 545 |
+
# the warning.
|
| 546 |
+
warnings.filterwarnings("ignore", category=ConvergenceWarning)
|
| 547 |
+
model.fit(X, y)
|
| 548 |
+
|
| 549 |
+
if n_samples > n_features:
|
| 550 |
+
rtol = 5e-5 if solver == "lbfgs" else 1e-6
|
| 551 |
+
assert model.intercept_ == pytest.approx(intercept)
|
| 552 |
+
assert_allclose(model.coef_, coef, rtol=rtol)
|
| 553 |
+
else:
|
| 554 |
+
# As it is an underdetermined problem, prediction = y. The following shows that
|
| 555 |
+
# we get a solution, i.e. a (non-unique) minimum of the objective function ...
|
| 556 |
+
rtol = 1e-6 if solver == "lbfgs" else 5e-6
|
| 557 |
+
assert_allclose(model.predict(X), y, rtol=rtol)
|
| 558 |
+
|
| 559 |
+
norm_solution = np.linalg.norm(np.r_[intercept, coef])
|
| 560 |
+
norm_model = np.linalg.norm(np.r_[model.intercept_, model.coef_])
|
| 561 |
+
if solver == "newton-cholesky":
|
| 562 |
+
# XXX: This solver shows random behaviour. Sometimes it finds solutions
|
| 563 |
+
# with norm_model <= norm_solution! So we check conditionally.
|
| 564 |
+
if not (norm_model > (1 + 1e-12) * norm_solution):
|
| 565 |
+
assert model.intercept_ == pytest.approx(intercept)
|
| 566 |
+
assert_allclose(model.coef_, coef, rtol=1e-4)
|
| 567 |
+
elif solver == "lbfgs" and fit_intercept:
|
| 568 |
+
# Same as in test_glm_regression_unpenalized.
|
| 569 |
+
# But it is not the minimum norm solution. Otherwise the norms would be
|
| 570 |
+
# equal.
|
| 571 |
+
assert norm_model > (1 + 1e-12) * norm_solution
|
| 572 |
+
else:
|
| 573 |
+
rtol = 1e-5 if solver == "newton-cholesky" else 1e-4
|
| 574 |
+
assert model.intercept_ == pytest.approx(intercept, rel=rtol)
|
| 575 |
+
assert_allclose(model.coef_, coef, rtol=rtol)
|
| 576 |
+
|
| 577 |
+
|
| 578 |
+
def test_sample_weights_validation():
|
| 579 |
+
"""Test the raised errors in the validation of sample_weight."""
|
| 580 |
+
# scalar value but not positive
|
| 581 |
+
X = [[1]]
|
| 582 |
+
y = [1]
|
| 583 |
+
weights = 0
|
| 584 |
+
glm = _GeneralizedLinearRegressor()
|
| 585 |
+
|
| 586 |
+
# Positive weights are accepted
|
| 587 |
+
glm.fit(X, y, sample_weight=1)
|
| 588 |
+
|
| 589 |
+
# 2d array
|
| 590 |
+
weights = [[0]]
|
| 591 |
+
with pytest.raises(ValueError, match="must be 1D array or scalar"):
|
| 592 |
+
glm.fit(X, y, weights)
|
| 593 |
+
|
| 594 |
+
# 1d but wrong length
|
| 595 |
+
weights = [1, 0]
|
| 596 |
+
msg = r"sample_weight.shape == \(2,\), expected \(1,\)!"
|
| 597 |
+
with pytest.raises(ValueError, match=msg):
|
| 598 |
+
glm.fit(X, y, weights)
|
| 599 |
+
|
| 600 |
+
|
| 601 |
+
@pytest.mark.parametrize(
|
| 602 |
+
"glm",
|
| 603 |
+
[
|
| 604 |
+
TweedieRegressor(power=3),
|
| 605 |
+
PoissonRegressor(),
|
| 606 |
+
GammaRegressor(),
|
| 607 |
+
TweedieRegressor(power=1.5),
|
| 608 |
+
],
|
| 609 |
+
)
|
| 610 |
+
def test_glm_wrong_y_range(glm):
|
| 611 |
+
y = np.array([-1, 2])
|
| 612 |
+
X = np.array([[1], [1]])
|
| 613 |
+
msg = r"Some value\(s\) of y are out of the valid range of the loss"
|
| 614 |
+
with pytest.raises(ValueError, match=msg):
|
| 615 |
+
glm.fit(X, y)
|
| 616 |
+
|
| 617 |
+
|
| 618 |
+
@pytest.mark.parametrize("fit_intercept", [False, True])
|
| 619 |
+
def test_glm_identity_regression(fit_intercept):
|
| 620 |
+
"""Test GLM regression with identity link on a simple dataset."""
