Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step120/zero/20.input_layernorm.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step120/zero/20.input_layernorm.weight/fp32.pt +3 -0
- ckpts/universal/global_step120/zero/26.attention.dense.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step120/zero/7.mlp.dense_h_to_4h_swiglu.weight/exp_avg_sq.pt +3 -0
- venv/lib/python3.10/site-packages/torch/distributed/_tools/__init__.py +1 -0
- venv/lib/python3.10/site-packages/torch/distributed/_tools/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/_tools/__pycache__/memory_tracker.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/_tools/memory_tracker.py +299 -0
- venv/lib/python3.10/site-packages/torch/distributed/algorithms/__init__.py +3 -0
- venv/lib/python3.10/site-packages/torch/distributed/algorithms/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/algorithms/__pycache__/join.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/algorithms/_checkpoint/__init__.py +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/algorithms/_checkpoint/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/algorithms/_checkpoint/__pycache__/checkpoint_wrapper.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/algorithms/_checkpoint/checkpoint_wrapper.py +314 -0
- venv/lib/python3.10/site-packages/torch/distributed/algorithms/_comm_hooks/__init__.py +7 -0
- venv/lib/python3.10/site-packages/torch/distributed/algorithms/_comm_hooks/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/algorithms/_comm_hooks/__pycache__/default_hooks.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/algorithms/_comm_hooks/default_hooks.py +165 -0
- venv/lib/python3.10/site-packages/torch/distributed/algorithms/_optimizer_overlap/__init__.py +1 -0
- venv/lib/python3.10/site-packages/torch/distributed/algorithms/_optimizer_overlap/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/algorithms/_optimizer_overlap/__pycache__/optimizer_overlap.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/algorithms/_optimizer_overlap/optimizer_overlap.py +93 -0
- venv/lib/python3.10/site-packages/torch/distributed/algorithms/_quantization/__init__.py +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/algorithms/_quantization/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/algorithms/_quantization/__pycache__/quantization.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/algorithms/_quantization/quantization.py +144 -0
- venv/lib/python3.10/site-packages/torch/distributed/algorithms/ddp_comm_hooks/__init__.py +108 -0
- venv/lib/python3.10/site-packages/torch/distributed/algorithms/ddp_comm_hooks/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/algorithms/ddp_comm_hooks/__pycache__/ddp_zero_hook.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/algorithms/ddp_comm_hooks/__pycache__/debugging_hooks.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/algorithms/ddp_comm_hooks/__pycache__/default_hooks.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/algorithms/ddp_comm_hooks/__pycache__/mixed_precision_hooks.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/algorithms/ddp_comm_hooks/__pycache__/optimizer_overlap_hooks.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/algorithms/ddp_comm_hooks/__pycache__/post_localSGD_hook.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/algorithms/ddp_comm_hooks/__pycache__/powerSGD_hook.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/algorithms/ddp_comm_hooks/__pycache__/quantization_hooks.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/algorithms/ddp_comm_hooks/ddp_zero_hook.py +448 -0
- venv/lib/python3.10/site-packages/torch/distributed/algorithms/ddp_comm_hooks/debugging_hooks.py +28 -0
- venv/lib/python3.10/site-packages/torch/distributed/algorithms/ddp_comm_hooks/default_hooks.py +223 -0
- venv/lib/python3.10/site-packages/torch/distributed/algorithms/ddp_comm_hooks/mixed_precision_hooks.py +85 -0
- venv/lib/python3.10/site-packages/torch/distributed/algorithms/ddp_comm_hooks/optimizer_overlap_hooks.py +154 -0
- venv/lib/python3.10/site-packages/torch/distributed/algorithms/ddp_comm_hooks/post_localSGD_hook.py +123 -0
- venv/lib/python3.10/site-packages/torch/distributed/algorithms/ddp_comm_hooks/powerSGD_hook.py +850 -0
- venv/lib/python3.10/site-packages/torch/distributed/algorithms/ddp_comm_hooks/quantization_hooks.py +217 -0
- venv/lib/python3.10/site-packages/torch/distributed/algorithms/join.py +346 -0
- venv/lib/python3.10/site-packages/torch/distributed/algorithms/model_averaging/__init__.py +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/algorithms/model_averaging/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/algorithms/model_averaging/__pycache__/averagers.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/algorithms/model_averaging/__pycache__/hierarchical_model_averager.cpython-310.pyc +0 -0
ckpts/universal/global_step120/zero/20.input_layernorm.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:63db8a3cd200ba4dd876246f8fe90ffb4f5e9f1ee6db5fe738ec98d4a5e57523
|
3 |
+
size 9387
|
ckpts/universal/global_step120/zero/20.input_layernorm.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f26e75ec14cd60a4213ce1da745672946a05f4bed075a13fd51e780ba0fbf28b
|
3 |
+
size 9293
|
ckpts/universal/global_step120/zero/26.attention.dense.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8fde349e0c9ed2d2a1990482ae5ae95bd8009781d5bb0cc2d47cb60a39568f4e
|
3 |
+
size 16778411
|
ckpts/universal/global_step120/zero/7.mlp.dense_h_to_4h_swiglu.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:032dcf9214e9c983a0a7069822758e969a97683a8d4d3ef04089546f27ffdf19
|
3 |
+
size 33555627
|
venv/lib/python3.10/site-packages/torch/distributed/_tools/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .memory_tracker import MemoryTracker
|
venv/lib/python3.10/site-packages/torch/distributed/_tools/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (244 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/_tools/__pycache__/memory_tracker.cpython-310.pyc
ADDED
Binary file (10.5 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/_tools/memory_tracker.py
ADDED
@@ -0,0 +1,299 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import defaultdict
|
2 |
+
|
3 |
+
from itertools import chain
|
4 |
+
|
5 |
+
import pickle
|
6 |
+
|
7 |
+
from typing import (
|
8 |
+
Any,
|
9 |
+
Callable,
|
10 |
+
Dict,
|
11 |
+
List,
|
12 |
+
no_type_check,
|
13 |
+
Sequence,
|
14 |
+
)
|
15 |
+
|
16 |
+
import torch
|
17 |
+
import torch.nn as nn
|
18 |
+
from torch.utils.hooks import RemovableHandle
|
19 |
+
from torch.utils._python_dispatch import TorchDispatchMode
|
20 |
+
|
21 |
+
|
22 |
+
BYTES_PER_MB = 1024 * 1024.0
|
23 |
+
|
24 |
+
|
25 |
+
class MemoryProfileDispatchMode(TorchDispatchMode):
|
26 |
+
"""Run in ``TorchDispatchMode`` to get memory stats at operator level."""
|
27 |
+
|
28 |
+
def __init__(self, memory_tracker) -> None:
|
29 |
+
self.memory_tracker = memory_tracker
|
30 |
+
|
31 |
+
def __torch_dispatch__(self, func, types, args=..., kwargs=None):
|
32 |
+
rs = func(*args, **kwargs)
|
33 |
+
if func == torch.ops.aten.detach.default:
|
34 |
+
return rs
|
35 |
+
func_name: str = (
|
36 |
+
self.memory_tracker._cur_module_name
|
37 |
+
+ "."
|
38 |
+
+ func.__name__
|
39 |
+
+ "_"
|
40 |
+
+ str(self.memory_tracker._operator_names[func.__name__])
|
41 |
+
)
|
42 |
+
self.memory_tracker._operator_names[func.__name__] = (
|
43 |
+
self.memory_tracker._operator_names[func.__name__] + 1
|
44 |
+
)
|
45 |
+
self.memory_tracker._record_memory_stats(func_name)
|
46 |
+
|
47 |
+
return rs
|
48 |
+
|
49 |
+
|
50 |
+
class MemoryTracker:
|
51 |
+
"""
|
52 |
+
Collect and plot the memory stats at operator level.
|
53 |
+
|
54 |
+
Includes ``memories_allocated``, ``memories_active`` and ``memories_reserved``.
|
55 |
+
It also prints a summary for the top 20 operators that generate the most memories.
|
56 |
+
|
57 |
+
Example usage:
|
58 |
+
|
59 |
+
>>> # xdoctest: +SKIP(failing)
|
60 |
+
>>> net.cuda()
|
61 |
+
>>> input = input.cuda()
|
62 |
+
|
63 |
+
>>> mem_tracker = MemoryTracker()
|
64 |
+
>>> mem_tracker.start_monitor(net)
|
65 |
+
|
66 |
+
>>> net.zero_grad(True)
|
67 |
+
>>> loss = net(input)
|
68 |
+
>>> if isinstance(loss, dict):
|
69 |
+
>>> loss = loss['out']
|
70 |
+
>>> loss.sum().backward()
|
71 |
+
>>> net.zero_grad(set_to_none=True)
|
72 |
+
|
73 |
+
>>> mem_tracker.stop()
|
74 |
+
>>> mem_tracker.summary()
|
75 |
+
>>> mem_tracker.show_traces()
|
76 |
+
"""
|
77 |
+
|
78 |
+
def __init__(self) -> None:
|
79 |
+
torch._C._log_api_usage_once("torch.distributed.memory_tracker")
|
80 |
+
self._hooks: List[RemovableHandle] = []
|
81 |
+
self._operator_names: Dict[str, int] = defaultdict(int)
|
82 |
+
self.memories_allocated: Dict[int, Dict[str, float]] = defaultdict()
|
83 |
+
self.memories_active: Dict[int, Dict[str, float]] = defaultdict()
|
84 |
+
self.memories_reserved: Dict[int, Dict[str, float]] = defaultdict()
|
85 |
+
self._markers: Dict[str, int] = defaultdict(int)
|
86 |
+
self._cur_module_name: str = ""
|
87 |
+
self._op_index: int = 0
|
88 |
+
self._num_cuda_retries: int = 0
|
89 |
+
|
90 |
+
@no_type_check
|
91 |
+
def start_monitor(self, root_module: nn.Module) -> None:
|
92 |
+
"""
|
93 |
+
Register module hooks and entering ``MemoryProfileDispatchMode``.
|
94 |
+
|
95 |
+
This enables operator level memory stats can be tracked during module runtime.
|
96 |
+
"""
|
97 |
+
self._clear_state()
|
98 |
+
root_module.__setattr__("_memory_tracker_is_root", True)
|
99 |
+
for name, m in root_module.named_modules():
|
100 |
+
if m is not root_module:
|
101 |
+
m.__setattr__("_memory_tracker_is_root", False)
|
102 |
+
# fused_proxy_group does not support hooks
|
103 |
+
if ".fused_proxy_grouped_embedding_bag" in name:
|
104 |
+
continue
|
105 |
+
# hook ordering with other hooks added by users is not managed, so
|
106 |
+
# the memory stats tracked here may not completely accurate.
|
107 |
+
h1 = m.register_forward_pre_hook(self._create_pre_forward_hook(name))
|
108 |
+
h2 = m.register_forward_hook(self._create_post_forward_hook(name))
|
109 |
+
# it does not work well with jagged tensor somehow, the root cause is not
|
110 |
+
# clear and remove it for now as it does not really capture important info.
|
111 |
+
# h3 = m.register_backward_hook(self._create_backward_hook(name))
|
112 |
+
self._hooks.extend([h1, h2])
|
113 |
+
torch.cuda.empty_cache()
|
114 |
+
assert getattr(self, "profile_mode", None) is None
|
115 |
+
self.profile_mode = MemoryProfileDispatchMode(self)
|
116 |
+
self.profile_mode.__enter__()
|
117 |
+
|
118 |
+
@no_type_check
|
119 |
+
def stop(self) -> None:
|
120 |
+
"""
|
121 |
+
Remove module hooks and exit ``MemoryProfileDispatchMode`` to stop tracking memory stats at operator level.
|
122 |
+
|
123 |
+
Get some aggregated stats when the memory_tracker() is enabled, like cuda ``num_alloc_retries``.
|
124 |
+
"""
|
125 |
+
self._num_cuda_retries = torch.cuda.memory_stats().get("num_alloc_retries", 0)
|
126 |
+
|
127 |
+
for h in self._hooks:
|
128 |
+
h.remove()
|
129 |
+
self._hooks.clear()
|
130 |
+
assert getattr(self, "profile_mode", None) is not None
|
131 |
+
self.profile_mode.__exit__(None, None, None)
|
132 |
+
self.profile_mode = None
|
133 |
+
|
134 |
+
@no_type_check
|
135 |
+
def summary(self, top: int = 20) -> None:
|
136 |
+
"""
|
137 |
+
Print out the top operators that generate the most memories.
|
138 |
+
|
139 |
+
The number of the top operators can be configured.
|
140 |
+
"""
|
141 |
+
op_diff: Dict[str, float] = defaultdict(float)
|
142 |
+
op_name, previous_allocated_memory = self.memories_allocated[0]
|
143 |
+
for i in range(1, self._op_index):
|
144 |
+
op_name, current_allocated_memory = self.memories_allocated[i]
|
145 |
+
op_diff[op_name] = current_allocated_memory - previous_allocated_memory
|
146 |
+
previous_allocated_memory = current_allocated_memory
|
147 |
+
|
148 |
+
print("------------------------------------------------")
|
149 |
+
print(f"The number of cuda retries are: {self._num_cuda_retries}")
|
150 |
+
print(f"Top {top} ops that generates memory are:")
|
151 |
+
for k, v in sorted(op_diff.items(), key=lambda item: item[1], reverse=True)[
|
152 |
+
:top
|
153 |
+
]:
|
154 |
+
print(f"{k}: {v}MB")
|
155 |
+
print("------------------------------------------------")
|
156 |
+
|
157 |
+
@no_type_check
|
158 |
+
def show_traces(self, path: str = "") -> None:
|
159 |
+
import matplotlib.pyplot as plt
|
160 |
+
|
161 |
+
def _plot_figure(x, y_values, labels):
|
162 |
+
min_val = min(list(chain(*y_values))) * 0.999
|
163 |
+
max_val = max(list(chain(*y_values))) * 1.001
|
164 |
+
plt.figure()
|
165 |
+
for y, label in zip(y_values, labels):
|
166 |
+
plt.plot(x, y, label=label)
|
167 |
+
plt.xlabel("# Operator Calls")
|
168 |
+
plt.ylabel("Memory (MB)")
|
169 |
+
plt.legend()
|
170 |
+
for marker_name, marker in self._markers.items():
|
171 |
+
if marker_name == "fw_bw_boundary":
|
172 |
+
plt.plot(
|
173 |
+
[marker, marker],
|
174 |
+
[min_val, max_val],
|
175 |
+
"r",
|
176 |
+
lw=2,
|
177 |
+
label=marker_name,
|
178 |
+
)
|
179 |
+
else:
|
180 |
+
plt.plot(
|
181 |
+
[marker, marker],
|
182 |
+
[min_val, max_val],
|
183 |
+
"k-",
|
184 |
+
lw=2,
|
185 |
+
label=marker_name,
|
186 |
+
)
|
187 |
+
|
188 |
+
if path != "":
|
189 |
+
self.load(path)
|
190 |
+
|
191 |
+
y_1 = [gb for (name, gb) in self.memories_allocated.values()]
|
192 |
+
y_2 = [gb for (name, gb) in self.memories_active.values()]
|
193 |
+
y_3 = [gb for (name, gb) in self.memories_reserved.values()]
|
194 |
+
x = list(range(len(y_1)))
|
195 |
+
# Split figures when there is big difference between
|
196 |
+
# "reserved_memory" and "allocated_memory" or "active_memory".
|
197 |
+
_plot_figure(
|
198 |
+
x,
|
199 |
+
[list(y_1), list(y_2), list(y_3)],
|
200 |
+
["allocated_memory", "active_memory", "reserved_memory"],
|
201 |
+
)
|
202 |
+
_plot_figure(x, [list(y_1)], ["allocated_memory"])
|
203 |
+
_plot_figure(x, [list(y_2)], ["active_memory"])
|
204 |
+
_plot_figure(x, [list(y_3)], ["reserved_memory"])
|
205 |
+
|
206 |
+
def save_stats(self, path: str) -> None:
|
207 |
+
"""Save the stats using pickle during runtime if users want to plot the traces in other places like notebook."""
|
208 |
+
stats = {
|
209 |
+
"memories_allocated": self.memories_allocated,
|
210 |
+
"memories_active": self.memories_active,
|
211 |
+
"memories_reserved": self.memories_reserved,
|
212 |
+
"markers": self._markers,
|
213 |
+
"num_alloc_retries": self._num_cuda_retries,
|
214 |
+
}
|
215 |
+
|
216 |
+
with open(path, "wb") as f:
|
217 |
+
pickle.dump(stats, f, pickle.HIGHEST_PROTOCOL)
|
218 |
+
|
219 |
+
def load(self, path: str) -> None:
|
220 |
+
"""Load the pickled memory stats to plot the traces or print the summary."""
|
221 |
+
with open(path, "rb") as f:
|
222 |
+
stats = pickle.load(f)
|
223 |
+
|
224 |
+
self.memories_allocated = stats["memories_allocated"]
|
225 |
+
self.memories_active = stats["memories_active"]
|
226 |
+
self.memories_reserved = stats["memories_reserved"]
|
227 |
+
self._markers = stats["markers"]
|
228 |
+
self._num_cuda_retries = stats["num_alloc_retries"]
|
229 |
+
|
230 |
+
def _create_pre_forward_hook(self, name: str) -> Callable:
|
231 |
+
"""Prefix operator name with current module and 'forward', and insert 'fw_start' marker at forward pass start."""
|
232 |
+
def _pre_forward_hook(module: nn.Module, inputs: Any) -> None:
|
233 |
+
self._cur_module_name = f"{name}.forward"
|
234 |
+
if (
|
235 |
+
hasattr(module, "_memory_tracker_is_root")
|
236 |
+
and module._memory_tracker_is_root
|
237 |
+
):
|
238 |
+
self._add_marker("fw_start")
|
239 |
+
|
240 |
+
return _pre_forward_hook
|
241 |
+
|
242 |
+
def _create_post_forward_hook(self, name: str) -> Callable:
|
243 |
+
"""Insert the marker 'fw_bw_boundary' at the boundary of forward and backward pass."""
|
244 |
+
|
245 |
+
def _post_forward_hook(
|
246 |
+
module: nn.Module,
|
247 |
+
inputs: Sequence[torch.Tensor],
|
248 |
+
outputs: Sequence[torch.Tensor],
|
249 |
+
) -> None:
|
250 |
+
if (
|
251 |
+
hasattr(module, "_memory_tracker_is_root")
|
252 |
+
and module._memory_tracker_is_root
|
253 |
+
):
|
254 |
+
self._add_marker("fw_bw_boundary")
|
255 |
+
|
256 |
+
return _post_forward_hook
|
257 |
+
|
258 |
+
def _create_backward_hook(self, name: str) -> Callable:
|
259 |
+
"""Insert the current module name with backward prefix for the operator name."""
|
260 |
+
|
261 |
+
def _backward_hook(
|
262 |
+
module: nn.Module, grad_input: torch.Tensor, grad_output: torch.Tensor
|
263 |
+
) -> None:
|
264 |
+
self._cur_module_name = f"{name}.backward"
|
265 |
+
|
266 |
+
return _backward_hook
|
267 |
+
|
268 |
+
@no_type_check
|
269 |
+
def _record_memory_stats(self, fn_name: str) -> None:
|
270 |
+
"""
|
271 |
+
Record current memory allocated, current memory active and current memory reserved.
|
272 |
+
|
273 |
+
The memory stats dict is indexed with ``self._op_index``.
|
274 |
+
"""
|
275 |
+
memory_allocated: float = torch.cuda.memory_allocated() / BYTES_PER_MB
|
276 |
+
memory_reserved: float = torch.cuda.memory_reserved() / BYTES_PER_MB
|
277 |
+
memory_active: float = (
|
278 |
+
torch.cuda.memory_stats().get("active_bytes.all.current", 0) / BYTES_PER_MB
|
279 |
+
)
|
280 |
+
self.memories_allocated[self._op_index] = (fn_name, memory_allocated)
|
281 |
+
self.memories_reserved[self._op_index] = (fn_name, memory_reserved)
|
282 |
+
self.memories_active[self._op_index] = (fn_name, memory_active)
|
283 |
+
self._op_index += 1
|
284 |
+
|
285 |
+
def _add_marker(self, marker_name: str) -> None:
|
286 |
+
"""Set the marker's x-axis value."""
|
287 |
+
marker_val = len(self.memories_allocated.values())
|
288 |
+
self._markers[marker_name] = marker_val
|
289 |
+
|
290 |
+
def _clear_state(self) -> None:
|
291 |
+
"""Clear states when start_monitor() is called."""
|
292 |
+
self._operator_names.clear()
|
293 |
+
self.memories_allocated.clear()
|
294 |
+
self.memories_active.clear()
|
295 |
+
self.memories_reserved.clear()
|
296 |
+
self._markers.clear()
|
297 |
+
self._cur_module_name = ""
|
298 |
+
self._op_index = 0
|
299 |
+
self._num_cuda_retries = 0
|
venv/lib/python3.10/site-packages/torch/distributed/algorithms/__init__.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
from .join import Join
|
2 |
+
from .join import Joinable
|
3 |
+
from .join import JoinHook
|
venv/lib/python3.10/site-packages/torch/distributed/algorithms/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (291 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/algorithms/__pycache__/join.cpython-310.pyc
ADDED
Binary file (13 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/algorithms/_checkpoint/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/torch/distributed/algorithms/_checkpoint/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (208 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/algorithms/_checkpoint/__pycache__/checkpoint_wrapper.cpython-310.pyc
ADDED
Binary file (11.3 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/algorithms/_checkpoint/checkpoint_wrapper.py
ADDED
@@ -0,0 +1,314 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import warnings
|
2 |
+
from enum import auto, Enum
|
3 |
+
from functools import partial
|
4 |
+
from typing import Any, Callable, Dict, Iterator, Optional, Tuple
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
from torch.autograd.graph import save_on_cpu
|
9 |
+
from torch.distributed.utils import _pack_kwargs, _replace_by_prefix, _unpack_kwargs
|
10 |
+
from torch.utils.checkpoint import checkpoint as torch_utils_checkpoint
|
11 |
+
|
12 |
+
_CHECKPOINT_WRAPPED_MODULE = "_checkpoint_wrapped_module"
|
13 |
+
_CHECKPOINT_PREFIX = _CHECKPOINT_WRAPPED_MODULE + "."
|
14 |
+
|
15 |
+
|
16 |
+
class CheckpointImpl(Enum):
|
17 |
+
REENTRANT = auto()
|
18 |
+
NO_REENTRANT = auto()
|
19 |
+
|
20 |
+
|
21 |
+
class ActivationWrapper(torch.nn.Module):
|
22 |
+
"""
|
23 |
+
Base class for Activation Checkpoint and Activation Offload.
|
24 |
+
|
25 |
+
Not meant to be instantiated directly.
|
26 |
+
"""
|
27 |
+
|
28 |
+
def __init__(self, mod):
|
29 |
+
super().__init__()
|
30 |
+
self._checkpoint_wrapped_module = mod
|
31 |
+
# state_dict post hook to remove prefix to allow loading into a
|
32 |
+
# non-checkpoint wrapped module.
|
33 |
+
self._register_state_dict_hook(self._post_state_dict_hook)
|
34 |
+
# load_state_dict pre-hook to allow loading back into
|
35 |
+
# checkpoint-wrapped module.
|
36 |
+
self._register_load_state_dict_pre_hook(
|
37 |
+
self._pre_load_state_dict_hook, with_module=True
|
38 |
+
)
|
39 |
+
|
40 |
+
def forward(self, *args, **kwargs):
|
41 |
+
raise ValueError("Subclasses should implement forward().")
|
42 |
+
|
43 |
+
def __getattr__(self, name: str) -> Any:
|
44 |
+
"""Forward missing attributes to wrapped module."""
|
45 |
+
try:
|
46 |
+
return super().__getattr__(name) # defer to nn.Module's logic
|
47 |
+
except AttributeError:
|
48 |
+
return getattr(self._checkpoint_wrapped_module, name)
|
49 |
+
|
50 |
+
def __getitem__(self, key: int) -> Any:
|
51 |
+
"""Forward indexing calls in case the module is a nn.Sequential."""
|
52 |
+
return self._checkpoint_wrapped_module.__getitem__(key) # type: ignore[operator]
|
53 |
+
|
54 |
+
def named_parameters(
|
55 |
+
self,
|
56 |
+
*args,
|
57 |
+
**kwargs,
|
58 |
+
) -> Iterator[Tuple[str, torch.nn.Parameter]]:
|
59 |
+
"""
|
60 |
+
Override :meth:`named_parameters()` to intercept parameter names.
|
61 |
+
|
62 |
+
remove all occurrences of ``_CHECKPOINT_PREFIX``.
|
63 |
+
"""
|
64 |
+
for param_name, param in super().named_parameters(*args, **kwargs):
|
65 |
+
yield param_name.replace(_CHECKPOINT_PREFIX, ""), param
|
66 |
+
|
67 |
+
@staticmethod
|
68 |
+
def _post_state_dict_hook(
|
69 |
+
module: nn.Module,
|
70 |
+
state_dict: Dict[str, Any],
|
71 |
+
prefix: str,
|
72 |
+
*args: Any,
|
73 |
+
) -> Dict[str, Any]:
|
74 |
+
"""
|
75 |
+
_post_state_dict_hook() is called after the state_dict() of this FSDP module is executed.
|
76 |
+
|
77 |
+
For ``checkpoint_wrapper``, it will strip checkpoint-wrapped module prefix,
|
78 |
+
so that this module can be loaded into non-checkpointed modules.
|
79 |
+
It would still be able to be loaded into checkpoint-wrapped modules as this class,
|
80 |
+
adds the prefix back before loading the state_dict.
