applied-ai-018 commited on
Commit
561eaf5
·
verified ·
1 Parent(s): a8e9d15

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. ckpts/universal/global_step120/zero/20.input_layernorm.weight/exp_avg.pt +3 -0
  2. ckpts/universal/global_step120/zero/26.attention.dense.weight/exp_avg.pt +3 -0
  3. ckpts/universal/global_step120/zero/6.attention.dense.weight/exp_avg.pt +3 -0
  4. ckpts/universal/global_step120/zero/6.attention.dense.weight/exp_avg_sq.pt +3 -0
  5. ckpts/universal/global_step120/zero/6.attention.dense.weight/fp32.pt +3 -0
  6. ckpts/universal/global_step120/zero/7.mlp.dense_h_to_4h_swiglu.weight/exp_avg.pt +3 -0
  7. ckpts/universal/global_step120/zero/7.mlp.dense_h_to_4h_swiglu.weight/fp32.pt +3 -0
  8. venv/lib/python3.10/site-packages/torch/distributed/elastic/__pycache__/__init__.cpython-310.pyc +0 -0
  9. venv/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/__pycache__/__init__.cpython-310.pyc +0 -0
  10. venv/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/__pycache__/api.cpython-310.pyc +0 -0
  11. venv/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/__pycache__/local_elastic_agent.cpython-310.pyc +0 -0
  12. venv/lib/python3.10/site-packages/torch/distributed/elastic/events/__init__.py +134 -0
  13. venv/lib/python3.10/site-packages/torch/distributed/elastic/events/__pycache__/__init__.cpython-310.pyc +0 -0
  14. venv/lib/python3.10/site-packages/torch/distributed/elastic/events/__pycache__/api.cpython-310.pyc +0 -0
  15. venv/lib/python3.10/site-packages/torch/distributed/elastic/events/__pycache__/handlers.cpython-310.pyc +0 -0
  16. venv/lib/python3.10/site-packages/torch/distributed/elastic/events/api.py +112 -0
  17. venv/lib/python3.10/site-packages/torch/distributed/elastic/events/handlers.py +22 -0
  18. venv/lib/python3.10/site-packages/torch/distributed/elastic/metrics/__init__.py +163 -0
  19. venv/lib/python3.10/site-packages/torch/distributed/elastic/metrics/__pycache__/__init__.cpython-310.pyc +0 -0
  20. venv/lib/python3.10/site-packages/torch/distributed/elastic/metrics/__pycache__/api.cpython-310.pyc +0 -0
  21. venv/lib/python3.10/site-packages/torch/distributed/elastic/metrics/api.py +201 -0
  22. venv/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/__init__.py +235 -0
  23. venv/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/__pycache__/__init__.cpython-310.pyc +0 -0
  24. venv/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/__pycache__/api.cpython-310.pyc +0 -0
  25. venv/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/__pycache__/redirects.cpython-310.pyc +0 -0
  26. venv/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/__pycache__/tail_log.cpython-310.pyc +0 -0
  27. venv/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py +873 -0
  28. venv/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py +375 -0
  29. venv/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__pycache__/__init__.cpython-310.pyc +0 -0
  30. venv/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__pycache__/error_handler.cpython-310.pyc +0 -0
  31. venv/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__pycache__/handlers.cpython-310.pyc +0 -0
  32. venv/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/error_handler.py +159 -0
  33. venv/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/handlers.py +16 -0
  34. venv/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/redirects.py +102 -0
  35. venv/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/subprocess_handler/__init__.py +15 -0
  36. venv/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/subprocess_handler/__pycache__/__init__.cpython-310.pyc +0 -0
  37. venv/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/subprocess_handler/__pycache__/handlers.cpython-310.pyc +0 -0
  38. venv/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/subprocess_handler/__pycache__/subprocess_handler.cpython-310.pyc +0 -0
  39. venv/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/subprocess_handler/handlers.py +32 -0
  40. venv/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/subprocess_handler/subprocess_handler.py +78 -0
  41. venv/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/tail_log.py +153 -0
  42. venv/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/__init__.py +150 -0
  43. venv/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/__pycache__/__init__.cpython-310.pyc +0 -0
  44. venv/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/__pycache__/api.cpython-310.pyc +0 -0
  45. venv/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/__pycache__/c10d_rendezvous_backend.cpython-310.pyc +0 -0
  46. venv/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/__pycache__/dynamic_rendezvous.cpython-310.pyc +0 -0
  47. venv/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/__pycache__/etcd_rendezvous.cpython-310.pyc +0 -0
  48. venv/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/__pycache__/etcd_rendezvous_backend.cpython-310.pyc +0 -0
  49. venv/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/__pycache__/etcd_server.cpython-310.pyc +0 -0
  50. venv/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/__pycache__/etcd_store.cpython-310.pyc +0 -0
ckpts/universal/global_step120/zero/20.input_layernorm.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8a1c89e3ff5511b8fa237a7bba96056bab5abff289d3c9d0f1c229fd0d3419d0
3
+ size 9372
ckpts/universal/global_step120/zero/26.attention.dense.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1b819bb73fe44f2e29901c6f9c69ae883dcabf3ea541886f97df942ac35fef34
3
+ size 16778396
ckpts/universal/global_step120/zero/6.attention.dense.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7eaab1a7e808df17a1d34eefeac1ee7b7eb59defa7f345ebd3f3c07b25e4b942
3
+ size 16778396
ckpts/universal/global_step120/zero/6.attention.dense.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3e9031785271cec36db29f863f61e9029a4f14e4d7537c671120d928f317f383
3
+ size 16778411
ckpts/universal/global_step120/zero/6.attention.dense.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:58ef333cc07c1471ee20910b212dadb8abefc865e1669d89095e2e27e4012369
3
+ size 16778317
ckpts/universal/global_step120/zero/7.mlp.dense_h_to_4h_swiglu.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd79f294691648c9aa9fe0907d4dbb6b941e0c291b598b7c3934672d1c75b917
3
+ size 33555612
ckpts/universal/global_step120/zero/7.mlp.dense_h_to_4h_swiglu.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:625299ec80a1d7781e1e3686abe78807fd2694fded23b0a2099a286777987d8b
3
+ size 33555533
venv/lib/python3.10/site-packages/torch/distributed/elastic/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (3.62 kB). View file
 
venv/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.42 kB). View file
 
venv/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/__pycache__/api.cpython-310.pyc ADDED
Binary file (31.8 kB). View file
 
venv/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/__pycache__/local_elastic_agent.cpython-310.pyc ADDED
Binary file (11.1 kB). View file
 
venv/lib/python3.10/site-packages/torch/distributed/elastic/events/__init__.py ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env/python3
2
+
3
+ # Copyright (c) Facebook, Inc. and its affiliates.
4
+ # All rights reserved.
5
+ #
6
+ # This source code is licensed under the BSD-style license found in the
7
+ # LICENSE file in the root directory of this source tree.
8
+
9
+ """
10
+ Module contains events processing mechanisms that are integrated with the standard python logging.
11
+
12
+ Example of usage:
13
+
14
+ ::
15
+
16
+ from torch.distributed.elastic import events
17
+ event = events.Event(name="test_event", source=events.EventSource.WORKER, metadata={...})
18
+ events.get_logging_handler(destination="console").info(event)
19
+
20
+ """
21
+
22
+ import inspect
23
+ import logging
24
+ import os
25
+ import socket
26
+ import traceback
27
+ from enum import Enum
28
+ from typing import Dict, Optional
29
+
30
+ from torch.distributed.elastic.events.handlers import get_logging_handler
31
+
32
+ from .api import ( # noqa: F401
33
+ Event,
34
+ EventMetadataValue,
35
+ EventSource,
36
+ NodeState,
37
+ RdzvEvent,
38
+ )
39
+
40
+ _events_loggers: Dict[str, logging.Logger] = {}
41
+
42
+ def _get_or_create_logger(destination: str = "null") -> logging.Logger:
43
+ """
44
+ Construct python logger based on the destination type or extends if provided.
45
+
46
+ Available destination could be found in ``handlers.py`` file.
47
+ The constructed logger does not propagate messages to the upper level loggers,
48
+ e.g. root logger. This makes sure that a single event can be processed once.
49
+
50
+ Args:
51
+ destination: The string representation of the event handler.
52
+ Available handlers found in ``handlers`` module
53
+ """
54
+ global _events_loggers
55
+
56
+ if destination not in _events_loggers:
57
+ _events_logger = logging.getLogger(f"torchelastic-events-{destination}")
58
+ _events_logger.setLevel(os.environ.get("LOGLEVEL", "INFO"))
59
+ # Do not propagate message to the root logger
60
+ _events_logger.propagate = False
61
+
62
+ logging_handler = get_logging_handler(destination)
63
+ _events_logger.addHandler(logging_handler)
64
+
65
+ # Add the logger to the global dictionary
66
+ _events_loggers[destination] = _events_logger
67
+
68
+ return _events_loggers[destination]
69
+
70
+
71
+ def record(event: Event, destination: str = "null") -> None:
72
+ _get_or_create_logger(destination).info(event.serialize())
73
+
74
+ def record_rdzv_event(event: RdzvEvent) -> None:
75
+ _get_or_create_logger("dynamic_rendezvous").info(event.serialize())
76
+
77
+
78
+ def construct_and_record_rdzv_event(
79
+ run_id: str,
80
+ message: str,
81
+ node_state: NodeState,
82
+ name: str = "",
83
+ hostname: str = "",
84
+ pid: Optional[int] = None,
85
+ master_endpoint: str = "",
86
+ local_id: Optional[int] = None,
87
+ rank: Optional[int] = None,
88
+ ) -> None:
89
+ # We don't want to perform an extra computation if not needed.
90
+ if isinstance(get_logging_handler("dynamic_rendezvous"), logging.NullHandler):
91
+ return
92
+
93
+ # Set up parameters.
94
+ if not hostname:
95
+ hostname = socket.getfqdn()
96
+ if not pid:
97
+ pid = os.getpid()
98
+
99
+ # Determines which file called this function.
100
+ callstack = inspect.stack()
101
+ filename = "no_file"
102
+ if len(callstack) > 1:
103
+ stack_depth_1 = callstack[1]
104
+ filename = os.path.basename(stack_depth_1.filename)
105
+ if not name:
106
+ name = stack_depth_1.function
107
+
108
+ # Delete the callstack variable. If kept, this can mess with python's
109
+ # garbage collector as we are holding on to stack frame information in
110
+ # the inspect module.
111
+ del callstack
112
+
113
+ # Set up error trace if this is an exception
114
+ if node_state == NodeState.FAILED:
115
+ error_trace = traceback.format_exc()
116
+ else:
117
+ error_trace = ""
118
+
119
+ # Initialize event object
120
+ event = RdzvEvent(
121
+ name=f"{filename}:{name}",
122
+ run_id=run_id,
123
+ message=message,
124
+ hostname=hostname,
125
+ pid=pid,
126
+ node_state=node_state,
127
+ master_endpoint=master_endpoint,
128
+ rank=rank,
129
+ local_id=local_id,
130
+ error_trace=error_trace,
131
+ )
132
+
133
+ # Finally, record the event.
134
+ record_rdzv_event(event)
venv/lib/python3.10/site-packages/torch/distributed/elastic/events/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (3.12 kB). View file
 
venv/lib/python3.10/site-packages/torch/distributed/elastic/events/__pycache__/api.cpython-310.pyc ADDED
Binary file (3.81 kB). View file
 
venv/lib/python3.10/site-packages/torch/distributed/elastic/events/__pycache__/handlers.cpython-310.pyc ADDED
Binary file (591 Bytes). View file
 