|
| 621 |
+
coef = [1.0, 2.0]
|
| 622 |
+
X = np.array([[1, 1, 1, 1, 1], [0, 1, 2, 3, 4]]).T
|
| 623 |
+
y = np.dot(X, coef)
|
| 624 |
+
glm = _GeneralizedLinearRegressor(
|
| 625 |
+
alpha=0,
|
| 626 |
+
fit_intercept=fit_intercept,
|
| 627 |
+
tol=1e-12,
|
| 628 |
+
)
|
| 629 |
+
if fit_intercept:
|
| 630 |
+
glm.fit(X[:, 1:], y)
|
| 631 |
+
assert_allclose(glm.coef_, coef[1:], rtol=1e-10)
|
| 632 |
+
assert_allclose(glm.intercept_, coef[0], rtol=1e-10)
|
| 633 |
+
else:
|
| 634 |
+
glm.fit(X, y)
|
| 635 |
+
assert_allclose(glm.coef_, coef, rtol=1e-12)
|
| 636 |
+
|
| 637 |
+
|
| 638 |
+
@pytest.mark.parametrize("fit_intercept", [False, True])
|
| 639 |
+
@pytest.mark.parametrize("alpha", [0.0, 1.0])
|
| 640 |
+
@pytest.mark.parametrize(
|
| 641 |
+
"GLMEstimator", [_GeneralizedLinearRegressor, PoissonRegressor, GammaRegressor]
|
| 642 |
+
)
|
| 643 |
+
def test_glm_sample_weight_consistency(fit_intercept, alpha, GLMEstimator):
|
| 644 |
+
"""Test that the impact of sample_weight is consistent"""
|
| 645 |
+
rng = np.random.RandomState(0)
|
| 646 |
+
n_samples, n_features = 10, 5
|
| 647 |
+
|
| 648 |
+
X = rng.rand(n_samples, n_features)
|
| 649 |
+
y = rng.rand(n_samples)
|
| 650 |
+
glm_params = dict(alpha=alpha, fit_intercept=fit_intercept)
|
| 651 |
+
|
| 652 |
+
glm = GLMEstimator(**glm_params).fit(X, y)
|
| 653 |
+
coef = glm.coef_.copy()
|
| 654 |
+
|
| 655 |
+
# sample_weight=np.ones(..) should be equivalent to sample_weight=None
|
| 656 |
+
sample_weight = np.ones(y.shape)
|
| 657 |
+
glm.fit(X, y, sample_weight=sample_weight)
|
| 658 |
+
assert_allclose(glm.coef_, coef, rtol=1e-12)
|
| 659 |
+
|
| 660 |
+
# sample_weight are normalized to 1 so, scaling them has no effect
|
| 661 |
+
sample_weight = 2 * np.ones(y.shape)
|
| 662 |
+
glm.fit(X, y, sample_weight=sample_weight)
|
| 663 |
+
assert_allclose(glm.coef_, coef, rtol=1e-12)
|
| 664 |
+
|
| 665 |
+
# setting one element of sample_weight to 0 is equivalent to removing
|
| 666 |
+
# the corresponding sample
|
| 667 |
+
sample_weight = np.ones(y.shape)
|
| 668 |
+
sample_weight[-1] = 0
|
| 669 |
+
glm.fit(X, y, sample_weight=sample_weight)
|
| 670 |
+
coef1 = glm.coef_.copy()
|
| 671 |
+
glm.fit(X[:-1], y[:-1])
|
| 672 |
+
assert_allclose(glm.coef_, coef1, rtol=1e-12)
|
| 673 |
+
|
| 674 |
+
# check that multiplying sample_weight by 2 is equivalent
|
| 675 |
+
# to repeating corresponding samples twice
|
| 676 |
+
X2 = np.concatenate([X, X[: n_samples // 2]], axis=0)
|
| 677 |
+
y2 = np.concatenate([y, y[: n_samples // 2]])
|
| 678 |
+
sample_weight_1 = np.ones(len(y))
|
| 679 |
+
sample_weight_1[: n_samples // 2] = 2
|
| 680 |
+
|
| 681 |
+
glm1 = GLMEstimator(**glm_params).fit(X, y, sample_weight=sample_weight_1)
|
| 682 |
+
|
| 683 |
+
glm2 = GLMEstimator(**glm_params).fit(X2, y2, sample_weight=None)
|
| 684 |
+
assert_allclose(glm1.coef_, glm2.coef_)
|
| 685 |
+
|
| 686 |
+
|
| 687 |
+
@pytest.mark.parametrize("solver", SOLVERS)
|
| 688 |
+
@pytest.mark.parametrize("fit_intercept", [True, False])
|
| 689 |
+
@pytest.mark.parametrize(
|
| 690 |
+
"estimator",
|
| 691 |
+
[
|
| 692 |
+
PoissonRegressor(),
|
| 693 |
+
GammaRegressor(),
|
| 694 |
+
TweedieRegressor(power=3.0),
|
| 695 |
+
TweedieRegressor(power=0, link="log"),
|
| 696 |
+
TweedieRegressor(power=1.5),
|
| 697 |
+
TweedieRegressor(power=4.5),
|
| 698 |
+
],
|
| 699 |
+
)
|
| 700 |
+
def test_glm_log_regression(solver, fit_intercept, estimator):
|
| 701 |
+
"""Test GLM regression with log link on a simple dataset."""