|
81 |
+
"""
|
82 |
+
_replace_by_prefix(state_dict, f"{prefix}{_CHECKPOINT_PREFIX}", prefix)
|
83 |
+
return state_dict
|
84 |
+
|
85 |
+
@staticmethod
|
86 |
+
def _pre_load_state_dict_hook(
|
87 |
+
module: nn.Module,
|
88 |
+
state_dict: Dict[str, Any],
|
89 |
+
prefix: str,
|
90 |
+
*args: Any,
|
91 |
+
) -> None:
|
92 |
+
"""
|
93 |
+
``_pre_state_dict_hook` is called before ``self._load_from_state_dict()`` is called.
|
94 |
+
|
95 |
+
For ``checkpoint_wrapper``, it will add back the module
|
96 |
+
prefix so that non-checkpointed modules can be loaded into
|
97 |
+
checkpoint_wrapper modules properly.
|
98 |
+
"""
|
99 |
+
_replace_by_prefix(state_dict, prefix, prefix + f"{_CHECKPOINT_PREFIX}")
|
100 |
+
|
101 |
+
|
102 |
+
class OffloadWrapper(ActivationWrapper):
|
103 |
+
def __init__(self, mod):
|
104 |
+
super().__init__(mod)
|
105 |
+
|
106 |
+
def forward(self, *args, **kwargs):
|
107 |
+
with save_on_cpu(pin_memory=True):
|
108 |
+
return self._checkpoint_wrapped_module(*args, **kwargs)
|
109 |
+
|
110 |
+
|
111 |
+
class CheckpointWrapper(ActivationWrapper):
|
112 |
+
"""
|
113 |
+
An ``nn.Module`` that wraps another ``nn.Module`` with checkpointing.
|
114 |
+
|
115 |
+
Note that this module is not meant to be used directly but instead,
|
116 |
+
it is to be used through the ``checkpoint_wrapper`` function.
|
117 |
+
"""
|
118 |
+
|
119 |
+
def __init__(
|
120 |
+
self,
|
121 |
+
mod: torch.nn.Module,
|
122 |
+
checkpoint_impl: CheckpointImpl = CheckpointImpl.NO_REENTRANT,
|
123 |
+
checkpoint_fn=None,
|
124 |
+
**checkpoint_fn_kwargs,
|
125 |
+
):
|
126 |
+
super().__init__(mod)
|
127 |
+
self.checkpoint_impl = checkpoint_impl
|
128 |
+
if checkpoint_fn is None:
|
129 |
+
# use torch.utils.checkpoint
|
130 |
+
self.checkpoint_fn = partial(
|
131 |
+
torch_utils_checkpoint,
|
132 |
+
use_reentrant=(self.checkpoint_impl == CheckpointImpl.REENTRANT),
|
133 |
+
**checkpoint_fn_kwargs,
|
134 |
+
)
|
135 |
+
else:
|
136 |
+
# Construct user-specified checkpoint function.
|
137 |
+
self.checkpoint_fn = partial(
|
138 |
+
checkpoint_fn,
|
139 |
+
**checkpoint_fn_kwargs,
|
140 |
+
)
|
141 |
+
|
142 |
+
def forward(self, *args, **kwargs):
|
143 |
+
# Support keyword arguments for reentrant checkpoint. Note that this
|
144 |
+
# only works if user has specified self.checkpoint_impl and is not
|
145 |
+
# using their own custom checkpoint_fn.
|
146 |
+
if self.checkpoint_impl == CheckpointImpl.REENTRANT and kwargs != {}:
|
147 |
+
# Pack the args and kwargs
|
148 |
+
flat_args, kwarg_keys = _pack_kwargs(*args, **kwargs)
|
149 |
+
|
150 |
+
# Function that only takes (packed) args, but can unpack them
|
151 |
+
# into the original args and kwargs for the checkpointed
|
152 |
+
# function, and runs that function.
|
153 |
+
def my_function(*inputs):
|
154 |
+
# unpack back into args and kwargs
|
155 |
+
unpacked_args, unpacked_kwargs = _unpack_kwargs(inputs, kwarg_keys)
|
156 |
+
# run original module
|
157 |
+
return self._checkpoint_wrapped_module(
|
158 |
+
*unpacked_args, **unpacked_kwargs
|
159 |
+
)
|
160 |
+
|
161 |
+
# Pass the function that only takes packed args into reentrant
|
162 |
+
# checkpoint API.
|
163 |
+
return self.checkpoint_fn( # type: ignore[misc]
|
164 |
+
my_function,
|
165 |
+
*flat_args,
|
166 |
+
)
|
167 |
+
else:
|
168 |
+
return self.checkpoint_fn( # type: ignore[misc]
|
169 |
+
self._checkpoint_wrapped_module, *args, **kwargs
|
170 |
+
)
|
171 |
+
|
172 |
+
|
173 |
+
def offload_wrapper(module: torch.nn.Module) -> torch.nn.Module:
|
174 |
+
"""
|
175 |
+
Wrap a module for activation offloading to CPU.
|
176 |
+
|
177 |
+
Offloads intermediate activations to the CPU for modules wrapped with this function.
|
178 |
+
Wrappers with activation offload can be composed with ones that do recomputation-based
|
179 |
+
checkpoint to trade off increased compute versus increased CPU
|
180 |
+
memory usage and additional H2D transfers.
|
181 |
+
|
182 |
+
Usage::
|
183 |
+
offloaded_module = offload_wrapper(module)
|
184 |
+
outputs = checkpointed_module(inputs)
|
185 |
+
Args:
|
186 |
+
module (nn.Module):
|
187 |
+
The module to be wrapped
|
188 |
+
Returns:
|
189 |
+
(nn.Module):
|
190 |
+
Wrapped module
|
191 |
+
"""
|
192 |
+
return OffloadWrapper(module)
|
193 |
+
|
194 |
+
|
195 |
+
def checkpoint_wrapper(
|
196 |
+
module: torch.nn.Module,
|
197 |
+
checkpoint_impl: CheckpointImpl = CheckpointImpl.NO_REENTRANT,
|
198 |
+
checkpoint_fn=None,
|
199 |
+
**checkpoint_fn_kwargs,
|
200 |
+
) -> torch.nn.Module:
|
201 |
+
"""
|
202 |
+
Wrap a module for activation checkpointing.
|
203 |
+
|
204 |
+
If the module is wrapped with this function, all subsequent calls to the module will,
|
205 |
+
automatically perform checkpointing without the user having to explicitly call ``checkpoint`` function.
|
206 |
+
|
207 |
+
Usage::
|
208 |
+
checkpointed_module = checkpoint_wrapper(module)
|
209 |
+
outputs = checkpointed_module(inputs)
|
210 |
+
Args:
|
211 |
+
module (nn.Module):
|
212 |
+
The module to be wrapped
|
213 |
+
checkpoint_impl (Optional[CheckpointImpl]):
|
214 |
+
The checkpointing implementation to use. Note that this will only
|
215 |
+
be passed into the ``torch.utils.checkpoint.checkpoint``
|
216 |
+
implementation, and is ignored if a custom ``checkpoint_fn`` is
|
217 |
+
specified. Note that for implementations using reentrant checkpoint
|
218 |
+
from ``torch.utils.checkpoint``, keyword arguments will only be
|
219 |
+
supported if ``checkpoint_impl`` is passed as ``CheckpointImpl.REENTRANT`.
|
220 |
+
checkpoint_fn (Optional[Callable]):
|
221 |
+
Functional checkpoint implementation to use. If this is specified,
|
222 |
+
it will be used over the default ``torch.utils.checkpoint.checkpoint``
|
223 |
+
implementation and the `checkpoint_impl` argument will be ignored.
|
224 |
+
**checkpoint_fn_kwargs: (Dict[str, Any]): Keyword arguments to pass into `checkpoint_fn`.
|
225 |
+
|
226 |
+
Returns:
|
227 |
+
(nn.Module):
|
228 |
+
Wrapped module
|
229 |
+
"""
|
230 |
+
|
231 |
+
if checkpoint_impl == CheckpointImpl.REENTRANT:
|
232 |
+
warnings.warn(
|
233 |
+
f"Please specify {CheckpointImpl.NO_REENTRANT} as "
|
234 |
+
f"{CheckpointImpl.REENTRANT} will soon be removed as "
|
235 |
+
"the default and eventually deprecated.",
|
236 |
+
stacklevel=1,
|
237 |
+
)
|
238 |
+
return CheckpointWrapper(
|
239 |
+
module,
|
240 |
+
checkpoint_impl,
|
241 |
+
checkpoint_fn,
|
242 |
+
**checkpoint_fn_kwargs,
|
243 |
+
)
|
244 |
+
|
245 |
+
|
246 |
+
def apply_activation_checkpointing(
|
247 |
+
model,
|
248 |
+
checkpoint_wrapper_fn=checkpoint_wrapper,
|
249 |
+
check_fn=lambda _: True,
|
250 |
+
auto_wrap_policy: Optional[Callable[[nn.Module, bool, int], bool]] = None,
|
251 |
+
):
|
252 |
+
"""
|
253 |
+
Apply :func:`checkpoint_wrapper` to modules within `model` based on a user-defined configuration.
|
254 |
+
|
255 |
+
For each module within `model`, the `check_fn` is used to decide
|
256 |
+
whether `module` should be wrapped with :func:`checkpoint_wrapper` or not.
|
257 |
+
|
258 |
+
Note::
|
259 |
+
This function modifies `model` in place and replaces appropriate layers with
|
260 |
+
their checkpoint-wrapped modules.
|
261 |
+
Note::
|
262 |
+
This function will not wrap the overall root module. If this is needed, please directly use
|
263 |
+
:func:`checkpoint_wrapper` or :func:`offload_wrapper`.
|
264 |
+
Usage::
|
265 |
+
model = nn.Sequential(
|
266 |
+
nn.Linear(10, 10), nn.Linear(10, 10), nn.Linear(10, 10)
|
267 |
+
)
|
268 |
+
check_fn = lambda l: isinstance(l, nn.Linear)
|
269 |
+
# checkpoint activations
|
270 |
+
apply_activation_checkpointing(model, checkpoint_wrapper_fn=checkpoint_wrapper, check_fn=check_fn)
|
271 |
+
# Or offload activations to CPU
|
272 |
+
apply_activation_checkpointing(model, checkpoint_wrapper_fn=offload_wrapper, check_fn=check_fn)
|
273 |
+
Args:
|
274 |
+
model (nn.Module):
|
275 |
+
The model whose submodules should be wrapped with activation checkpointing.
|
276 |
+
checkpoint_wrapper_fn (Optional[Callable[nn.Module]])
|
277 |
+
A ``Callable`` which will wrap modules
|
278 |
+
check_fn (Optional[Callable[nn.Module, nn.Module]])
|
279 |
+
A lambda function which will be passed each child submodule of ``model`` and returns
|
280 |
+
``True`` or ``False`` depending on whether the submodule should be wrapped.
|
281 |
+
auto_wrap_policy (Optional[Callable[[nn.Module, bool, int], bool]]): A policy to wrap model's
|
282 |
+
submodules with AC. Note that if this is specified, it takes precedence over ``check_fn``.
|
283 |
+
Returns: None (`model` is modified inplace)
|
284 |
+
"""
|
285 |
+
# TODO: Importing inside function to avoid circular import issue between FSDP and
|
286 |
+
# checkpoint_wrapper. This can be resolved once wrap() APIs are decoupled from FSDP code.
|
287 |
+
from torch.distributed.fsdp.wrap import _recursive_wrap, lambda_auto_wrap_policy, _Policy
|
288 |
+
from torch.distributed.fsdp._wrap_utils import _construct_wrap_fn, _post_order_apply
|
289 |
+
|
290 |
+
policy = (
|
291 |
+
auto_wrap_policy
|
292 |
+
if auto_wrap_policy is not None
|
293 |
+
else partial(lambda_auto_wrap_policy, lambda_fn=check_fn)
|
294 |
+
)
|
295 |
+
if not callable(policy):
|
296 |
+
if not isinstance(policy, _Policy):
|
297 |
+
raise ValueError(
|
298 |
+
f"Expected {policy} to be callable or be a pre-defined wrap policy"
|
299 |
+
)
|
300 |
+
target_module_to_kwargs = policy._run_policy(
|
301 |
+
model, ignored_modules=set(), root_kwargs={}
|
302 |
+
)
|
303 |
+
wrap_fn = _construct_wrap_fn(model, target_module_to_kwargs, checkpoint_wrapper_fn)
|
304 |
+
_post_order_apply(model, wrap_fn)
|
305 |
+
return
|
306 |
+
|
307 |
+
_recursive_wrap(
|
308 |
+
module=model,
|
309 |
+
auto_wrap_policy=policy, # type: ignore[arg-type]
|
310 |
+
wrapper_cls=checkpoint_wrapper_fn,
|
311 |
+
ignored_modules=set(),
|
312 |
+
ignored_params=set(),
|
313 |
+
only_wrap_children=True,
|
314 |
+
)
|
venv/lib/python3.10/site-packages/torch/distributed/algorithms/_comm_hooks/__init__.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from . import default_hooks as default
|
3 |
+
|
4 |
+
LOW_PRECISION_HOOKS = [
|
5 |
+
default.fp16_compress_hook,
|
6 |
+
default.bf16_compress_hook,
|
7 |
+
]
|
venv/lib/python3.10/site-packages/torch/distributed/algorithms/_comm_hooks/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (334 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/algorithms/_comm_hooks/__pycache__/default_hooks.cpython-310.pyc
ADDED
Binary file (6.61 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/algorithms/_comm_hooks/default_hooks.py
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools
|
2 |
+
import torch
|
3 |
+
import torch.distributed as dist
|
4 |
+
from typing import Optional
|
5 |
+
|
6 |
+
|
7 |
+
class DefaultState:
|
8 |
+
r"""
|
9 |
+
Stores state needed to perform the default communication algorithm within a communication hook.
|
10 |
+
|
11 |
+
Args:
|
12 |
+
process_group (ProcessGroup): The process group to be used.
|
13 |
+
"""
|
14 |
+
|
15 |
+
__slots__ = [
|
16 |
+
"process_group",
|
17 |
+
"world_size",
|
18 |
+
"gradient_predivide_factor",
|
19 |
+
"gradient_postdivide_factor"
|
20 |
+
]
|
21 |
+
|
22 |
+
def __init__(
|
23 |
+
self,
|
24 |
+
process_group: dist.ProcessGroup
|
25 |
+
):
|
26 |
+
if process_group is None:
|
27 |
+
raise ValueError(f"Expected to pass in an explicit ProcessGroup to {self}.")
|
28 |
+
self.process_group = process_group
|
29 |
+
self.world_size = dist.get_world_size(process_group)
|
30 |
+
# Setting two factors `self.gradient_predivide_factor`
|
31 |
+
# and `self.gradient_postdivide_factor` to avoid underflow and overflow
|
32 |
+
self.gradient_predivide_factor = self._get_gradient_predivide_factor(
|
33 |
+
self.world_size
|
34 |
+
)
|
35 |
+
self.gradient_postdivide_factor = self.world_size / self.gradient_predivide_factor
|
36 |
+
|
37 |
+
@staticmethod
|
38 |
+
def _get_gradient_predivide_factor(world_size: int) -> float:
|
39 |
+
factor: int = 1
|
40 |
+
while world_size % factor == 0 and world_size / factor > factor:
|
41 |
+
factor *= 2
|
42 |
+
return float(factor)
|
43 |
+
|
44 |
+
class LowPrecisionState(DefaultState):
|
45 |
+
r"""
|
46 |
+
Stores state needed to perform gradient communication in a lower precision within a communication hook.
|
47 |
+
|
48 |
+
Communication hook will cast gradients back to the original
|
49 |
+
parameter precision specified by ``parameter_type`` (default: torch.float32).
|
50 |
+
Builds on top of the :class:`DefaultState`.
|
51 |
+
|
52 |
+
Args:
|
53 |
+
parameter_type (torch.dtype): The precision of model's parameters.
|
54 |
+
Required for a hook to cast gradients back to a parameter's precision.
|
55 |
+
"""
|
56 |
+
|
57 |
+
__slots__ = [
|
58 |
+
"parameter_type",
|
59 |
+
]
|
60 |
+
|
61 |
+
def __init__(
|
62 |
+
self,
|
63 |
+
process_group,
|
64 |
+
parameter_type=torch.float32,
|
65 |
+
):
|
66 |
+
super().__init__(process_group)
|
67 |
+
self.parameter_type = parameter_type
|
68 |
+
|
69 |
+
|
70 |
+
def _decompress(state: LowPrecisionState, grad: torch.Tensor):
|
71 |
+
"""
|
72 |
+
Casts gradients back to full parameter precision so that further computation happens in full precision.
|
73 |
+
"""
|
74 |
+
orig_grad_data = grad.data
|
75 |
+
grad.data = grad.data.to(state.parameter_type)
|
76 |
+
# Don't let this memory get reused until after the transfer.
|
77 |
+
orig_grad_data.record_stream(torch.cuda.current_stream()) # type: ignore[arg-type]
|
78 |
+
|
79 |
+
def allreduce_hook(state: DefaultState, grad: torch.Tensor):
|
80 |
+
r"""
|
81 |
+
Implement the FSDP communication hook for ``all_reduce`` algorithm and a necessary pre- and post-division of gradients.
|
82 |
+
|
83 |
+
Args:
|
84 |
+
state (DefaultState): State information, configures pre- and post-division factors.
|
85 |
+
grad (torch.Tensor): A gradient for the local batch that needs to be communicated across ranks.
|
86 |
+
"""
|
87 |
+
# Average grad by pre-division factor. Together pre- and post-division factors
|
88 |
+
# lead to an overall averaging by world_size, required for consistency with PyTorch DDP.
|
89 |
+
# This is a two-step process to avoid potential underflow and overflow.
|
90 |
+
if state.gradient_predivide_factor > 1:
|
91 |
+
grad.div_(state.gradient_predivide_factor)
|
92 |
+
dist.all_reduce(grad, group=state.process_group)
|
93 |
+
# Average grad by post-division factor.
|
94 |
+
if state.gradient_postdivide_factor > 1:
|
95 |
+
grad.div_(state.gradient_postdivide_factor)
|
96 |
+
|
97 |
+
def reduce_scatter_hook(state: DefaultState, grad: torch.Tensor, output: torch.Tensor):
|
98 |
+
r"""
|
99 |
+
Implement the FSDP communication hook for ``reduce_scatter`` algorithm.
|
100 |
+
|
101 |
+
For sharded FSDP strategies and a necessary pre- and post-division of gradients.
|
102 |
+
|
103 |
+
Args:
|
104 |
+
state (DefaultState): State information, configures pre- and post-division factors.
|
105 |
+
grad (torch.Tensor): An unsharded gradient for the local batch that needs to be
|
106 |
+
communicated across ranks.
|
107 |
+
output (torch.Tensor): Stores a single shard of the gradient after ``reduce_scatter``.
|
108 |
+
"""
|
109 |
+
# Average grad by pre-division factor.
|
110 |
+
if state.gradient_predivide_factor > 1:
|
111 |
+
grad.div_(state.gradient_predivide_factor)
|
112 |
+
dist.reduce_scatter_tensor(
|
113 |
+
output, grad, group=state.process_group
|
114 |
+
)
|
115 |
+
# Average grad's shard by post-division factor.
|
116 |
+
if state.gradient_postdivide_factor > 1:
|
117 |
+
output.div_(state.gradient_postdivide_factor)
|
118 |
+
|
119 |
+
def _low_precision_hook(prec: torch.dtype, state: LowPrecisionState, grad: torch.Tensor, output: torch.Tensor):
|
120 |
+
if grad.dtype != prec:
|
121 |
+
grad.data = grad.data.to(prec)
|
122 |
+
if output is not None:
|
123 |
+
if output.dtype != prec:
|
124 |
+
output.data = output.data.to(prec)
|
125 |
+
reduce_scatter_hook(state, grad, output)
|
126 |
+
_decompress(state, output)
|
127 |
+
else:
|
128 |
+
allreduce_hook(state, grad)
|
129 |
+
_decompress(state, grad)
|
130 |
+
|
131 |
+
def fp16_compress_hook(state: LowPrecisionState, grad: torch.Tensor, output: Optional[torch.Tensor] = None):
|
132 |
+
r"""
|
133 |
+
Implement FSDP communication hook for a simple gradient compression approach.
|
134 |
+
Casts ``grad`` to half-precision floating-point format (``torch.float16``).
|
135 |
+
|
136 |
+
It also averages gradients by ``world_size`` in two steps: first it pre-divides gradients by a
|
137 |
+
``state.gradient_predivide_factor``, and after a communication step (``all_reduce`` or ``reduce_scatter``)
|
138 |
+
gradients are averaged by a ``state.gradient_postdivide_factor``.
|
139 |
+
Once post-division is done, compressed gradients are casted back to parameters' precision.
|
140 |
+
|
141 |
+
Args:
|
142 |
+
state (LowPrecisionState): State information, configures pre- and post-division factors, parameters' precision.
|
143 |
+
grad (torch.Tensor): A gradient for the local batch that needs to be communicated across ranks in a lower precision.
|
144 |
+
output (torch.Tensor): Stores a single shard of the gradient after ``reduce_scatter``.
|
145 |
+
"""
|
146 |
+
fp16_hook = functools.partial(_low_precision_hook, torch.float16)
|
147 |
+
return fp16_hook(state, grad, output)
|
148 |
+
|
149 |
+
def bf16_compress_hook(state: LowPrecisionState, grad: torch.Tensor, output: Optional[torch.Tensor] = None):
|
150 |
+
r"""
|
151 |
+
Implement FSDP communication hook for a simple gradient compression approach .
|
152 |
+
Casts ``grad`` to half-precision floating-point format.
|
153 |
+
|
154 |
+
It also averages gradients by ``world_size`` in two steps: first it pre-divides gradients by a
|
155 |
+
``state.gradient_predivide_factor``, and after a communication step (``all_reduce`` or ``reduce_scatter``)
|
156 |
+
gradients are averaged by a ``state.gradient_postdivide_factor``.
|
157 |
+
Once post-division is done, compressed gradients are casted back to parameters' precision.
|
158 |
+
|
159 |
+
Args:
|
160 |
+
state (LowPrecisionState): State information, configures pre- and post-division factors, parameters' precision.
|
161 |
+
grad (torch.Tensor): A gradient for the local batch that needs to be communicated across ranks in a lower precision.
|
162 |
+
output (torch.Tensor): Stores a single shard of the gradient after ``reduce_scatter``.
|
163 |
+
"""
|
164 |
+
bf16_hook = functools.partial(_low_precision_hook, torch.bfloat16)
|
165 |
+
return bf16_hook(state, grad, output)
|
venv/lib/python3.10/site-packages/torch/distributed/algorithms/_optimizer_overlap/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .optimizer_overlap import _as_overlapped_optim
|
venv/lib/python3.10/site-packages/torch/distributed/algorithms/_optimizer_overlap/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (277 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/algorithms/_optimizer_overlap/__pycache__/optimizer_overlap.cpython-310.pyc
ADDED
Binary file (3.82 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/algorithms/_optimizer_overlap/optimizer_overlap.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from abc import ABC, abstractmethod
|
2 |
+
import inspect
|
3 |
+
from typing import Dict, Type
|
4 |
+
|
5 |
+
from torch.distributed.fsdp import FullyShardedDataParallel
|
6 |
+
from torch.nn.parallel import DistributedDataParallel
|
7 |
+
from torch.optim import Optimizer
|
8 |
+
from torch.distributed.optim import as_functional_optim
|
9 |
+
|
10 |
+
from torch.distributed.algorithms.ddp_comm_hooks.default_hooks import allreduce_hook
|
11 |
+
|
12 |
+
from torch.distributed.algorithms.ddp_comm_hooks.optimizer_overlap_hooks import (
|
13 |
+
_OptimizerHookState,
|
14 |
+
_hook_then_optimizer
|
15 |
+
)
|
16 |
+
|
17 |
+
# Contains the mappings between the regular and overlapped optimizer types.
|
18 |
+
_registered_overlapped_optims: Dict[Type, Type] = {}
|
19 |
+
|
20 |
+
|
21 |
+
def register_overlapped(optim_cls):
|
22 |
+
def decorator(target_overlapped_optim_cls):
|
23 |
+
if target_overlapped_optim_cls in _registered_overlapped_optims:
|
24 |
+
raise ValueError(
|
25 |
+
f"{target_overlapped_optim_cls} already registered with optim_cls "
|
26 |
+
f"{_registered_overlapped_optims[optim_cls]} {optim_cls}, trying to"
|
27 |
+
f"re-register it for {optim_cls} is not supported."
|
28 |
+
)
|
29 |
+
_registered_overlapped_optims[optim_cls] = target_overlapped_optim_cls
|
30 |
+
return target_overlapped_optim_cls
|
31 |
+
return decorator
|
32 |
+
|
33 |
+
|
34 |
+
class OverlappedOptimizer(ABC):
|
35 |
+
def __init__(self, optim_cls: Type) -> None:
|
36 |
+
"""
|
37 |
+
Initialize the OverlappedOptimizer.
|
38 |
+
|
39 |
+
Overlappedoptimizer is a base class that child classes can implement to
|
40 |
+
specify how different optimizers will register themselves with DDP.
|
41 |
+
"""
|
42 |
+
self.optim_cls = optim_cls
|
43 |
+
|
44 |
+
@abstractmethod
|
45 |
+
def register_ddp(self, ddp: DistributedDataParallel) -> None:
|
46 |
+
"""Registers the overlapped optimizer with DDP."""
|
47 |
+
raise NotImplementedError(
|
48 |
+
f"{self.__class__.__name__} does not support overlapped DDP."
|
49 |
+
)
|
50 |
+
|
51 |
+
@abstractmethod
|
52 |
+
def register_fsdp(self, fsdp: FullyShardedDataParallel) -> None:
|
53 |
+
"""Registers the overlapped optimizer with FSDP."""
|
54 |
+
raise NotImplementedError(
|
55 |
+
f"{self.__class__.__name__} does not support overlapped FSDP."
|
56 |
+
)
|
57 |
+
|
58 |
+
|
59 |
+
@register_overlapped(Optimizer)
|
60 |
+
class _OverlappedStandardOptimizer(OverlappedOptimizer):
|
61 |
+
"""Overlaps a regular ``Optimizer``."""