venv/lib/python3.10/site-packages/torch/distributed/elastic/events/api.py ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+
3
+ # Copyright (c) Facebook, Inc. and its affiliates.
4
+ # All rights reserved.
5
+ #
6
+ # This source code is licensed under the BSD-style license found in the
7
+ # LICENSE file in the root directory of this source tree.
8
+
9
+ import json
10
+ from dataclasses import asdict, dataclass, field
11
+ from enum import Enum
12
+ from typing import Dict, Union, Optional
13
+
14
+ __all__ = ['EventSource', 'Event', 'NodeState', 'RdzvEvent']
15
+
16
+ EventMetadataValue = Union[str, int, float, bool, None]
17
+
18
+
19
+ class EventSource(str, Enum):
20
+ """Known identifiers of the event producers."""
21
+
22
+ AGENT = "AGENT"
23
+ WORKER = "WORKER"
24
+
25
+
26
+ @dataclass
27
+ class Event:
28
+ """
29
+ The class represents the generic event that occurs during the torchelastic job execution.
30
+
31
+ The event can be any kind of meaningful action.
32
+
33
+ Args:
34
+ name: event name.
35
+ source: the event producer, e.g. agent or worker
36
+ timestamp: timestamp in milliseconds when event occurred.
37
+ metadata: additional data that is associated with the event.
38
+ """
39
+
40
+ name: str
41
+ source: EventSource
42
+ timestamp: int = 0
43
+ metadata: Dict[str, EventMetadataValue] = field(default_factory=dict)
44
+
45
+ def __str__(self):
46
+ return self.serialize()
47
+
48
+ @staticmethod
49
+ def deserialize(data: Union[str, "Event"]) -> "Event":
50
+ if isinstance(data, Event):
51
+ return data
52
+ if isinstance(data, str):
53
+ data_dict = json.loads(data)
54
+ data_dict["source"] = EventSource[data_dict["source"]] # type: ignore[possibly-undefined]
55
+ return Event(**data_dict)
56
+
57
+ def serialize(self) -> str:
58
+ return json.dumps(asdict(self))
59
+
60
+
61
+ class NodeState(str, Enum):
62
+ """The states that a node can be in rendezvous."""
63
+
64
+ INIT = "INIT"
65
+ RUNNING = "RUNNING"
66
+ SUCCEEDED = "SUCCEEDED"
67
+ FAILED = "FAILED"
68
+
69
+
70
+ @dataclass
71
+ class RdzvEvent:
72
+ """
73
+ Dataclass to represent any rendezvous event.
74
+
75
+ Args:
76
+ name: Event name. (E.g. Current action being performed)
77
+ run_id: The run id of the rendezvous
78
+ message: The message describing the event
79
+ hostname: Hostname of the node
80
+ pid: The process id of the node
81
+ node_state: The state of the node (INIT, RUNNING, SUCCEEDED, FAILED)
82
+ master_endpoint: The master endpoint for the rendezvous store, if known
83
+ rank: The rank of the node, if known
84
+ local_id: The local_id of the node, if defined in dynamic_rendezvous.py
85
+ error_trace: Error stack trace, if this is an error event.
86
+ """
87
+
88
+ name: str
89
+ run_id: str
90
+ message: str
91
+ hostname: str
92
+ pid: int
93
+ node_state: NodeState
94
+ master_endpoint: str = ""
95
+ rank: Optional[int] = None
96
+ local_id: Optional[int] = None
97
+ error_trace: str = ""
98
+
99
+ def __str__(self):
100
+ return self.serialize()
101
+
102
+ @staticmethod
103
+ def deserialize(data: Union[str, "RdzvEvent"]) -> "RdzvEvent":
104
+ if isinstance(data, RdzvEvent):
105
+ return data
106
+ if isinstance(data, str):
107
+ data_dict = json.loads(data)
108
+ data_dict["node_state"] = NodeState[data_dict["node_state"]] # type: ignore[possibly-undefined]
109
+ return RdzvEvent(**data_dict)
110
+
111
+ def serialize(self) -> str:
112
+ return json.dumps(asdict(self))
venv/lib/python3.10/site-packages/torch/distributed/elastic/events/handlers.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+
3
+ # Copyright (c) Facebook, Inc. and its affiliates.
4
+ # All rights reserved.
5
+ #
6
+ # This source code is licensed under the BSD-style license found in the
7
+ # LICENSE file in the root directory of this source tree.
8
+
9
+ import logging
10
+ from typing import Dict
11
+
12
+
13
+ _log_handlers: Dict[str, logging.Handler] = {
14
+ "console": logging.StreamHandler(),
15
+ "dynamic_rendezvous": logging.NullHandler(),
16
+ "null": logging.NullHandler(),
17
+ }
18
+
19
+
20
+ def get_logging_handler(destination: str = "null") -> logging.Handler:
21
+ global _log_handlers
22
+ return _log_handlers[destination]
venv/lib/python3.10/site-packages/torch/distributed/elastic/metrics/__init__.py ADDED
@@ -0,0 +1,163 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env/python3
2
+
3
+ # Copyright (c) Facebook, Inc. and its affiliates.
4
+ # All rights reserved.
5
+ #
6
+ # This source code is licensed under the BSD-style license found in the
7
+ # LICENSE file in the root directory of this source tree.
8
+
9
+ """Metrics API.
10
+
11
+ **Overview**:
12
+
13
+ The metrics API in torchelastic is used to publish telemetry metrics.
14
+ It is designed to be used by torchelastic's internal modules to
15
+ publish metrics for the end user with the goal of increasing visibility
16
+ and helping with debugging. However you may use the same API in your
17
+ jobs to publish metrics to the same metrics ``sink``.
18
+
19
+ A ``metric`` can be thought of as timeseries data
20
+ and is uniquely identified by the string-valued tuple
21
+ ``(metric_group, metric_name)``.
22
+
23
+ torchelastic makes no assumptions about what a ``metric_group`` is
24
+ and what relationship it has with ``metric_name``. It is totally up
25
+ to the user to use these two fields to uniquely identify a metric.
26
+
27
+ .. note:: The metric group ``torchelastic`` is reserved by torchelastic for
28
+ platform level metrics that it produces.
29
+ For instance torchelastic may output the latency (in milliseconds)
30
+ of a re-rendezvous operation from the agent as
31
+ ``(torchelastic, agent.rendezvous.duration.ms)``
32
+
33
+ A sensible way to use metric groups is to map them to a stage or module
34
+ in your job. You may also encode certain high level properties
35
+ the job such as the region or stage (dev vs prod).
36
+
37
+ **Publish Metrics**:
38
+
39
+ Using torchelastic's metrics API is similar to using python's logging
40
+ framework. You first have to configure a metrics handler before
41
+ trying to add metric data.
42
+
43
+ The example below measures the latency for the ``calculate()`` function.
44
+
45
+ ::
46
+
47
+ import time
48
+ import torch.distributed.elastic.metrics as metrics
49
+
50
+ # makes all metrics other than the one from "my_module" to go /dev/null
51
+ metrics.configure(metrics.NullMetricsHandler())
52
+ metrics.configure(metrics.ConsoleMetricsHandler(), "my_module")
53
+
54
+ def my_method():
55
+ start = time.time()
56
+ calculate()
57
+ end = time.time()
58
+ metrics.put_metric("calculate_latency", int(end-start), "my_module")
59
+
60
+ You may also use the torch.distributed.elastic.metrics.prof` decorator
61
+ to conveniently and succinctly profile functions
62
+
63
+ ::
64
+
65
+ # -- in module examples.foobar --
66
+
67
+ import torch.distributed.elastic.metrics as metrics
68
+
69
+ metrics.configure(metrics.ConsoleMetricsHandler(), "foobar")
70
+ metrics.configure(metrics.ConsoleMetricsHandler(), "Bar")
71
+
72
+ @metrics.prof
73
+ def foo():
74
+ pass
75
+
76
+ class Bar():
77
+
78
+ @metrics.prof
79
+ def baz():
80
+ pass
81
+
82
+ ``@metrics.prof`` will publish the following metrics
83
+ ::
84
+
85
+ <leaf_module or classname>.success - 1 if the function finished successfully
86
+ <leaf_module or classname>.failure - 1 if the function threw an exception
87
+ <leaf_module or classname>.duration.ms - function duration in milliseconds
88
+
89
+ **Configuring Metrics Handler**:
90
+
91
+ `torch.distributed.elastic.metrics.MetricHandler` is responsible for emitting
92
+ the added metric values to a particular destination. Metric groups can be
93
+ configured with different metric handlers.
94
+
95
+ By default torchelastic emits all metrics to ``/dev/null``.
96
+ By adding the following configuration metrics,
97
+ ``torchelastic`` and ``my_app`` metric groups will be printed out to
98
+ console.
99
+
100
+ ::
101
+
102
+ import torch.distributed.elastic.metrics as metrics
103
+
104
+ metrics.configure(metrics.ConsoleMetricHandler(), group = "torchelastic")
105
+ metrics.configure(metrics.ConsoleMetricHandler(), group = "my_app")
106
+
107
+ **Writing a Custom Metric Handler**:
108
+
109
+ If you want your metrics to be emitted to a custom location, implement
110
+ the `torch.distributed.elastic.metrics.MetricHandler` interface
111
+ and configure your job to use your custom metric handler.
112
+
113
+ Below is a toy example that prints the metrics to ``stdout``
114
+
115
+ ::
116
+
117
+ import torch.distributed.elastic.metrics as metrics
118
+
119
+ class StdoutMetricHandler(metrics.MetricHandler):
120
+ def emit(self, metric_data):
121
+ ts = metric_data.timestamp
122
+ group = metric_data.group_name
123
+ name = metric_data.name
124
+ value = metric_data.value
125
+ print(f"[{ts}][{group}]: {name}={value}")
126
+
127
+ metrics.configure(StdoutMetricHandler(), group="my_app")
128
+
129
+ Now all metrics in the group ``my_app`` will be printed to stdout as:
130
+
131
+ ::
132
+
133
+ [1574213883.4182858][my_app]: my_metric=<value>
134
+ [1574213940.5237644][my_app]: my_metric=<value>
135
+
136
+ """
137
+
138
+ from typing import Optional
139
+
140
+ from .api import ( # noqa: F401
141
+ ConsoleMetricHandler,
142
+ MetricData,
143
+ MetricHandler,
144
+ MetricsConfig,
145
+ NullMetricHandler,
146
+ configure,
147
+ get_elapsed_time_ms,
148
+ getStream,
149
+ prof,
150
+ profile,
151
+ publish_metric,
152
+ put_metric,
153
+ )
154
+
155
+
156
+ def initialize_metrics(cfg: Optional[MetricsConfig] = None):
157
+ pass
158
+
159
+
160
+ try:
161
+ from torch.distributed.elastic.metrics.static_init import * # type: ignore[import] # noqa: F401 F403
162
+ except ModuleNotFoundError:
163
+ pass
venv/lib/python3.10/site-packages/torch/distributed/elastic/metrics/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (4.92 kB). View file
 
venv/lib/python3.10/site-packages/torch/distributed/elastic/metrics/__pycache__/api.cpython-310.pyc ADDED
Binary file (5.98 kB). View file
 