|
| 702 |
+
coef = [0.2, -0.1]
|
| 703 |
+
X = np.array([[0, 1, 2, 3, 4], [1, 1, 1, 1, 1]]).T
|
| 704 |
+
y = np.exp(np.dot(X, coef))
|
| 705 |
+
glm = clone(estimator).set_params(
|
| 706 |
+
alpha=0,
|
| 707 |
+
fit_intercept=fit_intercept,
|
| 708 |
+
solver=solver,
|
| 709 |
+
tol=1e-8,
|
| 710 |
+
)
|
| 711 |
+
if fit_intercept:
|
| 712 |
+
res = glm.fit(X[:, :-1], y)
|
| 713 |
+
assert_allclose(res.coef_, coef[:-1], rtol=1e-6)
|
| 714 |
+
assert_allclose(res.intercept_, coef[-1], rtol=1e-6)
|
| 715 |
+
else:
|
| 716 |
+
res = glm.fit(X, y)
|
| 717 |
+
assert_allclose(res.coef_, coef, rtol=2e-6)
|
| 718 |
+
|
| 719 |
+
|
| 720 |
+
@pytest.mark.parametrize("solver", SOLVERS)
|
| 721 |
+
@pytest.mark.parametrize("fit_intercept", [True, False])
|
| 722 |
+
def test_warm_start(solver, fit_intercept, global_random_seed):
|
| 723 |
+
n_samples, n_features = 100, 10
|
| 724 |
+
X, y = make_regression(
|
| 725 |
+
n_samples=n_samples,
|
| 726 |
+
n_features=n_features,
|
| 727 |
+
n_informative=n_features - 2,
|
| 728 |
+
bias=fit_intercept * 1.0,
|
| 729 |
+
noise=1.0,
|
| 730 |
+
random_state=global_random_seed,
|
| 731 |
+
)
|
| 732 |
+
y = np.abs(y) # Poisson requires non-negative targets.
|
| 733 |
+
alpha = 1
|
| 734 |
+
params = {
|
| 735 |
+
"solver": solver,
|
| 736 |
+
"fit_intercept": fit_intercept,
|
| 737 |
+
"tol": 1e-10,
|
| 738 |
+
}
|
| 739 |
+
|
| 740 |
+
glm1 = PoissonRegressor(warm_start=False, max_iter=1000, alpha=alpha, **params)
|
| 741 |
+
glm1.fit(X, y)
|
| 742 |
+
|
| 743 |
+
glm2 = PoissonRegressor(warm_start=True, max_iter=1, alpha=alpha, **params)