|
62 |
+
|
63 |
+
def __init__(self, optim_cls: Type, params, *optim_args, **optim_kwargs) -> None:
|
64 |
+
super().__init__(optim_cls)
|
65 |
+
f_optim = as_functional_optim(self.optim_cls, *optim_args, **optim_kwargs)
|
66 |
+
self._opt_hook_state = _OptimizerHookState(f_optim, params)
|
67 |
+
|
68 |
+
def register_ddp(self, ddp_inst: DistributedDataParallel):
|
69 |
+
# NOTE: using a custom communication hook and fused optimizer is not
|
70 |
+
# yet supported.
|
71 |
+
ddp_inst.register_comm_hook( # type: ignore[operator]
|
72 |
+
None, # wrapped hook state
|
73 |
+
_hook_then_optimizer(allreduce_hook, self._opt_hook_state)
|
74 |
+
)
|
75 |
+
|
76 |
+
# TODO: register_fsdp once FSDP supports communication hook.
|
77 |
+
def register_fsdp(self, fsdp: FullyShardedDataParallel) -> None:
|
78 |
+
"""Register the overlapped optimizer with FSDP."""
|
79 |
+
raise NotImplementedError(
|
80 |
+
f"{self.__class__.__name__} does not support overlapped FSDP."
|
81 |
+
)
|
82 |
+
|
83 |
+
def _as_overlapped_optim(optim_cls: Type, params, *args, **kwargs):
|
84 |
+
"""Return a new ``OverlappedOptimizer`` instance that supports ``optim_cls``."""
|
85 |
+
for clz in inspect.getmro(optim_cls):
|
86 |
+
try:
|
87 |
+
return _registered_overlapped_optims[clz](optim_cls, params, *args, **kwargs)
|
88 |
+
except KeyError:
|
89 |
+
pass
|
90 |
+
|
91 |
+
# Fallback to standard overlapped optimizer, which will raise errors if user
|
92 |
+
# is attempting to use an unsupported optimizer.
|
93 |
+
return _OverlappedStandardOptimizer(optim_cls, params, *args, **kwargs)
|
venv/lib/python3.10/site-packages/torch/distributed/algorithms/_quantization/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/torch/distributed/algorithms/_quantization/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (210 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/algorithms/_quantization/__pycache__/quantization.cpython-310.pyc
ADDED
Binary file (5.07 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/algorithms/_quantization/quantization.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools
|
2 |
+
import torch
|
3 |
+
import torch.distributed as dist
|
4 |
+
|
5 |
+
|
6 |
+
from enum import Enum
|
7 |
+
|
8 |
+
|
9 |
+
TORCH_HALF_MIN = torch.finfo(torch.float16).min
|
10 |
+
TORCH_HALF_MAX = torch.finfo(torch.float16).max
|
11 |
+
|
12 |
+
class DQuantType(Enum):
|
13 |
+
"""
|
14 |
+
Different quantization methods for auto_quantize API are identified here.
|
15 |
+
|
16 |
+
auto_quantize API currently supports fp16 and bfp16 methods.
|
17 |
+
"""
|
18 |
+
FP16 = "fp16",
|
19 |
+
BFP16 = "bfp16"
|
20 |
+
|
21 |
+
def __str__(self) -> str:
|
22 |
+
return self.value
|
23 |
+
|
24 |
+
|
25 |
+
def _fp32_to_fp16_with_clamp(tensor: torch.Tensor) -> torch.Tensor:
|
26 |
+
return torch.clamp(tensor, TORCH_HALF_MIN, TORCH_HALF_MAX).half()
|
27 |
+
|
28 |
+
def _quantize_tensor(tensor, qtype):
|
29 |
+
if not isinstance(tensor, torch.Tensor):
|
30 |
+
raise RuntimeError(
|
31 |
+
f"_quantize_tensor expecting torch.Tensor as input but found {type(tensor)}"
|
32 |
+
)
|
33 |
+
if qtype == DQuantType.FP16:
|
34 |
+
return _fp32_to_fp16_with_clamp(tensor)
|
35 |
+
elif qtype == DQuantType.BFP16:
|
36 |
+
return torch.ops.quantization._FloatToBfloat16Quantized(tensor)
|
37 |
+
else:
|
38 |
+
raise RuntimeError(
|
39 |
+
f'Quantization type {qtype} is not supported'
|
40 |
+
)
|
41 |
+
|
42 |
+
def _quantize_tensor_list(tensor_list, qtype):
|
43 |
+
if not isinstance(tensor_list, list) or not all(
|
44 |
+
isinstance(p, torch.Tensor) for p in tensor_list
|
45 |
+
):
|
46 |
+
raise RuntimeError(
|
47 |
+
f"_quantize_tensor_list expecting list of torch.Tensor as input but found {type(tensor_list)}"
|
48 |
+
)
|
49 |
+
quantized_tensor_list = [_quantize_tensor(t, qtype) for t in tensor_list]
|
50 |
+
return quantized_tensor_list
|
51 |
+
|
52 |
+
def _dequantize_tensor(tensor, qtype, quant_loss=None):
|
53 |
+
if not isinstance(tensor, torch.Tensor):
|
54 |
+
raise RuntimeError(
|
55 |
+
f"_dequantize_tensor expecting torch.Tensor as input but found {type(tensor)}"
|
56 |
+
)
|
57 |
+
if qtype == DQuantType.FP16:
|
58 |
+
if tensor.dtype != torch.float16:
|
59 |
+
raise RuntimeError(
|
60 |
+
f"tensor dtype is {tensor.dtype} while expected to be FP16."
|
61 |
+
)
|
62 |
+
elif tensor.dtype == torch.float16 and quant_loss is None:
|
63 |
+
return tensor.float()
|
64 |
+
else:
|
65 |
+
return tensor.float() / quant_loss
|
66 |
+
elif qtype == DQuantType.BFP16:
|
67 |
+
if tensor.dtype != torch.float16:
|
68 |
+
raise RuntimeError(
|
69 |
+
f"tensor dtype is {tensor.dtype} while expected to be FP16."
|
70 |
+
)
|
71 |
+
else:
|
72 |
+
return torch.ops.quantization._Bfloat16QuantizedToFloat(tensor)
|
73 |
+
else:
|
74 |
+
raise RuntimeError(
|
75 |
+
f'Quantization type {qtype} is not supported'
|
76 |
+
)
|
77 |
+
|
78 |
+
|
79 |
+
def _dequantize_tensor_list(tensor_list, qtype, quant_loss=None):
|
80 |
+
if not isinstance(tensor_list, list) or not all(
|
81 |
+
isinstance(p, torch.Tensor) for p in tensor_list
|
82 |
+
):
|
83 |
+
raise RuntimeError(
|
84 |
+
f"_dequantize_tensor_list expecting list of torch.Tensor as input but found {type(tensor_list)}"
|
85 |
+
)
|
86 |
+
dequantized_tensor_list = [_dequantize_tensor(t, qtype) for t in tensor_list]
|
87 |
+
return dequantized_tensor_list
|
88 |
+
|
89 |
+
|
90 |
+
def auto_quantize(func, qtype, quant_loss=None):
|
91 |
+
"""
|
92 |
+
Quantize the input tensors, choose the precision types, and pass other necessary arguments and then dequantizes the output.
|
93 |
+
|
94 |
+
Currently it only supports:
|
95 |
+
. FP16 and BFP16 quantization method supported for gloo and nccl backends
|
96 |
+
. all_gather, all_to_all collective ops
|
97 |
+
Note: BFP16 only supports 2D tensors.
|
98 |
+
Args:
|
99 |
+
func (Callable): A function representing collective operations.
|
100 |
+
qtype (QuantType): Quantization method
|
101 |
+
quant_loss (float, optional): This can be used to improve accuracy in the dequantization.
|
102 |
+
Returns:
|
103 |
+
(Callable): the same collective as func but enables automatic quantization/dequantization.
|
104 |
+
"""
|
105 |
+
@functools.wraps(func)
|
106 |
+
def wrapper(*args, **kwargs):
|
107 |
+
group = kwargs.get('group', None)
|
108 |
+
async_op = kwargs.get('async_op', False)
|
109 |
+
if async_op is True:
|
110 |
+
raise RuntimeError(
|
111 |
+
'The async_op=True mode is not supported yet.'
|
112 |
+
)
|
113 |
+
if func == dist.all_gather:
|
114 |
+
tensors = args[0]
|
115 |
+
input_tensors = _quantize_tensor(args[1], qtype)
|
116 |
+
out_tensors = _quantize_tensor_list(tensors, qtype)
|
117 |
+
dist.all_gather(out_tensors, input_tensors, group=group, async_op=async_op)
|
118 |
+
for i, t in enumerate(_dequantize_tensor_list(out_tensors, qtype, quant_loss=quant_loss)):
|
119 |
+
tensors[i] = t
|
120 |
+
|
121 |
+
elif func == dist.all_to_all:
|
122 |
+
tensors = args[0]
|
123 |
+
input_tensors = _quantize_tensor_list(args[1], qtype)
|
124 |
+
out_tensors = _quantize_tensor_list(tensors, qtype)
|
125 |
+
dist.all_to_all(out_tensors, input_tensors, group=group, async_op=async_op)
|
126 |
+
for i, t in enumerate(_dequantize_tensor_list(out_tensors, qtype, quant_loss=quant_loss)):
|
127 |
+
tensors[i] = t
|
128 |
+
|
129 |
+
elif func == dist.all_to_all_single:
|
130 |
+
tensors = args[0]
|
131 |
+
out_splits = kwargs.get('out_splits', None)
|
132 |
+
in_splits = kwargs.get('in_splits', None)
|
133 |
+
# Quantizing the input/output tensor
|
134 |
+
input_tensors = _quantize_tensor(args[1], qtype)
|
135 |
+
out_tensors = _quantize_tensor(tensors, qtype)
|
136 |
+
dist.all_to_all_single(out_tensors, input_tensors, out_splits, in_splits, group=group)
|
137 |
+
for i, t in enumerate(_dequantize_tensor(out_tensors, qtype, quant_loss=quant_loss)):
|
138 |
+
tensors[i] = t
|
139 |
+
else:
|
140 |
+
raise RuntimeError(
|
141 |
+
f"The collective op {func} is not supported yet"
|
142 |
+
)
|
143 |
+
|
144 |
+
return wrapper
|
venv/lib/python3.10/site-packages/torch/distributed/algorithms/ddp_comm_hooks/__init__.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from enum import Enum
|
2 |
+
from functools import partial
|
3 |
+
|
4 |
+
import torch.distributed as dist
|
5 |
+
|
6 |
+
from . import (
|
7 |
+
debugging_hooks as debugging,
|
8 |
+
default_hooks as default,
|
9 |
+
powerSGD_hook as powerSGD,
|
10 |
+
quantization_hooks as quantization,
|
11 |
+
optimizer_overlap_hooks as optimizer_overlap,
|
12 |
+
)
|
13 |
+
|
14 |
+
__all__ = ['DDPCommHookType', 'register_ddp_comm_hook']
|
15 |
+
|
16 |
+
def _ddp_comm_hook_wrapper(comm_hook, model, state):
|
17 |
+
model.register_comm_hook(state, comm_hook)
|
18 |
+
|
19 |
+
|
20 |
+
def _powerSGD_comm_hook_wrapper(
|
21 |
+
comm_hook,
|
22 |
+
model,
|
23 |
+
state,
|
24 |
+
matrix_approximation_rank,
|
25 |
+
start_powerSGD_iter=1_000,
|
26 |
+
):
|
27 |
+
"""
|
28 |
+
Wrap PowerSGD communication hook.
|
29 |
+
|
30 |
+
To be consistent with the wrappers of other DDP comm hooks, the input state only needs to be a process group,
|
31 |
+
which will be wrapped up with other state info.
|
32 |
+
"""
|
33 |
+
powerSGD_state = powerSGD.PowerSGDState(
|
34 |
+
process_group=state,
|
35 |
+
matrix_approximation_rank=matrix_approximation_rank,
|
36 |
+
start_powerSGD_iter=start_powerSGD_iter,
|
37 |
+
)
|
38 |
+
model.register_comm_hook(powerSGD_state, comm_hook)
|
39 |
+
|
40 |
+
|
41 |
+
class DDPCommHookType(Enum):
|
42 |
+
"""
|
43 |
+
Enumerate ``ddp_comm_hooks`` and ``ddp_comm_hook_wrapper`` communucation hook types.
|
44 |
+
|
45 |
+
DDPCommHookType enumerates the hooks of ``torch.distributed.algorithms.ddp_comm_hooks``
|
46 |
+
as names and ``ddp_comm_hook_wrapper`` partials with hook specified. As an example,
|
47 |
+
you can register allreduce hook by
|
48 |
+
``DDPCommHookType.ALLREDUCE.value(model=model, state=process_group)``.
|
49 |
+
"""
|
50 |
+
|
51 |
+
ALLREDUCE = partial(_ddp_comm_hook_wrapper, comm_hook=default.allreduce_hook)
|
52 |
+
FP16_COMPRESS = partial(
|
53 |
+
_ddp_comm_hook_wrapper, comm_hook=default.fp16_compress_hook
|
54 |
+
)
|
55 |
+
BF16_COMPRESS = partial(
|
56 |
+
_ddp_comm_hook_wrapper, comm_hook=default.bf16_compress_hook
|
57 |
+
)
|
58 |
+
QUANTIZE_PER_TENSOR = partial(
|
59 |
+
_ddp_comm_hook_wrapper, comm_hook=quantization.quantization_pertensor_hook
|
60 |
+
)
|
61 |
+
QUANTIZE_PER_CHANNEL = partial(
|
62 |
+
_ddp_comm_hook_wrapper, comm_hook=quantization.quantization_perchannel_hook
|
63 |
+
)
|
64 |
+
POWER_SGD = partial(
|
65 |
+
_powerSGD_comm_hook_wrapper,
|
66 |
+
comm_hook=powerSGD.powerSGD_hook,
|
67 |
+
matrix_approximation_rank=1,
|
68 |
+
)
|
69 |
+
# Rank-2 PowerSGD can give a higher accuracy than the default rank-1 version,
|
70 |
+
# but it runs slower and consumes more memory.
|
71 |
+
POWER_SGD_RANK2 = partial(
|
72 |
+
_powerSGD_comm_hook_wrapper,
|
73 |
+
comm_hook=powerSGD.powerSGD_hook,
|
74 |
+
matrix_approximation_rank=2,
|
75 |
+
)
|
76 |
+
# Batching can lead to a faster training at the cost of accuracy.
|
77 |
+
BATCHED_POWER_SGD = partial(
|
78 |
+
_powerSGD_comm_hook_wrapper,
|
79 |
+
comm_hook=powerSGD.batched_powerSGD_hook,
|
80 |
+
matrix_approximation_rank=1,
|
81 |
+
)
|
82 |
+
BATCHED_POWER_SGD_RANK2 = partial(
|
83 |
+
_powerSGD_comm_hook_wrapper,
|
84 |
+
comm_hook=powerSGD.batched_powerSGD_hook,
|
85 |
+
matrix_approximation_rank=2,
|
86 |
+
)
|
87 |
+
NOOP = partial(
|
88 |
+
_ddp_comm_hook_wrapper, comm_hook=debugging.noop_hook,
|
89 |
+
)
|
90 |
+
|
91 |
+
|
92 |
+
def register_ddp_comm_hook(
|
93 |
+
comm_hook_type: DDPCommHookType, model, state=None
|
94 |
+
):
|
95 |
+
"""
|
96 |
+
Register ``ddp_comm_hooks`` to DDP model.
|
97 |
+
|
98 |
+
Registers the hooks of ``torch.distributed.algorithms.ddp_comm_hooks``
|
99 |
+
to the DDP model. User can specify the type of hook as an enum
|
100 |
+
``DDPCommHookType`` type using ``comm_hook_type`` input. State input will
|
101 |
+
be passed to the model.
|
102 |
+
Uses Python comm hook implementations.
|
103 |
+
|
104 |
+
Example::
|
105 |
+
>>> # xdoctest: +SKIP
|
106 |
+
>>> register_ddp_comm_hook(DDPCommHookType.FP16_COMPRESS, model, state)
|
107 |
+
"""
|
108 |
+
comm_hook_type.value(model=model, state=state)
|
venv/lib/python3.10/site-packages/torch/distributed/algorithms/ddp_comm_hooks/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (3.1 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/algorithms/ddp_comm_hooks/__pycache__/ddp_zero_hook.cpython-310.pyc
ADDED
Binary file (14.6 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/algorithms/ddp_comm_hooks/__pycache__/debugging_hooks.cpython-310.pyc
ADDED
Binary file (1.38 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/algorithms/ddp_comm_hooks/__pycache__/default_hooks.cpython-310.pyc
ADDED
Binary file (7.18 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/algorithms/ddp_comm_hooks/__pycache__/mixed_precision_hooks.cpython-310.pyc
ADDED
Binary file (2.81 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/algorithms/ddp_comm_hooks/__pycache__/optimizer_overlap_hooks.cpython-310.pyc
ADDED
Binary file (5.04 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/algorithms/ddp_comm_hooks/__pycache__/post_localSGD_hook.cpython-310.pyc
ADDED
Binary file (3.91 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/algorithms/ddp_comm_hooks/__pycache__/powerSGD_hook.cpython-310.pyc
ADDED
Binary file (24.3 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/algorithms/ddp_comm_hooks/__pycache__/quantization_hooks.cpython-310.pyc
ADDED
Binary file (6.85 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/algorithms/ddp_comm_hooks/ddp_zero_hook.py
ADDED
@@ -0,0 +1,448 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import weakref
|
2 |
+
from typing import Any, Callable, List, Optional
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.distributed as dist
|
6 |
+
from torch.distributed.optim import ZeroRedundancyOptimizer
|
7 |
+
from torch.distributed.optim.zero_redundancy_optimizer import (
|
8 |
+
_OverlapStatus,
|
9 |
+
)
|
10 |
+
from torch.nn.parallel.distributed import DistributedDataParallel
|
11 |
+
|
12 |
+
__all__ = ["hook_with_zero_step", "hook_with_zero_step_interleaved"]
|
13 |
+
|
14 |
+
# Functional optimizers require passing a list of gradients to their `step()`
|
15 |
+
# method, and ZeRO requires a functional optimizer to overlap with DDP
|
16 |
+
# Passing a `None` instead of an actual gradient indicates to the optimizer
|
17 |
+
# to not update the corresponding parameter
|
18 |
+
_NO_PARAM_UPDATE: None = None
|
19 |
+
|
20 |
+
|
21 |
+
def _perform_local_step(
|
22 |
+
bucket: dist.GradBucket,
|
23 |
+
zero: ZeroRedundancyOptimizer,
|
24 |
+
rank: int,
|
25 |
+
):
|
26 |
+
r"""
|
27 |
+
Perform a local optimizer step using the gradients provided by ``bucket``.
|
28 |
+
|
29 |
+
Arguments:
|
30 |
+
bucket (dist.GradBucket): the bucket providing the gradients.
|
31 |
+
zero (ZeroRedundancyOptimizer): the :class:`ZeroRedundancyOptimizer`
|
32 |
+
instance to perform the :meth:`_local_step`.
|
33 |
+
rank (int): the calling process's rank.
|
34 |
+
|
35 |
+
.. warning::
|
36 |
+
This function assumes that appropriate synchronization has taken place
|
37 |
+
so that the bucket's gradients can be used.
|
38 |
+
"""
|
39 |
+
overlap_info = zero._overlap_info
|
40 |
+
bucket_index = bucket.index()
|
41 |
+
assert len(zero.optim.param_groups) == 1, \
|
42 |
+
"Overlapping DDP with ZeRO only supports a single parameter group"
|
43 |
+
|
44 |
+
# Construct the `gradients` input for the local optimizer step, which
|
45 |
+
# expects `None` in a list position to indicate that the corresponding
|
46 |
+
# parameter should not be updated
|
47 |
+
num_local_optim_params = len(zero.optim.param_groups[0]["params"])
|
48 |
+
gradients: List[Optional[torch.Tensor]] = \
|
49 |
+
[_NO_PARAM_UPDATE for _ in range(num_local_optim_params)]
|
50 |
+
assert bucket_index in overlap_info.offsets, \
|
51 |
+
f"Bucket index {bucket_index} was not assigned to rank {rank}"
|
52 |
+
gradients_offset = overlap_info.offsets[bucket_index]
|
53 |
+
bucket_assignment = zero._bucket_assignments_per_rank[rank][bucket_index]
|
54 |
+
bucket_offset = bucket_assignment.offset
|
55 |
+
length = len(bucket_assignment.parameters)
|
56 |
+
bucket_gradients = bucket.gradients()[bucket_offset:bucket_offset + length]
|
57 |
+
for i, grad in enumerate(bucket_gradients):
|
58 |
+
gradients[gradients_offset + i] = grad
|
59 |
+
|
60 |
+
zero._local_step(gradients)
|
61 |
+
|
62 |
+
|
63 |
+
def _broadcast_bucket(
|
64 |
+
bucket_index: int,
|
65 |
+
zero: ZeroRedundancyOptimizer,
|
66 |
+
):
|
67 |
+
r"""
|
68 |
+
Broadcasts a bucket's parameters.
|
69 |
+
|
70 |
+
Arguments:
|
71 |
+
bucket_index (int): the index of the bucket corresponding to the
|
72 |
+
parameters to broadcast.
|
73 |
+
zero (ZeroRedundancyOptimizer): the calling process's
|
74 |
+
:class:`ZeroRedundancyOptimizer` instance.
|
75 |
+
"""
|
76 |
+
overlap_info = zero._overlap_info
|
77 |
+
assert len(overlap_info.assigned_ranks_per_bucket) > bucket_index, \
|
78 |
+
"`assigned_ranks_per_bucket` is not fully constructed"
|
79 |
+
# Sort to ensure the same ordering across ranks
|
80 |
+
assigned_ranks = sorted(overlap_info.assigned_ranks_per_bucket[bucket_index])
|
81 |
+
assert len(assigned_ranks) > 0, f"Bucket {bucket_index} should be " \
|
82 |
+
"assigned to at least one rank"
|
83 |
+
for assigned_rank in assigned_ranks:
|
84 |
+
bucket_assignments = zero._bucket_assignments_per_rank[assigned_rank]
|
85 |
+
if bucket_index in bucket_assignments:
|
86 |
+
overlap_info.broadcast_handles.append(
|
87 |
+
dist.broadcast(
|
88 |
+
bucket_assignments[bucket_index].tensor,
|
89 |
+
src=dist.get_global_rank(zero.process_group, assigned_rank),
|
90 |
+
group=zero.process_group,
|
91 |
+
async_op=True,
|
92 |
+
)
|
93 |
+
)
|
94 |
+
|
95 |
+
|
96 |
+
def _save_ddp_bucket_info(
|
97 |
+
bucket: dist.GradBucket,
|
98 |
+
zero: ZeroRedundancyOptimizer,
|
99 |
+
):
|
100 |
+
r"""
|
101 |
+
Save :class:`DistributedDataParallel` gradient bucket information for :class:`ZeroRedundancyOptimizer` instance ``zero``.
|
102 |
+
|
103 |
+
In particular, this function is meant to be called upon seeing each
|
104 |
+
gradient bucket to use when overlapping, meaning it does not save or compute any global
|
105 |
+
information.
|
106 |
+
|
107 |
+
Arguments:
|
108 |
+
bucket (dist.GradBucket): the current gradient bucket.
|
109 |
+
zero (ZeroRedundancyOptimizer): the calling process's
|
110 |
+
:class:`ZeroRedundancyOptimizer` instance.
|
111 |
+
"""
|
112 |
+
overlap_info = zero._overlap_info
|
113 |
+
bucket_params = bucket.parameters()
|
114 |
+
assert len(bucket_params) > 0, "Empty bucket"
|
115 |
+
|
116 |
+
# Save the parameters in the bucket
|
117 |
+
overlap_info.params_per_bucket.append(bucket_params)
|
118 |
+
if overlap_info.shard_buckets:
|
119 |
+
# Additionally save the bucket size for the assignment heuristic to use
|
120 |
+
bucket_size = 0
|
121 |
+
for param in bucket_params:
|
122 |
+
bucket_size += param.numel()
|
123 |
+
assert overlap_info.total_size is not None
|
124 |
+
overlap_info.total_size += bucket_size
|
125 |
+
|
126 |
+
|
127 |
+
def _hook_with_zero_step_setup(
|
128 |
+
ddp_ref: weakref.ReferenceType,
|
129 |
+
zero: ZeroRedundancyOptimizer,
|
130 |
+
bucket: dist.GradBucket,
|
131 |
+
):
|
132 |
+
r"""
|
133 |
+
Encapsulate the setup logic for :func:`hook_with_zero_step` and :func:`hook_with_zero_step_interleaved`.
|
134 |
+
|
135 |
+
This means the logic to run in the
|
136 |
+
hook before the backward pass and optimizer step can actually be
|
137 |
+
overlapped. This is factored out since it is common to both
|
138 |
+
:func:`hook_with_zero_step` and :func:`hook_with_zero_step_interleaved`.
|
139 |
+
|
140 |
+
Arguments:
|
141 |
+
ddp_ref (weakref.ReferenceType): weak reference to the process's
|
142 |
+
:class:`DistributedDataParallel` instance.
|
143 |
+
zero (ZeroRedundancyOptimizer): the calling process's
|
144 |
+
:class:`ZeroRedundancyOptimizer` instance.
|
145 |
+
bucket (dist.GradBucket): the current gradient bucket.