venv/lib/python3.10/site-packages/torch/distributed/elastic/metrics/api.py ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+
3
+ # Copyright (c) Facebook, Inc. and its affiliates.
4
+ # All rights reserved.
5
+ #
6
+ # This source code is licensed under the BSD-style license found in the
7
+ # LICENSE file in the root directory of this source tree.
8
+
9
+ import abc
10
+ import time
11
+ import warnings
12
+ from collections import namedtuple
13
+ from functools import wraps
14
+ from typing import Dict, Optional
15
+
16
+ __all__ = ['MetricsConfig', 'MetricHandler', 'ConsoleMetricHandler', 'NullMetricHandler', 'MetricStream',
17
+ 'configure', 'getStream', 'prof', 'profile', 'put_metric', 'publish_metric', 'get_elapsed_time_ms',
18
+ 'MetricData']
19
+
20
+ MetricData = namedtuple("MetricData", ["timestamp", "group_name", "name", "value"])
21
+
22
+
23
+ class MetricsConfig:
24
+ __slots__ = ["params"]
25
+
26
+ def __init__(self, params: Optional[Dict[str, str]] = None):
27
+ self.params = params
28
+ if self.params is None:
29
+ self.params = {}
30
+
31
+
32
+ class MetricHandler(abc.ABC):
33
+ @abc.abstractmethod
34
+ def emit(self, metric_data: MetricData):
35
+ pass
36
+
37
+
38
+ class ConsoleMetricHandler(MetricHandler):
39
+ def emit(self, metric_data: MetricData):
40
+ print(
41
+ f"[{metric_data.timestamp}][{metric_data.group_name}]: {metric_data.name}={metric_data.value}"
42
+ )
43
+
44
+
45
+ class NullMetricHandler(MetricHandler):
46
+ def emit(self, metric_data: MetricData):
47
+ pass
48
+
49
+
50
+ class MetricStream:
51
+ def __init__(self, group_name: str, handler: MetricHandler):
52
+ self.group_name = group_name
53
+ self.handler = handler
54
+
55
+ def add_value(self, metric_name: str, metric_value: int):
56
+ self.handler.emit(
57
+ MetricData(time.time(), self.group_name, metric_name, metric_value)
58
+ )
59
+
60
+
61
+ _metrics_map: Dict[str, MetricHandler] = {}
62
+ _default_metrics_handler: MetricHandler = NullMetricHandler()
63
+
64
+
65
+ # pyre-fixme[9]: group has type `str`; used as `None`.
66
+ def configure(handler: MetricHandler, group: Optional[str] = None):
67
+ if group is None:
68
+ global _default_metrics_handler
69
+ # pyre-fixme[9]: _default_metrics_handler has type `NullMetricHandler`; used
70
+ # as `MetricHandler`.
71
+ _default_metrics_handler = handler
72
+ else:
73
+ _metrics_map[group] = handler
74
+
75
+
76
+ def getStream(group: str):
77
+ if group in _metrics_map:
78
+ handler = _metrics_map[group]
79
+ else:
80
+ handler = _default_metrics_handler
81
+ return MetricStream(group, handler)
82
+
83
+
84
+ def _get_metric_name(fn):
85
+ qualname = fn.__qualname__
86
+ split = qualname.split(".")
87
+ if len(split) == 1:
88
+ module = fn.__module__
89
+ if module:
90
+ return module.split(".")[-1] + "." + split[0]
91
+ else:
92
+ return split[0]
93
+ else:
94
+ return qualname
95
+
96
+
97
+ def prof(fn=None, group: str = "torchelastic"):
98
+ r"""
99
+ @profile decorator publishes duration.ms, count, success, failure metrics for the function that it decorates.
100
+
101
+ The metric name defaults to the qualified name (``class_name.def_name``) of the function.
102
+ If the function does not belong to a class, it uses the leaf module name instead.
103
+
104
+ Usage
105
+
106
+ ::
107
+
108
+ @metrics.prof
109
+ def x():
110
+ pass
111
+
112
+ @metrics.prof(group="agent")
113
+ def y():
114
+ pass
115
+ """
116
+
117
+ def wrap(f):
118
+ @wraps(f)
119
+ def wrapper(*args, **kwargs):
120
+ key = _get_metric_name(f)
121
+ try:
122
+ start = time.time()
123
+ result = f(*args, **kwargs)
124
+ put_metric(f"{key}.success", 1, group)
125
+ except Exception:
126
+ put_metric(f"{key}.failure", 1, group)
127
+ raise
128
+ finally:
129
+ put_metric(f"{key}.duration.ms", get_elapsed_time_ms(start), group) # type: ignore[possibly-undefined]
130
+ return result
131
+
132
+ return wrapper
133
+
134
+ if fn:
135
+ return wrap(fn)
136
+ else:
137
+ return wrap
138
+
139
+
140
+ def profile(group=None):
141
+ """
142
+ @profile decorator adds latency and success/failure metrics to any given function.
143
+
144
+ Usage
145
+
146
+ ::
147
+
148
+ @metrics.profile("my_metric_group")
149
+ def some_function(<arguments>):
150
+ """
151
+ warnings.warn("Deprecated, use @prof instead", DeprecationWarning)
152
+
153
+ def wrap(func):
154
+ @wraps(func)
155
+ def wrapper(*args, **kwargs):
156
+ try:
157
+ start_time = time.time()
158
+ result = func(*args, **kwargs)
159
+ publish_metric(group, f"{func.__name__}.success", 1)
160
+ except Exception:
161
+ publish_metric(group, f"{func.__name__}.failure", 1)
162
+ raise
163
+ finally:
164
+ publish_metric(
165
+ group,
166
+ f"{func.__name__}.duration.ms",
167
+ get_elapsed_time_ms(start_time), # type: ignore[possibly-undefined]
168
+ )
169
+ return result
170
+
171
+ return wrapper
172
+
173
+ return wrap
174
+
175
+
176
+ def put_metric(metric_name: str, metric_value: int, metric_group: str = "torchelastic"):
177
+ """
178
+ Publish a metric data point.
179
+
180
+ Usage
181
+
182
+ ::
183
+
184
+ put_metric("metric_name", 1)
185
+ put_metric("metric_name", 1, "metric_group_name")
186
+ """
187
+ getStream(metric_group).add_value(metric_name, metric_value)
188
+
189
+
190
+ def publish_metric(metric_group: str, metric_name: str, metric_value: int):
191
+ warnings.warn(
192
+ "Deprecated, use put_metric(metric_group)(metric_name, metric_value) instead"
193
+ )
194
+ metric_stream = getStream(metric_group)
195
+ metric_stream.add_value(metric_name, metric_value)
196
+
197
+
198
+ def get_elapsed_time_ms(start_time_in_seconds: float):
199
+ """Return the elapsed time in millis from the given start time."""
200
+ end_time = time.time()
201
+ return int((end_time - start_time_in_seconds) * 1000)
venv/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/__init__.py ADDED
@@ -0,0 +1,235 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+
3
+ # Copyright (c) Facebook, Inc. and its affiliates.
4
+ # All rights reserved.
5
+ #
6
+ # This source code is licensed under the BSD-style license found in the
7
+ # LICENSE file in the root directory of this source tree.
8
+
9
+ """
10
+ Library that launches and manages ``n`` copies of worker subprocesses either specified by a function or a binary.
11
+
12
+ For functions, it uses ``torch.multiprocessing`` (and therefore python
13
+ ``multiprocessing``) to spawn/fork worker processes. For binaries it uses python
14
+ ``subprocessing.Popen`` to create worker processes.
15
+
16
+
17
+ Usage 1: Launching two trainers as a function
18
+
19
+ ::
20
+
21
+ from torch.distributed.elastic.multiprocessing import Std, start_processes
22
+
23
+ def trainer(a, b, c):
24
+ pass # train
25
+
26
+
27
+ # runs two trainers
28
+ # LOCAL_RANK=0 trainer(1,2,3)
29
+ # LOCAL_RANK=1 trainer(4,5,6)
30
+ ctx = start_processes(
31
+ name="trainer",
32
+ entrypoint=trainer,
33
+ args={0: (1,2,3), 1: (4,5,6)},
34
+ envs={0: {"LOCAL_RANK": 0}, 1: {"LOCAL_RANK": 1}},
35
+ log_dir="/tmp/foobar",
36
+ redirects=Std.ALL, # write all worker stdout/stderr to a log file
37
+ tee={0: Std.ERR}, # tee only local rank 0's stderr to console
38
+ )
39
+
40
+ # waits for all copies of trainer to finish
41
+ ctx.wait()
42
+
43
+ Usage 2: Launching 2 echo workers as a binary
44
+
45
+ ::
46
+
47
+ # same as invoking
48
+ # echo hello
49
+ # echo world > stdout.log
50
+ ctx = start_processes(
51
+ name="echo"
52
+ entrypoint="echo",
53
+ log_dir="/tmp/foobar",
54
+ args={0: "hello", 1: "world"},
55
+ redirects={1: Std.OUT},
56
+ )
57
+
58
+ Just like ``torch.multiprocessing``, the return value of the function
59
+ :func:`start_processes` is a process context (:class:`api.PContext`). If a function
60
+ was launched, a :class:`api.MultiprocessContext` is returned and if a binary
61
+ was launched a :class:`api.SubprocessContext` is returned. Both are specific
62
+ implementations of the parent :class:`api.PContext` class.
63
+ """
64
+
65
+ import os
66
+ from typing import Callable, Dict, Optional, Tuple, Union, Set
67
+
68
+ from torch.distributed.elastic.multiprocessing.api import ( # noqa: F401
69
+ _validate_full_rank,
70
+ DefaultLogsSpecs,
71
+ LogsDest,
72
+ LogsSpecs,
73
+ MultiprocessContext,
74
+ PContext,
75
+ ProcessFailure,
76
+ RunProcsResult,
77
+ SignalException,
78
+ Std,
79
+ SubprocessContext,
80
+ to_map,
81
+ )
82
+ from torch.distributed.elastic.utils.logging import get_logger
83
+
84
+ __all__ = [
85
+ "start_processes",
86
+ "MultiprocessContext",
87
+ "PContext",
88
+ "ProcessFailure",
89
+ "RunProcsResult",
90
+ "SignalException",
91
+ "Std",
92
+ "LogsDest",
93
+ "LogsSpecs",
94
+ "DefaultLogsSpecs",
95
+ "SubprocessContext",
96
+ "to_map",
97
+ ]
98
+
99
+ log = get_logger(__name__)
100
+
101
+
102
+ def start_processes(
103
+ name: str,
104
+ entrypoint: Union[Callable, str],
105
+ args: Dict[int, Tuple],
106
+ envs: Dict[int, Dict[str, str]],
107
+ logs_specs: LogsSpecs,
108
+ log_line_prefixes: Optional[Dict[int, str]] = None,
109
+ start_method: str = "spawn",
110
+ ) -> PContext:
111
+ """
112
+ Start ``n`` copies of ``entrypoint`` processes with the provided options.
113
+
114
+ ``entrypoint`` is either a ``Callable`` (function) or a ``str`` (binary).
115
+ The number of copies is determined by the number of entries for ``args`` and
116
+ ``envs`` arguments, which need to have the same key set.
117
+
118
+ ``args`` and ``env`` parameters are the arguments and environment variables
119
+ to pass down to the entrypoint mapped by the replica index (local rank).
120
+ All local ranks must be accounted for.
121
+ That is, the keyset should be ``{0,1,...,(nprocs-1)}``.
122
+
123
+ .. note:: When the ``entrypoint`` is a binary (``str``), ``args`` can only be strings.
124
+ If any other type is given, then it is casted to a string representation
125
+ (e.g. ``str(arg1)``). Furthermore, a binary failure will only write
126
+ an ``error.json`` error file if the main function is annotated with
127
+ ``torch.distributed.elastic.multiprocessing.errors.record``. For function launches,
128
+ this is done by default and there is no need to manually annotate
129
+ with the ``@record`` annotation.
130
+
131
+ ``redirects`` and ``tee`` are bitmasks specifying which std stream(s) to redirect
132
+ to a log file in the ``log_dir``. Valid mask values are defined in ``Std``.
133
+ To redirect/tee only certain local ranks, pass ``redirects`` as a map with the key as
134
+ the local rank to specify the redirect behavior for.
135
+ Any missing local ranks will default to ``Std.NONE``.
136
+
137
+ ``tee`` acts like the unix "tee" command in that it redirects + prints to console.
138
+ To avoid worker stdout/stderr from printing to console, use the ``redirects`` parameter.
139
+
140
+ For each process, the ``log_dir`` will contain:
141
+
142
+ #. ``{local_rank}/error.json``: if the process failed, a file with the error info
143
+ #. ``{local_rank}/stdout.json``: if ``redirect & STDOUT == STDOUT``
144
+ #. ``{local_rank}/stderr.json``: if ``redirect & STDERR == STDERR``
145
+
146
+ .. note:: It is expected that the ``log_dir`` exists, is empty, and is a directory.
147
+
148
+ Example:
149
+ ::
150
+
151
+ log_dir = "/tmp/test"
152
+
153
+ # ok; two copies of foo: foo("bar0"), foo("bar1")
154
+ start_processes(
155
+ name="trainer",
156
+ entrypoint=foo,
157
+ args:{0:("bar0",), 1:("bar1",),
158
+ envs:{0:{}, 1:{}},
159
+ log_dir=log_dir
160
+ )
161
+
162
+ # invalid; envs missing for local rank 1
163
+ start_processes(
164
+ name="trainer",
165
+ entrypoint=foo,
166
+ args:{0:("bar0",), 1:("bar1",),
167
+ envs:{0:{}},
168
+ log_dir=log_dir
169
+ )
170
+
171
+ # ok; two copies of /usr/bin/touch: touch file1, touch file2
172
+ start_processes(
173
+ name="trainer",
174
+ entrypoint="/usr/bin/touch",
175
+ args:{0:("file1",), 1:("file2",),
176
+ envs:{0:{}, 1:{}},
177
+ log_dir=log_dir
178
+ )
179
+
180
+ # caution; arguments casted to string, runs:
181
+ # echo "1" "2" "3" and echo "[1, 2, 3]"
182
+ start_processes(
183
+ name="trainer",
184
+ entrypoint="/usr/bin/echo",
185
+ args:{0:(1,2,3), 1:([1,2,3],),
186
+ envs:{0:{}, 1:{}},
187
+ log_dir=log_dir
188
+ )
189
+
190
+ Args:
191
+ name: a human readable short name that describes what the processes are
192
+ (used as header when tee'ing stdout/stderr outputs)
193
+ entrypoint: either a ``Callable`` (function) or ``cmd`` (binary)
194
+ args: arguments to each replica
195
+ envs: env vars to each replica
196
+ log_dir: directory used to write log files
197
+ start_method: multiprocessing start method (spawn, fork, forkserver)
198
+ ignored for binaries
199
+ redirects: which std streams to redirect to a log file
200
+ tee: which std streams to redirect + print to console
201
+ local_ranks_filter: which ranks' logs to print to console
202
+
203
+ """
204
+
205
+ nprocs = len(args)
206
+ _validate_full_rank(args, nprocs, "args")
207
+ _validate_full_rank(envs, nprocs, "envs")
208
+
209
+ context: PContext
210
+ if isinstance(entrypoint, str):
211
+ context = SubprocessContext(
212
+ name=name,
213
+ entrypoint=entrypoint,
214
+ args=args,
215
+ envs=envs,
216
+ logs_specs=logs_specs,
217
+ log_line_prefixes=log_line_prefixes,
218
+ )
219
+ else:
220
+ context = MultiprocessContext(
221
+ name=name,
222
+ entrypoint=entrypoint,
223
+ args=args,
224
+ envs=envs,
225
+ log_line_prefixes=log_line_prefixes,
226
+ start_method=start_method,
227
+ logs_specs=logs_specs,
228
+ )
229
+
230
+ try:
231
+ context.start()
232
+ return context
233
+ except Exception:
234
+ context.close()
235
+ raise
venv/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (6.99 kB). View file
 
venv/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/__pycache__/api.cpython-310.pyc ADDED
Binary file (25 kB). View file
 
venv/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/__pycache__/redirects.cpython-310.pyc ADDED
Binary file (2.88 kB). View file
 
venv/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/__pycache__/tail_log.cpython-310.pyc ADDED
Binary file (4.42 kB). View file
 