|
| 744 |
+
# As we intentionally set max_iter=1 such that the solver should raise a
|
| 745 |
+
# ConvergenceWarning.
|
| 746 |
+
with pytest.warns(ConvergenceWarning):
|
| 747 |
+
glm2.fit(X, y)
|
| 748 |
+
|
| 749 |
+
linear_loss = LinearModelLoss(
|
| 750 |
+
base_loss=glm1._get_loss(),
|
| 751 |
+
fit_intercept=fit_intercept,
|
| 752 |
+
)
|
| 753 |
+
sw = np.full_like(y, fill_value=1 / n_samples)
|
| 754 |
+
|
| 755 |
+
objective_glm1 = linear_loss.loss(
|
| 756 |
+
coef=np.r_[glm1.coef_, glm1.intercept_] if fit_intercept else glm1.coef_,
|
| 757 |
+
X=X,
|
| 758 |
+
y=y,
|
| 759 |
+
sample_weight=sw,
|
| 760 |
+
l2_reg_strength=alpha,
|
| 761 |
+
)
|
| 762 |
+
objective_glm2 = linear_loss.loss(
|
| 763 |
+
coef=np.r_[glm2.coef_, glm2.intercept_] if fit_intercept else glm2.coef_,
|
| 764 |
+
X=X,
|
| 765 |
+
y=y,
|
| 766 |
+
sample_weight=sw,
|
| 767 |
+
l2_reg_strength=alpha,
|
| 768 |
+
)
|
| 769 |
+
assert objective_glm1 < objective_glm2
|
| 770 |
+
|
| 771 |
+
glm2.set_params(max_iter=1000)
|
| 772 |
+
glm2.fit(X, y)
|
| 773 |
+
# The two models are not exactly identical since the lbfgs solver
|
| 774 |
+
# computes the approximate hessian from previous iterations, which
|
| 775 |
+
# will not be strictly identical in the case of a warm start.
|
| 776 |
+
rtol = 2e-4 if solver == "lbfgs" else 1e-9
|
| 777 |
+
assert_allclose(glm1.coef_, glm2.coef_, rtol=rtol)
|
| 778 |
+
assert_allclose(glm1.score(X, y), glm2.score(X, y), rtol=1e-5)
|
| 779 |
+
|
| 780 |
+
|
| 781 |
+
@pytest.mark.parametrize("n_samples, n_features", [(100, 10), (10, 100)])
|
| 782 |
+
@pytest.mark.parametrize("fit_intercept", [True, False])
|
| 783 |
+
@pytest.mark.parametrize("sample_weight", [None, True])
|
| 784 |
+
def test_normal_ridge_comparison(
|
| 785 |
+
n_samples, n_features, fit_intercept, sample_weight, request
|
| 786 |
+
):
|
| 787 |
+
"""Compare with Ridge regression for Normal distributions."""
|
| 788 |
+
test_size = 10
|
| 789 |
+
X, y = make_regression(
|
| 790 |
+
n_samples=n_samples + test_size,
|
| 791 |
+
n_features=n_features,
|
| 792 |
+
n_informative=n_features - 2,
|
| 793 |
+
noise=0.5,
|
| 794 |
+
random_state=42,
|
| 795 |
+
)
|
| 796 |
+
|
| 797 |
+
if n_samples > n_features:
|
| 798 |
+
ridge_params = {"solver": "svd"}
|
| 799 |
+
else:
|
| 800 |
+
ridge_params = {"solver": "saga", "max_iter": 1000000, "tol": 1e-7}
|
| 801 |
+
|
| 802 |
+
(
|
| 803 |
+
X_train,
|
| 804 |
+
X_test,
|
| 805 |
+
y_train,
|
| 806 |
+
y_test,
|
| 807 |
+
) = train_test_split(X, y, test_size=test_size, random_state=0)
|
| 808 |
+
|
| 809 |
+
alpha = 1.0
|
| 810 |
+
if sample_weight is None:
|
| 811 |
+
sw_train = None
|
| 812 |
+
alpha_ridge = alpha * n_samples
|
| 813 |
+
else:
|
| 814 |
+
sw_train = np.random.RandomState(0).rand(len(y_train))
|
| 815 |
+
alpha_ridge = alpha * sw_train.sum()
|
| 816 |
+
|
| 817 |
+
# GLM has 1/(2*n) * Loss + 1/2*L2, Ridge has Loss + L2
|
| 818 |
+
ridge = Ridge(
|
| 819 |
+
alpha=alpha_ridge,
|
| 820 |
+
random_state=42,
|
| 821 |
+
fit_intercept=fit_intercept,
|
| 822 |
+
**ridge_params,
|
| 823 |
+
)
|
| 824 |
+
ridge.fit(X_train, y_train, sample_weight=sw_train)
|
| 825 |
+
|
| 826 |
+
glm = _GeneralizedLinearRegressor(
|
| 827 |
+
alpha=alpha,
|
| 828 |
+
fit_intercept=fit_intercept,
|
| 829 |
+
max_iter=300,
|
| 830 |
+
tol=1e-5,
|
| 831 |
+
)
|
| 832 |
+