|
146 |
+
"""
|
147 |
+
# Proceed as normal until the DDP buckets have been rebuilt
|
148 |
+
if not ddp_ref()._has_rebuilt_buckets: # type: ignore[union-attr]
|
149 |
+
assert zero._overlap_info.status == _OverlapStatus.UNINITIALIZED
|
150 |
+
return
|
151 |
+
|
152 |
+
bucket_index = bucket.index()
|
153 |
+
overlap_info = zero._overlap_info
|
154 |
+
if overlap_info.status == _OverlapStatus.UNINITIALIZED:
|
155 |
+
overlap_info.status = _OverlapStatus.DDP_HAS_REBUILT_BUCKETS
|
156 |
+
|
157 |
+
if overlap_info.status == _OverlapStatus.DDP_HAS_REBUILT_BUCKETS:
|
158 |
+
if bucket_index == 0 and len(overlap_info.params_per_bucket) > 0:
|
159 |
+
# This corresponds to the first bucket of the backward pass
|
160 |
+
# immediately after all information has been saved, so we
|
161 |
+
# can perform the delayed ZeRO initialization
|
162 |
+
zero._init_zero_for_overlap()
|
163 |
+
else:
|
164 |
+
# Once DDP buckets have been rebuilt but ZeRO has not been
|
165 |
+
# properly initialized yet, save the information needed
|
166 |
+
_save_ddp_bucket_info(bucket, zero)
|
167 |
+
|
168 |
+
|
169 |
+
def hook_with_zero_step(
|
170 |
+
hook: Callable[[Any, dist.GradBucket], torch.futures.Future],
|
171 |
+
ddp: DistributedDataParallel,
|
172 |
+
zero: ZeroRedundancyOptimizer,
|
173 |
+
shard_buckets: bool = False,
|
174 |
+
) -> Callable[[Any, dist.GradBucket], torch.futures.Future[torch.Tensor]]:
|
175 |
+
r"""
|
176 |
+
Modify ``hook`` to overlap :class:`ZeroRedundancyOptimizer` optimizer step with :class:`DistributedDataParallel` backward pass.
|
177 |
+
|
178 |
+
This approach overlaps the optimizer computation and communication with the
|
179 |
+
backward communication. In particular, the backward computation proceeds
|
180 |
+
contiguously, and the optimizer computation follows, overlapping with
|
181 |
+
outstanding backward communication (i.e. all-reduces) and possibly other
|
182 |
+
optimizer communication (i.e. broadcasts).
|
183 |
+
The optimizer step computation begins after the last gradient bucket computation has finished.
|
184 |
+
|
185 |
+
This approach may be preferred over :meth:`hook_with_zero_step_interleaved`
|
186 |
+
if communication is relatively slow compared to computation.
|
187 |
+
|
188 |
+
Arguments:
|
189 |
+
hook (Callable[[Any, dist.GradBucket], torch.futures.Future]): the hook
|
190 |
+
to modify.
|
191 |
+
ddp (DistributedDataParallel): the :class:`DistributedDataParallel`
|
192 |
+
instance to use.
|
193 |
+
zero (ZeroRedundancyOptimizer): the :class:`ZeroRedundancyOptimizer`
|
194 |
+
instance to use.
|
195 |
+
shard_buckets (bool): if ``True``, then the assignment of each
|
196 |
+
:class:`DistributedDataParallel` bucket is partitioned across
|
197 |
+
possibly multiple :class:`ZeroRedundancyOptimizer` instances (i.e.
|
198 |
+
across possibly multiple ranks) to approximate uniformity; if
|
199 |
+
``False``, then each bucket is wholly assigned to a single
|
200 |
+
:class:`ZeroRedundancyOptimizer` instance (i.e. to a single rank).
|
201 |
+
|
202 |
+
Returns:
|
203 |
+
The modified hook.
|
204 |
+
|
205 |
+
Raises:
|
206 |
+
ValueError: if ``zero`` was constructed with ``overlap_with_ddp=False``.
|
207 |
+
RuntimeError: if using any backend other than NCCL/HCCL since currently
|
208 |
+
Gloo may hang.
|
209 |
+
|
210 |
+
.. warning::
|
211 |
+
Given the way that overlapping :class:`DistributedDataParallel` with
|
212 |
+
:class:`ZeroRedundancyOptimizer` is currently implemented, the first
|
213 |
+
two or three training iterations do not perform parameter updates in
|
214 |
+
the optimizer step, depending on if ``static_graph=False`` or
|
215 |
+
``static_graph=True``, respectively. This is because it needs
|
216 |
+
information about the gradient bucketing strategy used by
|
217 |
+
:class:`DistributedDataParallel`, which is not finalized until the
|
218 |
+
second forward pass if ``static_graph=False`` or until the third
|
219 |
+
forward pass if ``static_graph=True``.
|
220 |
+
"""
|
221 |
+
if not zero._overlap_with_ddp:
|
222 |
+
raise ValueError(
|
223 |
+
"ZeroRedundancyOptimizer must be constructed with "
|
224 |
+
"`overlap_with_ddp=True` to use this hook properly"
|
225 |
+
)
|
226 |
+
ddp_ref = weakref.ref(ddp)
|
227 |
+
|
228 |
+
# NOTE: Gloo may hang with this overlapping approach, so we require
|
229 |
+
# NCCL/HCCL backend for now; see https://github.com/pytorch/pytorch/issues/62300
|
230 |
+
pg = dist.get_backend(ddp_ref().process_group) # type: ignore[union-attr]
|
231 |
+
if ((pg != dist.Backend.NCCL) and (pg != 'hccl')):
|
232 |
+
raise RuntimeError(
|
233 |
+
"Overlapping DDP with ZeRO using this approach currently requires "
|
234 |
+
"NCCL/HCCL backend to avoid hangs"
|
235 |
+
)
|
236 |
+
|
237 |
+
if shard_buckets:
|
238 |
+
zero._overlap_info.shard_buckets = True
|
239 |
+
zero._overlap_info.total_size = 0
|
240 |
+
|
241 |
+
def hook_with_zero_fn(
|
242 |
+
state: Any,
|
243 |
+
bucket: dist.GradBucket,
|
244 |
+
) -> torch.futures.Future[torch.Tensor]:
|
245 |
+
r"""
|
246 |
+
Return :class:`Future` that runs the optimizer step if this corresponds to the last gradient bucket.
|
247 |
+
|
248 |
+
Perform equivalent of :class:`ZeroRedundancyOptimizer` :meth:`step` if ``bucket`` is last gradient bucket.
|
249 |
+
The function gives a gradient bucket tensor and
|
250 |
+
performs additional computation on the iteration that
|
251 |
+
the :class:`DistributedDataParallel` buckets are rebuilt to collect
|
252 |
+
information used to implement the modified hook.
|
253 |
+
|
254 |
+
Arguments:
|
255 |
+
state (Any): any state for the hook.
|
256 |
+
bucket (dist.GradBucket): the :class:`DistributedDataParallel`
|
257 |
+
gradient bucket.
|
258 |
+
"""
|
259 |
+
fut = hook(state, bucket)
|
260 |
+
_hook_with_zero_step_setup(ddp_ref, zero, bucket)
|
261 |
+
if zero._overlap_info.status != _OverlapStatus.INITIALIZED:
|
262 |
+
return fut
|
263 |
+
|
264 |
+
overlap_info = zero._overlap_info
|
265 |
+
bucket_index = bucket.index()
|
266 |
+
rank = zero.global_rank
|
267 |
+
|
268 |
+
assert overlap_info.status == _OverlapStatus.INITIALIZED
|
269 |
+
assert len(overlap_info.assigned_ranks_per_bucket) > bucket_index, \
|
270 |
+
"`assigned_ranks_per_bucket` is not fully constructed"
|
271 |
+
assigned_to_bucket = rank in overlap_info.assigned_ranks_per_bucket[bucket_index]
|
272 |
+
|
273 |
+
# Save the bucket reference and all-reduce future for the final bucket
|
274 |
+
if assigned_to_bucket:
|
275 |
+
overlap_info.bucket_index_to_bucket[bucket_index] = bucket
|
276 |
+
overlap_info.bucket_index_to_future[bucket_index] = fut
|
277 |
+
|
278 |
+
# Check that buckets are indexed incrementally starting from 0 in the
|
279 |
+
# order of their autograd hooks firing
|
280 |
+
if len(overlap_info.bucket_indices_seen) > 0:
|
281 |
+
assert overlap_info.bucket_indices_seen[-1] == bucket_index - 1, \
|
282 |
+
"Bucket indices are not in incremental order"
|
283 |
+
else:
|
284 |
+
assert bucket_index == 0, "Bucket indices do not start from 0"
|
285 |
+
overlap_info.bucket_indices_seen.append(bucket_index)
|
286 |
+
|
287 |
+
# Directly return the future without any optimizer computation if this
|
288 |
+
# is not the last bucket
|
289 |
+
num_buckets = len(overlap_info.params_per_bucket)
|
290 |
+
is_last_bucket = bucket_index == num_buckets - 1
|
291 |
+
if not is_last_bucket:
|
292 |
+
return fut
|
293 |
+
|
294 |
+
# Perform partial optimizer step on all buckets after the final
|
295 |
+
# bucket has been computed
|
296 |
+
# NOTE: This should not be chained as a callback to the last bucket's
|
297 |
+
# all-reduce future since that would add synchronization that delays
|
298 |
+
# all optimizer computation to wait for that last all-reduce
|
299 |
+
for bucket_index in range(num_buckets):
|
300 |
+
assigned_ranks = overlap_info.assigned_ranks_per_bucket[bucket_index]
|
301 |
+
if rank in assigned_ranks:
|
302 |
+
# Wait on the bucket's all-reduce future to ensure correct
|
303 |
+
# gradients
|
304 |
+
assert bucket_index in overlap_info.bucket_index_to_future, \
|
305 |
+
f"All-reduce future for bucket {bucket_index} not saved " \
|
306 |
+
f"on rank {rank}"
|
307 |
+
allreduce_future = overlap_info.bucket_index_to_future[bucket_index]
|
308 |
+
allreduce_future.wait()
|
309 |
+
|
310 |
+
# Perform the partial optimizer step
|
311 |
+
curr_bucket = overlap_info.bucket_index_to_bucket[bucket_index]
|
312 |
+
_perform_local_step(curr_bucket, zero, rank)
|
313 |
+
|
314 |
+
_broadcast_bucket(bucket_index, zero)
|
315 |
+
|
316 |
+
# Ensure that all parameter updates are finished before the
|
317 |
+
# next forward pass
|
318 |
+
overlap_info.wait_for_broadcasts()
|
319 |
+
overlap_info.clear_per_iter_info()
|
320 |
+
|
321 |
+
return fut
|
322 |
+
|
323 |
+
return hook_with_zero_fn
|
324 |
+
|
325 |
+
|
326 |
+
def hook_with_zero_step_interleaved(
|
327 |
+
hook: Callable[[Any, dist.GradBucket], torch.futures.Future],
|
328 |
+
ddp: DistributedDataParallel,
|
329 |
+
zero: ZeroRedundancyOptimizer,
|
330 |
+
shard_buckets: bool = False,
|
331 |
+
) -> Callable[[Any, dist.GradBucket], torch.futures.Future[torch.Tensor]]:
|
332 |
+
r"""
|
333 |
+
Modify ``hook`` to overlap :class:`ZeroRedundancyOptimizer` optimizer step with :class:`DistributedDataParallel` backward pass
|
334 |
+
|
335 |
+
This approach overlaps the optimizer computation and communication with the
|
336 |
+
backward computation and communication. In particular, once a bucket's
|
337 |
+
gradients have been computed, the optimizer computation using those
|
338 |
+
gradients is launched (though the actual computation must wait for the
|
339 |
+
bucket's all-reduce to complete). This yields an interleaving of all-
|
340 |
+
reduces and broadcasts in the communication stream.
|
341 |
+
|
342 |
+
This approach may be preferred over :meth:`hook_with_zero_step` if
|
343 |
+
communication is relatively fast compared to computation.
|
344 |
+
|
345 |
+
Arguments:
|
346 |
+
hook (Any * dist.GradBucket -> torch.futures.Future): the hook to
|
347 |
+
modify.
|
348 |
+
ddp (DistributedDataParallel): the :class:`DistributedDataParallel`
|
349 |
+
instance to use.
|
350 |
+
zero (ZeroRedundancyOptimizer): the :class:`ZeroRedundancyOptimizer`
|
351 |
+
instance to use.
|
352 |
+
shard_buckets (bool): if ``True``, then the assignment of each
|
353 |
+
:class:`DistributedDataParallel` bucket is partitioned across
|
354 |
+
possibly multiple :class:`ZeroRedundancyOptimizer` instances (i.e.
|
355 |
+
across possibly multiple ranks) to approximate uniformity; if
|
356 |
+
``False``, then each bucket is wholly assigned to a single
|
357 |
+
:class:`ZeroRedundancyOptimizer` instance (i.e. to a single rank).
|
358 |
+
|
359 |
+
Returns:
|
360 |
+
The modified hook.
|
361 |
+
|
362 |
+
Raises:
|
363 |
+
ValueError: if ``zero`` was constructed with ``overlap_with_ddp=False``.
|
364 |
+
RuntimeError: if using any backend other than NCCL since currently
|
365 |
+
Gloo may hang.
|
366 |
+
|
367 |
+
.. warning::
|
368 |
+
Given the way that overlapping :class:`DistributedDataParallel` with
|
369 |
+
:class:`ZeroRedundancyOptimizer` is currently implemented, the first
|
370 |
+
two or three training iterations do not perform parameter updates in
|
371 |
+
the optimizer step, depending on if ``static_graph=False`` or
|
372 |
+
``static_graph=True``, respectively. This is because it needs
|
373 |
+
information about the gradient bucketing strategy used by
|
374 |
+
:class:`DistributedDataParallel`, which is not finalized until the
|
375 |
+
second forward pass if ``static_graph=False`` or until the third
|
376 |
+
forward pass if ``static_graph=True``.
|
377 |
+
"""
|
378 |
+
if not zero._overlap_with_ddp:
|
379 |
+
raise ValueError(
|
380 |
+
"ZeroRedundancyOptimizer must be constructed with "
|
381 |
+
"`overlap_with_ddp=True` to use this hook properly"
|
382 |
+
)
|
383 |
+
ddp_ref = weakref.ref(ddp)
|
384 |
+
|
385 |
+
# NOTE: Gloo may hang with this overlapping approach, so we require
|
386 |
+
# NCCL/HCCL backend for now; see https://github.com/pytorch/pytorch/issues/62300
|
387 |
+
pg = dist.get_backend(ddp_ref().process_group) # type: ignore[union-attr]
|
388 |
+
if ((pg != dist.Backend.NCCL) and (pg != 'hccl')):
|
389 |
+
raise RuntimeError(
|
390 |
+
"Overlapping DDP with ZeRO using this approach currently requires "
|
391 |
+
"NCCL/HCCL backend to avoid hangs"
|
392 |
+
)
|
393 |
+
|
394 |
+
if shard_buckets:
|
395 |
+
zero._overlap_info.shard_buckets = True
|
396 |
+
zero._overlap_info.total_size = 0
|
397 |
+
|
398 |
+
def hook_with_zero_interleaved_fn(
|
399 |
+
state,
|
400 |
+
bucket: dist.GradBucket,
|
401 |
+
) -> torch.futures.Future[torch.Tensor]:
|
402 |
+
r"""
|
403 |
+
Return :class:`Future` that gives gradient bucket tensor and performs partial :class:`ZeroRedundancyOptimizer` :meth:`step`.
|
404 |
+
|
405 |
+
This function uses the gradients in gradient in given bucket to perform a partial
|
406 |
+
:class:`ZeroRedundancyOptimizer` :meth:`step`
|
407 |
+
|
408 |
+
Arguments:
|
409 |
+
state: any state for the hook.
|
410 |
+
bucket (dist.GradBucket): the :class:`DistributedDataParallel`
|
411 |
+
gradient bucket.
|
412 |
+
"""
|
413 |
+
fut = hook(state, bucket)
|
414 |
+
_hook_with_zero_step_setup(ddp_ref, zero, bucket)
|
415 |
+
if zero._overlap_info.status != _OverlapStatus.INITIALIZED:
|
416 |
+
return fut
|
417 |
+
|
418 |
+
def zero_step(fut: torch.futures.Future) -> torch.Tensor:
|
419 |
+
r"""
|
420 |
+
Perform partial :class:`ZeroRedundancyOptimizer` :meth:`step` using gradients in the :class:`DistributedDataParallel`.
|
421 |
+
|
422 |
+
Returns:
|
423 |
+
A :class:`torch.Tensor` representing the contents of the
|
424 |
+
gradient bucket.
|
425 |
+
"""
|
426 |
+
overlap_info = zero._overlap_info
|
427 |
+
bucket_index = bucket.index()
|
428 |
+
rank = zero.global_rank
|
429 |
+
|
430 |
+
assigned_ranks = overlap_info.assigned_ranks_per_bucket[bucket_index]
|
431 |
+
overlap_info.bucket_indices_seen.append(bucket_index)
|
432 |
+
if rank in assigned_ranks:
|
433 |
+
_perform_local_step(bucket, zero, rank)
|
434 |
+
|
435 |
+
_broadcast_bucket(bucket_index, zero)
|
436 |
+
|
437 |
+
num_buckets = len(overlap_info.params_per_bucket)
|
438 |
+
if len(overlap_info.bucket_indices_seen) == num_buckets:
|
439 |
+
# Ensure that all parameter updates are finished before the
|
440 |
+
# next forward pass
|
441 |
+
overlap_info.wait_for_broadcasts()
|
442 |
+
overlap_info.clear_per_iter_info()
|
443 |
+
|
444 |
+
return bucket.buffer()
|
445 |
+
|
446 |
+
return fut.then(zero_step)
|
447 |
+
|
448 |
+
return hook_with_zero_interleaved_fn
|
venv/lib/python3.10/site-packages/torch/distributed/algorithms/ddp_comm_hooks/debugging_hooks.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch.distributed import GradBucket
|
5 |
+
|
6 |
+
__all__ = ["noop_hook"]
|
7 |
+
|
8 |
+
|
9 |
+
def noop_hook(_: Any, bucket: GradBucket) -> torch.futures.Future[torch.Tensor]:
|
10 |
+
"""
|
11 |
+
Return a future that wraps the input, so it is a no-op that does not incur any communication overheads.
|
12 |
+
|
13 |
+
This hook should **only** be used for headroom analysis of allreduce optimization,
|
14 |
+
instead of the normal gradient synchronization.
|
15 |
+
For example, if only less than 10% speedup of training time can be observed after this hook is registered,
|
16 |
+
it usually implies that allreduce is not a performance bottleneck for this case.
|
17 |
+
Such instrumentation can be particularly useful
|
18 |
+
if GPU traces cannot be easily retrieved or the trace analysis is complicated
|
19 |
+
some factors such as the overlap between allreduce and computation or the desynchronization across ranks.
|
20 |
+
|
21 |
+
Example::
|
22 |
+
>>> # xdoctest: +SKIP
|
23 |
+
>>> ddp_model.register_comm_hook(None, noop_hook)
|
24 |
+
"""
|
25 |
+
fut: torch.futures.Future[torch.Tensor] = torch.futures.Future()
|
26 |
+
fut.set_result(bucket.buffer())
|
27 |
+
|
28 |
+
return fut
|
venv/lib/python3.10/site-packages/torch/distributed/algorithms/ddp_comm_hooks/default_hooks.py
ADDED
@@ -0,0 +1,223 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Callable, cast, Tuple
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.distributed as dist
|
5 |
+
|
6 |
+
__all__ = [
|
7 |
+
"allreduce_hook",
|
8 |
+
"fp16_compress_hook",
|
9 |
+
"bf16_compress_hook",
|
10 |
+
"fp16_compress_wrapper",
|
11 |
+
"bf16_compress_wrapper",
|
12 |
+
]
|
13 |
+
|
14 |
+
|
15 |
+
def _allreduce_fut(
|
16 |
+
process_group: dist.ProcessGroup, tensor: torch.Tensor
|
17 |
+
) -> torch.futures.Future[torch.Tensor]:
|
18 |
+
"""Average the input gradient tensor by allreduce and returns a future."""
|
19 |
+
group_to_use = process_group if process_group is not None else dist.group.WORLD
|
20 |
+
|
21 |
+
# Apply the division first to avoid overflow, especially for FP16.
|
22 |
+
tensor.div_(group_to_use.size())
|
23 |
+
|
24 |
+
return (
|
25 |
+
dist.all_reduce(tensor, group=group_to_use, async_op=True)
|
26 |
+
.get_future()
|
27 |
+
.then(lambda fut: fut.value()[0])
|
28 |
+
)
|
29 |
+
|
30 |
+
|
31 |
+
def allreduce_hook(
|
32 |
+
process_group: dist.ProcessGroup, bucket: dist.GradBucket
|
33 |
+
) -> torch.futures.Future[torch.Tensor]:
|
34 |
+
"""
|
35 |
+
Call ``allreduce`` using ``GradBucket`` tensors.
|
36 |
+
|
37 |
+
Once gradient tensors are aggregated across all workers, its ``then``
|
38 |
+
callback takes the mean and returns the result.
|
39 |
+
|
40 |
+
If user registers this DDP communication hook,
|
41 |
+
DDP results is expected to be same as the case where no hook was registered.
|
42 |
+
Hence, this won't change behavior of DDP and user can use this as a reference
|
43 |
+
or modify this hook to log useful information or any other purposes while
|
44 |
+
unaffecting DDP behavior.
|
45 |
+
|
46 |
+
Example::
|
47 |
+
>>> # xdoctest: +SKIP
|
48 |
+
>>> ddp_model.register_comm_hook(process_group, allreduce_hook)
|
49 |
+
"""
|
50 |
+
return _allreduce_fut(process_group, bucket.buffer())
|
51 |
+
|
52 |
+
|
53 |
+
def fp16_compress_hook(
|
54 |
+
process_group: dist.ProcessGroup,
|
55 |
+
bucket: dist.GradBucket,
|
56 |
+
) -> torch.futures.Future[torch.Tensor]:
|
57 |
+
"""
|
58 |
+
Compress by casting ``GradBucket`` to ``torch.float16`` divided by process group size.
|
59 |
+
|
60 |
+
This DDP communication hook implements a simple gradient compression
|
61 |
+
approach that casts ``GradBucket`` tensor to half-precision floating-point format (``torch.float16``)
|
62 |
+
and then divides it by the process group size.
|
63 |
+
It allreduces those ``float16`` gradient tensors. Once compressed gradient
|
64 |
+
tensors are allreduced, the chained callback ``decompress`` casts it back to the input data type (such as ``float32``).
|
65 |
+
|
66 |
+
Example::
|
67 |
+
>>> # xdoctest: +SKIP
|
68 |
+
>>> ddp_model.register_comm_hook(process_group, fp16_compress_hook)
|
69 |
+
"""
|
70 |
+
group_to_use = process_group if process_group is not None else dist.group.WORLD
|
71 |
+
world_size = group_to_use.size()
|
72 |
+
|
73 |
+
buffer = (
|
74 |
+
cast(Tuple[torch.Tensor, ...], bucket)[0]
|
75 |
+
if isinstance(bucket, tuple)
|
76 |
+
else bucket.buffer()
|
77 |
+
)
|
78 |
+
compressed_tensor = buffer.to(torch.float16).div_(world_size)
|
79 |
+
|
80 |
+
def decompress(fut):
|
81 |
+
decompressed_tensor = buffer
|
82 |
+
# Decompress in place to reduce the peak memory.
|
83 |
+
# See: https://github.com/pytorch/pytorch/issues/45968
|
84 |
+
value = fut if isinstance(fut, torch.Tensor) else fut.value()[0]
|
85 |
+
decompressed_tensor.copy_(value)
|
86 |
+
return decompressed_tensor
|
87 |
+
|
88 |
+
if torch._utils.is_compiling():
|
89 |
+
grad = dist._functional_collectives.all_reduce(
|
90 |
+
compressed_tensor, "sum", group_to_use
|
91 |
+
)
|
92 |
+
return decompress(grad)
|
93 |
+
else:
|
94 |
+
fut = dist.all_reduce(
|
95 |
+
compressed_tensor, group=group_to_use, async_op=True
|
96 |
+
).get_future()
|
97 |
+
return fut.then(decompress)
|
98 |
+
|
99 |
+
|
100 |
+
# TODO: create an internal helper function and extract the duplicate code in FP16_compress and BF16_compress.
|
101 |
+
def bf16_compress_hook(
|
102 |
+
process_group: dist.ProcessGroup,
|
103 |
+
bucket: dist.GradBucket,
|
104 |
+
) -> torch.futures.Future[torch.Tensor]:
|
105 |
+
"""
|
106 |
+
Warning: This API is experimental, and it requires NCCL version later than 2.9.6.
|
107 |
+
|
108 |
+
This DDP communication hook implements a simple gradient compression
|
109 |
+
approach that casts ``GradBucket`` tensor to half-precision
|
110 |
+
`Brain floating point format <https://en.wikipedia.org/wiki/Bfloat16_floating-point_format>`_ (``torch.bfloat16``)
|
111 |
+
and then divides it by the process group size.
|
112 |
+
It allreduces those ``bfloat16`` gradient tensors. Once compressed gradient
|
113 |
+
tensors are allreduced, the chained callback ``decompress`` casts it back to the input data type (such as ``float32``).