venv/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py ADDED
@@ -0,0 +1,873 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+
3
+ # Copyright (c) Facebook, Inc. and its affiliates.
4
+ # All rights reserved.
5
+ #
6
+ # This source code is licensed under the BSD-style license found in the
7
+ # LICENSE file in the root directory of this source tree.
8
+
9
+ import abc
10
+ import logging
11
+ import os
12
+ import re
13
+ import shutil
14
+ import signal
15
+ import subprocess
16
+ import sys
17
+ import tempfile
18
+ import time
19
+ from contextlib import nullcontext
20
+ from dataclasses import dataclass, field
21
+ from enum import IntFlag
22
+ from multiprocessing import synchronize
23
+ from types import FrameType
24
+ from typing import Any, Callable, Dict, Optional, Set, Tuple, Union
25
+ from abc import ABC, abstractmethod
26
+
27
+ import torch.multiprocessing as mp
28
+ from torch.distributed.elastic.multiprocessing.errors import ProcessFailure, record
29
+ from torch.distributed.elastic.multiprocessing.redirects import (
30
+ redirect_stderr,
31
+ redirect_stdout,
32
+ )
33
+
34
+ from torch.distributed.elastic.multiprocessing.subprocess_handler import SubprocessHandler, get_subprocess_handler
35
+ from torch.distributed.elastic.multiprocessing.tail_log import TailLog
36
+
37
+ IS_WINDOWS = sys.platform == "win32"
38
+ IS_MACOS = sys.platform == "darwin"
39
+
40
+
41
+ log = logging.getLogger(__name__)
42
+
43
+ __all__ = [
44
+ "DefaultLogsSpecs",
45
+ "SignalException",
46
+ "Std",
47
+ "to_map",
48
+ "RunProcsResult",
49
+ "PContext",
50
+ "get_std_cm",
51
+ "MultiprocessContext",
52
+ "SubprocessContext",
53
+ ]
54
+
55
+ class SignalException(Exception):
56
+ """
57
+ Exception is raised inside the torchelastic agent process by the termination handler
58
+ if the death signal got received by the process.
59
+ """
60
+
61
+ def __init__(self, msg: str, sigval: signal.Signals) -> None:
62
+ super().__init__(msg)
63
+ self.sigval = sigval
64
+
65
+
66
+ def _terminate_process_handler(signum: int, frame: Optional[FrameType]) -> None:
67
+ """Termination handler that raises exceptions on the main process.
68
+
69
+ When the process receives death signal(SIGTERM, SIGINT), this termination handler will
70
+ be invoked. It raises the ``SignalException`` exception that should be processed by the
71
+ user code. Python does not terminate process after the termination handler is finished,
72
+ so the exception should not be silently ignored, otherwise the process will never
73
+ be terminated.
74
+ """
75
+ sigval = signal.Signals(signum)
76
+ raise SignalException(f"Process {os.getpid()} got signal: {sigval}", sigval=sigval)
77
+
78
+
79
+ def _get_kill_signal() -> signal.Signals:
80
+ """Get the kill signal. SIGKILL for unix, CTRL_C_EVENT for windows."""
81
+ if IS_WINDOWS:
82
+ return signal.CTRL_C_EVENT # type: ignore[attr-defined] # noqa: F821
83
+ else:
84
+ return signal.SIGKILL
85
+
86
+
87
+ def _get_default_signal() -> signal.Signals:
88
+ """Get the default termination signal. SIGTERM for unix, CTRL_C_EVENT for windows."""
89
+ if IS_WINDOWS:
90
+ return signal.CTRL_C_EVENT # type: ignore[attr-defined] # noqa: F821
91
+ else:
92
+ return signal.SIGTERM
93
+
94
+
95
+ def _validate_full_rank(d: Dict[int, Any], nprocs: int, what: str):
96
+ actual_keys = set(d.keys())
97
+ expected_keys = set(range(nprocs))
98
+
99
+ if actual_keys != expected_keys:
100
+ raise RuntimeError(
101
+ f"{what}, local rank mapping mismatch,"
102
+ f" expected: {expected_keys}, actual: {actual_keys}"
103
+ )
104
+
105
+
106
+ _MAPPING_REGEX = r"^(\d:[0123],)*(\d:[0123])$"
107
+ _VALUE_REGEX = r"^[0123]$"
108
+
109
+
110
+ class Std(IntFlag):
111
+ NONE = 0
112
+ OUT = 1
113
+ ERR = 2
114
+ ALL = OUT | ERR
115
+
116
+ @classmethod
117
+ def from_str(cls, vm: str) -> Union["Std", Dict[int, "Std"]]:
118
+ """
119
+ Example:
120
+ ::
121
+
122
+ from_str("0") -> Std.NONE
123
+ from_str("1") -> Std.OUT
124
+ from_str("0:3,1:0,2:1,3:2") -> {0: Std.ALL, 1: Std.NONE, 2: Std.OUT, 3: Std.ERR}
125
+
126
+ Any other input raises an exception
127
+ """
128
+
129
+ def to_std(v: str) -> Std: # type: ignore[return]
130
+ s = Std(int(v))
131
+ if s in Std:
132
+ return s
133
+ # return None -> should NEVER reach here since we regex check input
134
+
135
+ if re.match(_VALUE_REGEX, vm): # vm is a number (e.g. 0)
136
+ return to_std(vm)
137
+ elif re.match(_MAPPING_REGEX, vm): # vm is a mapping (e.g. 0:1,1:2)
138
+ d: Dict[int, Std] = {}
139
+ for m in vm.split(","):
140
+ i, v = m.split(":")
141
+ d[int(i)] = to_std(v)
142
+ return d
143
+ else:
144
+ raise ValueError(
145
+ f"{vm} does not match: <{_VALUE_REGEX}> or <{_MAPPING_REGEX}>"
146
+ )
147
+
148
+
149
+ def to_map(
150
+ val_or_map: Union[Std, Dict[int, Std]], local_world_size: int
151
+ ) -> Dict[int, Std]:
152
+ """
153
+ Certain APIs take redirect settings either as a single value (e.g. apply to all
154
+ local ranks) or as an explicit user-provided mapping. This method is a convenience
155
+ method that converts a value or mapping into a mapping.
156
+
157
+ Example:
158
+ ::
159
+
160
+ to_map(Std.OUT, local_world_size=2) # returns: {0: Std.OUT, 1: Std.OUT}
161
+ to_map({1: Std.OUT}, local_world_size=2) # returns: {0: Std.NONE, 1: Std.OUT}
162
+ to_map({0: Std.OUT, 1: Std.OUT}, local_world_size=2) # returns: {0: Std.OUT, 1: Std.OUT}
163
+ """
164
+ if isinstance(val_or_map, Std):
165
+ return dict.fromkeys(range(local_world_size), val_or_map)
166
+ else:
167
+ map = {}
168
+ for i in range(local_world_size):
169
+ map[i] = val_or_map.get(i, Std.NONE)
170
+ return map
171
+
172
+
173
+ @dataclass
174
+ class LogsDest:
175
+ """
176
+ For each log type, holds mapping of local rank ids to file paths.
177
+ """
178
+ stdouts: Dict[int, str] = field(default_factory=dict)
179
+ stderrs: Dict[int, str] = field(default_factory=dict)
180
+ tee_stdouts: Dict[int, str] = field(default_factory=dict)
181
+ tee_stderrs: Dict[int, str] = field(default_factory=dict)
182
+ error_files: Dict[int, str] = field(default_factory=dict)
183
+
184
+
185
+ class LogsSpecs(ABC):
186
+ """
187
+ Defines logs processing and redirection for each worker process.
188
+
189
+ Args:
190
+ log_dir:
191
+ Base directory where logs will be written.
192
+ redirects:
193
+ Streams to redirect to files. Pass a single ``Std``
194
+ enum to redirect for all workers, or a mapping keyed
195
+ by local_rank to selectively redirect.
196
+ tee:
197
+ Streams to duplicate to stdout/stderr.
198
+ Pass a single ``Std`` enum to duplicate streams for all workers,
199
+ or a mapping keyed by local_rank to selectively duplicate.
200
+ """
201
+
202
+ def __init__(
203
+ self,
204
+ log_dir: Optional[str] = None,
205
+ redirects: Union[Std, Dict[int, Std]] = Std.NONE,
206
+ tee: Union[Std, Dict[int, Std]] = Std.NONE,
207
+ local_ranks_filter: Optional[Set[int]] = None,
208
+ ) -> None:
209
+ self._root_log_dir = log_dir
210
+ self._redirects = redirects
211
+ self._tee = tee
212
+ self._local_ranks_filter = local_ranks_filter
213
+
214
+ @abstractmethod
215
+ def reify(self, envs: Dict[int, Dict[str, str]],) -> LogsDest:
216
+ """
217
+ Given the environment variables, builds destination of log files for each of the local ranks.
218
+
219
+ Envs parameter contains env variables dict for each of the local ranks, where entries are defined in:
220
+ :func:`~torchelastic.distributed.elastic.agent.server.local_elastic_agent.LocalElasticAgent._start_workers`.
221
+ """
222
+ pass
223
+
224
+ @property
225
+ @abstractmethod
226
+ def root_log_dir(self) -> str:
227
+ pass
228
+
229
+ class DefaultLogsSpecs(LogsSpecs):
230
+ """
231
+ Default LogsSpecs implementation:
232
+
233
+ - `log_dir` will be created if it doesn't exist
234
+ - Generates nested folders for each attempt and rank.
235
+ """
236
+ def __init__(
237
+ self,
238
+ log_dir: Optional[str] = None,
239
+ redirects: Union[Std, Dict[int, Std]] = Std.NONE,
240
+ tee: Union[Std, Dict[int, Std]] = Std.NONE,
241
+ local_ranks_filter: Optional[Set[int]] = None,
242
+ ) -> None:
243
+ if log_dir != os.devnull:
244
+ if not log_dir:
245
+ log_dir = tempfile.mkdtemp(prefix="torchelastic_")
246
+ elif not os.path.exists(log_dir):
247
+ os.makedirs(log_dir)
248
+ else:
249
+ if os.path.isfile(log_dir):
250
+ raise NotADirectoryError(f"log_dir: {log_dir} is a file")
251
+ super().__init__(log_dir, redirects, tee, local_ranks_filter)
252
+ # initialized only once
253
+ self._run_log_dir = None
254
+
255
+ @property
256
+ def root_log_dir(self) -> str:
257
+ return str(self._root_log_dir)
258
+
259
+ def _make_log_dir(self, log_dir: Optional[str], rdzv_run_id: str):
260
+ base_log_dir = log_dir or tempfile.mkdtemp(prefix="torchelastic_")
261
+ os.makedirs(base_log_dir, exist_ok=True)
262
+ dir = tempfile.mkdtemp(prefix=f"{rdzv_run_id}_", dir=base_log_dir)
263
+ log.info("log directory set to: %s", dir)
264
+ return dir
265
+
266
+ def reify(self, envs: Dict[int, Dict[str, str]],) -> LogsDest:
267
+ """
268
+ Uses following scheme to build log destination paths:
269
+
270
+ - `<log_dir>/<rdzv_run_id>/attempt_<attempt>/<rank>/stdout.log`
271
+ - `<log_dir>/<rdzv_run_id>/attempt_<attempt>/<rank>/stderr.log`
272
+ - `<log_dir>/<rdzv_run_id>/attempt_<attempt>/<rank>/error.json`
273
+ """
274
+ nprocs = len(envs)
275
+ global_env = {} # use only to query properies that are not dependent on a rank
276
+ if nprocs > 0:
277
+ global_env = envs[0]
278
+ else:
279
+ log.warning("Empty envs map provided when defining logging destinations.")
280
+ # Keys are always defined, but values can be missing in unit tests
281
+ run_id = global_env.get("TORCHELASTIC_RUN_ID", "test_run_id")
282
+ restart_count = global_env.get("TORCHELASTIC_RESTART_COUNT", "0")
283
+
284
+ attempt_log_dir: str = ""
285
+ if self._root_log_dir != os.devnull:
286
+ if not self._run_log_dir:
287
+ self._run_log_dir = self._make_log_dir(self._root_log_dir, run_id)
288
+
289
+ attempt_log_dir = os.path.join(self._run_log_dir, f"attempt_{restart_count}") # type: ignore[call-overload]
290
+ shutil.rmtree(attempt_log_dir, ignore_errors=True)
291
+ os.makedirs(attempt_log_dir)
292
+
293
+ if self._root_log_dir == os.devnull:
294
+ attempt_log_dir = os.devnull
295
+
296
+ # create subdirs for each local rank in the logs_dir
297
+ # logs_dir
298
+ # |- 0
299
+ # |- error.json
300
+ # |- stdout.log
301
+ # |- stderr.log
302
+ # |- ...
303
+ # |- (nprocs-1)
304
+ redirs = to_map(self._redirects, nprocs)
305
+ ts = to_map(self._tee, nprocs)
306
+
307
+ # to tee stdout/stderr we first redirect into a file
308
+ # then tail -f stdout.log/stderr.log so add tee settings to redirects
309
+ for local_rank, tee_std in ts.items():
310
+ redirect_std = redirs[local_rank]
311
+ redirs[local_rank] = redirect_std | tee_std
312
+
313
+ SYS_STREAM = "" # special case to indicate to output to console
314
+ stdouts = dict.fromkeys(range(nprocs), SYS_STREAM)
315
+ stderrs = dict.fromkeys(range(nprocs), SYS_STREAM)
316
+ tee_stdouts: Dict[int, str] = {}
317
+ tee_stderrs: Dict[int, str] = {}
318
+ error_files = {}
319
+
320
+ for local_rank in range(nprocs):
321
+
322
+ if attempt_log_dir == os.devnull:
323
+ tee_stdouts[local_rank] = os.devnull
324
+ tee_stderrs[local_rank] = os.devnull
325
+ error_files[local_rank] = os.devnull
326
+ envs[local_rank]["TORCHELASTIC_ERROR_FILE"] = ""
327
+ else:
328
+ clogdir = os.path.join(attempt_log_dir, str(local_rank))
329
+ os.mkdir(clogdir)
330
+
331
+ rd = redirs[local_rank]
332
+ if (rd & Std.OUT) == Std.OUT:
333
+ stdouts[local_rank] = os.path.join(clogdir, "stdout.log")
334
+ if (rd & Std.ERR) == Std.ERR:
335
+ stderrs[local_rank] = os.path.join(clogdir, "stderr.log")
336
+
337
+ t = ts[local_rank]
338
+ if t & Std.OUT == Std.OUT:
339
+ tee_stdouts[local_rank] = stdouts[local_rank]
340
+ if t & Std.ERR == Std.ERR:
341
+ tee_stderrs[local_rank] = stderrs[local_rank]
342
+
343
+ if self._local_ranks_filter and local_rank not in self._local_ranks_filter:
344
+ # If stream is tee'd, only write to file, but don't tail
345
+ if local_rank in tee_stdouts:
346
+ tee_stdouts.pop(local_rank, None)
347
+ if local_rank in tee_stderrs:
348
+ tee_stderrs.pop(local_rank, None)
349
+
350
+ # If stream is not redirected, don't print
351
+ if stdouts[local_rank] == SYS_STREAM:
352
+ stdouts[local_rank] = os.devnull
353
+ if stderrs[local_rank] == SYS_STREAM:
354
+ stderrs[local_rank] = os.devnull
355
+
356
+ error_file = os.path.join(clogdir, "error.json")
357
+ error_files[local_rank] = error_file
358
+ log.info("Setting worker%s reply file to: %s", local_rank, error_file)
359
+ envs[local_rank]["TORCHELASTIC_ERROR_FILE"] = error_file
360
+
361
+ return LogsDest(stdouts, stderrs, tee_stdouts, tee_stderrs, error_files)
362
+
363
+ def __repr__(self) -> str:
364
+ return (
365
+ f"DefaultLogsSpecs(root_log_dir={self._root_log_dir}, redirects={self._redirects}, "
366
+ f"tee={self._tee}, local_ranks_filter={self._local_ranks_filter})"
367
+ )
368
+
369
+ def __eq__(self, other: object) -> bool:
370
+ if not isinstance(other, DefaultLogsSpecs):
371
+ return False
372
+
373
+ return (
374
+ self._root_log_dir == other._root_log_dir
375
+ and self._redirects == other._redirects
376
+ and self._tee == other._tee
377
+ and self._local_ranks_filter == other._local_ranks_filter
378
+ )
379
+
380
+
381
+ @dataclass
382
+ class RunProcsResult:
383
+ """
384
+ Results of a completed run of processes started with ``start_processes()``. Returned by ``PContext``.
385
+
386
+ Note the following:
387
+
388
+ 1. All fields are mapped by local rank
389
+ 2. ``return_values`` - only populated for functions (not the binaries).
390
+ 3. ``stdouts`` - path to stdout.log (empty string if no redirect)
391
+ 4. ``stderrs`` - path to stderr.log (empty string if no redirect)
392
+
393
+ """
394
+
395
+ return_values: Dict[int, Any] = field(default_factory=dict)
396
+ failures: Dict[int, ProcessFailure] = field(default_factory=dict)
397
+ stdouts: Dict[int, str] = field(default_factory=dict)
398
+ stderrs: Dict[int, str] = field(default_factory=dict)
399
+
400
+ def is_failed(self) -> bool:
401
+ return len(self.failures) > 0
402
+
403
+
404
+ class PContext(abc.ABC):
405
+ """
406
+ The base class that standardizes operations over a set of processes that are launched via different mechanisms.
407
+
408
+ The name ``PContext`` is intentional to disambiguate with ``torch.multiprocessing.ProcessContext``.
409
+
410
+ .. warning:: stdouts and stderrs should ALWAYS be a superset of
411
+ tee_stdouts and tee_stderrs (respectively) this is b/c
412
+ tee is implemented as a redirect + tail -f <stdout/stderr.log>
413
+ """
414
+
415
+ def __init__(
416
+ self,
417
+ name: str,
418
+ entrypoint: Union[Callable, str],
419
+ args: Dict[int, Tuple],
420
+ envs: Dict[int, Dict[str, str]],
421
+ logs_specs: LogsSpecs,
422