glm.fit(X_train, y_train, sample_weight=sw_train)
|
| 833 |
+
assert glm.coef_.shape == (X.shape[1],)
|
| 834 |
+
assert_allclose(glm.coef_, ridge.coef_, atol=5e-5)
|
| 835 |
+
assert_allclose(glm.intercept_, ridge.intercept_, rtol=1e-5)
|
| 836 |
+
assert_allclose(glm.predict(X_train), ridge.predict(X_train), rtol=2e-4)
|
| 837 |
+
assert_allclose(glm.predict(X_test), ridge.predict(X_test), rtol=2e-4)
|
| 838 |
+
|
| 839 |
+
|
| 840 |
+
@pytest.mark.parametrize("solver", ["lbfgs", "newton-cholesky"])
|
| 841 |
+
def test_poisson_glmnet(solver):
|
| 842 |
+
"""Compare Poisson regression with L2 regularization and LogLink to glmnet"""
|
| 843 |
+
# library("glmnet")
|
| 844 |
+
# options(digits=10)
|
| 845 |
+
# df <- data.frame(a=c(-2,-1,1,2), b=c(0,0,1,1), y=c(0,1,1,2))
|
| 846 |
+
# x <- data.matrix(df[,c("a", "b")])
|
| 847 |
+
# y <- df$y
|
| 848 |
+
# fit <- glmnet(x=x, y=y, alpha=0, intercept=T, family="poisson",
|
| 849 |
+
# standardize=F, thresh=1e-10, nlambda=10000)
|
| 850 |
+
# coef(fit, s=1)
|
| 851 |
+
# (Intercept) -0.12889386979
|
| 852 |
+
# a 0.29019207995
|
| 853 |
+
# b 0.03741173122
|
| 854 |
+
X = np.array([[-2, -1, 1, 2], [0, 0, 1, 1]]).T
|
| 855 |
+
y = np.array([0, 1, 1, 2])
|
| 856 |
+
glm = PoissonRegressor(
|
| 857 |
+
alpha=1,
|
| 858 |
+
fit_intercept=True,
|
| 859 |
+
tol=1e-7,
|
| 860 |
+
max_iter=300,
|
| 861 |
+
solver=solver,
|
| 862 |
+
)
|
| 863 |
+
glm.fit(X, y)
|
| 864 |
+
assert_allclose(glm.intercept_, -0.12889386979, rtol=1e-5)
|
| 865 |
+
assert_allclose(glm.coef_, [0.29019207995, 0.03741173122], rtol=1e-5)
|
| 866 |
+
|
| 867 |
+
|
| 868 |
+
def test_convergence_warning(regression_data):
|
| 869 |
+
X, y = regression_data
|
| 870 |
+
|
| 871 |
+
est = _GeneralizedLinearRegressor(max_iter=1, tol=1e-20)
|
| 872 |
+
with pytest.warns(ConvergenceWarning):
|
| 873 |
+
est.fit(X, y)
|
| 874 |
+
|
| 875 |
+
|
| 876 |
+
@pytest.mark.parametrize(
|
| 877 |
+
"name, link_class", [("identity", IdentityLink), ("log", LogLink)]
|
| 878 |
+
)
|
| 879 |
+
def test_tweedie_link_argument(name, link_class):
|
| 880 |
+
"""Test GLM link argument set as string."""
|
| 881 |
+
y = np.array([0.1, 0.5]) # in range of all distributions
|
| 882 |
+
X = np.array([[1], [2]])
|
| 883 |
+
glm = TweedieRegressor(power=1, link=name).fit(X, y)
|
| 884 |
+
assert isinstance(glm._base_loss.link, link_class)
|
| 885 |
+
|
| 886 |
+
|
| 887 |
+
@pytest.mark.parametrize(
|
| 888 |
+
"power, expected_link_class",
|
| 889 |
+
[
|
| 890 |
+
(0, IdentityLink), # normal
|
| 891 |
+
(1, LogLink), # poisson
|
| 892 |
+
(2, LogLink), # gamma
|
| 893 |
+
(3, LogLink), # inverse-gaussian
|
| 894 |
+
],
|
| 895 |
+
)
|
| 896 |
+
def test_tweedie_link_auto(power, expected_link_class):
|
| 897 |
+
"""Test that link='auto' delivers the expected link function"""
|
| 898 |
+
y = np.array([0.1, 0.5]) # in range of all distributions
|
| 899 |
+
X = np.array([[1], [2]])
|
| 900 |
+
glm = TweedieRegressor(link="auto", power=power).fit(X, y)
|
| 901 |
+
assert isinstance(glm._base_loss.link, expected_link_class)
|
| 902 |
+
|
| 903 |
+
|
| 904 |
+
@pytest.mark.parametrize("power", [0, 1, 1.5, 2, 3])
|
| 905 |
+
@pytest.mark.parametrize("link", ["log", "identity"])
|
| 906 |
+
def test_tweedie_score(regression_data, power, link):
|
| 907 |
+
"""Test that GLM score equals d2_tweedie_score for Tweedie losses."""