|
114 |
+
|
115 |
+
Example::
|
116 |
+
>>> # xdoctest: +SKIP
|
117 |
+
>>> ddp_model.register_comm_hook(process_group, bf16_compress_hook)
|
118 |
+
"""
|
119 |
+
group_to_use = process_group if process_group is not None else dist.group.WORLD
|
120 |
+
world_size = group_to_use.size()
|
121 |
+
|
122 |
+
buffer = (
|
123 |
+
cast(Tuple[torch.Tensor, ...], bucket)[0]
|
124 |
+
if isinstance(bucket, tuple)
|
125 |
+
else bucket.buffer()
|
126 |
+
)
|
127 |
+
compressed_tensor = buffer.to(torch.bfloat16).div_(world_size)
|
128 |
+
|
129 |
+
def decompress(fut):
|
130 |
+
decompressed_tensor = buffer
|
131 |
+
# Decompress in place to reduce the peak memory.
|
132 |
+
# See: https://github.com/pytorch/pytorch/issues/45968
|
133 |
+
value = fut if isinstance(fut, torch.Tensor) else fut.value()[0]
|
134 |
+
decompressed_tensor.copy_(value)
|
135 |
+
return decompressed_tensor
|
136 |
+
|
137 |
+
if torch._utils.is_compiling():
|
138 |
+
grad = dist._functional_collectives.all_reduce(
|
139 |
+
compressed_tensor, "sum", group_to_use
|
140 |
+
)
|
141 |
+
return decompress(grad)
|
142 |
+
else:
|
143 |
+
fut = dist.all_reduce(
|
144 |
+
compressed_tensor, group=group_to_use, async_op=True
|
145 |
+
).get_future()
|
146 |
+
return fut.then(decompress)
|
147 |
+
|
148 |
+
|
149 |
+
def fp16_compress_wrapper(
|
150 |
+
hook: Callable[[Any, dist.GradBucket], torch.futures.Future[torch.Tensor]]
|
151 |
+
) -> Callable[[Any, dist.GradBucket], torch.futures.Future[torch.Tensor]]:
|
152 |
+
"""
|
153 |
+
Cast input tensor to ``torch.float16``, cast result of hook back to input dtype.
|
154 |
+
|
155 |
+
This wrapper casts the input gradient tensor of a given DDP communication hook to half-precision
|
156 |
+
floating point format (``torch.float16``), and casts the resulting tensor of the given hook back to
|
157 |
+
the input data type, such as ``float32``.
|
158 |
+
Therefore, ``fp16_compress_hook`` is equivalent to ``fp16_compress_wrapper(allreduce_hook)``.
|
159 |
+
|
160 |
+
Example::
|
161 |
+
>>> # xdoctest: +SKIP
|
162 |
+
>>> state = PowerSGDState(process_group=process_group, matrix_approximation_rank=1, start_powerSGD_iter=10)
|
163 |
+
>>> ddp_model.register_comm_hook(state, fp16_compress_wrapper(powerSGD_hook))
|
164 |
+
"""
|
165 |
+
|
166 |
+
def fp16_compress_wrapper_hook(
|
167 |
+
hook_state, bucket: dist.GradBucket
|
168 |
+
) -> torch.futures.Future[torch.Tensor]:
|
169 |
+
# Cast bucket tensor to FP16.
|
170 |
+
bucket.set_buffer(bucket.buffer().to(torch.float16))
|
171 |
+
|
172 |
+
fut = hook(hook_state, bucket)
|
173 |
+
|
174 |
+
def decompress(fut):
|
175 |
+
decompressed_tensor = bucket.buffer()
|
176 |
+
# Decompress in place to reduce the peak memory.
|
177 |
+
# See: https://github.com/pytorch/pytorch/issues/45968
|
178 |
+
decompressed_tensor.copy_(fut.value())
|
179 |
+
return decompressed_tensor
|
180 |
+
|
181 |
+
# Decompress after hook has run.
|
182 |
+
return fut.then(decompress)
|
183 |
+
|
184 |
+
return fp16_compress_wrapper_hook
|
185 |
+
|
186 |
+
|
187 |
+
def bf16_compress_wrapper(
|
188 |
+
hook: Callable[[Any, dist.GradBucket], torch.futures.Future[torch.Tensor]]
|
189 |
+
) -> Callable[[Any, dist.GradBucket], torch.futures.Future[torch.Tensor]]:
|
190 |
+
"""
|
191 |
+
Warning: This API is experimental, and it requires NCCL version later than 2.9.6.
|
192 |
+
|
193 |
+
This wrapper casts the input gradient tensor of a given DDP communication hook to half-precision
|
194 |
+
`Brain floating point format <https://en.wikipedia.org/wiki/Bfloat16_floating-point_format> `_ (``torch.bfloat16``),
|
195 |
+
and casts the resulting tensor of the given hook back to the input data type, such as ``float32``.
|
196 |
+
|
197 |
+
Therefore, ``bf16_compress_hook`` is equivalent to ``bf16_compress_wrapper(allreduce_hook)``.
|
198 |
+
|
199 |
+
Example::
|
200 |
+
>>> # xdoctest: +SKIP
|
201 |
+
>>> state = PowerSGDState(process_group=process_group, matrix_approximation_rank=1, start_powerSGD_iter=10)
|
202 |
+
>>> ddp_model.register_comm_hook(state, bf16_compress_wrapper(powerSGD_hook))
|
203 |
+
"""
|
204 |
+
|
205 |
+
def bf16_compress_wrapper_hook(
|
206 |
+
hook_state, bucket: dist.GradBucket
|
207 |
+
) -> torch.futures.Future[torch.Tensor]:
|
208 |
+
# Cast bucket tensor to BF16.
|
209 |
+
bucket.set_buffer(bucket.buffer().to(torch.bfloat16))
|
210 |
+
|
211 |
+
fut = hook(hook_state, bucket)
|
212 |
+
|
213 |
+
def decompress(fut):
|
214 |
+
decompressed_tensor = bucket.buffer()
|
215 |
+
# Decompress in place to reduce the peak memory.
|
216 |
+
# See: https://github.com/pytorch/pytorch/issues/45968
|
217 |
+
decompressed_tensor.copy_(fut.value())
|
218 |
+
return decompressed_tensor
|
219 |
+
|
220 |
+
# Decompress after hook has run.
|
221 |
+
return fut.then(decompress)
|
222 |
+
|
223 |
+
return bf16_compress_wrapper_hook
|
venv/lib/python3.10/site-packages/torch/distributed/algorithms/ddp_comm_hooks/mixed_precision_hooks.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.distributed as dist
|
3 |
+
from torch.autograd import Variable
|
4 |
+
|
5 |
+
from dataclasses import dataclass
|
6 |
+
from typing import Any, no_type_check
|
7 |
+
from torch.distributed.utils import _free_storage
|
8 |
+
|
9 |
+
@dataclass
|
10 |
+
class _AllreduceUpcastHookState:
|
11 |
+
"""
|
12 |
+
State to manage DDP mixed precision in backward / gradient communication.
|
13 |
+
|
14 |
+
This contains a weakref to the DDP module for access to reducer and process
|
15 |
+
group, and a stream to run parameter and gradient upcasts.
|
16 |
+
"""
|
17 |
+
|
18 |
+
ddp_weakref: Any
|
19 |
+
upcast_stream: torch.cuda.Stream
|
20 |
+
wait_for_stream_enqueued: bool = False
|
21 |
+
|
22 |
+
@no_type_check
|
23 |
+
def _reducer_allreduce_and_upcast_hook(
|
24 |
+
hook_state: _AllreduceUpcastHookState, bucket: dist.GradBucket
|
25 |
+
) -> torch.futures.Future[torch.Tensor]:
|
26 |
+
"""
|
27 |
+
Perform allreduce in precision ``reduce_dtype``, upcast to prepare for optimizer.
|
28 |
+
|
29 |
+
Performs allreduce in the reduced precision given by DDP's mixed precision
|
30 |
+
reduce_dtype, and upcasts parameters and gradients to fp32 in preparation
|
31 |
+
to run the optimizer.
|
32 |
+
"""
|
33 |
+
ddp_weakref = hook_state.ddp_weakref
|
34 |
+
reducer, process_group = ddp_weakref().reducer, ddp_weakref().process_group
|
35 |
+
gradient_is_bucket_view = ddp_weakref().gradient_as_bucket_view
|
36 |
+
# Cast bucket if different than param_dtype.
|
37 |
+
if (
|
38 |
+
ddp_weakref().mixed_precision.param_dtype != ddp_weakref().mixed_precision.reduce_dtype
|
39 |
+
):
|
40 |
+
# Cast bucket tensor to reduce_dtype
|
41 |
+
bucket.set_buffer(bucket.buffer().to(ddp_weakref().mixed_precision.reduce_dtype))
|
42 |
+
fut = reducer._run_allreduce_hook(bucket)
|
43 |
+
ret_fut = torch.futures.Future()
|
44 |
+
stream = hook_state.upcast_stream
|
45 |
+
with torch.cuda.stream(stream):
|
46 |
+
fut.wait()
|
47 |
+
bucket.buffer().div_(process_group.size())
|
48 |
+
ret_fut.set_result(bucket.buffer())
|
49 |
+
|
50 |
+
# Upcast parameters and gradients so optimizer step can run in fp32.
|
51 |
+
params, grads = bucket.parameters(), bucket.gradients()
|
52 |
+
for p, g in zip(params, grads):
|
53 |
+
p.data = p._fp_param
|
54 |
+
# free storage for mp param as it will be allocated again in next
|
55 |
+
# forward pass.
|
56 |
+
_free_storage(p._mp_param)
|
57 |
+
p.grad.data = p.grad.to(p.data.dtype)
|
58 |
+
|
59 |
+
# enqueue a callback to wait for this stream at end of backward
|
60 |
+
def wait_for_stream_cb():
|
61 |
+
torch.cuda.current_stream().wait_stream(stream)
|
62 |
+
# Remove post-backward hooks since they are re-installed in next
|
63 |
+
# iteration, similar to FSDP.
|
64 |
+
# Parameters that don't require grad still needed to be casted since
|
65 |
+
# they may participate in computation. However, they would not be recast
|
66 |
+
# by hook above as they don't have a grad hook installed, so cast them
|
67 |
+
# back here.
|
68 |
+
for n, p in ddp_weakref().module.named_parameters():
|
69 |
+
if hasattr(p, '_ddp_mp_hook_state'):
|
70 |
+
p._ddp_mp_hook_state[1].remove()
|
71 |
+
delattr(p, '_ddp_mp_hook_state')
|
72 |
+
if not p.requires_grad and not hasattr(p, '_ddp_ignored'):
|
73 |
+
p.data = p._fp_param
|
74 |
+
|
75 |
+
# reset for next backward pass
|
76 |
+
hook_state.wait_for_stream_enqueued = False
|
77 |
+
|
78 |
+
if not hook_state.wait_for_stream_enqueued:
|
79 |
+
Variable._execution_engine.queue_callback(
|
80 |
+
wait_for_stream_cb
|
81 |
+
)
|
82 |
+
# mark that the callback is enqueued
|
83 |
+
hook_state.wait_for_stream_enqueued = True
|
84 |
+
|
85 |
+
return ret_fut
|
venv/lib/python3.10/site-packages/torch/distributed/algorithms/ddp_comm_hooks/optimizer_overlap_hooks.py
ADDED
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Callable, List, no_type_check
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.distributed as dist
|
5 |
+
from torch.autograd import Variable
|
6 |
+
from functools import partial
|
7 |
+
from dataclasses import dataclass
|
8 |
+
|
9 |
+
__all__: List[str] = []
|
10 |
+
|
11 |
+
_FUNCTIONAL_OPTIM_STEP_METHOD_NAME = "step_param"
|
12 |
+
|
13 |
+
class _OptimizerHookState:
|
14 |
+
"""
|
15 |
+
Holds state for running optimizer in-line after DDP communication hook.
|
16 |
+
|
17 |
+
Currently contains only optimizer class which must have a method `step_param`.
|
18 |
+
"""
|
19 |
+
|
20 |
+
__slots__ = ["functional_optimizer", "params_to_optimize"]
|
21 |
+
|
22 |
+
def __init__(self, functional_optim, params=None):
|
23 |
+
self.functional_optimizer = functional_optim
|
24 |
+
self._check_valid_functional_optim()
|
25 |
+
self._set_params_to_optimize(params)
|
26 |
+
|
27 |
+
def _set_params_to_optimize(self, params):
|
28 |
+
if params is not None:
|
29 |
+
self.params_to_optimize = set(params)
|
30 |
+
|
31 |
+
def _check_valid_functional_optim(self):
|
32 |
+
if not hasattr(self.functional_optimizer, _FUNCTIONAL_OPTIM_STEP_METHOD_NAME):
|
33 |
+
raise ValueError(
|
34 |
+
f"Class {type(self.functional_optimizer)} must implement method "
|
35 |
+
f"{_FUNCTIONAL_OPTIM_STEP_METHOD_NAME}."
|
36 |
+
)
|
37 |
+
|
38 |
+
|
39 |
+
@dataclass
|
40 |
+
class _OptimInBackwardHookState:
|
41 |
+
optim_stream: torch.cuda.Stream
|
42 |
+
wait_for_optim_stream_enqueued: bool
|
43 |
+
|
44 |
+
@no_type_check
|
45 |
+
def _apply_optim_in_backward_hook(
|
46 |
+
gradient_is_bucket_view: bool
|
47 |
+
) -> Callable[[Any, dist.GradBucket], torch.futures.Future[torch.Tensor]]:
|
48 |
+
r"""
|
49 |
+
Register hook to apply the optimizer in backward.
|
50 |
+
|
51 |
+
If torch.distributed.optim._apply_optimizer_in_backward is used to overlap
|
52 |
+
optimizer with backward pass, DDP will run the below hook to run optimizer
|
53 |
+
step for parameters after gradient communication has taken place.
|
54 |
+
"""
|
55 |
+
optim_in_bwd_state = _OptimInBackwardHookState(
|
56 |
+
optim_stream=torch.cuda.Stream(),
|
57 |
+
wait_for_optim_stream_enqueued=False,
|
58 |
+
)
|
59 |
+
|
60 |
+
def apply_optim_in_backward_hook(
|
61 |
+
hook_state: Any, bucket: dist.GradBucket, optim_stream_state,
|
62 |
+
) -> torch.futures.Future[torch.Tensor]:
|
63 |
+
# Run original hook
|
64 |
+
ddp_weakref = hook_state
|
65 |
+
ddp_inst = ddp_weakref()
|
66 |
+
reducer, process_group = ddp_inst.reducer, ddp_inst.process_group
|
67 |
+
fut = reducer._run_allreduce_hook(bucket)
|
68 |
+
optimizer_stream = optim_stream_state.optim_stream
|
69 |
+
with torch.cuda.stream(optimizer_stream):
|
70 |
+
fut.wait()
|
71 |
+
# Apply gradient division since C++ side only allreduces and does
|
72 |
+
# not average. TODO: (rohan-varma) the div factor may be different
|
73 |
+
# when running with join hook
|
74 |
+
bucket.buffer().div_(process_group.size())
|
75 |
+
model_params = bucket.parameters()
|
76 |
+
grads = bucket.gradients()
|
77 |
+
# TODO (rohan-varma): upcast as needed for DDP mixed precision,
|
78 |
+
# once optimizer in backward + DDP mixed precision is supported.
|
79 |
+
for p, g in zip(model_params, grads):
|
80 |
+
if hasattr(p, '_in_backward_optimizers'):
|
81 |
+
# Note: need to set grad to the bucket's grad, because
|
82 |
+
# running allreduce results in the bucket's grad being
|
83 |
+
# reduced, but not grad field.
|
84 |
+
if not gradient_is_bucket_view:
|
85 |
+
p.grad = g
|
86 |
+
for optim in p._in_backward_optimizers:
|
87 |
+
optim.step()
|
88 |
+
|
89 |
+
# Need to return a Future[Tensor] to obey comm hook API contract.
|
90 |
+
ret_fut = torch.futures.Future()
|
91 |
+
ret_fut.set_result(bucket.buffer())
|
92 |
+
|
93 |
+
# enqueue a callback to wait for this optimizer stream at the end of
|
94 |
+
# backward and set all DDP managed grads to None.
|
95 |
+
def wait_for_optim_stream_callback():
|
96 |
+
torch.cuda.current_stream().wait_stream(
|
97 |
+
optim_stream_state.optim_stream
|
98 |
+
)
|
99 |
+
# Set DDP managed grads to None
|
100 |
+
for param in ddp_inst._get_data_parallel_params(ddp_inst.module):
|
101 |
+
if hasattr(param, '_in_backward_optimizers'):
|
102 |
+
param.grad = None
|
103 |
+
|
104 |
+
# reset for the next backwards pass
|
105 |
+
optim_stream_state.wait_for_optim_stream_enqueued = False
|
106 |
+
|
107 |
+
if not optim_stream_state.wait_for_optim_stream_enqueued:
|
108 |
+
Variable._execution_engine.queue_callback(
|
109 |
+
wait_for_optim_stream_callback
|
110 |
+
)
|
111 |
+
# mark that the callback is enqueued
|
112 |
+
optim_stream_state.wait_for_optim_stream_enqueued = True
|
113 |
+
|
114 |
+
return ret_fut
|
115 |
+
|
116 |
+
comm_hook = partial(
|
117 |
+
apply_optim_in_backward_hook, optim_stream_state=optim_in_bwd_state
|
118 |
+
)
|
119 |
+
# These are needed for DDP's logging of comm hooks
|
120 |
+
comm_hook.__name__ = apply_optim_in_backward_hook.__name__
|
121 |
+
comm_hook.__qualname__ = apply_optim_in_backward_hook.__qualname__
|
122 |
+
|
123 |
+
return comm_hook
|
124 |
+
|
125 |
+
def _hook_then_optimizer(
|
126 |
+
hook: Callable[[Any, dist.GradBucket], torch.futures.Future[torch.Tensor]],
|
127 |
+
optimizer_state: _OptimizerHookState,
|
128 |
+
) -> Callable[[Any, dist.GradBucket], torch.futures.Future[torch.Tensor]]:
|
129 |
+
r"""Run optimizer in a functional fashion after DDP communication hook."""
|
130 |
+
has_set_params = (
|
131 |
+
hasattr(optimizer_state, 'params_to_optimize')
|
132 |
+
and optimizer_state.params_to_optimize is not None
|
133 |
+
)
|
134 |
+
|
135 |
+
def hook_then_optimizer_wrapper(
|
136 |
+
hook_state, bucket: dist.GradBucket
|
137 |
+
) -> torch.futures.Future[torch.Tensor]:
|
138 |
+
# Run original hook
|
139 |
+
fut = hook(hook_state, bucket)
|
140 |
+
|
141 |
+
def optimizer_step(fut):
|
142 |
+
gradient_tensors = bucket.gradients()
|
143 |
+
model_params = bucket.parameters()
|
144 |
+
for grad_tensor, model_param in zip(gradient_tensors, model_params):
|
145 |
+
if not has_set_params or model_param in optimizer_state.params_to_optimize:
|
146 |
+
optimizer_state.functional_optimizer.step_param(
|
147 |
+
model_param,
|
148 |
+
grad_tensor,
|
149 |
+
)
|
150 |
+
return bucket.buffer()
|
151 |
+
|
152 |
+
return fut.then(optimizer_step)
|
153 |
+
|
154 |
+
return hook_then_optimizer_wrapper
|
venv/lib/python3.10/site-packages/torch/distributed/algorithms/ddp_comm_hooks/post_localSGD_hook.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.distributed as dist
|
5 |
+
|
6 |
+
from . import default_hooks as default
|
7 |
+
|
8 |
+
logger = logging.getLogger(__name__)
|
9 |
+
|
10 |
+
|
11 |
+
class PostLocalSGDState:
|
12 |
+
r"""
|
13 |
+
Store state for all-reducing gradients globally until given step, then locally after.
|
14 |
+
|
15 |
+
Stores the state for all-reducing gradients globally using ``process_group`` until step ``start_localSGD_iter``,
|
16 |
+
and all-reducing gradients locally using ``subgroup`` afterwards.
|
17 |
+
|
18 |
+
If ``process_group`` is ``None``, the global process group will be used.
|
19 |
+
If ``subgroup`` is ``None``, the intra-node process group on each machine will be used.
|
20 |
+
|
21 |
+
Additionally, ``post_local_gradient_allreduce`` may be worth tuning,
|
22 |
+
because both true and false may give a faster convergence.
|
23 |
+
"""
|
24 |
+
|
25 |
+
__slots__ = [
|
26 |
+
"process_group",
|
27 |
+
"subgroup",
|
28 |
+
"start_localSGD_iter",
|
29 |
+
"post_local_gradient_allreduce",
|
30 |
+
"iter",
|
31 |
+
]
|
32 |
+
|
33 |
+
def __init__(
|
34 |
+
self,
|
35 |
+
process_group,
|
36 |
+
subgroup,
|
37 |
+
start_localSGD_iter,
|
38 |
+
post_local_gradient_allreduce=True,
|
39 |
+
):
|
40 |
+
"""Initialize state object with given parameters and log when localSGD start."""
|
41 |
+
logger.info(
|
42 |
+
"Local SGD will be started after %s iterations", start_localSGD_iter
|
43 |
+
)
|
44 |
+
|
45 |
+
# The group used for all-reducing gradients globally.
|
46 |
+
self.process_group = process_group
|
47 |
+
# The group used for all-reducing gradients locally.
|
48 |
+
self.subgroup = subgroup
|
49 |
+
self.start_localSGD_iter = start_localSGD_iter
|
50 |
+
# Allreduce gradients locally since iteration `start_localSGD_iter`.
|
51 |
+
# This may help with the convergence efficiency at the cost of relatively cheap intra-subgroup communication.
|
52 |
+
self.post_local_gradient_allreduce = post_local_gradient_allreduce
|
53 |
+
# Iteration/step in the training loop.
|
54 |
+
self.iter = 0
|
55 |
+
|
56 |
+
def maybe_increase_iter(self, bucket):
|
57 |
+
"""Track iterations and trigger log message at start of local SGD."""
|
58 |
+
# Since bucket 0 is the last bucket to allreduce in an iteration.
|
59 |
+
# Only increase `iter` when bucket 0 is processed.
|
60 |
+
if bucket.is_last():
|
61 |
+
self.iter += 1
|
62 |
+
|
63 |
+
if self.iter == self.start_localSGD_iter:
|
64 |
+
logger.info(
|
65 |
+
"Start to apply local SGD after %s iterations.", self.iter
|
66 |
+
)
|
67 |
+
|
68 |
+
def post_localSGD_hook(
|
69 |
+
state: PostLocalSGDState, bucket: dist.GradBucket
|
70 |
+
) -> torch.futures.Future[torch.Tensor]:
|
71 |
+
"""
|
72 |
+
Run post-localSGD algorithm.
|
73 |
+
|
74 |
+
This DDP communication hook is used for running post-localSGD algorithm,
|
75 |
+
by combining with a model averaging component (e.g.,
|
76 |
+
:class:`~torch.distributed.algorithms.model_averaging.averagers.PeriodicModelAverager`)
|
77 |
+
that runs after the optimizer step.
|
78 |
+
|
79 |
+
Args:
|
80 |
+
state (PostLocalSGDState): State information to run post-localSGD.
|
81 |
+
Users mainly need to tune ``start_localSGD_iter`` to determine when to start local SGD.
|
82 |
+
bucket (dist.GradBucket): Bucket that stores a 1D flattened gradient tensor that batches multiple per-variable tensors.
|
83 |
+
Note that since DDP comm hook only supports single process single device mode,
|
84 |
+
only exactly one tensor is stored in this bucket.
|
85 |
+
|
86 |
+
Returns:
|
87 |
+
Future handler of the communication, which updates the gradients in place.
|
88 |
+
|
89 |
+
Example::
|
90 |
+
>>> # xdoctest: +SKIP
|
91 |
+
>>> state = PostLocalSGDState(process_group=process_group, subgroup=subgroup,
|
92 |
+
start_localSGD_iter=10)
|
93 |
+
>>> ddp_model.register_comm_hook(state, post_localSGD_hook)
|
94 |
+
>>> # Also need to establish a model averaging module and run model averaging after ``optimizer.step()``.
|
95 |
+
>>> # Please refer to the examples in ``torch.distributed.algorithms.model_averaging.averagers`` module.
|
96 |
+
"""
|
97 |
+
global_group_to_use = (
|
98 |
+
state.process_group if state.process_group is not None else dist.group.WORLD
|
99 |
+
)
|
100 |
+
|
101 |
+
# The input tensor is a flattened 1D tensor.
|
102 |
+
input_tensor = bucket.buffer()
|
103 |
+
|
104 |
+
# Run allreduce using `global_group_to_use` in the first `start_localSGD_iter` iterations.
|
105 |
+
if state.iter < state.start_localSGD_iter:
|
106 |
+
state.maybe_increase_iter(bucket)
|
107 |
+
return default._allreduce_fut(global_group_to_use, input_tensor)
|
108 |
+
|
109 |
+
# If `post_local_gradient_allreduce` is not set,
|
110 |
+
# then no gradient synchronization after the first `start_localSGD_iter` iterations.
|
111 |
+
if not state.post_local_gradient_allreduce:
|
112 |
+
fut: torch.futures.Future[torch.Tensor] = torch.futures.Future()
|
113 |
+
fut.set_result(input_tensor)
|
114 |
+
return fut
|
115 |
+
|
116 |
+
# Run allreduce using `subgroup` after the first `start_localSGD_iter` iterations.
|
117 |
+
# Note that by default, a separate subgroup for each node is created which
|
118 |
+
# causes an intra-node allreduce to be done at each training step.
|
119 |
+
# From this moment, model averaging should run after the optimizer step,
|
120 |
+
# to globally allreduce all the parameters.
|
121 |
+
if state.subgroup is None:
|
122 |
+
state.subgroup, _ = dist.new_subgroups()
|
123 |
+
return default._allreduce_fut(state.subgroup, input_tensor)
|
venv/lib/python3.10/site-packages/torch/distributed/algorithms/ddp_comm_hooks/powerSGD_hook.py
ADDED
@@ -0,0 +1,850 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import defaultdict
|
2 |
+
import logging
|
3 |
+
import math
|
4 |
+
from typing import Dict
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.distributed as dist
|
8 |
+
|
9 |
+
from . import default_hooks as default
|
10 |
+
from torch.distributed import distributed_c10d
|
11 |
+
|
12 |
+
__all__ = [
|
13 |
+
"PowerSGDState", "powerSGD_hook", "batched_powerSGD_hook"
|
14 |
+
]
|
15 |
+
|
16 |
+
logger = logging.getLogger(__name__)
|
17 |
+
|
18 |
+
|
19 |
+
def _orthogonalize(matrices, epsilon=0):
|
20 |
+
"""
|
21 |
+
Decide between Gram-Schmidt or QR factorization to orthogonalize a batch of matrices.