+ log_line_prefixes: Optional[Dict[int, str]] = None,
423
+
424
+ ):
425
+ self.name = name
426
+ # validate that all mappings have the same number of keys and
427
+ # all local ranks are accounted for
428
+ nprocs = len(args)
429
+
430
+ # TODO log_line_prefixes can be exanded too
431
+ logs_dest = logs_specs.reify(envs)
432
+
433
+ _validate_full_rank(logs_dest.stdouts, nprocs, "stdouts")
434
+ _validate_full_rank(logs_dest.stderrs, nprocs, "stderrs")
435
+
436
+ self.entrypoint = entrypoint
437
+ self.args = args
438
+ self.envs = envs
439
+ self.stdouts = logs_dest.stdouts
440
+ self.stderrs = logs_dest.stderrs
441
+ self.error_files = logs_dest.error_files
442
+ self.nprocs = nprocs
443
+
444
+ self._stdout_tail = TailLog(name, logs_dest.tee_stdouts, sys.stdout, log_line_prefixes)
445
+ self._stderr_tail = TailLog(name, logs_dest.tee_stderrs, sys.stderr, log_line_prefixes)
446
+
447
+ def start(self) -> None:
448
+ """Start processes using parameters defined in the constructor."""
449
+ signal.signal(signal.SIGTERM, _terminate_process_handler)
450
+ signal.signal(signal.SIGINT, _terminate_process_handler)
451
+ if not IS_WINDOWS:
452
+ signal.signal(signal.SIGHUP, _terminate_process_handler)
453
+ signal.signal(signal.SIGQUIT, _terminate_process_handler)
454
+ self._start()
455
+ self._stdout_tail.start()
456
+ self._stderr_tail.start()
457
+
458
+ @abc.abstractmethod
459
+ def _start(self) -> None:
460
+ """Start processes using strategy defined in a particular context."""
461
+ raise NotImplementedError()
462
+
463
+ @abc.abstractmethod
464
+ def _poll(self) -> Optional[RunProcsResult]:
465
+ """
466
+ Poll the run status of the processes running under this context.
467
+ This method follows an "all-or-nothing" policy and returns
468
+ a ``RunProcessResults`` object if either all processes complete
469
+ successfully or any process fails. Returns ``None`` if
470
+ all processes are still running.
471
+ """
472
+ raise NotImplementedError()
473
+
474
+ def wait(self, timeout: float = -1, period: float = 1) -> Optional[RunProcsResult]:
475
+ """
476
+ Wait for the specified ``timeout`` seconds, polling every ``period`` seconds
477
+ for the processes to be done. Returns ``None`` if the processes are still running
478
+ on timeout expiry. Negative timeout values are interpreted as "wait-forever".
479
+ A timeout value of zero simply queries the status of the processes (e.g. equivalent
480
+ to a poll).
481
+
482
+ ..note: Multiprocessing library registers SIGTERM and SIGINT signal handlers that raise
483
+ ``SignalException`` when the signals received. It is up to the consumer of the code
484
+ to properly handle the exception. It is important not to swallow the exception otherwise
485
+ the process would not terminate. Example of the typical workflow can be:
486
+
487
+ .. code-block:: python
488
+ pc = start_processes(...)
489
+ try:
490
+ pc.wait(1)
491
+ .. do some other work
492
+ except SignalException as e:
493
+ pc.shutdown(e.sigval, timeout=30)
494
+
495
+ If SIGTERM or SIGINT occurs, the code above will try to shutdown child processes by propagating
496
+ received signal. If child processes will not terminate in the timeout time, the process will send
497
+ the SIGKILL.
498
+ """
499
+ if timeout == 0:
500
+ return self._poll()
501
+
502
+ if timeout < 0:
503
+ timeout = sys.maxsize
504
+
505
+ expiry = time.time() + timeout
506
+ while time.time() < expiry:
507
+ pr = self._poll()
508
+ if pr:
509
+ return pr
510
+ time.sleep(period)
511
+
512
+ return None
513
+
514
+ @abc.abstractmethod
515
+ def pids(self) -> Dict[int, int]:
516
+ """Return pids of processes mapped by their respective local_ranks."""
517
+ raise NotImplementedError()
518
+
519
+ @abc.abstractmethod
520
+ def _close(self, death_sig: signal.Signals, timeout: int = 30) -> None:
521
+ r"""
522
+ Terminates all processes managed by this context and cleans up any
523
+ meta resources (e.g. redirect, error_file files).
524
+ """
525
+ raise NotImplementedError()
526
+
527
+ def close(
528
+ self, death_sig: Optional[signal.Signals] = None, timeout: int = 30
529
+ ) -> None:
530
+ r"""
531
+ Terminates all processes managed by this context and cleans up any
532
+ meta resources (e.g. redirect, error_file files).
533
+
534
+ Args:
535
+ death_sig: Death signal to terminate processes.
536
+ timeout: Time to wait for processes to finish, if process is
537
+ still alive after this time, it will be terminated via SIGKILL.
538
+ """
539
+ if not death_sig:
540
+ death_sig = _get_default_signal()
541
+ self._close(death_sig=death_sig, timeout=timeout)
542
+ if self._stdout_tail:
543
+ self._stdout_tail.stop()
544
+ if self._stderr_tail:
545
+ self._stderr_tail.stop()
546
+
547
+
548
+ def get_std_cm(std_rd: str, redirect_fn):
549
+ if IS_WINDOWS or IS_MACOS or not std_rd:
550
+ return nullcontext()
551
+ else:
552
+ return redirect_fn(std_rd)
553
+
554
+
555
+ def _wrap(
556
+ local_rank: int,
557
+ fn: Callable,
558
+ args: Dict[int, Tuple],
559
+ envs: Dict[int, Dict[str, str]],
560
+ stdout_redirects: Dict[int, str], # redirect file for stdout (to console if None)
561
+ stderr_redirects: Dict[int, str], # redirect file for stderr (to console if None)
562
+ ret_vals: Dict[int, mp.SimpleQueue],
563
+ queue_finished_reading_event: synchronize.Event,
564
+ ) -> None:
565
+ # get the per-rank params up front so we fail fast if no mapping is found
566
+ args_ = args[local_rank]
567
+ env_ = envs[local_rank]
568
+ ret_val_ = ret_vals[local_rank]
569
+
570
+ stdout_rd = stdout_redirects[local_rank]
571
+ stderr_rd = stderr_redirects[local_rank]
572
+
573
+ stdout_cm = get_std_cm(stdout_rd, redirect_stdout)
574
+ stderr_cm = get_std_cm(stderr_rd, redirect_stderr)
575
+
576
+ for k, v in env_.items():
577
+ os.environ[k] = v
578
+
579
+ with stdout_cm, stderr_cm:
580
+ ret = record(fn)(*args_)
581
+ ret_val_.put(ret)
582
+ queue_finished_reading_event.wait()
583
+
584
+
585
+ class MultiprocessContext(PContext):
586
+ """``PContext`` holding worker processes invoked as a function."""
587
+
588
+ def __init__(
589
+ self,
590
+ name: str,
591
+ entrypoint: Callable,
592
+ args: Dict[int, Tuple],
593
+ envs: Dict[int, Dict[str, str]],
594
+ start_method: str,
595
+ logs_specs: LogsSpecs,
596
+ log_line_prefixes: Optional[Dict[int, str]] = None,
597
+ ):
598
+ super().__init__(
599
+ name,
600
+ entrypoint,
601
+ args,
602
+ envs,
603
+ logs_specs,
604
+ log_line_prefixes,
605
+ )
606
+
607
+ self.start_method = start_method
608
+ # each ret_val queue will always contain a single element.
609
+ self._ret_vals = {
610
+ local_rank: mp.get_context(self.start_method).SimpleQueue()
611
+ for local_rank in range(self.nprocs)
612
+ }
613
+
614
+ # see comments in ``join()`` for what this is
615
+ self._return_values: Dict[int, Any] = {}
616
+ self._pc: Optional[mp.ProcessContext] = None
617
+ # Note: set method should ONLY be invoked for the use case when all processes finished
618
+ # successfully. If any process died on event.wait() calling set() method will deadlock.
619
+ self._worker_finished_event = mp.get_context(self.start_method).Event()
620
+
621
+ def _start(self):
622
+ if self._pc:
623
+ raise ValueError(
624
+ "The process context already initialized."
625
+ " Most likely the start method got called twice."
626
+ )
627
+ self._pc = mp.start_processes(
628
+ fn=_wrap,
629
+ args=(
630
+ self.entrypoint,
631
+ self.args,
632
+ self.envs,
633
+ self.stdouts,
634
+ self.stderrs,
635
+ self._ret_vals,
636
+ self._worker_finished_event,
637
+ ),
638
+ nprocs=self.nprocs,
639
+ join=False,
640
+ daemon=False,
641
+ start_method=self.start_method,
642
+ )
643
+
644
+ def _is_done(self) -> bool:
645
+ return len(self._return_values) == self.nprocs
646
+
647
+ def _poll(self) -> Optional[RunProcsResult]:
648
+ assert self._pc is not None # assertion for mypy type checker
649
+
650
+ try:
651
+ # torch.mp.ProcessContext Throws an Exception if some/all of
652
+ # worker processes failed
653
+ # timeout < 0 checks worker status and return immediately
654
+ # Join will never return success since we use synchronize.Event to wait
655
+ # for all processes to finish.
656
+ self._pc.join(-1)
657
+
658
+ # IMPORTANT: we use multiprocessing.Queue to carry worker return values
659
+ # back to the parent, the worker process will wait before terminating
660
+ # until all the buffered items are fed by the feeder thread to the underlying
661
+ # pipe. Hence to prevent deadlocks on large return values,
662
+ # we opportunistically try queue.get on each join call
663
+ # See: https://docs.python.org/2/library/multiprocessing.html#all-platforms
664
+ for local_rank in range(0, self.nprocs):
665
+ return_queue = self._ret_vals[local_rank]
666
+ if not return_queue.empty():
667
+ # save the return values temporarily into a member var
668
+ self._return_values[local_rank] = return_queue.get()
669
+
670
+ if self._is_done():
671
+ # we should ALWAYS have ALL the return values when all the processes are done
672
+ self._worker_finished_event.set()
673
+ # Wait untill all processes are finished. At this point workers finished executing
674
+ # user function
675
+ self._pc.join()
676
+ _validate_full_rank(
677
+ self._return_values, self.nprocs, "return_value queue"
678
+ )
679
+ self.close()
680
+ return RunProcsResult(
681
+ return_values=self._return_values,
682
+ stdouts=self.stdouts,
683
+ stderrs=self.stderrs,
684
+ )
685
+ else:
686
+ return None
687
+ except (mp.ProcessRaisedException, mp.ProcessExitedException) as e:
688
+ failed_local_rank = e.error_index
689
+
690
+ # entrypoint for MultiprocessContext will always be a Callable
691
+ fn_name = self.entrypoint.__qualname__ # type: ignore[union-attr]
692
+ failed_proc = self._pc.processes[failed_local_rank]
693
+ error_filepath = self.error_files[failed_local_rank]
694
+
695
+ log.exception(
696
+ "failed (exitcode: %s)"
697
+ " local_rank: %s (pid: %s)"
698
+ " of fn: %s (start_method: %s)",
699
+ failed_proc.exitcode,
700
+ failed_local_rank, e.pid,
701
+ fn_name, self.start_method,
702
+ )
703
+
704
+ self.close()
705
+ return RunProcsResult(
706
+ failures={
707
+ failed_local_rank: ProcessFailure(
708
+ local_rank=failed_local_rank,
709
+ pid=e.pid,
710
+ exitcode=failed_proc.exitcode,
711
+ error_file=error_filepath,
712
+ )
713
+ },
714
+ stdouts=self.stdouts,
715
+ stderrs=self.stderrs,
716
+ )
717
+
718
+ def pids(self) -> Dict[int, int]:
719
+ assert self._pc is not None # assertion for mypy type checking
720
+ return dict(enumerate(self._pc.pids()))
721
+
722
+ def _close(self, death_sig: signal.Signals, timeout: int = 30) -> None:
723
+ if not self._pc:
724
+ return
725
+ for proc in self._pc.processes:
726
+ if proc.is_alive():
727
+ log.warning("Closing process %s via signal %s", proc.pid, death_sig.name)
728
+ try:
729
+ os.kill(proc.pid, death_sig)
730
+ except ProcessLookupError:
731
+ # If the process exited because of some reason,
732
+ # `ProcessLookupError` will be raised, it is safe to ignore it.
733
+ pass
734
+ end = time.monotonic() + timeout
735
+ for proc in self._pc.processes:
736
+ time_to_wait = end - time.monotonic()
737
+ if time_to_wait <= 0:
738
+ break
739
+ proc.join(time_to_wait)
740
+ for proc in self._pc.processes:
741
+ if proc.is_alive():
742
+ log.warning(
743
+ "Unable to shutdown process %s via %s, forcefully exiting via %s",
744
+ proc.pid, death_sig, _get_kill_signal()
745
+ )
746
+ try:
747
+ os.kill(proc.pid, _get_kill_signal())
748
+ except ProcessLookupError:
749
+ # If the process exited because of some reason,
750
+ # `ProcessLookupError` will be raised, it is safe to ignore it.
751
+ pass
752
+ proc.join()
753
+
754
+ class SubprocessContext(PContext):
755
+ """``PContext`` holding worker processes invoked as a binary."""
756
+
757
+ def __init__(
758
+ self,
759
+ name: str,
760
+ entrypoint: str,
761
+ args: Dict[int, Tuple],
762
+ envs: Dict[int, Dict[str, str]],
763
+ logs_specs: LogsSpecs,
764
+ log_line_prefixes: Optional[Dict[int, str]] = None,
765
+
766
+ ):
767
+ super().__init__(
768
+ name,
769
+ entrypoint,
770
+ args,
771
+ envs,
772
+ logs_specs,
773
+ log_line_prefixes,
774
+ )
775
+
776
+ # state vector; _vdone[local_rank] -> is local_rank finished or not
777
+ self._running_local_ranks: Set[int] = set(range(self.nprocs))
778
+ self._failures: Dict[int, ProcessFailure] = {}
779
+ self.subprocess_handlers: Dict[int, SubprocessHandler] = {}
780
+
781
+ def _start(self):
782
+ if self.subprocess_handlers:
783
+ raise ValueError(
784
+ "The subprocess handlers already initialized. Most likely the start method got called twice."
785
+ )
786
+ self.subprocess_handlers = {
787
+ local_rank: get_subprocess_handler(
788
+ entrypoint=self.entrypoint, # type: ignore[arg-type] # entrypoint is always a str
789
+ args=self.args[local_rank],
790
+ env=self.envs[local_rank],
791
+ stdout=self.stdouts[local_rank],
792
+ stderr=self.stderrs[local_rank],
793
+ local_rank_id=local_rank,
794
+ )
795
+ for local_rank in range(self.nprocs)
796
+ }
797
+
798
+ def _poll(self) -> Optional[RunProcsResult]:
799
+ done_local_ranks = set()
800
+ for local_rank in self._running_local_ranks:
801
+ handler = self.subprocess_handlers[local_rank]
802
+ exitcode = handler.proc.poll()
803
+ if exitcode is not None:
804
+ done_local_ranks.add(local_rank)
805
+ if exitcode != 0: # failed or signaled
806
+ self._failures[local_rank] = ProcessFailure(
807
+ local_rank=local_rank,
808
+ pid=handler.proc.pid,
809
+ exitcode=exitcode,
810
+ error_file=self.error_files[local_rank],
811
+ )
812
+ # else: --> succeeded; nothing to do
813
+
814
+ self._running_local_ranks.difference_update(done_local_ranks)
815
+
816
+ # if ALL procs are finished or ANY have failed
817
+ if not self._running_local_ranks or self._failures:
818
+ self.close() # terminate all running procs
819
+ result = RunProcsResult(
820
+ failures=self._failures,
821
+ stdouts=self.stdouts,
822
+ stderrs=self.stderrs,
823
+ )
824
+ if result.is_failed():
825
+ first_failure = min(result.failures.values(), key=lambda f: f.timestamp)
826
+ log.error(
827
+ "failed (exitcode: %s)"
828
+ " local_rank: %s (pid: %s)"
829
+ " of binary: %s",
830
+ first_failure.exitcode, first_failure.local_rank, first_failure.pid, self.entrypoint
831
+ )
832
+ else:
833
+ # Populate return with dummy values. This provides consistency with MultiprocessingHandler
834
+ result.return_values = dict.fromkeys(range(self.nprocs))
835
+
836
+ return result
837
+ else: # there are no failures and procs still running
838
+ return None
839
+
840
+ def pids(self) -> Dict[int, int]:
841
+ return {
842
+ local_rank: sh.proc.pid
843
+ for local_rank, sh in self.subprocess_handlers.items()
844
+ }
845
+
846
+ def _close(self, death_sig: signal.Signals, timeout: int = 30) -> None:
847
+ if not self.subprocess_handlers:
848
+ return
849