|
| 908 |
+
X, y = regression_data
|
| 909 |
+
# make y positive
|
| 910 |
+
y = np.abs(y) + 1.0
|
| 911 |
+
glm = TweedieRegressor(power=power, link=link).fit(X, y)
|
| 912 |
+
assert glm.score(X, y) == pytest.approx(
|
| 913 |
+
d2_tweedie_score(y, glm.predict(X), power=power)
|
| 914 |
+
)
|
| 915 |
+
|
| 916 |
+
|
| 917 |
+
@pytest.mark.parametrize(
|
| 918 |
+
"estimator, value",
|
| 919 |
+
[
|
| 920 |
+
(PoissonRegressor(), True),
|
| 921 |
+
(GammaRegressor(), True),
|
| 922 |
+
(TweedieRegressor(power=1.5), True),
|
| 923 |
+
(TweedieRegressor(power=0), False),
|
| 924 |
+
],
|
| 925 |
+
)
|
| 926 |
+
def test_tags(estimator, value):
|
| 927 |
+
assert estimator._get_tags()["requires_positive_y"] is value
|
| 928 |
+
|
| 929 |
+
|
| 930 |
+
def test_linalg_warning_with_newton_solver(global_random_seed):
|
| 931 |
+
newton_solver = "newton-cholesky"
|
| 932 |
+
rng = np.random.RandomState(global_random_seed)
|
| 933 |
+
# Use at least 20 samples to reduce the likelihood of getting a degenerate
|
| 934 |
+
# dataset for any global_random_seed.
|
| 935 |
+
X_orig = rng.normal(size=(20, 3))
|
| 936 |
+
y = rng.poisson(
|
| 937 |
+
np.exp(X_orig @ np.ones(X_orig.shape[1])), size=X_orig.shape[0]
|
| 938 |
+
).astype(np.float64)
|
| 939 |
+
|
| 940 |
+
# Collinear variation of the same input features.
|
| 941 |
+
X_collinear = np.hstack([X_orig] * 10)
|
| 942 |
+
|
| 943 |
+
# Let's consider the deviance of a constant baseline on this problem.
|
| 944 |
+
baseline_pred = np.full_like(y, y.mean())
|
| 945 |
+
constant_model_deviance = mean_poisson_deviance(y, baseline_pred)
|
| 946 |
+
assert constant_model_deviance > 1.0
|
| 947 |
+
|
| 948 |
+
# No warning raised on well-conditioned design, even without regularization.
|
| 949 |
+
tol = 1e-10
|
| 950 |
+
with warnings.catch_warnings():
|
| 951 |
+
warnings.simplefilter("error")
|
| 952 |
+
reg = PoissonRegressor(solver=newton_solver, alpha=0.0, tol=tol).fit(X_orig, y)
|
| 953 |
+
original_newton_deviance = mean_poisson_deviance(y, reg.predict(X_orig))
|
| 954 |
+
|
| 955 |
+
# On this dataset, we should have enough data points to not make it
|
| 956 |
+
# possible to get a near zero deviance (for the any of the admissible
|
| 957 |
+
# random seeds). This will make it easier to interpret meaning of rtol in
|
| 958 |
+
# the subsequent assertions:
|
| 959 |
+
assert original_newton_deviance > 0.2
|
| 960 |
+
|
| 961 |
+
# We check that the model could successfully fit information in X_orig to
|
| 962 |
+
# improve upon the constant baseline by a large margin (when evaluated on
|
| 963 |
+
# the traing set).
|
| 964 |
+
assert constant_model_deviance - original_newton_deviance > 0.1
|
| 965 |
+
|
| 966 |
+
# LBFGS is robust to a collinear design because its approximation of the
|
| 967 |
+
# Hessian is Symmeric Positive Definite by construction. Let's record its
|
| 968 |
+
# solution
|
| 969 |
+
with warnings.catch_warnings():
|
| 970 |
+
warnings.simplefilter("error")
|
| 971 |
+
reg = PoissonRegressor(solver="lbfgs", alpha=0.0, tol=tol).fit(X_collinear, y)
|
| 972 |
+
collinear_lbfgs_deviance = mean_poisson_deviance(y, reg.predict(X_collinear))