|
22 |
+
|
23 |
+
QR factorization doesn't work with half-precision, but it is usually faster with a rank > 2.
|
24 |
+
"""
|
25 |
+
assert len(matrices.shape) == 3 and matrices.shape[2] <= matrices.shape[1]
|
26 |
+
|
27 |
+
num_matrices = matrices.shape[0]
|
28 |
+
rank = matrices.shape[2]
|
29 |
+
dtype = matrices.dtype
|
30 |
+
if rank <= 2 or dtype in [torch.float16, torch.bfloat16]:
|
31 |
+
_orthogonalize_gram_schmidt(matrices, epsilon=epsilon)
|
32 |
+
else:
|
33 |
+
torch.linalg.qr(
|
34 |
+
matrices,
|
35 |
+
out=(
|
36 |
+
matrices,
|
37 |
+
torch.empty(num_matrices, rank, rank, device=matrices.device, dtype=dtype)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
|
41 |
+
def _orthogonalize_gram_schmidt(matrices, epsilon=0):
|
42 |
+
"""
|
43 |
+
Apply Gram-Schmidt procedure to orthogonalize a batch of matrices.
|
44 |
+
|
45 |
+
If epsilon is 0, this is equivalent to `torch.qr(matrices, out=(matrices, _))`,
|
46 |
+
"""
|
47 |
+
num_cols = matrices.shape[2]
|
48 |
+
for i in range(num_cols):
|
49 |
+
# Normalize the i'th column.
|
50 |
+
col = matrices[:, :, i : i + 1]
|
51 |
+
# If no epsilon is added here, division by zero may be caused by vanishing gradients.
|
52 |
+
# This epsilon is not needed if the input batch of matrices covers the gradients of at least one entire layer
|
53 |
+
# in the neural network.
|
54 |
+
if epsilon == 0:
|
55 |
+
# Note that col ** 2 can underflow/overflow if we use FP16.
|
56 |
+
# May need to consider multiplying a scaling factor and dividing it later, or using bfloat16 instead.
|
57 |
+
try:
|
58 |
+
col /= torch.norm(col, dim=1, keepdim=True)
|
59 |
+
except ZeroDivisionError:
|
60 |
+
logger.error(
|
61 |
+
"The matrices to be orthogonalized has at least a column of all 0s. Please set a small value such as 1e-8 "
|
62 |
+
"as `orthogonalization_epsilon` in PowerSGD state."
|
63 |
+
)
|
64 |
+
# Recover the values from NaNs to 0s.
|
65 |
+
col.fill_(0.0)
|
66 |
+
else:
|
67 |
+
col /= torch.norm(col, dim=1, keepdim=True) + epsilon
|
68 |
+
# Project it on the rest and remove it.
|
69 |
+
if i + 1 < num_cols:
|
70 |
+
rest = matrices[:, :, i + 1 :]
|
71 |
+
rest -= torch.sum(col * rest, dim=1, keepdim=True) * col
|
72 |
+
|
73 |
+
|
74 |
+
def _should_compress(
|
75 |
+
num_rows, num_cols, matrix_approximation_rank, min_compression_rate
|
76 |
+
):
|
77 |
+
"""
|
78 |
+
Recommend if tensor given is worth compressing.
|
79 |
+
|
80 |
+
Returns a recommendation as to whether the 2D tensor described by the arguments is worth compressing,
|
81 |
+
including statistics describing the expected savings from compression. We consider a tensor worth
|
82 |
+
compressing when ``min_compression_rate`` < uncompressed size / compressed size, where
|
83 |
+
uncompressed size = ``num_rows`` * ``num_cols``,
|
84 |
+
and compressed size = (``num_rows`` + ``num_cols``) * ``matrix_approximation_rank``.
|
85 |
+
|
86 |
+
The result of this function is a tuple of the form (compression_recommendation, uncompressed_el_count, compressed_el_count), where:
|
87 |
+
|
88 |
+
compression_recommendation is true if the tensor is worth compressing, and false otherwise (see above);
|
89 |
+
|
90 |
+
uncompressed_el_count is the uncompressed element count, i.e. ``num_rows`` * ``num_cols``; and,
|
91 |
+
|
92 |
+
compress_el_count is the element count after compression, i.e. (``num_rows`` + ``num_cols``) * ``matrix_approximation_rank``.
|
93 |
+
""" # noqa: B950
|
94 |
+
uncompressed_size = num_rows * num_cols
|
95 |
+
compressed_size = (num_rows + num_cols) * matrix_approximation_rank
|
96 |
+
return (
|
97 |
+
compressed_size * min_compression_rate < uncompressed_size,
|
98 |
+
uncompressed_size,
|
99 |
+
compressed_size,
|
100 |
+
)
|
101 |
+
|
102 |
+
|
103 |
+
def _report_compression_stats(bucket, state):
|
104 |
+
"""Report compression stats at frequency of ``compression_stats_logging_frequency`` specified in PowerSGD state."""
|
105 |
+
if (
|
106 |
+
bucket.is_last()
|
107 |
+
and state.iter >= state.next_stats_report
|
108 |
+
):
|
109 |
+
stats = state.compression_stats()
|
110 |
+
logger.info(
|
111 |
+
"Compression stats: iter %s, total before compression %s, total after compression %s, "
|
112 |
+
"rate %s", state.iter, stats[1], stats[2], stats[0]
|
113 |
+
)
|
114 |
+
state.next_stats_report = state.iter + state.compression_stats_logging_frequency
|
115 |
+
|
116 |
+
|
117 |
+
class PowerSGDState:
|
118 |
+
r"""
|
119 |
+
Store both the algorithm's hyperparameters and internal state for all gradients during training.
|
120 |
+
|
121 |
+
Particularly, ``matrix_approximation_rank`` and ``start_powerSGD_iter`` are the main hyperparameters that should be tuned by the user.
|
122 |
+
For performance, we suggest to keep binary hyperparameters ``use_error_feedback`` and ``warm_start`` on.
|
123 |
+
|
124 |
+
1. ``matrix_approximation_rank`` controls the size of compressed low-rank tensors, which determines the compression rate. The lower the rank, the stronger the compression.
|
125 |
+
|
126 |
+
1.1. If ``matrix_approximation_rank`` is too low, the full model quality will need more training steps to reach or will never reach and yield loss in accuracy.
|
127 |
+
|
128 |
+
1.2. The increase of ``matrix_approximation_rank`` can substantially increase the computation costs of the compression, and the accuracy may not be further improved beyond a certain ``matrix_approximation_rank`` threshold.
|
129 |
+
|
130 |
+
To tune ``matrix_approximation_rank``, we suggest to start from 1 and increase by factors of 2 (like an exponential grid search, 1, 2, 4, ...), until a satisfactory accuracy is reached. Typically only a small value 1-4 is used. For some NLP tasks (as shown in Appendix D of the original paper), this value has been increased to 32.
|
131 |
+
|
132 |
+
2. ``start_powerSGD_iter`` defers PowerSGD compression until step ``start_powerSGD_iter``, and vanilla allreduce runs prior to step ``start_powerSGD_iter``. This hybrid scheme of **vanilla allreduce + PowerSGD** can effectively improve the accuracy, even a relatively small ``matrix_approximation_rank`` is used. This is because that, the beginning of training phase is usually very sensitive to inaccurate gradients, and compressing gradients too early may make the training quickly take a suboptimal trajectory, which can result in an irrecoverable impact on the accuracy.
|
133 |
+
|
134 |
+
To tune ``start_powerSGD_iter``, we suggest to start with 10% of total training steps, and increase it until a satisfactory accuracy is reached. If there is a warm-up stage in the training, ``start_powerSGD_iter`` typically should be no less than the number of warm-up steps.
|
135 |
+
|
136 |
+
3. ``min_compression_rate`` is the minimum compression rate required when a layer is compressed. Due to the computation overheads incurred by the compression, a tensor is worth compressing only if there can be sufficient saving in bandwidth, where ``(num_rows + num_cols) * matrix_approximation_rank * min_compression_rate < num_rows * num_cols``. If the specified compression rate threshold cannot be satisfied, the tensor will be directly allreduced without compression.
|
137 |
+
|
138 |
+
Compression statistics are logged every ``compression_stats_logging_frequency`` iterations once PowerSGD compression starts.
|
139 |
+
|
140 |
+
4. ``orthogonalization_epsilon`` can be a very small value (e.g., 1e-8) added to every normalized matrix column in orthogonalization step, to prevent div-by-zero error if any column has all 0s. If this can already be prevented (e.g., by batch normalization), an epsilon of 0 is recommended for accuracy.
|
141 |
+
|
142 |
+
5. ``batch_tensors_with_same_shape`` controls whether to compress and decompress tensors with same shape in a batched operation to achieve higher parallelism. Note that you should also increase the bucket size (i.e., ``bucket_cap_mb`` arg in DDP constructor) to make more same-shaped tensors appear in the same bucket, however this may reduce the overlap between computation and communication, and increase the memory footprint due to stacking the tensors of the same shape. Set to ``True`` if the compression / decompression computation is a bottleneck.
|
143 |
+
|
144 |
+
.. warning ::
|
145 |
+
If error feedback or warm-up is enabled, the minimum value of ``start_powerSGD_iter`` allowed in DDP is 2.
|
146 |
+
This is because there is another internal optimization that rebuilds buckets at iteration 1 in DDP,
|
147 |
+
and this can conflict with any tensor memorized before the rebuild process.
|
148 |
+
""" # noqa: B950
|
149 |
+
|
150 |
+
__slots__ = [
|
151 |
+
"process_group",
|
152 |
+
# The fields below are the hyperparameters that often need to be tuned by the user.
|
153 |
+
"matrix_approximation_rank",
|
154 |
+
"start_powerSGD_iter",
|
155 |
+
# The fields below are the hyperparameters that seldom need be tuned by the user.
|
156 |
+
"min_compression_rate",
|
157 |
+
"orthogonalization_epsilon",
|
158 |
+
# The fields below are the binary hyperparameters recommended to be turned on for performance and accuracy.
|
159 |
+
"use_error_feedback",
|
160 |
+
"warm_start",
|
161 |
+
"batch_tensors_with_same_shape",
|
162 |
+
# The fields below are internal state.
|
163 |
+
"rng",
|
164 |
+
"error_dict",
|
165 |
+
"p_memory_dict",
|
166 |
+
"q_memory_dict",
|
167 |
+
"iter",
|
168 |
+
# The fields below are for recording compression stats.
|
169 |
+
"total_numel_before_compression",
|
170 |
+
"total_numel_after_compression",
|
171 |
+
"compression_stats_logging_frequency",
|
172 |
+
"next_stats_report",
|
173 |
+
]
|
174 |
+
|
175 |
+
def __init__(
|
176 |
+
self,
|
177 |
+
process_group,
|
178 |
+
matrix_approximation_rank=1,
|
179 |
+
start_powerSGD_iter=1_000,
|
180 |
+
min_compression_rate=2,
|
181 |
+
use_error_feedback=True,
|
182 |
+
warm_start=True,
|
183 |
+
orthogonalization_epsilon=0,
|
184 |
+
random_seed=0,
|
185 |
+
compression_stats_logging_frequency=10_000,
|
186 |
+
batch_tensors_with_same_shape: bool = False,
|
187 |
+
):
|
188 |
+
logger.info(
|
189 |
+
"PowerSGD config: matrix_approximation_rank = %s; start_powerSGD_iter = %s; "
|
190 |
+
"min_compression_rate = %s; orthogonalization_epsilon = %s; use_error_feedback = %s; warm_start = %s; "
|
191 |
+
"random_seed = %s; compression_stats_logging_frequency = %s; batch_tensors_with_same_shape = %s",
|
192 |
+
matrix_approximation_rank,
|
193 |
+
start_powerSGD_iter,
|
194 |
+
min_compression_rate,
|
195 |
+
orthogonalization_epsilon,
|
196 |
+
use_error_feedback,
|
197 |
+
warm_start,
|
198 |
+
random_seed,
|
199 |
+
compression_stats_logging_frequency,
|
200 |
+
batch_tensors_with_same_shape,
|
201 |
+
)
|
202 |
+
|
203 |
+
self.process_group = process_group
|
204 |
+
self.matrix_approximation_rank = matrix_approximation_rank
|
205 |
+
# Deferring PowerSGD compression util step 'start_powerSGD_iter' can have two advantages:
|
206 |
+
# 1) It turns out that PowerSGD may lead to a non-trivial accuracy loss,
|
207 |
+
# even if the matrix approximation rank is increased to a large value.
|
208 |
+
# To mitigate the accuracy loss, a simple yet effective way is mixing vanilla allreduce
|
209 |
+
# (or a more conservative compression such as FP16 compression) with PowerSGD.
|
210 |
+
# 2) There is an internal optimization of rebuilding buckets process in DDP,
|
211 |
+
# in order to save the memory space.
|
212 |
+
# This step takes place after the first iteration.
|
213 |
+
# However, this means that the shape of input bucketized tensors is subject to change,
|
214 |
+
# which will complicate the implementations of error feedback and warm-up.
|
215 |
+
# Running vanilla allreduce in the first few iterations can avoid this complexity.
|
216 |
+
if (use_error_feedback or warm_start) and start_powerSGD_iter <= 1:
|
217 |
+
raise ValueError(
|
218 |
+
"Expect `start_powerSGD_iter` > 1 if `use_error_feedback` or `warm_start` is enabled, "
|
219 |
+
"because PowerSGD can only be applied after the first two iterations in DDP."
|
220 |
+
)
|
221 |
+
self.start_powerSGD_iter = start_powerSGD_iter
|
222 |
+
self.min_compression_rate = min_compression_rate
|
223 |
+
# Error feedback is usually crucial for both for convergence and generalization,
|
224 |
+
# because PowerSGD is a biased compressor,
|
225 |
+
# i.e., compressing and decompressing a random gradient does not yield the original in expectation.
|
226 |
+
# This mechanism requires a temporary copy of the input gradients,
|
227 |
+
# so it increases the peak memory consumption by the size of the gradient tensor.
|
228 |
+
# However, if the target matrices are known to be exactly low-ranked (instead of just low stable rank),
|
229 |
+
# sometimes it is possible to converge to the optima without error feedback.
|
230 |
+
# See: http://proceedings.mlr.press/v54/yurtsever17a/yurtsever17a.pdf
|
231 |
+
self.use_error_feedback = use_error_feedback
|
232 |
+
# Warm-start reuses P(s) and Q(s) from the previous iteration.
|
233 |
+
# This can improve the approximation quality and hence improve the accuracy.
|
234 |
+
# Additionally, by avoiding the initialization of these low-rank tensors at every step,
|
235 |
+
# this can also accelerate training.
|
236 |
+
# However, this is at the cost of extra memory.
|
237 |
+
self.warm_start = warm_start
|
238 |
+
# Can use a very small value to prevent div-by-zero error caused by orthogonalization of vanishing gradients.
|
239 |
+
self.orthogonalization_epsilon = orthogonalization_epsilon
|
240 |
+
# The purpose of this RNG is to generate different random seeds for initializing Q across iterations,
|
241 |
+
# but in the same order for all the DDP replicas.
|
242 |
+
# Different random seeds across iterations indicate different 'projections' of the gradients at different SGD steps.
|
243 |
+
# If the same random projection is used,
|
244 |
+
# there will be differences between the gradients that are never synchronized.
|
245 |
+
import numpy as np
|
246 |
+
self.rng = np.random.RandomState(random_seed)
|
247 |
+
# Since there is only a single state instance for all the input buckets,
|
248 |
+
# need to maintain a dictionary that maps each bucket index to the local error.
|
249 |
+
self.error_dict: Dict[int, torch.Tensor] = {}
|
250 |
+
self.p_memory_dict: Dict[int, torch.Tensor] = {}
|
251 |
+
self.q_memory_dict: Dict[int, torch.Tensor] = {}
|
252 |
+
# Iteration/step in the training loop.
|
253 |
+
self.iter = 0
|
254 |
+
# Compression stats accumulators
|
255 |
+
self.total_numel_before_compression = 0
|
256 |
+
self.total_numel_after_compression = 0
|
257 |
+
# We'll report compression stats every 'compression_stats_logging_frequency' iterations
|
258 |
+
# Note that we always report compression stats at least once.
|
259 |
+
self.compression_stats_logging_frequency = max(
|
260 |
+
1, compression_stats_logging_frequency
|
261 |
+
)
|
262 |
+
self.next_stats_report = 0
|
263 |
+
# Batching tensors with same shape can increase parallelism in compression / decompression computation.
|
264 |
+
# This requires a larger bucket size to make more same-shaped tensor to appear in one bucket, however
|
265 |
+
# this may reduce the overlap between computation and communication, and increase the memory footprint
|
266 |
+
# due to stacking tensors.
|
267 |
+
# Turn on if compression / decompression computation is a bottleneck.
|
268 |
+
self.batch_tensors_with_same_shape = batch_tensors_with_same_shape
|
269 |
+
|
270 |
+
def __getstate__(self):
|
271 |
+
r"""
|
272 |
+
Return a ``Dict[str, Any]`` which will be pickled and saved.
|
273 |
+
|
274 |
+
``process_group`` is not serializable and excluded from
|
275 |
+
a returned state.
|
276 |
+
"""
|
277 |
+
logger.warning(
|
278 |
+
"NOTE: Process group is not serializable and excluded from a saved state."
|
279 |
+
)
|
280 |
+
return {
|
281 |
+
slot: getattr(self, slot)
|
282 |
+
for slot in self.__slots__ if slot != "process_group"
|
283 |
+
}
|
284 |
+
|
285 |
+
def __setstate__(self, state):
|
286 |
+
r"""
|
287 |
+
Take a provided ``state`` and set to this ``PowerSGDState`` instance.
|
288 |
+
|
289 |
+
``process_group`` is set to default.
|
290 |
+
"""
|
291 |
+
self.process_group = distributed_c10d._get_default_group()
|
292 |
+
logger.warning(
|
293 |
+
"NOTE: Process group will be set to a default group (i.e. the world size).\
|
294 |
+
If a different group is desired, please set `self.process_group` after PowerSGD state is loaded."
|
295 |
+
)
|
296 |
+
for slot, value in state.items():
|
297 |
+
setattr(self, slot, value)
|
298 |
+
|
299 |
+
def maybe_increase_iter(self, bucket):
|
300 |
+
"""Track iterations and trigger log message at start of local SGD."""
|
301 |
+
# Since bucket 0 is the last bucket to allreduce in an iteration.
|
302 |
+
# Only increase `iter` when bucket 0 is processed.
|
303 |
+
if bucket.is_last():
|
304 |
+
self.iter += 1
|
305 |
+
|
306 |
+
if self.iter == self.start_powerSGD_iter:
|
307 |
+
logger.info(
|
308 |
+
"Start to apply PowerSGD after %s iterations.", self.iter
|
309 |
+
)
|
310 |
+
|
311 |
+
def compression_stats(self):
|
312 |
+
r"""
|
313 |
+
Return latest compression statistics as tuple.
|
314 |
+
|
315 |
+
Returns tuple of form (compress_rate, numel_before_compression, numel_after_compression) where:
|
316 |
+
|
317 |
+
compress_rate is the effective compression rate i.e. (number of elements before compression) / (number of elements after compression);
|
318 |
+
|
319 |
+
numel_before_compression is the total number of elements before compression was applied; and,
|
320 |
+
|
321 |
+
numel_after_compression is the total number of elements after compression was applied.
|
322 |
+
""" # noqa: B950
|
323 |
+
compress_rate = (
|
324 |
+
self.total_numel_before_compression / self.total_numel_after_compression
|
325 |
+
if self.total_numel_after_compression > 0
|
326 |
+
else 0
|
327 |
+
)
|
328 |
+
return (
|
329 |
+
compress_rate,
|
330 |
+
self.total_numel_before_compression,
|
331 |
+
self.total_numel_after_compression,
|
332 |
+
)
|
333 |
+
|
334 |
+
|
335 |
+
def powerSGD_hook(
|
336 |
+
state: PowerSGDState, bucket: dist.GradBucket
|
337 |
+
) -> torch.futures.Future[torch.Tensor]:
|
338 |
+
r"""
|
339 |
+
Implement PowerSGD algorithm.
|
340 |
+
|
341 |
+
This DDP communication hook implements PowerSGD gradient compression
|
342 |
+
algorithm described in the `paper <https://arxiv.org/abs/1905.13727>`_.
|
343 |
+
Once gradient tensors are aggregated across all workers, this hook applies
|
344 |
+
compression as follows:
|
345 |
+
|
346 |
+
1. Views the input flattened 1D gradient tensor as a list of per-parameter tensors, and divides all the tensors into two groups:
|
347 |
+
|
348 |
+
1.1 The tensors that should be compressed before allreduce, because the compression can give enough saving in bandwidth.
|
349 |
+
|
350 |
+
1.2 Rest of the tensors will be directly allreduced without compression, including all the vector tensors (for biases).
|
351 |
+
|
352 |
+
2. Handles uncompressed tensors:
|
353 |
+
|
354 |
+
2.1. Allocate contiguous memory for those uncompressed tensors, and allreduces all the uncompressed tensors as a batch, without compression;
|
355 |
+
|
356 |
+
2.2. Copies the individual uncompressed tensors from the contiguous memory back to the input tensor.
|
357 |
+
|
358 |
+
3. Handles the tensors that should be compressed by PowerSGD compression:
|
359 |
+
|
360 |
+
3.1. For each tensor M, creates two low-rank tensors P and Q for decomposing M,
|
361 |
+
such that M = PQ^T, where Q is initialized from a standard normal distribution and orthogonalized;
|
362 |
+
|
363 |
+
3.2. Computes each P in Ps, which is equal to MQ;
|
364 |
+
|
365 |
+
3.3. Allreduces Ps as a batch;
|
366 |
+
|
367 |
+
3.4. Orthogonalizes each P in Ps;
|
368 |
+
|
369 |
+
3.5. Computes each Q in Qs, which is approximately equal to M^TP;
|
370 |
+
|
371 |
+
3.6. Allreduces Qs as a batch;
|
372 |
+
|
373 |
+
3.7. Computes each M among all the compressed tensors, which is approximately equal to PQ^T.
|
374 |
+
|
375 |
+
Note that this communication hook enforces vanilla allreduce for the first ``state.start_powerSGD_iter`` iterations.
|
376 |
+
This not only gives the user more control over the tradeoff between speedup and accuracy,
|
377 |
+
but also helps abstract away some complexity of the internal optimization of DDP for future communication hook developers.
|
378 |
+
|
379 |
+
Args:
|
380 |
+
state (PowerSGDState): State information to configure the compression rate and support error feedback, warm start, etc.
|
381 |
+
To tune the compression configs, mainly need to tune ``matrix_approximation_rank``, ``start_powerSGD_iter``
|
382 |
+
and ``min_compression_rate``.
|
383 |
+
bucket (dist.GradBucket): Bucket that stores a 1D flattened gradient tensor that batches multiple per-variable tensors.
|
384 |
+
Note that since DDP comm hook only supports single process single device mode,
|
385 |
+
only exactly one tensor is stored in this bucket.
|
386 |
+
|
387 |
+
Returns:
|
388 |
+
Future handler of the communication, which updates the gradients in place.