+ for handler in self.subprocess_handlers.values():
850
+ if handler.proc.poll() is None:
851
+ log.warning(
852
+ "Sending process %s closing signal %s", handler.proc.pid, death_sig.name
853
+ )
854
+ handler.close(death_sig=death_sig)
855
+ end = time.monotonic() + timeout
856
+ for handler in self.subprocess_handlers.values():
857
+ time_to_wait = end - time.monotonic()
858
+ if time_to_wait <= 0:
859
+ break
860
+ try:
861
+ handler.proc.wait(time_to_wait)
862
+ except subprocess.TimeoutExpired:
863
+ # Ignore the timeout expired exception, since
864
+ # the child process will be forcefully terminated via SIGKILL
865
+ pass
866
+ for handler in self.subprocess_handlers.values():
867
+ if handler.proc.poll() is None:
868
+ log.warning(
869
+ "Unable to shutdown process %s via %s, forcefully exiting via %s",
870
+ handler.proc.pid, death_sig, _get_kill_signal()
871
+ )
872
+ handler.close(death_sig=_get_kill_signal())
873
+ handler.proc.wait()
venv/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py ADDED
@@ -0,0 +1,375 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+
3
+ # Copyright (c) Facebook, Inc. and its affiliates.
4
+ # All rights reserved.
5
+ #
6
+ # This source code is licensed under the BSD-style license found in the
7
+ # LICENSE file in the root directory of this source tree.
8
+
9
+ """
10
+ Each host in a distributed PyTorch job runs with a single TorchElastic agent,
11
+ and multiple workers (as children processes of the TorchElastic agent).
12
+ Since the workers are user-provided (your PyTorch script/job), TorchElastic
13
+ has a way to propagate errors on the trainers through the agent and up to the
14
+ scheduler, which ultimately informs the end-user about the state of the job
15
+ and applies any retry policies.
16
+
17
+ TorchElastic categorizes errors into 3 categories:
18
+
19
+ +----------------+----------------+--------------------------------------------------------------+
20
+ | Category | Sub-Category | Description |
21
+ +================+================+==============================================================+
22
+ | User Error | Input Error | invalid inputs to TorchElastic APIs (e.g. min > max nodes) |
23
+ | +----------------+--------------------------------------------------------------+
24
+ | | Worker Failure | any failures on the worker child process |
25
+ +----------------+----------------+--------------------------------------------------------------+
26
+ | Platform Error | n/a | failures caused by the agent |
27
+ +----------------+----------------+--------------------------------------------------------------+
28
+ | Infra Error | n/a | failures outside the domain of the agent and workers |
29
+ | | | (e.g. host failures) |
30
+ +----------------+----------------+--------------------------------------------------------------+
31
+
32
+ All errors other than "Worker Failure" are either raised canonically from the
33
+ agent process or implicitly or explicitly crash the agent process. So the
34
+ standard language (python) provided exception handling strategies apply.
35
+
36
+ Worker Failures are special because the exception/failure originates on a different
37
+ process from the agent so the error needs to be propagated inter-process
38
+ (e.g. the agent cannot simply ``try-catch`` an exception raised on the worker process).
39
+
40
+ TorchElastic agents use :func:`torch.distributed.elastic.multiprocessing.start_processes`
41
+ to launch the workers which has a simple file based inter-process error propagation
42
+ built-in.
43
+
44
+ Any function or binary entrypoint decorated with :func:`record`
45
+ will write uncaught exceptions (with the trace information) to a file specified by the
46
+ environment variable ``TORCHELASTIC_ERROR_FILE``. The parent process (e.g. agent)
47
+ sets this env var on each child it launches, then aggregates the error files for all
48
+ children, and propagates the one with the **smallest** timestamp (e.g. the **first** error).
49
+ """
50
+
51
+ import json
52
+ import os
53
+ import signal
54
+ import socket
55
+ import time
56
+ import warnings
57
+ from dataclasses import dataclass, field
58
+ from datetime import datetime
59
+ from functools import wraps
60
+ from string import Template
61
+ from typing import Any, Callable, Dict, List, Optional, Tuple, TypeVar
62
+
63
+ from torch.distributed.elastic.utils.logging import get_logger
64
+
65
+ from .error_handler import ErrorHandler # noqa: F401
66
+ from .handlers import get_error_handler # noqa: F401
67
+
68
+ __all__ = ["ProcessFailure", "ChildFailedError", "record", "ErrorHandler", "get_error_handler"]
69
+
70
+ log = get_logger(__name__)
71
+
72
+
73
+ JSON = Dict
74
+
75
+ _EMPTY_ERROR_DATA = {"message": "<NONE>"}
76
+ _NOT_AVAILABLE = "<N/A>"
77
+
78
+ T = TypeVar("T")
79
+
80
+
81
+ @dataclass
82
+ class ProcessFailure:
83
+ """
84
+ Represent the failed process result. When the worker process fails, it may record failure root cause into the file.
85
+
86
+ Tries to read the failure timestamp from the provided ``error_file``,
87
+ if the ``error_file`` does not exist, the timestamp is the current
88
+ timestamp (seconds since epoch).
89
+
90
+ The ``message`` field is a concise explanation of the failure. If
91
+ the error file exists then the message is obtained from the error file.
92
+ Otherwise one is generated based on the failure signature.
93
+
94
+ .. note:: It is assumed that the ``error_file`` is written by
95
+ ``torch.distributed.elastic.multiprocessing.errors.error_handler.ErrorHandler``.
96
+ Otherwise the behavior is undefined.
97
+
98
+ """
99
+
100
+ local_rank: int
101
+ pid: int
102
+ exitcode: int
103
+ error_file: str
104
+ error_file_data: JSON = field(init=False)
105
+ message: str = field(init=False)
106
+ timestamp: int = field(init=False)
107
+
108
+ def __post_init__(self):
109
+ self.error_file_data = _EMPTY_ERROR_DATA
110
+ if os.path.isfile(self.error_file):
111
+ try:
112
+ with open(self.error_file) as fp:
113
+ self.error_file_data = json.load(fp)
114
+ log.debug(
115
+ "User process failed with error data: %s", json.dumps(self.error_file_data, indent=2)
116
+ )
117
+ self.message, self.timestamp = self._get_error_data(
118
+ self.error_file_data
119
+ )
120
+ except Exception:
121
+ log.exception("Failed to parse reply file: %s", self.error_file)
122
+ raise
123
+ else:
124
+ self._set_no_reply_file()
125
+
126
+ # make up an informative message if not already present
127
+ if not self.message:
128
+ # signals typically do not generate an error file message
129
+ if self.exitcode < 0:
130
+ self.message = (
131
+ f"Signal {-self.exitcode} ({self.signal_name()})"
132
+ f" received by PID {self.pid}"
133
+ )
134
+ else:
135
+ self.message = "To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html"
136
+
137
+ def _get_error_data(self, error_file_data: Dict[str, Any]) -> Tuple[str, int]:
138
+ message = error_file_data["message"]
139
+ if isinstance(message, str):
140
+ timestamp = int(error_file_data.get("timestamp", 0))
141
+ else:
142
+ timestamp = int(message["extraInfo"]["timestamp"])
143
+ return (message, timestamp)
144
+
145
+ def _set_no_reply_file(self):
146
+ self.error_file = _NOT_AVAILABLE
147
+ self.error_file_data = _EMPTY_ERROR_DATA
148
+ self.message = ""
149
+ self.timestamp = int(time.time())
150
+
151
+ def signal_name(self) -> str:
152
+ if self.exitcode < 0:
153
+ # We don't want to kill the parent process trying to find the signal name.
154
+ # if the signal doesn't map to a known name, use not available.
155
+ try:
156
+ return signal.Signals(-self.exitcode).name
157
+ except Exception:
158
+ return _NOT_AVAILABLE
159
+ else:
160
+ return _NOT_AVAILABLE
161
+
162
+ def timestamp_isoformat(self):
163
+ """Return timestamp in ISO format (YYYY-MM-DD_HH:MM:SS)."""
164
+ return datetime.fromtimestamp(self.timestamp).isoformat(sep="_")
165
+
166
+
167
+ GlobalRank = int
168
+
169
+ _FAILURE_FORMAT_TEMPLATE = """[${idx}]:
170
+ time : ${time}
171
+ host : ${hostname}
172
+ rank : ${rank} (local_rank: ${local_rank})
173
+ exitcode : ${exitcode} (pid: ${pid})
174
+ error_file: ${error_file}
175
+ traceback : ${message}"""
176
+
177
+ # extra new lines before and after are intentional
178
+ _MSG_FORMAT_TEMPLATE = """
179
+ ${boarder}
180
+ ${title}
181
+ ${section}
182
+ Failures:
183
+ ${other_failures}
184
+ ${section}
185
+ Root Cause (first observed failure):
186
+ ${root_failure}
187
+ ${boarder}"""
188
+
189
+
190
+ class ChildFailedError(Exception):
191
+ """
192
+ Special exception type that can be raised from a function annotated with the
193
+ ``@record`` decorator to have the child process' (root exception) propagate
194
+ up the stack as-is (e.g. without being wrapped in the parent's traceback).
195
+
196
+ Useful in cases where the parent is a simple nanny process
197
+ and the child (worker) processes are actually doing meaningful compute.
198
+ In this case, errors typically occur on the child process as the parent
199
+ is not doing anything non-trivial, and child errors should be propagated
200
+ to the scheduler for accurate root cause diagnostics.
201
+
202
+ .. note:: The propagation relies on error files rather than exception handling to
203
+ support both function and binary launches.
204
+
205
+ Example:
206
+ ::
207
+
208
+ # process tree on a host (container)
209
+ 0: scheduler-init-process:
210
+ |- 1: torchelastic_agent:
211
+ |- 2: trainer_0 (ok)
212
+ |- 3: trainer_1 (fail) -> error.json
213
+ |- ...
214
+ |- n+2: trainer_n (ok)
215
+ |- n+3: other processes
216
+ |- ...
217
+
218
+ In the example above, trainer 1's failure (written into error.json) is
219
+ the root cause and should be reported to the scheduler's init process.
220
+ The torchelastic agent raises a ``ChildFailedError("trainer", {1: "trainer_1/error.json"})``
221
+ upon detecting trainer 1's failure which would propagate the contents
222
+ of trainer 1's error file to the scheduler's init process.
223
+ """
224
+
225
+ def __init__(self, name: str, failures: Dict[GlobalRank, ProcessFailure]):
226
+ self.name = name
227
+ self.failures = failures
228
+ assert (
229
+ self.failures
230
+ ) # does not make sense to create a ChildFaileError with no failures
231
+ super().__init__(self.format_msg())
232
+
233
+ def get_first_failure(self) -> Tuple[GlobalRank, ProcessFailure]:
234
+ rank = min(self.failures.keys(), key=lambda r: self.failures[r].timestamp)
235
+ return rank, self.failures[rank]
236
+
237
+ def format_msg(self, boarder_delim="=", section_delim="-"):
238
+ title = f"{self.name} FAILED"
239
+ root_rank, root_failure = self.get_first_failure()
240
+
241
+ root_failure_fmt: str = ""
242
+ other_failures_fmt: List[str] = []
243
+ width = len(title)
244
+ for idx, (rank, failure) in enumerate(self.failures.items()):
245
+ fmt, w = self._format_failure(idx, rank, failure)
246
+ width = max(width, w)
247
+ if rank == root_rank:
248
+ root_failure_fmt = fmt
249
+ else:
250
+ other_failures_fmt.append(fmt)
251
+
252
+ # upper boundary on width
253
+ width = min(width, 60)
254
+
255
+ return Template(_MSG_FORMAT_TEMPLATE).substitute(
256
+ boarder=boarder_delim * width,
257
+ title=title,
258
+ section=section_delim * width,
259
+ root_failure=root_failure_fmt,
260
+ other_failures="\n".join(other_failures_fmt or [" <NO_OTHER_FAILURES>"]),
261
+ )
262
+
263
+ def _format_failure(
264
+ self, idx: int, rank: int, failure: ProcessFailure
265
+ ) -> Tuple[str, int]:
266
+
267
+ # failure.message is either a str (when the failure does not generate a traceback - e.g. signals)
268
+ # or a dict (json) of the form
269
+ # {"message": $ERROR_MSG, "extraInfo": {"py_callstack": $TRACEBACK, timestamp: $TS}}
270
+ # so the display logic is:
271
+ # 1. if failure.message is not a dict (it is a str) just show it as is
272
+ # 2. else try to get the traceback (py_callstack)
273
+ # 3. if the traceback is not there, use the message
274
+ # 4. if the message is not there show <N/A>
275
+ msg = failure.message
276
+ if isinstance(failure.message, dict):
277
+ msg = (
278
+ failure.message.get("extraInfo", {})
279
+ .get("py_callstack", failure.message.get("message", "<N/A>"))
280
+ .replace("\n", "\n ") # to properly indent the traceback
281
+ )
282
+
283
+ fmt = Template(_FAILURE_FORMAT_TEMPLATE).substitute(
284
+ idx=idx,
285
+ time=failure.timestamp_isoformat(),
286
+ hostname=socket.getfqdn(),
287
+ rank=rank,
288
+ local_rank=failure.local_rank,
289
+ exitcode=failure.exitcode,
290
+ pid=failure.pid,
291
+ error_file=failure.error_file,
292
+ message=msg,
293
+ )
294
+ width = 0
295
+ for line in fmt.split("\n"):
296
+ width = max(width, len(line))
297
+ return fmt, width
298
+
299
+
300
+ def record(
301
+ fn: Callable[..., T], error_handler: Optional[ErrorHandler] = None
302
+ ) -> Callable[..., T]:
303
+ """
304
+ Syntactic sugar to record errors/exceptions that happened in the decorated
305
+ function using the provided ``error_handler``.
306
+
307
+ Using this decorator is equivalent to:
308
+
309
+ ::
310
+
311
+ error_handler = get_error_handler()
312
+ error_handler.initialize()
313
+ try:
314
+ foobar()
315
+ except ChildFailedError as e:
316
+ _, failure = e.get_first_failure()
317
+ error_handler.dump_error_file(failure.error_file, failure.exitcode)
318
+ raise
319
+ except Exception as e:
320
+ error_handler.record(e)
321
+ raise
322
+
323
+ .. important:: use this decorator once per process at the top level method,
324
+ typically this is the main method.
325
+
326
+ Example
327
+
328
+ ::
329
+
330
+ @record
331
+ def main():
332
+ pass
333
+
334
+ if __name__=="__main__":
335
+ main()
336
+
337
+ """
338
+ if not error_handler:
339
+ error_handler = get_error_handler()
340
+
341
+ def wrap(f):
342
+ @wraps(f)
343
+ def wrapper(*args, **kwargs):
344
+ assert error_handler is not None # assertion for mypy type checker
345
+ error_handler.initialize()
346
+ try:
347
+ return f(*args, **kwargs)
348
+ except SystemExit as se:
349
+ # For run_path based entrypoints, SystemExit with code = 0 will never exit.
350
+ # Handling it here by returning a value:
351
+ if se.code == 0:
352
+ return None
353
+ else:
354
+ raise
355
+ except ChildFailedError as e:
356
+ rank, failure = e.get_first_failure()
357
+ if failure.error_file != _NOT_AVAILABLE:
358
+ error_handler.dump_error_file(failure.error_file, failure.exitcode)
359
+ else:
360
+ log.info(
361
+ (
362
+ "local_rank %s FAILED with no error file."
363
+ " Decorate your entrypoint fn with @record for traceback info."
364
+ " See: https://pytorch.org/docs/stable/elastic/errors.html",
365
+ rank
366
+ )
367
+ )
368
+ raise
369
+ except Exception as e:
370
+ error_handler.record_exception(e)
371
+ raise
372
+
373
+ return wrapper
374
+
375
+ return wrap(fn)
venv/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (12.5 kB). View file
 