|
| 973 |
+
|
| 974 |
+
# The LBFGS solution on the collinear is expected to reach a comparable
|
| 975 |
+
# solution to the Newton solution on the original data.
|
| 976 |
+
rtol = 1e-6
|
| 977 |
+
assert collinear_lbfgs_deviance == pytest.approx(original_newton_deviance, rel=rtol)
|
| 978 |
+
|
| 979 |
+
# Fitting a Newton solver on the collinear version of the training data
|
| 980 |
+
# without regularization should raise an informative warning and fallback
|
| 981 |
+
# to the LBFGS solver.
|
| 982 |
+
msg = (
|
| 983 |
+
"The inner solver of .*Newton.*Solver stumbled upon a singular or very "
|
| 984 |
+
"ill-conditioned Hessian matrix"
|
| 985 |
+
)
|
| 986 |
+
with pytest.warns(scipy.linalg.LinAlgWarning, match=msg):
|
| 987 |
+
reg = PoissonRegressor(solver=newton_solver, alpha=0.0, tol=tol).fit(
|
| 988 |
+
X_collinear, y
|
| 989 |
+
)
|
| 990 |
+
# As a result we should still automatically converge to a good solution.
|
| 991 |
+
collinear_newton_deviance = mean_poisson_deviance(y, reg.predict(X_collinear))
|
| 992 |
+
assert collinear_newton_deviance == pytest.approx(
|
| 993 |
+
original_newton_deviance, rel=rtol
|
| 994 |
+
)
|
| 995 |
+
|
| 996 |
+
# Increasing the regularization slightly should make the problem go away:
|
| 997 |
+
with warnings.catch_warnings():
|
| 998 |
+
warnings.simplefilter("error", scipy.linalg.LinAlgWarning)
|
| 999 |
+
reg = PoissonRegressor(solver=newton_solver, alpha=1e-10).fit(X_collinear, y)
|
| 1000 |
+
|
| 1001 |
+
# The slightly penalized model on the collinear data should be close enough
|
| 1002 |
+
# to the unpenalized model on the original data.
|
| 1003 |
+
penalized_collinear_newton_deviance = mean_poisson_deviance(
|
| 1004 |
+
y, reg.predict(X_collinear)
|
| 1005 |
+
)
|
| 1006 |
+
assert penalized_collinear_newton_deviance == pytest.approx(
|
| 1007 |
+
original_newton_deviance, rel=rtol
|
| 1008 |
+
)
|
| 1009 |
+
|
| 1010 |
+
|
| 1011 |
+
@pytest.mark.parametrize("verbose", [0, 1, 2])
|
| 1012 |
+
def test_newton_solver_verbosity(capsys, verbose):
|
| 1013 |
+
"""Test the std output of verbose newton solvers."""
|
| 1014 |
+
y = np.array([1, 2], dtype=float)
|
| 1015 |
+
X = np.array([[1.0, 0], [0, 1]], dtype=float)
|
| 1016 |
+
linear_loss = LinearModelLoss(base_loss=HalfPoissonLoss(), fit_intercept=False)
|
| 1017 |
+
sol = NewtonCholeskySolver(
|
| 1018 |
+
coef=linear_loss.init_zero_coef(X),
|
| 1019 |
+
linear_loss=linear_loss,
|
| 1020 |
+
l2_reg_strength=0,
|
| 1021 |
+
verbose=verbose,
|
| 1022 |
+
)
|
| 1023 |
+
sol.solve(X, y, None) # returns array([0., 0.69314758])
|
| 1024 |
+
captured = capsys.readouterr()
|
| 1025 |
+
|
| 1026 |
+
if verbose == 0:
|
| 1027 |
+
assert captured.out == ""
|
| 1028 |
+
else:
|
| 1029 |
+
msg = [
|
| 1030 |
+
"Newton iter=1",
|
| 1031 |
+
"Check Convergence",
|
| 1032 |
+
"1. max |gradient|",
|
| 1033 |
+
"2. Newton decrement",
|
| 1034 |
+
"Solver did converge at loss = ",
|
| 1035 |
+
]
|
| 1036 |
+
for m in msg:
|
| 1037 |
+
assert m in captured.out
|
| 1038 |
+
|
| 1039 |
+
if verbose >= 2:
|
| 1040 |
+
msg = ["Backtracking Line Search", "line search iteration="]
|
| 1041 |
+
for m in msg:
|
| 1042 |
+
assert m in captured.out
|
| 1043 |
+
|
| 1044 |
+
# Set the Newton solver to a state with a completely wrong Newton step.
|
| 1045 |
+
sol = NewtonCholeskySolver(
|
| 1046 |
+
coef=linear_loss.init_zero_coef(X),
|
| 1047 |
+
linear_loss=linear_loss,
|
| 1048 |
+
l2_reg_strength=0,
|
| 1049 |
+
verbose=verbose,
|
| 1050 |
+
)
|
| 1051 |
+
sol.setup(X=X, y=y, sample_weight=None)
|
| 1052 |
+
sol.iteration = 1
|
| 1053 |
+
sol.update_gradient_hessian(X=X, y=y, sample_weight=None)
|
| 1054 |
+
sol.coef_newton = np.array([1.0, 0])
|
| 1055 |
+
sol.gradient_times_newton = sol.gradient @ sol.coef_newton
|
| 1056 |
+
with warnings.catch_warnings():
|
| 1057 |
+
warnings.simplefilter("ignore", ConvergenceWarning)
|
| 1058 |
+
sol.line_search(X=X, y=y, sample_weight=None)
|
| 1059 |
+
captured = capsys.readouterr()
|
| 1060 |
+
if verbose >= 1:
|
| 1061 |
+
assert (
|
| 1062 |
+
"Line search did not converge and resorts to lbfgs instead." in captured.out
|
| 1063 |
+
)
|
| 1064 |
+
|
| 1065 |
+
# Set the Newton solver to a state with bad Newton step such that the loss
|
| 1066 |
+
# improvement in line search is tiny.
|
| 1067 |
+
sol = NewtonCholeskySolver(
|
| 1068 |
+
coef=np.array([1e-12, 0.69314758]),
|
| 1069 |
+
linear_loss=linear_loss,
|
| 1070 |
+
l2_reg_strength=0,
|
| 1071 |
+
verbose=verbose,
|
| 1072 |
+
)
|
| 1073 |
+
sol.setup(X=X, y=y, sample_weight=None)
|
| 1074 |
+
sol.iteration = 1
|
| 1075 |
+
sol.update_gradient_hessian(X=X, y=y, sample_weight=None)
|
| 1076 |
+
sol.coef_newton = np.array([1e-6, 0])
|
| 1077 |
+
sol.gradient_times_newton = sol.gradient @ sol.coef_newton
|
| 1078 |
+
with warnings.catch_warnings():
|
| 1079 |
+
warnings.simplefilter("ignore", ConvergenceWarning)
|
| 1080 |
+
sol.line_search(X=X, y=y, sample_weight=None)
|
| 1081 |
+
captured = capsys.readouterr()
|
| 1082 |
+
if verbose >= 2:
|
| 1083 |
+
msg = [
|
| 1084 |
+
"line search iteration=",
|
| 1085 |
+
"check loss improvement <= armijo term:",
|
| 1086 |
+
"check loss |improvement| <= eps * |loss_old|:",
|
| 1087 |
+
"check sum(|gradient|) < sum(|gradient_old|):",
|
| 1088 |
+
]
|
| 1089 |
+
for m in msg:
|
| 1090 |
+
assert m in captured.out
|
| 1091 |
+
|
| 1092 |
+
# Test for a case with negative hessian. We badly initialize coef for a Tweedie
|
| 1093 |
+
# loss with non-canonical link, e.g. Inverse Gaussian deviance with a log link.
|
| 1094 |
+
linear_loss = LinearModelLoss(
|
| 1095 |
+
base_loss=HalfTweedieLoss(power=3), fit_intercept=False
|
| 1096 |
+
)
|
| 1097 |
+
sol = NewtonCholeskySolver(
|
| 1098 |
+
coef=linear_loss.init_zero_coef(X) + 1,
|
| 1099 |
+
linear_loss=linear_loss,
|
| 1100 |
+
l2_reg_strength=0,
|
| 1101 |
+
verbose=verbose,
|
| 1102 |
+
)
|
| 1103 |
+
with warnings.catch_warnings():
|
| 1104 |
+
warnings.simplefilter("ignore", ConvergenceWarning)
|
| 1105 |
+
sol.solve(X, y, None)
|
| 1106 |
+
captured = capsys.readouterr()
|
| 1107 |
+
if verbose >= 1:
|
| 1108 |
+
assert (
|
| 1109 |
+
"The inner solver detected a pointwise Hessian with many negative values"
|
| 1110 |
+
" and resorts to lbfgs instead."
|
| 1111 |
+
in captured.out
|
| 1112 |
+
)
|
venv/lib/python3.10/site-packages/sklearn/linear_model/tests/__init__.py
ADDED
|
File without changes
|
venv/lib/python3.10/site-packages/sklearn/linear_model/tests/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (194 Bytes). View file
|
|
|
venv/lib/python3.10/site-packages/sklearn/linear_model/tests/__pycache__/test_base.cpython-310.pyc
ADDED
|
Binary file (16.7 kB). View file
|
|
|