|
389 |
+
|
390 |
+
Example::
|
391 |
+
>>> # xdoctest: +SKIP
|
392 |
+
>>> state = PowerSGDState(process_group=process_group, matrix_approximation_rank=1,
|
393 |
+
start_powerSGD_iter=10, min_compression_rate=0.5)
|
394 |
+
>>> ddp_model.register_comm_hook(state, powerSGD_hook)
|
395 |
+
""" # noqa: B950
|
396 |
+
process_group = state.process_group
|
397 |
+
group_to_use = process_group if process_group is not None else dist.group.WORLD
|
398 |
+
world_size = group_to_use.size()
|
399 |
+
|
400 |
+
# The input tensor is a flattened 1D tensor.
|
401 |
+
input_tensor = bucket.buffer()
|
402 |
+
|
403 |
+
# Run vanilla allreduce in the first `start_powerSGD_iter` iterations.
|
404 |
+
if state.iter < state.start_powerSGD_iter:
|
405 |
+
state.maybe_increase_iter(bucket)
|
406 |
+
return default._allreduce_fut(group_to_use, input_tensor)
|
407 |
+
|
408 |
+
# Apply PowerSGD after `start_powerSGD_iter` iterations.
|
409 |
+
device = input_tensor.device
|
410 |
+
dtype = input_tensor.dtype
|
411 |
+
|
412 |
+
# Incorporate the error from the previous state into the gradients.
|
413 |
+
bucket_index = bucket.index()
|
414 |
+
input_tensor_cp = None
|
415 |
+
total_length = input_tensor.shape[0]
|
416 |
+
if state.use_error_feedback:
|
417 |
+
if bucket_index in state.error_dict:
|
418 |
+
input_tensor.add_(state.error_dict[bucket_index])
|
419 |
+
else:
|
420 |
+
logger.info(
|
421 |
+
"A zero tensor of length %s that represents local error is created.",
|
422 |
+
total_length
|
423 |
+
)
|
424 |
+
state.error_dict[bucket_index] = torch.zeros(
|
425 |
+
total_length, device=device, dtype=dtype
|
426 |
+
)
|
427 |
+
|
428 |
+
# Keep a copy of the input tensor,
|
429 |
+
# so that we can compute the local error caused by compression later,
|
430 |
+
# by comparing this copy and the input tensor updated after decompression.
|
431 |
+
input_tensor_cp = torch.clone(input_tensor).detach()
|
432 |
+
|
433 |
+
# Unflatten the input tensor into per-parameter tensors, for layer-wise compression.
|
434 |
+
tensors = bucket.gradients()
|
435 |
+
|
436 |
+
# Step I: Divide all the tensors into two groups,
|
437 |
+
# one will be compressed before allreduce and the other will be directly allreduced without compression.
|
438 |
+
tensors_to_compress, uncompressed_tensors = [], []
|
439 |
+
total_Ps_size = 0
|
440 |
+
total_Qs_size = 0
|
441 |
+
for tensor in tensors:
|
442 |
+
matrix = tensor.view(tensor.shape[0], -1)
|
443 |
+
n, m = matrix.shape
|
444 |
+
matrix_approximation_rank = min(n, m, state.matrix_approximation_rank)
|
445 |
+
compress_test = _should_compress(
|
446 |
+
n, m, matrix_approximation_rank, state.min_compression_rate
|
447 |
+
)
|
448 |
+
state.total_numel_before_compression += compress_test[1]
|
449 |
+
if compress_test[0]:
|
450 |
+
tensors_to_compress.append(matrix)
|
451 |
+
total_Ps_size += n * matrix_approximation_rank
|
452 |
+
total_Qs_size += m * matrix_approximation_rank
|
453 |
+
state.total_numel_after_compression += compress_test[2]
|
454 |
+
else:
|
455 |
+
uncompressed_tensors.append(tensor)
|
456 |
+
state.total_numel_after_compression += compress_test[1]
|
457 |
+
|
458 |
+
_report_compression_stats(bucket, state)
|
459 |
+
|
460 |
+
# Step II: Handle uncompressed tensors.
|
461 |
+
# Allocate contiguous memory for these tensors to allreduce efficiently.
|
462 |
+
uncompressed_tensors_memory = (
|
463 |
+
torch.cat([tensor.view(-1) for tensor in uncompressed_tensors])
|
464 |
+
if uncompressed_tensors
|
465 |
+
else torch.tensor([], device=device, dtype=dtype)
|
466 |
+
)
|
467 |
+
|
468 |
+
# Step III: Handle the tensors that should be compressed.
|
469 |
+
# Allocate contiguous memory for Ps and Qs to allreduce efficiently.
|
470 |
+
# If warm-start is enabled, reuse Ps and Qs from the previous iteration if possible.
|
471 |
+
# The memory spaces of Ps and Qs need to be allocated in the first iteration when PowerSGD is applied.
|
472 |
+
need_randomize_qs = False
|
473 |
+
if not state.warm_start or bucket_index not in state.p_memory_dict:
|
474 |
+
need_randomize_qs = True
|
475 |
+
# If warm-start is disabled, low-rank tensors will be initialized at every step.
|
476 |
+
# Only log this if warm-start to avoid spamming.
|
477 |
+
if state.warm_start:
|
478 |
+
logger.info(
|
479 |
+
"Allocating contiguous memory of length %s for Ps, and of length %s for Qs, respectively.",
|
480 |
+
total_Ps_size, total_Qs_size
|
481 |
+
)
|
482 |
+
state.p_memory_dict[bucket_index] = torch.empty(
|
483 |
+
total_Ps_size, device=device, dtype=dtype
|
484 |
+
)
|
485 |
+
state.q_memory_dict[bucket_index] = torch.empty(
|
486 |
+
total_Qs_size, device=device, dtype=dtype
|
487 |
+
)
|
488 |
+
|
489 |
+
# Batch tensors to compress by shape.
|
490 |
+
shape_to_tensors = defaultdict(list)
|
491 |
+
for tensor in tensors_to_compress:
|
492 |
+
shape_to_tensors[tensor.shape].append(tensor)
|
493 |
+
|
494 |
+
# This function decides whether to batch tensors with same shape or not according to the argument,
|
495 |
+
# so the following process could share the same code.
|
496 |
+
def maybe_batched_tensors_to_compress():
|
497 |
+
for tensors in shape_to_tensors.values():
|
498 |
+
if state.batch_tensors_with_same_shape:
|
499 |
+
batch_size = len(tensors)
|
500 |
+
if batch_size == 1:
|
501 |
+
# Use the original tensor to avoid copy.
|
502 |
+
yield tensors[0].unsqueeze(0)
|
503 |
+
else:
|
504 |
+
yield torch.stack(tensors)
|
505 |
+
else:
|
506 |
+
for tensor in tensors:
|
507 |
+
yield tensor.unsqueeze(0)
|
508 |
+
|
509 |
+
# Create Ps and Qs that point to the allocated memory.
|
510 |
+
tensors_to_compress = []
|
511 |
+
ps = []
|
512 |
+
qs = []
|
513 |
+
p_idx = 0
|
514 |
+
q_idx = 0
|
515 |
+
for tensor in maybe_batched_tensors_to_compress():
|
516 |
+
batch_size, n, m = tensor.shape
|
517 |
+
matrix_approximation_rank = min(n, m, state.matrix_approximation_rank)
|
518 |
+
tensors_to_compress.append(tensor)
|
519 |
+
ps.append(
|
520 |
+
state.p_memory_dict[bucket_index][
|
521 |
+
p_idx : p_idx + batch_size * n * matrix_approximation_rank
|
522 |
+
].view(batch_size, n, matrix_approximation_rank)
|
523 |
+
)
|
524 |
+
qs.append(
|
525 |
+
state.q_memory_dict[bucket_index][
|
526 |
+
q_idx : q_idx + batch_size * m * matrix_approximation_rank
|
527 |
+
].view(batch_size, m, matrix_approximation_rank)
|
528 |
+
)
|
529 |
+
p_idx += batch_size * n * matrix_approximation_rank
|
530 |
+
q_idx += batch_size * m * matrix_approximation_rank
|
531 |
+
|
532 |
+
# If warm-start is enabled, reuse Qs from the previous iteration if possible and skip filling random values.
|
533 |
+
# The exception is the first iteration when PowerSGD is applied.
|
534 |
+
if not need_randomize_qs:
|
535 |
+
for q in qs:
|
536 |
+
_orthogonalize(q, state.orthogonalization_epsilon)
|
537 |
+
else:
|
538 |
+
with torch.random.fork_rng(devices=[]):
|
539 |
+
# Fork this RNG to avoid changing the seed globally and affecting the random sampling anywhere else in the training.
|
540 |
+
# The seed makes sure that the initial random values are the same across all the DDP replicas.
|
541 |
+
# This seed should differ at every step.
|
542 |
+
# Since it is very slow to fork RNG state across all the CUDA devices,
|
543 |
+
# only fork on CPU and then move the generated tensor to the CUDA device (by overwriting q).
|
544 |
+
torch.manual_seed(state.rng.randint(1_000_000_000))
|
545 |
+
for q in qs:
|
546 |
+
q.copy_(
|
547 |
+
torch.randn(
|
548 |
+
*q.shape,
|
549 |
+
device="cpu",
|
550 |
+
dtype=dtype,
|
551 |
+
)
|
552 |
+
)
|
553 |
+
_orthogonalize(q, state.orthogonalization_epsilon)
|
554 |
+
|
555 |
+
# Compute Ps.
|
556 |
+
for tensor, q, p in zip(tensors_to_compress, qs, ps):
|
557 |
+
torch.bmm(tensor, q, out=p)
|
558 |
+
|
559 |
+
# This allreduce is only applied to uncompressed tensors,
|
560 |
+
# so it should have been kicked off before the above computation on the compressed tensors to hide more communication costs.
|
561 |
+
# However, this somehow requires a separate future chain at this time.
|
562 |
+
allreduce_contiguous_uncompressed_tensors_fut = dist.all_reduce(
|
563 |
+
uncompressed_tensors_memory, group=group_to_use, async_op=True
|
564 |
+
).get_future()
|
565 |
+
|
566 |
+
def unpack_uncompressed_tensors_and_allreduce_ps(fut):
|
567 |
+
uncompressed_tensors_memory = fut.value()[0].div_(world_size)
|
568 |
+
idx = 0
|
569 |
+
for tensor in uncompressed_tensors:
|
570 |
+
tensor.copy_(
|
571 |
+
uncompressed_tensors_memory[idx : idx + tensor.numel()].view_as(tensor)
|
572 |
+
)
|
573 |
+
idx += tensor.numel()
|
574 |
+
|
575 |
+
# Since these Ps will be orthogonalized later, no need to divide them by world size.
|
576 |
+
return (
|
577 |
+
dist.all_reduce(
|
578 |
+
state.p_memory_dict[bucket_index], group=group_to_use, async_op=True
|
579 |
+
)
|
580 |
+
.get_future()
|
581 |
+
.wait()[0]
|
582 |
+
)
|
583 |
+
|
584 |
+
def compute_qs(fut):
|
585 |
+
state.p_memory_dict[bucket_index] = fut.value()
|
586 |
+
for p in ps:
|
587 |
+
_orthogonalize(p, state.orthogonalization_epsilon)
|
588 |
+
|
589 |
+
# Compute Qs.
|
590 |
+
for tensor, p, q in zip(tensors_to_compress, ps, qs):
|
591 |
+
torch.bmm(tensor.transpose(1, 2), p, out=q)
|
592 |
+
|
593 |
+
# TODO: The above procedure does two matmul+allreduce steps per iteration --
|
594 |
+
# one left multiplication and one right multiplication.
|
595 |
+
# For warm-start, can take one such step at a time, and alternate between them.
|
596 |
+
|
597 |
+
# Allreduce Qs.
|
598 |
+
return (
|
599 |
+
dist.all_reduce(
|
600 |
+
state.q_memory_dict[bucket_index], group=group_to_use, async_op=True
|
601 |
+
)
|
602 |
+
.get_future()
|
603 |
+
.wait()[0]
|
604 |
+
)
|
605 |
+
|
606 |
+
def decompress(fut):
|
607 |
+
state.q_memory_dict[bucket_index] = fut.value().div_(world_size)
|
608 |
+
|
609 |
+
for p, q, tensor in zip(ps, qs, tensors_to_compress):
|
610 |
+
torch.bmm(p, q.transpose(1, 2), out=tensor)
|
611 |
+
|
612 |
+
# Copy batched tensors back to original buffer.
|
613 |
+
if state.batch_tensors_with_same_shape:
|
614 |
+
for tensor in tensors_to_compress:
|
615 |
+
if tensor.shape[0] == 1:
|
616 |
+
# Skip tensor with batch_size == 1 since itself is the original tensor.
|
617 |
+
continue
|
618 |
+
original_tensors = shape_to_tensors[tensor.shape[1:]]
|
619 |
+
for i, original_tensor in enumerate(original_tensors):
|
620 |
+
original_tensor.copy_(tensor[i])
|
621 |
+
|
622 |
+
if torch.cuda.is_available():
|
623 |
+
torch.cuda.synchronize(device)
|
624 |
+
|
625 |
+
if state.use_error_feedback:
|
626 |
+
# Memorize the local errors.
|
627 |
+
state.error_dict[bucket_index] = input_tensor_cp - input_tensor
|
628 |
+
if not state.warm_start:
|
629 |
+
state.p_memory_dict.clear()
|
630 |
+
state.q_memory_dict.clear()
|
631 |
+
|
632 |
+
state.maybe_increase_iter(bucket)
|
633 |
+
|
634 |
+
return input_tensor
|
635 |
+
|
636 |
+
return (
|
637 |
+
allreduce_contiguous_uncompressed_tensors_fut.then(
|
638 |
+
unpack_uncompressed_tensors_and_allreduce_ps
|
639 |
+
)
|
640 |
+
.then(compute_qs)
|
641 |
+
.then(decompress)
|
642 |
+
)
|
643 |
+
|
644 |
+
|
645 |
+
def batched_powerSGD_hook(
|
646 |
+
state: PowerSGDState, bucket: dist.GradBucket
|
647 |
+
) -> torch.futures.Future[torch.Tensor]:
|
648 |
+
r"""
|
649 |
+
Implement simplified PowerSGD algorithm.
|
650 |
+
|
651 |
+
This DDP communication hook implements a simplified PowerSGD gradient compression
|
652 |
+
algorithm described in the `paper <https://arxiv.org/abs/1905.13727>`_.
|
653 |
+
This variant does not compress the gradients layer by layer,
|
654 |
+
but instead compresses the flattened input tensor that batches all the gradients.
|
655 |
+
Therefore, it is **faster** than :meth:`powerSGD_hook`,
|
656 |
+
but usually results in a **much lower accuracy**, unless ``matrix_approximation_rank`` is 1.
|
657 |
+
|
658 |
+
.. warning ::
|
659 |
+
Increasing ``matrix_approximation_rank`` here may not necessarily increase the accuracy,
|
660 |
+
because batching per-parameter tensors without column/row alignment can destroy low-rank structure.
|
661 |
+
Therefore, the user should always consider :meth:`powerSGD_hook` first,
|
662 |
+
and only consider this variant when a satisfactory accuracy can be achieved when ``matrix_approximation_rank`` is 1.
|
663 |
+
|
664 |
+
Once gradient tensors are aggregated across all workers, this hook applies
|
665 |
+
compression as follows:
|
666 |
+
|
667 |
+
1. Views the input flattened 1D gradient tensor as a square-shaped tensor M with 0 paddings;
|
668 |
+
|
669 |
+
2. Creates two low-rank tensors P and Q for decomposing M, such that M = PQ^T, where Q is initialized from a standard normal distribution and orthogonalized;
|
670 |
+
|
671 |
+
3. Computes P, which is equal to MQ;
|
672 |
+
|
673 |
+
4. Allreduces P;
|
674 |
+
|
675 |
+
5. Orthogonalizes P;
|
676 |
+
|
677 |
+
6. Computes Q, which is approximately equal to M^TP;
|
678 |
+
|
679 |
+
7. Allreduces Q;
|
680 |
+
|
681 |
+
8. Computes M, which is approximately equal to PQ^T.
|
682 |
+
|
683 |
+
9. Truncates the input tensor to the original length.
|
684 |
+
|
685 |
+
Note that this communication hook enforces vanilla allreduce for the first ``state.start_powerSGD_iter`` iterations.
|
686 |
+
This not only gives the user more control over the tradeoff between speedup and accuracy,
|
687 |
+
but also helps abstract away some complexity of the internal optimization of DDP for future communication hook developers.
|
688 |
+
|
689 |
+
Args:
|
690 |
+
state (PowerSGDState): State information to configure the compression rate and support error feedback, warm start, etc.
|
691 |
+
To tune the compression configs, mainly need to tune ``matrix_approximation_rank`` and ``start_powerSGD_iter``.
|
692 |
+
bucket (dist.GradBucket): Bucket that stores a 1D flattened gradient tensor that batches multiple per-variable tensors.
|
693 |
+
Note that since DDP comm hook only supports single process single device mode,
|
694 |
+
only exactly one tensor is stored in this bucket.
|
695 |
+
|
696 |
+
Returns:
|
697 |
+
Future handler of the communication, which updates the gradients in place.
|
698 |
+
|
699 |
+
Example::
|
700 |
+
>>> # xdoctest: +SKIP
|
701 |
+
>>> state = PowerSGDState(process_group=process_group, matrix_approximation_rank=1)
|
702 |
+
>>> ddp_model.register_comm_hook(state, batched_powerSGD_hook)
|
703 |
+
""" # noqa: B950
|
704 |
+
process_group = state.process_group
|
705 |
+
group_to_use = process_group if process_group is not None else dist.group.WORLD
|
706 |
+
world_size = group_to_use.size()
|
707 |
+
|
708 |
+
# The input tensor is a flattened 1D tensor.
|
709 |
+
input_tensor = bucket.buffer()
|
710 |
+
|
711 |
+
# Run vanilla allreduce in the first `start_powerSGD_iter` iterations.
|
712 |
+
if state.iter < state.start_powerSGD_iter:
|
713 |
+
state.maybe_increase_iter(bucket)
|
714 |
+
return default._allreduce_fut(group_to_use, input_tensor)
|
715 |
+
|
716 |
+
# Apply PowerSGD after `start_powerSGD_iter` iterations.
|
717 |
+
device = input_tensor.device
|
718 |
+
total_length = input_tensor.shape[0]
|
719 |
+
state.total_numel_before_compression += total_length
|
720 |
+
|
721 |
+
# View the input tensor as a 2D square-shape tensor, and pad 0s if necessary.
|
722 |
+
square_side_length = math.ceil(math.sqrt(total_length))
|
723 |
+
state.total_numel_after_compression += (
|
724 |
+
square_side_length * state.matrix_approximation_rank * 2
|
725 |
+
)
|
726 |
+
padded_total_length = square_side_length ** 2
|
727 |
+
input_tensor.resize_(padded_total_length)
|
728 |
+
input_tensor[total_length:padded_total_length].fill_(0)
|
729 |
+
|
730 |
+
_report_compression_stats(bucket, state)
|
731 |
+
|
732 |
+
# Incorporate the error from the previous state into the gradients.
|
733 |
+
bucket_index = bucket.index()
|
734 |
+
input_tensor_cp = None
|
735 |
+
if state.use_error_feedback:
|
736 |
+
if bucket_index in state.error_dict:
|
737 |
+
input_tensor.add_(state.error_dict[bucket_index])
|
738 |
+
else:
|
739 |
+
logger.info(
|
740 |
+
"A zero tensor of length %s that represents local error is created.",
|
741 |
+
padded_total_length
|
742 |
+
)
|
743 |
+
state.error_dict[bucket_index] = torch.zeros(
|
744 |
+
padded_total_length, device=device, dtype=input_tensor.dtype
|
745 |
+
)
|
746 |
+
|
747 |
+
# Keep a copy of the input tensor,
|
748 |
+
# so that we can compute the local error caused by compression later,
|
749 |
+
# by comparing this copy and the input tensor updated after decompression.
|
750 |
+
input_tensor_cp = torch.clone(input_tensor).detach()
|
751 |
+
matrix = input_tensor.view(square_side_length, square_side_length)
|
752 |
+
|
753 |
+
# Reuse P and Q from the previous iteration if possible.
|
754 |
+
# The memory spaces of P and Q need to be allocated in the first iteration when PowerSGD is applied.
|
755 |
+
if not state.warm_start or bucket_index not in state.p_memory_dict:
|
756 |
+
# If warm-start is disabled, low-rank tensors will be initialized at every step.
|
757 |
+
# Only log this if warm-start to avoid spamming.
|
758 |
+
if state.warm_start:
|
759 |
+
logger.info(
|
760 |
+
"Initializing low-rank tensors P and Q, each of which has a shape of %s x %s.",
|
761 |
+
square_side_length, state.matrix_approximation_rank
|
762 |
+
)
|
763 |
+
|
764 |
+
def create_low_rank_tensor(fill_random_values, rng):
|
765 |
+
"""Return a low-rank 2D tensor of square_side_length * matrix_approximation_rank."""
|
766 |
+
if fill_random_values:
|
767 |
+
with torch.random.fork_rng(devices=[]):
|
768 |
+
# Fork this RNG to avoid changing the seed globally and affecting the random sampling
|
769 |
+
# anywhere else in the training.
|
770 |
+
# The seed makes sure that the initial random values are the same across all the DDP replicas.
|
771 |
+
# This seed should differ at every step.
|
772 |
+
# Since it is very slow to fork RNG state across all the CUDA devices,
|
773 |
+
# only fork on CPU and then move the generated tensor to the CUDA device.
|
774 |
+
torch.manual_seed(rng.randint(1_000_000_000))
|
775 |
+
return torch.randn(
|
776 |
+
square_side_length,
|
777 |
+
state.matrix_approximation_rank,
|
778 |
+
device="cpu",
|
779 |
+
dtype=input_tensor.dtype,
|
780 |
+
).to(device)
|
781 |
+
else:
|
782 |
+
return torch.empty(
|
783 |
+
square_side_length,
|
784 |
+
state.matrix_approximation_rank,
|
785 |
+
device=device,
|
786 |
+
dtype=input_tensor.dtype,
|
787 |
+
)
|
788 |
+
|
789 |
+
state.p_memory_dict[bucket_index] = create_low_rank_tensor(
|
790 |
+
fill_random_values=False, rng=state.rng
|
791 |
+
)
|
792 |
+
state.q_memory_dict[bucket_index] = create_low_rank_tensor(
|
793 |
+
fill_random_values=True, rng=state.rng
|
794 |
+
)
|
795 |
+
_orthogonalize(state.q_memory_dict[bucket_index])
|
796 |
+
|
797 |
+
torch.matmul(
|
798 |
+
matrix, state.q_memory_dict[bucket_index], out=state.p_memory_dict[bucket_index]
|
799 |
+
)
|
800 |
+
allreduce_p_fut = dist.all_reduce(
|
801 |
+
state.p_memory_dict[bucket_index], group=group_to_use, async_op=True
|
802 |
+
).get_future()
|
803 |
+
|
804 |
+
def compute_q(fut):
|
805 |
+
state.p_memory_dict[bucket_index] = fut.value()[0]
|
806 |
+
_orthogonalize(state.p_memory_dict[bucket_index])
|
807 |
+
|
808 |
+
torch.matmul(
|
809 |
+
matrix.t(),
|
810 |
+
state.p_memory_dict[bucket_index],
|
811 |
+
out=state.q_memory_dict[bucket_index],
|
812 |
+
)
|
813 |
+
|
814 |
+
# TODO: The above procedure does two matmul+allreduce steps per iteration --
|
815 |
+
# one left multiplication and one right multiplication.
|
816 |
+
# For warm-start, can take one such step at a time, and alternate between them.
|
817 |
+
|
818 |
+
return (
|
819 |
+
dist.all_reduce(
|
820 |
+
state.q_memory_dict[bucket_index], group=group_to_use, async_op=True
|
821 |
+
)
|
822 |
+
.get_future()
|
823 |
+
.wait()[0]
|
824 |
+
)
|
825 |
+
|
826 |
+
def decompress(fut):
|
827 |
+
state.q_memory_dict[bucket_index] = fut.value().div_(world_size)
|
828 |
+
torch.matmul(
|
829 |
+
state.p_memory_dict[bucket_index],
|
830 |
+
state.q_memory_dict[bucket_index].t(),
|
831 |
+
out=matrix,
|
832 |
+
)
|
833 |
+
|
834 |
+
if state.use_error_feedback:
|
835 |
+
# Memorize the local errors.
|
836 |
+
state.error_dict[bucket_index] = input_tensor_cp - input_tensor
|
837 |
+
# Removing this seemingly unnecessary sync somehow may cause failures.
|
838 |
+
# See: https://github.com/pytorch/pytorch/pull/54838
|
839 |
+
if torch.cuda.is_available():
|
840 |
+
torch.cuda.synchronize(device)
|
841 |
+
if not state.warm_start:
|
842 |
+
state.p_memory_dict.clear()
|
843 |
+
state.q_memory_dict.clear()
|
844 |
+
ret = input_tensor.resize_(total_length)
|
845 |
+
|
846 |
+
state.maybe_increase_iter(bucket)
|
847 |
+
|
848 |
+
return ret
|
849 |
+
|
850 |
+
return allreduce_p_fut.then(compute_q).then(decompress)
|
venv/lib/python3.10/site-packages/torch/distributed/algorithms/ddp_comm_hooks/quantization_hooks.py
ADDED
@@ -0,0 +1,217 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.distributed as dist
|
3 |
+
from torch import nn
|
4 |
+
|
5 |
+
|
6 |
+
def _quantize_per_tensor_cuda(x, scale, zero_point):
|
7 |
+
y = torch.round(x / scale) + zero_point
|
8 |
+
y = torch.clamp(y, 0, 255).to(torch.uint8)
|
9 |
+
return y
|
10 |
+
|
11 |
+
|
12 |
+
def _dequantize_per_tensor_cuda(y, scale, zero_point):
|
13 |
+
x = scale * (y.to(torch.float32) - zero_point)
|
14 |
+
return x
|
15 |
+
|
16 |
+
|
17 |
+
def _quantize_per_channel_cuda(x, scale, zero_point):
|
18 |
+
y = torch.zeros(x.size(), device=x.device)
|
19 |
+
for i in range(x.size()[0]):
|
20 |
+
y[i, :] = torch.round(x[i, :] / scale[i]) + zero_point[i]
|
21 |
+
y = torch.clamp(y, 0, 255).to(torch.uint8)
|
22 |
+
return y
|
23 |
+
|
24 |
+
|
25 |
+
def _dequantize_per_channel_cuda(y, scale, zero_point):
|
26 |
+
y = y.to(torch.float32).cuda(y.device)
|
27 |
+
x = torch.zeros_like(y, device=y.device)
|
28 |
+
for i in range(x.size()[0]):
|
29 |
+
x[i, :] = scale[i] * (y[i, :] - zero_point[i])
|
30 |
+
return x
|
31 |
+
|
32 |
+
|
33 |
+
def _get_allgather_out_list(all_gather_in_list, world_size):
|
34 |
+
out_list = [
|
35 |
+
torch.zeros_like(
|
36 |
+
all_gather_in_list,
|
37 |
+
device=all_gather_in_list.device,
|
38 |
+
dtype=all_gather_in_list.dtype,
|
39 |
+
)
|
40 |
+
for _ in range(world_size)
|
41 |
+
]
|
42 |
+
return out_list
|
43 |
+
|
44 |
+
|
45 |
+
def quantization_pertensor_hook(
|
46 |
+
process_group: dist.ProcessGroup, bucket: dist.GradBucket
|
47 |
+
) -> torch.futures.Future[torch.Tensor]:
|
48 |
+
"""
|
49 |
+
Apply ``torch.quantize_per_tensor`` logic to DDP using ``allgather`` protocol.
|
50 |
+
|
51 |
+
Workers first allgather the scale and zero point of their own
|
52 |
+
``GradBucket`` prior to the quantization. After all workers have that information,
|
53 |
+
the first ``then`` callback called ``quantize_and_allgather`` quantizes worker's
|
54 |
+
own gradient tensor, and uses ``allgather`` to communicate these across all workers.
|
55 |
+
The final ``then`` callback called ``dequantize_and_aggregate``, dequantizes and
|
56 |
+
aggregates each quantized gradient tensor locally and returns the mean.
|
57 |
+
|
58 |
+
.. warning ::
|
59 |
+
This is experimental, and uses ``allgather`` protocol which is considerably slower than
|
60 |
+
``allreduce`` protocol. It works only with flattened grads.