venv/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__pycache__/error_handler.cpython-310.pyc ADDED
Binary file (5.2 kB). View file
 
venv/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__pycache__/handlers.cpython-310.pyc ADDED
Binary file (446 Bytes). View file
 
venv/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/error_handler.py ADDED
@@ -0,0 +1,159 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+
3
+ # Copyright (c) Facebook, Inc. and its affiliates.
4
+ # All rights reserved.
5
+ #
6
+ # This source code is licensed under the BSD-style license found in the
7
+ # LICENSE file in the root directory of this source tree.
8
+ import faulthandler
9
+ import json
10
+ import logging
11
+ import os
12
+ import time
13
+ import traceback
14
+ import warnings
15
+ from typing import Any, Dict, Optional
16
+
17
+ __all__ = ['ErrorHandler']
18
+
19
+ log = logging.getLogger(__name__)
20
+
21
+
22
+ class ErrorHandler:
23
+ """
24
+ Write the provided exception object along with some other metadata about
25
+ the error in a structured way in JSON format to an error file specified by the
26
+ environment variable: ``TORCHELASTIC_ERROR_FILE``. If this environment
27
+ variable is not set, then simply logs the contents of what would have been
28
+ written to the error file.
29
+
30
+ This handler may be subclassed to customize the handling of the error.
31
+ Subclasses should override ``initialize()`` and ``record_exception()``.
32
+ """
33
+
34
+ def _get_error_file_path(self) -> Optional[str]:
35
+ """
36
+ Return the error file path.
37
+
38
+ May return ``None`` to have the structured error be logged only.
39
+ """
40
+ return os.environ.get("TORCHELASTIC_ERROR_FILE", None)
41
+
42
+ def initialize(self) -> None:
43
+ """
44
+ Call prior to running code that we wish to capture errors/exceptions.
45
+
46
+ Typically registers signal/fault handlers. Users can override this
47
+ function to add custom initialization/registrations that aid in
48
+ propagation/information of errors/signals/exceptions/faults.
49
+ """
50
+ try:
51
+ faulthandler.enable(all_threads=True)
52
+ except Exception as e:
53
+ warnings.warn(f"Unable to enable fault handler. {type(e).__name__}: {e}")
54
+
55
+ def _write_error_file(self, file_path: str, error_msg: str) -> None:
56
+ """Write error message to the file."""
57
+ try:
58
+ with open(file_path, "w") as fp:
59
+ fp.write(error_msg)
60
+ except Exception as e:
61
+ warnings.warn(f"Unable to write error to file. {type(e).__name__}: {e}")
62
+
63
+ def record_exception(self, e: BaseException) -> None:
64
+ """
65
+ Write a structured information about the exception into an error file in JSON format.
66
+
67
+ If the error file cannot be determined, then logs the content
68
+ that would have been written to the error file.
69
+ """
70
+ file = self._get_error_file_path()
71
+ if file:
72
+ data = {
73
+ "message": {
74
+ "message": f"{type(e).__name__}: {e}",
75
+ "extraInfo": {
76
+ "py_callstack": traceback.format_exc(),
77
+ "timestamp": str(int(time.time())),
78
+ },
79
+ }
80
+ }
81
+ with open(file, "w") as fp:
82
+ json.dump(data, fp)
83
+
84
+ def override_error_code_in_rootcause_data(
85
+ self,
86
+ rootcause_error_file: str,
87
+ rootcause_error: Dict[str, Any],
88
+ error_code: int = 0,
89
+ ):
90
+ """Modify the rootcause_error read from the file, to correctly set the exit code."""
91
+ if "message" not in rootcause_error:
92
+ log.warning(
93
+ "child error file (%s) does not have field `message`. \n"
94
+ "cannot override error code: %s",
95
+ rootcause_error_file, error_code
96
+ )
97
+ elif isinstance(rootcause_error["message"], str):
98
+ log.warning(
99
+ "child error file (%s) has a new message format. \n"
100
+ "skipping error code override",
101
+ rootcause_error_file
102
+ )
103
+ else:
104
+ rootcause_error["message"]["errorCode"] = error_code
105
+
106
+ def dump_error_file(self, rootcause_error_file: str, error_code: int = 0):
107
+ """Dump parent error file from child process's root cause error and error code."""
108
+ with open(rootcause_error_file) as fp:
109
+ rootcause_error = json.load(fp)
110
+ # Override error code since the child process cannot capture the error code if it
111
+ # is terminated by signals like SIGSEGV.
112
+ if error_code:
113
+ self.override_error_code_in_rootcause_data(rootcause_error_file, rootcause_error, error_code)
114
+ log.debug(
115
+ "child error file (%s) contents:\n"
116
+ "%s",
117
+ rootcause_error_file, json.dumps(rootcause_error, indent=2)
118
+ )
119
+
120
+ my_error_file = self._get_error_file_path()
121
+ if my_error_file:
122
+ # Guard against existing error files
123
+ # This can happen when the child is created using multiprocessing
124
+ # and the same env var (TORCHELASTIC_ERROR_FILE) is used on the
125
+ # parent and child to specify the error files (respectively)
126
+ # because the env vars on the child is set in the wrapper function
127
+ # and by default the child inherits the parent's env vars, if the child
128
+ # process receives a signal before the wrapper function kicks in
129
+ # and the signal handler writes to the error file, then the child
130
+ # will write to the parent's error file. In this case just log the
131
+ # original error file contents and overwrite the error file.
132
+ self._rm(my_error_file)
133
+ self._write_error_file(my_error_file, json.dumps(rootcause_error))
134
+ log.info("dumped error file to parent's %s", my_error_file)
135
+ else:
136
+ log.error(
137
+ "no error file defined for parent, to copy child error file (%s)", rootcause_error_file
138
+ )
139
+
140
+ def _rm(self, my_error_file):
141
+ if os.path.isfile(my_error_file):
142
+ # Log the contents of the original file.
143
+ with open(my_error_file) as fp:
144
+ try:
145
+ original = json.dumps(json.load(fp), indent=2)
146
+ log.warning(
147
+ "%s already exists"
148
+ " and will be overwritten."
149
+ " Original contents:\n%s",
150
+ my_error_file, original
151
+ )
152
+ except json.decoder.JSONDecodeError as err:
153
+ log.warning(
154
+ "%s already exists"
155
+ " and will be overwritten."
156
+ " Unable to load original contents:\n",
157
+ my_error_file
158
+ )
159
+ os.remove(my_error_file)
venv/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/handlers.py ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+
3
+ # Copyright (c) Facebook, Inc. and its affiliates.
4
+ # All rights reserved.
5
+ #
6
+ # This source code is licensed under the BSD-style license found in the
7
+ # LICENSE file in the root directory of this source tree.
8
+ # Multiprocessing error-reporting module
9
+
10
+
11
+ from torch.distributed.elastic.multiprocessing.errors.error_handler import ErrorHandler
12
+
13
+ __all__ = ['get_error_handler']
14
+
15
+ def get_error_handler():
16
+ return ErrorHandler()
venv/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/redirects.py ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # !/usr/bin/env python3
2
+
3
+ # Copyright (c) Facebook, Inc. and its affiliates.
4
+ # All rights reserved.
5
+ #
6
+ # This source code is licensed under the BSD-style license found in the
7
+ # LICENSE file in the root directory of this source tree.
8
+
9
+ # Taken and modified from original source:
10
+ # https://eli.thegreenplace.net/2015/redirecting-all-kinds-of-stdout-in-python/
11
+ import ctypes
12
+ import logging
13
+ import os
14
+ import sys
15
+ from contextlib import contextmanager
16
+ from functools import partial
17
+
18
+ IS_WINDOWS = sys.platform == "win32"
19
+ IS_MACOS = sys.platform == "darwin"
20
+
21
+
22
+ logger = logging.getLogger(__name__)
23
+
24
+
25
+ def get_libc():
26
+ if IS_WINDOWS or IS_MACOS:
27
+ logger.warning(
28
+ "NOTE: Redirects are currently not supported in Windows or MacOs."
29
+ )
30
+ return None
31
+ else:
32
+ return ctypes.CDLL("libc.so.6")
33
+
34
+
35
+ libc = get_libc()
36
+
37
+
38
+ def _c_std(stream: str):
39
+ return ctypes.c_void_p.in_dll(libc, stream)
40
+
41
+
42
+ def _python_std(stream: str):
43
+ return {"stdout": sys.stdout, "stderr": sys.stderr}[stream]
44
+
45
+
46
+ _VALID_STD = {"stdout", "stderr"}
47
+
48
+
49
+ @contextmanager
50
+ def redirect(std: str, to_file: str):
51
+ """
52
+ Redirect ``std`` (one of ``"stdout"`` or ``"stderr"``) to a file in the path specified by ``to_file``.
53
+
54
+ This method redirects the underlying std file descriptor (not just python's ``sys.stdout|stderr``).
55
+ See usage for details.
56
+
57
+ Directory of ``dst_filename`` is assumed to exist and the destination file
58
+ is overwritten if it already exists.
59
+
60
+ .. note:: Due to buffering cross source writes are not guaranteed to
61
+ appear in wall-clock order. For instance in the example below
62
+ it is possible for the C-outputs to appear before the python
63
+ outputs in the log file.
64
+
65
+ Usage:
66
+
67
+ ::
68
+
69
+ # syntactic-sugar for redirect("stdout", "tmp/stdout.log")
70
+ with redirect_stdout("/tmp/stdout.log"):
71
+ print("python stdouts are redirected")
72
+ libc = ctypes.CDLL("libc.so.6")
73
+ libc.printf(b"c stdouts are also redirected"
74
+ os.system("echo system stdouts are also redirected")
75
+
76
+ print("stdout restored")
77
+
78
+ """
79
+ if std not in _VALID_STD:
80
+ raise ValueError(
81
+ f"unknown standard stream <{std}>, must be one of {_VALID_STD}"
82
+ )
83
+
84
+ c_std = _c_std(std)
85
+ python_std = _python_std(std)
86
+ std_fd = python_std.fileno()
87
+
88
+ def _redirect(dst):
89
+ libc.fflush(c_std)
90
+ python_std.flush()
91
+ os.dup2(dst.fileno(), std_fd)
92
+
93
+ with os.fdopen(os.dup(std_fd)) as orig_std, open(to_file, mode="w+b") as dst:
94
+ _redirect(dst)
95
+ try:
96
+ yield
97
+ finally:
98
+ _redirect(orig_std)
99
+
100
+
101
+ redirect_stdout = partial(redirect, "stdout")
102
+ redirect_stderr = partial(redirect, "stderr")
venv/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/subprocess_handler/__init__.py ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+
3
+ # Copyright (c) Facebook, Inc. and its affiliates.
4
+ # All rights reserved.
5
+ #
6
+ # This source code is licensed under the BSD-style license found in the
7
+ # LICENSE file in the root directory of this source tree.
8
+ from torch.distributed.elastic.multiprocessing.subprocess_handler.handlers import (
9
+ get_subprocess_handler,
10
+ )
11
+ from torch.distributed.elastic.multiprocessing.subprocess_handler.subprocess_handler import (
12
+ SubprocessHandler,
13
+ )
14
+
15
+ __all__ = ["SubprocessHandler", "get_subprocess_handler"]
venv/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/subprocess_handler/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (494 Bytes). View file
 
venv/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/subprocess_handler/__pycache__/handlers.cpython-310.pyc ADDED
Binary file (718 Bytes). View file
 
venv/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/subprocess_handler/__pycache__/subprocess_handler.cpython-310.pyc ADDED
Binary file (2.36 kB). View file
 
venv/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/subprocess_handler/handlers.py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+
3
+ # Copyright (c) Facebook, Inc. and its affiliates.
4
+ # All rights reserved.
5
+ #
6
+ # This source code is licensed under the BSD-style license found in the
7
+ # LICENSE file in the root directory of this source tree.
8
+ from typing import Dict, Tuple
9
+
10
+ from torch.distributed.elastic.multiprocessing.subprocess_handler.subprocess_handler import (
11
+ SubprocessHandler,
12
+ )
13
+
14
+ __all__ = ["get_subprocess_handler"]
15
+
16
+
17
+ def get_subprocess_handler(
18
+ entrypoint: str,
19
+ args: Tuple,
20
+ env: Dict[str, str],
21
+ stdout: str,
22
+ stderr: str,
23
+ local_rank_id: int,
24
+ ):
25
+ return SubprocessHandler(
26
+ entrypoint=entrypoint,
27
+ args=args,
28
+ env=env,
29
+ stdout=stdout,
30
+ stderr=stderr,
31
+ local_rank_id=local_rank_id,
32
+ )
venv/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/subprocess_handler/subprocess_handler.py ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+
3
+ # Copyright (c) Facebook, Inc. and its affiliates.
4
+ # All rights reserved.
5
+ #
6
+ # This source code is licensed under the BSD-style license found in the
7
+ # LICENSE file in the root directory of this source tree.
8
+ import os
9
+ import signal
10
+ import subprocess
11
+ import sys
12
+
13
+ from typing import Any, Dict, Optional, Tuple
14
+
15
+ __all__ = ["SubprocessHandler"]
16
+
17
+ IS_WINDOWS = sys.platform == "win32"
18
+
19
+
20
+ def _get_default_signal() -> signal.Signals:
21
+ """Get the default termination signal. SIGTERM for unix, CTRL_C_EVENT for windows."""
22
+ if IS_WINDOWS:
23
+ return signal.CTRL_C_EVENT # type: ignore[attr-defined] # noqa: F821
24
+ else:
25
+ return signal.SIGTERM
26
+
27
+
28
+ class SubprocessHandler:
29
+ """
30
+ Convenience wrapper around python's ``subprocess.Popen``. Keeps track of
31
+ meta-objects associated to the process (e.g. stdout and stderr redirect fds).
32
+ """
33
+
34
+ def __init__(
35
+ self,
36
+ entrypoint: str,
37
+ args: Tuple,
38
+ env: Dict[str, str],
39
+ stdout: str,
40
+ stderr: str,
41
+ local_rank_id: int,
42
+ ):
43
+ self._stdout = open(stdout, "w") if stdout else None
44
+ self._stderr = open(stderr, "w") if stderr else None
45
+ # inherit parent environment vars
46
+ env_vars = os.environ.copy()
47
+ env_vars.update(env)
48
+
49
+ args_str = (entrypoint, *[str(e) for e in args])
50
+ self.local_rank_id = local_rank_id
51
+ self.proc: subprocess.Popen = self._popen(args_str, env_vars)
52
+
53
+ def _popen(self, args: Tuple, env: Dict[str, str]) -> subprocess.Popen:
54
+ kwargs: Dict[str, Any] = {}
55
+ if not IS_WINDOWS:
56
+ kwargs["start_new_session"] = True
57
+ return subprocess.Popen(
58
+ # pyre-fixme[6]: Expected `Union[typing.Sequence[Union[_PathLike[bytes],
59
+ # _PathLike[str], bytes, str]], bytes, str]` for 1st param but got
60
+ # `Tuple[str, *Tuple[Any, ...]]`.
61
+ args=args,
62
+ env=env,
63
+ stdout=self._stdout,
64
+ stderr=self._stderr,
65
+ **kwargs,
66
+ )
67
+
68
+ def close(self, death_sig: Optional[signal.Signals] = None) -> None:
69
+ if not death_sig:
70
+ death_sig = _get_default_signal()
71
+ if IS_WINDOWS:
72
+ self.proc.send_signal(death_sig)
73
+ else:
74
+ os.killpg(self.proc.pid, death_sig)
75
+ if self._stdout:
76
+ self._stdout.close()
77
+ if self._stderr:
78
+ self._stderr.close()
venv/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/tail_log.py ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+
3
+ # Copyright (c) Facebook, Inc. and its affiliates.
4
+ # All rights reserved.
5
+ #
6
+ # This source code is licensed under the BSD-style license found in the
7
+ # LICENSE file in the root directory of this source tree.
8
+
9
+ import logging
10
+ import os
11
+ import time
12
+ from concurrent.futures._base import Future
13
+ from concurrent.futures.thread import ThreadPoolExecutor
14
+ from threading import Event
15
+ from typing import Dict, List, Optional, TextIO
16
+
17
+ __all__ = ["tail_logfile", "TailLog"]
18
+
19
+ log = logging.getLogger(__name__)
20
+
21
+
22
+ def tail_logfile(
23
+ header: str, file: str, dst: TextIO, finished: Event, interval_sec: float
24
+ ):
25
+
26
+ while not os.path.exists(file):
27
+ if finished.is_set():
28
+ return
29
+ time.sleep(interval_sec)
30
+
31
+ with open(file, errors="replace") as fp:
32
+ while True:
33
+ line = fp.readline()
34
+
35
+ if line:
36
+ dst.write(f"{header}{line}")
37
+ else: # reached EOF
38
+ if finished.is_set():
39
+ # log line producer is finished
40
+ break
41
+ else:
42
+ # log line producer is still going
43
+ # wait for a bit before looping again
44
+ time.sleep(interval_sec)
45
+
46
+
47
+ class TailLog:
48
+ """
49
+ Tail the given log files.
50
+
51
+ The log files do not have to exist when the ``start()`` method is called. The tail-er will gracefully wait until
52
+ the log files are created by the producer and will tail the contents of the
53
+ log files until the ``stop()`` method is called.
54
+
55
+ .. warning:: ``TailLog`` will wait indefinitely for the log file to be created!
56
+
57
+ Each log file's line will be suffixed with a header of the form: ``[{name}{idx}]:``,
58
+ where the ``name`` is user-provided and ``idx`` is the index of the log file
59
+ in the ``log_files`` mapping. ``log_line_prefixes`` can be used to override the
60
+ header for each log file.
61
+
62
+ Usage:
63
+
64
+ ::
65
+
66
+ log_files = {0: "/tmp/0_stdout.log", 1: "/tmp/1_stdout.log"}
67
+ tailer = TailLog("trainer", log_files, sys.stdout).start()
68
+ # actually run the trainers to produce 0_stdout.log and 1_stdout.log
69
+ run_trainers()
70
+ tailer.stop()
71
+
72
+ # once run_trainers() start writing the ##_stdout.log files
73
+ # the tailer will print to sys.stdout:
74
+ # >>> [trainer0]:log_line1
75
+ # >>> [trainer1]:log_line1
76
+ # >>> [trainer0]:log_line2
77
+ # >>> [trainer0]:log_line3
78
+ # >>> [trainer1]:log_line2
79
+
80
+ .. note:: Due to buffering log lines between files may not necessarily
81
+ be printed out in order. You should configure your application's
82
+ logger to suffix each log line with a proper timestamp.
83
+
84
+ """
85
+
86
+ def __init__(
87
+ self,
88
+ name: str,
89
+ log_files: Dict[int, str],
90
+ dst: TextIO,
91
+ log_line_prefixes: Optional[Dict[int, str]] = None,
92
+ interval_sec: float = 0.1,
93
+ ):
94
+ n = len(log_files)
95
+ self._threadpool = None
96
+ if n > 0:
97
+ self._threadpool = ThreadPoolExecutor(
98
+ max_workers=n,
99
+ thread_name_prefix=f"{self.__class__.__qualname__}_{name}",
100
+ )
101
+
102
+ self._name = name
103
+ self._dst = dst
104
+ self._log_files = log_files
105
+ self._log_line_prefixes = log_line_prefixes
106
+ self._finished_events: Dict[int, Event] = {
107
+ local_rank: Event() for local_rank in log_files.keys()
108
+ }
109
+ self._futs: List[Future] = []
110
+ self._interval_sec = interval_sec
111
+ self._stopped = False
112
+
113
+ def start(self) -> "TailLog":
114
+ if not self._threadpool:
115
+ return self
116
+
117
+ for local_rank, file in self._log_files.items():
118
+ header = f"[{self._name}{local_rank}]:"
119
+ if self._log_line_prefixes and local_rank in self._log_line_prefixes:
120
+ header = self._log_line_prefixes[local_rank]
121
+ self._futs.append(
122
+ self._threadpool.submit(
123
+ tail_logfile,
124
+ header=header,
125
+ file=file,
126
+ dst=self._dst,
127
+ finished=self._finished_events[local_rank],
128
+ interval_sec=self._interval_sec,
129
+ )
130
+ )
131
+ return self
132
+
133
+ def stop(self) -> None:
134
+ for finished in self._finished_events.values():
135
+ finished.set()
136
+
137
+ for local_rank, f in enumerate(self._futs):
138
+ try:
139
+ f.result()
140
+ except Exception as e:
141
+ log.error(
142
+ "error in log tailor for %s%s. %s: %s",
143
+ self._name, local_rank,
144
+ e.__class__.__qualname__, e,
145
+ )
146
+
147
+ if self._threadpool:
148
+ self._threadpool.shutdown(wait=True)
149
+
150
+ self._stopped = True
151
+
152
+ def stopped(self) -> bool:
153
+ return self._stopped
venv/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/__init__.py ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Facebook, Inc. and its affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the BSD-style license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ """
8
+ In the context of Torch Distributed Elastic we use the term *rendezvous* to
9
+ refer to a particular functionality that combines a **distributed
10
+ synchronization** primitive with **peer discovery**.
11
+
12
+ It is used by Torch Distributed Elastic to gather participants of a training
13
+ job (i.e. nodes) such that they all agree on the same list of participants and
14
+ everyone's roles, as well as make a consistent collective decision on when
15
+ training can begin/resume.
16
+
17
+ Torch Distributed Elastic rendezvous provides the following critical
18
+ functionalities:
19
+
20
+ **Barrier**:
21
+
22
+ Nodes performing rendezvous will all block until the rendezvous is considered
23
+ complete - this happens when at least ``min`` total number of nodes have joined
24
+ the rendezvous barrier (for the same job). This also implies the barrier is not
25
+ necessarily of fixed size.
26
+
27
+ There's an additional small waiting time after reaching ``min`` number of
28
+ nodes - this is used to ensure the rendezvous is not completed "too quickly"
29
+ (which could potentially exclude additional nodes attempting to join at
30
+ approximately the same time).
31
+
32
+ If ``max`` number of nodes is gathered at the barrier, the rendezvous is
33
+ completed immediately.
34
+
35
+ There's also an overall timeout which causes the rendezvous to fail if ``min``
36
+ number of nodes is never reached - this is meant to be a simple fail-safe to
37
+ help release partially allocated job resources, in case there's a problem with
38
+ the resource manager, and is meant to be interpreted as non-retryable.
39
+
40
+ **Exclusivity**:
41
+
42
+ A simple distributed barrier would not be sufficient, as we also need to ensure
43
+ that only one group of nodes exists at any given time (for a given job). In
44
+ other words, new nodes (i.e. joining late) should not be able to form a parallel
45
+ independent group of workers for the same job.
46
+
47
+ Torch Distributed Elastic rendezvous ensures that if a group of nodes has
48
+ already completed a rendezvous (and hence might already be training), then
49
+ additional "late" nodes attempting to rendezvous will only announce themselves
50
+ as waiting, and will have to wait until the (previously completed) existing
51
+ rendezvous is destroyed first.
52
+
53
+ **Consistency**:
54
+
55
+ When a rendezvous is completed, all its members will agree on the job membership
56
+ and everyone's role in it. This role is represented using an integer, called
57
+ rank, that is between between 0 and world size.
58
+
59
+ Note that ranks are *not stable*, in the sense that the same node can be
60
+ assigned a different rank in the next (re-)rendezvous.
61
+
62
+ **Fault-tolerance**:
63
+
64
+ Torch Distributed Elastic rendezvous is designed to tolerate node failures
65
+ during the rendezvous process. Should a process crash (or lose network
66
+ connectivity, etc), between joining the rendezvous and it being completed, then
67
+ a re-rendezvous with remaining healthy nodes will happen automatically.
68
+
69
+ A node can also fail *after* it has completed (or *has been observered* by other
70
+ nodes to have completed) the rendezvous - this scenario will be handled by the
71
+ Torch Distributed Elastic ``train_loop`` instead (where it will also trigger a
72
+ re-rendezvous).
73
+
74
+ **Shared key-value store**:
75
+
76
+ When the rendezvous is completed, a shared key-value store is created and
77
+ returned. This store implements a ``torch.distributed.Store`` API (see
78
+ `distributed communication docs
79
+ <https://pytorch.org/docs/stable/distributed.html>`__).
80
+
81
+ This store is only shared by the members of the completed rendezvous. It
82
+ is intended to be used by Torch Distributed Elastic to exchange information
83
+ necessary to initialize job control and data-planes.
84
+
85
+ **Waiting workers and rendezvous closing**:
86
+
87
+ Torch Distributed Elastic rendezvous handler object provides additional
88
+ functionalities, which are technically not part of the rendezvous process:
89
+
90
+ 1. Querying how many workers arrived late at the barrier, who can participate in
91
+ *next* rendezvous.
92
+
93
+ 2. Setting the rendezvous *closed* to signal all nodes not to participate in
94
+ next rendezvous.
95
+
96
+ **DynamicRendezvousHandler**:
97
+
98
+ Torch Distributed Elastic comes with the :py:class:`.DynamicRendezvousHandler`
99
+ class that implements the rendezvous mechanism described above. It is a backend-
100
+ agnostic type that expects a particular :py:class:`.RendezvousBackend` instance
101
+ to be specified during construction.
102
+
103
+ Torch distributed users can either implement their own backend type or use one
104
+ of the following implementations that come with PyTorch:
105
+
106
+ - :py:class:`.C10dRendezvousBackend`: Uses a C10d store (by default
107
+ ``TCPStore``) as the rendezvous backend. The main advantage of using a C10d
108
+ store is that it requires no 3rd-party dependency (such as etcd) to establish
109
+ a rendezvous.
110
+ - :py:class:`.EtcdRendezvousBackend`: Supersedes the legacy
111
+ :py:class:`.EtcdRendezvousHandler` class. Passing an
112
+ :py:class:`.EtcdRendezvousBackend` instance to
113
+ :py:class:`.DynamicRendezvousHandler` is functionally equivalent to
114
+ instantiating an :py:class:`.EtcdRendezvousHandler`.
115
+
116
+ ::
117
+
118
+ store = TCPStore("localhost")
119
+
120
+ backend = C10dRendezvousBackend(store, "my_run_id")
121
+
122
+ rdzv_handler = DynamicRendezvousHandler.from_backend(
123
+ run_id="my_run_id",
124
+ store=store,
125
+ backend=backend,
126
+ min_nodes=2,
127
+ max_nodes=4
128
+ )
129
+ """
130
+
131
+ from .api import * # noqa: F403
132
+ from .registry import _register_default_handlers
133
+
134
+
135
+ _register_default_handlers()
136
+
137
+
138
+ __all__ = [
139
+ "RendezvousClosedError",
140
+ "RendezvousConnectionError",
141
+ "RendezvousError",
142
+ "RendezvousGracefulExitError",
143
+ "RendezvousHandler",
144
+ "RendezvousHandlerCreator",
145
+ "RendezvousHandlerRegistry",
146
+ "RendezvousParameters",
147
+ "RendezvousStateError",
148
+ "RendezvousTimeoutError",
149
+ "rendezvous_handler_registry",
150
+ ]
venv/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (5.77 kB). View file
 
venv/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/__pycache__/api.cpython-310.pyc ADDED
Binary file (9.81 kB). View file
 
venv/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/__pycache__/c10d_rendezvous_backend.cpython-310.pyc ADDED
Binary file (7.97 kB). View file
 
venv/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/__pycache__/dynamic_rendezvous.cpython-310.pyc ADDED
Binary file (38.3 kB). View file
 
venv/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/__pycache__/etcd_rendezvous.cpython-310.pyc ADDED
Binary file (27.2 kB). View file
 
venv/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/__pycache__/etcd_rendezvous_backend.cpython-310.pyc ADDED
Binary file (6.47 kB). View file
 
venv/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/__pycache__/etcd_server.cpython-310.pyc ADDED
Binary file (7.89 kB). View file
 
venv/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/__pycache__/etcd_store.cpython-310.pyc ADDED
Binary file (5.34 kB). View file