|
61 |
+
|
62 |
+
Example::
|
63 |
+
>>> # xdoctest: +SKIP
|
64 |
+
>>> ddp_model.register_comm_hook(process_group, quantization_pertensor_hook)
|
65 |
+
"""
|
66 |
+
group_to_use = process_group if process_group is not None else dist.group.WORLD
|
67 |
+
rank = process_group.rank() if process_group is not None else dist.get_rank()
|
68 |
+
world_size = group_to_use.size()
|
69 |
+
|
70 |
+
tensor = bucket.buffer()
|
71 |
+
|
72 |
+
myObserver = torch.ao.quantization.MinMaxObserver().cuda(tensor.device)
|
73 |
+
myObserver(tensor)
|
74 |
+
|
75 |
+
s, z = myObserver.calculate_qparams()
|
76 |
+
s_and_z = torch.FloatTensor([s, z]).cuda(tensor.device)
|
77 |
+
|
78 |
+
all_ranks_s_and_z = _get_allgather_out_list(s_and_z, world_size)
|
79 |
+
|
80 |
+
# First, allgather scale and zeros.
|
81 |
+
fut = dist.all_gather(
|
82 |
+
all_ranks_s_and_z, s_and_z, group=group_to_use, async_op=True
|
83 |
+
).get_future()
|
84 |
+
|
85 |
+
def quantize_and_allgather(fut):
|
86 |
+
# Store scale and zeros across all workers.
|
87 |
+
all_ranks_s_and_z = fut.wait()[0]
|
88 |
+
# All workers quantize their own ``GradBucket`` tensors.
|
89 |
+
quantized_tensor = _quantize_per_tensor_cuda(
|
90 |
+
tensor, all_ranks_s_and_z[rank][0], all_ranks_s_and_z[rank][1]
|
91 |
+
)
|
92 |
+
# Allgather quantized tensors.
|
93 |
+
fut = dist.all_gather(
|
94 |
+
_get_allgather_out_list(quantized_tensor, world_size),
|
95 |
+
quantized_tensor,
|
96 |
+
group=group_to_use,
|
97 |
+
async_op=True,
|
98 |
+
).get_future()
|
99 |
+
|
100 |
+
return fut.wait()
|
101 |
+
|
102 |
+
def dequantize_and_aggregate(fut):
|
103 |
+
all_ranks_quantized_tensor = fut.wait()[0]
|
104 |
+
|
105 |
+
aggregated_dequantized_tensor = torch.zeros_like(
|
106 |
+
all_ranks_quantized_tensor[0], device=tensor.device, dtype=torch.float32
|
107 |
+
)
|
108 |
+
# Using previously allgathered scales and zeros, dequantize gradient tensors
|
109 |
+
# locally and then aggregate them.
|
110 |
+
for r, quantized_tensor in enumerate(all_ranks_quantized_tensor):
|
111 |
+
aggregated_dequantized_tensor += _dequantize_per_tensor_cuda(
|
112 |
+
quantized_tensor, all_ranks_s_and_z[r][0], all_ranks_s_and_z[r][1]
|
113 |
+
)
|
114 |
+
|
115 |
+
return aggregated_dequantized_tensor / world_size
|
116 |
+
|
117 |
+
return fut.then(quantize_and_allgather).then(dequantize_and_aggregate)
|
118 |
+
|
119 |
+
|
120 |
+
def quantization_perchannel_hook(
|
121 |
+
process_group: dist.ProcessGroup, bucket: dist.GradBucket, bucket_size=512
|
122 |
+
) -> torch.futures.Future[torch.Tensor]:
|
123 |
+
"""
|
124 |
+
Apply``torch.quantize_per_channel`` logic to DDP using ``allgather`` protocol.
|
125 |
+
|
126 |
+
Compared to per-tensor, the main motivation of per-channel is
|
127 |
+
for considerably large tensors such as a tensor that contains 6 million
|
128 |
+
elements quantizing per a bucket size of 512 (or 128) elements may significantly
|
129 |
+
increase the resolution.
|
130 |
+
|
131 |
+
It first splits ``GradBucket`` tensor into multiple chunks (channels) of ``bucket_size``
|
132 |
+
elements. Then, workers allgather the scales and zero points of their own
|
133 |
+
``GradBucket`` prior to the quantization. After all workers have that information,
|
134 |
+
the first ``then`` callback called ``quantize_and_allgather`` quantizes worker's
|
135 |
+
own gradient tensor, and uses ``allgather`` to communicate these across all workers.
|
136 |
+
The final ``then`` callback called ``dequantize_and_aggregate``, dequantizes, flattens, and
|
137 |
+
aggregates each quantized gradient tensor locally and returns the mean.
|
138 |
+
|
139 |
+
.. warning ::
|
140 |
+
This is experimental, and uses ``allgather`` protocol which is considerably slower than
|
141 |
+
``allreduce`` protocol. It works only with flattened grads.
|
142 |
+
|
143 |
+
Example::
|
144 |
+
>>> # xdoctest: +SKIP
|
145 |
+
>>> ddp_model.register_comm_hook(process_group, quantization_perchannel_hook)
|
146 |
+
"""
|
147 |
+
group_to_use = process_group if process_group is not None else dist.group.WORLD
|
148 |
+
rank = process_group.rank() if process_group is not None else dist.get_rank()
|
149 |
+
world_size = group_to_use.size()
|
150 |
+
|
151 |
+
tensor = bucket.buffer()
|
152 |
+
|
153 |
+
tensor_in_channels = (
|
154 |
+
nn.functional.pad(
|
155 |
+
input=tensor,
|
156 |
+
pad=(0, bucket_size - len(tensor) % bucket_size),
|
157 |
+
mode="constant",
|
158 |
+
value=0,
|
159 |
+
)
|
160 |
+
.view(-1, bucket_size)
|
161 |
+
.cuda(tensor.device)
|
162 |
+
)
|
163 |
+
|
164 |
+
myPerChannelObserver = torch.ao.quantization.PerChannelMinMaxObserver().cuda(
|
165 |
+
tensor.device
|
166 |
+
)
|
167 |
+
myPerChannelObserver(tensor_in_channels)
|
168 |
+
|
169 |
+
s_ch, z_ch = myPerChannelObserver.calculate_qparams()
|
170 |
+
s_and_z = torch.stack((s_ch, z_ch)).cuda(tensor.device)
|
171 |
+
|
172 |
+
all_ranks_s_and_z = _get_allgather_out_list(s_and_z, world_size)
|
173 |
+
# First, allgather scale and zeros.
|
174 |
+
fut = dist.all_gather(
|
175 |
+
all_ranks_s_and_z, s_and_z, group=group_to_use, async_op=True
|
176 |
+
).get_future()
|
177 |
+
|
178 |
+
def quantize_and_allgather(fut):
|
179 |
+
# Store scale and zeros across all workers.
|
180 |
+
all_ranks_s_and_z = fut.wait()[0]
|
181 |
+
# All workers quantize their corresponding ``GradBucket`` tensors.
|
182 |
+
quantized_tensor = _quantize_per_channel_cuda(
|
183 |
+
tensor_in_channels,
|
184 |
+
all_ranks_s_and_z[rank, 0, :],
|
185 |
+
all_ranks_s_and_z[rank, 1, :],
|
186 |
+
)
|
187 |
+
# Allgather quantized tensors.
|
188 |
+
fut = dist.all_gather(
|
189 |
+
_get_allgather_out_list(quantized_tensor, world_size),
|
190 |
+
quantized_tensor,
|
191 |
+
group=group_to_use,
|
192 |
+
async_op=True,
|
193 |
+
).get_future()
|
194 |
+
|
195 |
+
return fut.wait()
|
196 |
+
|
197 |
+
def dequantize_and_aggregate(fut):
|
198 |
+
all_ranks_quantized_tensor = fut.wait()[0]
|
199 |
+
|
200 |
+
aggregated_dequantized_tensor = torch.zeros_like(
|
201 |
+
all_ranks_quantized_tensor[0], device=tensor.device, dtype=torch.float32
|
202 |
+
)
|
203 |
+
# Using previously allgathered scales and zeros, dequantize gradient tensors
|
204 |
+
# locally and then aggregate them.
|
205 |
+
for r, quantized_tensor in enumerate(all_ranks_quantized_tensor):
|
206 |
+
aggregated_dequantized_tensor += _dequantize_per_channel_cuda(
|
207 |
+
quantized_tensor, all_ranks_s_and_z[r][0], all_ranks_s_and_z[r][1]
|
208 |
+
)
|
209 |
+
|
210 |
+
return (
|
211 |
+
torch.flatten(aggregated_dequantized_tensor).cuda(tensor.device)[
|
212 |
+
: tensor.size()[0]
|
213 |
+
]
|
214 |
+
/ world_size
|
215 |
+
)
|
216 |
+
|
217 |
+
return fut.then(quantize_and_allgather).then(dequantize_and_aggregate)
|
venv/lib/python3.10/site-packages/torch/distributed/algorithms/join.py
ADDED
@@ -0,0 +1,346 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import warnings
|
2 |
+
from abc import ABC, abstractmethod
|
3 |
+
from types import TracebackType
|
4 |
+
from typing import Any, List, NamedTuple, Optional, Type
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.distributed as dist
|
8 |
+
|
9 |
+
__all__ = ['JoinHook', 'Joinable', 'Join']
|
10 |
+
|
11 |
+
class JoinHook:
|
12 |
+
r"""
|
13 |
+
This defines a join hook, which provides two entry points in the join context manager.
|
14 |
+
|
15 |
+
Entry points : a main hook, which is called repeatedly while there exists a non-joined
|
16 |
+
process, and a post-hook, which is called once all processes have joined.
|
17 |
+
|
18 |
+
To implement a join hook for the generic join context manager, define a
|
19 |
+
class that inherits from :class:`JoinHook` and override ``main_hook()`` and
|
20 |
+
``post_hook()`` as appropriate.
|
21 |
+
"""
|
22 |
+
|
23 |
+
def main_hook(self) -> None:
|
24 |
+
r"""Call this hook while there exists a non-joined process to shadow collective communications in a training iteration.
|
25 |
+
|
26 |
+
Training iteration i.e., in one forward pass, backward pass, and optimizer step.
|
27 |
+
"""
|
28 |
+
...
|
29 |
+
|
30 |
+
def post_hook(self, is_last_joiner: bool) -> None:
|
31 |
+
r"""
|
32 |
+
Call hook after all processes have joined.
|
33 |
+
|
34 |
+
It is passed an additional ``bool`` argument ``is_last_joiner``, which indicates if the rank is one of the last to join.
|
35 |
+
|
36 |
+
Arguments:
|
37 |
+
is_last_joiner (bool): ``True`` if the rank is one of the last to
|
38 |
+
join; ``False`` otherwise.
|
39 |
+
"""
|
40 |
+
...
|
41 |
+
|
42 |
+
|
43 |
+
class Joinable(ABC):
|
44 |
+
r"""
|
45 |
+
This defines an abstract base class for joinable classes.
|
46 |
+
|
47 |
+
A joinable class
|
48 |
+
(inheriting from :class:`Joinable`) should implement :meth:`join_hook`,
|
49 |
+
which returns a :class:`JoinHook` instance, in addition to
|
50 |
+
:meth:`join_device` and :meth:`join_process_group` that return device and
|
51 |
+
process group information, respectively.
|
52 |
+
"""
|
53 |
+
|
54 |
+
@abstractmethod
|
55 |
+
def __init__(self):
|
56 |
+
super().__init__()
|
57 |
+
self._join_config = _JoinConfig.construct_disabled_join_config()
|
58 |
+
|
59 |
+
@abstractmethod
|
60 |
+
def join_hook(self, **kwargs) -> JoinHook:
|
61 |
+
r"""
|
62 |
+
Return a :class:`JoinHook` instance for the given :class:`Joinable`.
|
63 |
+
|
64 |
+
Arguments:
|
65 |
+
kwargs (dict): a :class:`dict` containing any keyword arguments
|
66 |
+
to modify the behavior of the join hook at run time; all
|
67 |
+
:class:`Joinable` instances sharing the same join context
|
68 |
+
manager are forwarded the same value for ``kwargs``.
|
69 |
+
"""
|
70 |
+
...
|
71 |
+
|
72 |
+
@property
|
73 |
+
@abstractmethod
|
74 |
+
def join_device(self) -> torch.device:
|
75 |
+
r"""Return the device from which to perform collective communications needed by the join context manager."""
|
76 |
+
...
|
77 |
+
|
78 |
+
@property
|
79 |
+
@abstractmethod
|
80 |
+
def join_process_group(self) -> Any:
|
81 |
+
r"""Returns the process group for the collective communications needed by the join context manager itself."""
|
82 |
+
...
|
83 |
+
|
84 |
+
|
85 |
+
class _JoinConfig(NamedTuple):
|
86 |
+
r"""This includes all fields needed from a :class:`Joinable` instance for the join context manager side."""
|
87 |
+
|
88 |
+
enable: bool
|
89 |
+
throw_on_early_termination: bool
|
90 |
+
is_first_joinable: bool
|
91 |
+
|
92 |
+
@staticmethod
|
93 |
+
def construct_disabled_join_config():
|
94 |
+
r"""Return a :class:`_JoinConfig` instance indicating that join-related logic should be disabled.
|
95 |
+
|
96 |
+
e.g. if the caller is not in a join context manager.
|
97 |
+
"""
|
98 |
+
return _JoinConfig(
|
99 |
+
enable=False,
|
100 |
+
throw_on_early_termination=False,
|
101 |
+
is_first_joinable=False
|
102 |
+
)
|
103 |
+
|
104 |
+
|
105 |
+
|
106 |
+
class Join:
|
107 |
+
r"""
|
108 |
+
This class defines the generic join context manager, which allows custom hooks to be called after a process joins.
|
109 |
+
|
110 |
+
These hooks should shadow the
|
111 |
+
collective communications of non-joined processes to prevent hanging and
|
112 |
+
erroring and to ensure algorithmic correctness. Refer to :class:`JoinHook`
|
113 |
+
for details about the hook definition.
|
114 |
+
|
115 |
+
.. warning::
|
116 |
+
The context manager requires each participating :class:`Joinable` to
|
117 |
+
call the method :meth:`notify_join_context()` before its own per-
|
118 |
+
iteration collective communications to ensure correctness.
|
119 |
+
|
120 |
+
.. warning::
|
121 |
+
The context manager requires that all ``process_group`` attributes in
|
122 |
+
the :class:`JoinHook` objects are the same. If there are multiple
|
123 |
+
:class:`JoinHook` objects, then the ``device`` of the first is used.
|
124 |
+
The process group and device information is used for checking for non-
|
125 |
+
joined processes and for notifying processes to throw an exception if
|
126 |
+
``throw_on_early_termination`` is enabled, both of which using an all-
|
127 |
+
reduce.
|
128 |
+
|
129 |
+
Arguments:
|
130 |
+
joinables (List[Joinable]): a list of the participating
|
131 |
+
:class:`Joinable` s; their hooks are iterated over in the given
|
132 |
+
order.
|
133 |
+
|
134 |
+
enable (bool): a flag enabling uneven input detection; setting to
|
135 |
+
``False`` disables the context manager's functionality and should
|
136 |
+
only be set when the user knows the inputs will not be uneven
|
137 |
+
(default: ``True``).
|
138 |
+
|
139 |
+
throw_on_early_termination (bool): a flag controlling whether to throw an
|
140 |
+
exception upon detecting uneven inputs (default: ``False``).
|
141 |
+
|
142 |
+
Example::
|
143 |
+
|
144 |
+
>>> import os
|
145 |
+
>>> import torch
|
146 |
+
>>> import torch.distributed as dist
|
147 |
+
>>> import torch.multiprocessing as mp
|
148 |
+
>>> # xdoctest: +SKIP
|
149 |
+
>>> import torch.nn.parallel.DistributedDataParallel as DDP
|
150 |
+
>>> import torch.distributed.optim.ZeroRedundancyOptimizer as ZeRO
|
151 |
+
>>> from torch.distributed.algorithms.join import Join
|
152 |
+
>>>
|
153 |
+
>>> # On each spawned worker
|
154 |
+
>>> def worker(rank):
|
155 |
+
>>> dist.init_process_group("nccl", rank=rank, world_size=2)
|
156 |
+
>>> model = DDP(torch.nn.Linear(1, 1).to(rank), device_ids=[rank])
|
157 |
+
>>> optim = ZeRO(model.parameters(), torch.optim.Adam, lr=0.01)
|
158 |
+
>>> # Rank 1 gets one more input than rank 0
|
159 |
+
>>> inputs = [torch.tensor([1.]).to(rank) for _ in range(10 + rank)]
|
160 |
+
>>> with Join([model, optim]):
|
161 |
+
>>> for input in inputs:
|
162 |
+
>>> loss = model(input).sum()
|
163 |
+
>>> loss.backward()
|
164 |
+
>>> optim.step()
|
165 |
+
>>> # All ranks reach here without hanging/erroring
|
166 |
+
"""
|
167 |
+
|
168 |
+
def __init__(
|
169 |
+
self,
|
170 |
+
joinables: List[Joinable],
|
171 |
+
enable: bool = True,
|
172 |
+
throw_on_early_termination: bool = False,
|
173 |
+
**kwargs,
|
174 |
+
):
|
175 |
+
if len(joinables) == 0:
|
176 |
+
raise ValueError("The join context manager requires at least one joinable")
|
177 |
+
self._joinables = joinables
|
178 |
+
self._join_hooks = [joinable.join_hook(**kwargs) for joinable in self._joinables]
|
179 |
+
self._enable = enable
|
180 |
+
self._throw_on_early_termination = throw_on_early_termination
|
181 |
+
self._set_joinable_configs()
|
182 |
+
self._extract_dist_info()
|
183 |
+
|
184 |
+
def _set_joinable_configs(self) -> None:
|
185 |
+
r"""Set the :class:`_JoinConfig` of each participating :class:`Joinable`."""
|
186 |
+
assert len(self._joinables) > 0
|
187 |
+
is_first_joinable = True
|
188 |
+
for joinable in self._joinables:
|
189 |
+
joinable._join_config = _JoinConfig(
|
190 |
+
enable=self._enable,
|
191 |
+
throw_on_early_termination=self._throw_on_early_termination,
|
192 |
+
is_first_joinable=is_first_joinable
|
193 |
+
)
|
194 |
+
is_first_joinable = False
|
195 |
+
|
196 |
+
def _extract_dist_info(self) -> None:
|
197 |
+
r"""
|
198 |
+
Extract the process group and device information from the joinables.
|
199 |
+
|
200 |
+
If there are multiple joinables, then the context manager uses the
|
201 |
+
first specified device.
|
202 |
+
|
203 |
+
Preconditions:
|
204 |
+
``self._joinables`` is not ``None`` and is non-empty.
|
205 |
+
|
206 |
+
Raises:
|
207 |
+
ValueError
|
208 |
+
If there are multiple conflicting ``process_group`` attributes
|
209 |
+
among the ``Joinable`` objects.
|
210 |
+
"""
|
211 |
+
process_group = None
|
212 |
+
device = None
|
213 |
+
for joinable in self._joinables:
|
214 |
+
if process_group is None:
|
215 |
+
process_group = joinable.join_process_group
|
216 |
+
elif process_group != joinable.join_process_group:
|
217 |
+
raise ValueError("Using join context manager with multiple process groups")
|
218 |
+
if device is None:
|
219 |
+
device = joinable.join_device
|
220 |
+
self._process_group = process_group
|
221 |
+
self._rank = dist.get_rank(self._process_group)
|
222 |
+
self._device = device
|
223 |
+
|
224 |
+
def __enter__(self):
|
225 |
+
...
|
226 |
+
|
227 |
+
def __exit__(
|
228 |
+
self,
|
229 |
+
type: Optional[Type[BaseException]],
|
230 |
+
value: Optional[BaseException],
|
231 |
+
traceback: Optional[TracebackType]
|
232 |
+
):
|
233 |
+
r"""
|
234 |
+
Repeatedly runs the main hooks until all processes join; then, runs the post-hooks.
|
235 |
+
|
236 |
+
Raises:
|
237 |
+
RuntimeError
|
238 |
+
If ``throw_on_early_termination=True``.
|
239 |
+
"""
|
240 |
+
if not self._enable or type:
|
241 |
+
return # propagate the exception directly if one was raised
|
242 |
+
|
243 |
+
all_procs_joined = False
|
244 |
+
is_last_joiner = True
|
245 |
+
|
246 |
+
i = 0
|
247 |
+
WARN_THRESHOLD = 1000
|
248 |
+
warnings.simplefilter("once")
|
249 |
+
|
250 |
+
while not all_procs_joined:
|
251 |
+
if i > WARN_THRESHOLD:
|
252 |
+
warnings.warn(
|
253 |
+
"Detected uneven input skew of greater than "
|
254 |
+
f"{WARN_THRESHOLD}. This means that rank "
|
255 |
+
f"{self._rank} has at least {WARN_THRESHOLD} "
|
256 |
+
f"fewer inputs than other currently-active ranks. "
|
257 |
+
"This level of skew could lead to performance "
|
258 |
+
"degradation during training."
|
259 |
+
)
|
260 |
+
# Shadow the all-reduce in non-joined processes
|
261 |
+
num_nonjoined_procs = self._get_num_nonjoined_procs()
|
262 |
+
if num_nonjoined_procs == 0:
|
263 |
+
all_procs_joined = True
|
264 |
+
else:
|
265 |
+
if self._throw_on_early_termination:
|
266 |
+
self._notify_procs_to_terminate()
|
267 |
+
|
268 |
+
# Run main hooks
|
269 |
+
for join_hook in self._join_hooks:
|
270 |
+
join_hook.main_hook()
|
271 |
+
|
272 |
+
is_last_joiner = False
|
273 |
+
i += 1
|
274 |
+
|
275 |
+
# Run post-hooks
|
276 |
+
for join_hook in self._join_hooks:
|
277 |
+
join_hook.post_hook(is_last_joiner)
|
278 |
+
|
279 |
+
def _get_num_nonjoined_procs(self):
|
280 |
+
r"""Return the number of non-joined processes by shadowing an all-reduce in the non-joined processes."""
|
281 |
+
num_nonjoined_procs = torch.zeros(1, device=self._device)
|
282 |
+
dist.all_reduce(num_nonjoined_procs, group=self._process_group)
|
283 |
+
return num_nonjoined_procs.item()
|
284 |
+
|
285 |
+
def _notify_procs_to_terminate(self):
|
286 |
+
r"""Schedule an all-reduce to notify non-joined processes to terminate.
|
287 |
+
|
288 |
+
Also raise a ``RuntimeError`` indicating that the current process has exhausted its inputs.
|
289 |
+
"""
|
290 |
+
ones = torch.ones(1, device=self._device)
|
291 |
+
dist.all_reduce(ones, group=self._process_group)
|
292 |
+
raise RuntimeError(f"Rank {self._rank} exhausted all inputs.")
|
293 |
+
|
294 |
+
@staticmethod
|
295 |
+
def notify_join_context(joinable: Joinable):
|
296 |
+
r"""
|
297 |
+
Notifies the join context manager that the calling process has not yet joined.
|
298 |
+
|
299 |
+
Then, if ``throw_on_early_termination=True``, checks if uneven inputs have been detected
|
300 |
+
(i.e. if one process has already joined) and throws an exception if so.
|
301 |
+
|
302 |
+
This method should be called from a :class:`Joinable` object before
|
303 |
+
its per-iteration collective communications. For example, this should
|
304 |
+
be called at the beginning of the forward pass in
|
305 |
+
:class:`DistributedDataParallel`.
|
306 |
+
|
307 |
+
Only the first :class:`Joinable` object passed into the context
|
308 |
+
manager performs the collective communications in this method, and
|
309 |
+
for the others, this method is vacuous.
|
310 |
+
|
311 |
+
Arguments:
|
312 |
+
joinable (Joinable): the :class:`Joinable` object calling this
|
313 |
+
method.
|
314 |
+
|
315 |
+
Returns:
|
316 |
+
An async work handle for the all-reduce meant to notify the context
|
317 |
+
manager that the process has not yet joined if ``joinable`` is the
|
318 |
+
first one passed into the context manager; ``None`` otherwise.
|
319 |
+
"""
|
320 |
+
assert hasattr(joinable, "_join_config"), \
|
321 |
+
f"Check that the {type(joinable)} constructor calls the " \
|
322 |
+
"``Joinable`` constructor"
|
323 |
+
|
324 |
+
join_config = joinable._join_config
|
325 |
+
# First joinable is responsible for the collective communications
|
326 |
+
if not join_config.is_first_joinable or not join_config.enable:
|
327 |
+
return None
|
328 |
+
|
329 |
+
device = joinable.join_device
|
330 |
+
process_group = joinable.join_process_group
|
331 |
+
|
332 |
+
# Schedule an all-reduce to indicate that the caller has not yet joined
|
333 |
+
ones = torch.ones(1, device=device)
|
334 |
+
work = dist.all_reduce(ones, group=process_group, async_op=True)
|
335 |
+
|
336 |
+
if join_config.throw_on_early_termination:
|
337 |
+
# Check if uneven inputs have been detected
|
338 |
+
zeros = torch.zeros(1, device=device)
|
339 |
+
dist.all_reduce(zeros, group=process_group)
|
340 |
+
should_throw = zeros.item()
|
341 |
+
if should_throw:
|
342 |
+
raise RuntimeError(
|
343 |
+
"Detected at least one rank that exhausted inputs. "
|
344 |
+
"Throwing across all ranks."
|
345 |
+
)
|
346 |
+
return work
|
venv/lib/python3.10/site-packages/torch/distributed/algorithms/model_averaging/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/torch/distributed/algorithms/model_averaging/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (212 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/algorithms/model_averaging/__pycache__/averagers.cpython-310.pyc
ADDED
Binary file (5.74 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/algorithms/model_averaging/__pycache__/hierarchical_model_averager.cpython-310.pyc
ADDED
Binary file (9.55 kB). View file
|
|